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Highlights

An evolutionary algorithm based hyper-heuristic is proposed for the set packing problem

(SPP) and the minimum weight dominating set (MWDS) problem.
Self-learning concept is employed in hyper-heuristic for a selection of heuristic.

Dynamic selection of parameter is adopted to make the approach, as much as possible,
less dependent on parameter values. The empirical study shows the efféctiveness of Dy-

namic selection of parameter.

The proposed approach has been compared with the respective’state-of-the-art approaches

for both the SPP and MWDS problem.

Computational results show the superiority of the propesed.approach.
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Abstract

In recent years, hyper-heuristics have received massive attefition frém the research community
as an alternative of meta-heuristics. In a hyper-heuristichgeneration or selection of an effec-
tive heuristic among a pool of heuristics is an imp@ftantsand challenging task in the search
process. At each iteration, a suitable heuristic canftake tie search process toward the global op-
timal solution. Moreover, some additional facters such as quality and the number of heuristics
also affect the performance. In this paper, wWé¥propose an evolutionary algorithm based hyper-
heuristic framework that incorporat€s dynamic selection of parameters. To test its generality,
effectiveness and robustness, we apply this approach on two different N'P-hard problems - set
packing problem (SPP) and shintmum weight dominating set (MWDS) problem. The proposed
approach for the SPP amd the\MWDS problem has been evaluated respectively on their re-
spective set of benchinark,instances. Computational results show that the proposed approach
for the SPP and MWRS problem perform much better than their respective state-of-the-art ap-

proaches in terms of the solution quality and computational time.

Keywords:, Set packing problem, Estimation of distribution algorithm, Guided-mutation,
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The set packing problem (SPP), considered to closely resemble a set covering problem [20,
37], is a classical combinatorial optimization problem and has been proven to be N'P-hard [18]
in nature. We followed the same notational representation as in [14] to represent the SPP and
is defined as follows: Consider a finite set Z = {1,...,N} of N objects, 7;, j ¢ J = {1,...,M} a
list of M subsets of Z, and a packing P C Z is a subset of set 7 such that |[T;NP| < 1,Vj € J,
i.e., at most one object of set 7; can be in packing P. Each set 7;,j € J = {1, ..., M} is-considered
as an exclusive constraint between some objects of set Z. A weight function assigns,a positive
integer weight, c;, to each object i in set Z. The objective of the SPP is to findva subset P C 7
that maximizes the sum of the weights of the objects in set P. Mathematical model of the SPP

is given as follows:

Max Z = ZC{X,’, (1)
i€l
Zti/sz‘ < 1, V] € j (2)
i€l
xi €{0,1WVicZ (3)
ti; € {01\ M eZ, Ve 4)
1,=ifi € P

e avector X' = (x;), where x;=
0, » otherwise

e a vector C = (¢;), where.c;= weight of objecti, Vi € Z

1, ifieT,
e amatrix 7 = (¢;;), where t; ;=
0, otherwise
Equation (1) is.the objective function that calculates the sum of the weights of the objects in
packing P.'Equation (2) ensures that at most one object from set 7; can be packed in packing P.
In Equation¥(3), x; is a binary variable. If object i is in packing P, then x;=1; otherwise, x;=0. In
Equation (4), t;; is a binary variable and its value is 1 if object i belongs to set 7; otherwise, it is
0.

A special case of the SPP is a node packing problem represented in Equation (5), where



constraints are defined between a pair of items.

Max Z = Z CiXi,
ieT
x; +x; < 1,V pair (i, j) of incompatible items, (5)

x; €{0,1},VieZ
1.1. Survey on the set packing problem and related problems

The SPP is an N'P-hard problem and its hardness is explained in detail-in [20,)37]. The
Branch-and-cut algorithm, uses polyhedral theory [39], was the best exactdpproach for solving
the SPP. However, owing to the solving limitation of an exact approachf{only small instances are
solved to optimality. For large instances, other approaches such as metasheuristic approaches
should be considered, which play an important role in deterpgiiningsth¢ solution of acceptable
quality in a reasonable amount of computational time. Considering the limitations of the ex-
act approaches, Delorme et al. [14] proposed a greedytandomized adaptive search procedure
(GRASP) which operates in two main phases. In the first phase, called a construction phase, an
initial solution is generated using a greedy randomized procedure in which randomness allows
to explore different search areas. In the second¥phase, a local search is applied to each solution
generated in the first phase to further improve it. Further, an intensification phase based on
the path relinking method[41] was/applied. In the study reported in [14], two different types
of instances were used: real railway preblem and random instances. In [17], an ant colony op-
timization (ACO) was proposed forSolving the SPP, and only random instances were used for
investigating the performance of the ACO. Further, in [16] and [34], two different versions of
ACO were proposed for the SPP, and both were tested on the railway problem instances. The
state-of-the-art approach for solving the SPP is an evolutionary algorithm (EA) with guided
mutation (GM) (i.e.,.EA/G) [11]. The EA/G approach is considered as a cross between tradi-
tional genetic algorithm and estimation of distribution algorithm. The GM operator uses the
cross information to generate offspring. The solutions generated by the EA/G approach are
subjected to a local search algorithm to further improve the solution quality. The EA/G with
local search was applied to unit-cost and multi-cost random instances.

Many real-world applications of the SPP have been reported in the literature. In [42], Ron-
nqvist presented the use of a SPP to formulate the cutting stock problem and solved it using

a combination of the Lagrangian relaxation method and sub-gradient optimization. In [30],



Kim and Lee mapped a ship scheduling problem as the SPP and solved it using LINDO soft-
ware. In [35], a SPP formulation was used to obtain the bounds for a resource-constrained
project scheduling problem using the greedy method. In [47], Tajima and Misono formulated
an airline seat allocation/reallocation problem as a SPP and solved it using the IBM optimiza-
tion subroutine library. In [43], Rossi and Smriglio described the development of a SPP-based
model for a ground holding problem and solved it using a Branch-and-cut method. In [15],
Delorme et al. used a unit-cost SPP to model the railway infrastructure saturation preblem and
solved it using a GRASP meta-heuristic.

In [33], Lusby et al. formulated a routing of trains through junctionsproblem as a SPP and
solved it using a branch-and-price algorithm. In the given problem, the tracks and time are
divided into sections and time periods, respectively. Further, pairs of track sections and time
periods are mapped as objects into a SPP with the objective.to maximize the number of trains
that can be assigned to pairs of track sections and time periods. It ensures that at any particular
time period at most one train can be assigned to awpairsef track section and time period. It
also ensures that at any particular time period ofily,oneitrain can be assigned to any particular
track section. Pairs of track sections and time periods are considered as objects in the SPP. The
constraints of the SPP are the conflicts amengudifferent pairs of track sections and time periods
that cannot be put together in the seltition. A set of trains without any priority or with equal
priority will address a unit-cost*SPPywhereas with different priority will address multi-cost
SPP. In [49], Xu and Zhang pfoposed a path set packing problem, is a variant of a SPP, with the
goal is to find a maximum number of edge-disjoint paths in a given graph, and the goal was
achieved using a polynomial time optimal algorithm.

Several otherwersions of SPP are reported in the literature. In [27], Weijia et al. studied a
m-set packing problem, which is an extension of SPP, where the size of the set is bounded by m,
and was solved using an efficient parametrized algorithm. In [38], Tri-Dung studied a complete
set packing problem (CSPP). The CSPP has applications in combinatorial auctions and cooper-
ative game theory. A winner determination problem in spectrum auctions and the coalition
structure generation problem in coalition skill games is modelled as the CSPP and solved it
using a fast approximation algorithm. In [23], Gulek and Toroslu studied a tree-like weighted
set packing problem and solved it using a dynamic programming algorithm. This problem

has been proven to be P and the complexity is O(k*n). This problem has application in the



task assignment of hierarchical organizations. In [45], Maxim and Justin studied a maximum
un-weighted set packing problem in which set cardinality is upper bounded by a constant k.
The goal of the problem is to find a packing with maximum cardinality. A large neighborhood
local search algorithm is proposed to solve this problem. In [21], Gottlob and Greco presented
a maximum-weight set packing problem which mapped a winner determination problem in
combinatorial auctions in which it determines the allocation of items to the bidders such that
the sum of the accepted bid prices is maximum. In [25], Olga and Ralf proposedia general-
ization of odd set inequalities for a SPP for hyper-graph by employing cliques and odd set
inequalities. In the context of hyper-graph, a SPP becomes an edge packing problem.

In this paper, we present an evolutionary algorithm (EA) based hyper-heuristic (EA-HH)
framework to solve the SPP. The EA is inspired by the EA /G approach proposed in [50]. In the
EA-HH approach, the concept of estimation of the distribution of the solutions in the solution
space is used to estimate the distribution of heuristics in the search space of heuristics. Hyper-
heuristics [5] are recently developed methods that-operate directly on the search space of the
heuristics and are independent of the problem structure: In general, almost, all meta-heuristics
operate directly on the solution space of theproblem under consideration and their perfor-
mance may change on different problems in‘the same domain, and it may outperform/under-
perform with a small change in the-same problem. A hyper-heuristic is considered as an au-
tomated heuristic search method that,provides sufficient flexibility to the process of selection,
generating, combining or adapting several simple or problem specific heuristics to efficiently
solve the computationally hard,problem. Other important aspects of any heuristic are the scal-
ability, stability, robustness, and generality. A well-designed approach can have the ability to
perform well irrespective of problem domains. The novelty of the proposed approach is that it
uses univariatéimarginal distribution model and population based incremental learning model
to initialize and wpdate, respectively, the probability vector which estimates the distribution of
heuristies,in the search space of the heuristics. Further, to investigate the scalability and stability
of the EA-HH approach, the minimum weight dominating set (MWDS) problem is considered
which is also a class of subset selection problem but has opposite objective than the SPP. The
EA-HH approach is applied to solve the MWDS problem with the purpose to investigate the
scalability and generality capability.

The remainder of this paper is organized as follows. Section 2 and Section 3 present an



overview of the EA/G approach and hyper-heuristics, respectively. Section 4 explains hyper-
heuristics method. Section 5 describes the proposed EA-HH approach for the SPP. The compu-
tational results are reported in Section 6. Section 7 presents the MWDS problem, its compo-

nents, and the computational results. Section 8 concludes the paper.

2. Overview of evolutionary algorithm with guided mutation (EA/G)

The EA /G [50] is a recent addition to the class of evolutionary algorithms. It wasideveloped
by Zhang et al. [50] in 2005 with the intention of overcoming the shortcomings of traditional
GAs [19] and (EDAs) [4, 31]. In other words, the purpose was to take advantage of the features
of GAs and EDAs together. GAs use the current location informatien ‘of the solutions found
so far in the solution space to generate a new offspring through standard operators such as
crossover and mutation. GAs do not use, directly, the global statistical information in the pro-
cess of generating an offspring. On the other hand, EDASwuse the global statistical information,
which is stored in the form of probability, to generate.anew offspring. A new offspring is gen-
erated by sampling the probability vector. In contrast to'GAs, EDAs do not directly use location
information in the process of generating a new. offspring.

In the EA /G, the guided mutation (GM)-operator uses the features of both GAs and EDAs to
generate a new offspring. The GM operator generates a new offspring either directly copying
from the best solution or randomily sampling the probability vector.

More recently, several modified and improved versions of EA /G were developed and tested
on a different domain of combinatorial optimization problems. In the study in [11], an im-
proved version of EA/GMas proposed to solve the SPP. The problem domain knowledge is
used to initialize the probability of objects in the set. In the study in [8], the size of the parent
was modified, whereas, in the study in [9], both the size of the parent and the number of solu-
tions to update the probability vector were modified. In [10], the authors modified the original
EA/Gvand applied it to an order acceptance and scheduling problem, which is a subset and

permutation problem. For detailed study, please refer to [24, 11, 8, 10, 9].

3. Overview of hyper-heuristic

A hyper-heuristic is a heuristic search technique that automates the search process and also
allows to combine or generate a suitable problem solver in each generation [5]. Generally,

hyper-heuristic consists of two levels, namely; higher level and lower level [5]. A High-level



search strategy and a set of low-level heuristics reside at the higher level and lower level, re-
spectively. The high-level search strategy directly operates on the search space of the heuristics.
In each iteration, high-level strategy applies a heuristic selection or heuristic generation method
to select/generate a heuristic from the lower level and subsequently, this heuristic is applied
to generate a new solution. The lower level consists of problem-specific/generic heuristics,
called low-level heuristics that directly operate on the solution space of the problentunder con-
sideration. But the major challenge in hyper-heuristics is the selection of a heuristic from the
heuristics pool. In the literalure, several strategies have been developed o Select/generate a
heuristic from the heuristics pool such as simple random selection [13])greegy selection [13]
and a choice function [13].

Several other versions of hyper-heuristic are presented in-the literature. In [3], a tensor-
based machine learning technique is proposed for selection‘hyper-heuristic. Further, a random
heuristic selection with the naive, improving and equalgnoye adceptance method are combined
in a selection of low-level heuristic. In the study in=[44],.a Monte Carlo tree search method
is proposed to generate a sequence of low-level'heuristics. Further, the Monte Carlo is cou-
pled with a population of solutions to improve the effectiveness of the search tree. In [22],
Jacomine et al. put an effort to investigate'the concept of heuristic space diversity and man-
agement of it under various strategiesS‘under meta-hyper-heuristic approach. In [2], Shahriar
et al. applied hyper-heuristic with the combination of Monte-Carlo to solve the multi-mode
resource-constrained multi-project scheduling problem. The hybrid version of the proposed
approach is a combinatien of Monte-Carlo tree search, neighborhood moves, memetic algo-
rithms, and hyper-heuristic. In [1], Almutairi et al. investigated six different existing selection
hyper-heuristics namely:/Sequence-based selection hyper-heuristic, Dominance-based and ran-
dom descent hyper-heuristic, Robinhood (round-robin neighbourhood) hyper-heuristic, Mod-
ified choice function, Fuzzy late acceptance-based hyper-heuristic [26], and Simple Random-
Great Deluge in HyFlex problem domains such as 0-1 Knapsack, Quadratic Assignment, and
Max-Cut problem. In [29], Ahmed and Ender proposed an iterated multi-stage selection hyper-
heuristic and investigated on one-dimensional bin-packing, personal scheduling, permutation
flow-shop, travelling salesman problem, and vehicle routing problem. In [12], a reinforcement
learning technique is incorporated in hyper-heuristic and the performance is evaluated on six

different problem domains. Several state-of-the-art hyper-heuristics [6, 12] are also developed



for other domain problems.

4. Proposed evolutionary algorithm based hyper-heuristic

This paper presents a novel evolutionary algorithm based hyper-heuristic inspired by the
EA /G approach proposed by Zhang et al. [50]. As mentioned in Section 2, EDAs work on the
concept of the estimation of the distribution of the promising solutions in the solution space.
In each generation, it estimates the distribution of the promising solutions in thé solution space
and subsequently stores their distribution in the form of probability. On the/other side, the
higher level strategy of EA-HH estimates the distribution of promising-heuristics in the search

space. The main components of the EA-HH are discussed below.

4.1. Higher level of the hyper-heuristic

An evolutionary algorithm is employed as a high-level strategy at the higher level of the
hyper-heuristic. The main components of the higher lével'areexplained in the following sub-

sections:

4.1.1. High-level search strategy

The high-level of a hyper-heuristic is a search strategy that operates on the search space of
the heuristics and selects or generates a heuristic by combining two or more heuristics from
the heuristics pool. This section Presents search strategy that is adopted at the higher level
of the hyper-heuristic. MatriX,in'6 is a heuristics population matrix of N, x Ny, where N,
is the heuristics population'size and Ny is the number of low-level heuristics. The value of
fl.Hj, i=12,..,Np, j= 1,2,...Ny, H; € {LH_1, LH_2, ..., LH_Ny} is determined by using
Equation (7).

fm1 fmz meH
f27—[1 f2H2 fZHNH

F Credit =

prH1 pr’Hg T pr'HNH_
Feredit is a credit matrix that stores the fitness difference between the new solution and the
current solution generated by each low-level heuristic in each generation in the search process.

The difference is calculated as follows:



_ fNew _fCurrent’ if (fNew _fCurrent) >0

0, otherwise

fin

j

)

where f. . and f,, = are the fitness of the current solution and the fitness of the solution
generated in the neighbourhood of the current solution, respectively.
4.1.2. Initialization and update of probability vector Preuristic

In [36, 50], the univariate marginal distribution (UMD) model was used“to estimate the
distribution of the candidate solutions in the population. In the UMD model, each decision
variable is treated as an independent variable and the conditional probability of a variable does
not depend on the probability of other variables. In the context of heuristics, the UMD model
estimates the distribution of heuristics in the search space of theWhetristics. Each heuristic
is treated as an independent variable and probability vectos Pueufistic = {Pry» Py - » Pr} €
[0, 1]V characterizes the distribution of the promising hewristics in the search space, where
Py, is the probability of H," heuristic in the heuriStics pool. Equation (8) is used to assign a

probability to each heuristic ;.

Np
_Z1f;7'iz
Prye= NH] N, 0 i=1,2..Nu, (8)

20D

k=1 j=1
After the probability vector Py, Has been initialized, at each generation g the probability dis-

tribution of each heuristic #; is updated using the best % titness values from Equation (6). A
population-based incremental learning algorithm (PBILA) [4] is used to update the probability
vector. Equation (9) updates the probability vector at each generation. In Equation (9), ¢ is a
learning variable that learns from the past statistical information stored in the form of the prob-
ability vector in the current population. The larger the value of ¢, the greater is the contribution
from the current population, whereas the smaller the value of ¢, the greater is the contribution

from the‘probability vector.

Np
2

fen,
Pr, = (1 =) x Py +¢ x =

Ny Np

> fm

k=1 j=1

,i=1,2,...Ny, )



The worst case time complexity of both the initialization and update of the probability vector
is O(Np®Np).

4.1.3. Heuristic selection rule

Heuristic selection is an important component of any hyper-heuristic. It determines the di-
rection of the search process in the search space. An intelligent heuristic selection method can
take the search process toward the global best solution, whereas random selection may lead
the search process toward the local best solution or may require a greater number of genera-
tions to reach the global best. Several heuristic selection rules have beefideveloped such as
random selection, choice function, and greedy selection. In this paper, we propose roulette
wheel selection (RWS) method based heuristic selection rule. However, we tried all the men-
tioned methods but the RWS has, overall, the best performance. Therefore, we choose the RWS
method as a heuristic selection rule.

Equation (8) estimates the distribution of the heufistics in terms of their performance in
each generation and stores the distribution in the form of probability in the probability vector
PhHeuristic: The probability Py, of heuristic H; is direetly proportional to its performance. The
RWS method, also called the fitness proportignateselection method, considers the probability

of each heuristic as a fitness of heuristic H;'and'its probability of being selected is calculated as

NHii, i=1,2,...,NH (10)
> Pu
=

The selection of aheutisti¢’is determined by the RWS method. The pseudo-code of the RWS

&=

method is presgnted in"Algorithm 1.

Algorithm 1 Roulette wheel selection method
1: hew < 0;
r <—rand(0, 1);
while (g4, < 1) do
heu + heu+1;
end while
return H;,,




4.2. Lower level of the hyper-heuristic

The lower level of the hyper-heuristic is a set of low-level, can be standard or problem
specific, heuristics that directly operates on the search space of the solution of the problem

under consideration. Table 1 presents six low-level heuristics.

Table 1: Low-level heuristics
Heuristic Generation of heuristic Heuristic Generation of heuristic

Crossover?2 (Section 4.2.1)

LH 1 Crossoverl (Section 4.2.1) LH 2

Construction \, hewristic ~ (Sec-
LH_3 Crossover3 (Section 4.2.1) LH_4 tion 4.2.2)
LH_5 Guided mutation (Section 4.2.3) LH 6 Ong_one (Section 4.2.4)  +

Onentwo (Section 4.2.5)

4.2.1. Crossover heuristics

Three versions of uniform crossover operator (UXO)\[46]-are developed to generate an off-
spring. In the first version, called Crossoverl (LH_1),'the global best solution and the current
solution are used as two parents and a child solution’is generated by applying UXO. In UXO,
for each location a random number is generatediuniformly in the interval [0, 1]. If the number
is smaller than the predefined value Cp, then the corresponding object from the best solution
is added to the child solution; othetwise, the corresponding object from the current solution is
added.

In the second version of WXO, called Crossover2 (LH_2), the current solution and a solution
different from the currént solution is chosen using binary tournament selection (BTS) method
and subsequently,as in Crossoverl, a new child solution is generated. In the third version of
UXO, Crossover3 (LH:3), two parents are selected randomly using BTS method and subse-
quently, similar to-Crossoverl, a new child is generated. Each UXO version has an advantage
and also helps t6 maintain diversification in the solution population. Crossoverl and Crossover2
have both exploration and exploitation features, whereas Crossover3 has only exploration abil-
ity.

4.2.2. Construction heuristic (LH_4)

The purpose of the construction heuristic is to maintain diversity in the population. It per-

forms exploration. Ateach iteration, an object, i € Z, is added to partial solution, say S,, with the

probability 0.50. Subsequently, the solution is passed through the repair operator (Section 5.3)



to make it feasible if not and thereafter through the improvement operator (Section 5.4) for
the possible improvement. The pseudo-code of the Construction heuristic is presented in Algo-

rithm 2.

Algorithm 2 Construction heuristic (LH_4)
1: Sp — ¢
2: for each object i € 7 in some random order do

3: ry + rand(0, 1);

4: if (r1 < 0.50) then
5: S, + S, U{i};
6: end if

7. end for

8: return S;

4.2.3. Guided mutation (LH_5)

In any heuristic, it is always good to take advantages of problem domain knowledge to
improve their performance. The proposed guided mutation (GM) heuristic uses the cost and
the cardinality of conflict set of objects to give mofesweight to an object whose conflict size is
smaller. For each objecti € Z, N; and |N;| are the conflict set and the conflict count (number
of objects conflicting with object i), respectively. JAn empty set indicates that the particular
object has no conflicting objects. The pseudo-code of determining the conflict set of objects is

presented in Algorithm 3.

Algorithm 3 Determination ofthe/conflict set of each objecti € 7
1: for (Each objecti € 7) do
2: N; < o;
for (j =1 to M)do
if (|{i} N/T;| > 0),then
R &= U7\ {i};

3
4
5
6: endif
7
8:

end for
end for

For initialization of the probability vector, an UMD model is used to estimate the distribu-
tion of the candidate solutions in the solution space of the problem. A ratio, say v;, of cost,
say ¢;, and [N;| of an object 7 is added to increase the probability. A probability vector, say
Pumtutation = {P1> Por o pm} € [0, 1]%, is inilialized where p, is the probability of the i object in
set Z and |Z| is the cardinality of set Z. The pseudo-code of the initialization of the probability
vector using the UMD model is given in Algorithm 4.



Algorithm 4 Probability vector initialization

1: Compute v; IICTI’ Vie T,
2: Compute y; <— number of initial solutions containing object i, Vi € Z;
3. Compute p, + %% vj ¢ T,

(Np+Z)l‘) 4

Further, the population-based incremental learning (PBIL) model [4] is used to update the
probability vector. At each generation g, a parent set, say Parent(g), is formed by selecting the
best % candidate solutions from the current population Pop(g). Variable ¢ is‘the learning rate,
which changes dynamically with the generation. As ¢ controls the contribtitiens of location and
global information and helps to maintain a balance between exploitatigniand exploration. The

pseudo-code of the probability update vector using the PBIL model is given in Algorithm 5.

Algorithm 5 Probability vector update

1: Compute z; <~ number of solutions in Parent(g) containing object i, Vi € Z;
2: Computep, (1 - () xp,+(¢ x 4, Vi€ I;
2

After the probability vector Puutation is updated; the GM operator is applied to generate a
new solution. Set S, initially empty, is a partialisolution in which objects are added either by
sampling the probability vector Puyuyiion Or directly copying from the global best solution, say
Bs. Variable 5 € (0, 1) is a control,parameter that controls the contribution from probability
vector Puutaion and the global bést solution Bs. The large the value of j3, the greater is the number
of objects included by sampling the probability vector Puytation, Wwhereas the smaller the value
of 3, the greater is the number of objects copied from Bs. The pseudo-code of the GM operator
is presented in Algorithm 6.



Algorithm 6 Guided mutation
1: Sp — ¢;
2: for each object i € 7 in some random order do

3: r1 < rand(0, 1);

4: if (ry < () then

5: 1o < rand(0, 1);

6: if (r> < p;) then
7: Sp — Sp U {i};
8: end if

9: else
10: if (i € B;) then
11: S, +— S, U {i};
12: end if

13: end if

14: end for

15: return Sp;

4.2.4. One_one swap heuristic (LH_6)

One_one swap heuristic is a modified version of.the 1-1 exchange local search presented in
[11]. It also operates on the first improvement strategy. In each iteration, it swaps one object
from solution S, with an object not in the solution (Z* = 7 \ S,) if it improves the solution. A
function, say Find_1(S,), identifies an object,say j, that does not violate the feasibility constraint.
Swap1_1(Sp, 1, j) is a function that replaces object i with objects j, i.e., S, = (S, U{j}) \ {i}. Fitness()
is a function that calculates the sum, of the weights of the objects in solution §;. If the new
solution S; is better than S,, thenthe solution is updated; otherwise, it moves to the next object
in S,. This process continues until all objects in solution S, are attempted. The 1-1 exchange local
search is applied at mosti4’successful exchanges, whereas the One_one swap exchanges objects
until all objects in'set.S, are attempted. The pseudo-code of the One_one swap heuristic (LH_6)

is presented in{Algorithm 7.



Algorithm 7 One_one swap heuristic
1: F < Fitness(S,);
22 T« T\ S,
3: Cs |Sp|,'
4: <+ 1;
5: while (i < Cs) do

6 ] — Fii’ld171 (I*),

7: S, « Swap, ((Sp,.);
8: JF* < Fitness(S,);

9: if (F* > F) then
10: Sp < 8;,‘

11: F «— F%
12: i+ 1;

13: else

14: i+ i+1;

15: end if

16: end while

4.2.5. One_two swap heuristic (LH_6)

One_two swap heuristic is a modified version of'the 1-2 exchange local search presented in
[11]. Similar to One_one swap heuristic, function Fimgdq »(Z*) identifies two objects, say i and
j, in set Z* that are not in solution S, and dg*aotViolate the feasibility constraint. Function
Swap, »(Sp, Sy, ], k) replaces object S, with-objects j and k, i.e., S; = (S, U {j, k}). If the new
solution S; is better than S, then the solution is updated; otherwise, it moves to the next object
in §,. This process continues until all the’'objects in S, are attempted. The 1-2 exchange local search
exchanges at most 6 objects/whereas the One_two swap exchanges objects until all objects in set

Sp are tried. The pseudoe-code of the One_two swap heuristic (LH_6) is presented in Algorithm 8.



Algorithm 8 One_two swap heuristic
1: F < Fitness(S,);
22 T« T\ S,
3: Cs ‘Sp|;
4: 1 1;
5: while (i < Cs) do

6: (j, k) < Findq o(Z%);

7: Sy« Swapy ,(Sp, Sp,, ], k);
8: JF* < Fitness(S,);

9: if (F* > F) then
10: Sp < 8;,‘

11: F «— F%

12: i+ 1;

13: else

14: i+ i+1;

15: end if

16: end while

5. EA-HH approach for the SPP

The proposed EA-HH approach for the SPPwas inspired by the approaches presented in
[50] for the maximum clique problem and classification of hyper-heuristics [5]. The pseudo-
code and flowchart of the EA-HH approachiare presented in Algorithm 9 and Figure 1, respec-

tively. The main components of the EA=HH approach are presented below.



Algorithm 9 Evolutionary algorithm based hyper-heuristic

1:

*

10:
11:
12:
13:
14:
15:
16:

At generation g < 0, an initial population Pop(0) consisting of N, solutions is generated
randomly;

: Apply each low-level heuristic #; € {LH_1, LH_2 ..., LH_Nu} Np number of times to form

Np x Ny fitness matrix Fereqir (Equation (6));
Select the best N, number of solutions from (Pop(g) + Np x Ny) solutions to form population
Pop(0);
Initialize the probability vector Puytation (Algorithm 4) and Preurisic (Equation (8));
while (¢ < GEN) do
Select the best % solution from Pop(g) to form a Parent(g);
Update ((g) (Equation (11)), 8(g) (Equation (12)), Pumutation (Algorithm:b), and Preuristic (
Equation (9));
for (i =1to ) do
Select a heuristic H; € {LH_1, LH_2 ..., LH_Nu} by applyinhg the RWS method on the
probability vector Preuristic;
Apply heuristic H; to generate a new solution;
Update the fitness matrix Fcreqir using First in first otit scheme;
end for
Add % newly generated solutions to Parent(g) to form Pop(g+1);
g+—g+1
end while
return Best solution;
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Figure 1: Flowchart of the EA-HH approach



5.1. Solution encoding

Solution encoding is an important part of any meta-heuristic algorithm and it directly affects
the computational performance. As the SPP is a class of subset selection problems; therefore, a
subset encoding is adopted to represent a solution. Each solution, say S,, is represented directly
by the objects it contains, i.e., S, = {01,02, ..., 0 5p|}, where |S,| is the cardinality of the solution
S,.

5.2. Initial solution

An initial population is generated randomly. Each object is included randomly in the partial
solution, say S,, with equal probability. However, only those objects‘thatsatisfy the feasibility

criteria are included in S,,.

5.3. Repair operator

The proposed repair operator is a modified version ofithe Repair Operator presented in [11].
A solution T = {ly, I, ..., )} is infeasible if i |NFAFE> 0, where Ry, is the conflict set of an
object I';. Each infeasible solution I generated tﬁ:rough heuristic H; is passed through the repair
operator to make it feasible. In the Repair Operator of [11], the conflicting objects are deleted
with the help of roulette wheel selection method where the probability of selection of an object
is proportional to the ratio of |X;| to the weight of object i, i.e., c;, whereas in the modified repair
operator conflicting objects are sélected in the order in which they are presented in the solution.

The pseudo-code of the repair operator is presented in Algorithm 10.

Algorithm 10 Repair operator
1: i+ 1;
2: while (i < |[']) de
3: 0+ Nri Nnr;

4: if (|0}>"0) then  © |§| will be greater than zero if there is at least one object conflicting
with object [;in

5: P —6; > Remove the conflicting objects from I

6 IEf < |T; > Update the cardinality of set I’

7: end if

8 1+ i+1;

9: end while

5.4. Improvement operator



Each feasible solution is passed through the improvement operator to further improve the
solution quality. The proposed improvement operator is the modified version of the Improve-
ment Operator presented in [11]. Suppose d is a set of objects which are not in solution I and Nr, is
the conflict set of an object [';. In [11], roulette wheel selection method is used to add unpacked
object to the solution, where the probability of selection of object ¢; is directly proportional to
the ratio of the weight of object i to |X;|, whereas the proposed improvement operator selects an
object in the same order as they presented in . The improvement operator iteratively attempts
to add an unpacked object without violating the feasibility criteria. The/pseddo-code of the

improvement operator is presented in Algorithm 11.

Algorithm 11 Improvement operator
1.0« (Z-T);
2: for (For each object §; € ) do

3: if (|N;, N | =0) then
4: M« Tujd;

5: 6 < (6 \Ns) \ {i};
6: end if

7. end for

6. Computational results for the SPP

The proposed EA-HH approach/was implemented in C language and executed on a Core 2
Duo system with 2 GB RAM under Ubuntu operating system in a 3.0 GHz environment. A
gcc 4.4.4-10 compiler with <03 flag/vas used to compile the C program. For the fair compari-
son, the same system is‘tised as'that of used in the study in [11]. The EA-HH parameters and
their values are listéd in Table 2, and all these values were fixed empirically after numerous
trials. In this study, twoAtypes of random test instances: unit-cost and multi-cost are used to in-
vestigate the'performiance of the proposed approach. The characteristics of the test instances are
reported inTables 7 to 9. In these three tables, for each instance, the columns with the headings
Var, Cnst,; Density, Max_One,and Weight show the number of objects (|Z|), number of
constraints (|7 |), percentage of non-null elements in the constraint matrix, size of the largest set
|7i| over allj € {1,2,...,M}, and weight ¢; € [1-1] or [1-20] of object i € Z, respectively. All the
test instances can be downloaded from http: //www3 . inrets. fr/~delorme/Instances-
fr.html. In Table 7, the column with the heading Opt lists the optimal values returned by the
CPLEX 6.0 solver and in Tables 8 and 9, the column with the heading BKV shows the best



known value (BKV) obtained by CPLEX 6.0 solver indicated with an asterisk (“*”). For the
GRASP [14], ACO [17], EA/G [11], and the proposed EA-HH approach, the columns with the
headings Best, Avrg, and ATET show the best solution, average solution, and average exe-
cution time in seconds, respectively. For the EA-HH approach, we report also the number of

objects in the best solution and the average number of objects in the average solution.

Table 2: Parameters and their values for the EA-HH approach

Parameter Value Description
N, 30 Population size
¢ € [0.001,0.99] Learning rate

Is the control parameter that controls the contribution from the

p €[0.001,0.99] current population and the best solution

Nx 6 Number of low-level heuristics

RUN 16 Number of independent runs for eachiinstance for the SPP
Number of independent runs for each instance for the MWDS

RUN 1
problem

GEN 100 Number of generationsdn each run

Cp 0.50 Uniform crossover rate

6.1. Effect of dynamic selection of 3 and ( parameters
Parameter tuning is one of the most challenging and difficult tasks in any meta-heuristic
approach. Therefore, an intelligent meta-heutistic always attempts to be as independent of

parameters as possible.

Cmax - Cmin

¢(§) = Guin + " GEN X g (11)
5(g) = B + i g (12)

The values of ¢ and 5 change dynamically with generation g. It also helps to maintain a
balance between exploration and exploitation. In the beginning of the generation, the search
processyperférms the exploration whereas at the end of the generation performs exploitation.
Dynami€ nature of parameter ( allows to learn from the global statistical information, whereas
at the end of the generation, it allows to learn from the current location in the population.
Similarly, a smaller value of 3 forces a contribution from the global best solution, whereas a
larger value forces a contribution from the current population. In Equations (11) and (12), g,
Cmin and Gy, and GEN are the current generation, minimum and maximum values of ¢, and the

maximum number of generations, respectively.
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Figure 2: Convergence behavior of the EA-HH approach with different values of § and ¢ on instance pb500rnd09

In Figures 2 and 3, instances pb500rnd09 and pb1000rnd07 are used to show the in-
fluence of the dynamic selection of ;parameters ( and 3 on the solution quality. These fig-
ures show the convergenceispeed of each combination of parameter values. The values of
¢, B € {0.40,0.60, 0.80, 0.99}, and other combinations, where the values change dynamically
according to Equation (11) and Equation (12) are plotted. In Figures 2(a) to 2(d), and Figures 3(a)
to 3(d) the values of Syare 0.40, 0.60, 0.80, and 0.99, respectively and for each value of 5 four
different values of.¢’c {0.01,0.40,0.60,0.80,0.99} are passed. The figures show that the dy-
namic selection.of parameters 5 and ( yields a better convergence speed and these values reach

the BKV faster than the fixed values.
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Figure 3: Convergence behaviour of the EA-HH approach with different values of g and { on instance
pbl1l000rnd07

One of the reasons of success‘is that the dynamic selection of parameters allows the search
process to explore different areas of search space at the beginning of the generation, and then
end of the generation it.allows, to exploit the search area. On the other side, fixed parameter
value restricts the searchiprocess to explore in the fixed direction. In these figures, we can see
that plots with larger values of parameters unable to converge to the BKV, and the reason is
that the search process started exploiting the search area from the beginning of generation and
got stuck on local optima. Similarly, When one parameter has smaller value and other has a
larger value, then the search process got stuck on local optima. Furthermore, if the parameters
values are close to each other, then the search process is able to perform both exploration and
exploitation. Based on experimental results and analysis it can be concluded that a proper
trade-off among parameters values can take the search process towards global optimum in

reasonable amount of computational time.



6.2. Behaviour of the EA-HH approach in the search space of the heuristics

In this section, we investigate the behavior of the components of the EA-HH approach. In
Figure 4(a), the portions of the probability shared by low-level heuristics LH_1, LH_2, LH_3,
LH_4, LH_5, and LH_6 in each generation for instance pb1000rnd07 are plotted. In the figure,
the Generation axis represents generations from 1 to 100 and the Probability axis represents the
percentage share of the probability by each heuristic in each generation. The probability value
of each heuristic is directly proportional to the performance of the particularsheuristic in any
generation. The probability values help in the selection of a low-level heuristiciin the next gen-
eration. In the figure, it can be observed that the probability share chariges with the generation
and this directly affects the heuristic selection rule. The larger its probability value, the greater
is the chance of the heuristic being selected in the next generation..The average probability
shares of heuristics LH_1, LH_2, LH_3, LH_4, LH_5, and TsH_6 are 0.160, 0.162, 0.160, 0.184,
0.174, and 0.159, respectively.

Figure 4(b) shows the distribution of heuristics‘in éach generation. In the figure, the Gen-
eration axis represents the generations from 1 to 100.and the Heuristic axis represents the per-
centage share of frequencies of each heuristiciin each generation. The average number of times
heuristics LH_1, LH_2, LH_3, LH_4, LH 5, 'and LH_6 were selected was 242, 240, 255, 265,
281, and 217, respectively. The avepdge fiumber of frequencies of the heuristics shows that the
search process is not dependent’on afy/One of the heuristics and each heuristic contributed to

the search process.
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Figure 4: Changes in probability and heuristic frequency with generation on instance pb1000rnd07

From Figures 4(a) and 4(b), it can be observed that the % frequency of each heuristic in each



generation is directly affected by the % probability share of each heuristic in the corresponding
generation. However, the average probability of the heuristics does not have direct influence
on the corresponding average frequency of heuristic. The reason of this is randomness in the

RWS method.

6.3. Analysis of exploration and exploitation nature of the heuristics

Exploration and exploitation are the important features of any heuristic. Explotatory heuris-
tic searches new space of the search space, whereas exploitative heuristic searches in the neigh-
borhood of the current location of the search space. Exploration tries to take thesearch process
towards the new space, whereas exploitation exploits the current location of the search space.
A delicate balance between exploration and exploitation is an importantfactor of any heuris-
tic to get a satisfactory solution in a reasonable amount of computational time. On the other
hand, an improper balance may take the search process towards adocal optimum. Furthermore,
more exploration may need more number of iterations\to reach the global optimum, whereas
more exploitation, may be stuck into local optimum. In the EA-HH, Crossoverl, Crossover2,
Crossover3, and Construction are exploratory heutisties; whereas One_one and One_two are ex-
ploitative heuristics. Crossover] heuristic explores’a new space in the neighbor of the current
global best solution, Crossover2 heuristic explores a new space in the neighbor of one of the
best % solutions, whereas Crossover3 heuristic explores a new space in the neighbor of one of
the worst % solutions in the population. The advantage of these heuristics is that they explore
diverse new space simultaneously.”Construction heuristic explores the search space randomly
and it helps to maintain diversity in the solution population. In the case of Guided mutation
heuristic, it doses bothjexpleration and exploitation together. It explores the search space using
the global statigtical iRfermation which is stored in the form of probability, on the other hand,

it exploits the'search/space in the neighbor of the current global best solution.

6.4. Population.evolution with generations

Figure 5 presents the evolution of the solution population with the generations. In the figure,
all the generated solutions are plotted. It can be observed that the solution population evolves
with the generations and converges toward the BKV. As in the EA-HH approach, Pop(g+1) is
composed of the best % solutions from Pop(g) and % new solutions. In the figure, the solutions
generated in each generation are represented by black dots. Each blue and red dot represents

the best solution and the best %th solution, respectively, in the corresponding generation. In



the figure, it can be observed that the search procedure maintains diversification in the solution
population throughout the generations, and this helps in avoiding a situation where the search
becomes trapped in local optima as the other heuristics are trapped in a local optimum. It can
also be observed that the best % solutions move toward the global best solution and this helps
in exploiting the neighborhood space of the global best solution, as the low-level heuristics use
the best % and the worst % solutions to generate a new solution. The reason for‘considering
the worst % solutions is the nature of the problem: the SPP problem is a subset selection prob-
lem and the number of objects in solution is very small compared to the size\of the problem.
Furthermore, it is also quite evident that the set of best solutions will have many common ob-
jects and will force the operator to generate a solution similar to the bestisolution. In resultant,

it will take the search procedure toward a local optimum.
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Figure 5: Population evelution of the EA-HH approach with generations on instance pb1000rnd07

6.5. Comparison.of the convergence speed and success rate

In Figute 6, we compare the convergence speed and success rate to reaching the BKV of
the EA-HHapproach, with heuristics LH_1, LH_2, LH_3, LH_4, LH_5, and LH_6 on instances
pb1000rnd07, pb500rndl5, and pb500rnd09. In these figures, the convergence behavior
of the best run and the average of runs are presented. In the figure, the vertical axis repre-
sents the fitness returned by each heuristic and the horizontal axis represents generations. In
Figures 6(a), 6(c) and 6(e), the best solution of each generation returned by each approach are

plotted, whereas in Figures 6(b), 6(d) and 6(f), the average of 16 runs are plotted. The purpose



of plotting the best run and the average of runs is to show that, even for a particular run other
approaches can outperform the EA-HH approach in terms of the average performance, the EA-
HH approach is always superior. From the figures, it is evident that the convergence speed of
the EA-HH approach is higher and it reaches the BKV, whereas other heuristics are slower and
they are unable to reach the BKV.

In Figures 6(a) and 6(b), it is also evident that the convergence speed of the EA-HH approach
is higher than that of the other approaches. Similarly, Figures 6(c) and 6(d) and Figures 6(e)
and 6(f) show that the convergence speed of the EA-HH approach is higherithan that of the
other approaches. In Figure 6(f), heuristics LH_1, LH_2, LH_3 are not"plotted, because their
convergence speed are far inferior than EE-HH, LH_4 and LH_5. If we compare the success rate

in terms of reaching the BKV, EA-HH approach has higher than-that of the other approaches.
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6.6. Performance comparison of the individual heuristic with the EA-HH approach

This section presents the performance comparison of heuristics LH_1, LH_2, LH_3, LH_4,

LH_5, and LH_6 when they are applied individually. Each individual heuristic has its own

advantage and limitation: some of them have exploration ability and others have exploitation



ability. Exploration may take the search process away from the global optima, whereas exploita-
tion may takes the search process toward the local optima. Therefore, it is necessary to achieve
a balanced trade-off between exploration and exploitation in the search process to get a satisfac-
tory solution in a reasonable amount of computational time. Tables 4 to 6 present the results of
individual heuristics; the results show that each individual heuristic underperformed because
of skewed nature of either exploration or exploitation, whereas the EA-HH appr@ach utilized
the exploitative and exploratory features of the individual heuristic to reach.the best-known
solutions.

Tables 4 to 6 present the standard deviation (SD), average solution (Avrg), and average total
execution time ( ATET) in seconds for heuristics LH_1, LH_2, LH”3, LH_4, LH_5, and LH_6
under the same conditions as those adopted for the EA-HH approach. The percentage (%)
difference between the EA-HH approach and each individtial heuristic is reported in the last
six columns. The results with positive values indicate”the EA-HH approach has better than
that of a particular heuristic, whereas with the negatiwesvalues indicate that the EA-HH has
inferior performance. The results with zero values,indicate that the performances of both the
approaches are the same. In Tables 4 to 6, it can be \observed that the EA-HH approach outper-
formed all the other heuristics under the’same.conditions. From the results, it can be concluded
that the individual heuristics could notperform well owing to their limitation, whereas the EA-
HH approach could determine a‘good solution owing to the better utilization of the individual
heuristics with each generation.“In other words, it can be stated that an appropriate balance
in the selection of the heuristie,in each generation increases the search ability. From these ta-
bles, it is clear that heuristics LH_4 and LH_5 outperformed the other heuristics in terms of the
average and standard deviation. The two-tailed Wilcoxon signed-ranked test with the signifi-
cance criterion1% (p/value < 0.01) is used to investigate the significance level with the EA-HH
approach. | An online calculator! was used to perform this test. Table 3, presents the results
of the Wilcoxon-signed-ranked test and from the outcomes, it is evident that the EA-HH ap-
proach is significant than the heuristics when they are used individually. The mean rank of
heuristics LH_1, LH_2, LH_3, LH_4, LH_5 and LH_6 are 2.70, 2.55, 2.34, 5.69, 5.53 and 3.56,
respectively. In the mean rank values, smaller value indicates smaller rank and higher value

indicates higher rank. From the mean rank value, it is clear that LH_4 has the best performance

https://mathcracker.com/wilcoxon-signed-ranks.php



among the heuristics. If we compare the robustness of the heuristics, the standard deviation
shows that these heuristics have no robustness. In terms of computational time, the mean rank
test of heuristics LH_1, LH_2, LH_3, LH_4, LH_5 and LH_6 are 4.27, 4.20, 3.97, 1.87, 4.02, 3.87,
respectively. Whereas, in terms of standard variation, the mean rank test of the heuristics LH_1,
LH_2,LH_3,LH_4, LH_5and LH_6 are 4.25, 4.14, 4.03, 2.22, 3.42, 4.45, respectively. In the case
of computation time and standard deviation, small mean rank value and large mean rank value

indicate the higher rank and the lower rank, respectively.

Table 3: Wilcoxon-signed-rank test for the EA-HH with the other heuristics forithe SPP

Approach EA-HH vs.

N W+ W~ V4 Zc p-value Significance
LH_1 64 0.00 1953.00 -6.87  -2.33 0.00 yes
LH_2 64 0.00 1953.00  -6.87  -2:33 0.00 yes
LH_3 64 0.00 1953.00  -6.87 , -2.33 0.00 yes
LH 4 64  43.50 659.50 -4.65 -2.33 0.00 yes
LH_5 64  25.00 1151.00  -577_ -2.33 0.00 yes

LH_6 64 0.00 1953.00 -6:87 -2.33 0.00 yes
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6.7. Comparison analysis of computational results of the GRASP, ACO, EA/G and EA-HH

This section presents a comparative analysis of the combinational results of the exact ap-
proach, GRASP [14], ACO [17], EA/G [11], and the EA-HH approach that are presented in
Tables 7 to 9. The results in these tables show the superiority of the EA-HH approach over
GRASP, ACO, and EA/G in terms of the computational results and time. Table 7 presents the
computational results of the instances with 100 and 200 objects. The EA-HH approach achieved
the optimal values on all 30 instances in terms of the best solution and on 28 instances.in terms
of the average solution. As compared with GRASP, the EA-HH approach is‘better on 13 in-
stances, poorer on 2 instances, and the same on the remaining 15 instanices in terms of the best
solution. In terms of the average solution, the EA-HH approach is better on-10 instances, poorer
on 1 instance, and the same on 19 instances. In terms of computational time, the EA-HH ap-
proach achieved the optimal as well as a better average solution in computationally less time
than GRASP approach. In comparison with ACO, the EA-HH approach is better on 2 instances
and the same on 28 instances in terms of the optimal solution. In terms of the average solu-
tion, the EA-HH approach is better on 17 instances;poorer on 1 instance, and the same on 12
instances. In terms of computational time, the EA-HH approach is always faster than ACO.

EA /G is the state-of-the-art approach for the SPP and the EA-HH approach outperformed in
terms of both the average solution and the computational time. Out of 30 instances, the EA-HH
approach is better on 10 instancés, poorer on 1 instance, and the same on 19 instances in terms
of the average solution. Here, notably, the EA-HH approach achieved the optimal solution
in all the runs on all the80 instances, whereas the EA/G could achieve the optimal solution
on 19 instances only." Therefore, the computational results show that the EA-HH approach

outperformed the"EA/G/approach.



SunI 91 I3A0 $)23[qo Jo rBquInu d3eIaAe SajedIpUI (§)

UONN|OS }S3q Y} UI S303(q0 JO Iaquunu sa)edIpur ()

690 000 (©6pp6L 6lp1 G690 6LSL 6l 00¢  TI'ST 6l GeT  908T 61 9068261 61 [-11 8 %9°T 009 00z 81pPuIoozad
20 000 (08Mppesz  BMggr Wl 6I'PSe ssT 00TL STEST  SST 19¢  I€IST  SST S TIL elord loz1] 8 %S'T 009 00z Z1puioozad
SI'T 870 @8zggL 626y, 860 TI'SL \ 6L €651  LE8L 6L 089 1€84 6L G8TLEFT 6L 11 ¢ %0°T 009 00T 91PuipoZqd
80T 000 ©9ppoze  ©gze WL 00926 926 004 00926 926 Wy 00926 926 0zTl 926 o1l T %0°T 009 00z S1puwioozad
660 000 (©Mpg-cy (sgy G40 9V SP 198 _S¥TY  SF W6 00SF  SP 1699001  S¥ 11 % %G'T 009 00z ¥TPuIpOZqad
0T 000 ©Woorss  WY1ss VL1 SL048  TLS €07 091895 14§ 109 €799 148 6£0€8 149 [oc-1l % %S'T 009 00z ¢€1pPuipozad
€90 000 @eooey ey 080 00€F  €F €T 00cv 4 <F 10T 00€h  €F 0T 54 [-11 8 %9'C 00c 00z ZIpuwipozad
060 000 ©08)gpsps  Gegpg 69T 00GFS S eer 00gPS  GES 9T SL¥PS  GFS €€°0 a¥s [oz-1] 8 %S'T 00c 00z T11PuwI0zad
650 000 ©=gpgrr  (®HNGTT 9,0 008IT SII 00% 08Il 8fT $9°¢  008TL  SIT 200 8TI 11 ¢ %0°T 00c 00z O1PuIp0zad
€T 000 ©®NopFzer ©Mpzer  1€T 00FCEl FTel €64 00FCELSFeel C S4€ 00FCEl ¥l 100 yeer loc1l ¢ %0°T 00c 00T 60PuI00ZAd
60 000 (©0pgcg (e8)gg 080 1878 €8 19T SLT8 . €8 LT /8T8 €8 $0°0 €8 11 % %S°T 00c 00z 8opuioozad
880 000 ©Jp0p00T  “YH00T 19T  $6'€00T ¥00I  €€9  0S€00T ¥00L~ 0%, <TI'TO0L 200 200 yoor  [oc1l ¥ %G'T 00c 00z Zopuioozad
9¢'0 000 (©0*YoopT LA Gg0  0S€l FI 00% /8Tl ¥ §h'c/EEl Tl 078908 VI [-11 8 %G'T 0001 00z 90puioozad
V0 000 ©'YoopsT M3 0T 00F8T  ¥8I 0091 95781  ¥8T 9% [ 00781 81 LET1TT 81 [oz-11 8 %G'T 0001 00z Sopuipozad
00 000 (©00cdpc9 (®9gg 60 SLT9 €9 e€€FT €679 9 e/ A00€9 €9 1604689  #9 [-1l ¢ %0'T 0001 00z ¥opuioozad
780 8¢9 EEsgrers  ©91gy G681 00LTL  TEL eCHr  Tl'StL  6eL 180T 18TTLm9TL €TEOVS 1L [oz-11 ¢ %0'T 0001 00z gopuipozad
$9'0 000 (002oTe (eelze 9,0 00T€ T [9F1 9S°TE  T€ eeL 00 € 9¢'6019ST 7€ [-11 % %G'T 0001 00z zopuipozad
650 000 (0090 9ry 09Ty 99T  009TF 9TF €€'/T STy 9TF €L SUSIF 9IF €098  91F [oz-11 % %G'T 0001 00z TOPuI0ZAd
€I'0 000 (00€dgoec (€2eg IT0 00€C  €¢ €0 €T €T Il 00€C € 089 €T [-1] % %0°€ 00€ 001 zIpuwioorad
90'0 000 (890 90c  (©¥90g 0F0  0090€  90€ /9T 0090€  90€ 890  0090¢  90€ 870 90¢ [oz-11 ¥ %I'E 00€ 00T T1TPuIo0TIqd
S0 000 ©°Y900% ooy ¥20 886  OF 00T 796 OF 8Tl  000F  OF er'L oF [-1l ¢ %0'C 00¢ 00T oO1PuiooTqd
81’0 000 ©0%o0coy gy 860  00€9F  €9% /9T 00€9%  €9% 9TT  00€9% €9 670 £9% [oz-11 ¢ %0'C 00€ 00T 60PuI00Tqd
LT0 000 (€0 6e (6e)gg IC0 188  6€ 90  89'8¢  6€ LS0  SL8E  6€ 200 6 (-1 % %I'E 00T 00T 8oPurpoTqd
S0 000 ©e8ppcog  €8gpg 80  00€0S  €0S 00T 00€0S  €0S 00T  00€0S  €0S 000 €09 [oz1] ¥ %6C 00T 001 Zopuioorqd
010 000 ©*900F9 939 ¥IO 0079 9 00T  00%9 9 690 0079  ¥9 100 79 [1-1] 4 %0°T 00T 001 90puiporqd
L0 000 ©99006c9  “Wegg Ge0  006£9  6£9 9T 006€9  6£9 080 0069  6€£9 100 6£9 [ocH, ¢ %0°T 00T 001 Sopuigorqd
0 000 (°0°Ypor9r (elgy 810  696I 91 90  9SST 91T 6T 0091 91 9876 9T 11/ % %0°€ 00s 001 %opuioorqd
¥Lr0 000 ©7*Yppcoz Moz LE0  00€0T  €0T 00T  00€0C  €0T UL 00€0C  €0T 184 €0T loz1l ¥ %0°¢ 00s 001 gopuioorad
910 000 ©*pp e welpg o  00Fe  ¥E 00T 007  ¥¢ €T 00%e ¢ 09°0 i) 1y ¢ %0°T 00s 001 zopuioorad
910 000 ©%gpzie  ®zse 80  00TLE TS €Ce  00TLE TS 6T 00TLE TS 6T e o1l T %0°T 00s 001 TOPuIo0Iqd
Elifg)

LHLY as @8y ©hsag 1LV S1ay  3s9g  JHIV S1ay g ALV S1AV 1899 AL 1ido wBem  xey/ _Awsuaq  Isud  Iep

HH-V3 o/vi 0oV dSVID uonnos /0 sonsmaRIRyD aoue)suy

sa[qerrea Oz 03 dn yym sadueysut uo [11] 5/VH Pue ‘[£1] 0DV ‘[¥1] dSVID uhm yoeordde HH-vH au jo uostredwo) 1/ djqer,



Table 8 presents the computational results on the instances with 500 and 1000 objects. The
exact approach failed to determine the optimal solution within the specified computational
time on most of the instances, and therefore, the solution is the BKV and is indicated by “*”.
Out of 26 instances, the exact approach determined the optimal solution on 9 instances and on
the remaining 17 instances, it achieved solution is the BKV. The EA-HH approach achieved the
optimal value on eight out of nine instances, whereas in terms of the BKV, out of 17 instances,
the EA-HH approach achieved the same results as the BKV on 13 instances,.poorer than the
BKV on 1 instance, and better than the BKV on 3 instances. As compared with GRASP, the
EA-HH approach is better on 9 instances and the same on 17 instances‘in terms of the best so-
lution. In terms of the average solution, the EA-HH approach is better on 21 instances, poorer
on 1 instance, and the same on 4 instances. As compared with ACO/approach, the EA-HH
approach outperformed this approach. Out of 26 instances,. the EA-HH approach is superior
on 5 instances and inferior on 2 instances in terms of thé best solution. In terms of the average
solution, the EA-HH approach is superior on 25 instancesiand inferior on 1 instance. In terms
of the computational time, the EA-HH approach'achieved a better solution in computationally
less time than ACO approach. The EA-HH approach also outperformed the EA /G, which out-
performed GRASP and ACO approaches. Jnuterms of the best solution, the EA-HH approach
determined the same solution on all.theiinstances, whereas in terms of the average solution, the
EA-HH approach is better on 2} instances, poorer on 4 instances, and the same on 1 instance.
At the beginning of the computational section, it was mentioned that the EA-HH approach
was executed on the same system as that used for the EA/G approach. Therefore, from Ta-
ble 8, it can be observed'that wherever the EA-HH approach has the same solution fitness, it
took less computational time and on some instances, it achieved a better solution in computa-
tionally less time than the EA/G approach. Out of 26 instances, on 15 instances, the EA-HH
approach returned a better solution than the EA/G approach. On 11 instances, the EA-HH
approachsachieved a better solution fitness at the cost of extra computational time. As already
mentioned, both the EA-HH and EA/G approaches generated the same number of solutions
and also the same number of fitness evolutions. However, EA /G approach could not achieve a
better solution than the EA-HH approach. The reason is that EA/G approach converged to the
local optima and could not explore the other areas of the solution space, whereas the EA-HH

approach could explore many areas of the solution space. It is evident in Section 6.4 that the
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solution population always maintains diversity.
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Table 9 presents the computational results for the instances with 2000 objects. For the large
instances, the exact approach and GRASP could achieve the optimal solution on only 2 out of
8 instances. The EA-HH approach found the new BKYV for the instances pb2000rnd0700 and
pb2000rnd0800. GRASP approach reported only the best solution out of 16 runs and it could
achieve BKV on 5 instances. As compared with GRASP, the EA-HH approach is better on 2
instances, poorer on 1 instance, and the same on the remaining 4 instances in terms. of the best
solution. As compared with EA/G, the EA-HH approach is better on 2 instances, poorer on 2
instances, and the same on the remaining 4 instances in terms of the best solution. In terms of
the average solution, the EA-HH approach is better on 4 instances, pooréfion l'instance, and the
same on the remaining 3 instances. Notably, the EA-HH approach achieved a better solution at
the cost of extra computational time on 3 instances. This shows.that the EA-HH approach has

the ability to explore a different area of the solution space of.the problem under consideration.

Table 9: Comparison of the EA-HH approach with GRASP [14], and.EA /G [11] on instances with 2000 variables

Instance Characteristics 0/1 GRASP EA/G EA-HH
Solution
Var Cnst Density Max Weight BKV Best Best Avrg ATET Best(,) Avrg SD ATET
One

pb2000rnd0100 2000 10000  2.54% 100  [1-20] 40 Yes 40 4000 31.66 40pp) 40pos 000  10.69
pb2000rnd0200 2000 10000  2.55% 100  [1-1] 2 Yes 2 200 1038 20 2000 000  5.08
pb2000rnd0300 2000 10000  0.55% 20  [1-20] 478* No 478 46375 129.86 4752 4682725 1212 85.55
pb2000rnd0400 2000 10000  055% 20  [1-1] 32% Yes 32 3025 8158 322 32300 0.00 86.00
pb2000rnd0500 2000 2000  255% 100  [1-20] 140* Yes 140 13550 61.03 1335 13300y 000 22,97
pb2000rnd0600 2000 2000  2.56% 100  [14] 9 Yes 9 850 3423 %) 9000y 000 4422
pb2000rnd0700 2000 2000  0.56% 20 J1*20] 1784* No 1794 176594 160.14  179641g 17883812119 525 150.01
pb2000rnd0800 2000 2000  056% 20 £ [14] 131 No 132 13038 73.84 133135 132120131 145 13139
(@) indicates number of objegts.in the bést solution (b) indicates average number of objects over 16 runs

The superiorityfof the FA-HH approach over other approaches such as GRASP, ACO, and
EA/G can be attributed to the utilization of the evolutionary algorithm in the hyper-heuristic
framework’'whicheallows to take advantage of low-level heuristics to explore/exploit the solu-
tion space ofithé problem under consideration. However, the computational results show that
on the some instances the EA-HH approach failed to achieve the same solution achieved by the
other approaches and this asserts the “no free lunch theory” [48]. Another observation that can
be made concerning computational time is the number of objects in the solution which is di-
rectly affected by the density of objects. Number of object is inversly proportional to the density.
As a result of the higher density, the conflict size of objects becomes higher, whereas as the result

of low density, the conflict size becomes smaller. And also, the number of objects in the solution



directly affects the computational time. As the number of objects increases, the computational
time also increases. The reason for the increase in the computational time is that the search pro-
cedure spends more time in eliminating the conflicting objects from the infeasible solution. For
example, the characteristics of instances pb1000rnd05 and pb1000rnd07 are {Var = 1000,
Cnst = 1000, Density = 2.60%} and {Var = 1000, Cnst = 1000, Density = 0.58%}, respectively.
The analysis of the computational results of these instances reveals that the number‘of objects is
14 and 163, respectively, and the computational time (ATET) is 12.50s and 49.83s, respectively.
Therefore, it is evident that the computational time for the instances with highet density is less
than that of an instance with lower density. Similarly, the computational time of the groups of
instances reveals that all the groups show a similar trend of changein computational time.
6.8. The Wilcoxon signed-rank test

The two-tailed Wilcoxon signed-ranked test with the significance criterion of 1% (p-value <
0.01). Table 10 presents the results of the Wilcoxon-sighed-tanked test. The results in the table
show that the EA-HH approach is significant compared to the other approaches. The Friedman
mean ranks of the EA-HH, EA/G, GRASP, and ACO-approaches are 3.3, 2.5, 2.3 and 1.8, re-
spectively. A larger value indicates better performance. The mean ranks show that the EA-HH

exhibits better performance than the other approaches.

Table 10: Wilcoxon-signed-ranktest of the EA-HH approach with the other approaches for the SPP

Approach EA-HH vs.

N A W~ Z Cn Zc Significance
GRASP [14] 56 557.5 72.5 -3972 n=35>30 -2.58 yes
ACO [17] 56 877 69 -4.878 n=43>30 -2.58 yes
EA/G[11] o4 852.5 137.5 -4172 n=44>30 -2.58 yes
LH_1 64 1953 0 -6.846 n=62>30 -2.58 yes
LH_2 o4 1953 0 -6.846  n=62>30 -2.58 yes
LH_3 64 1953 0 -6.846 n=62>30 -2.58 yes
LH_4 64 703 0 -5303 n=37>30 -2.58 yes
LH_5 64 1173.5 2.5 -6.005 n=48 > 30 -2.58 yes
LH_6 64 1953 0 -6.846 n=62>30 -2.58 yes

6.9. Box plot analysis

This section examines the dispersion of fitness values from the median for the EA-HH,

LH_1,LH_2, LH_3, LH_4, LH_5 and LH_6 approaches. The purpose of this analysis is to ob-



serve the capabilities of the approaches in terms of searching for a good solution in the solution
space. The boxplots are used to show the robustness of the proposed approach. In Figures 7(a)
to 7(d) and Figures 8(a) to 8(d), the boxplots of the fitness values returned by the EA-HH , LH_1,
LH_2,LH_3,LH_4, LH_5, and LH_6 approaches are shown. For the sake of a better representa-
tion, the fitness values are scaled between 0 and 1. In the figures, the “Fitness” axis represents
the scaled fitness value and the “Instance” axis represents instances. The analysis is focused
on the instances for which the standard deviation of the approaches is not zero. Theireason for
this is to determine the dispersion of fitness values. In Tables 4 to 6, it can be observed that the
performances of heuristics LH_4 and LH_5 are better than those of LH~1, LH )2, and LH_3. In
the boxplots in Figures 7(a) to 7(d) and Figures 8(a) to 8(d), it can be observed that, on most of
the instances, all the heuristics, except EA-HH, have more dispersion from the median. This
shows that the other heuristics determined the best solution‘among;16 runs randomly and they

are not robust.
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7. Minimum weight dominating set problem

In this section, we consider the minimum weight dominating set (MWDS) problem which is
also an N'P-hard [18]. The purpose of considering the MWDS problem in this paper is to show
the scalability and generality of the proposed EA-HH approach. Both the SPP and MWDS prob-
lems are subset selection problem but have opposite objectives. The SPP has the maximization
objective whereas the MWDS problem has the minimization objective. As mentioned in Sec-
tion 4.2, the low-level heuristics are standard operators and are independent of the hature of
the problem. Most of the low-level heuristics do not use the problem domainjknowledge in
the process of generating a new solution. Therefore, the proposed approach is applied to the

MWDS problem to investigate the scalability and generality.

7.1. Problem description

Consider a node weighted undirected graph G = (V, £), where V is the set of nodes and € is
the set of edges. Any pair, say (v, u), of nodes v and iis considered as a pair of adjacent nodes or
neighbor iff, there exists an edge between them, i.e., (v, u) € £. A dominating set D C V is a set
of nodes such that each node in V either belohgs to subset D or is adjacent to at least one node
in D, i.e.,, node in V\D has at least one adjacentnode in D. Any node that belongs to subset D is
called a dominating node or dominater, and anode not in subset D is called a non-dominating
or dominatee node. The objective of,the minimum dominating set problem (MDS) is to find a
dominating set with minimum catdinality from all possible dominating sets in G.

In the MWDS problem$ a ngn-negative weight, assigned through a weight functionw : V —
Jt*, is associated with €aght node in V, and the objective is to find a dominating set whose sum
of weights of nodé€s,is'minimum among all the possible dominating sets in G. Both the MDS
and MWDS problems have been proven to be N'P-hard [18]. The object function of the MWDS
can be defined as

arg miny_,.p'w(v), where D’ is the set of all possible dominating sets in G.
DeD’

7.2. The EA-HH approach for the MWDS problem
This section presents the EA-HH approach for the MWDS problem under similar condition
as of the SPP. The main components of the EA-HH approach for the MWDS problem are as

follows:



7.2.1. Solution encoding
As both SPP and MWDS problem are subset selection problem, a subset encoding has been

used to represent a solution. The same solution encoding is followed as that used for the SPP.

7.2.2. Initial solution representation

As both SPP and MWDS are subset selection problem; therefore, the initial population is
generated in the same manner as for the SPP.

Each infeasible solution is passed through the repair operator to make the‘solution feasible
and subsequently, the feasible solution is passed through the improvement.operator. The same

repair and improvement operators are used as those used in [8].

7.2.3. Solution generation in generation of the EA-HH approach

In each generation, similar to the SPP, a new solution is genesated by applying the hyper-
heuristic. Only LH_1, LH_2, LH_3, LH_5 heuristics areused-at'the lower level of the hyper-
heuristic. As heuristic LH_6 is the problem specific and c¢annot directly be applied for the
MWDS problem. All the above mentioned low-level heuristics are applied in the same manner
as for the SPP, except the guided mutation. In the guided mutation, the probability initializa-
tion method does not use the problem domain knowledge to initialize the probability vector.
Each infeasible solution is passed through the repair to make it feasible and then through the
improvement operator to improve‘the solution quality. The repair and improvement operators

are explained in the subsequent section.

7.2.4. Repair and improvement operators

Similar to the SPP, after'the application of low-level heuristic, each solution is passed through
the repair operatorte make the solution feasible, and the feasible solution is passed through the
improvement gperator further to improve the solution quality.

The same repair operator is used as used in [8] to make the infeasible solution feasible.
Only the infeasible solution is passed through the repair operator. The repair operator attempts
to add uncovered nodes one after another. Uncovered nodes are those nodes that are either
not dominating nodes or not the neighbor(s) of at least one dominating node. Iteratively, an
uncovered node whose ratio between the sum of weights of uncovered nodes and the weight
of the node itself is the highest is chosen.

The improvement operator is used to remove the redundant nodes without violating the

feasibility criteria. A redundant node, say v, is a dominating node whose neighborhood nodes



and node itself are covered by at least one dominating node other than node v in the dominating
set. Iteratively, a node whose ratio between the weight of node and number of neighborhood
nodes among the set of redundant nodes is highest is removed. For a detailed description of

the repair and improvement operators, please, refer to Sections 5.5 and 5.6 of [8].

7.3. Computational results for the MWDS problem

This section presents the computational results for the MWDS problem. In [8);.two types of
instances with different weight ranges are used. For Type I instances, weights of nodes in the
network are randomly distributed in the closed interval [20, 70], whereasfor Type II instances,
weights are randomly distributed in the closed interval [1, dc(v)?], where de(v)® is square of
the degree of the node v. In this study, instances with network sizes 300, 500, 800, and 1000
and the number of edges varies from 300 to 20000 for both Type I'ahd Type II instances are
considered. Ten instances were generated for each combination.ef the number of nodes (|V|)
and the number of edges (|€]). A total of 420 (210x 2 instaneges are considered for Type I (21 x
10) and Type II (21 x 10)).

The same system and the same parameters are tised as those used in [8] to compile the C
code for the MWDS problem. Furthermore, the parametric values for the MWDS in EA-HH are
listed in Table 2. We have compared the EA-HH approach for the MWDS problem with Raka-
ACO [28], HGA [40], ACO-LS [40]ACO-PP-LS [40], EA/G-IR [8], HMA [32], and MSRLS,, [7]
for Type I and Type Il instances.

In Table 2, it can be observed;that all the low-level heuristics are problem independent,
except LH_6, and do not use any problem domain knowledge. However, in [28, 40, 8, 32, 7],
all of them have problem-dependent operators and they used problem domain knowledge to
generate a new solutions The advantage of having a generic operator is that it can be applied on
any type ofproblem/in the same domain. However, both the SPP and MWDS problem belong
to the domain of subset selection problem, but having opposite objectives. But the same low-
level heuristics are used for both the SPP and MWDS problem even though the former one has
a maximization objective whereas later one has a minimization objective.

Tables 11 and 12 present the computational results of the state-of-the-art approaches Raka-
ACO [28], HGA [40], ACO-LS [40], ACO-PP-LS [40], EA/G-IR [8], HMA [32], and MSRLS,, [7]
and the proposed EA-HH approach for the MWDS problem on Type I and Type II instances.

These tables present mean value (Mean), standard deviation (SD) and average total execution



time (ATET) for instance groups of ten instances with the same numbers of nodes (|V|) and
edges (|/£]). However, the SD values for Raka-ACO, HMA and MSRLS,, approaches were not
reported in the original paper. Moreover, HMA and MSRLS, did not report the ATET. There-
fore, we did not report the SD and ATET for the respective approaches as well. The reason is
that the MSRLS,, approach was run until a fixed time limit of 3600s, which is much larger than
that of any other approaches which are reported in these tables.

Out of 42 instance groups, EA-HH is better than HGA on all 42 instance groups. In compari-
son with ACO-LS, EA-HH is better on 40 instance groups and worse on twg instance groups. In
comparison with ACO-PP-LS, EA-HH is better on 39 instance groups afid worse on 3 instance
groups. In comparison with EA/G-IR, EA-HH is better on 30 instance groups and worse on 12
instance groups. EA-HH is better on 28 instance groups than HMA and worse than HMA on
14 instance groups. In comparison with MSRLS,, EA-HH is better on 34 instance groups and
worse on 4 instance groups. In [28], Javanovic et al. didmnot report computational results on
the instance groups on the network with 300 nodes‘for-both Type I and Type II. Therefore, we
compared the performance on the reported instahee grotps only. On all 28 instance groups, the
EA-HH outperformed the Raka-ACO approach. The average performance also indicates that
the EA-HH approach exhibits better performance than all the other state-of-the-art approaches
presented in the tables.

In terms of computational time, from Tables 11 and 12, it is evident that EA-HH has taken
less computational time than'HGA, ACO-LS, ACO-PP-LS, and EA /G-IR. For HMA and MSRLS,,
we did not report the computational times because their stopping criteria are different from
those of other approaches. However, the EA-HH approach is bit slower than HMA but is com-
putationally more significant than HMA. In the case of MSRLS,, the stopping criterion is fixed
at 3600s. Therefore, EA-HH is faster than the MSRLS,, approach.
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Table 13 presents the Wilcoxon-signed-rank test for the EA-HH approach with Raka-ACO,
HGA, ACO-LS, ACO-PP-LS, HMA and MSRLS, for the MWDS problem. Similar to the SPP,
a two-tail Wilcoxon-signed-rank test is performed to investigate the significance level of the
EA-HH approach with other approaches by setting the significance criterion to 1% (p-value <
0.01). From Table 13, it can be observed that the EA-HH approach is significantly better than
the other approaches.

Similar to the SPP, a mean ranked test is performed over Raka-ACO, HGA, ACO-LS, ACO-
PP-LS, HMA, MSRLS,, and the EA-HH approaches and their ranks are 7.76,5.55, 5.50, 5.05,
2.19, 3.00, 5.05, 1.88, respectively. A smaller value indicates better performance:From the mean

ranked test, it is evident that the EA-HH outperformed all the other apptroaches.

Table 13: Wilcoxon-signed-rank test for the EA-HH with the other approaches for the MWDS problem

Approach EA-HH vs,

N W+ W~ Z Zc  p-value Significance
Raka-ACO[28] 24 0.00  406.00 T=130  -1.96 0.0000 yes
HGA [40] 42 0.00  903.00 -5.645  -1.64 0.0000 yes
ACO-LS [40] 42 5.00  898.00 -5.583  -1.64 0.0000 yes
ACO-PP-LS[40] 42 6.50  896.50 -5.645  -1.64 0.0000 yes
EA/G-IR [8] 42 25150 65150 -2.501 -1.64 0.0062 yes
HMA [32] 42 252.00 __651.00 2494 -1.64 0.0063 yes

MSRLS, [7] 38 20.00 721.00 -5.083 -1.64 0.0000 yes




8. Conclusions

In this paper, we proposed an evolutionary algorithm based hyper-heuristic (EA-HH) frame-
work for the SPP and MWDS problem. In the EA-HH, at the higher level of hyper-heuristic, an
evolutionary algorithm is employed as a search methodology and at the lower level exploratory
and exploitative heuristics are used in the heuristics pool. In the evolutionary algorithm, an
online-learning mechanism is employed to learn the performance of each heuristic at each gen-
eration. The online-learning mechanism was inspired by the UMD algorithin, which at each
iteration estimates the performance of each heuristic and stores their performance in the form
of a probability vector. Further, this probability vector is used to select a heuristic using the
RWS method. Another contribution is the dynamic selection of parameters. Instead of fixing
the parameters, the EA-HH allowed making changes in their valtes with generations. The
computational results show the effectiveness of dynamic selection of parametric. The EA-HH
was compared with the state-of-the-art approaches for.the:sSPP: GRASP [14], ACO [17], and
EA/G [11]. Further, the MWDS problem is used, mainly, to investigate the generality, effec-
tiveness and robustness of the proposed EA-HH appt¥oach. In the case of the MWDS problem,
[28, 40, 8, 32, 7] are the state-of-the-art-approaghes tised to compare with the EA-HH approach.
This can be evident from the computationalresults in Tables 7 to 9 as well as Tables 11 and 12
that the same operators and samethigh-level search heuristic are used to solve the problems
with opposite objectives.

As a future work, we jfitend to’explore the capabilities of other search heuristics such as
taboo search, genetic programming, artificial bee colony, and genetic algorithm, etc. at the
higher level of hypér-heufistics. Further, we will explore the heuristic selection methodology
and rigorously/analyses’the performance for new problems in different domains such as per-

mutation and greuping problems.
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