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ABSTRACT

Polyphonic Sound Event Detection (SED) in real-world recordings
is a challenging task because of the dynamic polyphony level, inten-
sity, and duration of sound events. Current polyphonic SED systems
fail to model the temporal structure of sound events explicitly and
instead attempt to look at which sound events are present at each
audio frame. Consequently, the event-wise detection performance
is much lower than the segment-wise detection performance. In this
work, we propose a joint model approach to improve the temporal
localization of sound events using a multi-task learning setup. The
first task predicts which sound events are present at each time frame;
we call this branch ‘Sound Event Detection (SED) model’, while the
second task predicts if a sound event is present or not at each frame;
we call this branch ‘Sound Activity Detection (SAD) model’. We
verify the proposed joint model by comparing it with a separate im-
plementation of both tasks aggregated together from individual task
predictions. Our experiments on the URBAN-SED dataset show
that the proposed joint model can alleviate False Positive (FP) and
False Negative (FN) errors and improve both the segment-wise and
the event-wise metrics.

Index Terms— Polyphonic sound event detection, sound activ-
ity detection, multi-task learning.

1. INTRODUCTION

Sound event detection (SED) [1] is the task of detecting the label,
onset, and offset of sound events in audio streams. The overlap-
ping nature of different sounds interfered with noise makes it diffi-
cult for accurate detection of sound events. Broadly speaking, the
term sound event refers to a specific sound produced by a distinct
physical sound source, such as ‘a car passing by’, ‘a bird singing’,
‘a gunshot’ or ‘the melody of rain’. Different sound events have
different duration and that can be dynamic too. For example, the
event ‘rain’ can be considered as a continuous event at the same
time ‘a gunshot’ is an instantaneous event. Typically, a soundscape
contains multiple sound events that can occur simultaneously as in
a real scenario or at separate time instants which are respectively
termed as polyphonic sounds and monophonic sounds. In recent
years, SED has been utilized in many applications including audio
surveillance [2], health care monitoring [3], urban sound analytics
[4], bio-acoustics [5, 6] and smart home devices [7].
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1.1. Related Work

Most recent advances in polyphonic SED are largely attributed to
the use of Machine Learning and Deep Neural Networks [8, 9, 10,
11, 12, 13]. In particular, the use of Convolutional Recurrent Neural
Networks (CRNNs) has significantly improved SED performance
in the past few years [14, 15, 16, 17]. However, there are three
main disadvantages with current CRNN-based polyphonic SED ap-
proaches. 1) Most CRNN-based polyphonic SED systems use a
frame-wise cost function for training; as a result these systems of-
ten show relatively high segment-wise accuracy but low event-wise
accuracy. For example, in the DCASE 2016 task on event detection
in real life audio [18], the F1 score is around 30% at segment level
(frame length of 1 second), but only around 5% at event level (tol-
erance of 200 ms for onset and 200 ms or half length for offset). 2)
These methods require pre-segmented training data. For RNNs to
make a prediction at every frame, it is necessary to provide the exact
start and end times of the sound events in the training data, making
data annotation an extremely time-consuming process. 3) CRNN-
based SED requires post-processing methods to transform the out-
put into event sequences. Within these limitations of CRNN based
polyphonic SED, in this work we attempt to enhance CRNN based
polyphonic SED performance using auxiliary learning without any
additional input data representation using a joint model approach.

1.2. Contributions of this work

To the best of our knowledge this is the first attempt to treat the
polyphonic SED task in a joint model framework with sound ac-
tivity detection (SAD) as an auxiliary task. We define SAD as the
task of detecting the presence or absence of any sound events, anal-
ogous to voice activity detection in speech processing. Our exper-
imental results show that re-weighting the predictions of the SED
model with the SAD model predictions, lessen False Positive (FP)
errors in both segments and events, and False Negative (FN) errors
in events which in turn improve polyphonic sound event detection
performance at both the segment and the event levels. Implicitly, the
joint model helps in better temporal localization of sound events.
To claim the effectiveness of the proposed auxiliary task on poly-
phonic SED, irrespective of the benefits of multi-task learning, we
also verify the proposed approach by training the SED and SAD
models separately and re-weight the predictions. The results are
compared with our baseline SED model, aggregation of separately
trained SED and SAD models, and with the joint model.

The rest of the paper is organized as follows. Section 2 covers
the proposed joint model with details on model architecture, feature
extraction, training, and experiments. Section 3 presents the dataset
and evaluation metrics used in this work. In Section 4 the results,
and discussions over the results are reported. Section 5 provides
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conclusions and future directions related to this work.

2. PROPOSED METHOD

The majority of frame-wise prediction models proposed for poly-
phonic SED attempt to predict the class labels of sound events
present in each frame of an audio sample. We assume that, to some
extent, the majority of environmental sounds are either harmonic or
percussive in nature. With this assumption, we propose that it is
much easier to predict the presence or absence of any events in an
audio frame, irrespective of categorization of events. In this work,
we take advantage of the frame-wise training approach to propose
a joint model for polyphonic SED using multi-task learning. The
first task is polyphonic SED that predicts the class labels of sound
events present in each frame of input audio. We call this task as
‘SED model’, which is a frame based multi-label event classifier.
The second task is an auxiliary model which is a binary classifier
that predicts whether an event activity is present or not in each
frame of the audio. We call this task as ‘SAD model’. From a
signal processing perspective, we formulate the effects of dynamic
polyphony levels in the sound events similar to the masking effects
in speech. Consequently, low energy events are masked by high
energy events at each frame. This results in many FN errors in
event predictions which degrade the performance of SED. However
SAD predictions are not affected by masking effects between co-
occurring sound events. Furthermore, SAD can exploit polyphony
to ensure the presence of an event even if one event is masked by
another event with similar or different acoustic properties. The pro-
posed joint approach takes advantage of the auxiliary branch to re-
weight the prediction of sound events at each frame which helps to
mitigate the FN errors in SED. A block diagram of the proposed
joint model is shown in Fig. 1.
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Figure 1: Block diagram of the proposed joint model for polyphonic
SED (T is the number of frames in the input data representation and
C' is the total number of sound event classes in the dataset).
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2.1. Model configuration

We use a state-of-the-art CRNN model architecture presented in
[14] to build our SED and SAD models, with some modifications.
Our focus is to prove the effectiveness of the proposed joint model
framework in enhancing polyphonic sound event detection. With
this aim, we lessen the complexity of the CRNN architecture from
the baseline architecture [14]. Both the SED model and the SAD
model have three blocks of convolutional layers, followed by a sin-
gle Gated Recurrent Unit (GRU) layer. The SED model has a single
dense layer after the GRU layer whereas the SAD model has two
dense layers, which is the only difference between the two model
architectures. The temporal dimension of the input data represen-
tation is unaltered in both the models. The detailed network ar-
chitecture is shown in Fig. 2. The output of the SED model is a
posteriogram matrix with dimensions 1" x C, where T is the num-
ber of frames in the input data representation and C' is the total
number of sound event classes in the dataset. The output represen-
tation of the SAD model is a posteriogram vector with dimension
T. The output of the joint model is the posteriogram matrix with
dimensions T x C, re-weighted on the SED output using the T’
dimensional vector of the SAD model for each event class. This
re-weighted posteriogram matrix is converted into a binary matrix
using a threshold value prior to evaluation.
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Figure 2: The proposed joint model architecture along with the in-
dividual SED and SAD model architectures.

2.2. Feature Extraction

We use librosa [19] to compute mel-scaled spectrograms from the
input raw audio, which is the input data representation to all our
models. Short-term Fourier transform (STFT) is employed to obtain
the spectrogram from the input audio recordings with a hop length
of 882, an FFT window of 2048, and a sample rate of 44.1kHz.
This process converts a ten second (duration of recordings in the
URBAN-SED [20] dataset) audio recording into a 1024 x 500 di-
mensional spectrogram representation. Each frame of this spectro-
gram is converted into a 40-dimensional vector of log filter bank
energies using a Mel filterbank. We apply min-max normalization
on the mel band energies. Hence, each 10-second audio recording
is represented by a 40 x 500 dimensional Mel-spectrogram.

2.3. Training

We train both the SED model and the SAD model in a supervised
manner. The dimension of the labels for the SED model is 7" x C,
and for the SAD model, it is 7". The total loss of the joint model
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is the weighted sum of two cross-entropy losses; one from the SED
model and one from the SAD model:

Ljoint model = Q * LSED + b- LSAD7 (1)

where, Ljoint moder denotes the loss function of the joint model,
and Lsgp and Lsap denote the cross entropy losses of the SED
and SAD models respectively. During training of the joint model,
the individual losses are weighted differently to understand the in-
fluence of each task on the other; a and b denotes the respective loss
weights. We also evaluate the influence of the number of shared
layers on the joint model performance.

Batch normalization [21] is performed on the activations of ev-
ery CNN layer and dropout [22] with a probability of 0.30 is used
for regularization. We train the network for 200 epochs using a bi-
nary cross entropy loss function for both tasks and with Adam [23]
optimizer with a learning rate of 0.001. Early stopping is used to
reduce the overfitting of the network to the training data. The pro-
posed joint model is implemented using Keras [24] with Tensorflow
[25] as backend.

2.4. Experimental Setup

To validate the effectiveness of the proposed joint model in improv-
ing polyphonic SED performance we conduct a total of four ex-
periments. In all experiments, we train the neural network models
with the same input data representation as described in subsection
2.2. The posteriogram outputs from the models are thresholded in
order to obtain the binary event matrices prior to evaluation. We in-
vestigate the effect of different threshold values (0.2, 0.3, 0.4, 0.5)
on the performance of the standalone SED and SAD, and the joint
model using the validation set. Based on the best results, we choose
a threshold value of 0.2 for the SED models in Exp. 1, 3, and 4.
For the SAD model in Exp. 2 we choose 0.5 as the threshold. The
variables in capital bold letters refer to matrices and in small bold
letters refer to vectors.

Experiment 1: We train a standalone SED model to evaluate
SED performance. This is our baseline result. The model is trained
with strong labels; GTsgp with dimension 7' x C' denotes the
ground truth binary event activity matrix for each sample. Model
architecture and training details are explained in subsection 2.1 and
2.3. Lsgp denotes the cross entropy loss of this model. For each
sample, Psgp with dimensions 7" x C is the posteriogram matrix
output of the SED model. Bsgp denotes the binary equivalent of
Psep after thresholding over a constant. Eventually, we use the
binary event prediction matrices for evaluation.

Experiment 2: We train a standalone SAD model for event
activity prediction as explained in subsection 2.3. The ground truth
labels gtg 4 used to train this model are the binary event activity
vectors over the entire time span of the input data. The ground truth
labels are created by truncating the strong label SED ground truths
across the event classes as:

8tsap ‘= 8tspp, V8tspp, V.-V 8tspp, )

where gtg . denotes the ground truth event activity vector corre-
sponding to event C' of GTsgp. Lsap denotes the cross entropy
loss of this model. For each sample, pg 4, with dimension T is the
posteriogram vector output of the SAD model. bsap denotes the
binary equivalent of pg 4, after thresholding over a constant. We
use the binary event activity vectors for evaluation.

Experiment 3: To demonstrate the gain of carrying out sound
activity detection on polyphonic SED performance, irrespective of
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the advantages of multi-task learning, we aggregate the output pre-
dictions of the standalone SED model of Exp. 1 and the SAD model
of Exp. 2. The output posteriogram vectors from the SAD model
are repeated to form posteriogram matrices as:

Psap :=repeatpg s p 3)

We use these posteriogram matrices to re-weight (Hadamard prod-
uct) the outputs from the SED model to form the final predictions
as:

Pjoint.modet :=Psep © Psap 4)

The final predictions are thresholded to get event activity binary
matrices to compute the evaluation metrics.

Experiment 4: The proposed joint model approach for poly-
phonic SED as explained in this section is trained in a multi-task
learning setup. The total loss (eq. 1) of the model is the weighted
sum of the SED model loss and the SAD model loss. Exp. 4a and
4b respectively represent the proposed joint model (with equal loss
weights of a = b = 0.5 and with loss weights of @ = 0.3 and b =
0.7) for the SED and SAD tasks. Post-processing and evaluation is
carried out as explained in Exp. 3.

3. DATASET AND METRICS

We use the URBAN-SED [20] dataset in all experiments. URBAN-
SED is a dataset of 10,000 soundscapes with sound event annota-
tions generated using Scaper [20], an open-source library for sound-
scape synthesis and augmentation. All recordings are of 10sec long,
16-bit mono and sampled at 44.1kHz. The annotations are strong,
meaning for every sound event the annotations include the onset,
offset, and label of the sound event. Every soundscape contains
between 1-9 sound events from the list (air_conditioner, car_horn,
children_playing, dog_bark, drilling, engine_idling, gun_shot, jack-
hammer, siren and street_music) and has a background of Brown-
ian noise. The URBAN-SED [20] dataset comes with pre-sorted
train, validation and test sets; we use this default data split. Among
10,000 soundscapes, 6000 samples are used for training, 2000 sam-
ples for validation and 2000 samples for testing.

In all experiments, we use the F-score and Error Rate (ER)
for performance evaluation, with F-score as the primary evaluation
metric. The evaluation metrics are computed in both segment-wise
and event-wise manners using the sed_eval tool [26]. Segment-
wise metrics compare system output and reference in short time
segments. Event-wise metrics compare system output and corre-
sponding reference event by event, with the metric showing how
well the system detects event instances with the correct onset and
offset. The evaluation scores presented in this work are micro av-
eraged values, computed by aggregating intermediate statistics over
all test data; each instance has equal influence on the final metric
value. The ideal value of F-score is 100 and ER is zero. We use
a segment length of one second to compute segment based met-
rics. The event-based metrics are calculated with respect to event
instances by evaluating only onsets with a time collar of 250 ms.

4. EVALUATION

Both segment-based and event-based F-score and error rates are
computed on the test set of the URBAN-SED [20] dataset for each
of the experiments listed in Section 2. Tables 1 and 2 show the
results of Exp. 4, which respectively summarize the influence of
shared layers and loss weights on the performance of the joint
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Table 1: Results wrt number of shared layers for the joint model of
Exp. 4.

F1 (%) Error rate
Layers shared Segment Event Segment Event
Conv 1 39.40 8 1.08 3.79
Conv 1,2 41.03 8.76 0.97 3.58
Conv 1,2,3 36.47 6.19 1.31 3.75

Table 2: Results wrt different loss weights for the model of Exp. 4.

loss weights F1 (%) Error rate
(a, b) Segment Event Segment Event
(0.7,0.3) 36.12 5.62 1.08 441

(0.5,0.5) 41.03 8.76 0.97 3.58
(0.3,0.7) 34.18 10.28 0.91 2.36

model. To understand the effect of shared layers on joint model per-
formance, the experiments are carried out with equal loss weights
(a = b = 0.5) as described in eq. (1). The best scores (F-scores
of 41.03% (segment) and 8.76% (event)) are achieved with sharing
the first two convolutional layers. We use this model architecture
to evaluate the influence of individual loss weights and in all fur-
ther comparisons. Analysing the results of Table 2, the best metric
scores are obtained by using the same weight of (a = b = 0.5) for
both the SED and the SAD losses. An interesting observation is that
the event based metrics improve (from 8.76% to 10.28%) when a
slightly higher weight is given to the SAD loss which intuitively val-
idates the influence of SAD task on efficient temporal localization
of sound events.

Table 3 summarizes the evaluation results for Experiments 1-
4. Exp. 1 represents the baseline results of the standalone SED
model. Exp. 2 shows the metric values of the standalone SAD
model. The high scores of the SAD model (F-scores of 97.48% and
43.14% at segment and event levels) for event activity prediction
justify the intuition of using the SAD model as an auxiliary branch
to improve polyphonic SED performance. Exp. 3 represents the
proposed joint model approach with separate training for the SED
and SAD tasks. Analyzing the overall results, the segment based
F-score increases from the baseline score of 35.48% to 39.25% and
41.03% respectively for separate training and joint training of the
proposed method. Similarly, there is improvement in event based
F-score from a baseline value of 7.34% to 11.13% and 8.76% re-
spectively for separate training and joint training of the proposed
method. With the proposed method error rates are also reduced at
both segment and event levels. The event based F-score for the
jointly trained model is slightly lower than the separately trained
and aggregated model. However the improved F-score for segments
and events for the separately trained model in Exp. 3 validates our
method. With further improvements to the architecture and multi-
task learning setup we believe the joint model can further improve
detection performance. The results clearly indicate the effective-
ness of the proposed method for improving polyphonic sound event
detection performance.

Table 4 shows another interesting observation from the best
joint model of Exp. 4a. Jsap represents the sound activity detec-
tion performance of the ‘SAD model’ of the joint model, similarly
Jsep and Jsgp_sap respectively represents sound event detection
performance with the ‘SED model’ and aggregation of predictions
from ‘SED model’ and ‘SAD model’ of the joint model. The results

October 20-23, 2019, New Paltz, NY

Table 3: Results for Experiments 1, 2, 3, and 4.

F1 (%) Error rate
Case Segment Event Segment Event
Exp. 1 35.48 7.34 1.54 3.81
Exp. 2 97.48 43.14 0.05 0.78
Exp. 3 39.25 11.13 1.21 2.90

Exp. 4a 41.03 8.76 0.97 3.58
Exp. 4b 34.18 10.28 0.91 2.36

Table 4: Results on individual branches for the model of Exp. 4a.

F1 (%) Error rate
Model Segment Event Segment Event
Jsap 98.53 46.23 0.03 0.72
JsED 40.99 8.28 0.97 3.65

JSED.SAD 41.03 8.76 0.97 3.58

Table 5: Precision and Recall for SED for Exps. 1, 3, and 4a.
P (%) R (%)
Case Segment Event Segment Event
Exp. 1 26.69 4.70 52.88 16.85
Exp. 3 31.82 7.57 51.19 21
Exp. 4a 36.84 5.67 46.29 19.26

show that with the best combination of loss weights and number of
shared layers, the ‘SED model’ of the joint model achieves almost
the same results to that of the aggregation of the SED and SAD pre-
dictions. This means that with a good joint training procedure it is
possible to achieve the best performance without the aggregation of
individual SED and SAD predictions at a post-processing stage.
We also verity that the proposed method can lessen FP errors
in both segments and events, and FN errors in events. We compute
the segment-based and event-based precision (P) and recall (R) for
Experiments 1, 3, and 4a (see Table 5). Based on these results we
also claim that to some extent the proposed approach helps in tem-
poral localization of sound events. At the same time, we under-
stand that our proposed method has the following limitations: 1)
The proposed method is not very successful in decreasing the gap
between segment-wise and event-wise scores in polyphonic SED; 2)
Our work has not addressed the explicit modeling of sound events.

5. CONCLUSIONS AND FUTURE WORK

Within the limitations of current frame-based CRNN training meth-
ods, we proposed an auxiliary learning branch for event activity de-
tection in order to improve polyphonic SED performance. We suc-
cessfully evaluated the effectiveness of the proposed method on the
URBAN-SED dataset. From our experimental results we conclude
that: 1) the proposed joint model can improve polyphonic SED per-
formance at both the segment and event levels and, 2) the proposed
joint model can alleviate FP errors in both segments and events, and
FN errors in events; which in turn improve the temporal localization
of sound events. To further validate the method, we need to conduct
similar experiments on more unbalanced and real-world datasets.
We also plan to add one more branch to the existing method to pre-
dict frames conditioned on the event onsets as demonstrated in [27].
We hope such an implementation can bring down the error rate and
also help in explicit modeling of sound events.
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