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Abstract  

The transcription factor p73 is a member of the p53 family, of which the transactivation domain 

containing isoform (TAp73) plays key roles in brain development and neuronal stem cells. TAp73  also 

facilitates homoeostasis and prevents oxidative damage in vivo by inducing the expression of its target 

genes. Recently, we found that in addition to its role in regulation of transcription, TAp73 also affects 

mRNA translation. In cultured cells, acute TAp73 depletion activates eEF2K, which phosphorylates 

eEF2 reducing mRNA translation elongation.  As a consequence, there is a reduction in global  

proteins synthesis rates and reprogramming of the translatome, leading to a selective decrease in the 

translation of rRNA processing factors.   Given the dramatic effects of Tap73 depletion in vitro it was 

important to determine whether similar effects were observed in vivo.   Here, we report the surprising 

finding that in brains of TAp73 KO mice there is a reduced level of eEF2K, which allows protein 

synthesis rates to be maintained suggesting a compensation model. These data provide new insights 

to the role of TAp73 in translation regulation and the eEF2K pathway in the brain. 
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Introduction 

TAp73 is the longest isoform encoded by the p73 gene, a member of the p53 family of transcription 

factors (1-3), which plays important roles in tumour suppression (4-8) and cellular homeostasis by 

promoting the expression of genes to regulate metabolism (9-17). The p53 family also includes p53 

and p63 that share with p73 the capability of promoting cell cycle arrest and apoptosis following DNA 

damage (18-24). P53 is mainly known for its powerful tumour suppressor capability (25-29) and for 

the frequent mutations observed in cancer (approximately 50%) (30-34) that can interfere with the 

physiological function of all the three family members (35, 36). P63 has an exclusive predominant role 

in developmental of epidermis and stratified epithelia (37-42), fundamentally contributing to(43) this 

process with a wide range of downstream targets and interactors (44-50). Part of p63 function is also 

mediated by its contribution on the cellular metabolism (45, 51-55). TAp73 plays a peculiar function in 

brain development (56-58) and TAp73 knockout mice exhibit significant neurodevelopmental defects, 

including hippocampal dysgenesis with truncation of the lower blade of the dentate gyrus (4, 59-61). 

Concurrent loss of TAp73 and the shorter isoform Np73 results in even more severe neurological 

phenotype; p73 full KO mice, in addition to defective hippocampus, display reduced cortical thickness 

and hydrocephalus (62). Recent studies have highlighted a critical contribution of p73 on the process 

of ciliogenesis. TAp73 appears necessary for basal body docking, axonemal extension, and motility 

during the differentiation of multiciliated cell progenitors, by transcriptionally controlling expression of 

key regulators of this process, FoxJ1, Rfx2, Rfx3, and miR34bc (63-65). This recent novel insight into 

the in vivo biological function of p73 might unify the complex phenotype displayed by p73 mutant mice 

(66).  

The most well studied functions TAp73 have been related to its transcriptional activates and induction 

of target genes through binding promoter elements that are highly similar to those of p53 (67). Despite 

extensive studies of TAp73 functions in maintaining homeostasis and in particular, in protecting 

against oxidative stress, we still do not understand the full spectrum of TAp73 cellular functions. 

Recently, we identified a new and surprising TAp73 function, regulation of mRNA translation (68). 

Regulation of protein synthesis is a mechanism for cells to readapt to stress conditions and cope with 

reduced energy/nutrient supply, attempting to optimise the cellular resources (69-71). Our study 

indicated that TAp73 depletion is accompanied by increased activity of eukaryotic elongation factor 2 

kinase (eEF2K), a negative regulator of mRNA translation elongation, and reduced translation 

elongation. This results in a reprogramming of the translatome and using gene knock-down in cell 

culture and polysome profiling, we found that TAp73 promotes the translation of ribosomal RNA 

processing factors under resting conditions and of mitochondrial proteins under oxidative stress.  

Indeed, TAp73 depleted cells exhibit reduced protein synthesis under resting conditions and reduced 

ATP levels, decreased mitochondrial activity and increased cell death following oxidative stress. 

These findings show that TAp73 not only regulates mRNA transcription but that it is an important 

regulator of mRNA translation as well. Here we addressed whether TAp73 regulates protein synthesis 

and/or translation elongation in vivo. 

 

Results and Discussion 

To test whether TAp73 regulates protein synthesis in vivo we used TAp73 KO and WT mice and 

focused on the brain, since there is a clear brain phenotype in TAp73 KO mice (4) namely, 

hippocampal dysgenesis (62). Using qRT-PCR we confirmed that TAp73 is expressed in several 

regions of the brain (Fig. 1A) and analysing published data confirmed that p73 is also expressed in 

human brain (Fig. 1B).  
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To measure protein synthesis in mouse brain we used brain slices obtained from TAp73 KO and WT 

mice and puromycin labelling.  The amount of puromycin incorporated proteins in the brain lysates 

was determined by Western blot and anti-puromycin antibodies (72, 73). Unexpectedly, given our 

previous in vitro data (where acute depletion of TAp73 resulted in a large decrease in global protein 

synthesis (68), we found no significant differences in the rate of protein synthesis between TAp73 KO 

and WT brains (Fig. 2A).  

We then hypothesised that there could be a compensation mechanism allowing TAp73 KO brains, 

which have developed in conditions of chronic TAp73 depletion, to maintain translation. Such a 

compensation mechanism has been described in cell lines that were engineered to exhibit defects in 

rRNA processing and, despite having a ribosomal defect, maintain protein synthesis rates through a 

mechanism involving reduction of eEF2K levels (74). To address this possibility, we analysed the 

levels of eEF2K and, as a read-out for eEF2K activity, those of phosphorylated eukaryotic elongation 

factor 2 (eEF2), in lysates obtained from brains of TAp73 KO and WT mice. In line with our hypothesis, 

we found a striking reduction in eEF2K protein levels that correlate with reduced phosphorylation of 

eEF2 (Fig. 2B-C). We did not observe significant differences in the phosphorylation levels of 

eukaryotic initiation factor 2 alpha (eIF2 (Fig. 2B-C), a marker of the ER stress pathway, suggesting 

that the proposed compensation occurs specifically through the translation elongation pathway. 

Mining published data revealed that there is a high correlation between the expression of p73 and 

eEF2K in human brain (Fig. 1C) supporting our premise that TAp73 is involved in regulation of 

translation elongation pathway in brain as well as in culture. 

In previous studies, it has been proposed that to compensate for defective rRNA processing and 

reduced mRNA translation, cells reduce the expression of eEF2K (74, 75). In agreement with these 

data, acute TAp73 depletion in cultured cells inhibits the synthesis of nucleolar proteins, rRNA 

processing and protein synthesis (68). However, not all cases of defects in rRNA processing lead to 

reduced protein synthesis. Acute depletion of glutamate-amonia ligase (GLUL) in cell culture resulted 

in aberrant rRNA processing but sustained protein synthesis (62). How cells maintained protein 

synthesis in this case is not known. The transcriptional factor TAp73 was implicated in the metabolism 

of the glutamine. In particular, our previous studies report that TAp73 transcriptionally controls 

expression of the glutaminase-2 (GLS-2) a key metabolic enzyme in the hydrolysis of the glutamine 

in glutamate. The TAp73/GLS-2 axis appears to have multiple implications for neuronal differentiation 

as well as for the capability of the cancer cells to survive under nutrient deprivation (76, 77). Whether 

the connection between the function of TAp73 in the glutamine metabolism is connected with its 

capability of influencing rRNA processing and mRNA translation has not been not clarified. The 

capability of the cells to cope with oxidative stress is crucially influenced by mechanisms supporting 

mitochondrial health (78-82). Dysfunctions in the cellular metabolism result in reduced antioxidant 

capacity and increased susceptibility to oxygen radicals (83-86).  TAp73 critically contributes to 

mitochondrial biology and cellular metabolism and under TAp73 acute depletion cells suffers of 

increased susceptibility to oxidative radicals in connection with a reduced protein synthesis capacity. 

Overall the current data are suggestive of a connection between TAp73 function on cellular 

metabolism, including regulation of mitochondrial activity, protein synthesis and oxidative defence. 

Consistently a readaptation in TAp73 KO mice of the cellular metabolic functions might underline the 

readaptation of the protein synthesis defect.   

In conclusion, our data strongly suggests that chronic TAp73 depletion in vivo results in reduced 

eEF2K protein levels that may represent a compensation mechanism for reduced translation capacity 

(Fig. 3), further implicating TAp73 in regulation of protein synthesis through interaction with the eEF2K 

pathway. 
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Materials and Methods 

Western blot 

Brains were homogenised with RIPA buffer containing phosphatase inhibitors 

(PhosSTOP Phosphatase Inhibitor Cocktail; Roche), and protease inhibitors (cOmplete Protease 

Inhibitor Cocktail; Roche). Equal amounts of proteins were run in SDS-PAGE gels, transferred to nitro 

cellulose membranes (Life Technologies) and probed using the following antibodies: Cell Signalling: 

eEF2K, Phospho-eEF2, eEF2,  Phospho-eIF2α; Santa Cruz: β Tubulin Antibody (H-235); p73: our 

home made antibody as described (87); Puromycin (Merk, clone 12D10). 

Mice 

TAp73 WT and KO mice were maintained as described (60). All animal work conformed to UK 

regulations and institutional guidelines and was performed under the authority of a project license 

granted by the UK Home Office. Western blot analysis of mice hippocampus was performed as 

described (60). In situ translation measurements were performed as described (73).  

RNA isolation and qPCR 

Total RNA from cortex, hippocampus and cerebellum was isolated using Trizol according to the 

manufacturer's instructions. RNA samples were treated with RNase-free DNase I (Qiagen). Total RNA 

was reverse transcribed using RevertAid H Minus First Strand cDNA synthesys kit (Fermentas). qPCR 

was performed using qPCR Mastermix with SYBR green (Applied Biosystem). The expression of 

TAp73 was defined from the threshold cycle (Ct), and relative expression levels were calculated by 

using the 2-ΔΔCt method after normalization with the housekeeping GAPDH and relative to cortex. 
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Figure legends 

 

Figure 1. TAp73 is expressed in brain. (A) mRNA levels of TAp73 in the indicated regions of the 

brain isolated from wild-type mice. KO is used as negative control (RNA derived from the brain of p73 

KO mice). (B) The expression of p73 in different regions of human brain was determined using R2. 

 

Figure 2. TAp73 KO mice maintain translation in the brain. (A) Brain slices obtained from the 

indicated genotypes were pulsed with puromycin (45 min; 5 g/ml). Puromycin incorporation in the 

brain lysates was determined using Western blot and anti-puromycin antibodies as described [25]. 

Scanned lanes were quantified using ImageJ. n=3; *p<0.05. (B) The levels of the indicated 

hippocampal proteins and their modifications in lysates obtained from the indicated genotypes were 

determined using Western blot. (C) Protein levels were quantified using ImageJ. n=3; *p<0.05.(D) The 

correlation between the expression of p73 and eEF2K in brain was determined using R2. 

 

Figure 3. Proposed model for TAp73 interaction with the translation pathway. Under normal 

conditions, TAp73 promotes the translation of nucleolar proteins which process rRNA and thus 

promoting global protein synthesis. Acute TAp73 depletion results in reduced translation of nucleolar 

proteins, increased activity of eEF2K and reduced global protein synthesis. TAp73 KO in vivo triggers 

a compensation mechanism in the brain where eEF2K expression is reduced and global protein 

synthesis is maintained.    
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Detailed reply to the reviewer 
Re-submission Manuscripts: KCCY-2018-0393 
Sustained protein synthesis and reduced eEF2K levels in TAp73-\- mice brain: a possible 
compensatory mechanism 
By:  Rotblat I et al. (corresponding G. Melino) 
 

 
We thank the Editor and the Reviewer for their positive consideration of our work and 
for their constructive criticisms. Here, we detail what is included in this revised version.  

 
Referee 1 
Referee: To support the mining data indicating a correlation between p73 and eEF2K mRNA levels in 
human brain, the authors should quantify eEF2k mRNA level in TAP73 KO brain. 

Reply: We thank the reviewer for raising the point and for giving us the chance to clarify. We 
did indeed check expression level of eEF2k in TAp73 KO mice brain. This is shown as protein 
level in figure 2b. We measured protein level and not RNA as this obviously correlate more 
accurately with the function of the gene. RNA expression does not necessarily imply 
expression of the protein.  
 
Referee: In Figure 2B the protein level of eIF2alpha should be included as well as the levels of other 
proteins of the translational machinery (4EBP1, eIF4E for instances) 

Reply: We thank the reviewer for raising this point. We indeed tried to measure eIF2alpha 
protein (and related translational machinery factors) but in facts the commonly used 
antibodies do not work on the mouse protein. We are afraid due to technical limitations we 
are not able to address this point.   
     
 
Referee 2 
Referee: Fig 1 The authors should include also the expression of eEF2K at mRNA level in different 
brain tissues similarly to TAp73 mRNA, comparing WT and KO mice. This will give further 
information about the molecular mechanism of eEF2K down-regulation in TAp73KO brain. Also, 
it would be interesting to show by immunohistochemistry the reduced expression of eEF2K in 
TAp73 brain tissues. 
Reply: We thank the reviewer for raising the point. As discussed in the first point of the 
reviewer 1 we did measure eEF2k in TAp73 KO mice brain, but we performed WB analysis as 
we believe this would better reflect the expression of the protein. The suggested IHC would 
indeed be just a confirmatory analysis of the WB.  
 
Referee: We thank The authors should expand the data presented in Fig 2. By looking at the western 
blot it seems that  eEF2K expression is completely abrogated. Analyzing other eEF2K substrates (ie. 
AMPK and alpha4; Lazarus et al. Cell Signal 2017) the authors should be able to demonstrate if eEF2K 
activity is totally compromised. 

Reply: We thank the reviewer for raising this point, but as discussed in the point 2 of the 
reviewer 1, antibodies of these singallings have poor affinity for mouse proteins, hecen due 
to technical limitations we are not able to address this point.   
 
Referee: It has been reported that eEF2K knock-out has a role in maintaining genomic integrity by 
arresting cell cycle in response to stress (Liao Y, et al. JBC 2016). The authors should discuss this aspect 
in the discussion also considering how they could be linked to the TAp73KO brain phenotype. If 
possible, they should measure these specific features also in the TAp73KO brains. 

Manuscript - with full author details
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Reply: We thank the reviewer for this suggestion. This part is indeed now been added to the 
discussion.  1 
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