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Abstract—This work explores the problem of designing a chan-
nel that leaks the least amount of information while respecting a
set of operational constraints. This paper focuses on deterministic
channels and deterministic solutions. This setting is relevant
because most programs and many channel design problems
are naturally modelled by deterministic channels. Moreover,
the setting is also relevant when considering an attacker who
can observe many outputs of an arbitrary channel while the
secret input stays the same: when the number of observations is
arbitrarily large, the channel of minimal leakage is deterministic.
The deterministic channel design problem has different solutions
depending on which leakage measure is chosen. The problem
is shown to be NP-hard in general. However, for a particular
class of constraints, called k-complete hypergraph constraints, a
greedy algorithm is shown to provide the optimal solution for a
wide class of leakage measures.

Index Terms—Quantitative Information Flow, Channel Design,
Information Theory, Deterministic Channels

I. INTRODUCTION

A fundamental goal of computer security is to protect secret
or sensitive information from unintended disclosure. However,
this goal is often unattainable, as many systems are only able
to function correctly by allowing some of this information
to leak to external observers. A simple password checker,
for instance, always tells malicious users whether the input
they provided is equal to the secret password. Even when not
necessary for correct functionality of a system, it might be
desirable to leak some information to increase its performance
or usability. Such might be the case for systems targeted by
timing attacks [23], in which an adversary is able to obtain
knowledge about a secret information by observing differences
in its execution time. Although it is possible to nullify this kind
of attack by making the system always run for a constant time,
doing so might entail an unacceptable decrease in performance
for quicker tasks.

As eliminating all leakage of information is often impossible
or undesirable, a natural goal is to reduce it as much as
possible while guaranteeing the functionality and efficiency of
the system. Despite the considerable success achieved by the
field of quantitative information flow (QIF) in understanding
and quantifying information leakage, work on how one could
utilize the framework to build secure systems has been limited.

Recent work [20]–[22] shed some light on this problem,
recasting it as an optimization over information theoretic

channels – objects popularly used for abstractions of systems
in QIF – bounded by some constraints, which guarantee
operationality. The results obtained are promising, with a
convex programming solution for a large family of design
problems, and efficient solutions obtained for more specific
constraints. There are, however, a myriad of other scenarios
that would benefit from a similar approach.

This paper builds upon the aforementioned work by study-
ing the design of optimal deterministic systems, i.e., sys-
tems whose behaviour is uniquely determined by the secret
information. The motivation for exploring this problem is
twofold. Firstly, this kind of problems arise in many security
systems like authentication systems [28], operating systems
functions [15], scheduling protocols [13], bucketing schemes
in cryptography [25], anonymity (Section IV-C), and so on.
A second motivation arises when the (possibly probabilistic)
system to be designed may be executed a multiple number of
times for a fixed secret. In this scenario, the optimal determin-
istic channel for a single execution is also an asymptotically
optimal solution for a large number of executions.

Our optimization is taken in relation to a generalized
entropy measure, introduced in [21]. This generalized measure
captures most entropy measures used in the literature, such
as Shannon entropy [30], min-entropy [33] and guesswork
[27]. It also encompasses other proposed generalizations of
information measures, such as the g-leakage framework [4]
and the Rényi entropy family [29]. One desirable property in
this context would be the existence of a “universal” solution,
that is, a channel that minimizes the information leakage with
respect to all entropy measures.

Outline and Contributions:

The main contributions of this work are: 1) to investigate
the complexity of the channel design problem for deterministic
channels; 2) to show that the problem has in general no univer-
sal solution; and 3) by using supermodularity, to show efficient
“universal” solutions for particular class of constraints.
• Section II overviews preliminary concepts of QIF and

introduces core-concave entropies.
• Section III presents the deterministic channel design

problem. The problem is shown to be NP-hard, and it
is proven that, in general, it does not have a universal
solution.



• Section IV explores the complete k-hypergraph design
problem, and proves the existence of an efficiently com-
putable solution (a greedy algorithm), that is optimal for
most entropy measures used in the literature.

• Section V considers the channel design problem for
repeated executions. In this scenario, we show that the
deterministic channel design problem can be used to
obtain a solution that is asymptotically optimal.

A. Related Works

There is a significant body of work on generalization of
Shannon entropy, e.g. Rényi entropies [29] and the more gen-
eral family Sharma Mittal [31], which generalizes both Rényi
and Tsallis entropies [35]. Other generalized information mea-
sures in the recent literature include the g-leakage framework
[4], and a unification of the former with Rényi entropies
[1]. This work uses the generalized entropy introduced in
[22], which includes all aforementioned measures and also
subsumes guessing entropy [27].

The problem of information leakage has been studied in
quantitative information flow [8], [33] mainly in the context
of measuring leakage of existing systems. Other works in the
literature regarding design of security systems focus on spe-
cific contexts, such as in developing countermeasures to infor-
mation leakage in timing attacks [24], [25] or in Secure Multi-
Party computations [1]. Recently, a general framework for de-
signing optimal systems has been developed [20]–[22], which
considers constraints that abstract operational requirements.
This paper highlights some fundamental differences from
previous results in the (probabilistic) channel design problem:
in previous works (only) two classes of constraints were
proven to satisfy universal optimality: 1) graph constraints
and 2) complete k-hypergraph constraints. In this paper, we
show that in the deterministic case: 1): universal optimality
fails for graph constraints (counterexample in Proposition 1).
2): for complete k-hypergraph constraints, universal optimality
holds for leakage-supermodular entropies. It is true that most
entropies in [20], [21] are leakage-supermodular (this is not
trivial and proved in Theorem 4). Nevertheless, the latter
result does not follow as an adaption of previous results: the
universally optimal channel is different (greedy solution) and
the proof requires a whole new approach (supermodularity).

The problem of quantifying and bounding leakage over
a large number of runs has been studied in [12], [7] and
[32]. Those works focus on min-entropy leakage and do not
consider the problem of designing a system to minimize the
leakage of information.

There is a body of work on related problems in the private
information retrieval and privacy utility trade-off communities.
For example [19], [34] use optimization techniques to find op-
timal solution to privacy leakage under constraints. However,
among the many differences, they do not consider limit be-
haviour nor the notion of universality. Our approach also differ
substantially from differential privacy [10] and ε-differential
privacy [2], [11]. Information theoretical approaches like ours
rely on statistical averages, and system executions that en-

tail high information leakage might be tolerated if they are
unlikely to occur. On the other hand, differential privacy is
usually based on stronger metrics which hold in all scenarios,
no matter how improbable they are.

II. PRELIMINARIES

A. Secrets, Channels and Information Leakage

A secret is a piece of information the defender wishes to
protect from adversaries. The secret takes values on a finite
nonempty set X = {x1, x2, . . . , xn}. The adversary may have
some knowledge about the secret before the execution of the
system. This can be modelled by a probability distribution
π ∈ DX , where DX is the set of probability distributions over
X . For brevity, πi will be used as a shorthand for π(xi). Given
a probability distribution π ∈ DX , the probability vector ~π ∈
Rn is defined as ~π = (π1, . . . , πn). The distribution π is often
referred as the prior distribution, or simply, the prior.

When executed, a system takes an input from X and
produces an observable behaviour (or simply observable) in
the set Y . Such a system can be represented by a probabilistic
discrete channel (or simply channel), C which probabilisti-
cally maps inputs to outputs. The notation C : X → Y means
that C is a channel that has X , Y as input and output sets,
respectively. We denote by C(x, y) the conditional probability
of C producing output y ∈ Y given that the input is x ∈ X .

In this paper, we are mainly interested in deterministic chan-
nels. A channel is said to be deterministic if ∀x ∈ X , ∃!y ∈ Y ,
C(x, y) = 1. A deterministic channel C is completely charac-
terized by its characteristic function fC : X → Y defined as
fC(x) = y such that C(x, y) = 1. Given A ⊂ X and y ∈ Y ,
the sets fC(A) and f−1(y) represent the image of A and the
pre-image of y, respectively.

It is usually beneficial to reason about channels in a matrix
representation, as in the top left of Figure 1, identifying the
rows with the inputs and the columns with the outputs. For
example, the channel C in Figure 1 represents a system that
outputs y2 with probability 1/3 whenever the input is x1.
Notice that the matrix of channel C is row-stochastic – i.e., for
all x ∈ X and y ∈ Y , C(x, y) ≥ 0 and

∑
y′∈Y C(x, y′) = 1.

A prior π and a channel C induce a joint probability
distribution p(x, y) = π(x)C(x, y) over X × Y . For each
y ∈ Y , let p(y) =

∑
x∈X p(x, y) be its marginal probability

and, for each y such that p(y) > 0, and let pX|y denote the
probability distribution over X given by pX|y(x) = p(x,y)/p(y).
Let p(x) and pY|x be similarly defined, therefore p(x) = π(x)
and pY|x(y) = C(x, y). The distributions pX|y are referred to
as the posterior distributions induced by prior π and channel
C. After the execution of a system, the adversary is able
to infer some information from the produced observable y,
updating their knowledge about the secret from π to pX|y . An
example of a channel, and the joint and posterior distributions
induced by a prior is represented in Fig. 1.

In order to quantify information leakage, it is necessary to
make use of an entropy measure, or simply entropy, which is a
real valued function over categorical probability distributions.
For each probability distribution π, the value of this function



C y1 y2 y3

x1
1/2 1/3 1/6

x2 0 3/4 1/4
x3 0 0 1

p y1 y2 y3

x1
1/4 1/6 1/12

x2 0 1/4 1/12

x3 0 0 1/6

pX|y1 pX|y2 pX|y3
x1 1 2/5 1/4
x2 0 3/5 1/4
x3 0 0 1/2

Fig. 1. Top-left: a channel C with input set {x1, x2, x3} and output set
{y1, y2, y3}; Top-right: the corresponding joint distribution p obtained from
C and the prior distribution ~π = (1/2, 1/3, 1/6); Bottom: the posterior
distributions obtained from channel C and prior π. Note that channels are
row stochastic matrices and posteriors are column stochastic matrices.

quantifies the uncertainty about the secret of an adversary
whose knowledge can be described by π. By comparing the
uncertainty of the adversary about the secret before and after
the execution of a system, one can quantify the amount of
information leakage.

The most well-known entropy measure in the literature is
perhaps the Shannon entropy [30]. Roughly speaking, it mea-
sures the average number of yes/no set-membership questions
an optimal adversary would need to ask to determine the secret
value. Given π ∈ DX , its Shannon entropy is defined as:

H1(π) = −
n∑
i=1

πi log(πi),

with the convention that πi log πi = 0 whenever πi = 0. Given
a prior π ∈ DX and a channel C : X → Y , the posterior
Shannon entropy is defined as the expected value of Shannon
entropy after the execution of the system. That is,

H1(π,C) =
∑
y∈Y+

p(y)H1(pX|y)

where Y+ = {y ∈ Y | p(y) > 0}. The information leaked by
the system execution is then taken as the mutual information
I1(π,C) = H1(π)−H1(π,C): the reduction of the uncertainty
of the adversary about the secret.

The very choice of an appropriate entropy measure depends
on the specifications of the problem, and on the capabilities,
actions and interests of the adversary. Two other entropy
measures commonly used in the QIF literature are guessing
entropy [27] and min-entropy [33]. Guessing entropy is useful
to measure information in scenarios the adversary conducts an
attack by brute force, as it reflects the expected number of tries
an optimal attacker would need to correctly guess the secret.
It is defined as HG(π) =

∑
iπ[i], where (π[1], . . . , π[n]) is

a non-increasing re-arrangement of ~π. Min-entropy, given by
H∞(π) = − log maxπi, is related to the probability that the
attacker guesses the value of the secret correctly in a single try,
being thus an appropriate choice for investigating one-try at-
tack scenarios [33]. The posterior expression for guessing and
min-entropy are, respectively, HG(π,C) =

∑
p(y)HG(pX|y)

and H∞(π,C) = − log
∑
p(y) maxx pX|y(x).

Given α ∈ R++, α 6= 1, the Rényi entropy of order α is
defined as [29]:

Hα(π) =
α

1− α
log ‖~π‖α

where ‖ · ‖α is the α-norm function, i.e., ‖~π‖α = (
∑
παi )

1/α.
Shannon and min-entropy can be recovered as limit cases of
the Rényi entropy family, as limα→1Hα(π) = H1(π) and
limα→∞Hα(π) = H∞(π). There is no general consensus on
the appropriate form of posterior Rényi entropy [16]. In this
paper, the posterior Rényi entropy used is the one introduced
bt Arimoto [5], defined as follows

Hα(π,C) =
α

1− α
log

∑
y∈Y

p(y)
∥∥~pX|y∥∥α

 . (1)

To the extent of our knowledge, this is the only definition
of posterior entropy in the literature that respects the Data
Processing Inequality (see Section II-C) and retrieves min-
entropy and Shannon entropy as limit cases.

B. A General Class of Entropies

Instead of reasoning about specific entropy measures, this
work adopts a definition that generalizes most entropy mea-
sures used in the literature. This generalized entropy measure
is similar to the one introduced in [22].

Definition 1: A core-concave entropy H is a function from
categorical probability distributions to the real numbers for
which there exist η, F such that:

1) For all distributions π, H(π) = η(F (~π))
2) η : I → R is a continuous increasing real valued

function defined over some interval I ⊂ R.
3) F is a real valued function over probability vectors,

which is concave and continuous.
Notice that for a core-concave H , the choice of η and F is

not unique. In fact, given η and F for which H(π) = η(F (~π)),
another choice can be obtained by taking ηc(x) = η(cx) and
Fc(~π) = (1/c)F (~π) for any c ∈ R++. Of course, these choices
do not impact the values of H(π), but they might affect its
posterior counterpart, defined as follows.

Definition 2: Given a core-concave entropy H for a choice
of η and F , its respective posterior entropy is

H(π,C) = η

∑
y∈Y+

p(y)F
(
~pX|y

) .

Given H(π) and H(π,C), the information leakage (or
simply leakage) is the difference between prior and posterior
entropies, i.e.

Leakage(π,C) = H(π)−H(π,C).

From Definitions 1 and 2, it is possible to recover Shannon
and guessing entropies by choosing η(x) = x, and respectively
F (~π) = −

∑
πi log πi and F (~π) =

∑
iπ[i]. The Rényi

entropy of order α, with its posterior form as per (1), can be
recovered by choosing η(x) = α

1−α log(x) and F (~π) = ‖~π‖α



when 0 < α < 1, and η(x) = α
1−α log(−x) and F (~π) =

−‖~π‖α when α > 1. In both cases, η is increasing and F is
concave.

The g-leakage framework [4] is a different approach for
generalizing information leakage measures. It uses a g-
vulnerability function Vg , predicated on a gain function g :
W × X → R, where g(w, x) is the gain the adversary
obtains by selecting action w ∈ W when the secret value
is x ∈ X . Vg is then defined simply as the expected gain of
an optimal adversary, Vg(π) = maxw

∑
x π(x)g(w, x), and

its posterior counterpart is naturally defined as Vg(π,C) =∑
y p(y)Vg(pX|y). The generalized entropy measure given by

Definition 1 subsumes the g-leakage framework: since Vg is
convex for any gain function g [3], one can simply take F to
be −Vg , and η(x) = x.

It was previously mentioned that there is no consensus on
the appropriate form for conditional Rényi entropy. A different
form of the posterior Rényi entropy [14] is:

H ′α(π,C) =
1

1− α
log

∑
y∈Y+

p(y)
∥∥~pX|y∥∥αα

 .

This alternative form can also be obtained from Definitions 1
and 2 by taking η(x) = 1

1−α log(x) and F (~π) = ‖~π‖αα, for
0 < α < 1, and η(x) = 1

1−α log(−x) and F (~π) = −‖~π‖αα,
for α > 1. However, this version of posterior Rényi entropy
does not converge to the posterior min-entropy as α → ∞.
Instead, the following limit holds [17]:

lim
α→∞

H ′α(π,C) = − log

(
max

y∈Y+, x∈X
pX|y(x)

)
.

C. Data Processing Inequality and Channel Ordering

Given channels C : X → Y , R : Y → Z , D : X → Z , we
write D = CR, and say D is the cascading of C and R, if:

D(x, z) =
∑
y∈Y

C(x, y)R(y, z), ∀x ∈ X , z ∈ Z.

In words, D is the channel obtained by feeding the observable
produced by C as input to R. It is also said that the channel D
is obtained by post-processing the output of C by R. Notice
that, if we consider matrix representations, the matrix of D is
obtained by multiplying the matrix of C by R.

Cascading induces a pre-order w◦ over channels with a
same input set, in which C w◦ D iff there is R such that
D = CR. If C w◦ D and D w◦ C, we write C =◦ D.

Notice that, if D = CR, an adversary that has access to the
behaviour of C can trivially recover D simply by feeding the
observable generated by C to R. Thus, intuitively channel D
would leak at most as much information as C. This intuition
is formalised in the following result, which can be seen as
a generalization of the “data processing inequality” for core-
concave entropies.

Theorem 1: Let C : X → Y , D : X → Z . If C w◦ D, then
for any π ∈ DX and any core-concave entropy H , H(π,C) ≤
H(π,D).

Proof: Since p(y) =
∑
z∈Z+ p(z)p(y|z), we can write:

∑
y∈Y+

p(y)F
(
~pX|y

)
=
∑
y∈Y+

( ∑
z∈Z+

p(z)p(y|z)

)
F
(
~pX|y

)
=

∑
y∈Y+,z∈Z+

p(z)p(y|z)F
(
~pX|y,z

)
≤
∑
z∈Z+

p(z)F

∑
y∈Y+

p(y|z)~pX|y,z

 =
∑
z∈Z+

p(z)F
(
~pX|z

)
The second equality follows because D = CR implies ~pX|y =
~pX|y,z . Next, Jensen’s inequality is applied for concave F ,
noting that p(y|z) for y ∈ Y+ constitute convex coefficients.
The last equality uses

∑
y∈Y+ p(y|z)~pX|y,z = ~pX|z . The

lemma follows by applying η(·) to the steps, noting that η
preserve the inequality since it is increasing.

An important consequence of the corollary below is that
leakage is always non-negative:

Corollary 1: For any core-concave entropy H , prior π and
channel C, H(π) ≥ H(π,C).

Proof: Consider the channel 0 : X → Y1 where Y1 = {y}
is a singleton and 0(x, y) = 1 for all x ∈ X . It follows from
Definition 2 that H(π) = H(π, 0). Given any channel C :
X → Z , define RC : Z → Y1 as RC(z, y) = 1 for all z ∈ Z .
Then, 0 = CRC , and the claim follows from Theorem 1.

III. THE DETERMINISTIC CHANNEL DESIGN PROBLEM

Given an input set X and an output set Y , the deterministic
channel design problem is to find a deterministic channel
C : X → Y that minimizes leakage with respect to a
prior π and a core-concave entropy H , while respecting some
operational constraints. As the information leakage is H(π)−
H(π,C) and π is assumed given, the problem simplifies to
finding such C that maximizes H(π,C). Moreover, since η
is increasing, the problem further simplifies into maximizing∑
y∈Y+ p(y)F (~pX|y).
The operational constraints are of two types. The first type,

called hard constraints, are defined by a set Ω ⊂ X ×Y . They
define the strict behaviour of the system: (x, y) is an element
of Ω if and only if the observable y can be generated when
the secret value is x. The set of channels that respect Ω can
thus be defined as:

ΓΩ = {C : X → Y | C(x, y) > 0 =⇒ (x, y) ∈ Ω}.

The second type of constraint, referred to as the soft constraint,
is predicated on a utility function u : X × Y → R, which
represents how useful or desirable each behaviour of the
system is given each secret value. The expected value of u,
given by Eπ,C [u] =

∑
x,y π(x)C(x, y)u(x, y), reflects the

average performance of the system, such as execution time.
The desirable outcome is to obtain a channel C that minimizes
the leakage of information, while ensuring an acceptable
performance. This is accomplished by adding E[u] ≥ umin
as a constraint of our design problem, for an appropriate
threshold umin ∈ R.



Definition 3: The deterministic channel design problem is
to find C ∈ ΓΩ that maximizes∑

y∈Y+

p(y)F (~pX|y)

subject to C being deterministic and Eπ,C [u] ≥ umin.
Notice that our definition allows for constraints that do

not limit the space of possible solutions. Namely, one could
define Ω = X × Y , or u to be identically 1 and umin = 0.
Therefore, Definition 9 allows us to define channel design
problems predicated only on either hard or soft constraints.

A more general version of this problem was studied in [20],
[22], in which the requirement of channels being deterministic
is lifted. It is shown in that the (probabilistic) channel design
problem can be solved by convex optimization techniques. In
particular, the KKT conditions are necessary and sufficient for
a solution, for any choice of core-concave entropy.

A. Complexity results

The first result on this section regards the computational
complexity of the deterministic channel design problem. In
particular, we show this is NP-hard. This is achieved by
proving that a related decision problem is NP-complete. It
suffices to consider min-entropy as the entropy measure, and
only hard constraints.

Theorem 2: Given an input set X , an output set Y , a prior
π ∈ DX , a set of hard constraints Ω ⊂ X × Y and a
threshold t ∈ R+, it is NP-complete to decide whether there
is a deterministic channel C ∈ ΓΩ such that H∞(π,C) ≥ t.

Proof: First notice that, given C, we can calculate
H∞(π,C) = − log

∑
y maxx π(x)C(x, y) in O(|X ||Y|) time.

Thus, the problem is in NP.
NP-completeness is proven by reduction from the set cover

problem (SCP) [18], which is defined as follows: Given a set
U , a collection C ⊂ 2U such that

⋃
S∈C S = U and an integer

k, decide whether there exists a sub-collection C′ of sets of C
such that

⋃
S∈C′ S = U and |C′| ≤ k.

Given an instance (U , C, k) of the SCP, we reduce it to an
instance of the decision problem stated in the theorem by the
following transformation

X = U , Y = C, π(x) =
1

|U|
for all x ∈ U

Ω = {(x, y) ∈ U × C | x ∈ y}, t = − log
k

|U|
.

We prove that (U , C, k) satisfies the SCP if and only if
(X ,Y, π,Ω, t) defined above satisfies the decision problem
described in the theorem. Suppose (U , C, k) satisfies the
set cover problem. Enumerate the elements of C as C =
{S1, S2, . . . S|C|}. Let C′ ⊂ C be a sub-collection of size at
most k that covers U . Define C : U → C as follows.

C(u, Si) =


1, if u ∈ Si, Si ∈ C′

and ∀j < i, Sj ∈ C′ ⇒ u 6∈ Sj ,
0, otherwise.

By construction, C(u, Si) > 0 ⇒ u ∈ Si ⇒ (u, Si) ∈ Ω,
so C ∈ ΓΩ. Since π is uniform,

H∞(π,C) = − log
1

|U|
∑
S∈C

max
u∈U

C(u, S) ≥ − log
|C′|
|U|

.

As |C′| ≤ k, we obtain H∞(π,C) ≥ t.
Conversely, suppose that there is a deterministic channel

C ∈ ΓΩ such that H∞(π,C) ≥ t. Let C′ = {S ∈ C | ∃u ∈
U ; C(u, S) = 1}. Then,

t = − log
k

|U|
≥ H∞(π,C) ≥ − log

|C′|
|U|

,

and we obtain |C′| ≤ k. Also, ∀u ∈ U , ∃S ∈ C′ such that
C(u, S) = 1, and therefore u ∈

⋃
S∈C′ S. Thus, (U , C, k)

satisfies the SCP.

B. Universality of the solution

As mentioned earlier, the choice of the appropriate entropy
measure is not trivial, and it depends on the interests of the
adversary, as well as on his capabilities and attack strategies.
As these factors are often outside the control of the designer of
the system, one desirable attribute of channel design problems
would be if they are universal with regards to the choice of
entropy measure – i.e., having all other variables fixed, they
admit a channel that is a solution to the problem for any choice
of the entropy.

The probabilistic version of the channel design problem
does not, in general, satisfy universality [20]. In fact, and
perhaps unsurprisingly, universality is rarely achievable. Cur-
rently, the existence of universal solutions for the probabilistic
case have been proven for only two classes of hard constraints:
“cloaking constraints” (studied in next section as complete k-
hypergraph constraints) [21] and “graph constraints” [20] –
in which at most two observables can be produced by each
secret.

Next result shows that, in general, universality is also not
satisfied in the deterministic channel design problem. The
proof also demonstrates that in the deterministic case, contrary
to the probabilistic one [20], [21], there is no universal solution
even for “graph constraints”.

Proposition 1: In general, there is no channel that is a
solution for a deterministic channel design problem for all
entropy measures.

Proof: Consider the deterministic channel design
problem given by X = {x1, x2, x3, x4}, Y =
{{x1, x2}, {x1, x3}, {x2, x4}}, Ω = {(x, y) ∈ X ×Y | x ∈ y}
and ~π = (0.35, 0.35, 0.15, 0.15). One can verify that Shannon
and Min-entropy have different optimal solutions, respectively,
CSh and CMe represented below.

CSh {x1, x3} {x2, x4}
x1 1 0
x2 0 1
x3 1 0
x4 0 1



CMe {x1, x2} {x1, x3} {x2, x4}
x1 1 0 0
x2 1 0 0
x3 0 1 0
x4 0 0 1

In particular, while for Shannon entropy H1(π;CMe) = 0.7
and H1(π;CSh) ≈ 0.88, for min-entropy H∞(π;CMe) ≈
0.62 and H∞(π;CSh) ≈ 0.51.

Notice that for graph constraints and a uniformly dis-
tributed prior, the deterministic channel design problem
for min entropy is equivalent to the edge cover prob-
lem, for which there exists a polynomial solution. For
example, consider X = {x1, x2, x3, x4, x5, x6}, Y =
{{x1, x2}, {x2, x3}, {x3, x4}, {x1, x5}, {x2, x5}, {x3, x6},
{x5, x6}}, Ω = {(x, y) ∈ X × Y | x ∈ y} and ~π =
(1/6, 1/6, 1/6, 1/6, 1/6, 1/6); then the optimal solution is
{{x1, x2}, {x3, x4}, {x5, x6}}.

IV. UNIVERSALITY FOR DETERMINISTIC CHANNELS: THE
COMPLETE k-HYPERGRAPH DESIGN PROBLEM

Last section outlined two undesirable characteristics of the
deterministic channel design problem. The first one is its NP-
hardness, which makes it computationally difficult to find a
solution. The second one is that a universal solution – i.e.,
one that is optimal for all entropy measures – does not exist
in general. One natural course of action is to explore subsets
of the deterministic channel design problem that admit either
an efficient or a universal solution. Both these characteristics
can be found in the complete k-hypergraph design problem,
as we investigate in this section.

Definition 4: The complete k-hypergraph design problem is
a deterministic channel design problem as in Definition 3 in
which, Y = {A ⊂ X | |A| = k} and Ω = {(x, y) | x ∈ y}.

At a high level, the problem models a scenario in which
each observable can be produced only by at most k secrets.
A variant of this problem, for the probabilistic case, has been
studied in [21] under the name of cloaking constraints. They
have proven that for all k, there exists a solution that is optimal
for any choice of symmetric entropies.

Here, we prove a similar result for the deterministic case.
For that end, however, it is necessary to restrict the entropy
measures under consideration. Besides being core-concave, we
also require that they be symmetric and expansible.

Definition 5: A core concave entropy H is said to be
1) Symmetric: if, for all ~π = (π1, . . . πn) and all permuta-

tions φ over {1, . . . , n}, F (~π) = F ((πφ(1), . . . , πφ(n)))
2) Expansible: given ~π = (π1, . . . , πn) and ~π′ =

(π1, . . . , πn, 0), we have F (~π) = F (~π′).
Most of the entropies used in the literature are symmetric

and expansible, including all entropy measures defined in
Section II-A.

For the remainder of this section, let k ∈ N++, X =
{x1, . . . , xn}, π ∈ DX , Y = {A ⊂ X | |A| = k} and
Ω = {(x, y) | x ∈ y}. Without loss of generality, assume
the elements of X are labelled in a non-increasing order, i.e.,
we have πi ≥ πj whenever i < j.

Algorithm 1 proposes a greedy solution Ck ∈ ΓΩ for the
complete k-hypergraph design problem, returning its charac-
teristic function fCk . The algorithm is very simple: it takes
the k most likely secrets and associate them with the first
observable, then takes the k most likely secrets among the
remaining secrets and associate them with the second observ-
able, and so on. If n is not divisible by k, the last (n mod k)
input values should be mapped to any permissible output. In
line 5, Algorithm 1 selects one such output by completing the
set with the first output values until it reaches size k.

Algorithm 1 Greedy algorithm for the k-complete hypergraph
problem

Input: Input set X , prior π ∈ DX and integer k ≤ |X |
Output: A characteristic function fCk : X → Y .

1: for i ∈ {0, . . . , bn/kc − 1} do
2: yi+1 ← {xik+1, xik+2, . . . , xik+(k−1), x(i+1)k},
3: r ← dn/ke
4: if n/k < r then
5: yr ← {xrk+1, . . . , xn, x1, x2, . . . , xrk−n}
6: for j ∈ {1, . . . , n} do
7: fCk(xj)← ydj/ne

8: return fCk

Ck y1 y2 y3

x1 1 0 0
x2 1 0 0
x3 1 0 0
x4 0 1 0
x5 0 1 0
x6 0 1 0
x7 0 0 1

Fig. 2. The solution given by Algorithm 1 for k = 3.

A. Entropies and Supermodular Functions
This section introduces the concept of leakage-

supermodular entropies. The main result, Theorem 5,
proves that Algorithm 1 is optimal for all such entropies.

We begin with supermodularity, a concept also known in
the literature as L-superadditivity. For a complete treatment
of supermodularity, one can refer to Chapter 6 of [26].

Let ≤c be the component-wise partial order over Rn+,
defined as follows: given two vectors p = (p1, . . . , pn) and
q = (q1 . . . , qn) in R+, p ≤c q iff pi ≤ qi for all i. The set
Rn+ and the partial order ≤c define a lattice in which the join
and meet of two elements are given by

p ∨ q = (max(p1, q1), . . . ,max(pn, qn)), and
p ∧ q = (min(p1, q1), . . . ,min(pn, qn))

Definition 6: A function φ : Rn+ → R is supermodular if
for all p = (p1, . . . , pn) and q = (q1, . . . , qn)

φ(p ∨ q) + φ(p ∧ q) ≥ φ(p) + φ(q).



An equivalent definition of supermodular functions relies in
comparing the entries of the function two by two [26]. Let
{ei}i∈{0,...,n} be the canonical basis of Rn. Then:

Definition 7: A function φ : Rn+ → R is supermodular if
for all p = (p1, . . . , pn) ∈ Rn+, all i, j ≤ n such that i 6= j,
and all δ1, δ2 ≥ 0, we have

φ(p + δ1ei + δ2ej) + φ(p) ≥
φ(p + δ1ei) + φ(p + δ2ej). (2)

The following Theorem, known as Topkis’s characteriza-
tion theorem, will be useful for characterizing supermodular
functions in some of our next results [26].

Theorem 3: Suppose φ : Rn+ → R have second partial
derivatives. Then φ is supermodular if and only if for all
i, j ≤ n and i 6= j,

∂2φ(p)

∂pi∂pj
≥ 0

We are now in position to derive the results of this section,
which rely on the above characterizations of supermodular
functions. These results, however, are applicable only to a
subset of core-concave entropies, which we call leakage-
supermodular.

Definition 8: Let H be an expansible and symmetric core-
concave entropy for a given η and F . Define GF as follows:
for all n ≥ 1 and all p = (p1, . . . , pn) ∈ Rn+,

GF (p) =

(
n∑
i

pi

)
F

(
p1∑n
i pi

, ...,
pn∑n
i pi

)
.

and GF (p) = 0 whenever all entries of p are 0. Then we say
H is leakage-supermodular if for all n ≥ 2, the restriction of
GF to Rn+ is supermodular.

The functions GF defined above are closely related to
the value of the posterior entropy. In fact, one can calculate
H(π,C) by applying GF to the joint probability distribution
p(x, y) = π(x)C(x, y).

Proposition 2: For any expansible and symmetric core-
concave entropy H , prior π and channel C,
H(π,C) = η

(∑
y∈Y GF (p(x1, y), . . . , p(xn, y))

)
Proof: Immediate from Definitions 2 and 8.

Example 1: Consider the following joint probability dis-
tribution, derived by the channel C in Figure 1 and prior
(1/2, 1/3, 1/6):

p y1 y2 y3

x1
1/4 1/6 1/12

x2 0 1/4 1/12

x3 0 0 1/6

Proposition 2 says that H(π,C) is equal to

η(GF (1/4, 0, 0) +GF (1/6, 1/4, 0) +GF (1/12, 1/12, 1/6)).

The equivalence in Proposition 2 gives an important con-
nection between supermodular functions and posterior forms
of leakage-supermodular entropies, allowing us to apply the
extensive literature regarding the supermodularity to our

framework. The following result establishes a fundamental
connection between supermodularity and entropy:

Theorem 4: Rényi-entropies (including Shannon and min-
entropy) and guessing entropy are leakage-supermodular.

Proof: As they are defined in the limits for α → 1 or
α → ∞, we provide a separate proof for Shannon and min-
entropy.

Throughout this proof, let π ∈ DX , p,q ∈ Rn+ and Sp =∑n
i pi. Also let i, j ≤ n with i 6= j and δ1, δ2 ≥ 0.
Min-Entropy: For min-entropy, we have GF (p) =
−Sp maxi pi/Sp = −maxi pi. Clearly, it must be that GF (p∨
q) = GF (p) or GF (p∨q) = GF (q). Suppose, without loss of
generality, that GF (p∨q) = GF (p). As GF (q) ≤ GF (p∧q),
we obtain

GF (p ∨ q) +GF (p ∧ q) ≥ GF (p) +GF (q)

and GF is supermodular.
Guessing-Entropy: For Guessing-Entropy, we have

GF (p) = Sp

∑
i
p[i]/Sp =

∑
i p[i], where (p[1], . . . , p[n]) is a

non-increasing rearrangement of p. Suppose, without loss of
generality, that pi + δ1 ≥ pj + δ2. We will prove that

GF (p + δ1ei + δ2ej)−GF (p + δ1ei) ≥
GF (p + δ2ej)−GF (p). (3)

Let Ip+δ1ei
= {k ≤ n | pj < pk < pj + δ2} – that is,

Ip+δ1ei
is the set of coordinates of p + δ1ei whose value is

between pj and pj + δ2. Suppose pj + δ2 is the mth biggest
element of the vector p + δ1ei + δ1ej. Then, pj is the (m+
|Ip+δ1ei

|)th biggest element of p + δ1ei.
The difference GF (p + δ1ei + δ2ej) − GF (p + δ1ei) is

then the difference of the contribution of the jth coordinate,
plus the sum of the entries given by the set Ip+δ1ei

, as the
integers by which they are multiplied are decreased by one.
As we assume pi + δ1 ≥ pj + δ2, i 6∈ Ip+δ1ei

.

GF (p + δ1ei + δ2ej)−GF (p + δ1ei)

=m(pj + δ2) +
∑

k∈Ip+δ1ei

pk − (m+ |Ip+δ1ei
|)pj

=− |Ip+δ1ei
|pj +mδ2 +

∑
k∈Ip+δ1ei

pk.

We now turn to the right hand side of (3), the difference
GF (p + δ2ej) − GF (p). We define Ip similarly to Ip+δ1ei

and divide the proof in three cases.
Case 1 (pi ≥ pj + δ2): In this case, pj + δ2 is the mth

biggest element of p + δ2ej and pj the (m+ |Ip|)th biggest
element of p. Moreover, Ip = Ip+δ1ei

, and we obtain

GF (p + δ2ej)−GF (p)

=m(pj + δ2) +
∑
k∈Ip

pk − (m+ |Ip|)pj

=GF (p + δ1ei + δ2ej)−GF (p + δ1ei).

Case 2 (pj < pi < pj+δ2): In this case, pj+δ2 is the (m−
1)th biggest element of p+δ2ej, and pj is the (m−1+ |Ip|)th



biggest element of p. This time, Ip = Ip+δ1ei
∪ {i}, and we

have

GF (p + δ2ej)−GF (p)

=(m− 1)(pj + δ2) +
∑
k∈Ip

pk − (m− 1 + |Ip|)pj

=(m− 1)(pj + δ2) +
∑

k∈Ip+δ1ei

pk + pi − (m+ |Ip+δ1ei
|)pj

=− |Ip+δ1ei
|pj +mδ2 +

∑
k∈Ip+δ1ei

pk + pi − (pj + δ2)

≤− |Ip+δ1ei
|pj +mδ2 +

∑
k∈Ip+δ1ei

pk

=GF (p + δ1ei + δ2ej)−GF (p + δ1ei),

where the last inequality comes from the assumption that pi <
pj + δ2.

Case 3 (pi ≤ pj): In this case, we again have that pj + δ2
is the (m − 1)th biggest element of p + δ2ej, and pj is the
(m−1+|Ip|)th biggest element of p. This time, Ip = Ip+δ1ei

,
and we have

GF (p + δ2ej)−GF (p)

=(m− 1)(pj + δ2) +
∑
k∈Ip

pk − (m− 1 + |Ip|)pj

=− |Ip|pj + (m− 1)δ2 +
∑
k∈Ip

pk

≤− |Ip|pj +mδ2 +
∑
k∈Ip

pk

=GF (p + δ1ei + δ2ej)−GF (p + δ1ei).

Therefore, GF is supermodular.
Shannon Entropy: For Shannon Entropy, GF (p) =

Sp

∑n
i
pi/Sp log

(
Sp

pi

)
=
∑n
i pi log

(
Sp

pi

)
. Consider an i, j,

i 6= j. If pi, pj > 0, we have

∂2GF (p)

∂pi∂pj
=

1

Sp ln (2)
≥ 0. (4)

Supermodularity then follows from Theorem 3. If, on the other
hand, pi or pj are equal to 0, the second derivative does not
exist. For such a case, let ε > 0 and p′ = p+ε(ei +ej). Then
Theorem 3 and (4) imply that

GF (p′ + δ1ei + δ2ej) +GF (p′) ≥
GF (p′ + δ1ei) +GF (p′ + δ2ej).

Taking ε → 0, we can conclude that GF is supermodular
following Definition 7.

Rényi Entropies: For Rényi entropy of order α, we have
GF (p) = Sp‖(1/Sp)p‖a = ‖p‖a if α < 1 and GF (p) =
−‖p‖α if α > 1. For an i, j, i 6= j where pi, pj > 0, we have

∂2‖p‖
∂pi∂pj

= (1− α) pα−1
i pα−1

j

(
n∑
k=1

pαk

) 1
α−2

which is negative for α > 1 and positive for α < 1, and
supermodularity again follows from Theorem 3. When pi or
pj is 0 where the derivatives may not exist, supermodularity
follows from a similar argument as for the Shannon Entropy.

Leakage-supermodularity, however, is not shared by all
symmetric, expansible core concave entropies.

Proposition 3: Not all core-concave entropies are leakage-
supermodular

Proof: In Proposition 4, we considered the choice of η
and F that yield the posterior Rényi entropy of the form (1).
As discussed in Section II-B, another form of posterior entropy
can be obtained by taking (for α > 1) η(x) = (1/1−α) log(−x)
and F (~π) = −‖~π‖αα.

This alternative form, however, is not leakage-supermodular.
Consider p = (0.15, 0.15, 0.5), and q = (0.25, 0.05, 0.5).
Then, for α = 2, we obtain

GF (p ∨ q) +GF (p ∧ q) ≈ −0.765, and
GF (p) +GF (q) ≈ −0.763.

B. Universality for Leakage-supermodular Entropies

In the discussion above, it was claimed that the greedy
solution given by Algorithm 1 is optimal for all leakage-
supermodular entropies. This section is devoted to proving this
claim.

Theorem 5: Given a complete k-hypergraph channel design
problem the solution given by Algorithm 1 is optimal for any
leakage-supermodular entropy.

Proof: The proof presented here takes a more intuitive
approach, helpful for visualizing the application of the con-
cepts of this section (a more formal version of the proof is
provided in Appendix A). For the proof of the theorem, it will
be helpful to reason in terms of the joint probability matrix,
as in Example 1.

Let Ck be the channel obtained by Algorithm 1. The joint
matrix Jk has the following form:

π1 0 . . . 0
...

...
...

πk 0
...

0 πk+1

...
...

...
...

... π2k

...
... 0

...
...

...
. . .

...
...

... 0
...

... πmk+1

...
...

...
0 0 . . . πn





Suppose J is another joint matrix that respects the complete
k-hypergraph problem constraints for the same prior. We now
describe an algorithm to derive Jk from J such that each step
increases entropy.

A step in the algorithm uses the following three sub-steps:
• select and align two columns ci, cj
• perform ∧,∨ operations on the aligned columns and

replace ci, cj with ci ∨ cj , ci ∧ cj
• dis-align the two columns ci ∨ cj , ci ∧ cj
Let’s illustrate one step with the following example:

Consider the following joint matrix, and suppose k = 2:
0 0.4 0
0 0 0.3
0 0.15 0
0 0 0.1

0.05 0 0


We select the two columns which contain the two most likely
priors (i.e. 0.4,0.3); these are columns 2 and 3; we align c2, c3
so that 0.4,0.3 appear in different rows resulting in:

0 0.4 0.1
0 0.15 0.3
0 0 0
0 0 0

0.05 0 0


we then replace c2, c3 with c2 ∨ c3, c2 ∧ c3 obtaining

0 0.4 0.1
0 0.3 0.15
0 0 0
0 0 0

0.05 0 0


finally we dis-align the columns 2 and 3, i.e. position values

in c2 ∨ c3, c2 ∧ c3 so that each row has the same probability
it had before the step, obtaining:

0 0.4 0
0 0.3 0
0 0 0.15
0 0 0.1

0.05 0 0


Notice that the posterior entropy of the joint matrix J is

η(
∑
iGF (ci)) where the ci’s are the columns of the matrix J

and since GF is symmetric, aligning columns doesn’t change
the posterior, i.e. GF (ci) = GF (c′i) for any permutation c′i of
the column ci. Same holds for dis-aligning columns, because
again it is a permutation. Let’s consider the remaining sub-
step, i.e. replacing ci, cj with ci∨cj , ci∧cj . By supermodular-
ity of G we have GF (ci)+GF (cj) ≤ GF (ci∨cj)+GF (ci∧cj)
hence that sub-step increases (or keeps equal) the posterior
entropy. Notice that at the conclusion of the step, the new
matrix has the same probabilities in each row it had before that
step, hence it is still a joint matrix that respects the complete
k-hypergraph problem constraints for the same prior.

The selection and alignment of columns is as follows: at the
initial step select ci such that ci contains the first r elements
with the highest probabilities, say π1, . . . , πr; if r < k then
select cj as the column containing πr+1; align ci, cj so that
πr+1 is not on the same row as any of the π1, . . . , πr (and
ci ∨ cj has no more than k non zero terms). Then ci ∨ cj
will contain π1, . . . , πr+1. Repeat until r = k. Then repeat
the process considering the probabilities πk+1, . . . , πn

By reiterating these steps we will reach a matrix J ′ with
columns c′1, . . . , c

′
n such that each element of column c′i has

higher probability than all elements of column c′i+1. This is
exactly the solution given by the greedy algorithm (modulo
column permutations), i.e. J ′ = Jk.

Also it is immediate to see that no aligning and ∧,∨
operations will change the values in any column in Jk, i.e.
we have reached a fixed point for the posterior entropy, i.e.
the solution from the greedy algorithm is optimal.

C. An application to anonymity

Consider the following problem related to k-anonymity:
design a deterministic query system where in order to conceal
the real query from a (possibly malicious) server, the user
embeds it in to a set of k queries: the server provides the
response to all of the queries and the client retrieves the real
one. In our setting, this corresponds to each observable having
a pre-image of size exactly k. Let n be the number of possible
queries. Considering the scenario that n is divisible by k,
one of the solutions of this problem is the one suggested by
Algorithm 1, relating to the k-hypergraph problem.

Given n secrets, there are n!(nk !)−1(k!)−
n
k possible ways

to satisfy these anonymity constraints. This means that there
are ≈ 7× 1085 possible solutions when n = 100 and k = 10,
and ≈ 4× 1019704 when n = 10000 and k = 100. How does
the solution from the greedy algorithm in Section IV com-
pare against other possible anonymity solutions? We consider
Min and Shannon posterior entropies and the following three
anonymity solutions: 1) the one from the greedy algorithm,
2) a random solution and 3) an un-optimal solution where
the secrets with the highest probabilities, instead of being
grouped in the first bin, are distributed in the other bins. For
example, for 6 secrets and k = 2, the greedy solution would
be {{x1, x2}, {x3, x4}, {x5, x6}} whereas the un-optimal so-
lution 3) would be {{x1, x4}, {x2, x5}, {x3, x6}}.

The difference between these solutions can be very substan-
tial. Figure 3 shows the values when the distribution over the
input set is a binomial distribution, with parameter p = 0.5.
In fact, it is possible to build a probability distribution for
which the leakage gap between the optimal solution given by
the greedy algorithm and the un-optimal can be made arbitrary
large. Crucially Theorem 5 guarantees that the greedy solution
is optimal for all leakage-supermodular entropies.

V. PROBABILISITIC CHANNELS AND THEIR BEHAVIOUR IN
MULTIPLE RUNS

The probabilistic channel design problem, as studied in [21],
can be defined as follows
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Definition 9: The probabilistic channel design problem is
to find C ∈ ΓΩ that maximizes∑

y∈Y+

p(y)F (~pX|y)

constrained by Eπ,C [u] ≥ umin.
To illustrate the probabilistic channel design problem, con-

sider the following example.
Example 2: in “timing attacks” [23] the adversary can obtain

information about the secret by measuring a program execution
times. It is possible to completely nullify this information leak-
age by forcing the system to always finish in a constant time
(e.g. by adding dummy operations). Such strategy, however,
might lead to an unacceptable decrease in overall performance.
One might achieve a decrease in leakage while preserving
better performance by employing “bucketing” [25]. Bucketing
consists of selecting a small finite set of possible times for the
system to finish its execution. Each secret value is then mapped
to one of these times (buckets), decreasing leakage without
excessively deteriorating the performance of the system.

As a toy-example, we consider the following probabilistic
channel design problem for bucketing against a simplified
timing attack introduced in [20]: Let X = {x1, x2, x3} be
a set of processes, the running time of xi being i seconds.
In each execution, the system runs only one process, and the
goal of the adversary is to discover which one it is. Since the
adversary can only observe the running time of the system,
the output set can be represented as Y = {1, 2, 3}. The hard
constraints are Ω = {(xi, y) ∈ X × Y | i ≤ y}, as the time
observed by the adversary can never be less than the execution
time of the secret process. The utility function is given by
u(xi, y) = i − y, that is, the negative of the delay when
process xi is chosen and the system finishes the execution
at time y; and take umin = −2/3. A solution for H = H∞
and ~π = (1/2, 1/3, 1/6) is given by channel T in Fig. 4 (Left).
Notice that H∞(π, T ) = H∞(π), and therefore the channel

T 2 3
x1

2/3 1/3
x2 1 0
x3 0 1

T1 2 3
x1

3/4 1/4
x2

7/8 1/8
x3 0 1

T2 2 3
x1

4/5 1/5
x2

4/5 1/5
x3 0 1

Fig. 4. Left: Solution to the design problem of Example 2. Center and right:
Channels T1 and T2 that respect the constraints of Example 2.

T does not leak any information for this choice of entropy
measure and prior distribution.

A. Multiple Runs of Probabilistic Channels

The solution to the problem in Definition 9 yields a channel
that leaks the least information in a single execution, or when
the secret is renewed for each execution in an i.i.d. manner.
In many scenarios of interest, however, the adversary can
observe multiple executions of a system while the value of
the secret remains the same. Such is the case, for example, in
timing attacks against cryptographic keys that remain unaltered
for a large number of messages. The information leakage
under these assumptions has been previously studied in QIF,
specially regarding min-entropy [7], [12], [32].

After n executions of a system C, the adversary will have
observed a sequence of outputs y = (y1, . . . , yn) ∈ Yn. As
the runs are independent and the secret value x ∈ X remains
fixed, the probability of y being observed in n runs given x
is exactly C(x, y1)C(x, y2) . . . C(x, yn). We can thus model
n executions of a system C by the channel Cn defined as
follows:

Definition 10: Let C : X → Y and n ∈ N∗. We define the
channel Cn : X → Yn as

Cn(x, (y1, . . . , yn)) =

n∏
i=1

C(x, yi).

Notice that executing a deterministic system with a fixed
secret more than once does not leak any extra information, as
the produced observables are all identical. Indeed, if D is a
deterministic channel, Dn =◦ D for any n > 0.

A solution for a design problem as in Definition 9 will
not, in general, be an optimal choice when repeated runs are
taken into account, as it might be the case that H(π,C1) >
H(π,C2), but H(π,Cn1 ) < H(π,Cn2 ) for some n > 1.

To illustrate this, we refer back to the design problem
described in Example 2, whose optimal channel for single-run
was T provided in Fig. 4 (Left). Consider the channels T1 and
T2 in Figure 4, which respect the constraints of the problem
but that are not solutions (i.e., do not maximize posterior min-
entropy). Table I shows that, even though T1 and T2 are sub-
optimal for a single execution, both are better choices than T
whenever the system is run more than once. Specifically, T1

is a better choice for two executions, and T2 is more secure
for three executions.



TABLE I
POSTERIOR MIN-ENTROPY OF T , T1 , T2 WITH NUMBER OF EXECUTIONS

Number of runs 1 2 3
T 1 0.47 0.26
T1 0.88 0.65 0.57
T2 0.82 0.63 0.59

B. Deterministic Channels as a Solution for a Large Number
of Runs

The discussion above reveals a shortcoming of the proba-
bilistic channel design problem. If one is designing a system
that can be run multiple number of times, using the solution
of the problem as in Definition 9 could be suboptimal. In
fact, the optimal solution of the probabilistic design problem
could be much less secure than other feasible channels even
for a small number of runs. For example, H∞(π, T 10) ≈ 0.01,
while H∞(π, T 10) ≈ 0.585.

In this section, the problem considered is that of designing
a channel when the number of executions is large. First, we
consider the behaviour of a channel Cn when n tends to
infinity. For each y = (y1, y2, . . . , yn) ∈ Yn, let N(y,y)
denote the number of occurrences of y ∈ Y in y, and let
ty(y) = N(y,y)/n be the type of y, i.e., the relative frequency
(or histogram) of the observable y in y. Let ∼C to be the
equivalence relation on X defined as follows:

x ∼C x′ ≡ ∀y, C(x, y) = C(x′, y). (5)

That is, these are all the x that have identical channel rows.
By the law of large numbers, as n grows, ty approaches the

probability pY|x(y) = C(x, y). The adversary can, therefore,
deduce the probability distribution that is generating the string
of observables. In other words, in limit, they are able to infer
which equivalence class in X/∼C the secret belongs to. This
suggests that for large enough n, the information revealed by
Cn can be approximated by what is revealed by C∞ : X →
X/∼C , defined as

C∞(x, S) =

{
1, if x ∈ S,
0, otherwise.

We call C∞ the limit channel of C.

T∞, T∞1 [x1] [x2] [x3]
x1 1 0 0
x2 0 1 0
x3 0 0 1

T∞2 [x1] [x3]
x1 1 0
x2 1 0
x3 0 1

Fig. 5. The limit channels for T , T1 and T2.

The above discussion is formalized in the following propo-
sition. Its proof is similar to that of Theorem 1 in [6], which
studied asymptotic leakage properties for min-entropy. We
modify it to obtain a result applicable for all entropy measures.

Proposition 4: Let C : X → Y be a channel and let C∞ :
X → X/∼C be its limit channel. For all n > 0, π ∈ DX and
all entropy measures H , we have

H(π,Cn) ≥ H(π,C∞), (6)
lim
n→∞

H(π,Cn) = H(π,C∞). (7)

The proof of Proposition 4 is provided in Appendix-B.
Proposition 4 shows that all channels behave like a de-

terministic channel after a large enough number of repeated
executions with a fixed input, but the rate of convergence
depends on the choice of entropy measure. To illustrate this,
consider again channel T from Example 2. Because all its rows
are different, T∞ completely reveals the secret, and therefore
the posterior Rényi entropy Hα(π, T∞) will be 0 for any α.

Figure 6 shows the values of Hα(π, T i) for some choices
of α, including the limit cases of min-entropy and Shannon
entropy. Notice that, while all values tend to Hα(π, T∞) = 0,
they do so at different rates. The graph in Figure 7 further
illustrates this difference, presenting the smallest value of i
for which Hα(π, T i) < 0.05, for varying values of α.
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Shannon entropy
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Fig. 6. Values of posterior Rényi entropies of different orders, for increasing
number of executions of channel T .

Being a channel with output set X/∼C , a limit channel C∞

is not in the solution space of the channel design problem. In
our next result, we establish that there is always a deterministic
channel D ∈ ΓΩ that satisfies Eπ,D[u] ≥ umin such that
C∞ w◦ D. As D is deterministic, Dn =◦ D for all n.
Therefore, given any channel C that satisfies the constraints
of the problem, it is possible to find a deterministic channel
D that also satisfies those constraints and asymptotically leaks
as little information as C.

Proposition 5: Given a probabilistic channel design problem
as in Definition 9, let C be a a channel such that C ∈ ΓΩ and
Eπ,C [u] > umin. Then, there exists a deterministic channel
D ∈ ΓΩ such that Eπ,D[u] > umin and C∞ w◦ D.

Proof: Given a channel C, let the deterministic channel
D be obtained by mapping all the secrets of each equivalence
class S ∈ X/∼C to one output yS ∈ Y allowed by the hard
constraints – i.e., yS is an element of the set YS = {y ∈
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Fig. 7. The smallest value of i for which Hα(π, T i) ≤ 0.05, for varying
values of α.

Y | ∀x ∈ S, (x, y) ∈ Ω}. We can guarantee that Eπ,D[u] ≥
umin by choosing yS that maximizes the value of the utility
function on that equivalence class, namely

yS ∈ arg max
y∈YS

∑
x∈S

π(x)u(x, y).

Notice that, as all the secrets on each equivalence class
get mapped to the same output, the procedure above does
not divide equivalence classes, although it might join them
together – that is, ∼C is a finer relation than ∼D. As D
is deterministic, this implies that C∞ w◦ D. Explicitly,
D = C∞R, where R : X/∼C → Y is the channel given
by R(S, y) = 1 if y = yS and 0 otherwise.

Given any channel C that respects the constraints of a
channel design problem, the proof of Proposition 5 provides
an algorithm to find a deterministic channel D that leaks no
more than C in the limit case. Consider, for example, channels
T , T1 and T2 in Figure 4. This algorithm yields the following
channels D1 (for T and T1) and D2 (for T2).

D1 1 2 3
x1 1 0 0
x2 0 1 0
x3 0 0 1

D2 2 3
x1 1 0
x2 1 0
x3 0 1

Comparing with the limit channels in , Figure 5, we can see
that D1 =◦ T

∞, T∞1 and D2 =◦ T
∞
2 .

A immediate consequence of Proposition 5 is that the
solution of the deterministic channel design problem is also an
asymptotically optimal solution for the probabilistic channel
design problem under a large number of executions. Take D2

for example, which is the optimal deterministic channel for
the constraints of Example 2. We have H∞(π,D2) ≈ 0.585,
and from Table I we can infer that for min-entropy, D2 leaks
less information than T i for any i ≥ 2, and than T i1 for any
i ≥ 3.

VI. CONCLUSION AND FUTURE WORK

The channel design problem for general constraints has only
recently started to be explored in the literature [20]–[22]. This

work investigates the problem of designing a deterministic
system whose information leakage is minimal.

The results proven apply to the generalized family of en-
tropies defined in Section II-B, which subsumes most entropy
measures in the literature. A first result is the NP-completeness
of the deterministic channel design problem, and that, in
general, there is no solution that is optimal for all choices
of entropies.

These negative results prompted the exploration of the k-
complete hypergraph problem, for which a computationally
efficient solution is achievable that is optimal for most of the
commonly used entropy measures in the literature. In proving
the optimality of that solution, leakage-supermodularity was
introduced. This concept may prove beneficial for future
research in QIF, exploring the connection between common
entropy measures and supermodular functions established by
Theorem 2.

Other possible future directions of research include explor-
ing different classes of channel design problems, for which
one can find efficient or universal solutions, and applications
of this framework to real-life systems.
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APPENDIX A
ALTERNATIVE PROOF FOR THEOREM 5

Let H be a leakage-supermodular entropy and π be a prior
distribution given by the probability vector ~π = (π1, . . . , πn).

Without loss of generality, we assume πi ≥ πj whenever i <
j. Let Ck be the solution yielded by Algorithm 1.

Let m = dn/ke−1. From Proposition 2, and from symmetry
and expansibility of GF , we obtain

H(π,Ck) = η

(
m∑
i=0

GF (πik, πik+1, . . . π(i+1)k)

)
, (8)

in which we define πj = 0 if j > n.
Let C be any channel that respects the deterministic channel

design constraints, and hence the preimage of each output
consists of at most k inputs. For each y ∈ fC(X ), let cy be the
vector formed by the elements of the set {πi | xi ∈ f−1

C (y)},
followed by k − |f−1

C (y)| zeros. From proposition 2 and
expansibility of GF , we obtain

H(π,C) = η

 ∑
y∈f(X )

GF (cy)

 . (9)

For each i ≤ k, let yi be such that πi is an entry of cyi .
We permutate the elements of each cyi so that πi is in its ith
entry. As GF is symmetric, this permutation does not change
the value of (9).

Notice that, if we substituted cy1 by cy1 ∨ cy2 and cy2 by
cy1 ∧ cy2 , both π1 and π2 would be entries of cy1 . Moreover,
supermodularity of GF implies that the value of (9) would not
decrease. By repeating the process with cy1 and cy3 , . . . , cn,
cy1 would contain π1, . . . , πk and the value of (9) would not
decrease.

More formally, we define

c(1)
y =


cy1 ∨ cy2 ∨ · · · ∨ cyk if y = y1,

(cy1 ∨ · · · ∨ cyi−1
) ∧ cyi if y = yi, i > 1,

and ∀j < i, yi 6= yj

cy otherwise.

By the previous discussion, c(1)
y1 = (π1, . . . , πk). As GF is

supermodular and η is increasing, we obtain

η

 ∑
y∈fC(X )

c(1)
y

 ≥ H(π,C).

We repeat the procedure, now considering πk+1, . . . , π2k.
For k < i ≤ 2k, let yi be the output such that πi is an entry
c

(1)
yi (notice that y1 6= yi for all k < i ≤ 2k). Finally, we

permutate the vectors such that π sits at the (i − k)th entry,
and define

c(2)
y =


c

(1)
yk+1 ∨ c

(1)
yk+2 ∨ · · · ∨ c

(1)
y2k if y = yk+1,

(c
(1)
yk+1 ∨ · · · ∨ c

(1)
yi−1) ∧ c

(1)
yi if y = yi, i > k + 1,

and ∀j < i, yi 6= yj ,

c
(1)
y otherwise.

Hence, c(2)
y1 = (π1, . . . , πk) and c

(2)
yk+1 = (πk+1, . . . , π2k).

Moreover, supermodularity of GF η
(∑

y c
(2)
y

)
≥ H(π,C).



Recall that m = dn/ke − 1. Proceeding in this man-
ner, we obtain vectors cmy that are either of the form
(πik+1, . . . , π(i+1)k) for some i ≤ m, or completely formed
by zeros. As GF (0, . . . , 0) = 0, Equation (8) yields

H(π,Ck) = η

 ∑
y∈fC(X )

c(m)
y

 ≥ H(π,C).

Therefore, the posterior entropy induced by C is never
greater than the one induced by Ck.

APPENDIX B
PROOF OF PROPOSITION 4

Proof: (6): Consider the channel E : X/∼C → Y defined
as E([x], y) = C(x, y). Then, Cn = C∞En, which implies
C∞ w◦ Cn, and the result follows from Theorem 1.

(7): For each S ∈ X/∼C , let pS be the channel row of that
class. That is, let pS ∈ DY be defined as pS(y) = C(x, y),
for some x ∈ S. Moreover, given an ε > 0, let:

UnS (ε) = {y ∈ Yn |DKL(ty || pS) ≤ ε}

where DKL is the Kullback-Leibler divergence. Intuitively,
UnS (ε) is a set of sequences of Yn that are “close” to pS .
Then, Theorem 11.2.1 of [9] yields that for all S ∈ X/∼C ,

pnS (UnS (ε)) ≥ r(n) (10)

where r(n) = 1−(n+1)|Y|2−nε, and pnS ∈ D(Yn) is given by
pnS(y1, . . . , yn) = pS(y1)pS(y2) . . . pS(yn). As n gets larger,
r(n) tends to 1, and therefore so does pnS (UnS (ε)).

For each y ∈ Yn, we pick Sy ∈ X/∼C such that ∃x ∈
Sy, ∀x′ ∈ X , π(x)Cn(x,y) ≥ π(x′)Cn(x′,y). We define
Gn : Yn → X/∼C as

Gn(y, S) =

{
1, if S = Sy,

0, otherwise.

That is, Gn is a channel that maps each sequence of outputs
to the equivalence class of the secret value that most probably
produces it. The idea of the proof is that, by considering the
post-processing of Cn by Gn, we can use Theorem 1 to bound
H(π,Cn) from above by H(π,CnGn).

Define AnS = {y ∈ Yn |S = Sy}. By definition of Gn, we
have

(CnGn)(x, [x]) =
∑
y∈Yn

Cn(x,y)Gn(y, [x]) =
∑

y∈An
[x]

Cn(x,y)

By Lemma 3 in [7], there exists ε1 > 0 such that UnS (ε1) ⊂
AnS for all large enough n. Thus, for such n,

(CnGn)(x, [x]) =
∑

y∈An
[x]

Cn(x,y) ≥
∑

y∈Un
[x]

(ε1)

Cn(x,y).

By definition, the rightmost summation is equal to
pnS

(
Un[x](ε1)

)
. Hence, from (10) we obtain, for all x ∈ X ,

(CnGn)(x, [x]) ≥ r(n).

That is, (CnGn)(x, S) ≥ r(n) whenever C∞(x, S) = 1.
As all rows of CnGn sum to 1, (CnGn)(x, S) ≤ 1 − r(n)
whenever C∞(x, S) = 0. Hence, reasoning about CnGn and
C∞ as vectors of R|X ||X/∼C |, the norm of their difference
can be bounded as

‖CnGn − C∞‖∞ ≤ 1− r(n).

Therefore, limn→∞ CnGn = C∞ and, by continuity,
limn→∞H(π,CnGn) = H(π,C∞). Now, Theorem 1 and
Equation (6) imply that, for all n ∈ N

H(π,CnGn) ≥ H(π,Cn) ≥ H(π,C∞),

and hence (7) follows from the sandwich theorem.
As a visualization of the technique used in the proof of

Proposition 4, some channels of the sequence Tn1 Gn are pre-
sented below, where T1 is as in Figure 4 and ~π = (1/2, 1/3, 1/6).
The channel entries are rounded to two decimal places. Notice
that the sequence Tn1 Gn converges to T∞1 in Figure 5.

T 2
1G2 [x1] [x3]
x1 0.94 0.06
x2 0.98 0.02
x3 0 1

T 4
1G4 [x1] [x2] [x3]
x1 0.68 0.32 0
x2 0.41 0.59 0
x3 0 0 1

T 20
1 G20 [x1] [x2] [x3]
x1 0.77 0.23 0
x2 0.23 0.77 0
x3 0 0 1

T 100
1 G100 [x1] [x2] [x3]
x1 0.96 0.04 0
x2 0.07 0.93 0
x3 0 0 1


