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Highlights

• An evolutionary algorithm based hyper-heuristic is proposed for the set packing problem

(SPP) and the minimum weight dominating set (MWDS) problem.

• Self-learning concept is employed in hyper-heuristic for a selection of heuristic.

• Dynamic selection of parameter is adopted to make the approach, as much as possible,

less dependent on parameter values. The empirical study shows the effectiveness of Dy-

namic selection of parameter.

• The proposed approach has been compared with the respective state-of-the-art approaches

for both the SPP and MWDS problem.

• Computational results show the superiority of the proposed approach.
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Abstract

In recent years, hyper-heuristics have received massive attention from the research community

as an alternative of meta-heuristics. In a hyper-heuristic, generation or selection of an effec-

tive heuristic among a pool of heuristics is an important and challenging task in the search

process. At each iteration, a suitable heuristic can take the search process toward the global op-

timal solution. Moreover, some additional factors such as quality and the number of heuristics

also affect the performance. In this paper, we propose an evolutionary algorithm based hyper-

heuristic framework that incorporates dynamic selection of parameters. To test its generality,

effectiveness and robustness, we apply this approach on two different NP-hard problems - set

packing problem (SPP) and minimum weight dominating set (MWDS) problem. The proposed

approach for the SPP and the MWDS problem has been evaluated respectively on their re-

spective set of benchmark instances. Computational results show that the proposed approach

for the SPP and MWDS problem perform much better than their respective state-of-the-art ap-

proaches in terms of the solution quality and computational time.

Keywords: Set packing problem, Estimation of distribution algorithm, Guided-mutation,

Heuristic, Hyper-heuristic, Minimum weight dominating set problem
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The set packing problem (SPP), considered to closely resemble a set covering problem [20,

37], is a classical combinatorial optimization problem and has been proven to be NP-hard [18]

in nature. We followed the same notational representation as in [14] to represent the SPP and

is defined as follows: Consider a finite set I = {1, ... , N} of N objects, Tj, j ∈ J = {1, ... , M} a

list of M subsets of I, and a packing P ⊆ I is a subset of set I such that |Tj ∩ P| 6 1, ∀j ∈ J ,

i.e., at most one object of set Tj can be in packing P . Each set Tj, j ∈ J = {1, ... , M} is considered

as an exclusive constraint between some objects of set I. A weight function assigns a positive

integer weight, ci, to each object i in set I. The objective of the SPP is to find a subset P ⊆ I
that maximizes the sum of the weights of the objects in set P . Mathematical model of the SPP

is given as follows:

Max Z =
∑

i∈I
cixi, (1)

∑

i∈I
ti,jxi 6 1, ∀j ∈ J (2)

xi ∈ {0, 1}, ∀i ∈ I (3)

ti,j ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J (4)

• a vector X = (xi), where xi=





1, if i ∈ P

0, otherwise

• a vector C = (ci), where ci= weight of object i, ∀i ∈ I

• a matrix T = (ti,j), where ti,j=





1, if i ∈ Tj,

0, otherwise

Equation (1) is the objective function that calculates the sum of the weights of the objects in

packing P . Equation (2) ensures that at most one object from set Tj can be packed in packing P .

In Equation (3), xi is a binary variable. If object i is in packing P , then xi=1; otherwise, xi=0. In

Equation (4), ti,j is a binary variable and its value is 1 if object i belongs to set Tj; otherwise, it is

0.

A special case of the SPP is a node packing problem represented in Equation (5), where
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constraints are defined between a pair of items.



Max Z =
∑

i∈I
cixi,

xi + xj 6 1,∀ pair (i, j) of incompatible items,

xi ∈ {0, 1},∀i ∈ I




(5)

1.1. Survey on the set packing problem and related problems

The SPP is an NP-hard problem and its hardness is explained in detail in [20, 37]. The

Branch-and-cut algorithm, uses polyhedral theory [39], was the best exact approach for solving

the SPP. However, owing to the solving limitation of an exact approach, only small instances are

solved to optimality. For large instances, other approaches such as meta-heuristic approaches

should be considered, which play an important role in determining the solution of acceptable

quality in a reasonable amount of computational time. Considering the limitations of the ex-

act approaches, Delorme et al. [14] proposed a greedy randomized adaptive search procedure

(GRASP) which operates in two main phases. In the first phase, called a construction phase, an

initial solution is generated using a greedy randomized procedure in which randomness allows

to explore different search areas. In the second phase, a local search is applied to each solution

generated in the first phase to further improve it. Further, an intensification phase based on

the path relinking method[41] was applied. In the study reported in [14], two different types

of instances were used: real railway problem and random instances. In [17], an ant colony op-

timization (ACO) was proposed for solving the SPP, and only random instances were used for

investigating the performance of the ACO. Further, in [16] and [34], two different versions of

ACO were proposed for the SPP, and both were tested on the railway problem instances. The

state-of-the-art approach for solving the SPP is an evolutionary algorithm (EA) with guided

mutation (GM) (i.e., EA/G) [11]. The EA/G approach is considered as a cross between tradi-

tional genetic algorithm and estimation of distribution algorithm. The GM operator uses the

cross information to generate offspring. The solutions generated by the EA/G approach are

subjected to a local search algorithm to further improve the solution quality. The EA/G with

local search was applied to unit-cost and multi-cost random instances.

Many real-world applications of the SPP have been reported in the literature. In [42], Rön-

nqvist presented the use of a SPP to formulate the cutting stock problem and solved it using

a combination of the Lagrangian relaxation method and sub-gradient optimization. In [30],
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Kim and Lee mapped a ship scheduling problem as the SPP and solved it using LINDO soft-

ware. In [35], a SPP formulation was used to obtain the bounds for a resource-constrained

project scheduling problem using the greedy method. In [47], Tajima and Misono formulated

an airline seat allocation/reallocation problem as a SPP and solved it using the IBM optimiza-

tion subroutine library. In [43], Rossi and Smriglio described the development of a SPP-based

model for a ground holding problem and solved it using a Branch-and-cut method. In [15],

Delorme et al. used a unit-cost SPP to model the railway infrastructure saturation problem and

solved it using a GRASP meta-heuristic.

In [33], Lusby et al. formulated a routing of trains through junctions problem as a SPP and

solved it using a branch-and-price algorithm. In the given problem, the tracks and time are

divided into sections and time periods, respectively. Further, pairs of track sections and time

periods are mapped as objects into a SPP with the objective to maximize the number of trains

that can be assigned to pairs of track sections and time periods. It ensures that at any particular

time period at most one train can be assigned to a pair of track section and time period. It

also ensures that at any particular time period only one train can be assigned to any particular

track section. Pairs of track sections and time periods are considered as objects in the SPP. The

constraints of the SPP are the conflicts among different pairs of track sections and time periods

that cannot be put together in the solution. A set of trains without any priority or with equal

priority will address a unit-cost SPP, whereas with different priority will address multi-cost

SPP. In [49], Xu and Zhang proposed a path set packing problem, is a variant of a SPP, with the

goal is to find a maximum number of edge-disjoint paths in a given graph, and the goal was

achieved using a polynomial time optimal algorithm.

Several other versions of SPP are reported in the literature. In [27], Weijia et al. studied a

m-set packing problem, which is an extension of SPP, where the size of the set is bounded by m,

and was solved using an efficient parametrized algorithm. In [38], Tri-Dung studied a complete

set packing problem (CSPP). The CSPP has applications in combinatorial auctions and cooper-

ative game theory. A winner determination problem in spectrum auctions and the coalition

structure generation problem in coalition skill games is modelled as the CSPP and solved it

using a fast approximation algorithm. In [23], Gulek and Toroslu studied a tree-like weighted

set packing problem and solved it using a dynamic programming algorithm. This problem

has been proven to be P and the complexity is O(k2n). This problem has application in the
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task assignment of hierarchical organizations. In [45], Maxim and Justin studied a maximum

un-weighted set packing problem in which set cardinality is upper bounded by a constant k.

The goal of the problem is to find a packing with maximum cardinality. A large neighborhood

local search algorithm is proposed to solve this problem. In [21], Gottlob and Greco presented

a maximum-weight set packing problem which mapped a winner determination problem in

combinatorial auctions in which it determines the allocation of items to the bidders such that

the sum of the accepted bid prices is maximum. In [25], Olga and Ralf proposed a general-

ization of odd set inequalities for a SPP for hyper-graph by employing cliques and odd set

inequalities. In the context of hyper-graph, a SPP becomes an edge packing problem.

In this paper, we present an evolutionary algorithm (EA) based hyper-heuristic (EA-HH)

framework to solve the SPP. The EA is inspired by the EA/G approach proposed in [50]. In the

EA-HH approach, the concept of estimation of the distribution of the solutions in the solution

space is used to estimate the distribution of heuristics in the search space of heuristics. Hyper-

heuristics [5] are recently developed methods that operate directly on the search space of the

heuristics and are independent of the problem structure. In general, almost, all meta-heuristics

operate directly on the solution space of the problem under consideration and their perfor-

mance may change on different problems in the same domain, and it may outperform/under-

perform with a small change in the same problem. A hyper-heuristic is considered as an au-

tomated heuristic search method that provides sufficient flexibility to the process of selection,

generating, combining or adapting several simple or problem specific heuristics to efficiently

solve the computationally hard problem. Other important aspects of any heuristic are the scal-

ability, stability, robustness, and generality. A well-designed approach can have the ability to

perform well irrespective of problem domains. The novelty of the proposed approach is that it

uses univariate marginal distribution model and population based incremental learning model

to initialize and update, respectively, the probability vector which estimates the distribution of

heuristics in the search space of the heuristics. Further, to investigate the scalability and stability

of the EA-HH approach, the minimum weight dominating set (MWDS) problem is considered

which is also a class of subset selection problem but has opposite objective than the SPP. The

EA-HH approach is applied to solve the MWDS problem with the purpose to investigate the

scalability and generality capability.

The remainder of this paper is organized as follows. Section 2 and Section 3 present an
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overview of the EA/G approach and hyper-heuristics, respectively. Section 4 explains hyper-

heuristics method. Section 5 describes the proposed EA-HH approach for the SPP. The compu-

tational results are reported in Section 6. Section 7 presents the MWDS problem, its compo-

nents, and the computational results. Section 8 concludes the paper.

2. Overview of evolutionary algorithm with guided mutation (EA/G)

The EA/G [50] is a recent addition to the class of evolutionary algorithms. It was developed

by Zhang et al. [50] in 2005 with the intention of overcoming the shortcomings of traditional

GAs [19] and (EDAs) [4, 31]. In other words, the purpose was to take advantage of the features

of GAs and EDAs together. GAs use the current location information of the solutions found

so far in the solution space to generate a new offspring through standard operators such as

crossover and mutation. GAs do not use, directly, the global statistical information in the pro-

cess of generating an offspring. On the other hand, EDAs use the global statistical information,

which is stored in the form of probability, to generate a new offspring. A new offspring is gen-

erated by sampling the probability vector. In contrast to GAs, EDAs do not directly use location

information in the process of generating a new offspring.

In the EA/G, the guided mutation (GM) operator uses the features of both GAs and EDAs to

generate a new offspring. The GM operator generates a new offspring either directly copying

from the best solution or randomly sampling the probability vector.

More recently, several modified and improved versions of EA/G were developed and tested

on a different domain of combinatorial optimization problems. In the study in [11], an im-

proved version of EA/G was proposed to solve the SPP. The problem domain knowledge is

used to initialize the probability of objects in the set. In the study in [8], the size of the parent

was modified, whereas, in the study in [9], both the size of the parent and the number of solu-

tions to update the probability vector were modified. In [10], the authors modified the original

EA/G and applied it to an order acceptance and scheduling problem, which is a subset and

permutation problem. For detailed study, please refer to [24, 11, 8, 10, 9].

3. Overview of hyper-heuristic

A hyper-heuristic is a heuristic search technique that automates the search process and also

allows to combine or generate a suitable problem solver in each generation [5]. Generally,

hyper-heuristic consists of two levels, namely; higher level and lower level [5]. A High-level
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search strategy and a set of low-level heuristics reside at the higher level and lower level, re-

spectively. The high-level search strategy directly operates on the search space of the heuristics.

In each iteration, high-level strategy applies a heuristic selection or heuristic generation method

to select/generate a heuristic from the lower level and subsequently, this heuristic is applied

to generate a new solution. The lower level consists of problem-specific/generic heuristics,

called low-level heuristics that directly operate on the solution space of the problem under con-

sideration. But the major challenge in hyper-heuristics is the selection of a heuristic from the

heuristics pool. In the literalure, several strategies have been developed to select/generate a

heuristic from the heuristics pool such as simple random selection [13], greedy selection [13]

and a choice function [13].

Several other versions of hyper-heuristic are presented in the literature. In [3], a tensor-

based machine learning technique is proposed for selection hyper-heuristic. Further, a random

heuristic selection with the naive, improving and equal move acceptance method are combined

in a selection of low-level heuristic. In the study in [44], a Monte Carlo tree search method

is proposed to generate a sequence of low-level heuristics. Further, the Monte Carlo is cou-

pled with a population of solutions to improve the effectiveness of the search tree. In [22],

Jacomine et al. put an effort to investigate the concept of heuristic space diversity and man-

agement of it under various strategies under meta-hyper-heuristic approach. In [2], Shahriar

et al. applied hyper-heuristic with the combination of Monte-Carlo to solve the multi-mode

resource-constrained multi-project scheduling problem. The hybrid version of the proposed

approach is a combination of Monte-Carlo tree search, neighborhood moves, memetic algo-

rithms, and hyper-heuristic. In [1], Almutairi et al. investigated six different existing selection

hyper-heuristics namely: Sequence-based selection hyper-heuristic, Dominance-based and ran-

dom descent hyper-heuristic, Robinhood (round-robin neighbourhood) hyper-heuristic, Mod-

ified choice function, Fuzzy late acceptance-based hyper-heuristic [26], and Simple Random-

Great Deluge in HyFlex problem domains such as 0-1 Knapsack, Quadratic Assignment, and

Max-Cut problem. In [29], Ahmed and Ender proposed an iterated multi-stage selection hyper-

heuristic and investigated on one-dimensional bin-packing, personal scheduling, permutation

flow-shop, travelling salesman problem, and vehicle routing problem. In [12], a reinforcement

learning technique is incorporated in hyper-heuristic and the performance is evaluated on six

different problem domains. Several state-of-the-art hyper-heuristics [6, 12] are also developed
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for other domain problems.

4. Proposed evolutionary algorithm based hyper-heuristic

This paper presents a novel evolutionary algorithm based hyper-heuristic inspired by the

EA/G approach proposed by Zhang et al. [50]. As mentioned in Section 2, EDAs work on the

concept of the estimation of the distribution of the promising solutions in the solution space.

In each generation, it estimates the distribution of the promising solutions in the solution space

and subsequently stores their distribution in the form of probability. On the other side, the

higher level strategy of EA-HH estimates the distribution of promising heuristics in the search

space. The main components of the EA-HH are discussed below.

4.1. Higher level of the hyper-heuristic

An evolutionary algorithm is employed as a high-level strategy at the higher level of the

hyper-heuristic. The main components of the higher level are explained in the following sub-

sections:

4.1.1. High-level search strategy

The high-level of a hyper-heuristic is a search strategy that operates on the search space of

the heuristics and selects or generates a heuristic by combining two or more heuristics from

the heuristics pool. This section presents search strategy that is adopted at the higher level

of the hyper-heuristic. Matrix in 6 is a heuristics population matrix of Np × NH, where Np

is the heuristics population size and NH is the number of low-level heuristics. The value of

fiHj
, i = 1, 2, ... , Np , j = 1, 2, ... NH, Hj ∈ {LH_1, LH_2, ... , LH_NH} is determined by using

Equation (7).

FCredit =




f1H1
f1H2

· · · f1HNH

f2H1
f2H2

· · · f2HNH
...

... . . . ...

fNpH1
fNpH2

· · · fNpHNH




(6)

FCredit is a credit matrix that stores the fitness difference between the new solution and the

current solution generated by each low-level heuristic in each generation in the search process.

The difference is calculated as follows:
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fiHj
=





fNew − fCurrent, if (fNew − fCurrent) > 0

0, otherwise
(7)

where fCurrent and fNew are the fitness of the current solution and the fitness of the solution

generated in the neighbourhood of the current solution, respectively.

4.1.2. Initialization and update of probability vector PHeuristic

In [36, 50], the univariate marginal distribution (UMD) model was used to estimate the

distribution of the candidate solutions in the population. In the UMD model, each decision

variable is treated as an independent variable and the conditional probability of a variable does

not depend on the probability of other variables. In the context of heuristics, the UMD model

estimates the distribution of heuristics in the search space of the heuristics. Each heuristic

is treated as an independent variable and probability vector PHeuristic = {PH1,PH2, ... ,PHk} ∈
[0, 1]NH characterizes the distribution of the promising heuristics in the search space, where

PHk is the probability of Hk
th heuristic in the heuristics pool. Equation (8) is used to assign a

probability to each heuristicHi.

PHi =

Np∑

j=1

fjHi

NH∑

k=1

Np∑

j=1

fjHk

, i = 1, 2, ... NH, (8)

After the probability vector PHi has been initialized, at each generation g the probability dis-

tribution of each heuristic Hi is updated using the best Np

2 fitness values from Equation (6). A

population-based incremental learning algorithm (PBILA) [4] is used to update the probability

vector. Equation (9) updates the probability vector at each generation. In Equation (9), ζ is a

learning variable that learns from the past statistical information stored in the form of the prob-

ability vector in the current population. The larger the value of ζ , the greater is the contribution

from the current population, whereas the smaller the value of ζ , the greater is the contribution

from the probability vector.

PHi = (1− ζ)× PHi + ζ ×

Np
2∑

k=1

fkHi

NH∑

k=1

Np∑

j=1

fjHk

, i = 1, 2, ... NH, (9)
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The worst case time complexity of both the initialization and update of the probability vector

is O(Np
2NH).

4.1.3. Heuristic selection rule

Heuristic selection is an important component of any hyper-heuristic. It determines the di-

rection of the search process in the search space. An intelligent heuristic selection method can

take the search process toward the global best solution, whereas random selection may lead

the search process toward the local best solution or may require a greater number of genera-

tions to reach the global best. Several heuristic selection rules have been developed such as

random selection, choice function, and greedy selection. In this paper, we propose roulette

wheel selection (RWS) method based heuristic selection rule. However, we tried all the men-

tioned methods but the RWS has, overall, the best performance. Therefore, we choose the RWS

method as a heuristic selection rule.

Equation (8) estimates the distribution of the heuristics in terms of their performance in

each generation and stores the distribution in the form of probability in the probability vector

PHeuristic . The probability PHi of heuristic Hi is directly proportional to its performance. The

RWS method, also called the fitness proportionate selection method, considers the probability

of each heuristic as a fitness of heuristicHi and its probability of being selected is calculated as

εi =
PHi

NH∑

j=1

PHj

, i = 1, 2, ... , NH (10)

The selection of a heuristic is determined by the RWS method. The pseudo-code of the RWS

method is presented in Algorithm 1.

Algorithm 1 Roulette wheel selection method
1: heu← 0;
2: r← rand(0, 1);
3: while (εheu 6 r) do
4: heu← heu+1;
5: end while
6: returnHheu
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4.2. Lower level of the hyper-heuristic

The lower level of the hyper-heuristic is a set of low-level, can be standard or problem

specific, heuristics that directly operates on the search space of the solution of the problem

under consideration. Table 1 presents six low-level heuristics.

Table 1: Low-level heuristics
Heuristic Generation of heuristic Heuristic Generation of heuristic

LH_1 Crossover1 (Section 4.2.1) LH_2 Crossover2 (Section 4.2.1)

LH_3 Crossover3 (Section 4.2.1) LH_4
Construction heuristic (Sec-
tion 4.2.2)

LH_5 Guided mutation (Section 4.2.3) LH_6
One_one (Section 4.2.4) +
One_two (Section 4.2.5)

4.2.1. Crossover heuristics

Three versions of uniform crossover operator (UXO) [46] are developed to generate an off-

spring. In the first version, called Crossover1 (LH_1), the global best solution and the current

solution are used as two parents and a child solution is generated by applying UXO. In UXO,

for each location a random number is generated uniformly in the interval [0, 1]. If the number

is smaller than the predefined value CP, then the corresponding object from the best solution

is added to the child solution; otherwise, the corresponding object from the current solution is

added.

In the second version of UXO, called Crossover2 (LH_2), the current solution and a solution

different from the current solution is chosen using binary tournament selection (BTS) method

and subsequently, as in Crossover1, a new child solution is generated. In the third version of

UXO, Crossover3 (LH_3), two parents are selected randomly using BTS method and subse-

quently, similar to Crossover1, a new child is generated. Each UXO version has an advantage

and also helps to maintain diversification in the solution population. Crossover1 and Crossover2

have both exploration and exploitation features, whereas Crossover3 has only exploration abil-

ity.

4.2.2. Construction heuristic (LH_4)

The purpose of the construction heuristic is to maintain diversity in the population. It per-

forms exploration. At each iteration, an object, i∈ I, is added to partial solution, say Sp, with the

probability 0.50. Subsequently, the solution is passed through the repair operator (Section 5.3)



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

to make it feasible if not and thereafter through the improvement operator (Section 5.4) for

the possible improvement. The pseudo-code of the Construction heuristic is presented in Algo-

rithm 2.

Algorithm 2 Construction heuristic (LH_4)
1: Sp ← φ;
2: for each object i ∈ I in some random order do
3: r1 ← rand(0, 1);
4: if (r1 6 0.50) then
5: Sp ← Sp ∪ {i};
6: end if
7: end for
8: return Sp;

4.2.3. Guided mutation (LH_5)

In any heuristic, it is always good to take advantages of problem domain knowledge to

improve their performance. The proposed guided mutation (GM) heuristic uses the cost and

the cardinality of conflict set of objects to give more weight to an object whose conflict size is

smaller. For each object i ∈ I, ℵi and |ℵi| are the conflict set and the conflict count (number

of objects conflicting with object i), respectively. An empty set indicates that the particular

object has no conflicting objects. The pseudo-code of determining the conflict set of objects is

presented in Algorithm 3.

Algorithm 3 Determination of the conflict set of each object i ∈ I
1: for (Each object i ∈ I) do
2: ℵi ← φ;
3: for (j = 1 to M) do
4: if (|{i} ∩ Tj| > 0) then
5: ℵi ← {ℵi ∪ Tj} \ {i};
6: end if
7: end for
8: end for

For initialization of the probability vector, an UMD model is used to estimate the distribu-

tion of the candidate solutions in the solution space of the problem. A ratio, say vi, of cost,

say ci, and |ℵi| of an object i is added to increase the probability. A probability vector, say

PMutation = {p1, p2, ... , p|I|} ∈ [0, 1]|I|, is inilialized where pi is the probability of the ith object in

set I and |I| is the cardinality of set I. The pseudo-code of the initialization of the probability

vector using the UMD model is given in Algorithm 4.
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Algorithm 4 Probability vector initialization
1: Compute vi ← ci

|ℵi| , ∀i ∈ I;
2: Compute yi ← number of initial solutions containing object i, ∀ i ∈ I;
3: Compute pi ←

(yi+vi)
(Np+vi)

, ∀i ∈ I;

Further, the population-based incremental learning (PBIL) model [4] is used to update the

probability vector. At each generation g, a parent set, say Parent(g), is formed by selecting the

best Np

2 candidate solutions from the current population Pop(g). Variable ζ is the learning rate,

which changes dynamically with the generation. As ζ controls the contributions of location and

global information and helps to maintain a balance between exploitation and exploration. The

pseudo-code of the probability update vector using the PBIL model is given in Algorithm 5.

Algorithm 5 Probability vector update
1: Compute zi ← number of solutions in Parent(g) containing object i, ∀i ∈ I;
2: Compute pi ← (1− ζ)× pi + ζ × zi

Np
2

, ∀i ∈ I;

After the probability vector PMutation is updated, the GM operator is applied to generate a

new solution. Set Sp, initially empty, is a partial solution in which objects are added either by

sampling the probability vector PMutation or directly copying from the global best solution, say

Bs. Variable β ∈ (0, 1) is a control parameter that controls the contribution from probability

vectorPMutation and the global best solutionBs. The large the value of β, the greater is the number

of objects included by sampling the probability vector PMutation, whereas the smaller the value

of β, the greater is the number of objects copied from Bs. The pseudo-code of the GM operator

is presented in Algorithm 6.
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Algorithm 6 Guided mutation
1: Sp ← φ;
2: for each object i ∈ I in some random order do
3: r1 ← rand(0, 1);
4: if (r1 < β) then
5: r2 ← rand(0, 1);
6: if (r2 < pi) then
7: Sp ← Sp ∪ {i};
8: end if
9: else

10: if (i ∈ Bs) then
11: Sp ← Sp ∪ {i};
12: end if
13: end if
14: end for
15: return Sp;

4.2.4. One_one swap heuristic (LH_6)

One_one swap heuristic is a modified version of the 1-1 exchange local search presented in

[11]. It also operates on the first improvement strategy. In each iteration, it swaps one object

from solution Sp with an object not in the solution (I∗ = I \ Sp) if it improves the solution. A

function, say Find1_1(Sp), identifies an object, say j, that does not violate the feasibility constraint.

Swap1_1(SP, i, j) is a function that replaces object i with objects j, i.e., S∗p = (Sp∪{j})\{i}. Fitness()

is a function that calculates the sum of the weights of the objects in solution S∗p . If the new

solution S∗p is better than Sp, then the solution is updated; otherwise, it moves to the next object

in Sp. This process continues until all objects in solution Sp are attempted. The 1-1 exchange local

search is applied at most 4 successful exchanges, whereas the One_one swap exchanges objects

until all objects in set Sp are attempted. The pseudo-code of the One_one swap heuristic (LH_6)

is presented in Algorithm 7.
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Algorithm 7 One_one swap heuristic
1: F ← Fitness(Sp);
2: I∗ ← I \ Sp;
3: Cs ← |Sp|;
4: i ← 1;
5: while (i 6 Cs) do
6: j← Find1_1(I∗);
7: S∗p ← Swap1_1(Spi

, j);
8: F∗ ← Fitness(S∗p );
9: if (F∗ > F) then

10: Sp ← S∗p ;
11: F ← F∗;
12: i← 1;
13: else
14: i← i+1;
15: end if
16: end while

4.2.5. One_two swap heuristic (LH_6)

One_two swap heuristic is a modified version of the 1-2 exchange local search presented in

[11]. Similar to One_one swap heuristic, function Find1_2(I∗) identifies two objects, say i and

j, in set I∗ that are not in solution Sp and do not violate the feasibility constraint. Function

Swap1_2(SP,Spi
, j, k) replaces object Spi

with objects j and k, i.e., S∗p = (Sp ∪ {j, k}). If the new

solution S∗p is better than Sp, then the solution is updated; otherwise, it moves to the next object

in Sp. This process continues until all the objects in Sp are attempted. The 1-2 exchange local search

exchanges at most 6 objects, whereas the One_two swap exchanges objects until all objects in set

Sp are tried. The pseudo-code of the One_two swap heuristic (LH_6) is presented in Algorithm 8.
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Algorithm 8 One_two swap heuristic
1: F ← Fitness(Sp);
2: I∗ ← I \ Sp;
3: Cs ← |Sp|;
4: i← 1;
5: while (i 6 Cs) do
6: (j, k)← Find1_2(I∗);
7: S∗p ← Swap1_2(SP,Spi

, j, k);
8: F∗ ← Fitness(S∗p );
9: if (F∗ > F) then

10: Sp ← S∗p ;
11: F ← F∗;
12: i← 1;
13: else
14: i← i+1;
15: end if
16: end while

5. EA-HH approach for the SPP

The proposed EA-HH approach for the SPP was inspired by the approaches presented in

[50] for the maximum clique problem and classification of hyper-heuristics [5]. The pseudo-

code and flowchart of the EA-HH approach are presented in Algorithm 9 and Figure 1, respec-

tively. The main components of the EA-HH approach are presented below.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 9 Evolutionary algorithm based hyper-heuristic
1: At generation g ← 0, an initial population Pop(0) consisting of Np solutions is generated

randomly;
2: Apply each low-level heuristic Hi ∈ {LH_1, LH_2 . . . , LH_NH} Np number of times to form

Np × NH fitness matrix FCredit (Equation (6));
3: Select the best Np number of solutions from (Pop(g) + Np×NH) solutions to form population

Pop(0);
4: Initialize the probability vector PMutation (Algorithm 4) and PHeuristic (Equation (8));
5: while (g < GEN) do
6: Select the best Np

2 solution from Pop(g) to form a Parent(g);
7: Update ζ(g) (Equation (11)), β(g) (Equation (12)), PMutation (Algorithm 5), and PHeuristic (

Equation (9));
8: for (i =1 to Np

2 ) do
9: Select a heuristicHi ∈ {LH_1, LH_2 . . . , LH_NH} by applying the RWS method on the

probability vector PHeuristic ;
10: Apply heuristicHi to generate a new solution;
11: Update the fitness matrix FCredit using First in first out scheme;
12: end for
13: Add Np

2 newly generated solutions to Parent(g) to form Pop(g+1);
14: g← g + 1;
15: end while
16: return Best solution;
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Figure 1: Flowchart of the EA-HH approach
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5.1. Solution encoding

Solution encoding is an important part of any meta-heuristic algorithm and it directly affects

the computational performance. As the SPP is a class of subset selection problems; therefore, a

subset encoding is adopted to represent a solution. Each solution, say Sp, is represented directly

by the objects it contains, i.e., Sp = {o1, o2, ... , o|Sp|}, where |Sp| is the cardinality of the solution

Sp.

5.2. Initial solution

An initial population is generated randomly. Each object is included randomly in the partial

solution, say Sp, with equal probability. However, only those objects that satisfy the feasibility

criteria are included in Sp.

5.3. Repair operator

The proposed repair operator is a modified version of the Repair Operator presented in [11].

A solution Γ = {Γ1, Γ2, ... , Γ|Γ|} is infeasible if
|Γ|∑

i=1

|ℵΓi ∩ Γ| > 0, where ℵΓi is the conflict set of an

object Γi. Each infeasible solution Γ generated through heuristicHi is passed through the repair

operator to make it feasible. In the Repair Operator of [11], the conflicting objects are deleted

with the help of roulette wheel selection method where the probability of selection of an object

is proportional to the ratio of |ℵi| to the weight of object i, i.e., ci, whereas in the modified repair

operator conflicting objects are selected in the order in which they are presented in the solution.

The pseudo-code of the repair operator is presented in Algorithm 10.

Algorithm 10 Repair operator
1: i← 1;
2: while (i 6 |Γ|) do
3: δ ← ℵΓi ∩ Γ;
4: if (|δ| > 0) then . |δ|will be greater than zero if there is at least one object conflicting

with object Γi in Γ
5: Γ← Γ− δ; . Remove the conflicting objects from Γ
6: |Γ| ← |Γ|; . Update the cardinality of set Γ
7: end if
8: i← i+1;
9: end while

5.4. Improvement operator
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Each feasible solution is passed through the improvement operator to further improve the

solution quality. The proposed improvement operator is the modified version of the Improve-

ment Operator presented in [11]. Suppose δ is a set of objects which are not in solution Γ and ℵΓi is

the conflict set of an object Γi. In [11], roulette wheel selection method is used to add unpacked

object to the solution, where the probability of selection of object δi is directly proportional to

the ratio of the weight of object i to |ℵi|, whereas the proposed improvement operator selects an

object in the same order as they presented in δ. The improvement operator iteratively attempts

to add an unpacked object without violating the feasibility criteria. The pseudo-code of the

improvement operator is presented in Algorithm 11.

Algorithm 11 Improvement operator
1: δ ← (I − Γ);
2: for (For each object δi ∈ δ) do
3: if (|ℵδi ∩ Γ| = 0) then
4: Γ← Γ ∪ δi;
5: δ ← (δ \ ℵδi) \ {i};
6: end if
7: end for

6. Computational results for the SPP

The proposed EA-HH approach was implemented in C language and executed on a Core 2

Duo system with 2 GB RAM under Ubuntu operating system in a 3.0 GHz environment. A

gcc 4.4.4-10 compiler with -O3 flag was used to compile the C program. For the fair compari-

son, the same system is used as that of used in the study in [11]. The EA-HH parameters and

their values are listed in Table 2, and all these values were fixed empirically after numerous

trials. In this study, two types of random test instances: unit-cost and multi-cost are used to in-

vestigate the performance of the proposed approach. The characteristics of the test instances are

reported in Tables 7 to 9. In these three tables, for each instance, the columns with the headings

Var, Cnst, Density, Max_One, and Weight show the number of objects (|I|), number of

constraints (|J |), percentage of non-null elements in the constraint matrix, size of the largest set

|Tj| over all j ∈ {1, 2, ... , M}, and weight ci ∈ [1-1] or [1-20] of object i ∈ I, respectively. All the

test instances can be downloaded from http://www3.inrets.fr/~delorme/Instances-

fr.html. In Table 7, the column with the heading Opt lists the optimal values returned by the

CPLEX 6.0 solver and in Tables 8 and 9, the column with the heading BKV shows the best
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known value (BKV) obtained by CPLEX 6.0 solver indicated with an asterisk (“*”). For the

GRASP [14], ACO [17], EA/G [11], and the proposed EA-HH approach, the columns with the

headings Best, Avrg, and ATET show the best solution, average solution, and average exe-

cution time in seconds, respectively. For the EA-HH approach, we report also the number of

objects in the best solution and the average number of objects in the average solution.

Table 2: Parameters and their values for the EA-HH approach

Parameter Value Description

Np 30 Population size
ζ ∈ [0.001, 0.99] Learning rate

β ∈ [0.001, 0.99]
Is the control parameter that controls the contribution from the
current population and the best solution

NH 6 Number of low-level heuristics
RUN 16 Number of independent runs for each instance for the SPP

RUN 1
Number of independent runs for each instance for the MWDS
problem

GEN 100 Number of generations in each run
CP 0.50 Uniform crossover rate

6.1. Effect of dynamic selection of β and ζ parameters

Parameter tuning is one of the most challenging and difficult tasks in any meta-heuristic

approach. Therefore, an intelligent meta-heuristic always attempts to be as independent of

parameters as possible.

ζ(g) = ζmin +
ζmax − ζmin

GEN
× g (11)

β(g) = βmin +
βmax − βmin

GEN
× g (12)

The values of ζ and β change dynamically with generation g. It also helps to maintain a

balance between exploration and exploitation. In the beginning of the generation, the search

process performs the exploration whereas at the end of the generation performs exploitation.

Dynamic nature of parameter ζ allows to learn from the global statistical information, whereas

at the end of the generation, it allows to learn from the current location in the population.

Similarly, a smaller value of β forces a contribution from the global best solution, whereas a

larger value forces a contribution from the current population. In Equations (11) and (12), g,

ζmin and ζmax, and GEN are the current generation, minimum and maximum values of ζ , and the

maximum number of generations, respectively.
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Figure 2: Convergence behavior of the EA-HH approach with different values of β and ζ on instance pb500rnd09

In Figures 2 and 3, instances pb500rnd09 and pb1000rnd07 are used to show the in-

fluence of the dynamic selection of parameters ζ and β on the solution quality. These fig-

ures show the convergence speed of each combination of parameter values. The values of

ζ, β ∈ {0.40, 0.60, 0.80, 0.99}, and other combinations, where the values change dynamically

according to Equation (11) and Equation (12) are plotted. In Figures 2(a) to 2(d), and Figures 3(a)

to 3(d) the values of β are 0.40, 0.60, 0.80, and 0.99, respectively and for each value of β four

different values of ζ ∈ {0.01, 0.40, 0.60, 0.80, 0.99} are passed. The figures show that the dy-

namic selection of parameters β and ζ yields a better convergence speed and these values reach

the BKV faster than the fixed values.
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Figure 3: Convergence behaviour of the EA-HH approach with different values of β and ζ on instance
pb1000rnd07

One of the reasons of success is that the dynamic selection of parameters allows the search

process to explore different areas of search space at the beginning of the generation, and then

end of the generation it allows to exploit the search area. On the other side, fixed parameter

value restricts the search process to explore in the fixed direction. In these figures, we can see

that plots with larger values of parameters unable to converge to the BKV, and the reason is

that the search process started exploiting the search area from the beginning of generation and

got stuck on local optima. Similarly, When one parameter has smaller value and other has a

larger value, then the search process got stuck on local optima. Furthermore, if the parameters

values are close to each other, then the search process is able to perform both exploration and

exploitation. Based on experimental results and analysis it can be concluded that a proper

trade-off among parameters values can take the search process towards global optimum in

reasonable amount of computational time.
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6.2. Behaviour of the EA-HH approach in the search space of the heuristics

In this section, we investigate the behavior of the components of the EA-HH approach. In

Figure 4(a), the portions of the probability shared by low-level heuristics LH_1, LH_2, LH_3,

LH_4, LH_5, and LH_6 in each generation for instance pb1000rnd07 are plotted. In the figure,

the Generation axis represents generations from 1 to 100 and the Probability axis represents the

percentage share of the probability by each heuristic in each generation. The probability value

of each heuristic is directly proportional to the performance of the particular heuristic in any

generation. The probability values help in the selection of a low-level heuristic in the next gen-

eration. In the figure, it can be observed that the probability share changes with the generation

and this directly affects the heuristic selection rule. The larger its probability value, the greater

is the chance of the heuristic being selected in the next generation. The average probability

shares of heuristics LH_1, LH_2, LH_3, LH_4, LH_5, and LH_6 are 0.160, 0.162, 0.160, 0.184,

0.174, and 0.159, respectively.

Figure 4(b) shows the distribution of heuristics in each generation. In the figure, the Gen-

eration axis represents the generations from 1 to 100 and the Heuristic axis represents the per-

centage share of frequencies of each heuristic in each generation. The average number of times

heuristics LH_1, LH_2, LH_3, LH_4, LH_5, and LH_6 were selected was 242, 240, 255, 265,

281, and 217, respectively. The average number of frequencies of the heuristics shows that the

search process is not dependent on any one of the heuristics and each heuristic contributed to

the search process.
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(a) Changes in probability of heuristics with generations
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(b) Changes in frequency of heuristics with generations

Figure 4: Changes in probability and heuristic frequency with generation on instance pb1000rnd07

From Figures 4(a) and 4(b), it can be observed that the % frequency of each heuristic in each
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generation is directly affected by the % probability share of each heuristic in the corresponding

generation. However, the average probability of the heuristics does not have direct influence

on the corresponding average frequency of heuristic. The reason of this is randomness in the

RWS method.

6.3. Analysis of exploration and exploitation nature of the heuristics

Exploration and exploitation are the important features of any heuristic. Exploratory heuris-

tic searches new space of the search space, whereas exploitative heuristic searches in the neigh-

borhood of the current location of the search space. Exploration tries to take the search process

towards the new space, whereas exploitation exploits the current location of the search space.

A delicate balance between exploration and exploitation is an important factor of any heuris-

tic to get a satisfactory solution in a reasonable amount of computational time. On the other

hand, an improper balance may take the search process towards a local optimum. Furthermore,

more exploration may need more number of iterations to reach the global optimum, whereas

more exploitation, may be stuck into local optimum. In the EA-HH, Crossover1, Crossover2,

Crossover3, and Construction are exploratory heuristics, whereas One_one and One_two are ex-

ploitative heuristics. Crossover1 heuristic explores a new space in the neighbor of the current

global best solution, Crossover2 heuristic explores a new space in the neighbor of one of the

best Np

2 solutions, whereas Crossover3 heuristic explores a new space in the neighbor of one of

the worst Np

2 solutions in the population. The advantage of these heuristics is that they explore

diverse new space simultaneously. Construction heuristic explores the search space randomly

and it helps to maintain diversity in the solution population. In the case of Guided mutation

heuristic, it doses both exploration and exploitation together. It explores the search space using

the global statistical information which is stored in the form of probability, on the other hand,

it exploits the search space in the neighbor of the current global best solution.

6.4. Population evolution with generations

Figure 5 presents the evolution of the solution population with the generations. In the figure,

all the generated solutions are plotted. It can be observed that the solution population evolves

with the generations and converges toward the BKV. As in the EA-HH approach, Pop(g+1) is

composed of the best Np

2 solutions from Pop(g) and Np

2 new solutions. In the figure, the solutions

generated in each generation are represented by black dots. Each blue and red dot represents

the best solution and the best Np

2
th solution, respectively, in the corresponding generation. In
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the figure, it can be observed that the search procedure maintains diversification in the solution

population throughout the generations, and this helps in avoiding a situation where the search

becomes trapped in local optima as the other heuristics are trapped in a local optimum. It can

also be observed that the best Np

2 solutions move toward the global best solution and this helps

in exploiting the neighborhood space of the global best solution, as the low-level heuristics use

the best Np

2 and the worst Np

2 solutions to generate a new solution. The reason for considering

the worst Np

2 solutions is the nature of the problem: the SPP problem is a subset selection prob-

lem and the number of objects in solution is very small compared to the size of the problem.

Furthermore, it is also quite evident that the set of best solutions will have many common ob-

jects and will force the operator to generate a solution similar to the best solution. In resultant,

it will take the search procedure toward a local optimum.
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Figure 5: Population evolution of the EA-HH approach with generations on instance pb1000rnd07

6.5. Comparison of the convergence speed and success rate

In Figure 6, we compare the convergence speed and success rate to reaching the BKV of

the EA-HH approach, with heuristics LH_1, LH_2, LH_3, LH_4, LH_5, and LH_6 on instances

pb1000rnd07, pb500rnd15, and pb500rnd09. In these figures, the convergence behavior

of the best run and the average of runs are presented. In the figure, the vertical axis repre-

sents the fitness returned by each heuristic and the horizontal axis represents generations. In

Figures 6(a), 6(c) and 6(e), the best solution of each generation returned by each approach are

plotted, whereas in Figures 6(b), 6(d) and 6(f), the average of 16 runs are plotted. The purpose
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of plotting the best run and the average of runs is to show that, even for a particular run other

approaches can outperform the EA-HH approach in terms of the average performance, the EA-

HH approach is always superior. From the figures, it is evident that the convergence speed of

the EA-HH approach is higher and it reaches the BKV, whereas other heuristics are slower and

they are unable to reach the BKV.

In Figures 6(a) and 6(b), it is also evident that the convergence speed of the EA-HH approach

is higher than that of the other approaches. Similarly, Figures 6(c) and 6(d) and Figures 6(e)

and 6(f) show that the convergence speed of the EA-HH approach is higher than that of the

other approaches. In Figure 6(f), heuristics LH_1, LH_2, LH_3 are not plotted, because their

convergence speed are far inferior than EE-HH, LH_4 and LH_5. If we compare the success rate

in terms of reaching the BKV, EA-HH approach has higher than that of the other approaches.
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Figure 6: Convergence speed of EA-HH , LH_1, LH_2, LH_3, LH_4, LH_5, and LH_6 approaches on instances
pb1000rnd07, pb500rnd15, and pb500rnd09

6.6. Performance comparison of the individual heuristic with the EA-HH approach

This section presents the performance comparison of heuristics LH_1, LH_2, LH_3, LH_4,

LH_5, and LH_6 when they are applied individually. Each individual heuristic has its own

advantage and limitation: some of them have exploration ability and others have exploitation
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ability. Exploration may take the search process away from the global optima, whereas exploita-

tion may takes the search process toward the local optima. Therefore, it is necessary to achieve

a balanced trade-off between exploration and exploitation in the search process to get a satisfac-

tory solution in a reasonable amount of computational time. Tables 4 to 6 present the results of

individual heuristics; the results show that each individual heuristic underperformed because

of skewed nature of either exploration or exploitation, whereas the EA-HH approach utilized

the exploitative and exploratory features of the individual heuristic to reach the best-known

solutions.

Tables 4 to 6 present the standard deviation (SD), average solution (Avrg), and average total

execution time ( ATET) in seconds for heuristics LH_1, LH_2, LH_3, LH_4, LH_5, and LH_6

under the same conditions as those adopted for the EA-HH approach. The percentage (%)

difference between the EA-HH approach and each individual heuristic is reported in the last

six columns. The results with positive values indicate the EA-HH approach has better than

that of a particular heuristic, whereas with the negative values indicate that the EA-HH has

inferior performance. The results with zero values indicate that the performances of both the

approaches are the same. In Tables 4 to 6, it can be observed that the EA-HH approach outper-

formed all the other heuristics under the same conditions. From the results, it can be concluded

that the individual heuristics could not perform well owing to their limitation, whereas the EA-

HH approach could determine a good solution owing to the better utilization of the individual

heuristics with each generation. In other words, it can be stated that an appropriate balance

in the selection of the heuristic in each generation increases the search ability. From these ta-

bles, it is clear that heuristics LH_4 and LH_5 outperformed the other heuristics in terms of the

average and standard deviation. The two-tailed Wilcoxon signed-ranked test with the signifi-

cance criterion 1% (p-value 6 0.01) is used to investigate the significance level with the EA-HH

approach. An online calculator1 was used to perform this test. Table 3, presents the results

of the Wilcoxon-signed-ranked test and from the outcomes, it is evident that the EA-HH ap-

proach is significant than the heuristics when they are used individually. The mean rank of

heuristics LH_1, LH_2, LH_3, LH_4, LH_5 and LH_6 are 2.70, 2.55, 2.34, 5.69, 5.53 and 3.56,

respectively. In the mean rank values, smaller value indicates smaller rank and higher value

indicates higher rank. From the mean rank value, it is clear that LH_4 has the best performance

1https://mathcracker.com/wilcoxon-signed-ranks.php
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among the heuristics. If we compare the robustness of the heuristics, the standard deviation

shows that these heuristics have no robustness. In terms of computational time, the mean rank

test of heuristics LH_1, LH_2, LH_3, LH_4, LH_5 and LH_6 are 4.27, 4.20, 3.97, 1.87, 4.02, 3.87,

respectively. Whereas, in terms of standard variation, the mean rank test of the heuristics LH_1,

LH_2, LH_3, LH_4, LH_5 and LH_6 are 4.25, 4.14, 4.03, 2.22, 3.42, 4.45, respectively. In the case

of computation time and standard deviation, small mean rank value and large mean rank value

indicate the higher rank and the lower rank, respectively.

Table 3: Wilcoxon-signed-rank test for the EA-HH with the other heuristics for the SPP

Approach EA-HH vs.

N W+ W− Z Zc p-value Significance

LH_1 64 0.00 1953.00 -6.87 -2.33 0.00 yes
LH_2 64 0.00 1953.00 -6.87 -2.33 0.00 yes
LH_3 64 0.00 1953.00 -6.87 -2.33 0.00 yes
LH_4 64 43.50 659.50 -4.65 -2.33 0.00 yes
LH_5 64 25.00 1151.00 -5.77 -2.33 0.00 yes
LH_6 64 0.00 1953.00 -6.87 -2.33 0.00 yes
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6.7. Comparison analysis of computational results of the GRASP, ACO, EA/G and EA-HH

This section presents a comparative analysis of the combinational results of the exact ap-

proach, GRASP [14], ACO [17], EA/G [11], and the EA-HH approach that are presented in

Tables 7 to 9. The results in these tables show the superiority of the EA-HH approach over

GRASP, ACO, and EA/G in terms of the computational results and time. Table 7 presents the

computational results of the instances with 100 and 200 objects. The EA-HH approach achieved

the optimal values on all 30 instances in terms of the best solution and on 28 instances in terms

of the average solution. As compared with GRASP, the EA-HH approach is better on 13 in-

stances, poorer on 2 instances, and the same on the remaining 15 instances in terms of the best

solution. In terms of the average solution, the EA-HH approach is better on 10 instances, poorer

on 1 instance, and the same on 19 instances. In terms of computational time, the EA-HH ap-

proach achieved the optimal as well as a better average solution in computationally less time

than GRASP approach. In comparison with ACO, the EA-HH approach is better on 2 instances

and the same on 28 instances in terms of the optimal solution. In terms of the average solu-

tion, the EA-HH approach is better on 17 instances, poorer on 1 instance, and the same on 12

instances. In terms of computational time, the EA-HH approach is always faster than ACO.

EA/G is the state-of-the-art approach for the SPP and the EA-HH approach outperformed in

terms of both the average solution and the computational time. Out of 30 instances, the EA-HH

approach is better on 10 instances, poorer on 1 instance, and the same on 19 instances in terms

of the average solution. Here, notably, the EA-HH approach achieved the optimal solution

in all the runs on all the 30 instances, whereas the EA/G could achieve the optimal solution

on 19 instances only. Therefore, the computational results show that the EA-HH approach

outperformed the EA/G approach.
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Table 8 presents the computational results on the instances with 500 and 1000 objects. The

exact approach failed to determine the optimal solution within the specified computational

time on most of the instances, and therefore, the solution is the BKV and is indicated by “*”.

Out of 26 instances, the exact approach determined the optimal solution on 9 instances and on

the remaining 17 instances, it achieved solution is the BKV. The EA-HH approach achieved the

optimal value on eight out of nine instances, whereas in terms of the BKV, out of 17 instances,

the EA-HH approach achieved the same results as the BKV on 13 instances, poorer than the

BKV on 1 instance, and better than the BKV on 3 instances. As compared with GRASP, the

EA-HH approach is better on 9 instances and the same on 17 instances in terms of the best so-

lution. In terms of the average solution, the EA-HH approach is better on 21 instances, poorer

on 1 instance, and the same on 4 instances. As compared with ACO approach, the EA-HH

approach outperformed this approach. Out of 26 instances, the EA-HH approach is superior

on 5 instances and inferior on 2 instances in terms of the best solution. In terms of the average

solution, the EA-HH approach is superior on 25 instances and inferior on 1 instance. In terms

of the computational time, the EA-HH approach achieved a better solution in computationally

less time than ACO approach. The EA-HH approach also outperformed the EA/G, which out-

performed GRASP and ACO approaches. In terms of the best solution, the EA-HH approach

determined the same solution on all the instances, whereas in terms of the average solution, the

EA-HH approach is better on 21 instances, poorer on 4 instances, and the same on 1 instance.

At the beginning of the computational section, it was mentioned that the EA-HH approach

was executed on the same system as that used for the EA/G approach. Therefore, from Ta-

ble 8, it can be observed that wherever the EA-HH approach has the same solution fitness, it

took less computational time and on some instances, it achieved a better solution in computa-

tionally less time than the EA/G approach. Out of 26 instances, on 15 instances, the EA-HH

approach returned a better solution than the EA/G approach. On 11 instances, the EA-HH

approach achieved a better solution fitness at the cost of extra computational time. As already

mentioned, both the EA-HH and EA/G approaches generated the same number of solutions

and also the same number of fitness evolutions. However, EA/G approach could not achieve a

better solution than the EA-HH approach. The reason is that EA/G approach converged to the

local optima and could not explore the other areas of the solution space, whereas the EA-HH

approach could explore many areas of the solution space. It is evident in Section 6.4 that the
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solution population always maintains diversity.
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Table 9 presents the computational results for the instances with 2000 objects. For the large

instances, the exact approach and GRASP could achieve the optimal solution on only 2 out of

8 instances. The EA-HH approach found the new BKV for the instances pb2000rnd0700 and

pb2000rnd0800. GRASP approach reported only the best solution out of 16 runs and it could

achieve BKV on 5 instances. As compared with GRASP, the EA-HH approach is better on 2

instances, poorer on 1 instance, and the same on the remaining 4 instances in terms of the best

solution. As compared with EA/G, the EA-HH approach is better on 2 instances, poorer on 2

instances, and the same on the remaining 4 instances in terms of the best solution. In terms of

the average solution, the EA-HH approach is better on 4 instances, poorer on 1 instance, and the

same on the remaining 3 instances. Notably, the EA-HH approach achieved a better solution at

the cost of extra computational time on 3 instances. This shows that the EA-HH approach has

the ability to explore a different area of the solution space of the problem under consideration.

Table 9: Comparison of the EA-HH approach with GRASP [14], and EA/G [11] on instances with 2000 variables
Instance Characteristics 0/1

Solution
GRASP EA/G EA-HH

Var Cnst Density Max
One

Weight BKV Best Best Avrg ATET Best(a) Avrg(b) SD ATET

pb2000rnd0100 2000 10000 2.54% 100 [1-20] 40 Yes 40 40.00 31.66 40(2) 40(2.00) 0.00 10.69
pb2000rnd0200 2000 10000 2.55% 100 [1-1] 2 Yes 2 2.00 10.38 2(2) 2(2.00) 0.00 5.08
pb2000rnd0300 2000 10000 0.55% 20 [1-20] 478* No 478 463.75 129.86 475(27) 468(27.25) 12.12 85.55
pb2000rnd0400 2000 10000 0.55% 20 [1-1] 32* Yes 32 30.25 81.58 32(32) 32(32.00) 0.00 86.00

pb2000rnd0500 2000 2000 2.55% 100 [1-20] 140* Yes 140 135.50 61.03 133(8) 133(8.00) 0.00 22.97
pb2000rnd0600 2000 2000 2.56% 100 [1-1] 9* Yes 9 8.50 34.23 9(9) 9(9.00) 0.00 44.22
pb2000rnd0700 2000 2000 0.56% 20 [1-20] 1784* No 1794 1765.94 160.14 1796(119) 1788.38(121.19) 5.25 150.01
pb2000rnd0800 2000 2000 0.56% 20 [1-1] 131* No 132 130.38 73.84 133(133) 132.12(132.12) 1.45 131.39

(a) indicates number of objects in the best solution (b) indicates average number of objects over 16 runs

The superiority of the EA-HH approach over other approaches such as GRASP, ACO, and

EA/G can be attributed to the utilization of the evolutionary algorithm in the hyper-heuristic

framework which allows to take advantage of low-level heuristics to explore/exploit the solu-

tion space of the problem under consideration. However, the computational results show that

on the some instances the EA-HH approach failed to achieve the same solution achieved by the

other approaches and this asserts the “no free lunch theory” [48]. Another observation that can

be made concerning computational time is the number of objects in the solution which is di-

rectly affected by the density of objects. Number of object is inversly proportional to the density.

As a result of the higher density, the conflict size of objects becomes higher, whereas as the result

of low density, the conflict size becomes smaller. And also, the number of objects in the solution
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directly affects the computational time. As the number of objects increases, the computational

time also increases. The reason for the increase in the computational time is that the search pro-

cedure spends more time in eliminating the conflicting objects from the infeasible solution. For

example, the characteristics of instances pb1000rnd05 and pb1000rnd07 are {Var = 1000,

Cnst = 1000, Density = 2.60%} and {Var = 1000, Cnst = 1000, Density = 0.58%}, respectively.

The analysis of the computational results of these instances reveals that the number of objects is

14 and 163, respectively, and the computational time (ATET) is 12.50s and 49.83s, respectively.

Therefore, it is evident that the computational time for the instances with higher density is less

than that of an instance with lower density. Similarly, the computational time of the groups of

instances reveals that all the groups show a similar trend of change in computational time.

6.8. The Wilcoxon signed-rank test

The two-tailed Wilcoxon signed-ranked test with the significance criterion of 1% (p-value 6
0.01). Table 10 presents the results of the Wilcoxon-signed-ranked test. The results in the table

show that the EA-HH approach is significant compared to the other approaches. The Friedman

mean ranks of the EA-HH, EA/G, GRASP, and ACO approaches are 3.3, 2.5, 2.3 and 1.8, re-

spectively. A larger value indicates better performance. The mean ranks show that the EA-HH

exhibits better performance than the other approaches.

Table 10: Wilcoxon-signed-rank test of the EA-HH approach with the other approaches for the SPP

Approach EA-HH vs.

N W+ W− Z CN Zc Significance

GRASP [14] 56 557.5 72.5 -3.972 n = 35 > 30 -2.58 yes
ACO [17] 56 877 69 -4.878 n = 43 > 30 -2.58 yes
EA/G [11] 64 852.5 137.5 -4.172 n = 44 > 30 -2.58 yes
LH_1 64 1953 0 -6.846 n = 62 > 30 -2.58 yes
LH_2 64 1953 0 -6.846 n = 62 > 30 -2.58 yes
LH_3 64 1953 0 -6.846 n = 62 > 30 -2.58 yes
LH_4 64 703 0 -5.303 n = 37 > 30 -2.58 yes
LH_5 64 1173.5 2.5 -6.005 n = 48 > 30 -2.58 yes
LH_6 64 1953 0 -6.846 n = 62 > 30 -2.58 yes

6.9. Box plot analysis

This section examines the dispersion of fitness values from the median for the EA-HH,

LH_1, LH_2, LH_3, LH_4, LH_5 and LH_6 approaches. The purpose of this analysis is to ob-



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

serve the capabilities of the approaches in terms of searching for a good solution in the solution

space. The boxplots are used to show the robustness of the proposed approach. In Figures 7(a)

to 7(d) and Figures 8(a) to 8(d), the boxplots of the fitness values returned by the EA-HH , LH_1,

LH_2, LH_3, LH_4, LH_5, and LH_6 approaches are shown. For the sake of a better representa-

tion, the fitness values are scaled between 0 and 1. In the figures, the “Fitness” axis represents

the scaled fitness value and the “Instance” axis represents instances. The analysis is focused

on the instances for which the standard deviation of the approaches is not zero. The reason for

this is to determine the dispersion of fitness values. In Tables 4 to 6, it can be observed that the

performances of heuristics LH_4 and LH_5 are better than those of LH_1, LH_2, and LH_3. In

the boxplots in Figures 7(a) to 7(d) and Figures 8(a) to 8(d), it can be observed that, on most of

the instances, all the heuristics, except EA-HH, have more dispersion from the median. This

shows that the other heuristics determined the best solution among 16 runs randomly and they

are not robust.
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7. Minimum weight dominating set problem

In this section, we consider the minimum weight dominating set (MWDS) problem which is

also an NP-hard [18]. The purpose of considering the MWDS problem in this paper is to show

the scalability and generality of the proposed EA-HH approach. Both the SPP and MWDS prob-

lems are subset selection problem but have opposite objectives. The SPP has the maximization

objective whereas the MWDS problem has the minimization objective. As mentioned in Sec-

tion 4.2, the low-level heuristics are standard operators and are independent of the nature of

the problem. Most of the low-level heuristics do not use the problem domain knowledge in

the process of generating a new solution. Therefore, the proposed approach is applied to the

MWDS problem to investigate the scalability and generality.

7.1. Problem description

Consider a node weighted undirected graph G = (V, E), where V is the set of nodes and E is

the set of edges. Any pair, say (v, u), of nodes v and u is considered as a pair of adjacent nodes or

neighbor iff, there exists an edge between them, i.e., (v, u) ∈ E . A dominating set D ⊆ V is a set

of nodes such that each node in V either belongs to subset D or is adjacent to at least one node

inD, i.e., node in V\D has at least one adjacent node inD. Any node that belongs to subsetD is

called a dominating node or dominator, and a node not in subset D is called a non-dominating

or dominatee node. The objective of the minimum dominating set problem (MDS) is to find a

dominating set with minimum cardinality from all possible dominating sets in G.

In the MWDS problem, a non-negative weight, assigned through a weight function w : V →
<+, is associated with each node in V , and the objective is to find a dominating set whose sum

of weights of nodes is minimum among all the possible dominating sets in G. Both the MDS

and MWDS problems have been proven to be NP-hard [18]. The object function of the MWDS

can be defined as

arg min
D∈D′

∑
v∈D′ w(v), where D′ is the set of all possible dominating sets in G.

7.2. The EA-HH approach for the MWDS problem

This section presents the EA-HH approach for the MWDS problem under similar condition

as of the SPP. The main components of the EA-HH approach for the MWDS problem are as

follows:



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7.2.1. Solution encoding

As both SPP and MWDS problem are subset selection problem, a subset encoding has been

used to represent a solution. The same solution encoding is followed as that used for the SPP.

7.2.2. Initial solution representation

As both SPP and MWDS are subset selection problem; therefore, the initial population is

generated in the same manner as for the SPP.

Each infeasible solution is passed through the repair operator to make the solution feasible

and subsequently, the feasible solution is passed through the improvement operator. The same

repair and improvement operators are used as those used in [8].

7.2.3. Solution generation in generation of the EA-HH approach

In each generation, similar to the SPP, a new solution is generated by applying the hyper-

heuristic. Only LH_1, LH_2, LH_3, LH_5 heuristics are used at the lower level of the hyper-

heuristic. As heuristic LH_6 is the problem specific and cannot directly be applied for the

MWDS problem. All the above mentioned low-level heuristics are applied in the same manner

as for the SPP, except the guided mutation. In the guided mutation, the probability initializa-

tion method does not use the problem domain knowledge to initialize the probability vector.

Each infeasible solution is passed through the repair to make it feasible and then through the

improvement operator to improve the solution quality. The repair and improvement operators

are explained in the subsequent section.

7.2.4. Repair and improvement operators

Similar to the SPP, after the application of low-level heuristic, each solution is passed through

the repair operator to make the solution feasible, and the feasible solution is passed through the

improvement operator further to improve the solution quality.

The same repair operator is used as used in [8] to make the infeasible solution feasible.

Only the infeasible solution is passed through the repair operator. The repair operator attempts

to add uncovered nodes one after another. Uncovered nodes are those nodes that are either

not dominating nodes or not the neighbor(s) of at least one dominating node. Iteratively, an

uncovered node whose ratio between the sum of weights of uncovered nodes and the weight

of the node itself is the highest is chosen.

The improvement operator is used to remove the redundant nodes without violating the

feasibility criteria. A redundant node, say v, is a dominating node whose neighborhood nodes
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and node itself are covered by at least one dominating node other than node v in the dominating

set. Iteratively, a node whose ratio between the weight of node and number of neighborhood

nodes among the set of redundant nodes is highest is removed. For a detailed description of

the repair and improvement operators, please, refer to Sections 5.5 and 5.6 of [8].

7.3. Computational results for the MWDS problem

This section presents the computational results for the MWDS problem. In [8], two types of

instances with different weight ranges are used. For Type I instances, weights of nodes in the

network are randomly distributed in the closed interval [20, 70], whereas for Type II instances,

weights are randomly distributed in the closed interval [1, dc(v)2], where dc(v)2 is square of

the degree of the node v. In this study, instances with network sizes 300, 500, 800, and 1000

and the number of edges varies from 300 to 20000 for both Type I and Type II instances are

considered. Ten instances were generated for each combination of the number of nodes (|V|)
and the number of edges (|E|). A total of 420 (210× 2 instances are considered for Type I (21 ×
10) and Type II (21 × 10)).

The same system and the same parameters are used as those used in [8] to compile the C

code for the MWDS problem. Furthermore, the parametric values for the MWDS in EA-HH are

listed in Table 2. We have compared the EA-HH approach for the MWDS problem with Raka-

ACO [28], HGA [40], ACO-LS [40], ACO-PP-LS [40], EA/G-IR [8], HMA [32], and MSRLSo [7]

for Type I and Type II instances.

In Table 2, it can be observed that all the low-level heuristics are problem independent,

except LH_6, and do not use any problem domain knowledge. However, in [28, 40, 8, 32, 7],

all of them have problem-dependent operators and they used problem domain knowledge to

generate a new solution. The advantage of having a generic operator is that it can be applied on

any type of problem in the same domain. However, both the SPP and MWDS problem belong

to the domain of subset selection problem, but having opposite objectives. But the same low-

level heuristics are used for both the SPP and MWDS problem even though the former one has

a maximization objective whereas later one has a minimization objective.

Tables 11 and 12 present the computational results of the state-of-the-art approaches Raka-

ACO [28], HGA [40], ACO-LS [40], ACO-PP-LS [40], EA/G-IR [8], HMA [32], and MSRLSo [7]

and the proposed EA-HH approach for the MWDS problem on Type I and Type II instances.

These tables present mean value (Mean), standard deviation (SD) and average total execution
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time (ATET) for instance groups of ten instances with the same numbers of nodes (|V|) and

edges (|E|). However, the SD values for Raka-ACO, HMA and MSRLSo approaches were not

reported in the original paper. Moreover, HMA and MSRLSo did not report the ATET. There-

fore, we did not report the SD and ATET for the respective approaches as well. The reason is

that the MSRLSo approach was run until a fixed time limit of 3600s, which is much larger than

that of any other approaches which are reported in these tables.

Out of 42 instance groups, EA-HH is better than HGA on all 42 instance groups. In compari-

son with ACO-LS, EA-HH is better on 40 instance groups and worse on two instance groups. In

comparison with ACO-PP-LS, EA-HH is better on 39 instance groups and worse on 3 instance

groups. In comparison with EA/G-IR, EA-HH is better on 30 instance groups and worse on 12

instance groups. EA-HH is better on 28 instance groups than HMA and worse than HMA on

14 instance groups. In comparison with MSRLSo, EA-HH is better on 34 instance groups and

worse on 4 instance groups. In [28], Javanovic et al. did not report computational results on

the instance groups on the network with 300 nodes for both Type I and Type II. Therefore, we

compared the performance on the reported instance groups only. On all 28 instance groups, the

EA-HH outperformed the Raka-ACO approach. The average performance also indicates that

the EA-HH approach exhibits better performance than all the other state-of-the-art approaches

presented in the tables.

In terms of computational time, from Tables 11 and 12, it is evident that EA-HH has taken

less computational time than HGA, ACO-LS, ACO-PP-LS, and EA/G-IR. For HMA and MSRLSo,

we did not report the computational times because their stopping criteria are different from

those of other approaches. However, the EA-HH approach is bit slower than HMA but is com-

putationally more significant than HMA. In the case of MSRLSo, the stopping criterion is fixed

at 3600s. Therefore, EA-HH is faster than the MSRLSo approach.
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Table 13 presents the Wilcoxon-signed-rank test for the EA-HH approach with Raka-ACO,

HGA, ACO-LS, ACO-PP-LS, HMA and MSRLSo for the MWDS problem. Similar to the SPP,

a two-tail Wilcoxon-signed-rank test is performed to investigate the significance level of the

EA-HH approach with other approaches by setting the significance criterion to 1% (p-value 6
0.01). From Table 13, it can be observed that the EA-HH approach is significantly better than

the other approaches.

Similar to the SPP, a mean ranked test is performed over Raka-ACO, HGA, ACO-LS, ACO-

PP-LS, HMA, MSRLSo, and the EA-HH approaches and their ranks are 7.76, 5.55, 5.50, 5.05,

2.19, 3.00, 5.05, 1.88, respectively. A smaller value indicates better performance. From the mean

ranked test, it is evident that the EA-HH outperformed all the other approaches.

Table 13: Wilcoxon-signed-rank test for the EA-HH with the other approaches for the MWDS problem

Approach EA-HH vs.

N W+ W− Z Zc p-value Significance

Raka-ACO[28] 24 0.00 406.00 T=130 -1.96 0.0000 yes
HGA [40] 42 0.00 903.00 -5.645 -1.64 0.0000 yes
ACO-LS [40] 42 5.00 898.00 -5.583 -1.64 0.0000 yes
ACO-PP-LS [40] 42 6.50 896.50 -5.645 -1.64 0.0000 yes
EA/G-IR [8] 42 251.50 651.50 -2.501 -1.64 0.0062 yes
HMA [32] 42 252.00 651.00 -2.494 -1.64 0.0063 yes
MSRLSo [7] 38 20.00 721.00 -5.083 -1.64 0.0000 yes



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

8. Conclusions

In this paper, we proposed an evolutionary algorithm based hyper-heuristic (EA-HH) frame-

work for the SPP and MWDS problem. In the EA-HH, at the higher level of hyper-heuristic, an

evolutionary algorithm is employed as a search methodology and at the lower level exploratory

and exploitative heuristics are used in the heuristics pool. In the evolutionary algorithm, an

online-learning mechanism is employed to learn the performance of each heuristic at each gen-

eration. The online-learning mechanism was inspired by the UMD algorithm, which at each

iteration estimates the performance of each heuristic and stores their performance in the form

of a probability vector. Further, this probability vector is used to select a heuristic using the

RWS method. Another contribution is the dynamic selection of parameters. Instead of fixing

the parameters, the EA-HH allowed making changes in their values with generations. The

computational results show the effectiveness of dynamic selection of parametric. The EA-HH

was compared with the state-of-the-art approaches for the SPP: GRASP [14], ACO [17], and

EA/G [11]. Further, the MWDS problem is used, mainly, to investigate the generality, effec-

tiveness and robustness of the proposed EA-HH approach. In the case of the MWDS problem,

[28, 40, 8, 32, 7] are the state-of-the-art-approaches used to compare with the EA-HH approach.

This can be evident from the computational results in Tables 7 to 9 as well as Tables 11 and 12

that the same operators and same high-level search heuristic are used to solve the problems

with opposite objectives.

As a future work, we intend to explore the capabilities of other search heuristics such as

taboo search, genetic programming, artificial bee colony, and genetic algorithm, etc. at the

higher level of hyper-heuristics. Further, we will explore the heuristic selection methodology

and rigorously analyses the performance for new problems in different domains such as per-

mutation and grouping problems.
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