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Abstract 

 

Background -- Several consortia have pursued genome-wide association studies for identifying 

novel genetic loci associated with various diseases and disease related risk factors including 

blood pressure (BP), lipids, hypertension, type 2 diabetes. They demonstrated the power of 

collaborative research through meta-analysis of study-specific results. 

Methods -- The Gene-Lifestyle Interactions Working Group was formed to facilitate and promote 

the first large, concerted, multi-ancestry study to systematically evaluate gene-lifestyle 

interactions. In Stage 1, genome-wide interaction analysis is carried out in (up to) 53 cohorts with 

a total of 149,684 individuals from multiple ancestries. In Stage 2 involving an additional (up to) 

71 cohorts with 460,791 individuals from multiple ancestries, focused analysis is carried out for a 

subset of the most promising variants from Stage 1. In all, the study involves up to 124 cohorts 

with 610,475 individuals. Current focus is on cardiovascular traits including blood pressure and 

lipids, and lifestyle factors including smoking, alcohol, education (as a surrogate for socio-

economic status), physical activity, psychosocial variables, and sleep. The total sample sizes vary 

among projects due to missing data. Large scale gene-lifestyle or more generally gene-

environment interaction (GxE) meta-analysis studies can be cumbersome and challenging. This 

paper describes the design and some of the approaches pursued in the interaction projects led by 

the Working Group.  

Conclusions – The Gene-Lifestyle Interactions Working Group provides an excellent framework 

for understanding the lifestyle context of genetic effects and to identify novel trait loci through 

analysis of interactions. An important and novel feature of our study is that the gene-lifestyle 

interaction (GxE) results may improve our knowledge about the underlying mechanisms for novel 

as well as already known trait loci. 
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Introduction 

 

Remarkable advances in genomics, including the Human Genome Project (HGP) and 1000 

Genomes (1000G) Project, have revolutionized methods for genetic dissection of common 

complex diseases and disease traits. Using Genome-Wide Association Studies (GWAS), large 

consortia such as CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology1,  

ICBP (International Consortium of Blood Pressure), AGEN Asian Genetic Epidemiology Network), 

GLGC (Global Lipids Genetics Consortium), and DIAGRAM (Diabetes Genetics Replication and 

Meta-Analysis) have identified hundreds of common genetic variants associated with many 

common complex disease traits (https://www.genome.gov/26525384/catalog-of-published-

genomewide-association-studies/). However, most of the identified genetic variants explain small 

proportions of the trait heritability, mostly through small main effects of common variants. It has 

been recognized that this focus on main effects may have become a barrier to further progress2,3.  

Hypertension and dyslipidemia are common complex disorders that contribute to two of the 

leading causes of death (cardiovascular and cerebrovascular disease) and exhibit significant 

patterns of health disparity among racial/ancestral groups in the US4,5. While lifestyle factors have 

long been recognized as risk factors, modulation of the effects of genetic variants by lifestyle 

factors, and the underlying candidate pathobiological mechanisms have not received much 

attention. Understanding these genetic modifiers is important because it may provide valuable 

clues for lifestyle-based interventions which may result in a more successful management of 

these health conditions through personalized therapies, and may explain part of the “missing 

heritability” 2,6.  

The Gene-Lifestyle Interactions Working Group (hereafter referred to as “this study”) investigates 

gene-lifestyle interactions for uncovering more of the unexplained genetic variance in BP and lipids 

and for gaining insights into the biological mechanisms influencing these important morbid 

conditions. We will do this by leveraging the extensive resources of existing studies in multiple 

ancestries that have data on phenotypes, lifestyle factors, and dense genotype data from both 

common variants (GWAS) and rare variants (Exome chip). We will also use the organizational 

infrastructure of the CHARGE consortium.  

Research involving gene-environment (GxE) interactions is now being reported7,8. Our own work9 

and other studies have demonstrated the promise of GxE interactions for identifying genetic 

variants with large effects10-13. For example, mean triglyceride levels are 23 mg/dL lower in 

https://www.genome.gov/26525384/catalog-of-published-genomewide-association-studies/
https://www.genome.gov/26525384/catalog-of-published-genomewide-association-studies/
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physically active versus sedentary individuals (88 vs 111 md/dL) who carry a C-allele at 

rs2070744 in NOS3, but there is little difference by physical activity status in TT homozygotes11. 

This shows the utility of GxE interactions for using genetic information to identify subpopulations 

in whom modifying the environmental factors is beneficial14-16, and that the main effect (of the 

genetic variant) alone is inadequate to inform lifestyle interventions that need to be personalized 

based on genotype17,18. In addition, GxE interactions may provide additional insight into biological 

mechanisms and pathways.  

This is the first large, concerted, multi-ancestry study to systematically evaluate gene-lifestyle 

interactions using data from 610,475 individuals. Large scale GxE meta-analysis studies can be 

cumbersome and challenging. This paper describes the design and some of the approaches 

pursued in our ongoing Gene-Lifestyle Interaction projects. 

  

Study Design 

The CHARGE Consortium: This study leverages the infrastructure created by the CHARGE 

consortium1. CHARGE has created many resources including multiple phenotype-specific Working 

Groups (WGs), an analysis committee, an internal wiki site, guidelines for collaboration and 

authorship, and periodic CHARGE meetings where WGs meet in person.  

The Gene-Lifestyle Interactions WG: With support from CHARGE leadership, a new WG has 

been established for pursuing the major goals of this study. The WG includes investigators and 

analysts from the large group of studies participating in Stage 1 (Genome-Wide Discovery) as 

discussed later. Another large group of studies participates in Stage 2 (Focused 

Discovery/Replication). The WG is assisted by a Coordinating Center (CC) at Washington 

University in St. Louis.  

This study operates through the Working Group (WG), which serves as a steering committee, an 

Analysis Committee, a Harmonization Committee, and multiple Project Teams. The WG meets 

twice a year as part of the CHARGE meetings and meets by conference call twice a month. Overall 

research direction and priorities are set by the WG. The analysis and harmonization committees 

meet together once a year and by conference calls twice a month. All harmonization and analytical 

issues are resolved by these committees. There are multiple Project Teams, each leading 

interaction analyses for a combination of the phenotypes (BP or Lipids) and lifestyle domains 

(smoking, alcohol, education, PA, Psychosocial, Sleep).  
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Mission and Aim: The overall mission of the WG is to promote and facilitate large collaborative 

analysis of gene-lifestyle interactions on disease traits across a large number of cohorts from 

multiple ancestries. Primarily, the WG aims to better understand the lifestyle context of genetic 

effects and to discover new trait loci through analysis of interactions thereby explaining part of the 

missing heritability2 in the disease traits. An important and novel feature of our study is that the 

gene-lifestyle interaction (GxE) results may improve our knowledge about the underlying 

mechanisms for novel as well as already known trait loci. 

Primary Hypothesis: We hypothesize that lifestyle (environment) variables modulate some of 

the genetic effects on cardiovascular traits (equivalently, that genetic variants modify effects of 

environmental variables) and that accounting for lifestyle factors and gene-lifestyle interactions in 

genome-wide scans will identify multiple novel genetic variants.  

Phenotypes and Lifestyle Variables: The primary cardiovascular (CV) risk factors include BP and 

lipids. An analysis plan in the online supplement discusses data definitions and adjustments. Future 

initiatives may consider other cardio-metabolic traits, such as diabetes and its risk factors, in 

collaboration with other working groups. 

The primary BP phenotypes are resting/sitting Systolic Blood Pressure (SBP) (mmHg) and Diastolic 

Blood Pressure (DBP) (mmHg). For individuals taking any anti-hypertensive (BP lowering) 

medications, their SBP and DBP values are first adjusted by adding 15 mmHg to SBP and adding 

10 mmHg to DBP. Mean Arterial Pressure (MAP) and Pulse Pressure (PP) are also derived, using 

the adjusted SBP and DBP values: 

a. MAP = DBP + (SBP – DBP)/3, and 

b. PP = SBP – DBP 

The primary lipids phenotypes are High-density lipoprotein cholesterol (HDL, mg/dL), Triglycerides 

(TG, mg/dL) and Low-density lipoprotein cholesterol (LDL, mg/dL), either directly assayed (LDLda) 

or derived using the Friedewald equation (LDLF). For individuals with TG > 400 mg/dL, only directly 

assayed LDL (LDLda) is used. When using non-fasting samples or fasting < 8 hours, only LDLda and 

HDL are used (not LDLF or TG). Log transformations are used for HDL and TG, and LDL is adjusted 

for statin use (see the analysis plan in the supplementary materials).  

The initial set of dichotomized lifestyle are: Smoking (current smoking and ever smoking), Alcohol 

Consumption (Current Drinking, Current Regular Drinking, and Quantity of Drinks (>7 drinks per 

week)), Education (as a measure of socioeconomic status, SES; Some College, and Graduated 
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College), Physical Activity (Physically Inactive), Psychosocial Attributes (Depression, Trait Anxiety, 

and Social Support), and Sleep Duration (Short Sleep and Long Sleep). Future initiatives may 

consider other domains such as diet, and more detailed variables from the same lifestyle domains 

such as pack years, cigarettes per day, ounces of alcohol intake.  

GWAS Data: Dosages derived from 1000 Genomes (1000G) imputation are the primary resource 

for GWAS analysis. 1000G imputations are based on the ALL ancestry panel from 1000G Phase I 

Integrated Release Version 3 Haplotypes (2010-11 data freeze, 2012-03-14 haplotypes) that 

contains haplotypes of 1,092 individuals of all ancestral backgrounds. Dosages based on HapMap 

Phase II / III reference panel is used if 1000G imputations are not available for a specific study. In 

general, rare variants (mean allele frequency (MAF) < 1%) and poorly imputed variants (Rsq <0.1) 

are excluded. Variants mapping to sex chromosomes or mitochondria have also been excluded. 

Although we refer to SNP (Single Nucleotide Polymorphism) variants, the imputed data also include 

indels (insertions and deletions). 

Participating Studies and Ancestry Groups: Five ancestry groups are represented: European 

(EA), African (AA), Hispanic (HA), Asian (AS), and Brazilian admixed (BR). Men and women 

between the ages of 18-80 are included in the analyses. Although the participating studies are 

based on different study designs and populations, most of them have data on BP and lipid traits, a 

range of lifestyle variables, and genotypes across the genome. In total, this study comprises up to 

610,475 individuals. 

Stage 1 (Genome-Wide Discovery): A total of 32 studies with data on 53 cohorts (see Table 1) 

participate in the discovery phase (Stage 1), which involves genome-wide interaction analyses. In 

total, this stage includes up to 95,911 EA, 27,116 AA, 8,805 HA, 13,438 AS, and 4,414 BR 

individuals, to an overall total of 149,684 individuals in Stage 1.  

Stage 2 (Focused Discovery/Replication): A total of 46 studies with data on 71 cohorts (see Table 

2) participate in Stage 2, which involves analyses of small sets of variants that were identified in 

Stage 1 as either genome-wide significant (with p < 10-8) or suggestive (with p < 10-6). In total, this 

stage includes up to 290,552 EA, 7,785 AA, 13,522 HA, and 148,932 AS individuals, to a total of 

460,791 individuals in Stage 2. There are no BR cohorts in Stage 2. 
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Analysis Models 

The participating studies have considerable prior experience contributing to GWAS-based 

consortia studying the main effects of common variants, i.e.  effects of genetic variants without 

regard to lifestyle exposures or interactions. For GxE work, existing analysis pipelines had to be 

modified. Based on extensive discussions with the Analysis Committee and the Working Group, an 

Analysis Plan was developed, addressing critical issues including: data preparation, analysis 

models, analysis methods, software packages, and procedures for uploading all results centrally 

onto a central server made available by the CHARGE Consortium at the University of Washington, 

Seattle. Individual project teams made appropriate modifications to the analysis plan as needed. 

The most critical elements are summarized below. An example of a full analysis plan (Education-

Lipids) is provided in the online supplement.  

We consider three different analysis models, each with slightly different purposes.  

Joint model (Model 1): This is our primary model which features joint analysis of the effects of the 

SNP, lifestyle, and their interaction. For each combination of phenotype (Y) and lifestyle exposure 

variable (E), each study fits the following linear model, separately by ancestry: 

Y ~ E + SNP + E * SNP + C, or more formally,  

E(Y) = β0 + βE E + βG SNP + βGE E * SNP + βC C 

where SNP is the dosage of the genetic variant and C is the set of covariates (age, sex, principal 

components for controlling stratification effects, and other study-specific covariates, and therefore  

βC is a vector; body mass index (BMI) was specifically excluded as a covariate so that lifestyle 

interactions with related pathway genes (such as inflammation genes) can be identified). 

Participating studies provide estimates of βG and βGE along with their covariance matrix. If E is 

dichotomous (E= 0 or 1), the SNP effect ( βG) represents the SNP effect in those who are 

unexposed (environmental variable E=0), and thus needs to be interpreted with caution.  If E is 

continuous, it is often desirable to center it on its sample mean, so that βG approximates the overall 

effect of the SNP on Y (as is estimated by Model 2). In either case, the SNP effect is context-

dependent and therefore should not be interpreted as the ”main effect”.  

Model 1 was used by all studies in both stages. In addition to model 1, each study in stage 1 (only) 

uses at least one of two additional models presented below, depending on the specific needs of 

the respective project.  
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Main effects model (Model 2): Analysis of the main effect only: For each Phenotype (Y), each 

study fits the following linear model, separately by ancestry: 

Y ~ SNP + C, or more formally, 

E(Y) = λ
0
 + λ

 G
 SNP + λ

 C
C 

Model 2 is used as a benchmark to identify which of our discoveries from the joint model would 

be found using analysis of main effects alone. Some projects also fit this model separately in the 

exposed and unexposed groups (i.e. they performed stratified analysis) and provide a 1 degree of 

freedom (df) test of the interaction term as well as a 2 df joint test of the SNP and interaction 

effects19,20. For each analysis, participating studies provide estimates of βG and and its standard 

error. Stratified analysis and the joint analysis using model 1 in stage 1 cohorts have been shown 

to yield largely similar results21. Stratified analysis can help reduce inflation of type I error rates by 

fitting separate covariate effects and error variances by strata22-24. 

Refined main effects model (Model 3): Analysis of the SNP and lifestyle effects, without 

interaction. For each Phenotype (Y) and lifestyle exposure variable (E), each study fits the following 

linear model, separately by ancestry:  

Y ~ E + SNP + C, or more formally, 

E(Y) =  γ
0
 + γ

E
 E + γ

G
 SNP + γ

C
C 

 

Model 3 is used to identify which of our discoveries from the joint model would be missed when 

the interaction term is not used.  For each analysis, participating studies provide estimates of βG 

and and its standard error. 

 

Analysis Methods  

Analysis Methods for Low Frequency and Common Variants: Through the use of efficient 

methods with large sample sizes, we believe that our study is poised to identify multiple novel 

associations, some of which may have large effect sizes, depending on lifestyle factors. We 

identify novel loci through SNP effects or SNP*E interaction effects, or both. For continuous traits, 

the joint test of the SNP and SNP*E interaction effects is known to be powerful for this aim20, 25,26. 

Since our interaction projects involve many studies, we rely on existing methods and software, 
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such as ProbABEL, Sandwich, and MMAP (see the analysis plan in the online supplement), or 

those that are straightforward to implement using these tools.  

Testing the significance of the SNP and the SNP*E interaction effects: In Model 1, the focus 

is on the test of the interaction effect and the joint effects of the SNP and the interaction. The 

interaction effect (βGE) is evaluated using a 1 degree of freedom (df) Wald test.  The effects of both 

SNP (βG) and interaction (βGE) are tested jointly, using a 2 df Wald test25. In model 2, which does 

not include E or SNP*E terms, βG is the familiar main effect of the SNP which is tested using a 1-

df Wald test. A 1 df Wald test is also used in model 3 for evaluating the SNP effect (βG) in the 

presence of E, which may be referred to as the refined SNP effect or E-adjusted SNP effect or 

context-dependent SNP effect. In all cases, we will use the “robust” Wald tests by using robust 

estimates of the standard errors (SEs) and covariances to protect against misspecification of the 

mean model27,28. When the SNP effect is weak and the SNP*E interaction effect is moderate, the 

joint 2 df test has been shown to be more powerful than either the 1 df test of the SNP effect or the 

1 df test of the interaction effect alone25. The increase in power for the 2 df over either 1 df test can 

be particularly dramatic, especially when the type I error rate is controlled at very low levels (e.g., 

5x10-8) as in this project29. 

Analyses needed from each cohort: Each cohort carries out a genome-wide analysis of the SNP 

and SNP*E interaction effects and provides estimates of betas, robust estimates of the 

corresponding standard errors (SEs) and covariance, and p-values from the joint 2 df test 

separately for each ancestry group. Because the model is based on a standard regression 

framework, software to compute the relevant statistics is widely available. For studies of unrelated 

individuals, standard commands and the R sandwich package30 implement bivariate robust 

covariance estimates for SNP-specific analyses. To implement the analyses for all SNPs, the R 

interface in PLINK31 may be used; ProbABEL32 also provides appropriate utilities. For family studies 

in which relatedness must be taken into account, programs such as GenABEL/MixABEL33 and 

MMAP (O’Connell, unpublished; personal communication) implement mixed models that allow for 

relatedness. All cohorts analyze their data using these methods/software following a pre-specified 

Analysis Plan, that spells out all analysis steps in detail. They then upload results to a secure server. 

Meta-analysis for combining results across studies: To combine estimates of the betas and 

their corresponding 2x2 covariance matrix provided by each cohort, we use the joint meta-analysis 

method developed by Manning et al26 who modified METAL34 to handle this joint 2 df meta-analysis. 

The joint meta-analysis provides inference on the SNP and SNP*E interaction effect pooled across 

all cohorts. Manning7 used this approach and demonstrated power enhancement for detecting 
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interactions. We use the modified METAL for the joint meta-analysis and use METAL for carrying 

out meta-analysis of the 1 df analyses (interaction effect in model 1, main effect in model 2, and 

refined SNP effect in model 3). We use a genome-wide significance threshold of 5x10-8 for 

identifying significant results and use 10-6 for identifying suggestive results.  

Quality Control: Quality assurance in imputations is emphasized by preparing very detailed 

analysis plans with step by step instructions for preparing and analyzing data, and formatting results 

for uploading (see the Education-Lipids analysis plan included in the supplementary materials for 

details). Extensive QC measures are used for processing all study-specific results centrally by each 

project team, at two levels. “Study-level” QC involved reviewing and harmonization of each 

individual result file separately. “Meta-level” QC involved reviewing and harmonizing results files 

across all available discovery cohorts for a single analysis (e.g., comparing summary statistics 

across all SBP-Current Smoking-Model1 discovery cohorts). Some of the specifics are discussed 

as part of the supplementary materials. QC was performed using customized EasyQC scripts that 

provide a wide variety of QC checks for GWAS results35.   

Analysis of interactions involving rare variants: While the joint test of SNP and SNP*E is 

applicable to analysis of rare variants, its power for testing individual rare variants is limited primarily 

due to their low frequency. Burden tests36-39 collapse all rare variants in a genomic region (typically 

a gene) into a single burden variable (essentially a “mega variant”, giving each subjects’ total 

dosage across a gene) and regress the phenotype on the burden variable to test for the combined 

effects of all rare variants in the region/gene. We use the burden test that collapses rare variants 

with MAF < 0.01 in the genomic region (gene) into a single burden variable (i.e., T1). We apply the 

2 df test directly to each T1 burden variable. Since MAF varies across cohorts, the pooled MAF is 

computed by the CC as a weighted average of MAFs from all cohorts. Each cohort creates the T1 

burden variables by collapsing variants within the genomic regions using the pooled MAF < 0.01, 

instead of the cohort-specific MAF. Analysis uses the 2 df joint test. We then perform meta-analysis 

of these T1-based results, similar to the meta-analysis of results from common variants described 

earlier but now with as many T1 burden variables as the number of genomic regions. To assess 

the significance for the analysis of rare variants, we will use a Bonferroni-corrected significance 

threshold (α = 0.05/Nb where Nb= number of burden variables). The CHARGE consortium has 

provided detailed analysis guidelines for exome chip data and the CC has used some of these rare 

variant methods40-43. 
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Analysis of Stage 1 and Stage 2 Results: Primary publications resulting from the various 

analyses in stages 1 and 2 are pursuing two approaches shown in Figure 1: combined analysis of 

Stages 1 and 2 and traditional discovery/replication. 

Combined analysis of stages 1 and 2: This approach can be more powerful than other 

approaches44. For a given combination of phenotype and lifestyle, all significant and suggestive 

results (with  = 10-6) from stage 1 cohorts and the corresponding results from stage 2 cohorts are 

pooled through meta-analysis (first within each stage and then meta-analyzing the two stage-

specific meta-analyses) separately by ancestry. A significance threshold of  = 5×10-8 is used to 

identify significant results from the combined stage 1 and 2 meta-analysis results. Finally, all 

ancestry-specific meta-analyses are meta-analyzed as an approximate trans-ancestry analysis for 

identifying additional associations (if any) that are missed by ancestry-specific analyses.  

Traditional Discovery/ Replication Analysis: In this approach, all genome-wide significant results 

are identified from stage 1 results only, separately by ancestry, using a significance threshold of  

= 5×10-8. Stage 2 results are then used to formally replicate the stage 1 findings, using appropriate 

Bonferroni correction such as 0.05 divided by the number of independent novel loci discovered in 

stage 1. Variants that are suggestive but not significant in Stage 1 are only considered in the 

combined analysis approach. 

The combined approach is more powerful than the traditional approach. However, the traditional 

approach can identify additional novel validated loci missed by the combined approach (as shown 

most recently using a slight variation of this approach45). This justifies using both approaches. If 

only one approach were to be used, the combined one is the method of choice. 

Statistical power for detecting associations: With the overall sample size used, this study is 

well powered for identifying novel discoveries even with moderately small effect sizes. To 

demonstrate this, we illustrate the sample sizes required to achieve at least 80% power to identify 

the genetic (G) effect and the GxE interaction effect using the 2 df joint test for a range of model 

parameters. We used QUANTO46, which computes power and sample size for both disease and 

quantitative trait studies of genes (G), environment factors (E), and GxE interactions.  For our study 

of quantitative traits, the required sample sizes depend on the proportions of variance explained by 

the G (R2G), the lifestyle factor (R2E) and their interaction effect (R2GE). A wide range of R2E 

values yielded similar results, and therefore we fixed R2E = 0.1% and examined the effect of 

varying the other 2 parameters.  Although low frequency variants explain large proportions of 
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variance in some cases47, we limited this investigation to lower R2G values of 0.01%, 0.02%, 

0.05%, and 0.1% because most variants identified through GWAS have much smaller effect sizes. 

Figure 2 shows the sample sizes required for a range of R2GE values corresponding to each of 

the four values for R2G using a significance threshold of 5x10-8. These values are smaller than 

what we found in our preliminary studies (not reported), suggesting that our power estimates may 

be conservative.  

The sample sizes should be more than adequate for 80% power in EA and AA using Stage 1 

samples alone, so long as the SNP effect is not very small (e.g., R2G > 0.05%). In fact, for R2G = 

0.05%, significance level of 5x10-8, and the stage 1 sample sizes shown in Table 1, the minimum 

detectable R2GE at 80% power are < 0.01%, 0.11%, 0.44%, and 0.27% for EA, AA, HA, and AS, 

respectively. When Stages 1 and 2 are combined, even smaller effect sizes are detectable 

(although the exact calculations are complex since Stage 2 studies did not carry out genome-wide 

interaction analyses). In any case, the combined sample size of stages 1 and 2 appears well poised 

for powerful discoveries even with smaller effect sizes than assumed in these estimates.  

 

Discussion 

Current Status and Anticipated Benefits: Our study has made considerable progress to date. 

Four projects have completed all analyses in stages 1 and 2 and are processing the final results 

for publications (Smoking-BP, Smoking-Lipids, Alcohol-BP, and Alcohol-Lipids). In addition, three 

other projects (Education-BP, Education-Lipids, and PA-Lipids) have completed stage 1 analyses 

and are in advanced stages of preparing results for stage 2 analyses, and two projects 

(Psychosocial-BP and Psychosocial-Lipids) have completed stage 1 analyses and are 

undergoing extensive QC. Still more projects are getting underway. We believe that these 

projects will make major contributions to the genetic dissection of cardiovascular traits and that 

the GxE analysis can help improve understanding of the mechanisms underlying the novel as 

well as known loci which have been identified previously through main effects. 

What are the unique benefits of our approach? How critical is the consideration of lifestyle 

and interactions (models 1 and 3)? Emerging results indicate that a large proportion of novel 

findings originate from models 1 and 3, i.e. results that would be missed by limiting analyses to 

main effects (model 2). This suggests that inclusion of the lifestyle context and/or gene-lifestyle 

interaction is important for identifying novel signals.  
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Collaboration levels are unprecedented: In an area where direct competition among study 

groups was the norm until about a decade ago, collaborative GWAS-based consortia such as 

CHARGE represent an innovative model for research. Through working together, the contributing 

studies have achieved much more than they could have working alone. The Gene-Lifestyle 

Interactions Working Group takes this model further, assembling 610,475 subjects in 124 cohorts. 

While the collaborative nature of the work requires some compromises (e.g. using standard 

software, and meta-analysis of relatively simple analyses) the results should substantially deepen 

what has already been learned from GWAS. 
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Table 1. Studies and ancestry groups participating in Stage 1 (Genome-wide discovery) 

No 
Study/ 

Cohort 
Type of Study 

European 
Ancestry 

African 
Ancestry 

Hispanic 
Ancestry 

Asians 
Brazilian 
Admixed 

1 AGES Population study of GxE in elderly   2,410  - - - - 

2 ARIC Population-based  study of Atherosclerosis  9,465    2,862  - - - 

3 Baependi Family-based study of CVD traits - - - - 873 

4 CARDIA Population-based study of CVD traits   1,649       945  - - - 

5 CHS Population-based study of CVD traits   2,975       734           -  - - 

6 CROATIA 
Population-based study of Croatians: Vis 483 - - - - 

Population-based study of Croatians: Korcula 456 - - - - 

7 Fam HS Family study of CVD related traits   3,683  617  -  - - 

8 FHS Longitudinal family study of CVD traits  8,195  - - - - 

9 GENOA Sibling study of Atherosclerosis and HT   1,064  941  - - - 

10 GenSalt Family study of salt sensitivity - - - 1,835 - 

11 GENSCOT Population-based study in Scotland 6,439 - - - - 

12 GOLDN Family-based study of HT & CVD traits 820 - - - - 

13 HANDLS Diversity study of aging and CVD traits           -   903  - - - 

14 Health ABC Study of health, aging and body comp 1,663    1,136  - - - 

15 HERITAGE Fam study of responses to exercise 499  - - - - 

16 HUFS Family study of hypertension in AA -   1,686  - - - 

17 HyperGEN Family-based study of HT & CVD traits   1,251  1,240  - - - 

18 JHS Population-based study of CVD traits -   2,134  - - - 

19 Maywood-L Population study of CVD traits in AA  -      75 - - - 

20 Maywood-N Study of CVD traits in Nigerians -   1,229  - - - 

21 MESA Family-based study of Atherosclerosis    2,591    1,594  1,455  748 - 

22 Mt. Sinai IPM Hospital-based / Biobank patients 1,480  3,101   3,973  - - 

23 NEO Population-based study of obesity related traits 5,735 - - - - 

24 Pelotas Population-based birth cohort in Brazil - - - - 3,541 

25 RS 

Rotterdam study of CVD traits: RS1 4,990 - - - - 

Rotterdam study of CVD traits: RS2 1,998 - - - - 

Rotterdam study of CVD traits: RS3 2,966 - - - - 

Rotterdam family study of CVD traits: RS-ERF 2,491 - - - - 

26 SCES Singapore Chinese eye study - - - 1,848 - 

27 SCHS 
Singapore Chinese Health Study: Cases - - - 674 - 

Singapore Chinese Health Study: Controls - - - 1,218 - 

28 SiMES Singapore Malay eye study - - - 2,531 - 

29 SINDI Singapore Indian eye study - - - 2,491 - 

30 SP2 
Singapore 2: 1M - - - 949 - 

Singapore 2: 610 - - - 1,144 - 

31 WGHS Popn-based; genomics; women’s health 22,983  - - - - 

32 WHI 

Popn-based study of women’s health -   7,919    3,377  - - 

Popn-based study of women’s health: GARNET 4,423 - - - - 

Popn-based study of women’s health: WHIMS 5,202 - - - - 

            TOTALS 95,911 27,116 8,805 13,438 4,414 

Note: Sample sizes may vary across phenotype-exposure combinations due to missing data. 
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Table 2.  Studies and ancestry groups participating in Stage 2 (Focused Discovery/Replication) 

No 
Study/ 
Cohort 

Type of Study 
European 
Ancestry 

African 
Ancestry 

Hispanic 
Ancestry Asians 

Brazilian 
Admixed 

1 AADHS Case-Control study of diabetes in AAs - 584 - - - 

2 ASCOT-SC Population-based study of cardiac outcomes 2,389 - - - - 

3 BBJ Population-based biobank in Japan - - - 126,413 - 

4 BES 
Population-based study of eye disease:610 - - - 601 - 

Popn-based study of eye disease:OmniExpress - - - 545 - 

5 BRIGHT Population-based study of hypertension 1,823 - - - - 

6 CAGE Popn-based study of CVD traits: Amagasaki - - - 952 - 

7 CARL Family-based study of auditory traits in Italy 462 - - - - 

8 CFS Family-based study of sleep apnea in AA - 561 - - - 

9 DESIR1 Epidemiological study on insulin resistance 697 - - - - 

10 DFTJ Popn-based study of health and retirement - - - 1,406 - 

11 DHS Family-based study of diabetes 1,173 - - - - 

12 DR's EXTRA Unrelated study of exercise training 1,230 - - - - 

13 EGCUT 

Popn-based biobank in Estonia:OmniExpress 5,937 - - - - 

Popn-based biobank in Estonia:CoreExome 4,911 - - - - 

Popn-based biobank in Estonia:Human370CNV 1,870 - - - - 

14 EPIC Popn-based study of cancer/nutrition in Europe 20,458 - - - - 

15 Fenland 
Popn-based study of metabolic traits: GWAS 1,345 - - - - 

Popn-based study of metabolic traits: OMICS 8,471 - - - - 

16 FUSION 
Case-Control Study of NIDDM:CASES 674 - - - - 

Case-Control Study of NIDDM:CONTROLS 277 - - - - 

17 FVG Family-based study of auditory traits in Italy 951 - - - - 

18 GeneSTAR Family study of atherosclerosis risk 1,699 1,107 - - - 

19 GLACIER Population-based study of lobular cardinoma 5,909 - - - - 

20 GRAPHIC Population-based study of arterial pressure 1,010 - - - - 

21 HRS Population-based study of health & retirement 8,367 1,993 - - - 

22 HyperGEN Family-based study of HT & CVD traits:AXIOM - 418 - - - 

23 InterAct 

Case-contrl study of T2DM:CoreExome:CASES 3,996 - - - - 

CC study of T2DM:CoreExome:SUBCOHORT 6,405 - - - - 

Case-control study of T2DM:GWAS:CASES 2,793 - - - - 

CC study of T2DM:GWAS:SUBCOHORT 3,188 - - - - 

24 IRAS 
Popn-based study of atherosclerosis:IRASC - - 185 - - 

Family-based study of atherosclerosis:IRASFS - - 957 - - 

25 JUPITER Population-based study of lipids and statin use 8,400 1,606 - - - 

26 KORA 
Population-based German research cohort:S3 3,095 - - - - 

Population-based German research cohort:S4 3,770 - - - - 

27 LBC 
Lothian Birth Cohort study:1921 511 - - - - 

Lothian Birth Cohort study:1936 996 - - - - 

28 Lifelines Biobank cohort in the Netherlands 12,323 - - - - 

29 LLFS Family-based study on aging 3,133 - - - - 

30 LOLIPOP 

London Population study of CVD traits: EW610 927 - - - - 

London Population study of CVD traits: EWA 582 - - - - 

London Population study of CVD traits: EWP 644 - - - - 

London Population study of CVD traits: IA317 - - - 2,059 - 

London CC study of CVD traits: IA610-case - - - 2,791 - 

London CC study of CVD traits: IA610-ctrl - - - 3,757 - 
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London Population study of CVD traits: IAP - - - 501 - 

London Popn study of CVD traits: OmniEE - - - 899 - 

31 LOYOLA 
Population-based Jamaican cohort of BP:GXE - 612 - - - 

Population-based Jamaican health cohort:SPT - 904 - - - 

32 METSIM Men-only unrelated study; metabolic syndrome 8,353 - - - - 

33 OBA Unrelated French obese cases 669 - - - - 

34 PROCARDIS 
Case-control study of CAD:Cases 5,651 - - - - 

Case-control study of CAD:Controls 1,668 - - - - 

35 RHS Popn-based cohort of metabolic syndrome - - - 2,468 - 

36 SHEEP 
Case-control study of CVD traits:Cases 1,165 - - - - 

Case-control study of CVD traits:Controls 1,528 - - - - 

37 SHIP 
Population-based health study:0 Cohort 4,046 - - - - 

Population-based health study:Trend Cohort 982 - - - - 

38 SMWHS Population-based men/women health study - - - 3,862 - 

39 SOL Hispanic community health study - - 12,380 - - 

40 TAICHI Popn-based study of atherosclerosis:Zhonghua - - - 1,505 - 

41 THRV Population-based Taiwan study of hypertension - - - 287 - 

42 TRAILS Population-based study of adolescents 1,266 - - - - 

43 TUDR Population-based study of diabetes - - - 886 - 

44 TWINGENE Family-based study of twins in Sweden 5,358 - - - - 

45 UK Biobank Population-based Biobank in the UK 137,426 - - - - 

46 YFS Population-based CV study of young adults 2,024 - - - - 

            TOTALS 290,552 7,785 13,522 148,932 0 

Note:  Sample sizes may vary across phenotype-exposure combinations due to missing data. 
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Figure legends 

 

 

Figure 1. Overall flow of analyses. Combined analysis leverages the full power of Stages 1 and 2. The 

traditional discovery and replication approach identifies additional loci missed by the combined approach. Both 

approaches can be used for maximizing discovery. 

 

 

Figure 2. Sample sizes needed for 80% power using the 2 df joint test. Sample size (Y-axis) is plotted as a 

function of the percent variance explained by the interaction (R2GE; X-axis), for each of 4 different values of 

the percent variance explained by the genetic effect (R2G); that due to the lifestyle factor (R2E) is fixed at 

0.1% (see the text).   
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Stage 1 (Genome-Wide Discovery) 

53 cohorts (Table 1); 5 ancestries; N= 149,684 subjects. 

Ancestry-specific and multi-ancestry meta-analyses identify genome-wide 

significant and suggestive SNPs (P ≤ 10-6) for analysis in stage 2 cohorts. 

 

Stage 2 (Focused Discovery/Replication analysis of SNPs from Stage 1) 

71 cohorts (Table 2); 4 ancestries; N= 460,791 subjects. 

Ancestry-specific and multi-ancestry meta-analyses performed. 

Combined Analysis of Stages 1 and 2 

Ancestry-specific and multi-ancestry meta-

analysis of stages 1 & 2 Identify genome-wide 

significant novel loci (P ≤ 5x10-8). 

Traditional Discovery & Replication 

Ancestry-specific and multi-ancestry meta-analysis of stage 

1 identified genome-wide significant novel loci. 

Those novel loci are replicated in stage 2 using Bonferroni-

corrected threshold (P ≤ 0.05/ number of novel loci) 

Figure 1. Overall flow of analyses. Combined analysis leverages the full 

power of Stages 1 and 2. The traditional discovery and replication approach 

identifies additional loci missed by the combined approach. Both 

approaches can be used for maximizing discovery. 
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Figure 2. Sample sizes needed for 80% power using the 2 df joint test. 

Sample size (Y-axis) is plotted as a function of the percent variance 

explained by the interaction (R2GE; X-axis), for each of 4 different values of 

the percent variance explained by the genetic effect (R2G); that due to the 

lifestyle factor (R2E) is fixed at 0.1% (see the text).   

 


