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ABSTRACT 

Healthcare-associated infections resulting from bacterial attachment and biofilm 

formation on medical implants are posing significant challenges in particular with the 

emergence of bacterial resistance to antibiotics. Here, we report the design, synthesis 

and characterization of self-assembled nanostructures, which integrate on their surface 

antibacterial peptides. The antibacterial WMR peptide, which is a modification of the 
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native sequence of the myxinidin, a marine peptide isolated from the epidermal mucus of 

hagfish, was used considering its enhanced activity against Gram-negative bacteria. 

WMR was linked to a peptide segment of aliphatic residues (AAAAAAA) containing a 

lipidic tail (C19H38O2) attached to the -amino of a terminal lysine to generate a peptide 

amphiphile (WMR PA). The self-assembly of the WMR PA alone, or combined with co-

assembling shorter PAs, was studied using spectroscopy and microscopy techniques. 

The designed PAs were shown to self-assemble into stable nanofiber structures and 

these nanoassemblies significantly inhibit biofilm formation and eradicate the already 

formed biofilms of P. aeruginosa (Gram-negative bacteria) and C. albicans (pathogenic 

fungus) when compared to the native WMR peptide. Our results provide insights into the 

design of peptide based supramolecular assemblies with antibacterial activity, and 

establish an innovative strategy to develop self-assembled antimicrobial materials for 

biomedical applications.
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1 INTRODUCTION 

The extensive use and misuse of antibiotics for human and animal care have resulted 

in the development of antibiotic resistant bacteria, which is a major global health problem.1 

The emergence of resistant bacteria calls for the development of new classes of 

antimicrobial agents to avoid getting back to the pre-antibiotic era. Severe infections are 

also frequently associated to biomedical implants (prosthetics, catheters etc.) which have 

revolutionized medicine but provide an optimal surface for biofilm formation.2 

Furthermore, once developed, biofilms are difficult to treat with standard therapeutic 

regimens and pose a significant clinical problem with medical devices. Biofilm may be 

composed of single or multiple species of bacteria and fungi, forming a complex three-

dimensional architecture embedded in a self-produced exopolymeric matrix, which 

renders more difficulties for the antibiotic to penetrate into the matrix and eradicate the 

pathogenic microorganisms.3 Managing and preventing biofilm formation is challenging, 

but can be addressed using materials combined with micro/nanotechnologies.
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5

Recently, great attention has been devoted to peptides with the ability to self-assemble 

into pre-defined structures and opportunity to integrate multiple biological functionalities 

for diverse applications from materials to biomedical sciences.4-5 Thanks to the proven 

biocompatibility of peptides, their design flexibility and easy modification by functional 

groups, self-assembly of peptides offers the possibility to generate highly stable 

nanostructures combining different functional elements through individually weak non-

covalent interactions.4-5

In the context of biomedical applications, the development of self-assembling peptides 

with antibacterial activity has not been widely exploited, although self-assembly is used 

by nature to fight infections.6 Most antimicrobial peptides7 (AMPs) are natural agents 

produced by both plants and animals, and can self-assemble into fibrillar amyloid-like 

nanostructures. They interact with the membranes of bacteria and exert their antimicrobial 

activity by causing membrane damage, being natural weapons for combating microbial 

infections.1, 8-11 Recently, several studies have been carried out on self-assembling 

materials to provide model systems for the development of antibacterial agents. In spite 

of these interests in self-assembling peptides with antibacterial activity, most studies are 
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limited to self-assembling entities to verify their eventual antibacterial activity.12-14 For 

example, the antibacterial activity of self-assembled diphenylalanine was recently 

reported, showing that the diphenylalanine nano-assemblies can inhibit bacterial growth 

and damage bacterial morphology at a concentration of approximatively 400 mol/mL.15 

The development of this minimal model of antibacterial materials provides a starting point 

for engineering more potent self-assembled nanosystems.

In this context, integrating antimicrobial peptides9 into a self-assembling system offers 

the opportunity to engineer their antimicrobial activity against a wide range of Gram-

positive and Gram-negative bacteria, while reducing haemolysis and allergic responses 

and potentially the development of resistance.16 Moreover, particularly attracting is the 

possibility to combine multiple components, including AMPs and conventional antibiotics, 

which may assist in reducing both the administration dose of the antibiotic and the 

development of resistance. The antibacterial properties of AMPs and the possibility to 

display them on the surface of self-assembled nanostructures may provide a more 

effective way to enhance the activity of AMPs, establishing an innovative design principle 

for the development of antibacterial materials. Furthermore, improved biocompatibility is 
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also expected by reducing toxic effects for human cells.17-19 The multivalent presentation 

of AMPs on the surface of supramolecular nanostructures provides significant 

improvements compared to the activity of single soluble peptides. It aids in increasing the 

stability and half-life of peptides, while augmenting and controlling the local concentration 

of the active peptides, which enables their enhanced interactions with bacteria.

The spontaneous organization of molecules into ordered aggregates through 

supramolecular interactions, known as self-assembly, can be achieved by the rational 

design of individual molecules. Peptide amphiphiles (PAs), molecules containing a hydrocarbon 

chain attached to a peptide segment, are known to self-assemble into cylindrical nanostructures.20 

PAs offer a versatile self-assembling platform to build supramolecular nanomaterials with 

demonstrated biomedical applications. Different PA molecules have been designed and exploited 

by numerous research groups, including the labs from Stupp, Tirrell, Deming, Guler, Hamley, and 

others.20-29

As proof of concept, we selected the antimicrobial peptide WMR, which has been 

previously identified in our lab as a modification of the native sequence of myxinidin, as 

the key functionality to be displayed in the self-assembled nanomaterials.30-32 Myxinidin 

is a marine antimicrobial peptide isolated from the epidermal mucus of hagfish (Myxine 
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glutinosa L.).33-34 It is one of the shortest AMPs discovered so far (12-amino-acid peptide: 

NH2-GIHDILKYGKPS-CONH2) with potent antibacterial activity against a wide range of 

bacteria and yeast pathogens.33-34 The peptide WMR (13-amino-acid-peptide: NH2-

WGIRRILKYGKRS-CONH2) contains one more tryptophan residue at the N-terminus and 

a higher number of positively charged amino acids (arginine), compared to the native 

sequence. These features are essential for its greater antimicrobial activity against 

Pseudomonas aeruginosa as found in previously reported activity and structural 

studies.30-32

This work focuses on the possibility of exploiting the multivalent presentation of AMPs 

on self-assembled nanostructures to improve anti-biofilm activities of two representative 

species of unresolved medical impact: the Gram-negative bacterium P. aeruginosa and 

the fungus Candida albicans.35-36 The pathogenicity of these species is related to their 

capability to form structured biofilms on both biotic (mucosae) and abiotic (medical 

devices) surfaces. In particular, P. aeruginosa biofilms are responsible for most lung 

infections37 and colonization of medical devices is the leading cause of acute nosocomial 

pneumonia or sepsis.38 Furthermore, C. albicans, which is the prevalent fungal species 
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of the healthy human microbiota, also forms biofilms, causing localized or even 

disseminated infections especially in immunocompromised patients.39 Both 

Pseudomonas and Candida biofilms are worldwide diffused and have developed a 

widespread resistance to classical antibiotics, and were thus chosen in this study as 

model organisms.

We propose self-assembling antimicrobial peptides based on the WMR sequence to 

enhance their antibacterial efficacy via multivalent display of the AMP sequence. The 

antibiofilm activity of self-assembled WMR-based PAs was studied and compared to that 

of unmodified WMR. Our nanosystem represents a sound strategy to design smart 

materials, which may also contain a conventional antibiotic and be stimuli responsive (e.g. 

pH-sensitive), releasing the loaded antibiotic following a change in pH. These 

nanostructures hold great promise due to their biocompatibility and biodegradability.

2 MATERIALS AND METHODS 

2.1 Peptide synthesis and purification
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Materials. Fmoc-protected amino acid derivatives, coupling reagents, and rink amide p-

methylbenzhydrylamine (MBHA) resin were purchased from Iris Biotech GmbH 

(Germany). Other chemicals were purchased from Sigma-Aldrich and DelChimica (Italy). 

Peptide synthesis. The PAs listed in Table 1 were synthesized on a rink amide resin. 

The removal of the Fmoc protecting group on the resin and amino acids was performed 

with 30% v/v piperidine in DMF for 10 min and the couplings were carried out in the 

presence of 4 eq Fmoc-protected amino acid, 4 eq DIC and 4 eq oxymapure (first 

coupling) or 4 eq amino acid, 4 eq HATU and 8 eq DIPEA (second coupling).40-41 A 

hydrophobic tail, nonadecanoic acid (C19), was attached to the first lysine at C-terminal 

end. This lysine was protected with an Mtt group in the side chain, which was removed 

with about 20 washes with DCM:TFA:TIS 94:1:5 of 2 mins each. The free side chain was 

then used to attach the tail with 2 eq C19, 2 eq DIC/oxymapure and 4 eq DIPEA in 

DMF/THF 80/20 % vol/vol (two overnight couplings). At the end of the synthesis, the 

peptide was cleaved from the resin with TFA/thioanisole/anisole/water/EDT 

82.5/5/5/5/2.5 % vol, precipitated in ice-cold diethyl ether and purified in a Phenomenex 

Jupiter 4µm Proteo 90 Å 250 x 21.20 mm column with a linear gradient of solvent B (0.1% 
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11

TFA in acetonitrile) in solvent A (0.1% TFA in water) from 20 to 80% in 25 min with UV 

detection at 210 nm.

2.2 Preparation of peptide self-assemblies

For all the experiments, peptide assemblies were prepared as follows; peptide stock 

solutions were prepared by dissolving the single peptides in water, then sonicating for 15 

min. Different aliquots were taken to prepare aqueous solutions of the single peptides 

(PA1, PA2) or peptide mixtures (PA1+WMR2PA, PA2+WMR2PA) at different 

concentrations. In the mixtures, the peptide molar ratio was 1:1 and was kept constant 

for all experiments. Then, the solutions were diluted until the concentration was lower 

than the critical aggregation concentration and then sonicated for 15 min to break any 

type of pre-existing aggregates. All the samples were freeze-dried and hydrated with the 

proper volume of water, buffer or dye, in order to obtain the desired concentrations. All 

the solutions were left to equilibrate for 1 h.

2.3 Critical aggregation concentration (CAC) determination

The solvatochromic fluorescent probe Nile red is widely used to determine the CAC of 

self-assembling peptides.42 Nile red shows a blue shift with decreasing solvent polarity. Since 

Page 11 of 60

ACS Paragon Plus Environment

Biomacromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12

Nile red is poorly soluble in water, there is a large preference to partition aggregates which 

offer hydrophobic binding sites. Initially, 1 mM methanolic Nile red was prepared. Then 

the methanolic Nile red was diluted with water in order to have a final concentration of 

500 nM (solution A). A stock peptide solution (0.5 mM) was prepared by dissolving the 

peptide in water (solution B) and different peptide concentrations were prepared using 

solution B as a stock and water as diluting solvent. Final solutions were mixed, diluted, 

sonicated and freeze-dried. The peptide powders were dissolved with the right volume of 

solution A and allowed to stand in the dark place for 1 h before measurement. Emission 

spectra for each solution were measured by a Cary Eclipse Varian spectrometer. Spectra 

were taken between 570 and 700 nm at a slit width of 5 nm, using an excitation 

wavelength of 550 nm and a 10 nm slit width. The measurements were performed in 

triplicate. The same experiments were carried out with the mixtures of peptides. The data 

were analysed by plotting the maximum emission fluorescence corresponding 

wavelength (y) as a function of peptide concentration (x) and fitting with the sigmoidal 

Boltzmann equation:43
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𝑦 =
𝐴1 ― 𝐴2

1 +  𝑒
(
𝑥 ― 𝑥0

𝛥𝑥 )
+ 𝐴2

where the variable A1 and A2 correspond to the upper and lower limits of the sigmoid, x0 

is the inflection point of the sigmoid and x is the parameter, which characterizes the 

steepness of the function. The sigmoidal plot allows calculating the CAC value at x0. 

2.4 Secondary structure analysis

Circular dichroism (CD) analysis. CD spectra of PA solutions were recorded from 195 

nm to 260 in a Jasco J-810 spectropolarimeter using a 1.0 or 0.1 cm quartz cell at room 

temperature under a constant flow of nitrogen gas. The 1.0 cm cell was used for samples 

at concentrations of 2.5 M, 5 M and 10 M, while for the other concentrations the 0.1 

cm cell was more suitable for avoiding the excessive increase of HT voltage. Other 

experimental settings were: scan speed of 5 nm/min, sensitivity of 50 mdeg, time constant 

of 16 s, bandwidth of 1 nm. Each spectrum was obtained through averaging three scans, 

and converting the signal to mean molar ellipticity. CD measurements were carried out 

for the different peptides alone or in combinations at different concentrations, ionic 

strengths and pHs.
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Raman spectroscopy analysis. Aqueous solutions of the peptides PA1, WMR2PA and 

PA2 alone, or in mixtures PA1+WMR2PA and PA2+WMR2PA, were lyophilized and analysed 

under a 10 × objective of a LabRam microspectrometer (Horiba SAS, Villeneuve d’Ascq, 

France). The latter was equipped with a 690 nm laser excitation source (laser power was 

ca 27 mW at the sample), an 1800 gr/mm diffraction grating and an air-cooled CCD 

detector. No sample photodegradation was observed during the measurements. Each 

spectrum shown is an average of 16 scans of 1 sec. The spectral data acquirement and 

treatment were done using a LabSpec software (Horiba SAS, Villeneuve d’Ascq, France)

2.5 Morphology Characterization

Transmission electron microscopy (TEM) imaging was performed to analyse the 

morphology of the self-assembled peptide nanostructures. TEM was performed on JEOL 

1230 with an accelerating voltage of 80 kV and images were recorded by using a SIS 

Megaview III wide angle CCD camera. Solutions of peptides and their mixtures were 

freshly prepared in ultrapure water at a concentration which was higher than their 

respective CAC. After ageing for 24 h, the peptide solutions were loaded onto carbon film 
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coated copper grids with 400 mesh and negatively stained by uranyl acetate. The grids 

were allowed to dry at room temperature for at least 3 h before collecting the images.

2.6 Zeta-potential measurement

The zeta-potential of PA solutions at different concentrations was measured using 

Zetasizer Nano-ZS (Malvern Instruments, Worcestershire, UK). All measurements were 

performed at 25 °C, at pH 3, 7 and 10 in triplicate, and 1 h after the sample preparations. 

2.7 Proteolytic stability

Trypsin was added into solutions of WMR and the PA1+WMR2PA or PA2+WMR2PA 

mixtures at trypsin/peptide molar ratio of 1/500. The concentration of WMR was 100 μM, 

while the mixture was made of two peptides at a molar ratio of 1/1 and at a total peptide 

concentration of 200 μM. All the solutions were prepared in 5 mM Tris-base (pH 8) and 

incubated at 37 °C. At 1 h, 3 h, 4 h, 24 h and 48 h, 100 µL of the sample solutions were 

taken and injected into the analytical reverse phase high performance liquid 

chromatography (RP-HPLC, Agilent 1200). The absorbance changes of WMR or 

WMR2PA were monitored in comparison to the signals of WMR or WMR2PA, which were 

not treated with trypsin. All the solutions were eluted at 1 mL min-1 using a linear gradient 
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of solvent B (0.1% TFA in acetonitrile) in solvent A (0.1% TFA in water) with UV detection 

at 210 nm. In details, WMR was eluted using an isocratic hold at 5% B for 3 min then a 

step to 70% B in 15 min, while the complexes PA1+WMR2PA and PA2+WMR2PA were 

run with a linear gradient from 20% to 90% B in A in 20 min. 

2.8 Anti-biofilm activity

Vero cells, C. albicans and P. aeruginosa were purchased from ATCC, Rockille, (USA). Cell 

media were obtained from Gibco, Invitrogen Co. (USA) and Euroclone (Italy). C. albicans ATCC 

90028 culture grown for 24 h in Triptone Soya Broth medium (TSB) with 1% glucose 

(Difco) at 37 °C was centrifuged at 5000 × g (4 °C) for 15 min, washed twice in phosphate 

buffered saline (PBS, pH 7.0) and resuspended in RPMI-1640 medium at a density of 1 

× 106 cells/mL. P. aeruginosa ATCC 9027 was grown overnight at 37 °C in TBS, washed 

twice in PBS and re-suspended to obtain a suspension equivalent to 1 × 105 cells/mL. 

100 μL of each culture was dispensed into wells of 96-well polystyrene microtiter plates.

To form biofilms at early stage (24 h biofilms), the plates were incubated at 37 °C for 24 

h, whereas to generate biofilms at maturation stage (48 h biofilms), the plates were 

incubated for 48 h and the medium was renewed after the first 24 h. Amphotericin B and 
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ampicillin were used as positive controls at concentrations ranging from 0.4 to 1.6 mg/mL, 

and untreated biofilms served as the growth control. Various concentrations of the test 

molecules were prepared in PBS and added to the wells to prevent cells adherence or to 

eradicate preformed biofilm.

For biofilm mass quantification, the wells were washed twice with PBS, air-dried for 45 

min, and stained with 0.4% crystal violet aqueous solution. Absorbance values were read 

at 570 nm using a micro-plate reader (SINERGYTM H4, Biotek Instruments, Winooski, 

VT, USA BioTek Instruments, Inc). The effect of test molecules on biofilm eradication was 

quantified by using the XTT assay that analyses the density of the viable adhered cells 

measuring the relative metabolic activity using the XTT [2,3-bis (2-methoxy-4-nitro-5-

sulfophenyl)-5- (phenylamino) carbonyl) -2H-tetrazolium hydroxide] colorimetric assay Kit 

(Sigma) following manufacturer’s instructions.44-45

2.9 Biocompatibility for mammalian cells

Eukaryotic cell cytotoxicity. Vero cells were exposed to increasing concentrations of 

peptides, and the number of viable cells was determined using the 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay that is based on the reduction of the 
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yellowish MTT to the insoluble and dark blue formazan by viable and metabolically active 

cells.46 Vero cells were sub-cultured in 96-well plates at a seeding density of 2 ×104 

cells/well and treated with peptides at increasing concentrations 1, 20, 50, 100 and 200 

µM for 1 and 24 h. The medium was then gently aspirated, MTT solution (5 mg/ml) was 

added to each well, and the cells were incubated for further 3 h at 37 °C. The medium 

with MTT solution was removed, and the formazan crystals were dissolved with dimethyl 

sulfoxide. The absorption values at 570 nm were measured using a TECAN infinite 200 

microplate reader (lifesciences.tecan.com). The viability of Vero cells in each well was 

presented as a percentage of control cells. All experiments were performed in triplicate 

and the average with standard deviation was reported. Cell culture without and with 30% 

DMSO were used as the positive and negative controls, respectively. 

Haemolytic assay. The haemolytic activity of the peptides was determined using fresh 

human erythrocytes from healthy donors. 25 ml of blood was drawn directly into K2-

EDTA-coated Vacutainer tubes to prevent coagulation. The blood was then centrifuged 

at 500 × g for 5 min, and levels of haematocrits were marked. The plasma was gently 

aspirated and replaced with 150 mM NaCl solution. The solution was then inverted and 
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mixed. The samples were centrifuged at 500 × g for 5 min and resuspended with PBS at 

pH 7.4. Then the cells were diluted 1:50 in PBS solution. Peptides were added to the 

erythrocyte suspension (5% vol/vol), at a final concentration used in the MTT assay with 

a final volume of 100 µl. The samples were incubated with agitation at 37 °C for 60 min. 

The release of haemoglobin was monitored by measuring the absorbance (Abs) of the 

supernatant at 540 nm. The control for zero haemolysis (blank) consisted of erythrocytes 

suspended in PBS. Detergent (20% Triton X-10) lysed erythrocytes was used as a 

standard for 100% haemolysis. The percentage of haemolysis was calculated using the 

following equation: 

% ℎ𝑎𝑒𝑚𝑜𝑙𝑦𝑠𝑖𝑠 =
𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒 ― 𝐴𝑏𝑠𝑏𝑙𝑎𝑛𝑘

𝐴𝑏𝑠𝑡𝑜𝑡𝑎𝑙 𝑙𝑦𝑠𝑖𝑠 ― 𝐴𝑏𝑠𝑏𝑙𝑎𝑛𝑘
∙ 100

All experiments were performed in triplicate and the average with standard deviation 

was reported. 

3 RESULTS AND DISCUSSION

3.1 Peptide design
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The molecular design employed in this study is based on a PA design (Figure 1, 

WMR2PA) and consists of a self-assembling segment composed of aliphatic amino acids 

(e.g. alanine residues, Figure 1, brown segment) and/or lipid tail (Figure 1, orange 

segment) attached to an AMP sequence (Figure 1, green segment). The designed 

WMR2PA is expected to self-assemble into cylindrical nanostructures. In such a system, 

it would be easy to tune the antibacterial activity by simply changing the AMP sequence 

on the surface without modifying the self-assembled nanostructures. In addition, to tune 

the density of the AMP sequence displayed on the surface, we used two different shorter 

PAs, designed to co-assemble with AMP PA (Figure 1, PA1 and PA2). Because 

antibacterial activity is attained at low concentrations (Minimal Inhibitory Concentrations 

- MICs - around 10 M are considered acceptable for the obtainment of active molecules), 

it would not be necessary to develop a structure entirely composed of the AMP sequence. 

In this molecular design, different percentages of the antibacterial sequence can be 

integrated while the self-assembly is driven by the shorter PAs.

The peptide WMR (NH2-WGIRRILKYGKRS-CONH2) used in this study is a modification 

of the native sequence of the myxinidin and shows enhanced activity against E. coli (MIC 
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2 M) and P. aeruginosa (MIC 2 M) bacteria.30-31 Here, several modifications of WMR 

were designed. 

Figure 1. Molecular structure of peptide WMR2PA, PA1 and PA2 and their suggested 

self-assembled nanostructure.

In the first sequence, we added a six alanine sequence at the C-terminus (WMR1PA: 

NH2-WGIRRILKYGKRSAAAAAA-CONH2) (Figure 1, green-turquoise-brown); the 
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aliphatic residues provide a hydrophobic moiety to drive self-assembly.47-48 However, this 

sequence was unable to aggregate at various concentrations and pHs, suggesting that 

alanines are not sufficient to promote the aggregation. To increase the hydrophobic 

driving force and favour the aggregation of the peptide, NH2-WGIRRILKYGKRSAAAAAA-

K(C19)-CONH2 (WMR2PA) was synthetized, which contains a hydrophobic tail on the 

side chain of the C-terminal lysine residue (C19, composed of 19 carbon atoms) (Figure 

1, green-turquoise-brown-orange). This peptide was co-assembled with a shorter 

sequence bearing a high tendency to aggregate in order to obtain a self-assembled 

nanostructure displaying WMR on the surface. We initially designed the short sequence 

containing the same sequence as the C-terminal part of WMR2PA and bearing a 

tryptophan at the N-terminus to allow detection by fluorescence spectroscopy (PA1: NH2-

WKRSAAAAAAK(C19)-CONH2). PA1 was characterized alone and in combination with 

WMR2PA. To enhance the co-aggregation, a negative version of PA1 was designed 

(NH2-GDDSAAAAAAK(C19)-CONH2) containing aspartic residues and lacking the 

tryptophan residue (PA2) which being bulky could hamper the aggregation process. The 

negatively charged aspartic acid residues are expected to interact electrostatically with 
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the positive residues on WMR2PA (lysine, arginine) and promote cohesion among the 

peptide molecules. The designed peptide sequences are listed in Table 1 and their 

chemical structures detailed in Figure 1.

Table 1. Sequence and molecular weight (Mw) of the designed peptides

Name Sequence MW 
(g/mol)

WMR NH2-WGIRRILKYGKRS-CONH2 1632.88

WMR1PA NH2-WGIRRILKYGKRSAAAAAA-CONH2 2059.45

WMR2PA NH2-WGIRRILKYGKRSAAAAAAK(C19)-CONH2 2466.79

PA1                       NH2-WKRSAAAAAAK(C19)-CONH2 1410.14

PA2                       NH2-GDDSAAAAAAK(C19)-CONH2 1226.94

3.2 Peptide co-assembly 

3.2.1 Critical aggregation concentration (CAC)

Self-assembling capabilities of single PAs and PA mixtures were analysed by a 

fluorescence assay with the fluorophore Nile red. This fluorophore is poorly water soluble 

while displaying a large preference to partition in aggregates that offer hydrophobic 

binding sites and producing a blue shift and hyperchromic effect. 
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The changes of the emission signal of the Nile red is an indication of the aggregate 

formation and the concentration at which the changes occur allows the determination of 

the CAC. 

In Figure 2, the wavelength of Nile red maximum fluorescence emission at different 

concentrations of single peptides is displayed. We used pH 7 (physiological condition) for 

all peptides and mixtures.

For peptide WMR1PA (Figure 2A), we were unable to observe any blue shift, indicating 

the inability of this peptide to aggregate under the range of concentrations investigated. 

The presence of alanines alone was not sufficient to confer the hydrophobic driving force 

to promote peptide aggregation. 

The modified sequence WMR2PA, containing the hydrophobic tail conjugated on the 

side chain of the C-terminal lysine, was able to aggregate and a CAC value of 5 µM was 

determined (Figure 2B).

Then, we analysed the aggregation capabilities of the peptides PA1 and PA2, which 

were designed to co-assemble with WMR2PA. As shown in Figure 2C, peptide PA1 bears 
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a tendency to aggregate and a CAC value of 16 µM was estimated at pH 7. The obtained 

CAC value for PA2 was 19 µM at pH 7 (Figure 2D).

From these results, we decided to use WMR2PA as the antimicrobial moiety and both 

PA1 and PA2 as inducers of the self-assembly process. We have thus focused our 

analysis on the two complexes PA1+WMR2PA and PA2+WMR2PA (Figure 2E and 2F).
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Figure 2. The wavelength corresponding to the maximum fluorescence emission of Nile 

red was plotted as a function of concentration of the peptide WMR1PA (A), WMR2PA (B), 

PA1 (C), PA2 (D), and the complex PA1+WMR2PA (E) and PA2+WMR2PA (F) to 

determine their CAC. The measurements were repeated three times.

The mixture PA1+WMR2PA (50% mol/mol) shows a blue shift of Nile red indicating the 

ability to form aggregates (Figure 2E). The calculated CAC was 6 µM, which is 

significantly lower than the one obtained for the peptide PA1 alone (16 M). This is an 

indication of the ability of PA1 to assist WMR2PA in the aggregation process. 

The mixture PA2+WMR2PA (50% mol/mol) also shows the blue shift in the Nile red 

emission at pH 7 and the calculated CAC is 4 µM; once again, we observe formation of 

aggregates (Figure 2F).

Table 2 summarized the CAC determined for individual peptides and mixtures. 

However, fluorescence provides the first glance at the formation of aggregates, but does 
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not give any information about how the peptides interact to self-assemble or the 

morphology of the nanostructures formed. More characterizations were performed below.

Table 2. CAC (µM) and zeta potential (mV) values determined for peptides and 
complexes

WMR1PA WMR2PA PA1 PA2 PA1+WMR2PA PA2+WMR2PA

CAC - 5 16 19 6 4

zeta 
potential 

56.5 48.5 -37.9 37 34.8

3.2.2 Secondary structure 

The molecular conformation of the peptides alone or in combination was investigated 

by far-UV CD spectroscopy, which is an excellent technique for rapid determination of the 

secondary structure and for studying the formation of peptide assemblies in solution 

(Figure 3). In fact, self-assembly is often accompanied by changes in secondary 

structures compared to monomers. 

Concentration is a key parameter in controlling the self-assembly of peptides. At very 

low concentrations, peptides remain as monomers and start to aggregate above the CAC.
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Figure 3. Conformation characterization of peptides PA1 (A) and WMR2PA (B), as well 

as peptide mixtures PA1+WMR2PA (C) and PA2+WMR2PA (D) by CD spectroscopy at 

different concentrations. The insert of the panel A is an enlargement of the spectra for the 

peptide PA1 at 100 µM.

The spectrum of the peptide WMR2PA presents a large minimum in the region between 

208 and 218 nm. This signal reveals a structure that falls into a non-canonical -helix or 

-sheet conformation, but this pattern may be due to the co-existence of both structures. 
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Nonetheless, the spectrum of the peptide WMR (from which WMR2PA was derived by 

addition of the moiety necessary for self-assembly) is a typical random coil conformation 

(data reported in a previous paper);30-31 although the secondary structure of the WMR2PA 

monomer may also be different from that of WMR, these spectra were all reported at a 

concentration close/higher than the CAC, suggesting some sort of aggregations. It is 

interesting to note that at 100 M the spectrum obtained assumes features more typical 

of helical structures; we interpreted this as a proof of aggregation of WMR2PA at higher 

concentrations supported by the structuring in helical conformation and thus interaction 

among helices (Figure 3A, insert). 

Also for peptide PA1, we observe a trend similar to the one of WMR2PA, which consists 

in a large band in the region between 208 and 218 nm. 

In contrast, the complexes PA1+WMR2PA and PA2+WMR2PA assume a conformation 

different from the ones adopted by the peptides alone. In the case of the mixture 

PA1+WMR2PA, the CD spectra show the presence of two minima resembling the typical 

minima of a helical structure. This characteristic is more evident for the complex 
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PA2+WMR2PA. The CD spectra display the co-existence of -helix and -sheet 

structures with a predominance of the first one. 

Raman spectroscopy is well recognized as a structure-specific analytical tool useful in 

peptide analysis and was used here to characterize the peptides alone (Figure 4A) and 

their molecular interactions in the mixtures (Figure 4B). The peptides PA1 and WMR2PA 

have quite similar spectra, with few observable differences (if compared once normalized 

on the total area in the spectral range shown): the PA1 presents more intense bands at 

1295 (Amide III region, -helix contribution), 1061 and 905 cm-1 (C-C stretching modes). 

In the WMR2PA spectrum, the ratio of the bands at 880/841 cm-1 (mainly contributed from 

Trp W17 and from Tyr Fermi doublets) is decreased and become below 1, possibly due 

to the Tyr residue being a strong donor of hydrogen bonds. The intensity ratio of the 

doublet at 757/724 cm-1 (mainly contributed from Trp W18) is also decreased for 

WMR2PA compared to PA1. In contrast to PA1 and WMR2PA, the PA2 is void of aromatic 

amino acids: as the result, none of the Trp or Tyr bands described above are observed in 

the spectrum of the PA2 peptide and the band at ca. 1550 cm-1 (mainly contributed by 

Trp) is almost disappeared. In addition, the PA2 has a weaker band at 1436 (CH2 
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scissoring). This band is present in all the peptides, and contributed with the W6 mode of 

Trp when it present. 

The bands at 1236/1217 cm-1 (-sheet)49 are relatively increased, while the band at 

1295 cm-1 (-helix) is higher than for WMR2PA. The C-C stretching bands of the PA2 are 

also different from those of PA1 and WMR2PA: stronger at 1093 and 905 cm-1 and weaker 

at 1128 cm-1. 

Figure 4. (A) Raman spectra of the peptides WMR2PA (a), PA1 (b) and PA2 (c). For 

better visual comparison, the spectra were normalized on the total intensity with the 
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shown spectral region. (B) Raman spectra of the binary complexes of the peptide 

PA1&WMR2PA (a), PA2&WMR2PA (c), the sum of the respective peptides 

PA1+WMR2PA (b), and PA2+WMR2PA (d) and the respective difference spectra (A-B 

and C-D).

We analysed the spectra obtained for the PA1+WMR2PA and PA2+WMR2PA mixtures 

and compared them with those obtained from the sum of the spectra of the respective 

peptides, each normalized and taken at 50%. For the PA1+WMR2PA complex (Figure 

4B, curve a), the spectrum shape is very similar to that of the PA1+WMR2PA sum (curve 

b), the observed changes are weak but concern several bands: increase of the band at 

1458 cm-1 (CH and/or NH bending) and decrease of the bands at 1668 (antiparallel -

sheet), 1236, 1217, 1093, 905 and 757 cm-1 (C-C stretch). For the PA2+WMR2PA, the 

differences from the sum PA2+WMR2PA are more pronounced and concern even more 

bands. The decreased bands are the same as for the PA1+WMR2PA complex, except 

for the band at 757 cm-1 that shows a weak increase. In addition, many bands are 
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increased: at 1550 (-sheet), 1436 (CH2 scissor), 1295 (-helix), 1128 (C-C stretch) and 

1010 (C-C stretch, W18) cm-1. These changes indicate that peptides underwent a 

conformational change upon interaction. These changes should be stronger in the 

PA2+WMR2PA complex, as indicated by the more pronounced spectral changes 

observed. 

The position of the Trp band at 1010 cm-1, known as being sensitive to the strength of 

van der Waals interactions of the Trp ring with surrounding residues, remains unchanged, 

thus showing that these interactions were rather weak, in particular within the 

PA2+WMR2PA complex. 

These data indicate that the tryptophan is probably not involved in the self-assembly 

process and the active moiety is more exposed and free to perform its activity.

3.2.3 Morphology of self-assembled nanostructures

To investigate the morphology of peptide assemblies, TEM imaging was carried out. 

The concentrations of the tested samples were 100 times higher than the CAC values 

and the pH was 7 for all the collected images. WMR2PA images show the formation of 

nanostructures with the presence of numerous short fibres; we found a CAC of 5 M for 
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WMR2PA (Figure 2B) indicating that the peptide is able to self-assemble. The design 

strategy was to reduce the content of the active sequence (the AMP sequence reported 

in green in Figure 1) and modulate its presence on the surface of the self-assembled 

nanosystem while retaining activity; thus, we were interested in the morphology attained 

for the complexes. We also analysed peptides PA1 (CAC 16 M) and PA2 (CAC 19 M), 

which bear respectively a positive and a negative charge, by TEM. For both, TEM shows 

that aggregation takes place with the formation of short belts for PA1 and short thin fibres 

for PA2 (Figure 5C and 5D). 

Figure 5. Zeta potential of the peptides measured at different concentrations and pHs (A). 

Data are expressed as mean ± standard deviations of three independent experiments. 

Page 34 of 60

ACS Paragon Plus Environment

Biomacromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



35

TEM images of nanostructures self-assembled from single peptide WMR2PA (B), PA1 

(C), and PA2 (D) and as well as peptide mixtures PA1+WMR2PA (E) and PA2+WMR2PA 

(F). 

When PA2 is mixed with WMR2PA (Figure 5F) we also observed short fibres very 

similar to the ones formed by WMR2PA alone (Figure 5B); while, when PA1 is mixed with 

WMR2PA (Figure 5E), we observe the formation of long fibres. The tryptophan may 

promote the elongation of the fibres, which are not arranged in a network; rather, they are 

intertwined in several entanglements. Moreover, at neutral pH the complexes 

PA1+WMR2PA and PA2+WMR2PA present distinct zeta-potential values (Figure 5A); 

thus, the difference in fibre length maybe not only due to the presence of tryptophan, but 

also the balance of electrostatic and hydrophobic forces among the molecules.

3.2.4 Zeta-potential

Analysis of the zeta-potential results clearly indicates that both peptides alone and 

complexes are stable under the conditions tested; in fact, the zeta-potential values are 
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typical of monodispersed preparations50 (Figure 5A1). A positive zeta charge was 

obtained for the peptides PA1 and WMR2PA, while a negative zeta charge was obtained 

for PA2, as expected. The TEM images (Figure 5) show that all three peptides are able 

to assemble in nanostructures at pH 7. 

The two complexes both showed positive zeta charges with a lower value for the 

complex PA2+WMR2PA. The CAC obtained for the complex PA2+WMR2PA is 4 M 

(Figure 2F and Table 2) and together with the zeta-potential values indicates the 

formation of the complex, where the negative charges of PA2 are masked in the self-

assembled structures.

Figure 5A2 reports the zeta-potential as a function of pH (pH 3, 7, 10). At pH 10, we 

observed a zeta-potential between 0 and 20 for all peptides (except PA2), which is 

indicative of a loss of charge in the self-assembled structures of isolated peptides and of 

complexes.

3.3 Effect of concentration, ionic strength and pH on peptide co-assemblies

In order to probe the effect of concentration, ionic strength and pH on the peptide co-

assembly, circular dichroism spectra were collected at different conditions (Figure 6). 
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Peptide samples were prepared at a total peptide concentration of 100  M. The solutions 

were diluted with water and sonicated to break any type of pre-existing interactions; the 

samples were lyophilized and rehydrated with the correct amount of solvent to achieve 

the desired concentration. Rehydration was performed only with water to probe the effect 

of dilution on the pre self-assembled structure, or with NaCl at different concentrations 

(from 0 to 5 mM NaCl) to probe the effect of the ionic strength and/or aqueous solution at 

different pHs.
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Figure 6. CD spectra of the two complexes PA1+WMR2PA and PA2+WMR2PA upon 

dilution (A, D) and at different ionic strengths (B, E) and pHs (C, F).

3.3.1 Concentration 

To analyse the effect of concentration on the structural stability of the assemblies, a 

series of diluted solutions of the complexes were prepared and analysed by CD. We 

examined the concentration effect on the stability of the self-assembled structures of 

PA1+WMR2PA and PA2+WMR2PA (Figure 6A and 6D). For both complexes, the spectra 

are completely overlapped even near the CAC value, indicating the absence of any 

perturbation on the packing of pre-formed self-assembled nanofibers upon dilution, and 

also indicating stability of the aggregates. Analysing the dilution effect is fundamental, in 

particular for the biological tests, where the self-assembled structures are prepared at 

concentration well above the CAC, but then diluted.

3.3.2 Ionic strength 
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Given the presence of salts in body fluids, we evaluated the effect of ionic strength on 

the aggregate stability (Figure 6B and 6E). The complex PA2+WMR2PA shows the same 

conformational features of the ones in pure water, indicating stability of the assemblies 

even in the presence of salts. In contrast, CD spectra of the complex PA1+WMR2PA 

showed a signal with a predominant -sheet contribution at 4 mM and 5 mM NaCl, 

presumably due to the interactions between the peptides and the salt ions. Increasing 

concentrations of NaCl could effectively promote the  -sheet conformation when charges 

of the lysine side chains are screened by Cl- ions and thus favour the packing of 

molecules, as also reported in literature.12 This is evident on the complex PA1+WMR2PA, 

in which the positive charges of lysines are not balanced by negative charges of the 

aspartic acid present in the complex PA2+WMR2PA.

3.3.3 pH 

The effect of pH on the stability of the self-assembled peptide nanostructures was 

analysed by CD at a total peptide concentration of 100 M (Figure 6C and 6F). For the 

PA1+WMR2PA complex, we observed a very similar behaviour at pH 3 and 7, while at 

pH 10 the nanostructures assume a secondary conformation (probably -sheet), due to 
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the reduced positive net charge, which may favour stronger interactions between 

peptides.

The pKa of the lysine side chain is 10.5 and that of the arginine side chain is 12.5. The 

complex PA1+WMR2PA presents a total of four arginine and three lysine residues. Thus, 

when the pH is below 10, the two peptides have a total charge of +7 which prevents the 

flanking sequences from approaching each other and hinders their self-assembly. The 

spectra at pH 3 and pH 7 are similar and indicative of a helical structure. At pH 10, the 

majority of the amine groups are unprotonated (neutral, as confirmed by the zeta-potential 

measurements, Figure 5A) favouring peptide aggregation, as shown by a -sheet signal 

in the CD spectrum. The aggregated form may also be attributed to formation of coiled 

coil structures; in fact, the ratio of ellipticities at 222 nm and 208 nm, can be used to 

distinguish between monomeric and oligomeric states of helices.51 When the ratio 

θ222/θ208 equals about 0.8, the peptide is monomeric, and when the ratio exceeds 1.0 it is 

oligomeric. In our case, we have for PA2+WMR2PA a ratio of 0.2 (pH3), 0.6 (pH 7) and 

1.0 (pH10), indicating aggregation as a function of pH.

Page 40 of 60

ACS Paragon Plus Environment

Biomacromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



41

The complex PA2+WMR2PA contains three arginines, two lysines and two aspartic 

acids, with a total net charge of +3. We observe a different behaviour in this complex 

compared to PA1+WMR2PA, with a different spectrum at each pH (3, 7, and 10). In 

particular, the peptides started to aggregate at pH 7 with complete aggregation at pH 10.

The data obtained clearly show that the electrostatic interactions play a key role in 

controlling the nanofiber formation and stability, governing also the disassembly in 

aqueous solutions.

3.4 Anti-biofilm activity of the self-assembled peptides

To assess the potential of the self-assembled nanostructures to inhibit the formation or 

to eradicate the pre-formed biofilms, biofilms of two representative species, the Gram-

negative bacterium P. aeruginosa and the fungus C. albicans were used.
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Figure 7. Effect of peptides WMR, WMR2PA, PA1, and PA2 on Pseudomonas and 

Candida biofilms to evaluate both inhibition (A, B) and eradication (C, D) conditions.

The activity of the sequence WMR against P. aeruginosa in planktonic cells was 

previously reported (MIC 2 M).30-31 The activity of WMR against biofilms of both P. 

aeruginosa and C. albicans was first tested here. WMR shows less activity against P. 

aeruginosa biofilm compared to planktonic cells. At the lowest concentration tested (12.5 

M), a 20% inhibition was obtained at 24 h of biofilm formation (Figure 7A), while at the 

same concentration, complete inhibition of P. aeruginosa planktonic cell growth was 

achieved.30-31 Interestingly, the activity against a 48 h P. aeruginosa biofilm was 

enhanced indicating that the peptide is able to eradicate the pre-formed biofilm (Figure 

7C). At the same concentration, WMR presents a lower ability to inhibit and eradicate 

Candida biofilms (Figure 7B and 7D). Nonetheless, both biofilms were impaired at 48 h 

when using high concentrations (50 M) of WMR. The next step was to compare the 

activity of WMR (the native sequence) with that of WMR2PA (which corresponds to WMR 
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modified at the C-terminus with alanines and a hydrophobic tail). The results indicate a 

loss of activity (concentration-dependent) against P. aeruginosa biofilms at 24 h (Figure 

7A), whereas an enhanced activity against the C. albicans biofilms at 24 h was observed 

(Figure 7B). Furthermore, we analysed the effect of P1 and P2, which contain the 

hydrophobic tail but not the AMP sequence. Surprisingly, we observed recovered activity 

against P. aeruginosa at 24 h and enhanced activity in all other conditions. The analysis 

of the results show that the hydrophobic tail plays a key role in both inhibition and 

eradication of Candida biofilms, while its role is milder in the inhibition of Pseudomonas 

biofilms, where we observed higher activity for WMR compared to PA sequences. 

Analysis of the data from the literature on the composition of the outer bacterial (P. 

aeruginosa) and fungal (C. albicans) membrane, revealed that both are negatively 

charged but the fungal membrane contains a sterol (ergosterol).52-53 WMR2PA and PA1 

are positively charged while PA2 is negatively charged and they are all aggregated in the 

condition tested. The charge, while being a key parameter to inhibit P. aeruginosa biofilm 

preventing the initial adhesion of the bacteria (which has a negatively charged surface), 

may not be the critical parameter in eradication of both biofilms and in the inhibition of C. 
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albicans; where a prominent role is played by the hydrophobic tail. PA2 has a net negative 

charge as the outer membrane of Gram-negative bacteria; thus, we hypothesize that the 

lipid chain is mainly involved in the interaction with lipids and maybe with the other non-

lipidic components of the outer membrane which may determine its mechanism of activity. 

The role of the C19 in C. albicans biofilm may be correlated to the putative interaction 

with ergosterol. Indeed, the eukaryotic membranes, apart from being zwitterionic, also 

contain a sterol (cholesterol), but we do not observe toxicity (see next paragraph) at the 

concentration used. Fungal and eukaryotic membranes differ with respect to sterol 

identity. Although being structurally similar, their effects on membranes physical 

parameters are different52-53 with cholesterol increasing lipid order while maintaining 

fluidity; the presence of tryptophan residues is also critical because this residue is usually 

located close to the interface between aqueous solutions and membranes, but due to its 

bulky nature it is sensitive to sterol identity as reported for other AMPs with antifungal 

activity and low toxicity for epithelial cells.54 Thus, we speculated that the C19 tail and the 

tryptophan are both responsible for the interaction with the ergosterol, which favours their 

antibacterial and antifungal activity, as well as their low toxicity.
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Figure 8 reports the data obtained for the two complexes PA1+WMR2PA and 

PA2+WMR2PA, in comparison to WMR (the native monomeric sequence). The CACs for 

the two complexes are 6 and 4 M, respectively, and the complexes once formed are 

able to withstand dilution effects; thus, in the condition tested they are self-assembled 

(Figure 2). Both complexes PA1+WMR2PA and PA2+WMR2PA were active against 

Candida biofilms at 24 and 48 h (Figure 8B and D), indicating that they were both effective 

for biofilm prevention and eradication and they show enhanced activity compared to 

WMR. On the contrary, we observe comparable activity to WMR for inhibition and 

eradication of Pseudomonas biofilm (Figure 8A and C).
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Figure 8. Effect of peptides WMR and complexes PA1+WMR2PA and PA2+WMR2PA on 

Pseudomonas and Candida biofilms to evaluate both inhibition (A, B) and eradication 

conditions (C, D). Proteolytic stability of WMR and complexes PA1+WMR2PA and 

PA2+WMR2PA monitored by analytical-HPLC at different incubation times with trypsin 

(E).

The nanofibers co-assembled from the designed peptides not only inhibit the biofilm 

formation but also eradicate the pre-formed biofilms, which have been both considered 
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as key processes for applications in antimicrobial therapies. It is likely that prevention of 

biofilm growth may be related to killing of planktonic bacteria prior to attachment, and for 

inhibiting adhesion of bacteria, critical initial steps in biofilm formation, which may be 

attributed not only to the AMP sequence but also to the presence of the hydrophobic tail, 

which disturbs the formation of the biofilm matrix. Many AMPs are more effective in 

inhibiting the early phases of biofilm development rather than in eradicating established 

biofilms.3 On the contrary, the co-assembled nanofibers have shown a strong ability also 

to eradicate pre-formed biofilms which may be attributed to their ability to disaggregate 

the matrix of pre-formed biofilms, and diffuse into the deep layers of the biofilm killing 

bacteria inside the biofilm.3 Overall, these results indicate that a possible mechanism of 

anti-biofilm activity may be related to a “non-classical” mode of action which does not 

involve only the microbicide effect, but also interference with specific targets of the biofilm 

lifestyle, such as extracellular matrix production and assembly, and it will be worth to 

verify whether it is also capable of influencing microorganism cell-to-cell communication 

and intracellular signalling systems.3 
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The data reported show that both the peptide complexes possess enhanced activity 

compared to WMR against Candida biofilms but a similar activity against Pseudomonas 

biofilm. Although we were unable to enhance activity against P. aeruginosa biofilms, we 

were still able to achieve active complexes and the benefit is represented by their 

enhanced proteolytic resistance (Figure 8E), which is an added value for therapeutic 

applications.

3.5 Proteolytic stability

A significant limitation of peptides as therapeutics is their susceptibility to protease 

degradation. The proteolytic stability of the self-assembled peptide nanostructures was 

evaluated by incubation with a common protease enzyme, trypsin, for 48 h and the 

degradation process was monitored by RP-HPLC. As expected, the native AMP 

sequence, WMR, was rapidly hydrolysed by trypsin into two peptide fragments after 1 h 

(Figure 8E and S1). Chemical modifications of the sequence and formation of self-

assembled structures can significantly reduce the enzymatic degradation rate. Both 

peptide complexes PA1+WMR2PA and PA2+WMR2PA remained stable up to 4 h (Figure 

8E and S1). Partial degradations at 24 and 48 h were observed, but a significant part of 
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the active peptide was still present as shown in Figure 8E. After 48 h, we still observe the 

presence of peak corresponding to the peptide (approximatively 50%). Clearly, the 

addition of the hydrophobic tail in WMR2PA and the formation of supramolecular 

assemblies can be used as a viable strategy to improve the protease susceptibilities of 

antimicrobial peptides.

3.6 Biocompatibility and selectivity

The selective interaction with bacterial cells, the cytotoxicity towards human cells, as 

well as the haemolytic activity of the self-assembled peptide nanostructures were 

evaluated. The results (Figure 9) clearly demonstrate that the self-assembled peptide 

nanostructures are selective for bacterial cells and are nontoxic for human cells.

We found low cytotoxicity of the peptide nanostructures on Vero cells even at higher 

concentration (200 µM) both at 1 and 24 h post exposure (Figure 9A and 9B). Maximum 

cell toxicity (60%) was observed for WMR2PA at 200 µM after 24 h. However, WMR2PA 

is already active against the tested pathogens at lower concentrations, at which the 

peptide does not show toxicity to mammalian cells. Furthermore, WMR2PA was co-

assembled with PA1 or PA2, which were clearly non-toxic. 
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In the evaluation of the haemolytic activity, only WMR2PA shows a partial toxic effect 

(Figure 9C). This toxicity (less than 50%) was maintained when WMR2PA is associated 

with the peptides PA1 and PA2. Nevertheless, this toxicity is observed only at higher 

concentrations, leading to the fact that these peptides present low toxicity and low 

haemolytic activity at the concentrations used to prepare the nanostructures and for the 

anti-biofilm assays. 

Figure 9. Effect of peptides WMR, PA1, WMR2PA, PA2 and complexes PA1+WMR2PA 

and PA2+WMR2PA on Vero cells at 1 h (A) and 24 h (B), as well as red blood cells (C) 

to evaluate their biocompatibility.

4 Conclusion
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In this study, a proof of concept is provided showing how nanoscale engineering can 

be exploited to produce supramolecular peptide-based platforms with potent antibacterial 

activity, improved functionalities, as well as enhanced biocompatibility compared to other 

antimicrobial agents. These supramolecular peptide-based nanotechnology could serve 

as an important class of antibacterial compounds for the treatment of intracellular 

microbial infections.54

Novel methods for effective biofilm inhibition and/or eradication are very much needed 

to prevent infection and consequent rejection of implantable biomaterials. Self-assembly 

was used here for the multivalent presentation of a known AMP onto defined 

nanostructures. The presence of AMP sequence on the periphery of the self-assembled 

nanofibers increases its effective local concentration, compared to soluble peptides, and 

enhances the overall antibacterial activity. The anti-biofilm activity is also enhanced under 

the nanofiber configuration compared to soluble peptides. Moreover, the self-assembled 

nanostructures can also provide a mean to increase its stability and half-life, which is one 

limitation of peptide therapeutics compared with most other antibiotics. To improve the 

anti-biofilm properties, current focus of research is to combine the designed 
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nanostructures with conventional antibiotics. The synergistic combinations have the 

potential to decrease the effective concentration of the active molecules, as well as to 

extend their spectrum of action, thereby reducing the spread of resistance, which is often 

linked to monotherapy regimens. The use of self-assembled nanomaterials described in 

this work may also allow the integration of other AMPs without compromising the 

nanostructure for the development of novel antibacterial materials.
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