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Abstract—This work introduces a new preorder over channels
that is monotonic with Shannon’s mutual information for all
distributions over the input alphabet. Moreover, this monotonicity
also holds when substituting mutual information for quantities
relative to Arimoto-Rényi conditional entropies and guessing
entropy. Several results connecting this new preorder with others
from the literature are proven. This work also discusses an
extension of Shannon ordering based on this new preorder, and
establishes that channels ordered this way are also ordered with
regards to both Shannon and min-capacity.
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I. INTRODUCTION

Preorders over noisy channels have been extensively studied
in the Information Theory literature starting with Shannon
[17] who introduced the inclusion preorder. Significant con-
tributions have been made by [6], [8], [12]. The topic has
both theoretical and practical interest: for example establishing
whether a channel is more capable [12] than another is of
practical interest in calculating the capacity region of broadcast
channels [8], or in deciding whether a system is more secure
than another [5], [18].

Let K1, K2 be two discrete memoryless channels (hereafter
referred to simply as channels) that share an input X over the
alphabet X = {x1, . . . xn} and produce outputs Y1, Y2 over the
alphabet Y = {y1, . . . , ym}. Let Ki(y|x) denote the entries of
their probability transition matrices. This work proves that if
there are i, j ≤ m such that for all k ≤ n:

K2(yi|xk) = max(K1(yi|xk),K1(yj |xk)),

K2(yj |xk) = min(K1(yi|xk),K1(yj |xk)), and
K2(yl|xk) = K1(yl|xk), ∀l 6= i, j,

(1)

then, for all distributions pX over X , we have:

IH1
(X;Y1) ≥ IH1

(X;Y2),

where IH1
stands for Shannon mutual information. In other

words, (1) implies that K1 is more capable than K2. Moreover,
this relation holds even if we substitute mutual information
with similar quantities relative to other commonly used en-
tropy measures, such as min-entropy, Arimoto-Rényi condi-
tional entropies [3] and guessing entropy [14].

We prove that K1 and K2 that respect (1) are not, in
general, ordered by either degradedness [7] or inclusion (also
known as Shannon ordering) [17]. This allows us to define
two channel preorders (≥ds and ≥shs) that strictly include the
aforementioned ones, yielding novel analytical approaches to

establishing whether a channel is more capable or has greater
capacity than another.

In Sections II and III, we introduce a generalized entropy
measure and some channel preorders generalized from the
literature. In Section IV, channel-supermodularity and the
JoinMeet operator are introduced, and the claim in the be-
ginning of this section is proved. Section V explores the
relationship between ≥ds and the preorders defined in Section
III. Finally, Section VI proves that the preorder ≥shs can be
used to establish whether a channel has smaller capacity than
another.

A. Conventions and Notation

We will use X,Y, Z, . . . for random variables, which will
respectively take values on finite sets (alphabets) X ,Y,Z, . . . .
The elements of these sets will be endowed with an enumer-
ation, i.e. X = {x1, . . . , xn}. The notation K : X → Y
means that K is a channel with X and Y as input and
output alphabets. Probability distributions will be denoted by
p, with p(xi) or pi representing elements of the (categorical)
distribution. We may specify the random variable, e.g., write
pX(x), if it is not clear from the context.

We also use the probability distribution name p to refer to
the probability vector (p1, . . . , pn) ∈ ∆n, where ∆n denotes
the (n−1)-dimensional probability simplex. Given a function
F over ∆n and a random variable X with distribution p, we
may use F (X), F (p1, . . . , pn) and F (p) interchangeably. We
write X → Y → Z if X and Z are conditionally independent
from each other given Y , i.e., the process X → Y → Z
constitutes a discrete Markov chain.

II. CORE-CONCAVE ENTROPIES

This section introduces a generalized entropy measure,
similar to the one in [11], for which our results will be derived.
In this work we only compare channels with the same input
set X = {x1, . . . , xn}, thus we define our generalized entropy
measure as a function over ∆n.

Definition 1: A core-concave entropy H is a pair (η, F )
such that:

1) F : ∆n → R is a concave and continuous function,
2) η : image(F ) → R is a continuous, strictly increasing

function whose domain is the image of F .
Given p ∈ ∆n, we define H(p) to mean η(F (p)), and we
denote by H the set of all core concave entropies.



Definition 2: Given a core-concave entropy H = (η, F ), its
conditional or posterior counterpart is given by

H(X|Y ) = η

∑
y∈Y+

pY (y)F (X|y)


where Y+ is the support of pY and X|y stands for X|Y=y.

For each H ∈ H, we define the H-mutual information as

IH(X;Y ) = H(X)−H(X|Y ). (2)

and the H-capacity of a channel K : X → Y as

CH(K) = sup
pX

IH(X,Y ). (3)

Definitions 1 and 2 are very general, subsuming most
entropy measures used in the literature, such as1

• Shannon entropy, H1 = (x,−
∑
pi log pi),

• min-entropy, H∞ = (− log(−x),−maxi pi),
• guessing entropy, HG = (x,

∑
ip[i]), where p[1], . . . , p[n]

is a non-increasing rearrangement of p,
• g-entropies [1], Hg = (− log(−x),−Vg).
They also generalize the Rényi family of entropies [16], by

choosing (for α > 1) either η(x) = α
1−α log(−x), F (X) =

−‖p‖α; or η(x) = 1
1−α log(−x), F (X) = −‖p‖αα.2 The first

choice yields the conditional entropy defined by Arimoto [3]:

Hα(X|Y ) =
α

1− α
log

∑
y∈Y+

p(y)
∥∥pX|y∥∥α (4)

and the second yields another conditional entropy also defined
in the literature [9]:

H ′α(X|Y ) =
1

1− α
log

∑
y∈Y+

p(y)
∥∥pX|y∥∥αα. (5)

Amongst these, only for (4) both limα→1Hα(X|Y ) =
H1(X|Y ) and limα→∞Hα(X|Y ) = H∞(X|Y ) hold [10].

An important property of core-concave entropies is that they
respect the data processing inequality [11].

Theorem 1: For all core concave H , if X → Y → Z, then
H(X|Y ) ≤ H(X|Z).

III. PREORDERS OVER CHANNELS

This section introduces preorders over channels that share
the same input alphabet. Throughout this section, let K1 :
X → Y and K2 : X → Z share an input X and produce
outputs Y, Z.

Channel K2 is degraded from K1 [7], written as K1 ≥d K2,
if exists a channel R : Y → Z such that K2 = K1R, i.e.,

K2(z|x) =
∑
y∈Y

K1(y|x)R(z|y) ∀x ∈ X , z ∈ Z.

Another preorder introduced by Shannon [17] includes the
one above. A channel K1 is said to include K2, indicated

1All logarithms are taken to the base 2
2For 0 < α < 1, one may take instead: η(x) = α

1−α
log(x), F (X) =

‖p‖α for the fist case and η(x) = 1
1−α

log(x), F (X) = ‖p‖αα for the
second.

by K1 ≥sh K2, if there is a family of tuples {(gi, Ti, Ri)}i of
non-negative real numbers gi and channels Ti, Ri such that

K2 =
∑
i

giTiK1Ri and
∑
i

gi = 1.

in which the convex sum of channels tW1 + (1− t)W2 is de-
fined as (tW1+(1−t)W2)(y|x) = tW1(y|x)+(1−t)W2(y|x).

The two preorders defined above are independent of entropy
measure, and for that reason we sometimes refer to them as
structural preorders. Next, given H ∈ H, we introduce three
preorders that are sensitive over the choice of H . The first two
are generalizations over the preorders introduced by [12].3

We say that a channel K1 is H-less noisy than K2, and
write K1 ≥Hln K2, if for all random variables U with finite
support such that U → X → (Y,Z), we have:

IH(U ;Y ) ≥ IH(U ;Z),

K1 is said to be H-more capable than K2, denoted as
K1 ≥Hmc K2, if for all distributions of the input, X , we have:

IH(X;Y ) ≥ IH(X;Z).

Finally, we write K1 ≥Hc K2 to mean CH(K1) ≥ CH(K2).
Given A ⊂ H, we write K1 ≥Aln K2 if ∀H ∈ A,K1 ≥Hln

K2. The relations ≥Amc and ≥Ac are defined similarly.

A. Relationships between preorders

In this section, some relationships between the preorders
defined above are explored. These results are similar to others
in the literature, but generalized to H.

Proposition 1: For any H ∈ H:

K1 ≥d K2 ⇒ K1 ≥Hln K2 ⇒ K1 ≥Hmc K2 ⇒ K1 ≥Hc K2.

Proof: The first implication is a direct consequence of
Theorem 1. The other implications are straightforward.

The converses of these implications do not hold in general,
as shown for H1 in [12]. However, the H∞-less noisy ordering
is sufficient to imply the degradedness ordering [4].

Theorem 2: K1 ≥H∞
ln K2 ⇒ K1 ≥d K2.

There is no known specific choice of a single core-concave
entropy that would yield a similar result for the “more capable”
orderings (or if one exists). However, the Theorem 9 in [15]
shows that it is possible to recover degradedness ordering if
the “more capable” orderings hold for a subset of core-concave
entropies.

Theorem 3: Let Hg be the set of all g-entropies as defined
in [1]. Then K1 ≥

Hg
mc K2 ⇒ K1 ≥d K2

Theorem 3 together with Proposition 1 yield the following
equivalence.

Proposition 2: K1 ≥d K2 ⇔ K1 ≥Hln K2 ⇔ K1 ≥Hmc K2

3To be precise, they generalize a specific characterization of these orders,
given by Propositions 1 and 2(ii) in [12]



IV. CHANNEL-SUPERMODULAR ENTROPIES

We now introduce the concept of channel-supermodular
entropies, which were studied in [2] under the name “leakage-
supermodular”. They are based on supermodular functions
over the euclidean vector space. A full account of supermod-
ularity can be found in [19] and in [13, Chapter 6.D].

Consider the set Rn+ of all n-dimensional vectors with
no negative entries (i.e., the non-negative orthant of Rn).
Let � represent the element-wise inequality, i.e., given r =
(r1, . . . , rn) and s = (s1, . . . , sn), r � s iff ri ≤ si for all i.
The � relation induces a partial order on Rn+, moreover, Rn+
and � form a lattice, with its “join” (least upper-bound) and
“meet” (greatest lower-bound) respectively given by:

r ∨ s = (max(r1, s1), . . . ,max(rn, sn))

r ∧ s = (min(r1, s1), . . . ,min(rn, sn))

Definition 3: A function φ : Rn+ → R is supermodular (over
the above lattice) if, for all r, s ∈ Rn+,

φ(r ∨ s) + φ(r ∧ s) ≥ φ(r) + φ(s).

The following useful characterization of supermodular func-
tions is an immediate consequence of Corollary 2.6.1 in [19].

Theorem 4: Let φ : Rn+ → R and let e1, . . . en denote the
canonical basis of Rn. The function φ is supermodular if and
only if, for all r ∈ Rn+, all δ1, δ2 ≥ 0 and all i, j with i 6= j,

φ(r + δ1ei + δ2ej) + φ(r) ≥ φ(r + δ1ei) + φ(r + δ2ej).

Whenever the function is smooth, the inequality above
reduces to a property on the second derivatives [19].

Theorem 5: Let φ : Rn+ → R have second derivatives. Then,
φ is supermodular if and only if, for all r ∈ Rn+ and all i, j
with i 6= j,

∂φ(r)

∂ri∂rj
≥ 0.

The relationship between some core-concave entropies and
supermodularity is established by the following definition.

Definition 4: Let H = (η, F ) be a core concave entropy.
Define, for all r ∈ Rn+:

GF (r) := ‖r‖1F
(

r

‖r‖1

)
where by convention GF (0, . . . , 0) = 0. H is channel-
supermodular if GF is supermodular. We denote by S ⊂ H
the set of all channel-supermodular entropies.

The supermodular property of the functions GF turns out to
be a powerful tool for analytically reasoning about channels.
In fact, for each H ∈ S, the conditional entropy of X given
Y can be defined in terms of GF and the joint probability
distribution over X,Y , as follows

H(X|Y ) = η

∑
y∈Y

GF (pX,Y (x1, y), . . . , pX,Y (xn, y))


(6)

The next result from [2] confirms that some of the most
usual entropy measures are channel-supermodular.

Theorem 6: Shannon and min-entropy, and more generally,
Rényi entropies (as in (4)) are channel-supermodular. Guessing
entropy is also channel-supermodular.

Proof: Due to space restrictions, we only provide the
proof for Rényi’s entropies. A separate proof for Shannon
entropy can be derived in a very similar way and a proof
for min-entropy can be obtained directly from Definition 3. A
proof for guessing entropy can be obtained using Theorem 4.

For Rényi entropies of order α < 1, we have,

GF (r) = ‖r‖1F
(

r

‖r‖1

)
= ‖r‖1

∥∥∥∥ r

‖r‖1

∥∥∥∥
α

= ‖r‖α

and similarly, GF (r) = −‖r‖α if α > 1. 0 For r ∈ Rn>0 and
i, j with i 6= j, we have

∂2‖r‖
∂ri∂rj

= (1− α) rα−1i rα−1j

(
n∑
k=1

rαk

) 1
α−2

which is negative for α > 1 and positive for α < 1. Thus,
from Theorem 5, GF restricted to Rn>0 is supermodular .

If r has components equal to zero, the second derivatives
may not exist. Let ε > 0 and r′ = r+ε(

∑
k ek). As r′ ∈ Rn>0,

Theorem 4 yields, for all δ1, δ2 > 0

GF (r′+δ1ei+δ2ej)+GF (r′) ≥ GF (r′+δ1ei)+GF (r′+δ2ej)

By taking ε→0, we obtain that GF is supermodular over
Rn+.

A. The JoinMeet Operator
Let K : X → Y be a channel, with Y = {y1, . . . , ym},

and let Ki be the column of K corresponding to output yi.
Define, for i 6= j, the JoinMeet operator ♦i,j as follows:

(♦i,jK)l =


Ki ∨Kj if l = i

Ki ∧Kj if l = j

Kl otherwise

The next result proves that, for all H ∈ S, the operator ♦i,j
is monotonic with IH .

Theorem 7: Given K1 and i, j, K1 ≥Smc ♦i,jK1

Proof: Let H = (η, F ) ∈ S and define GF as in
Definition 4. Let K2 = ♦i,jK1, and denote by Y1, Y2 the
outputs of K1, K2. Notice that, for any distribution on the in-
put, pX,Y2(xk, yi) = max(pX,Y1(xk, yi), pX,Y1(xk, yj)), and
similarly pX,Y2

(xk, yj) = min(pX,Y1
(xk, yi), pX,Y1

(xk, yj)).
Thus, ∑

l

GF (pX,Y2
(x1, yl), . . . , pX,Y2

(xn, yl))

≥
∑
l=i,j

GF (pX,Y1
(x1, yl), . . . , pX,Y1

(xn, yl))

+
∑
l 6=i,j

GF (pX,Y2(x1, yl), . . . , pX,Y2(xn, yl))

=
∑
l

GF (pX,Y1(x1, yl), . . . , pX,Y1(xn, yl))

where the inequality follows from GF being supermodular.
From (6) and η being increasing, it follows that H(X|Y1) ≤
H(X|Y2), which is equivalent to IH(X;Y1) ≥ IH(X;Y2).



B. A new structural ordering

Theorem 7 yields some immediate new results for reasoning
about channel ordering, as the JoinMeet operator is not, in
general, captured by the “degradedness” relation. Consider,
for instance, the following channels K1, K2 0.5 0.5

0.6 0.4
0.2 0.8

  0.5 0.5
0.6 0.4
0.8 0.2

 (7)

Then, we have that K2 = ♦1,2K1, but K1 6≥d K2, as one
can establish that there is no channel R such that K2 = K1R.
Therefore, for all H ∈ S , Theorem 7 gives a novel sufficient
condition for a channel being H-more capable than another,
and one which is straightforward to check.

This leads us to define two new structural preorders over
channels. The first is given by the JoinMeet operators ♦i,j .
The subscript s is used to associate it with supermodularity.

Definition 5: K1 ≥s K2 if there is a finite collection of
tuples (ik, jk) such that K2 = ♦i1,j1(♦i2,j2(. . .♦im,jmK1)).

We also define a preorder induced by combining ≥d and
≥s. That is, a preorder that relates channels that are obtained
by a sequence of degrading and JoinMeet operations. From
Proposition 1 and Theorem 7, this preorder also implies the
“more capable” preorder for channel-supermodular entropies.

Definition 6: K1 ≥ds K2 if there are channels W1, . . . ,Wn

such that K1 ≥0 W1 ≥1 . . . ≥n−1 Wn ≥n K2, where each
≥i stands for ≥d or ≥s.

V. RELATIONS BETWEEN PREORDERS FOR
CHANNEL-SUPERMODULAR ENTROPIES

This section establishes the relationships amongst the pre-
orders introduced in Sections III and IV-B, when the entropies
considered are in the set S.

TABLE I
IMPLICATIONS BETWEEN PREORDERS: CIRCLED LETTERS ARE RESULTS

PROVEN IN THIS PAPER.

⇒ ≥d ≥ds ≥Sln ≥Smc ≥sh

≥d
Y

Prop 3
Y Y Y

≥ds
N

Prop 3
N

Prop 3
Y

Prop 3
N

Prop 3

≥Sln Y Y Y Y

≥Smc
N

Prop 4
? N

Prop 4
N

Prop 5

≥sh N N
Prop 3

N N

Table I summarizes the relations between the different
preorders, with new results encircled. For example the value
N in the cell (≥ds,≥d) means that ≥ds does not imply ≥d.

Throughout this section, let K1 : X → Y and K2 : X → Z .
First, note that Proposition 1 and Theorem 2 are still meaning-
ful under S. The next proposition summarises the relationship
between (≥ds) and the other preorders.

Proposition 3:
1) K1 ≥d K2⇒K1 ≥ds K2 and K1 ≥s K2⇒K1 ≥ds K2,
2) K1 ≥ds K2 ; K1 ≥d K2,
3) K1 ≥ds K2 ; K1 ≥s K2,
4) K1 ≥ds K2 ; K1 ≥Sln K2,
5) K1 ≥Sln K2 ⇒ K1 ≥ds K2,
6) K1 ≥ds K2 ⇒ K1 ≥Smc K2,
7) K1 ≥ds K2 ; K1 ≥sh K2,
8) K1 ≥sh K2 ; K1 ≥ds K2.

Proof: 1) follows immediately from Definition 6, and 2)
from the example channels in (7). Statement 3) is proved by
the following channels(

1
1

)
≥d

(
0.5 0.5
0.5 0.5

)
For 4), consider the channels K1, K2 as follows 1 0

0 1
1/2 1/2

  1 0
1/2 1/2
1/2 1/2


These channels were introduced in [12], where it is proven

that K1 6≥H1

ln K2. However K1 ≥ds K2, as 1 0
0 1
1/2 1/2

 ≥d

 1 0 0
0 1/2 1/2
1/2 1/4 1/4


≥s

 1 0 0
1/2 0 1/2
1/2 1/4 1/4

 ≥d

 1 0
1/2 1/2
1/2 1/2

 .

Statement 5) follows from 1) and from Theorem 2. State-
ment 6) follows directly from Definition 6, Proposition 1 and
Theorem 7. For 7), consider the following channels K1, K2 1/2 1/2 0

0 2/3 1/3
1/2 1/8 3/8

  1/2 1/2 0
2/3 0 1/3
1/2 1/8 3/8


Then, K2 = ♦1,2K1. However, K1 6≥sh K2, as can be

checked by linear programming [20]. Finally, for 8) consider
channels K1, K2 as follows 1 0

1 0
0 1

  1 0
0 1
1 0


As K2 is obtained from K1 by row permutation, K1 ≥sh

K2. However, it is readily seen that K1 6≥H1
mc K2 (take, for

example, pX = (1/2, 1/2, 0)). Thus, 6) yields K1 6≥ds K2.

Proposition 3.6 yields a new analytical approach to deciding
whether K1 ≥Hmc K2, for H ∈ S , which relies only in the
structural properties of the channel. To illustrate this technique,
consider the following channels K1, K2 introduced in [1]. 1/2 0 1/2

0 1/2 1/2
1/2 1/2 0

  1/4 3/4
1/4 3/4
3/5 2/5





While these channels are not ordered w.r.t. ≥d, the authors
claimed they had experimental evidence, but no proof, that
K1 ≥H1

mc K2. In light of Proposition 3.6, this follows from 1/2 0 1/2
0 1/2 1/2
1/2 1/2 0

≥s

 1/2 0 1/2
1/2 0 1/2
1/2 1/2 0

≥d

 1/4 3/4
1/4 3/4
3/5 2/5


Proposition 3 yields immediate consequences for the rela-

tionship amongst the other preorders, when entropies in S are
considered. First, note that the equivalent of Proposition 2 does
not hold if H is substituted for S.

Proposition 4: K1 ≥Smc K2 ; K1 ≥d K2 and K1 ≥Smc

K2 ; K1 ≥Sln K2

Proof: From Proposition 3.2, there are channels K1,K2

such that K1 ≥ds K2 and K1 6≥d K2. For such channels,
Proposition 3.6 implies K1 ≥Smc K2, and the first result fol-
lows. The second result then follows by noting that Proposition
1 and Theorem 2 imply K1 ≥Sln K2 ⇔ K1 ≥d K2.

Proposition 4 has some interesting ramifications in the field
of Quantitative Information Flow. It has been recently argued
that the degradedness order, in light of Theorem 3, ought to be
the standard to establishing whether a channel is more secure
than another (see the discussion at the end of Section 6 in
[15]). Our result, however, shows that this order is too strong
if one can limit their considerations only to entropies in S.

It follows immediately from Propositions 3.6 and 3.7 that
the more capable ordering, even when quantified over S, does
not imply Shannon ordering.

Proposition 5: K1 ≥Smc K2 ; K1 ≥sh K2.

VI. RESULTS ON CHANNEL CAPACITY

In the same paper that Shannon introduced the inclusion
ordering, he established that K1 ≥sh K2 ⇒ K1 ≥H1

c K2

[17]. Theorem 7 allows us to derive similar results for a new
preorder ≥shs, which is an extension of ≥sh with ≥s.

Definition 7: K1 ≥shs K2 if there are channels W1, . . . ,Wn

such that K1 ≥0 W1 ≥1 . . . ≥n−1 Wn ≥n K2 where each ≥i

stands for ≥sh or ≥s

First, we establish the relationship between ≥shs and the
other structural preorders.

Proposition 6: For all channels K1,K2

1) K1 ≥sh K2 ⇒ K1 ≥shs K2

2) K1 ≥ds K2 ⇒ K1 ≥shs K2

3) K1 ≥shs K2 ; K1 ≥s K2

4) K1 ≥shs K2 ; K1 ≥sh K2

Proof: 1) is clear and 2) is immediate from the definitions
of ≥ds and ≥shs. 3) and 4) follow from 2) and Propositions
3.3 and 3.7

In particular, Proposition 6 reveals that ≥shs includes ≥sh.
We finish this section by stating a couple of results, that
are direct consequences of Definition 7, Proposition 1 and
Theorem 7.

Proposition 7: For all H ∈ S, if K1 ≥sh K2 ⇒ K1 ≥Hc K2,
then K1 ≥shs K2 ⇒ K1 ≥Hc K2

Proposition 8:
1) K1 ≥shs K2 ⇒ K1 ≥H1

c K2

2) K1 ≥shs K2 ⇒ K1 ≥H∞
c K2

VII. CONCLUSIONS AND FUTURE WORK

Two new preorders on channels have been introduced,
based on a supermodularity property shared by some of the
most common entropies in the literature. Several relationships
between this ordering and existing ones have been established.

Two main open problems arise from this work: 1) Are ≥ds

and ≥Smc equivalent? 2) Does ≥shs imply ≥Sc ?
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[2] A. Américo, MHR. Khouzani, and P. Malacaria. Deterministic Channel
Design for Minimum Leakage. In Proc. IEEE 32nd Computer Security
Foundations Symposium (CSF), pages 428–441, 2019.

[3] S. Arimoto. Information measures and capacity of order α for discrete
memoryless channels. Topics in information theory, 1977.

[4] F. Buscemi. Comparison of noisy channels and reverse data-processing
theorems. In Proc. 2017 IEEE Information Theory Workshop (ITW),
pages 489–493, Nov 2017.

[5] D. Clark, S. Hunt, and P. Malacaria. Quantitative information flow,
relations and polymorphic types. J. Log. and Comput., 15(2):181–199,
April 2005.

[6] J. Cohen, J. H. B. Kempermann, and G. Zbaganu. Comparisons of
Stochastic Matrices with Applications in Information Theory, Statistics,
Economics and Population. Springer Science & Business Media, 1998.

[7] T. M. Cover. Broadcast channels. IEEE Transactions on Information
Theory, 18(1):2–14, 1972.

[8] A. A. El Gamal. The capacity of a class of broadcast channels. IEEE
Transactions on Information Theory, 25(2):166–169, March 1979.

[9] M. Hayashi. Exponential decreasing rate of leaked information in uni-
versal random privacy amplification. IEEE Transactions on Information
Theory, 57(6):3989–4001, 2011.

[10] M. Iwamoto and J. Shikata. Information theoretic security for encryption
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