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ABSTRACT: There is increasing demand for efficient ways to process large volumes of data from
visual-based remote-technology, such as unmanned aerial vehicles (UAVs) in ecology and conser-
vation, with machine learning methods representing a promising avenue to address varying user
demands. Here, we evaluated current trends in how machine learning and UAVs are used to pro-
cess imagery data for detecting animals and vegetation across habitats, placing emphasis on their
utility for endangered species. We reviewed 213 publications that used UAVs at 256 study sites, of
which just 89 (42 %) used machine learning to assess the visual data. We evaluated geographical
and temporal trends and identified how each technology is used at a global scale. We also identi-
fied the most commonly encountered machine-learning methods, including potential reasons for
their limited use in ecology and possible solutions. Thirteen out of the 17 habitats defined by the
International Union for Conservation of Nature (IUCN) habitat classification scheme were moni-
tored using UAVs, while 12 habitats were monitored using both UAVs and machine learning. Our
results show that, while machine learning is already being used across many habitat types, it is
primarily restricted to more uniform habitats at present. Out of 173 plant and animal species mon-
itored using UAV surveys, 30 were of conservation concern, with machine learning being used to
assess UAV imagery data for 9 of these species. In conclusion, we anticipate that the joint use of
UAVs and machine learning for ecological research and conservation will expand as machine

learning methods become more accessible.
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1. INTRODUCTION

Recent advances in visual technology, both under-
water (e.g. baited remote underwater video stations
[BRUVs] and remotely operated underwater vehicles
[ROVs]) and in the air (unmanned aerial vehicles
[UAVs] and unmanned aerial systems [UASs]), are
providing a completely new perspective of wildlife
and the ecosystems in which they live (Mallet & Pel-
letier 2014, Christie et al. 2016). For example, UAVs
are being used to map habitats (Kaneko et al. 2014,
Szantoi et al. 2017) as well as monitor the abundance,
behaviour and health of wildlife (Barasona et al.
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2014, Chabot et al. 2015, Christiansen et al. 2016,
Schofield et al. 2017, Bonnin et al. 2018). In particu-
lar, UAVs provide an opportunity to monitor elusive
animals, including vulnerable and endangered spe-
cies for which data remain limited, facilitating
improved conservation actions, including serving as
an antipoaching tool (Mulero-Pdzmany et al. 2014,
Olivares-Mendez et al. 2015, Christie et al. 2016).
While the utility of UAVs as monitoring tools has
been widely demonstrated across marine and terres-
trial systems (e.g. Parry et al. 2003, Mallet & Pelletier
2014, Hodgson et al. 2018), large volumes of imagery
(stills or video) and sensory information must be pro-
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cessed to extract relevant information, which is gen-
erally termed 'regions of interest’ and sometimes
‘points of interest’ (Dell et al. 2014, Weinstein 2018).
Imagery data is primarily extracted manually (by the
naked eye), which is time consuming. Consequently,
if all regions of potential interest are not extracted,
the data must be viewed more than once, increasing
the processing time (Dell et al. 2014, Weinstein 2018).
Thus, to incorporate imagery-based technology, such
as UAVs, ROVs and BRUVs, into long-term monitor-
ing programs involving repeated surveys that gener-
ate large amounts of data requiring processing, it is
essential to develop automated methods that extract
regions of interest. Such methods also help standard-
ize analysis and reduce human effort (Tarca et al.
2007, Wagstaff 2012, Thessen 2016).

This need for the rapid analysis of large imagery
datasets has driven recent advances in the use of
computer algorithms, including machine-learning
algorithms (Domingos 2012, Dell et al. 2014, L'Heu-
reux et al. 2017, Weinstein 2018). The core compo-
nent of a machine-learning algorithm is its ability to
learn how to perform important tasks for a given set
of data by generalizing information from a relatively
large number of samples (Fig. 1). For example, a
machine-learning algorithm that is trained to identify
regions of interest on imagery data automatically

learns a set of rules to separate the regions of interest
from the background in a given sample (Domingos
2012, Weinstein 2018). In complex, real-life situations
that are commonly encountered in ecology, and
when large amounts of data must be processed, is it
often easier to train a machine-learning algorithm by
showing it examples of desired inputs-outputs, rather
than manually programming a set of rules by attemp-
ting to anticipate the desired response for all possible
inputs (Fig. 1; Jordan & Mitchell 2015). Thus,
machine-learning algorithms are excellent candi-
dates for automating a range of time-consuming
tasks (Domingos 2012, Weinstein 2018). However,
machine learning is not yet systematically used to
process imagery data in the field of ecology (Thessen
2016), with some pioneering studies existing in
behavioural biology (e.g. Guilford et al. 2009, Egnor
& Branson 2016) and conservation biology (e.g.
Kampichler et al. 2010, Tabak et al. 2018). Therefore,
it is important to identify why gaps exist in the use of
machine learning to support the development on the
use of imagery-based monitoring in ecological stud-
ies.

Here, we conducted a literature review to establish
how UAVs and machine learning are currently being
used in the field of ecology and what issues are cur-
rently limiting their widespread integration in re-
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Fig. 1. To generate a machine learning algorithm, 4 main steps are usually followed. When using UAVs, these 4 steps are:
Step 1: Data collection, during which an operator collects a large amount of imagery data. Step 2: Data pre-processing, during
which selected features are extracted from the imagery data for use in training a model. Step 3: The training and validation of
a machine learning algorithm, during which the model is selected following a series of iterations where it is trained and tested
multiple times to optimize its performance. Step 4: Once the model performance is satisfactory, the model is routinely applied
on newly collected data, and classification results are used to generate new insights on the system or species of interest
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search and conservation. Specifically, we (1) docu-
mented the landscape types (habitat and ecosystem)
in which UAV surveys are used to monitor both veg-
etation and animals, including endangered species;
(2) identified potential gaps in habitat/ecosystem
coverage and/or associated with wildlife being mon-
itored with UAVs; (3) identified potential biases in
global regions where UAV surveys are currently be-
ing conducted; (4) identified in which cases machine-
learning algorithms are being used; and (5) identified
the underlying reasons for this use. The use of UAVs
in ecology is relatively new (Koh & Wich 2012,
Christie et al. 2016), with machine learning currently
increasing in popularity across many scientific fields
(Jordan & Mitchell 2015, L'Heureux et al. 2017).
Thus, we hypothesized that a bias would exist
towards using UAVs to detect larger animals (more
easily detectable) and more uniform (homogeneous)
aquatic and landscape types, with a similar pattern
being observed when UAVs are used in conjunction
with machine learning (Dell et al. 2014, Weinstein
2018). We also hypothesized that there would be
publication bias towards organisations in countries
with an advanced economy for both UAVs and the
implementation of machine-learning tools (United
Nations Educational Scientific and Cultural Organi-
zation 2016). This review is expected to demonstrate
the accessibility and potential of machine learning
linked with UAV technology to the field of ecology,
highlighting potential obstacles limiting its more
widespread use, as well as its potential for use in
long-term and routine monitoring practices and con-
servation management efforts of vulnerable and
endangered species.

2. MATERIALS AND METHODS
2.1. Literature review

We assembled data from published sources on eco-
logical studies using UAVs with and without machine
learning. We searched the Thomson Reuters ISI Web
of Science™ database and Google Scholar for papers
that included a combination of one of the following
terms: ‘drone’ or ‘unmanned aerial vehicle' or ‘un-
manned aerial system’ or ‘unoccupied aircraft sys-
tem' or ‘remotely piloted aerial system' or their ab-
breviations with any of the search terms ‘wildlife' or
‘ecology’ or ‘conservation’' or ‘behaviour' or ‘behav-
ior' and 'machine learning’, in the topic field, which
includes the title, abstract, keywords and Keywords
Plus (i.e. words that frequently appear in the titles of

the articles cited within a publication). To locate ad-
ditional articles that might not have been identified
by the initial search, we also checked the reference
lists of relevant papers based on the pre-defined key-
words. In total, we identified 213 publications since
2004 up to the end of 2018 (i.e. 31 December) that
met the keywords-based criteria (see Supplement 1
at www.int-res.com/articles/suppl/n039p091_suppl.
xlsx). The year 2004 corresponded to the year of pub-
lication of the oldest study that was found and that
met the criteria.

To identify temporal trends, for each article, we
documented the year and journal of publication and
determined the annual number of publications over
the 2004-2018 period. When available, we deter-
mined the impact factor of the journal of publication
using InCites Citation Reports website (https://
clarivate.com/products/incites/). In ecology, the first
author is often viewed as the scientist taking full
responsibility for the publication (Duffy 2017). There-
fore, for each publication, we determined the univer-
sity with which the first author was affiliated and the
country in which that university was based. We then
determined the number of publications associated
with each country using the university of affiliation of
the first authors. Furthermore, the country of affilia-
tion was also classified based on its current level of
economic development, as either having an ‘ad-
vanced economy’ or ‘developing economy’ following
the 2015 World Economic Outlook assessment appel-
lation and classification of country economies (Inter-
national Monetary Fund 2016). Economic country
classification by the International Monetary Fund is
based on a range of indicators, such as the per capita
income level, the export diversification and the
degree of integration into the global financial market
(see International Monetary Fund 2016 for full details
on the classification of economies). Overall, the eco-
nomic investment in scientific research tends to be
greater in countries with an advanced economy com-
pared to countries with a developing economy (Maz-
loumian et al. 2013, International Monetary Fund
2016), and this difference might impact how UAVs
and machine learning technologies are used. For
instance, countries with an advanced economy might
be more likely to use UAVs and machine learning to
study species of conservation concern compared to
countries with a developing economy.

For each publication, we determined (1) the ecosys-
tem type (terrestrial, marine or freshwater) and (2)
the habitat type(s) following the highest classification
level of the International Union for Conservation of
Nature (IUCN) Classification Scheme, which defines
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17 main habitats (International Union for Conserva-
tion of Nature 2012). We also determined (3) the num-
ber and the geographical coordinates of all study sites
(i.e. latitude and longitude). If the exact coordinates
were not available, we made an approximation using
Google Earth for each site based on information pro-
vided in the publication. We determined (4) the study
species and their IUCN Red List category at the
global level when available (using the IUCN database
at www.iucnredlist.org). Using this information, we
determined the number of publications regarding
each ecosystem, habitat type and the number of spe-
cies in each of the 8 categories of the IUCN Red List.
To quantify the size of the different regions of inter-
est covered by the articles, we first defined 4 cate-
gories: (1) ‘body size’, when the focus was on detect-
ing individuals of a given species (vertebrate or
invertebrate) and when the single bodies were clear-
ly identifiable, (2) ‘plant size,” when the focus was on
detecting individual plants, (3) 'nest size," when the
focus was on detecting individual animal nests (of
birds, reptiles, or mammals) to quantify the repro-
duction effort or as evidence of the presence of an
animal species in a given area (e.g. for elusive spe-
cies), which is important for species where docu-
menting actual individuals is difficult, including
threatened species, such as sea turtles, crocodilians
and various bird species (e.g. Schofield et al. 2017,
Bonnin et al. 2018), and (4) 'feature size,” when the
focus was on detecting clusters of dense vegetation
or aggregated invertebrates in which individuals are
difficult to distinguish from each other (e.g. seagrass,
moss and aquatic vegetation beds, coral reefs, stro-
matolites, mussel beds or homogeneous sections of
habitat). For the ‘body size' grouping, we determined
the body size of the detected vertebrates, either from
the article or from other peer-reviewed studies on the
same species (assuming average adult body size,
unless otherwise stated in the original article, see
‘Data’ in Supplement 1 for all database references).
For the 'plant size' grouping, we determined the
diameter of the individual plant canopy, using meas-
urements provided in the articles. For the ‘feature
size' grouping, we determined the typical width of a
feature from the article. Finally, for the 'nest size’
grouping, we determined the diameter of the nests
from the article or from other publications describing
the nests of the same species (see ‘Data’ in Supple-
ment 1). We relied on nest or body size estimates
obtained from other peer-reviewed studies in a total
of 87 publications. This approach of using size esti-
mates when exact measurements were not available
allowed us to compare the relative magnitude of size

ranges for the different regions of interest in each of
the 4 categories.

Finally, for each study site, we determined whether
the authors used machine learning to detect regions
of interest, and we established a list of the most com-
monly used machine-learning methods in drone eco-
logy. In parallel, we generated an estimate of the
popularity and usefulness of the machine-learning
methods by entering the name of each method in the
topic field of the Thomson Reuters ISI Web of Sci-
ence™ database to obtain the annual number of pub-
lications in which it was used for 2004-2018 across all
scientific fields.

2.2. Data consolidation and statistical analyses

To investigate whether the size of the regions of
interest influenced the probability that machine
learning was used in a publication, we fitted a series
of Bayesian logistic regression models to the data
(see Supplementary Methods in Supplement 2 at
www.int-res.com/articles/suppl/n039p091_supp2.pdf
for equations).

To investigate potential differences between indi-
vidual body size, individual plant size, feature cluster
size and nest size and the probability that machine
learning was used, we started by separately fitting a
model to each group. Then, we fitted an additional 3
Bayesian logistic regression models by cumulatively
adding each group to the explanatory variable of the
model (i.e. the first model only includes body size as
the explanatory variable, the second model includes
both body size and plant size, the third model in-
cludes body size, plant size and feature size, and the
fourth model includes all 4 groups). Only 3 publi-
cations surveyed >1 ecosystem (maximum of 2 eco-
systems) (<1.5% of the total number of publications).
Seven publications (<3.5% of the total number of
publications) surveyed >1 habitat (maximum of 2
habitats). As the number of publications with repeat-
ed measurements at the ecosystem or habitat level
was relatively low, they were analysed in a similar
way to the other publications when fitting the Bay-
esian logistic regression models.

Throughout this manuscript, 2 proportions or 2
means were considered significantly different if their
95 % credible intervals (CI) did not overlap. The co-
efficients of the logistic regression models were
considered to be statistically significant if their 95 %
CI did not include 0. We report all of the estimated
parameters followed by their 95% CI between
square brackets. The details of the prior distributions
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that we used are provided in Supplementary Meth-
ods in Supplement 2.

All Bayesian statistical analyses were performed
using the RStan package (Stan Development Team
2018) within the R software v.3.3.2. (R Development
Core Team 2013). Geographical data were assimila-
ted wusing Quantum-GIS software v.2.18 (QGIS
Development Team 2015).

3. RESULTS

3.1. Publication trends and geographic trends in
author origin and study site location

Of the 213 ecological studies identified using
UAVs, 89 publications used machine learning. The
first study using UAVs was published in 2004 by
Trathan (Trathan 2004). Interestingly, this study was
also the first to combine UAVs and machine learning.
Of note, 197 (93 %) of all studies with and without
machine learning were published from 2012 to 2018
(Fig. 2c). The percentage of publications using UAVs
and machine learning was ~40% over the past 4 yr
(2014-2018).

For the 213 ecological studies identified using
UAVs, first authors were mostly affiliated with uni-
versities located in countries with an advanced econ-
omy (92 %, n = 195 publications (Fig. 2a,b,d). A total
of 89 (42 %) of these 213 publications used machine
learning to process UAV data, of which 81 (90 %)
were, again, from North America (Fig. 2d).

From the 213 publications, the coordinates of 256
study sites were delineated (Fig. 2a). Of these, 72%
were in countries with an advanced economy (n =
184 sites). Machine learning was used to process
UAYV data from 110 of 256 of the study sites, of which
82 (75%) were from North America, Europe and
Oceania (Fig. 2e). In addition, a total of 4% of the
study sites (n = 9) were located in Antarctica (Fig. 2a).

There was no significant difference in the average
journal impact factor of articles that presented UAV
data without machine learning (average impact fac-
tor of 2.88 [2.46,3.12]) versus with machine learning
(average impact factor of 2.83 [2.32,3.10]).

3.2. Ecosystems surveyed

Most UAV studies were conducted in terrestrial
ecosystems (n = 97 publications), followed by marine
ecosystems (n = 74 publications) and freshwater eco-
systems (n = 45 publications; Fig. 3a). For each sys-

tem, machine learning was used to assess imagery
data from just under half of the UAV studies (45 % of
studies [36 %, 56 %] for terrestrial, 35% [25%, 46 %]
for marine and 42 % [29 %, 57 %] for freshwater eco-
system), with no significant difference between the
ecosystem types.

3.3. Habitats surveyed

All but 4 of the 17 habitats defined in the highest
level of the IUCN habitat classification scheme were
covered by at least 1 UAV study (Fig. 3b, see also
Supplementary Results in Supplement 2). Of the
UAV studies, 72% (154 of 213 publications) were
conducted in 5 habitats: marine neritic (i.e. subtidal),
wetlands, artificial terrestrial (here artificial in the
sense of a heavily modified and/or degraded habitat
by human activities), marine coastal and supratidal
and forest (Fig. 3b). The 5 least covered habitats (de-
sert, aquatic and artificial, marine intertidal, savanna
and ‘other’ habitat, such as Antarctica) accounted for
just 10% (n = 22) of publications (Fig. 3b). The 4
remaining habitats (introduced vegetation, shrub-
land and grassland) accounted for 20% (n = 43) of
publications. We were not able to determine the
habitat for 1 publication in the terrestrial ecosystem.

Machine learning was primarily used to analyse
UAYV data from 4 habitats: artificial terrestrial, wet-
lands, introduced vegetation and marine coastal and
supratidal for a total of 42 % (n = 37) of the 89 studies
(Fig. 3b, Supplementary Results 1).

3.4. Wildlife and plant species monitored
3.4.1. Animals

A total of 129 animal species were identified from
117 publications (Fig. 4a, ‘Data’ in Supplement 1).
Machine learning was used in 15% (n = 18) of these
publications. Of these, 29 (23 %) species were cate-
gorised as vulnerable, endangered or critically
endangered by the IUCN Red List (Fig. 4a). Machine
learning was used to detect 8 (30 %) of these 29 spe-
cies (Fig. 4a).

Most birds and mammals were surveyed with
UAVs in terrestrial and marine ecosystems and to a
lesser extent in freshwater ecosystems. Reptiles were
only surveyed in marine and freshwater ecosystems.
Fishes were surveyed to similar levels in both marine
and freshwater ecosystems. UAVs were primarily
used to detect individual animals or nests and were
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Fig. 2. (a) Geographical distribution of the university affiliation of the first author by country (shown as number of publication
groupings) and distribution of the study sites (n = 256) where machine leaning was used to support UAVs (n = 110) and was not
used (n = 146). (b) Number of ecology publications in which UAVs were used alone or in combination with machine learning
(ML) grouped by continents based on the university of affiliation of the first author. (c) Increase in the number of ecology pub-
lications in which UAVs were used alone (n = 213) or in combination with machine learning (n = 89) from 2004 to 2018. (d)
Number of ecology publications in which the first author was affiliated to a university located in a country with an advanced or
developing economy and for which UAVs were used alone or in combination with machine learning. The data are grouped by
continents based on the university of affiliation of the first author. (e) Number of study sites located in a country with an
advanced or developing economy and for which UAVs were used alone or in combination with machine learning. The data is
grouped by continents based on location of the study sites
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Table 1. Summary of the most commonly used machine-learning methods encountered in ecology to process imagery data collected

using UAVs and the main R and Python packages to implement them

Machine-learning algorithm Number of R Python Useful sources
publications packages packages
Object based image analysis 22 SegOptim RSGISLib Blaschke (2010)
Random forest 16 rf scikit-learn Cutler et al. (2007), Strobl et al. (2009)
Maximum likelihood classification 13 rasclass mlpy Foody et al. (1992)
Support vector machine 12 el1071 scikit-learn Hsu et al. (2008), Mountrakis et al. (2011)
K-means clustering 9 stats scikit-learn Olden et al. (2008)
Convolutional artificial neural network 7 keras tensorflow, keras Chollet (2015), Wu (2017)
Thresholding 5 imager OpenCV Zou et al. (2016)

rarely used to survey clusters of animals (‘Data’ in
Supplement 1 and Supplementary Results in Supple-
ment 2). The individual body size of animals detected
using drones ranged from 0.15 to 26.00 m, with a
median body size of 1.00 m (Fig. 5a, see also Supple-
mentary Results in Supplement 2). Animal nests
were detected in all 3 ecosystems, with a diameter
ranging from 0.07 to 2.50 m and a median nest dia-
meter of 0.97 m (Fig. 5d).

Individual animals for which individual bodies
were detected were surveyed in 11 of the 17 habitats
(Fig. 3b, see also Supplementary Results in Supple-
ment 2). Machine learning was used to analyse UAV
data of animals surveyed in 9 habitats and has been
used at similar levels in the marine neritic, marine
coastal and supratidal habitats and artificial terres-
trial savanna habitat (Fig. 3b). The estimated body
size of individual animals detected using machine
learning ranged between 0.22 and 3.98 m, with a
median body size of 0.88 m (Fig. 5a). Animal nests
were primarily surveyed in 6 habitats, with forests
being the most represented. The estimated nest size
ranged from 0.07 to 0.35 m, with a median nest size of
0.21 m (Fig. 5d, Supplementary Results in Supple-
ment 2). Two of these publications used machine
learning, using an estimated individual nest size of
0.07 m, while one in the marine coastal and suprati-
dal habitats used an estimated nest size of 0.35 m.

3.4.2. Plants

The number of habitat-based surveys in which
UAVs were used to detect vegetation (n = 92) was
smaller compared to surveys in which animals were
detected (n = 117). However, machine learning was
used in 70 % (n = 64) of these 92 publications, which
is significantly more compared to animals. We identi-
fied a total of 44 plant species in the 92 publications,
of which only 1 plant species was classified as vulner-

able by the IUCN Red List (Fig. 4b). Machine learn-
ing was used to detect that species.

Vegetation was surveyed predominantly in the ter-
restrial ecosystem and, to a lesser extent, in the fresh-
water and marine ecosystems (Fig. 3d). Vegetation
was also surveyed in 12 of the 17 habitats, with the
artificial terrestrial, forest, wetlands and introduced
vegetation habitats being the most represented.
UAVs were mostly used to detect clusters of vegeta-
tion, rather than individual plants (Fig. 3d, see also
‘Data’ in Supplement 1).

Machine learning was used to detect individual
plants or clusters of vegetation from UAV data in 11
habitat types (Fig. 3d, see also Supplementary Re-
sults in Supplement 2). Machine learning was also
used to distinguish individual plants with a canopy
diameter ranging from 0.25 to 45.0 m, with a median
diameter of 4.0 m (Fig. 5b). The size of the vegetation
clusters ranged from 0.12 to 250.0 m, with a median
cluster size of 20.0 m (Fig. 5c¢).

3.4.3. Other features

An additional 3 publications reported the detection
of plastic litter using UAVs in the marine coastal and
supratidal habitat. The size of plastic clusters sur-
veyed was only provided in 2 publications, ranging
from 0.02 to 0.60 m, with a median size of 0.26 m.
Machine learning was also used in the 2 studies for
which the size of plastic clusters was provided.

3.4.4. Effect of region of interest size on use in
machine learning

The logistic regression models indicated no strong
association between the size of a region of interest
and the probability of machine learning being used
to detect it. This pattern was consistent for each of
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the number of species detected using UAVs supported by machine learning (white bars)
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Fig. 5. Boxplots comparing the size of the regions of interest covered by UAVs in ecology publications in which machine learn-

ing was not used and in which machine learning was used for (a) body size of identified vertebrate and invertebrate individu-

als, (b) canopy diameter for individual plants, (c) feature size and (d) diameter of individual nests. Due to the small sample size,

the nest size in publications with machine learning in (d) is represented as black dots. For all other boxplots, black dots: outliers;

lower bound of the grey boxes: 1st quartile; upper bound of the grey boxes: 3rd quartile; middle horizontal black line: median;
whiskers: 5th and 95th percentiles
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the 3 models separately fitted to animal body size,
individual plant size and feature size. There was a
significant relationship for nest size; however, the
sample size was small with very large CI (Supple-
mentary Results in Supplement 2). No relationship
was observed when the 4 size categories were itera-
tively incorporated in the model or when the model
was fitted using all 4 groupings (Supplementary
Results in Supplement 2).

3.5. Machine-learning methods used in ecology
and across scientific fields

Machine learning was used in nearly 90000 publi-
cations and in >235 scientific fields and subfields
from 2004 to 2018 (Fig. 5). From the 213 publications
using UAVs in ecology, 89 used machine learning,
implementing 35 different machine-learning meth-
ods, of which 26 were used in a maximum 1 to 2 pub-
lications each (see Data in Supplement 1 for full list;
Table 1, Fig. 6).

Of interest, the overall popularity of the different
machine-learning methods compared to ecological
studies using UAVs differed noticeably (Fig. 6).
For instance, in ecology, object based image analy-
sis (OBIA) was the most commonly encountered
machine-learning method (n = 22 publications),
followed by random forests (n = 16 publications),
maximum likelihood classification (n = 13 publica-
tions), support vector machine (n = 12 publications),
K-means clustering (n = 9 publications), convolu-
tional neural networks (n = 7 publications) and fi-
nally thresholding (n = 5 publications) (Table 1). In

(a) All scientific fields

50000 ,
Support Vector Machine
——— Thresholding
40000- Random Forest

eeee K-Means Clustering

Convolutional Neural Network
eeee Object Based Image Analysis
30000 ——- Maximum Likelihood Classification

20000+

10000+

o080
..0...0.........

AA 0 a."

comparison, for all scientific fields combined, sup-
port vector machine was the most commonly en-
countered machine-learning method (~6000 publi-
cations in 2017) over the same period, followed by
random forest and convolutional neural network
(~2500 publications in 2017). Thresholding (~1700
publications in 2017) and K-means clustering had
intermediate popularity (~1100 publications in
2017). These differences might be associated with
the specific application of these methods, rather
than a more general purpose.

4. DISCUSSION

This study showed that, while the use of UAVs in
ecological studies is expanding rapidly, the use of
machine learning to survey the collected visual data
is increasing at a much slower rate (~50 %). This dif-
ference might be associated with the ability to
detect features in habitats of varying complexity.
For instance, UAVs are being used in almost every
IUCN habitat category for both plant and animal
surveys to distinguish regions of interest as small as
2 cm. However, while machine-learning methods
have been applied to distinguish similarly small fea-
tures (e.g. small burrows), this tool has been used in
fewer habitats and in ones that tend to exhibit
greater uniformity, like artificial and aquatic habi-
tats. For plants, machine learning is mostly used in
heterogeneous habitats when assessing clusters of
features, and a similar trend is observed when
accessing clusters of invertebrates. Thus, machine-
learning tools might not yet be accessible enough,

20- (b) Publications using UAVs in ecology
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Fig. 6. Cumulative number of publications using 7 key machine-learning algorithms (see Table 1) across (a) all scientific fields
and (b) for publications using UAVs in ecology for the 2004-2018 period
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and ecologists might not be familiar enough with
them to efficiently replace the naked eye for assess-
ing animals on heterogeneous backgrounds, which
many natural habitats tend to be. Furthermore, at
present, UAV and machine-learning studies are pri-
marily led by institutions in countries with advanced
economies, but this is likely to change as costs
decline and algorithms are made freely available
with publications (Watts et al. 2012, Christie et al.
2016). Six machine-learning methods are primarily
used for processing UAV imagery in ecology at
present, but these differ from the most popular
methods used across the field of science in general;
thus, potential methods that have not yet been fully
trialled in ecology exist and have yet to be imple-
mented to efficiently solve the issue of detecting
animals in complex backgrounds.

4.1. Geographical and temporal trends

This study demonstrated that the rate of increase
in the use of UAV technology in the field of ecology
is >2 times greater than that for the adoption of ma-
chine learning to process the collected data. The
ease of use of UAVs and their potential to comple-
ment a variety of existing field techniques means
that the use of this technology will continue to
spread and expand beyond economically advanced
countries (Watts et al. 2012, Christie et al. 2016).
The speed at which a new technology is adopted
depends on a range of complex factors that are
often difficult to quantify, such as the expectation
for the technology to perform well and to be easy to
use with low effort, user perception and the social
environment (e.g. interactions within a research
team) (Straub 2009, Wu et al. 2019). The adoption of
machine learning is likely slower compared to the
UAYV technology because machine learning is more
complex to implement and requires personnel with
some degree of appropriate training, including com-
putational and mathematical skills (see Hastie et al.
2009, Thessen 2016). As the number of available
models and the autonomy of UAVs increases (i.e.
batteries facilitate longer surveys), it is expected
that routine flights will become common, covering
larger spatial scales over longer time periods. This
would solve issues of data availability by capturing
a large quantity of imagery samples (Anderson &
Gaston 2013, Christie et al. 2016). Manual review of
these datasets will become cost- and time-prohibi-
tive and should prompt the adoption of machine-
learning methods to improve efficiency. However,

we also found that using machine learning alone
does not increase the chances of an article being
published in a higher impact journal; rather, insights
on key ecological questions drive this phenomenon.

4.2. Ecosystems, habitats, wildlife and plant species

Our review showed that, while the institutions
leading publications and the study sites are prima-
rily based in economically advanced countries at
present, UAV surveys have been conducted over
most ecosystems and IUCN habitat categories, as
well as on a range of species from different Red List
categories. UAV surveys have even been conducted
in habitats where other monitoring approaches are
difficult to implement (such as using planes or heli-
copters in Antarctica; Nowacek et al. 2016, Johnston
2019), confirming the broad utility of integrating
UAVs in monitoring and management (Anderson &
Gaston 2013, Christie et al. 2016). In particular,
UAV surveys tended to be used differently between
animal and vegetation. Specifically, UAV surveys
tend be used differently for plants and animals. For
instance, UAV surveys tend to be directed towards
identifying individual animals rather than animal
clusters but tend to be focused towards identifying
vegetation clusters rather than individual plants.
UAYV surveys of individual animals, with and with-
out machine learning, were primarily conducted in
habitats with a background that was relatively uni-
form or homogeneous (e.g. freshwater or seawater
areas, beaches or grasslands), with a limited amount
of vegetation obstructing the field of view and
potentially hiding animals. Plants were either
detected in habitats with a high density of vegeta-
tion and a relatively complex background, with a
focus on identifying clusters of vegetation with simi-
lar characteristics (e.g. using machine learning), or
in habitats that were highly homogeneous with a
background that was easy to process, with a focus
on identifying individual plants. Therefore, we
demonstrate that individual plants and individual
animals were all generallydetected against a homo-
geneous background.

We found that the size of the regions of interest was
not the main factor explaining why machine learning
was used, with studies surveying regions of interest
as small as 0.02 m and with 90 % of regions of interest
having a size ranging between 0.40 and 38.0 m. Re-
gardless of size, isolated individual animals or plants
with a clearly defined shape and size against a homo-
geneous background tend to be relatively easy to
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detect by trained human observers. In such situa-
tions, the focus is often to obtain counts of individuals
and determine the composition of species (e.g.
Chabot et al. 2015, Hodgson & Koh 2016, Rees et al.
2018). Such counts could be automated using
machine learning, which would reduce the time-con-
suming process of manually reviewing the data. In
comparison, it is more difficult to delineate clusters of
dense vegetation or invertebrates, with >1 species
often being present in a single cluster (e.g. Barrell &
Grant 2015, Michez et al. 2016). Because counts tend
to be difficult to obtain within such clusters, scientists
tend to focus on constructing distribution maps that
are as precise as possible, rather than obtaining an
exact count, which would require appropriate
machine-learning methods to obtain high-quality
results (Kaneko et al. 2014, Barrell & Grant 2015,
Michez et al. 2016).

We showed that both UAVs and machine learning
are used to survey species classified as being Vulner-
able, Endangered or Critically Endangered according
to the IUCN Red List. However, machine learning
was only used to process imagery data for a third of
those same species. It might be easier to manually
process imagery data over implementing a machine-
learning model for rare and elusive species for which
only a small amount of data are available (e.g.
Schofield et al. 2017, Bonnin et al. 2018). However, as
machine learning becomes more accessible and pro-
grams become available that can be adapted for dif-
ferent species, this tool will be invaluable for regular
and repeated surveys of large geographical areas, or
when the number of individuals is very large (Chabot
et al. 2015, Bonnin et al. 2018, Hodgson et al. 2018). In
addition, recent and successful attempts to detect en-
dangered species using machine-learning algorithms
(e.g. Gonzalez et al. 2016, Gray et al. 2018) suggest
the use of these methods will increase with time.

4.3. Machine-learning tools that are used to
process UAV imagery data

We observed that the popularity of certain machine-
learning methods differs noticeably between ecology
and other scientific fields. These differences proba-
bly reflect on the slow adoption of machine learning
by ecologists (Thessen 2016) compared to other fields
of biology such as medicine, for which the need to
develop automatic and performant diagnostic tools
has been a long-term goal (e.g. see Kononenko 2001)
and for which large datasets are available for train-
ing algorithms. While machine learning is technical

and time-consuming to learn, it needs to be incorpo-
rated in ecology studies to overcome the processing
costs of increasing volumes of imagery data, includ-
ing data from UAVs, BRUVs and camera traps. Once
a machine learning model is successfully trained,
processing newly collected data becomes relatively
low-cost, easy to automate and suitable for long-term
monitoring programs (Wagstaff 2012, Gonzalez et al.
2016, Tabak et al. 2018). In addition, machine-learn-
ing algorithms often outperform human observers,
providing more accurate species count and distribu-
tion maps (e.g. Gray et al. 2018, Hodgson et al. 2018).
The issue of background complexity potentially
masking regions of interest could be resolved by
using datasets of sufficient size containing samples of
the region of interest over a range of different back-
grounds, powerful computers and pre-trained deep
convolutional neural networks. For a good example,
see how Tabak et al. (2018) trained a convolutional
neural network to identify species on camera trap
images. However, such large datasets have often yet
to be collected and shared with the community. This
has probably contributed to the low use of machine
learning with UAVs in ecology, to date, in addition to
the fact that UAVs have only become commercially
available (and hence accessible to many ecologists)
over the last 5 yr (Anderson & Gaston 2013, Christie
et al. 2016).

While machine-learning methods can be complex
to implement, effort is being made by machine-
learning scientists to make these methods more
accessible and facilitate transfer across scientific
fields (Olden et al. 2008, Chicco 2017). Most of the
methods summarized in Table 1 could be imple-
mented in a range of statistical software on standard
computers and laptops (except for complex deep con-
volutional neural networks, which require a dedi-
cated and powerful computer). For example, the
keras library may be used on both Python and R soft-
ware and allows a convolutional neural network to
be created and trained to classify imagery data in a
few tenths of lines of code, which has greatly simpli-
fied the implementation of these models (Chollet
2015). In addition, increasing quantities of peer-
reviewed, grey literature and tutorials on how to im-
plement machine-learning algorithms are now freely
available online (Fawcett 2006, Olden et al. 2008,
Domingos 2012, Chicco 2017).

In conclusion, for UAVs to be incorporated into
cost-effective, regular and long-term monitoring pro-
tocols, parallel machine-learning methods are
required to process the huge volumes of data gener-
ated, which are fast becoming too great for manual
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processing. At present, machine learning is being
used to process certain types of features (such as
small individuals or clusters of animals or plants) re-
corded by UAV surveys; however, issues with the
complexity of the background must be overcome to
generate efficient and indispensable machine-learn-
ing methods for use as part of the ecologist's tool box.
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