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Abstract

This paper extends the results of Hermida’s thesis about logical predicates to more general logical relations and a wider collection
of types. The extension of type constructors from types to logical relations is derived from an interpretation of those constructors
on a model of predicate logic. This is then further extended to n-ary relations by pullback. Hermida’s theory shows how right
adjoints in the category of fibrations are composed from a combination of Cartesian lifting and a local adjunction. This result is
generalised to make it more applicable to left adjoints, and then shown to be stable under pullback, deriving an account of n-ary
relations from standard predicate logic. A brief discussion of lifting monads to predicates includes the existence of an initial such
lifting, generalising existing results.
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1 Introduction

The purpose of this paper is to illustrate a link between logical relations and predicate logics. We begin by
revisiting the conditions under which the predicates in a predicate logic for reasoning about a type theory can
be shown to carry the structure of that type theory. We then show that similar structure on binary and more
generally n-ary relations can be derived from that on unary predicates. Finally, we take a look at structure
defined via monads. The core of this material is already known. We extend the results to bring out more
clearly what is needed, handle n-ary predicates via change of base, and discuss monadic types.

In order to do this we make use of the tools of category theory. From this perspective, predicate logic is
formalised as a fibration over a category representing the type theory. More accurately the base can be taken to
have objects representing contexts consisting of variable:type bindings, and morphisms given by substitutions.
We concentrate first on type theoretic structure that is defined by adjunction (products, function spaces and
sums), but we then discuss monadic structure.

Logical relations were introduced by Gordon Plotkin [13,15]. But he is generous in giving credit to others,
notably Hans Laüchli, Mike Gordon and Robert Milne. Milne had come up with a similar idea in connection
with proving the equivalence of different semantics for programming languages (under the name of inclusive
predicates) [12]. It is Milne’s insight, that these structures can be used to establish a formal link between
different semantics, that has led to most of the modern work using them.
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Since this time, the basic idea has been interpreted in a variety of settings. Calculi have been introduced for
working with them, [14] and others, and the idea has been explained in terms of structure-preserving functor
from categories of logical relations to the underlying types.

In this paper we build on that, starting out with Hermida’s work on logical predicates and how the structure
of adjunctions between fibrations leads to an account of the interpretation of type theory in logical predicates.

We mine Hermida’s work slightly to show that we do not always need the full structure of fibrations. The
key point where this has impact in the case of coproducts. Hermida’s account along with successors, requires all
cocartesian liftings. This is a strong condition that does not hold in all the syntactic fibrations corresponding
to logics.

We then prove a change of base theorem for Hermida’s account, and use it to derive the formation of
the same type constructions in n-ary relations. The example of function spaces shows that this is not as
straightforward as first appears.

We conclude the paper with a discussion of monadic types. These behave differently from the conventional
type-theoretic structures. We emphasise this with examples: monads on Set preserves monics, and hence
extend to functors on Pred, but not all are fibred (the continuation monad); even though we immediately get
an extension to Pred we need more work to get one for Rel (continuations again and also some algebraic theories
like Mal’cev algebras). We also present a sufficient condition to have an initial lifting of a monad, relating it
to recent work of Kammar and McDermott [8].

This work forms part of a programme, starting with [6], in which we attempt to relate the theory of logical
relations to other forms of programme logic and standard forms of mathematical reasoning. The work in this
paper supports deriving logical relations from predicates in the standard way that we expect. An issue with this
approach is that it requires relations to have a single logical metastructure, rather than to give a systematic link
between two different metastructures. This can be mitigated to some extent because the structures considered
are closed under products, so can always be combined into a single entity. The work also contains the start of
a treatment of monadic types. We expect to put more detail on that in future work.

2 Predicates and relations

To illustrate the concepts we use the categories of unary and binary relations: Pred and Rel.

Definition 2.1 [Pred] The objects of the category Pred are pairs (P,A) where A is a set and P is a subset of
A. A morphism (P,A)→ (Q,B) is a function f : A→ B such that ∀a ∈ A.a ∈ P ⇒ f(a) ∈ Q. Identities and
composition are inherited from Set.

Pred also has a logical reading. We can take (P,A) as a predicate on the type A, and associate it with
a judgement of the form a : A ` P (a) (read ”in the context a : A, P (a) is a proposition”). A morphism
(a : A ` P (a)) → (b : B ` Q(b)) has two parts: a substitution b 7→ t(a), and the logical consequence
P (a)⇒ Q(t(a)) (read ”whenever P (a) holds, then so does Q(t(a))).

Definition 2.2 [Rel and Reln] The objects of the category Rel are triples (R,A1, A2) where A1 and A2 are sets
and R is a subset of A1 ×A2 (a relation between A1 and A2). A morphism (R,A1, A2)→ (S,B1, B2) is a pair
of functions f1 : A1 → B1 and f2 : A2 → B2 such that ∀a1 ∈ A1, a2 ∈ A2.(a1, a2) ∈ R ⇒ (f1(a1), f2(a2)) ∈ S.
Identities and composition are inherited from Set× Set.

P Q R S

A B A1 ×A2 B1 ×B2
f f1×f2

Reln is the obvious generalisation of Rel to n-ary relations.
Pred has a forgetful functor p : Pred→ Set, p(P,A) = A, and similarly Rel has a forgetful functor q : Rel→

Set × Set, q(R,A1, A2) = (A1, A2). These functors carry a good deal of structure and are critical to a deeper
understanding of the constructions.

Moreover, both Pred and Rel are cartesian closed categories.

2.1 Cartesian closed structure

The terminal object in Pred is (1, 1), a singleton set with itself as designated subset. In Rel the terminal object
is (1× 1, 1, 1), the total relation on two singletons.

Products are not much more complex. In Pred the product of (P,A) and (Q,B) is (P ×Q,A×B). And in
Rel the product of (R,A1, A2) and (S,B1, B2) is (R × S,A1 × B1, A2 × B2), where ((a1, b1), (a2, b2)) ∈ R × S
if and only if (a1, a2) ∈ R and (b1, b2) ∈ S.
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The last part of the cartesian closed structure is the function space construction. In Pred, the function
space [(P,A) → (Q,B)] is [R,A → B] where R is the subset of functions A → B mapping P into Q. In Rel
The function space [(R,A1, A2)→ (S,B1, B2)] is (R→ S,A1 → B1, A2 → B2), where f1[R→ S]f2 if and only
if ∀a1 ∈ A1, a2 ∈ A2. a1RA2 ⇒ f1(a1)Sf2(a2).

So, both Pred and Rel are not only cartesian closed categories, but the forgetful functors p and q preserve
all of that structure.

2.2 Sums

These properties extend to sums (coproducts). In Pred (P,A) + (Q,B) = (P +Q,A+ B) where c ∈ P +Q if
and only if c ∈ P or c ∈ Q.

Sums in Rel are constructed similarly. (R,A1, A2)+(S,B1, B2) = (R+S,A1 +B1, A2 +B2), where x[R+S]y
if and only if (x = inl a ∧ y = inl(b) ∧ aRb) ∨ (x = inr a ∧ y = inr(b) ∧ aSb).

3 Fibrations

We start with an interpretation of predicate logic such as p : Pred → Set. This has structure beyond being a
homomorphism of cartesian closed categories. It is a fibration equipped with structure that supports an inter-
pretation of predicate logic. See Jacobs [7] for a comprehensive introduction to fibrations and the interpretation
of logic in them.

Given a functor p : E → C, and an object A of C, then p−1(A) forms a subcategory in which the morphisms
are those mapping onto the identity of A. This is called the fibre of p over A, written EA. In the context of
fibrations, the morphisms of EA are called vertical maps. In the context of logic, the object A represents a
context in the sense of a structure giving variable:type bindings, and the fibre over it represents propositions
definable in that context ordered by consequence.

For any functor p : E → C, each object of E is an object of a unique fibre. Hence the objects of E are
the disjoint union of the objects of the fibres, obE =

∐
A∈obC EA. But for a general functor p the fibres over

distinct objects A and B may be entirely unrelated, even when there is a morphism f : A → B. That is not
the case in p : Pred→ Set, or in fibrations more generally.

In p : Pred → Set, pulling back along f : A → B induces a functor f∗ : PredB → PredA and rewriting the
defining property of the pullback of p along f in terms of the functor p we get the definition of a cartesian
map.

Definition 3.1 If p : E → C is a functor, then F : e1 → e2 is said to be cartesian with respect to p iff for
any G : e0 → e2 and any factorisation p(G) = p(F ) ◦ h, then there is a unique map H : e0 → e1 such that
G = F ◦H and p(H) = h.

Definition 3.2 A functor p : E → C is a fibration if for any f : c1 → p(e2) there is a cartesian map F : e1 → e2

such that p(F ) = f (and hence p(e1) = c1). This map is called a cartesian lifting of f .

The next lemma collects properties of p : Pred→ Set, and follows immediately from the definitions.

Lemma 3.3 For p : Pred→ Set:

(i) f : (P,A) → (Q,B) is cartesian if and only if P = f−1(Q) (i.e. the implicit commutative square is a
pullback)

(ii) p is a fibration

(iii) the fibre of p over A is the lattice of subsets of A.

It follows easily from the definition that cartesian liftings are unique up to unique isomorphism. Specifically,
if F : e1 → e2 and F ′ : e′1 → e2 are both cartesian liftings of f : c1 = p(e1) = p(e′1)→ e2, then there is a unique
map i : e1 → e′1 such that F = i;F ′ and p(i) is the identity on c1. The map i is necessarily an isomorphism.

Moreover, suppose we are given f : A → B and for each object e2 of EB a chosen cartesian lifting of f ,
Fe : f∗(e) → e. Then f∗ (defined on objects) extends uniquely to a functor f∗ : EA → EB . This does not
mean that if we are given chosen cartesian liftings, then we can use these to derive a functor p∗ : Cop → Cat.
We may not be able to choose our cartesian liftings so that the composite of the liftings along morphisms g
and f are always the liftings along the composite gf . Instead we get a pseudo-functor, in which the functor
p∗(gf) is naturally isomorphic to (p∗g) ◦ (p∗f). The components of these natural isomorphisms are vertical,
they are maps in the relevant fibres.

However, we will be working mainly with fibrations where the fibres are partial orders. In this case, the
only isomorphisms in a fibre are identities, cartesian liftings are thus unique, and we do get a functor.
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Note that in any fibration p : E → C, any morphism f : e1 → e2 in E factors as a vertical map followed by
a cartesian (the cartesian is the lifting of p(f), and the vertical is obtained by factoring f through the cartesian
over the triangle id; p(f) = p(f)). This factorisation is unique up to isomorphism, so when fibres are partially
ordered it is unique. That applies in particular to p : Pred→ Set and to q : Rel→ Set× Set.

A morphism of fibrations (or cartesian functor) is given by a commutative square in Cat as on the left below
in which the topmost functor preserves cartesian maps. Since any Φ over φ preserves vertical maps, a cartesian
functor also preserves the factorisation of morphisms into vertical and cartesian. In any square of functors as
on the left below, Φ induces functors between the fibres: ΦA : EA → E′φ(A). Since a morphism of fibrations

preserves cartesian maps, those functors are natural with respect to the reindexing functors f∗, at least up to
isomorphism, as on the right:

E E′ EB EφB

C C ′ EA EφA

Φ

p p′

ΦB

f∗ (φf)∗

φ ΦA

The exact formal expression of this naturality for general fibrations requires detailed coherence conditions
for pseudo-natural transformations, while the formal definition in the fibrational approach is simple. In our
case, we are dealing with partial orders and might reasonably adopt this alternative approach.

The interpretation of logical relations requires extending type structure from the base category C to the
global category E. In order to do that we need structure defined by adjunctions. Formalisation of that requires
2-cells between functors.

Definition 3.4 The 2-category Cat↓ has:

objects (0-cells): an object is a functor p : E → C

morphisms (1-cells): a morphism from p : E → C to p′ : E′ → C ′ is a pair of functors Φ : E → E′ and
φ : C → C ′ such that p′Φ = φp.

2-cells: a 2-cell from (Φ, φ) to (Ψ, ψ) is a pair of natural transformations X : Φ ⇒ Ψ and χ : φ ⇒ ψ such
that p′X = χp.

E E′

C C ′

Φ

⇓ X
Ψp p′

ψ

=

E E′

C C ′

Φ

p p′φ

⇓ χ
ψ

The 2-category Fib is the subcategory of Cat↓ in which objects are fibrations, morphisms are cartesian functors
and 2-cells are as in Cat↓ (it is a locally full sub-2-category).

Suppose f : C → C ′ and p′ : E′ → C ′ is a fibration. Then a simple check shows that the pullback of p′

along f in Cat is also a fibration, and that the pullback square is a morphism of fibrations.

f∗E′ E′

C C ′

F

f∗p′
y

p′

f

Note that if A is an object of C, then the fibre of f∗p over A is (isomorphic to) the fibre of p′ over f(A). A
particular example of this is Rel, which is the pullback of Pred along the product map Set× Set→ Set.

Rel Pred

Set× Set Set

q
y

p

(−)×(−)

We shall be particularly interested in two kinds of fibrations, semantic and type-theoretic/logical.
Our paradigmatic example of a semantic fibration is Pred. In a semantic fibration, the underlying category

C is a category of (semantic) mathematical objects, such as Set. The fibre of E over an object A of C is
(derived from) a class of maps into A in C. In the case of Pred, these are the inclusions of subsets. Reindexing
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is given by pullback, and hence cartesian maps correspond to pullback squares. If we need to interpret logical
formulae, then we use the standard trick in which an n-ary predicate on A1, . . . , An is interpreted as an element
of the fibre over A1× . . .×An. In the case of Pred this says that an n-ary predicate on A1, . . . , An is interpreted
as a subset of, and hence a unary predicate on A1 × . . .×An.

In a logical/type-theoretic fibration, the objects of C consist of contexts, usually a list of variable/type
bindings: x1 : A1, . . . , xn : An. Objects of the fibre over a context consist of types (if modelling type theory)
or predicates (if logic) in the given context. An example would be: x : A, y : A, z : B ` x = y. Morphisms in C
are substitutions. So a morphism from y1 : B1, . . . , ym : Bm to x1 : A1, . . . , xn : An is given an n-tuple of terms
in context y1 : B1, . . . , ym : Bm, y1 : B1, . . . , ym : Bm ` ti : Ai, representing the substitution (xi 7→ ti)i=1...n.
Reindexing, and hence the cartesian maps of the fibration, corresponds to performing these substitutions in the
types or in the predicates. If contexts admit the laws of contraction, weakening and exchange, then the base
category has finite products. If (in addition) the type theory itself has finite product types, then the context
x1 : A1, . . . , xn : An can be replaced by x : A1 × . . .×An, and so can be taken to consist only of a single type.

4 Adjunctions

Much type-theoretic structure is defined categorically through adjunctions. This includes products, coproducts
and function spaces, though not monadic structure.

The standard definition of an adjunction between a functor F : C → D and a functor G : D → C (written
F a G : C → D) is an isomorphism D(Fa, b) ∼= C(a,Gb) natural in a and b. But this is equivalent to a
formulation that allows us to define an adjunction between morphisms in an arbitrary 2-category:

Definition 4.1 An adjunction F a G : C → D in a 2-category is a pair of 2-cells η : 1C → GF and
ε : FG→ 1D satisfying

C D

C D

F

id
η⇒
⇒εG id

F

=

C D

C D

F

id id

F

D C

D C

G

id
ε⇐
⇐ηF id

G

=

D C

D C

G

id id

G

This gives us the definition of an adjunction in Cat↓ and an adjunction in Fib. Unpacking these definitions
we see that in both cases an adjunction between

E E′

C C ′

Φ

p p′

φ

and

E′ E

C ′ C

Ψ

p p′

ψ

amounts to an adjunction in the base φ a ψ and an adjunction between the global categories Φ a Ψ which live
over each other in the appropriate sense. Specifically, this means that an adjunction (Φ, φ) a (Ψ, ψ) in Cat↓ is
exactly a map (p, p′) of adjunctions as in Mac Lane [11] IV.7.

We will also use a third characterisation of adjunctions.

Lemma 4.2 Suppose F a G : C → D, and let ε : FGd→ d be the adjoint of id : Gd→ Gd (the counit of the

adjunction). Then for any f : Fc→ d, f̂ , the adjoint of f , is the unique map f̂ : c→ Gd such that f = F (f̂); ε.

This tells us that if we consider the comma category (F ↓ d), whose objects are morphisms in D Fc → d,
and whose morphisms are maps f in C, such that F (f) makes the obvious triangle commute, then ε : FGd→ d
is terminal in (F ↓ d). A converse is also true. Given F , and for each object d of D a choice of terminal object
εd : F (cd) → d in (F ↓ d), then there is a unique functor G : D → C such that Gd = cd, F a G and ε is the
counit of the adjunction.

A dual result links the other direction of the adjunction and the unit (the adjoint of id : Fa → Fa): for
any g : a→ Gb, ĝ, the adjoint of g, is the unique map ĝ : Fa→ b such that g = η;G(ĝ).

5 Adjunctions between Fibrations

Each map in a fibration factors as a vertical part (something that lives in a single fibre), followed by a cartesian
part (something that represents a straightforward translation between fibres). In this section we reproduce
Hermida’s result that adjunctions between fibrations factor in a similar way, and extend it slightly to morphisms
of categories.
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5.1 Change of base

The equivalent of a cartesian map in a fibration, is a cartesian functor that arises through change of base. The
first result says that an adjunction in the base extends to an adjunction between a fibration and its change of
base.

Lemma 5.1 (Hermida, [4,5]) Suppose p : C → A is a fibration, and f a g : B → A is an adjunction, then
there is a fibred adjunction

f∗C C

B A

p∗f

⊥
f∗p p

ĝ

f

⊥
g

Proof. Let ε be the counit of f a g and c an object of C. Then define ĝ(c) = (g(c), ε∗c), where ε : ε∗c→ c is
a (chosen) cartesian lifting of εpc : fgpc→ pc. 2

Looking closely at the proof, we have only used the fibration structure to justify the existence of ε. So the
same proof gives a result for arbitrary categories:

Corollary 5.2 Suppose q : C → A, and f a g : B → A is an adjunction, and for all c ∈ C, the counit of
f a g, ε : gfpc → pc has a cartesian lifting to c, then there is an adjunction p∗f a ĝ : p∗C → C over the
original adjunction, as in section 4, giving an adjunction in Cat↓.

Taking the opposite of all categories we get a corresponding result for left adjoints:

Corollary 5.3 Suppose q : C → A, and f : B → A has a left adjoint g. Suppose moreover that the unit of the
adjunction has a cocartesian lifting to C, then p∗f : p∗C → C has a left adjoint ĝ, and the adjunction ĝ ` p∗f
lies over the original adjunction g ` f .

5.2 Factorisation of adjunctions

These results can now be extended to arbitrary adjunctions. We show that under some lifting conditions, an
adjunction can be composed of an adjunction over a fixed based (the vertical part) and an adjunction obtained
from change of base as in Lemma 5.2 (the cartesian, horizontal part). The following is also a vanilla extension
of Hermida, [4,5]. We do not require the functors p and q to be fibrations.

Proposition 5.4 Suppose f : D → C over f : B → A, that f has a right (resp. left) adjoint g, and that both
the unit, η and counit ε of that adjunction have cartesian liftings to arbitrary objects of C and D Let f factor
through the pullback f∗C as follows:

D C = D f∗C C

B A B A

f

⊥

q
g

p

f

f̃

⊥

q

g̃

p∗f

⊥

f∗p
ĝ

p
f

⊥
g

f

⊥
g

Then the following are equivalent:

(i) f has a right (resp. left) adjoint g over the adjunction f a g
(ii) f̃ has a right (resp. left) adjoint g̃ over the identity on B.

Proof. For right adjoint (i)→(ii): Suppose (b, c) ∈ ob(f∗C). Let η̃ : η∗c → gc be a (chosen) cartesian lifting
of the unit η : b → gfb = gpc = qgc. Define g̃(b, c) = η∗c. As before, g̃ extends canonically to a functor over
the identity on B.

To establish the adjunction, suppose β = (β1, β2) : f̃d = (qd, fd) → (b, c) in f∗C. We have fβ1 = pβ2 :
fqd = pfd→ fb = pc. Using the adjunction in the base, the right adjoint of this is (gfβ1)η : qd→ gfb. But η
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is natural, so (gfβ1)η = ηβ1. Turning now to the adjunction f a g, the right adjoint β̂ : d→ gc of β2 : fd→ c

lives over ηβ1. Since η̃ is cartesian over η, there is a unique β̃ : d → η∗c = g̃(b, c), lying over β1, such that

η̃β̃ = β̂. This construction is natural in both variables, and hence gives an adjunction lying over the identity
adjunction on B as required.

For left adjoint: apply the result to the duals of all categories. 2

This decomposition of adjoints says that right adjoints are obtained in two parts. The first part is a cartesian
lifting. In terms of standard predicate structure, this amounts to substituting terms into the predicate given
as argument. The second part is an adjunction between two fibrations over the same base. This part depends
on the existence of particular logical structure. For example, we will see that conjunction is used to give
products, disjunction is used for sums (using the dual result for left adjoints), and implication and first order
quantification produce function spaces.

5.3 Examples

In this section we look out how the construction above helps define structure on Pred→ Set.

Example 5.5 [Products] Product is right adjoint to the diagonal: Set Set× Set⊥
∆

×
Consider the pullback of Pred× Pred along ∆:

Pred ∆∗(Pred× Pred) Pred× Pred

Set Set× Set

∆

∆̃

⊥

p

∧

(p×p)∗∆

⊥

∆∗(p×p)
ĝ

p×p
∆

⊥
×

On Pred, ∆ maps a predicate P on set A to the pair of predicates (P, P ) on the pair of sets (A,A). The fibre

of ∆∗(Pred × Pred) over the set A is Pred(A) × Pred(A), so ∆ factors through ∆∗(Pred × Pred) by ∆̃, where

∆̃ maps P to (P, P ) in the fibre of ∆∗(Pred× Pred) over A. (p× p)∗∆ now maps this to (P, P ) in the fibre of
Pred× Pred over A×A.

The adjoint of (p × p)∗∆, as per Lemma 5.1, is given by lifting along the counit of the adjunction in the
base. That counit is the product of the projections ε : (a0 × a1, a0 × a1) → (a0, a1): λ(x, y). (π0(x), π1(y)).
Hence, given predicates P on A and Q on B, ĝ maps (P,Q) over (A,B) to (π∗0P, π

∗
1Q) over A×B.

Putting this in more logical terms: if a : A ` P (a) : Pred and b : B ` Q(b) : Pred, then the result of
applying ĝ to this pair of predicates is the pair got by substituting a 7→ π0(x) into P (a), and b 7→ π1(x) into
Q(b): x : A×B ` (P (π0x), Q(π1x)) : Pred× Pred.

The point of this operation is to get two predicates on the same type. This is obscured if we write something
like: a : A, b : B ` (P (a), Q(b)) : Pred× Pred.

The adjoint of ∆̃ is ∧, which takes a pair (P1, P2) of predicates on A to their intersection, P1 ∧ P2. From a
logical perspective, this is conjunction.

Putting this together, we get that the right adjoint to ∆ : Pred→ ∆×∆ takes a pair of predicates (P,Q)
over (A,B) (written as (P (a), Q(b)) to the predicate P (a)∧Q(b) on A×B. This is what we expect. It would be
easy to calculate this directly, but the point is to see this as coming from our general framework for adjunctions.

Example 5.6 [Function spaces] For function spaces we have:

7



Hermida, Reddy and Robinson

Pred (−×A)∗Pred Pred

Set Set

−×P

−∧P

⊥

p

g̃

p∗(−×A)

⊥

(−×A)∗p

ĝ
p

−×A

⊥
A→−

Here, P is a predicate on A, and −×P is the functor just calculated, sending a predicate Q on B to Q(b)∧P (a)
on B ×A. As before, we compute the right adjoint in stages.

Given (Q,B) in Pred(B), the counit in the base is evaluation: evB : (A→ B)×A→ B.
ĝ(Q,B) is then ev∗B(Q,B), the pullback of (Q,B) along evB . Reading this from a logical perspective, this

amounts to a substitution b 7→ f(a) in Q(b). We write the result informally as f : A→ B, a : A ` Q(f(a)) Pred,
or more formally as x : (A→ B)×A ` Q((π0x)(π1x)) Pred.

Now, the fibre of (− × A)∗Pred over a set C is Pred(C × A), and − × P factors through this via − ∧ P .
Specifically, if R is a predicate on C, then R ∧ P is R(c) ∧ P (a), a predicate on C ×A.

The right adjoint to this, g̃, takes a predicate S(c, a) to ∀a ∈ A.P (a)→ S(c, a). This exists in Pred, but if
we are working in a fibration encoding a more general logic, it will be sufficient for that logic to have implication
and first-order quantification.

Putting this with the previous adjoint, we get that Q is sent to a predicate on A→ B which holds of f iff
∀a ∈ A,P (a)→ Q(f(a)), as expected.

Example 5.7 [Coproducts] The theory for coproducts is similar to that for products. The overall structure
of the diagram below is identical to that for products, but we have left adjoints rather than right. In par-
ticular, ∆, ∆̃ and ∆∗(Pred × Pred), etc are exactly as before. The left adjoint to ∆̃ is disjunction in the
fibres. To get a left adjoint to (p × p)∗∆ we use a cocartesian lifting along the unit in the base. The unit
in the base is λ(a, b).(inl a, inr b) : (A,B) → (A + B,A + B). The cocartesian lifting of this takes a pair
of predicates P on A and Q on B to the predicates case x of {inl a -> P(a); inr b -> False} and
case x of {inl a -> False; inr b -> Q(b)}, both predicates on A+B. This is a weak form of existential
quantification, significantly weaker than having cocartesian liftings along arbitrary maps. Cocartesian liftings
along product projections correspond to standard existential quantification.

Pred ∆∗(Pred× Pred) Pred× Pred

Set Set× Set

∆

∆̃

>

p

∨

(p×p)∗∆

>

∆∗(p×p)
ĝ

p×p
∆

>
+

6 Change of base

6.1 Results

This section is about the implication of the results in section 5 for situations obtained by change of base. We
want to transfer structure from a primary fibration to another obtained from it by pullback along a suitable
change of base. The key example is pullback of Pred along Π : Setn → Set, which expresses the fact that an
n-ary relation can be regarded as a unary predicate on the product of the underlying sets.

First, we observe that pullback preserves cartesianness, even when the categories involved are not fibrations.

Lemma 6.1 Suppose the diagram below is a pullback of categories, and that α : P0 → P1 is cartesian in P
over Fα where α : B0 → B1. Then (α, α) is cartesian in F ∗P over α.
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F ∗P P

B A

p∗F

F∗p p

F

For our purposes we consider the following situation in the base. We have a commutative square, as below,
in which the horizontal arrows F and G have right adjoints F r and Gr. It is not necessarily the case that
KGr = F rH, though there is a canonical natural transformation between them, the mate of the identity on
FK = HG. We will consider an adjunction of categories over F a F r, pulled back along H and K.

Lemma 6.2 Suppose we are given a commutative square as above, and a category P over A. This produces
the cube below in which the front face and the left and right sides are pullbacks. The functor G is obtained as
the obvious pullback factorisation. The functors F and G have right adjoints F r and Gr.

K∗F ∗P H∗P

F ∗P P

D C

B A

⊥
G

K∗F∗p

p⊥
G

K
Gr H

⊥
F

F r

Suppose ε is the counit of G a Gr, and that Hε has cartesian liftings to P . Then G has a right adjoint over
Gr.

Proof. Since pullbacks compose, the composite of the front and left faces is also a pullback. Hence so is the
composite of the back and right faces. This in turn implies that the back face is a pullback. We now apply
lemma 6.1, to show that ε has cartesian liftings to H∗P , and lemma 5.2 to yield the result. 2

Lemma 6.3 Suppose G a Gr is an adjunction in Cat/B, then pulling back along a functor K : D → B gives
an adjunction over D.

Proof. Pullback along K gives a 2-functor K∗ : Cat/B → Cat/D. K∗ therefore preserves unit and counit
of the adjunction in Cat/B, and the fact that they satisfy the triangle identities. It therefore preserves the
adjunction. 2

The following proposition assembles these results together to give an account of changing the base of an
adjunction between p and q by puling back along functors H and K as in the diagram below. The input data
here consists of the front and bottom faces of the cube

K∗Q H∗P

Q P

D C

B A

G

K∗q

H∗p
F

⊥
F

r

p
⊥
G

K
Gr H

⊥
F

q

F r

so that (q, p) is a map of adjunctions and HG = FK. G is the map K∗Q → H∗P obtained by factorisation
through pullback.

Proposition 6.4 Given a cube as above, suppose the front face is a map of adjunctions obtained by fac-
torisation through the pullback as in proposition 5.4, and that HG = FK, Suppose further that the counit

9
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ε : GGr → 1C of G a Gr has cartesian liftings to H∗P (e.g. if Hε has cartesian liftings to P ). Then
G : K∗Q → H∗p is the left adjoint in an adjunction living over G a Gr, in which the right adjoint is also
constructed by factorisation through the pullback as in 5.4.

Proof. This follows immediately from lemmas 6.2 and 6.3. 2

6.2 Examples

Example 6.5 [products] We consider the binary product of n-ary relations.

Reln Reln × Reln

Pred Pred× Pred

Setn Setn × Setn

Set Set× Set

∆

∆

⊥

⊥
∆

Π
× Π×Π

⊥
∆

×

The front face of the cube is the construction of the binary product of logical predicates that we saw in
example 5.5.

Relations are constructed by pullback from Pred along the product functor Π : Setn → Set. This leads us
to the bottom face of the cube, which commutes. It is worth spelling this out.

Given an n-tuple of sets: (Ai)i∈{1...n}, taking this along the rear and right hand sides gives (Π×Π)∆(Ai) =
(ΠAi,ΠAi) And taking it along the left and front gives ∆Π(Ai) = (ΠAi,ΠAi). These are equal, not just
canonically isomorphic, and so we can apply the theory developed above immediately to show that the product
of n-ary relations is constructed as we expect.

Example 6.6 [function spaces] To derive n-ary function spaces from unary ones, the diagram is:

Reln Reln

Pred Pred

Setn Setn

Set Set

⊥

⊥
(−×Ai)

Π
(Ai→−) Π

⊥
−×ΠAi

(ΠAi)→−

However the bottom face of this cube does not commute. Consider an object (Bi) of Setn. Going left
and down round the square we get Π(Bi × AI), while going down and left we get (ΠBi) × (ΠAi). These are
naturally isomorphic but not equal. Consequently we cannot simply apply the results above.

There are at least two ways out of this problem. The more principled is to redo the theory so that it will
cope with commutation up to natural isomorphism. The technically simpler alternative is to fix the square so
that it commutes. Replace the front left vertical edge of the cube by its product with the indiscrete category
on ob Setn. The objects of ob Setn × Set are pairs ((Bi), C) where (Bi) is an n-tuple of sets and C is a set.
Morphisms ((Bi), C) → (B′i), C

′) are functions C → C ′. This gives us a structure equivalent to the original,
and with the same formal properties. But we can tinker with the two functors that form edges of the bottom
square. We take the first to be given by (Bi) 7→ ((Bi),ΠBi), and the second to be given by the natural
extension to morphisms of:

F ((Bi), C) = C ×ΠAi if C 6= ΠBi

F ((Bi), C) = Π(Ai ×Bi) if C = ΠBi

10
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The square now commutes and our theory applies. But since everything is equivalent to the original, the logical
description of the function space still works.

Example 6.7 [coproducts] As before, the story for coproducts is the same as the story for products. It makes
use of the same diagrams, but the theory is applied to the opposite categories, yielding left adjoints rather than
right. In particular the bottom face of the cube is obtained from the bottom face of the diagram for products
by applying op to all of the categories involved. It therefore commutes exactly.

7 Monads

Monads provide another approach to defining structure. Given a category B representing types, a category P
representing a predicate logic for B, and a monad T on B, then there is no fully general method of extending
T to a monad on P . But there are ways that work under some circumstances.

7.1 Initial cocartesian lifting of a monad

In [8,9,10] such an extension of a monad from the base B to the total category P of a fibration (logic) is called
a lifting . Katsumata’s method involves embedding into a given continuation or codensity monad, which relies
both on closed structure and a somewhat arbitrary parameter. Kammar’s method seeks an initial lift for the
given monad. We can indeed provide such an initial lift under very minimal conditions on p:

Theorem 7.1 (Initial lifting of a monad) Given a monad (T : B → B, η, µ), whenever p : E → B admits
cocartesian liftings of η, the category Lift(T ) of monad liftings admits an initial object.

Proof. Define the lifted monad (T : E → E, η, µ) as follows: for an object X ∈ E, let ηX : X → TX be a
cocartesian lifting of ηpX : pX → TpX at X. This defines both T and η. Using both unit equations, we have

µ ◦ (η • η) = η and since η • η is cocartesian, there is a unique transformation µ : TT → T over µ such that
µ ◦ (η • η) = η. Cocartesianness also proves the monad equations for these data, as well as the initiality. 2

In general the lifted monad functor T will not be fibred even when p is a fibration, but it is cofibred.
The initial lifting of [8, Theorem 4.8] is a special case of this, under the assumption that the fibres of

the functor p are small complete preorders. When p admits cartesian as well as cocartesian liftings, we have
for ηX : X → TX the adjunction ΣηX a η∗X : ETX → EX . Under the assumption that the fibres are small
complete preorders, the adjoint functor theorem tells us that the left adjoint (= cocartesian lift) is computed as
ΣηX (y) =

∧
{x ∈ ETX |y ≤ η∗Xx}. The condition y ≤ η∗Xx is equivalent, for a faithful functor p, to the existence

of a morphism y → x over ηX . This latter is precisely the condition the unit respects y in the construction of
the initial lifting of T in p. 254 of [8]. We are ignoring here the presence of algebraic operations in T , which
we deal with separately in a follow up article.

It is worth noticing that the ’formula’ for initial lift of a monad T , T = Ση(id) as presented in our theorem,
is used in [1] for the interpretation of the 3-modality of their FIX-logic but without reference to it being a
monad, let alone an initial lift.

7.2 Image factorisation and monads on monics

If P is presented as a subcategory of monics in C (e.g. Pred), then T is already defined on the objects of P ,
and we can take T (P � A) to be defined from TP → TA. If T preserves monics in our subcategory, then this
is fine. If not we can hope to use someimage factorisation TP T ′P TA, as in [3]. This method of
lifting has been recast in fibrational language, using cocartesian liftings and comprehension, in place of image
factorisation in [2].

We use two particular monads as running examples: the list monad, L, and the continuation monad, C.
The list monad is an example of algebraic structure, and the continuation monad is not.

7.2.1 Monads on Set and unary predicates
Let T be a monad on Set. Then T preserves monics.

Lemma 7.2 (i) Let F : Set → Set be a functor, and i : A � B a monic, where A 6= ∅, then Fi is also
monic.

(ii) Let M : Set→ Set be a monad, and i : A� B any monic, then Mi is also monic.

(iii) Let M : Set→ Set be a monad, then M extends to a functor Pred→ Pred over Set.

Proof. (i) i has a retraction which is preserved by F . (ii) If A is non-empty, then this follows from the previous
remark. If A is empty, then there are two cases. If M∅ = ∅, then Mi : ∅ = M∅ = MA→MB is automatically
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monic. If M∅ 6= ∅, then let r be any map B → M∅. MB is the free M -algebra on B, and therefore there is
a unique M -algebra homomorphism r∗ : MB →M∅ extending this. Mi is also an M -algebra homomorphism
and hence so is the composite r∗(Mi). Since M∅ is the initial M -algebra, it must be the identity, and hence
Mi is monic. (iii) Immediate. 2

Example 7.3 The list monad: LB is the set of lists whose elements come from B, and so is a subset of LA.
The direct image powerset functor P : Set → Set, where P (f) = {b|∃a.f(a) = b}, also has the property

that PB ⊆ PA if B ⊆ A.
The continuation monad is defined by CA = (A → K) → K, where K is the set of continuations. C∅ is

isomorphic to K and contains the constant functionals. These are included in any type CA. If B ⊆ A, then
CB = (B → K)→ K, and if j : B → A is the inclusion of B in A, then Cj sends CB to

{Φ : (A→ K)→ K | g � B = g′ � B → Φg = Φg′}.

But there is a difference from the point of view of fibrations: L and P are fibred functors, while C is not.
From the logical perspective, this means that L works well with substitution, but C does not.

Lemma 7.4 C is not a fibred functor.

Proof. Let A = {0, 1}, B = {a, b, c} and f : B → A be defined by: fa = 0, fb = fc = 1. Let P = {1} ⊂ A.
Then f∗P = {b, c}. Given Ψ : CB, (Cf)Ψ = λg : A → K. Ψ(g ◦ f). Consider the functional Θ : CB, defined
by

Θh = hb if hb = hc
= ha if hb 6= hc

Now, for any g : A→ K, ((Cf)Θ)g = Θ(g ◦ f), but (g ◦ f)b = g1 = (g ◦ f)c, so ((Cf)Θ)g = g1. It follows that
(Cf)Θ is in CP , and hence Θ is in (Cf)∗(CP ). However, the result of applying Θ to h can clearly depend on
ha. Θ is therefore not in C(f∗P ). It follows that C is not a fibred functor. 2

7.2.2 Monads on Set and binary relations
There is also a difference when it comes to binary, and more generally, n-ary relations. Suppose R� A× B,
then MR � M(A × B), and there is a canonical map M(A × B) → MA ×MB, but this is not necessarily
monic, and hence the induced MR→MA×MB is also not necessarily monic.

Lemma 7.5 The map (CπA, CπB) : C(A×B)→ CA× CB is not necessarily monic.

Proof. CX = (X → K) → K. Consider the example where K = 2, A = B = 2. Then a simple cardinality

argument shows that no map C(A×B)→ CA×CB can be monic. |C(A×B)| = 224

= 216, while |CA×CB| =
222 ∗ 222

= 28. 2

Some monads, such as the list monad, do have the property that this map is monic, and hence that they
preserve binary relations.

Lemma 7.6 If i : R� A×B, then LR� L(A×B)→ LA× LB is monic.

Proof. Let [(a0, b0), . . . (an, bn)] and [(a′0, b
′
0), . . . (a′m, b

′
m)] be two typical elements of LR. Then these map to

([a0, . . . , an], [b0, . . . , bn]) and ([a′0, . . . , a
′
m], [b′0, . . . , b

′
m]) in LA×LB. These are equal if and only if [a0, . . . , an] =

[a′0, . . . , a
′
m] and [b0, . . . , bn] = [b′0, . . . , b

′
m]. But this impliesm = n and that ai = a′i and bi = b′i for all i = 0 . . . n.

So [(a0, b0), . . . (an, bn)] = [(a′0, b
′
0), . . . (a′m, b

′
m)]. 2

It may appear that this is because the list monad is algebraic, but not all algebraic monads have normal
forms that can be used like this.

Example 7.7 A Mal’cev operation is a ternary operationm(x, y, z) such thatm(x, x, z) = z andm(x, z, z) = x.
An important example is m(x, y, z) = xy−1z in the theory of groups. Let M be the monad corresponding to
an algebra freely generated by a single Mal’cev operation. Then M(A × B) → MA ×MB is not necessarily
monic. Consider A = {a, b} and B = {0, 1}. Then m((a, 0), (a, 1), (b, 1)) maps to m(a, a, b) = b in MA and
to m(0, 1, 1) = 0 in MB, but m((a, 0), (a, 1), (b, 1)) is not equal to (b, 0) in M(A× B). This can be shown by
exhibiting any algebra with a Mal’cev operation and four elements u, v, w, x such that m(u, v, w) 6= x.

As a consequence, if M is the monad corresponding to the theory of a free Mal’cev operator, then M4 does
not map injectively into M2×M2.
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But factorisation will always work in Set. If M is any monad, then MA ×MB has a natural M -algebra
structure, and M(A×B)→MA×MB is an M -algebra homomorphism. Just as with standard algebraic vari-
eties, sub-algebras are closed under arbitrary intersecion, and therefore we can take MR to be the intersection
of all the sub-algebras containing the image of R under η.
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