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ABSTRACT
Non-negative Matrix Factorisation (NMF) is a popular tool
in musical signal processing. However, problems using this
methodology in the context of Automatic Music Transcrip-
tion (AMT) have been noted resulting in the proposal of su-
pervised and constrained variants of NMF for this purpose.
Group sparsity has previously been seen to be effective for
AMT when used with stepwise methods. In this paper group
sparsity is introduced to supervised NMF decompositions and
a dictionary tuning approach to AMT is proposed based upon
group sparse NMF using the β-divergence. Experimental re-
sults are given showing improved AMT results over the state-
of-the-art NMF-based AMT system

Index Terms— Automatic music transcription, non-
negative matrix factorisation, group sparsity

1. INTRODUCTION

Automatic Music Transcription (AMT) seeks a pitch-time
representation from a musical signal. A popular family
of methods for performing this task are based upon Non-
negative Matrix Factorisation (NMF) [1], which seeks to
approximate a non-negative matrix, S ∈ RM×N such that

S ≈ DX (1)

where D ∈ RM×K is a dictionary matrix in which each col-
umn is referred to as an atom and X ∈ RK×N is an activation
matrix, in which each row relates the activity of the dictio-
nary atom in the corresponding row. In the context of AMT
it is hoped that each atom will represent a note leading to the
activation matrix admitting a pitch-time representation.

NMF was first proposed for the purpose of AMT in [2],
where the authors note the issue of separability, suggesting
that each note may have to be played individually at least once
in order that a relevant factor may be learned. Experiments in
[3] demonstrate that NMF can learn relevant atoms in musi-
cal signals even when the notes are not necessarily isolated.
However, performing AMT using unsupervised NMF is still
difficult. Meaningless atoms are often learnt and NMF is sen-
sitive to the learning order, or rank of the factorisation.
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Several alternative NMF-based approaches have been pro-
posed in the AMT literature. Improved results are reported
when a fixed dictionary is used, referred to as supervised
NMF or Non-negative Matrix Decomposition (NMD) [4] [5].
However, the performance of such an approach deteriorates
when the dictionary is not relevant to the signal to be decom-
posed [5]. Alternative NMF approaches exploit the harmonic
structure present in the spectra of musical notes [6] [5], and
constrain the learning. Harmonic NMF (H-NMF) was first
proposed in [6] in which a dictionary is created with one
atom for each note in the piano scale. Each atom is initialised
with zeros in all dimensions other than those which repre-
sent a harmonic partial of the fundamental frequency of that
note. As NMF methods use multiplicative updates, the zero
elements remain inactive. The authors note the problem of
crosstalk between atoms representing musically related notes
using this approach and propose a penalty for co-active corre-
lated atoms. An alternative H-NMF approach is proposed in
[5] using a hierarchical dictionary. Each note is represented
by one high-level full spectrum atom, formed from a super-
position of several narrowband harmonic atoms of similar
pitch, with a semi-supervised NMF algorithm used to learn
the superposition of narrowband atoms for each note.

Previously, we have explored the use of group sparsity for
AMT using stepwise approaches, based on greedy pursuits
[7], and backwards elimination [8], observing that the use of
a group of atoms to represent a note affords improved AMT.
However, these approaches used fixed dictionaries learnt of-
fline that may not be adaptable to other signals. The step-
wise methods are ultimately constrained Non-Negative Least
Squares decompositions and it is considered in NMF-based
AMT that cost functions other than Euclidean distance afford
better performance [5] [4] [2]. The work presented here incor-
porates group sparsity into NMD and NMF for the purpose of
AMT, using the dictionaries of narrowband atoms proposed
in [5]. While these atoms are used to construct a higher-level
dictionary in [5], here the atoms are grouped, offering differ-
ent superpositions at each frame of the spectrogram. In the
rest of this paper, the background on group sparsity, NMF
and the harmonic atoms is briefly given, before the proposed
approaches are outlined. Experiments and results are then de-
scribed showing that the proposed approaches outperform the
method in [5], before concluding with pointers to future work.
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2. BACKGROUND

2.1. Harmonic atoms

The use of harmonic atoms based on a ERB scale is proposed
in [5] with several fixed narrowband atoms used to construct
one broadband atom. A group of six narrowband atoms used
to represent one note is shown in Fig. 1. The details of the
construction of the dictionary are omitted here, for which the
reader is referred to the original paper [5]. The authors of [5]
propose using a semi-supervised NMF approach, in which the
individual narrowband atoms are fixed, while the higher-level
broadband atoms are adapted by learning the superposition of
narrowband atoms.

Fig. 1. Narrowband harmonic atoms for one note

2.2. NMF with β-divergence

NMF algorithms have been proposed for many different cost
functions [9] [10]. The β-divergence [9] :

Cβ(s|z) =
1

β(β − 1)

∑
i

sβi + (β − 1)zβi − β(siz
β−1
i ) (2)

where s = Dx, generalises several different cost functions
popular in musical signal processing, such as the Euclidean
distance (β = 2). The Kullback-Leibler (KL) divergence
(β = 1) and Itakuro-Saito (IS) divergence (β = 0) [11] are
limit cases of the β-divergence. The cost function (2) can be
optimised using alternating multiplicative updates :

X← X⊗
(

[DT (S⊗ [DX][β−2])]

[DT [DX][β−1]]

)[ϕ(β)]

(3)

D← D⊗
(

[S⊗ [DX][β−2]]XT

[DX][β−1]XT

)[ϕ(β)]

(4)

where ϕ(β) is a parameter that guarantees descent of the cost
function [12] [13], division is elementwise, ⊗ denotes ele-
mentwise multiplication and X[p] denotes elementwise expo-
nentiation. Recently, it has been reported that superior AMT

results are achieved when β = 0.5 [5] [4] when a fixed dic-
tionary is used.

2.3. Group sparsity

Group sparsity allows incorporation of prior information of
expected co-activity of dictionary atoms into a decomposi-
tion. Given the set of tuples

L = {Ll} (5)

where Ll contains the column indices of the lth group leads
to the notation for the lth group of the dictionary, D[l], and of
the coefficient vector, x[l]:

D[l] = [dLl(1), ...,dLl(|Ll|)]

x[l] = [xLl(1), ..., xLl(|Ll|)]
T (6)

where Ll(i) is the ith member of the lth tuple in the set L, and∑
l |Ll| = N . Typically, group sparsity is encouraged using

a `p,q vector norm penalty term [14] [15] where

‖x‖p,q = ‖g‖q where gl = ‖x[l]‖p. (7)

The `2,1 mixed norm is commonly used, favouring few active
groups with several active atoms in each group [14]. Other
norms, such as `1,2 which favours many active groups, with
few active atoms in each group, can be used [15].

A group sparse variant of NMF was previously proposed
in [11] for the purpose of source separation using the Itakuro-
Saito divergence with a log-based penalty applied to the `1
norm of the group coefficients, leading to a cost function

CISGS
(s|z) = CIS(s|z) + λΨ(x) (8)

where Ψ(x) =
∑
l log(a+ ‖x[l]‖1), with an alternating mul-

tiplicative update strategy used.

2.4. Sparse penalisation with an `pp norm

The use of an `1-norm penalty is a popular choice for enhanc-
ing sparsity in a signal representation [16] and is also com-
monly applied as a penalty term in NMF [13]. However, other
penalty terms can also be applied. In terms of a penalised Eu-
clidean distance cost function the log based penalty is shown
to be related to the reweighted least squares problem [16]. An
alternative approach to the log penalty is the `pp norm [17]:

‖x‖pp = ‖x[p]‖1 (9)

which is shown to be proportional to the log of a Gaussian
prior [17].



3. METHOD

Before the proposed approaches are detailed their relation-
ship to previous work is described. The use of group sparsity
has previously been proposed by the authors for the purpose
of AMT using stepwise NMD methods [7] [8] and shown to
afford improved AMT. However, this previous work used dic-
tionaries that were learnt offline, and it is intended to construct
a method that is more adaptable to the signal, and affords the
use of group sparsity. The harmonic dictionaries proposed in
[5] readily afford a generic musical dictionary with a natu-
ral group structure and are adapted for the research presented
here. The use of these dictionaries is central to this work and
while the purpose here in performing AMT concurs with that
of [5], a different approach to the problem is taken here, using
group sparsity.

Group sparse NMF has previously been proposed [18] us-
ing the cost function (8), and the proposed approaches build
upon this research. Modifications are made to the approach of
[18]; the IS-divergence in (8) is replaced with C(0.5)β (2), for
which superior AMT results have been recorded [5] [4], while
an alternative group sparse penalty, based on the `pp-norm ap-
proach of [17], is proposed with an `2-norm also preferred for
the group coefficient. Using this modified group sparse cost
function, two different approaches to AMT are proposed; the
first a group sparse NMD, with a fixed harmonic dictionary;
the second is a dictionary tuning approach based on group
sparse NMF with modifications to the alternating multiplica-
tive update philosophy and to the dictionary update.

3.1. Group sparse decompositions

In order to circumvent the extra parameter introduced when
using the log-based group sparse penalty in (8), an alternative
`qp,q-norm penalty is proposed for the same purpose

‖x‖qp,q = ‖g[q]‖1 where gl = ‖x[l]‖p. (10)

leading to a group sparse penalised β-divergence cost func-
tion

CβGS
(s|z) = Cβ(s|z) + λ‖g[q]‖1 (11)

which can be estimated using the augmented multiplicative
update

X← X⊗
(

[DT (S⊗ [DX][β−2])]

[DT (DX)[β−1]] + λΨ

)[ϕ(β)]

(12)

where k ∈ Ll, and λ is a parameter controlling the sparsity
level, and ϕ(β) = 2/3 as recommended for penalised ap-
proaches in [13] and

Ψk,n =
dgl,n
dxk,n

= qgq−pl,n xp−1k,n (13)

which reduces to qxk,n

‖x[l]‖2−q
2

when p = 2. Consistent descent of
the cost function using the update (12) is observed, although

not guaranteed. This update is generally applicable for non-
negative group sparse decompositions. In the experiments de-
scribed here parameter values of β = q = 0.5 and p = 2 are
used.

3.2. Dictionary tuning using group sparse NMF

In order to afford greater adaptation to the signal, a group
sparse NMF-based approach is proposed which uses the har-
monic dictionary as an initialisation, and in which the atoms
maintain their initial pitch labels. The harmonic dictionary
proposed in [5] does not set to zero the frequencies in di-
mensions that do not represent harmonic partials, as proposed
in [6]. Therefore, the learning is unconstrained apart from
the group sparsity in the activation matrix update (12) and
is therefore prone to the problems associated with unsuper-
vised NMF in the context of AMT [6] [5]. Several subtle
modifications to the GS-NMF approach are proposed to avoid
the problems associated with unsupervised NMF, a dictionary
learning algorithm, and this modified approach is referred to
as dictionary tuning, outlined in Algorithm 1.

The first feature of the dictionary tuning approach is that
the dictionary updating does not start until a late stage in the
NMF process, when the activation matrix is considered to be
in the locality of its final decomposition. In practice, 20 itera-
tions of the unpenalised β-NMF activation matrix update (3)
and 20 iterations of the penalised update (12) are performed.
When the dictionary updating commences, the one-to-one al-
ternating projection strategy typically used in NMF [1] [9] is
modified with several iterations of the group sparse activation
matrix update (12) performed for each single dictionary up-
date. A modified dictionary update is also proposed :

D← D⊗
(

[(S⊗ (DX)[β−2])XT ] + ε

[(DX)[β−1]XT ] + ε

)η
(14)

where ε = 0.1 stabilises the update when a large gradient
is present [9] and a small value of η = 0.4, rather than the
optimal stepsize η = 1, is used to further reduce the step size

Algorithm 1 Dictionary tuning (GS-β-NMF)
Input

S,D, λ,L, p, β
Initialise

X = DTS
Do initial decomposition

Perform group sparse NMD using (12)
Dictionary updating

Repeat
Update dictionary using (14)
Update activation matrix (12) (×3)

Until convergence
Output X,D



4. EXPERIMENTS

AMT experiments were run on the EnStDkcl subset of the
MAPS database [19]. The first 30 seconds of each piece in
the dataset were used. Each piece is a live electromechanical
piano recording with a ground truth supplied. The two pro-
posed approaches, GS-β-NMD and GS-β-NMF were com-
pared. GS-NMD was performed used the harmonic dictionary
[5] and was initialised with 10 iterations of the unpenalised
β-divergence update. After initialisation, the GS-β-NMD up-
date (12) was performed until convergence, defined by the
group sparse penalised cost function decreasing by less than
0.5% over 5 iterations. GS-β-NMF also runs until a similar
convergence condition is met. For both GS-NMF and GS-
NMD, the value of the sparsity parameter λ = 0.5 is used,
which was seen in early experiments to provide reasonable
performance.

For comparison, the state-of-the-art H-NMF of [5] was
also run, using code supplied online by the authors. A fur-
ther comparison is performed by performing NMD using the
β-divergence, with β = 0.5, using a dictionary learnt offline.
This dictionary was constructed with one atom used to repre-
sent each note. The atoms were learnt from signals containing
isolated notes, also contained in the EnStDkcl subset of the
MAPS database. In this sense the atoms can be considered to
optimal for the dataset used, having been learnt in the same
environment.

The performance of the different approaches is analysed
by thresholding the group activation matrices. Different
thresholds are selected relative to the maximum value of each
activation matrix

T = δ ×maxX (15)

by using a range of values of δ ∈ {15, ...40}dB. At each
value of δ, the threshold T is calculated and applied to the ac-
tivation matrix, leading to a binary representation. The sets of
true positives, T P , false positives, FP , and false negatives,
FN are labelled for each value of δ. For each value of δ the
Precision, P = |T P|

|T P|+|FP| , Recall, R = |T P|
|T P|+|FN| and F-

measure, F = 2|T P|
2|T P|+|FP|+|FN| metrics are calculated for

all pieces. The values recorded correspond to the maximum
value of F-measure, recorded at δopt.

The results for the different AMT approaches used are
given in Table 1. Here it seen that the β-NMD using the
dictionary learnt offline performs best, as may be expected.
The proposed group sparse decompositions using the fixed
dictionary perform as well as the state -of-the-art H-NMF of
[5], wihle the proposed group sparse NMF approach performs
better than both these approaches by 2.8%, with performance
closer to that of the β-NMD approach. Indeed, the proposed
GS-NMF achieves a F-measure of only 1.4% less than the
β-NMD approach with a dictionary learnt offline.

P R δopt(dB) F
H-NMF [5] 70.3 65.3 29 67.7
GS-β-NMD 68.4 67.1 29 67.8
GSβ-NMF 73.8 67.4 30 70.5
β-NMD 74.5 69.4 33 71.9

Table 1. Comparison of AMT performance of the proposed
approaches, GS-β-NMD and GS-β-NMF with H-NMF [5].
Italics denote results from a β-NMD decomposition using
atoms learnt from isolated notes.

5. CONCLUSIONS AND FUTURE WORK

The use of group sparsity for AMT in the context of NMD
and NMF has been explored here, with a particular emphasis
on the use of a generic dictionary. Results are promising. The
NMD approach demonstrates results similar to those of the
semi-supervised NMF method in [5], considered a state-of-
the-art NMF approach for AMT, using the same dictionaries.
Further to this, the group sparse NMF approach improves on
those results by almost 3%.

However, the group sparse approach requires the use of a
sparsity parameter λ, and some further work may be required
to optimise its use, with one value of λ used across all ex-
periments presented here. Some initial experiments indicate
similar performance with λ set to half, or twice, the value
employed here, in terms of F-measure, with relatively small
variations in Recall and Precision noted. It may be interesting
to compare the performance with normalised data columns. It
has been demonstrated that larger dimension ERB transforms
lead to improved AMT performance [20], and a similar type
of dictionary should be developed in these transforms. While
the dictionaries used were seen to be fit for purpose, further
consideration may also be given to the construction of differ-
ent generic dictionaries.
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