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Key Points:  

• Burrowing invasive species represent a potentially significant but unquantified erosion 

risk at the aquatic-terrestrial interface  

• Of global interest: over 100 countries, states or territories where at least one relevant 

example invasive species is established   

• Our conceptual model demonstrates how burrows modify geotechnical, hydrological and 

hydraulic processes, influencing stability and erosion    

Abstract  

Invasive non-native species acting as ‘ecosystem engineers’ or ‘geomorphic agents’ can represent 

a major landscape disturbance. Quantification of their biogeomorphic impacts remains a key 

knowledge gap and aquatic-terrestrial transition zones may be particularly exposed to impacts. We 

demonstrate how burrowing invasive species represent a potentially significant but unquantified 

erosion risk at aquatic margins. We reveal a lack of quantitative research on geophysical impacts, 

despite increasing concerns over threats to waterways and flood defense infrastructure. We explore 

example animals of global interest, comprising crustaceans, fish, reptiles and mammals and reveal 

the global nature of the issue: over 100 countries, states or territories where at least one example 

species is established, and over 20 with 3-6 species present. We present a conceptual model for the 

impacts of burrows on stability and erosion at aquatic margins using established models of 

geotechnical, hydrological and hydraulic drivers. Burrows are hypothesized to (i) alter failure plane 

position, decrease failure plane length and increase failure plane angle (thereby decreasing bank 

shear strength); (ii) modify the spatial distribution of porewater pressure, thereby increasing 

subsurface flow (seepage), reducing cohesion and increasing the likelihood of slip failures at the 

bank face; (iii) increase turbulence and sediment entrainment at burrow entrances and (iv) alter 

flow resistance at the bank face. Most effects are expected to increase bank instability/erosion with 

the exception of (iv) which has the potential to offer protection from fluvial action. We call for 



further research in these areas to quantify impacts for different environments and different invasive 

species.  

  

Plain Language Summary  

Animals and plants acting as ‘biogeomorphic agents’ can have profound impacts on earth surface 

processes. Numerous animals burrow into soils and sediments and this can yield a range of 

ecosystem benefits. The burrowing activities of some invasive or ‘pest’ species, however, may 

increase erosion risks and aquatic environments are particularly vulnerable to such impacts. Our 

study explores examples of burrowing invaders of global interest that have potential to pose an 

erosion risk to the banks and margins of rivers, lakes, ponds, marshes, estuaries and artificial 

drainage and flood defense infrastructure. We identify over 100 countries, states or territories with 

at least one example species present, and 20 with three or more burrowing invaders. There is no 

established framework for assessing the erosion risk from burrows, so we use existing theory from 

geophysics to explore the different ways in which these species may generate erosion at the 

margins of aquatic environments.  

  

1 Introduction  

The term ‘ecosystem engineer’ describes plants and animals that cause physical state changes in 

biotic or abiotic materials, either via their own physical structures or by transforming living or non-

living materials (Jones et al., 1994). The effects of ecosystem engineers on the environment is 

profound: they initiate, modify and maintain habitats and modulate resource flows in all 

ecosystems on earth (Jones et al., 1994). A subset of ecosystem engineers, referred to as 

‘geomorphic agents’ (Butler, 1995), ‘geomorphic engineers’ or ‘biogeomorphic agents’ (Fei et al., 

2014) alter earth surface processes and landforms at scales ranging from individual sediment grains 

to entire landscapes (Reinhardt et al., 2010; Bertoldi et al., 2011; Rice et al., 2012). Biogeomorphic 

agents may construct new landforms (bioconstruction), break down and fractionate soils and 

sediments e.g burrowing or reduce protection from erosion e.g. herbivory, (bioerosion), disturb 

and rework soils and sediments (bioturbation) and offer protection from erosion of weathering 

(bioprotection), see Naylor et al. (2010), Fei et al. (2014) and Davidson et al. (2018). As a result, 

these organisms can increase habitat complexity, and potentially biodiversity (Crooks, 2002), and 

can be used to promote the recovery of degraded environments (Byers et al., 2006; Polvi and 

Sarneel, 2017; Bailey et al., 2018).  

  

Invasive species acting as ecosystem engineers and biogeomorphic agents have been identified as 

a special case (Crooks, 2002; Harvey et al., 2011; Fei et al., 2014; Davidson et al., 2018). While 

biological invasion is a natural process, species introductions (whether deliberate or accidental) 

have generated unprecedented increases in the rate of species invasions globally (Seebens et al., 

2016) as well as changes in the nature and pathways of invasions (Crooks, 2002). These trends are 

expected to persist (Seebens et al., 2016). For many species, effective eradication strategies remain 

elusive (Stebbing et al., 2012) and indeed may be inappropriate within the context of global change 

and novel ecosystems (Hobbs et al., 2011). There is lively debate around the ‘vilification’ of 

nonnative and invasive species, the use of value-laden terminology (e.g. ‘alien’ and ‘invasive’), 

the appropriateness of distinctions between non-native and native species in a rapidly changing 

planet and the suitability of existing management responses. These issues are illustrated by the 



debate between Davis et al. (2011) and Simberloff et al. (2011) and in the recent synthesis by 

Boltovsky et al. (2018) and we refer the reader to these sources for further information. Here, we 

recognize a non-native species as that which is living outside its native distributional range as a 

result of intentional or accidental dispersal by human activities (sometimes referred to as ‘exotic’ 

or ‘introduced’; UN Convention on Biological Diversity, 2019). ‘Invasive species’ generally refers 

to those non-native species that have the ability to spread and cause damage to the environment, 

the economy and human health (GBNNSS, 2019; Russell, 2012). We recognize that non-native 

species do not necessarily become invasive, that invasive species can have positive, neutral and 

negative effects on the invaded landscape and ecosystem, and that many have mixed impacts 

(Boltovskoy et al., 2018). Native species may also be referred to as invasive or ‘pest’ species when 

environmental pressures result from the rapid dominance of a species (Valery 2013) or where their 

activities come into conflict with people, property or infrastructure (Bayoumi and Meghuid, 2011). 

We also recognize that invasive species do not possess ill intent and that their impacts have 

fundamentally been generated by the human activities that have facilitated their spread into non-

native ranges. Notwithstanding the important epistemological issues, there is substantial and 

increasing evidence that many invasive species are capable of altering ecosystems and geophysical 

processes in ways that may generate environmental, economic and societal risks, at least within 

the context of current approaches to environmental conservation and management (Pimental et al., 

2001; Gallardo et al., 2016). Irrespective of the suitability of management responses, improved 

understanding of the biogeomorphic impacts of invasive species is required to advance knowledge 

of biogeomorphology and invasion ecology and support environmental management (Fei et al., 

2014).   

  

While the direct biogeomorphic impacts of invasive species are not unique in character, they can 

have profound geophysical effects that are disproportionate to their biomass and are more likely to 

lead to major geomorphic changes and stresses capable of inducing a landscape phase-state shift 

(Fei et al., 2014; Butler et al., 2018). Such impacts are possible since invasive species may be less 

constrained by factors that would limit their abundance in native habitats (Wolff, 2002), can be 

present in extremely high densities, and may exhibit behaviors and destructive traits that are not 

exhibited in the native range (e.g. Holdich, 1999). While some invasive species can generate 

increased habitat complexity and biodiversity, exotic animals in particular have been linked with 

disturbances that destroy physical structure and reduce heterogeneity in invaded landscapes 

(Crooks, 2002). Transitional areas between terrestrial and aquatic systems including fluvial 

systems, wetlands and marshes are highly connected within the landscape both laterally at the 

aquatic-terrestrial interface and longitudinally via the catchment-coast continuum, and have been 

identified as particularly exposed to the biogeomorphic impacts of invasive species (Moorhouse 

and Macdonald, 2015; Fei et al., 2014). Despite these attributes, quantification of the 

biogeomorphic impacts of invasive species remains a key knowledge gap.  

  

Bioturbating activities, such as burrowing, frequently account for major effects in aquatic systems 

(Fei et al., 2014). Many terrestrial and aquatic species excavate burrows for defensive, 

reproductive or refuge purposes (Haussman, 2017) and burrowing species can generate diverse 

ecosystem benefits and services, such as contributions to nutrient cycling, climate and water 

regulation and pollution remediation (Wilkinson et al., 2009; Blouin et al., 2013). Burrowing 



invasive and ‘pest’ species, however, have the potential to increase erosion risk at aquatic margins 

for the reasons outlined above. This risk remains unquantified, but increasing reports of damage to 

natural and artificial drainage channels suggests burrowing invaders and native pests represent a 

significant and growing threat to waterways and flood defense infrastructure (e.g. Hoover et al., 

2004; Panzacchi et al., 2007; Ferriter et al., 2008; Sementelli et al., 2008; Nico et al., 2009; 

Orlandini et al., 2015; Davidson et al., 2018) and historic waterside landmarks (e.g. Telegraph 

Reporters, 2016; BBC News, 2018). Improved understanding of the nature and extent of this risk 

is therefore urgently required to inform the effective and sustainable management of invaded 

systems.  

  

This paper aims to demonstrate how burrowing invasive species alter geophysical processes and 

represent an erosion risk to aquatic margins in invaded landscapes. We highlight the lack of 

existing research into their impacts and identify example species of current concern at the global 

level. We then present a conceptual model which hypothesizes how burrows may influence erosion 

risk by modifying geotechnical, hydrological and hydraulic processes in river banks and indicate 

the relevance of these processes for other types of aquatic margin (e.g. lake margins, estuaries)  

  

2 Burrowing invasive species: the knowledge gap  

Numerous burrowing species have been introduced to aquatic ecosystems through a range of 

pathways including aquaculture, the aquarium and exotic pet trade, commercial shipping and the 

fur trade (Carter & Leonard, 2002; Kern, 2004; Nico et al., 2009; Herborg et al., 2003). Burrow 

excavation by invasive species occurs in a number of environments along the catchment to coast 

continuum, including the banks of natural and artificial channels, lake margins, salt marsh edge 

and creek habitats, and in and around flood defense structures including earthen dams, 

embankments/ levees and flood walls (see Figure 1). Some invasive animals have been observed 

to burrow in both native and invaded ecosystems (e.g. armoured catfish; Nico et al., 2009), usually 

for reproductive and/or refuge purposes (see Table 1), while for others burrowing appears to be a 

behavior unique to invaded habitats and motivations are less clear (e.g. signal crayfish; Guan, 

1994; Holdich, 1999). Burrowing habits have been linked to the invasiveness of some aquatic 

species, by contributing to increased environmental tolerance and protection from predation 

(Barbaresi et al., 2004).   

  

Geomorphological impacts of burrowing occur at different spatio-temporal scales, ranging from 

the excavation of the burrow itself (i.e. an instantaneous, low magnitude sediment input), to wider 

impacts on bank instability and erosion across impacted bank faces and sites (potentially higher 

magnitude inputs over longer timescales) (Guan, 1994; Holdich, 1999; Angeler et al., 2001; Faller 

et al., 2016). These impacts have the potential to generate catchment scale sediment management 

issues, depending on the magnitude of sediment inputs and system connectivity (Harvey et al., 

2011). Davidson et al. (2018) present a modified version of Parker et al.’s (1999) model for 

understanding and quantifying the impacts of invasive non-native species, focusing on the impact 

of bioeroders (including burrowing animals).  The model proposes that the impacts of bioeroders, 

IB can be expressed as a function of the geographical range of the species (R), the local abundance 

(A), and the per capita effects (E): IB = R x A x E, mediated by the characteristics of the substrate 

exposed to bioerosion and influenced by the nature of the system and environmental change 



(Davidson et al., 2018) and by variations in the nature of relationships between R, A and E (Parker 

et al., 1999). In the case of burrowing species, burrow dimensions generally reflect body size, since 

it is not energetically efficient to construct burrows larger than the minimum requirement, resulting 

in a positive correlation between body size and burrow volume (Haussman, 2017; Figure 1). 

Magnitude-frequency relationships, however, are important: smaller species occur in greater 

numbers and may dig more excavations per individual per year, meaning that overall sediment 

removal rates may exhibit a negative correlation with body size (Haussman, 2017). The potency 

of smaller and less conspicuous animals such as aquatic invertebrates, therefore, has the potential 

to rival that of larger and more visible species such as mammals.  

  

Our literature review is not exhaustive, but provides a selection of example invasive species with 

published burrowing impacts. Burrowing invaders include crustaceans (crayfish, crabs, isopod), 

fishes (armoured catfish), reptiles (iguana) and mammals (the semi-aquatic rodent ‘coypu’ or 

‘nutria’; Myocastor coypus; Table 1). Native mammals such as muskrats, beavers, porcupines, 

badgers and foxes are also sometimes considered ‘pest’ species when their burrowing habits cause 

damage to flood control structures (Federal Emergency Management Agency, 2003; Orlandini et 

al., 2015). The conceptual model we present in section 4 is equally applicable to such cases and to 

terrestrial animals (in addition to aquatic and semi-aquatic species) that construct burrows at 

aquatic margins.  Notably, we found that reports of burrowing impacts were largely confined to 

biological or ecological scientific journals or ‘grey literature’ (reports from government 

departments and academic/ research institutes). This reflects the fact that the burrowing impacts of 

invasive species tend to be reported as one of a number of detrimental ecosystem impacts, rather 

than the research focus in the majority of sources.We identified six publications that focus directly 

on quantifying the impact of invasive burrowers on slope stability or erosion at aquatic margins, 

but all of these linked burrowing with increased instability and/or erosion (Talley et al., 2000; 

Rudnick et al., 2005; Davidson and Riviera, 2010; 2012; Orlandini et al., 2015; Aman and Grimes, 

2016; Faller et al., 2016).  

  

    

  

Table 1 Impacted habitats and invasive range for example burrowing invasive animals of global 

interest, together with their burrowing behaviour and burrow characteristics. Bold numbers for 

invasive range show total number of countries/states/territories with established populations and 

superscript numbers show numbers of countries/states/territories where these have been 

amalgamated into regions for brevity (sources: GISD, 2019; DAISIE, 2019; NOBANIS, 2019).  

Data on burrowing behavior and burrow characteristics are derived from reports from both invasive 

and native ranges.  

  



  
  

Although native burrowing animals are numerous (Haussman, 2017), there is no existing 

theoretical framework identifying the geotechnical, hydrological and hydraulic impacts of burrows 

that can be applied to burrowing species. Detailed understanding of the mechanics of burrowing is 

largely limited to hypothesized generalizations for idealized solids and experimentation with 

analog materials, failing to account for the complex and heterogeneous characteristics of natural 

sediments (Dorgan, 2015). Characterizing burrow-induced failure in natural substrates is therefore 

a critical knowledge gap requiring the development of new methods and approaches (Dorgan, 

2015).  

    

  

3 Example species of global interest  

Crustaceans are the most successful aquatic invaders across the globe, accounting for 53% of 

invasive species in European freshwater ecosystems compared to 12% of native species (Hanfling 

et al., 2011) and 28% of coastal invasions in North America (Ruiz et al., 2011). They are the most 

widespread invasive aquatic organisms and are considered to be the most detrimental in terms of 

impacts on ecosystem services (Vila et al., 2010). Several crustacean species of global interest are 

known to dig burrows into river banks, including a number of freshwater crayfish: spiny cheek 

crayfish (Orconectes limosus), virile crayfish (Orconectes virilis), red swamp crayfish 



(Procambarus clarkii) and signal crayfish (Pacifastacus leniusculus). For some species the 

biological motivation for burrowing behaviour has been established (e.g. reproduction; P. clarkii; 

Loureiro et al., 2015) while for others burrowing appears to be a characteristic unique to invaded 

ecosystems and motivations are less clear (e.g. P. leniusculus, Guan, 1994; Holdich, 1999; Table 

1). Crayfish burrow architecture is often simple, comprising single openings with tunnels enlarging 

to a terminal chamber, although more complex architectures with multiple entrances have been 

observed (Correia & Ferreira, 1995). Evidence suggests that burrow construction is favored in fine, 

moist sediment; characteristics that also make vacant burrows more susceptible to collapse, 

potentially leading to further construction elsewhere (Barbaresi et al., 2004; Figure 1a). Field 

observations at individual sites have linked invasive crayfish burrowing with increased bank 

erosion and sediment delivery (Guan, 1994; Holdich, 1999; Angeler et al., 2001) and a recent 

extensive, multi-catchment study identified a statistical association between invasive crayfish 

burrows and bank erosion (fluvial action and mass failure processes) beyond the scale of individual 

burrows (Faller et al., 2016). Faller et al. (2016) also reveal a tendency for burrows to be excavated 

on bare, eroding banks on the outside of meander bends. These are areas already exposed to 

erosional processes indicating potential for burrowing to accelerate erosion rates.  

  

Invasive crabs and isopods generate similar effects in estuarine and coastal margins. Perhaps the 

most widely-reported are Chinese mitten crabs (Eriocheir sinensis) which have spread across 

Europe and northern California via the transport of larvae and juveniles in the ballast water of 

commercial vessels (Herborg et al., 2003). Their catadromous life cycle means that in addition to 

rapidly colonizing coastal and estuarine areas, E. sinensis can make significant migrations inland 

(Clark et al., 1998; Herborg et al., 2005). Burrows are generally excavated by juveniles following 

migration into brackish channels, for purposes of refuge during moulting and protection from 

dessication (Rudnick et al., 2000; Bouma & Soes, 2010). The highest dispersal rates (> 400 km 

per year) have been observed along coastlines, but upstream or inland spread can also been rapid 

with rates of up to 49 km per year reported in the UK (Herborg et al., 2005). E. sinensis burrow 

entrances are elliptical, reflecting the flat oval-shaped bodies of the crabs (Rudnick et al., 2003) 

and architectures can range from single tunnel-chamber systems containing one crab, to more 

complex burrow systems with multiple entrances and tunnels containing multiple crabs, with the 

latter most likely reflecting reuse over longer time periods by multiple year classes (Rudnick et al., 

2003). As a result, burrow volume can vary by an order of magnitude, for example between 102 

and 103 cm3 (Rudnick et al. 2005) and burrow densities of up to 30 per m2 have been reported 

(Rudnick et al., 2000). E. sinensis burrows were linked with erosion as early as the 1930s in 

Germany (Panning, 1938) and erosion concerns have been raised more recently in the USA, UK 

and continental Europe (Herborg et al., 2003; Rudnick et al., 2005, Bouma & Soes, 2010).  

  



  
Figure 1 Examples of invasive species burrows in different types of aquatic margin: (a) P. 

leniusculus burrows on the River Enbourne, UK; (b) Pterygoplichthys sp. burrows on the San 

Antonio River, Texas, USA (reproduced from Hoover et al., 2004); (c) Sediment loosened by 

extensive burrowing activity of S. quoianum and (d) collapse of marsh surface linked with S. 

quoianum burrowing, both from Paradise Creek, San Diego Bay, USA (both reproduced from 

Talley et al., 2001, with permission from Springer Nature); and (e-g) M. coypus burrows and 

associated erosion on drainage channels in northern Italy (reproduced from Sofia et al., 2016, with 

permission from John Wiley & Sons).  

  

Another invasive crab species, the naturally aggressive and territorial European green crab 

(Carcinus maenas) is invasive in North America, Australia, South Africa, South America and Asia 

(GISD, 2019). Concerns over salt marsh erosion have been raised for some invaded areas as a 

result of burrowing into shore banks (Wallentinus & Nyberg, 2007; Aman & Wilson Grimes, 

2016). Native burrowing crabs (Sesarma reticulatum) have also been linked with high magnitude 

peat displacement from New England salt marshes as a result of predator depletion and associated 

population density increases of ~400% (Coverdale et al., 2013), illustrating the potential for similar 

effects from native species that become invasive. Interestingly, in this case C. maenas invasion 

assisted cordgrass recovery by reducing S. reticulatum functional density and herbivory through 



burrow occupation and other effects (Coverdale et al., 2013).  Smaller animals can also have 

pronounced effects. For example, the Australasian isopod (Sphaeroma quoianum) has colonized 

at least 15 estuaries on the Pacific coast of North America (Davidson, 2008), creating dense 

networks of interconnected burrows in the peat and mud banks of tidal creeks and marsh edges 

(Talley et al., 2001; Davidson, 2008; Figure 1c, d). While adult body size is small (11-13 mm), S. 

quoianum can occur in very high densities and a population of 100 000 adults burrowing for two 

months has the potential to remove approximately 176L of salt marsh bank (Davidson & Rivera, 

2012). Infested sites have been associated with higher lateral salt marsh erosion rates (increases of 

up to 300%) and greater incidence of undercutting, calving and slumping (Davidson & Rivera, 

2010).   

  

Fewer invasive fish are known to excavate burrows, but suckermouth armoured catfishes 

(Siluriformes: Loricariidae) or loricariids, have the potential to contribute to instability and erosion 

at aquatic margins. Loricariids are a large and diverse group, native to South America, Panama and 

Costa Rica (Lienhart et al., 2013). Many species are popular aquarium fishes and three genera 

(Hypostomus, Pterygoplichthys and Ancistrus), have been introduced outside their native ranges 

via the aquarium trade and established non-native populations across the globe (Nico et al., 2009; 

Lienhart et al., 2013). Both Hypostomus and Pterygoplichthys are known to excavate burrows 

(Nico et al., 2009), primarily for nesting and spawning, but reports generally focus on 

Pterygoplichthys (including Pterygoplichthys anisitsi; P. disjunctivus; P. pardalis; and P. 

multiradiatus) since they also have large broods, are able to tolerate a wide range of environmental 

conditions (Lienhart et al., 2013) and are the most widely introduced, occurring in drainage ditches 

and rivers across the USA, Central America, Asia and the Caribbean (Nico et al., 2009). Adults 

are relatively large, measuring on average 30-50 cm and up to a maximum of 70 cm in length (Nico 

et al., 2009). Simple, straight, single-tunnel burrows occur in both native and invaded habitats, 

commonly where population densities are high and habitat suitable, and are generally aggregated 

into ‘colonies’ of up to 12 burrows (Nico et al., 2009; Figure 1b). Burrows can reach up to 1 m in 

length and may be randomly dispersed or clumped in higher density areas (van den Ende, 2014). 

As noted for P. leniusculus above, Pterygoplichthys appear to preferentially select locations 

already exposed to erosional processes as preferential burrowing sites: steep, exposed banks 

dominated by fine sediment (silt and clay) on the outer bends of meanders in natural channels 

(Nico et al., 2009; van den Ende, 2014). Burrows have been found in a range of environments, 

however, including lake shores, canal banks, dikes and levees (Ferriter et al., 2008) leading to 

concerns over erosion and undermining of structures (Hoover et al., 2004; Nico et al., 2009).  

  

Impacts associated with burrowing reptiles have also been reported, although to a lesser degree. 

The green iguana (Iguana iguana) is a particular concern in south Florida where feral populations 

have established as a result of escape or deliberate release of animals imported as exotic pets (Kern, 

2004). Burrows are excavated for nesting or refuge purposes (Krysko et al., 2007) and have been 

observed in the banks of canals and levees and adjacent to seawalls. Burrows are sizeable, 

measuring up to 0.2 m in width and 2.4 m in depth, and hence have the potential to penetrate into 

flood defense infrastructure to a considerable extent (Sementelli et al., 2008). As a result, I. iguana 

burrows have been linked with bank instability and erosion and the collapse of seawalls, and 



similar impacts have been suggested for other species including the Mexican spiny-tailed iguana 

(Ctenosaura pectinate) and black spiny-tailed iguana (C. similis) (Kern, 2004; Ferriter et al., 2008).  

  

The semi-aquatic rodent Myocastor coypus (coypu or nutria), native to South America, has 

established feral populations across Europe, Asia, Africa and North America following 

introduction for fur farming (Carter & Leonard, 2002). M. coypus excavates burrows into river 

banks and levees for protection from predators and thermal extremes (Hong et al., 2015). Burrows 

can extend for up to 5 m in depth and range from simple single-entrance systems to complex 

systems with multiple tunnels and entrances at different levels (Washington State Department of 

Fish and Wildlife, 2006). Burrowing activity by M. coypus has been linked to the undermining of 

banks and embankments on irrigation canals (Bertolino & Genovesi, 2007; Sofia et al., 2016; 

Figure 1e-g) and burrow-induced collapse of weakened banks and levees has been linked to 

devastating flood events (Panzacchi et al., 2007; Orlandini et al., 2015). River bank management 

related to M. coypus has been estimated as in excess of € 1 million per year in Italy (Panzacchi et 

al., 2007). Other mammal species, such as the North American beaver (Castor canadensis) which 

is invasive in Patagonia, are known to burrow but reported biogeomorphic impacts in invaded 

systems have, to date, focused on beaver meadow formation and how this differs from models 

developed for the native range (Westbrook et al., 2017). The burrowing behavior of native rodents, 

including muskrats, beavers, groundhogs, porcupines, badgers and foxes, has also been identified 

as posing a significant threat to the integrity of earthen dams and levees (Federal Emergency 

Management Agency, 2003; Bayoumi and Meguid, 2011; Orlandini et al., 2015).  

  

Data on the non-native range of the example species/genera discussed above were sourced from 

the Global Invasive Species database (GISD, 2019), European Network on Invasive Alien Species 

(NOBANIS, 2019) and Delivering Alien Invasive Species Inventories for Europe (DAISIE, 2019) 

for species listed as ‘Alien’ in status and ‘established’ in occurrence (unless accompanying notes 

indicated status was uncertain). This may omit invaded areas that are reported in the literature but 

have not yet been added to the databases, so the map is intended to provide an indication of the 

global relevance of the issue rather than a comprehensive assessment of individual species 

distributions. In total, there are 120 countries, states or territories where at least one species of 

interest has established a non-native population and 24 where there are between 3 and 5 species 

present. Six of the species discussed have established non-native populations in the Netherlands (4 

crayfish spp., E. sinensis, M. coypus) and California (2 crayfish spp., E sinensis, C. maenas, S. 

quoianum, Pterygoplichthys spp.). The number of species per country, territory or state is 

summarized in Figure 2 and Table 1 presents further information at species level. The most 

globally widespread species/genera are M. coypus and P. clarkii followed by E. sinensis and the 

Pterygoplichthys spp. Table 1 also summarizes the main types of aquatic margin affected by 

burrowing invasive species as identified from the literature. All species are associated with either 

rivers, estuaries or artificial channels (and most commonly a combination of these), and most 

species also occur in pond and lake habitats and/or wetlands.  



  
Figure 2 Map showing the number of example burrowing invasive animals discussed in the text 

for different countries (or states/ territories for the USA and Canada). Data sourced from GISD 

(2019), DAISE (2019) and NOBANIS (2019). Species included: O. limosus, O. virilis, P. clarkii, 

P. leniusculus, E sinensis, C. maenas, S. quoianum, Pterygoplichthys spp., I. iguana, M. coypus.   

  

  

4 A conceptual model for burrow-induced bank erosion  

The burrowing activities described above physically remove sediment from aquatic margins; 

primarily through the mechanism of excavation (pulling or scraping grains; Dorgan, 2015). 

Operating in isolation, this process will generate sediment flux from aquatic margins at a rate that 

is dependent on the size of burrows constructed by the species in question, its behavioral 

characteristics and the local population density. However, the construction of burrows by animals 

also has the potential to impact upon physical processes that operate on and within aquatic margins 

at scales much larger than an individual burrow. The following sections present a conceptual model 

hypothesizing how burrowing invaders will influence bank stability and erosion through 

geotechnical, hydrological and hydraulic effects. The primary focus is on river banks but we also 

indicate the relevance of each process to other types of aquatic margin. While similar mechanisms 

will be associated with native burrowing species, the potential for invasive species to establish 

high population (and burrow) densities and, hence, represent a system disturbance increases the 

potential extent and intensity of any impacts and, thus, the significance of any resultant 

conservation or management issues.  

  

River banks retreat through a combination of fluvial (hydraulic) erosion and mass failure. Fluvial 

erosion refers to the dislodgement or entrainment of particles or aggregates of sediment due to the 

shearing action of flow at the water-sediment boundary. It occurs when forces acting to hold a 

particle or assemblage of particles in place (friction, interlocking and/or cohesion; Lawler et al., 

1997) are overcome by those acting to mobilize the particle or assemblage of particles (lift and 

drag, together with the downslope component of its submerged weight; Lawler et al., 1997). Mass 

failure can be defined as the movement or collapse of bank material due to geotechnical instability. 



Typically, this involves failure along a discrete plane deep within the bank and its occurrence 

depends on the balance between the forces acting to move a unit of bank material downslope (the 

tangential component of its weight) and those acting to resist that movement (see above; Lawler et 

al., 1997). These two mechanisms are intrinsically linked, with the removal of material from the 

bank toe by fluvial erosion increasing the likelihood of mass failure due to an undercutting or 

steepening of the bank (Thorne, 1982). Eventual failure of the bank through mass failure delivers 

material to the bank toe which, in turn, protects the lower bank from further erosion until removal 

by subsequent fluvial erosion. This is referred to as basal endpoint control (Carson and Kirkby, 

1972; Thorne, 1982) and is an important determinant of river bank retreat rates. Detailed 

understanding of how burrowing modifies these processes based on observational data is lacking 

but established models from soil science and fluid mechanics provide a theoretical basis upon 

which effects can be hypothesized. These are elaborated in the following sections.  

  

4.1 Geotechnical and hydrological effects of burrowing   

The shear strength of cohesive river banks under saturated conditions can be represented by the 

revised Mohr-Coulomb equation:  

  

𝑆r = 𝑐′ + (𝜎 − 𝜇w)tan𝜑′                Equation 1  

  

where Sr is the effective shear strength (kPa); c′ is the effective cohesion (kPa); σ is the normal 

stress (kPa); μw is the pore-water pressure (kPa) and φ′ is the effective angle of internal friction in 

degrees (Fredlund & Rhardjo, 1993). The normal stress is computed by:  

  

𝜎 = 𝑊 cos𝛽                    Equation 2  

  

where W is the weight of the failure block per unit area of failure plane (kN m-2) and β is the 

angle of the failure plane in degrees.   

  

Banks will fail where the resistive strength, Sr, is exceeded by the driving gravitational force, Sd, 

as represented by:  

  

𝑆𝑑 = 𝑊 sin𝛽                   Equation 3  

  

where Sd is the driving gravitational force (kPa), W is the weight of the failure block per unit area 

of failure plane (kN m-2) and β is the angle of the failure plane in degrees. The ratio between these 

resisting and driving forces is known as the factor of safety, with failure occurring when its value 

falls below unity.  

  

The presence of burrows will modify the value of key terms in the above equations. Their 

concentration and extension into the bank at and below the mean water level (see Table 1) can be 

considered akin to fluvial undercutting at the bank toe in that it will increase the potential failure 

plane angle and decrease the effective friction angle (c.f. Thorne & Tovey, 1991; Simon et al., 

2000; Figure 3), decreasing the factor of safety. Furthermore, the tendency of some species (e.g. 

P. clarkii, M. coypus) to dig tunnels that extend towards the bank top surface (see Figure 1e) 



increases the likelihood that such burrows will act in a similar way to tension cracks. These are 

vertical voids that develop downwards from the ground surface some distance from the bank face 

due to horizontal tensile stresses generated behind steep banks and slopes (Terzaghi et al., 1996).  

Their presence decreases bank stability by reducing the effective length of potential failure planes 

(and, thus, effective cohesion), with the eventual mechanism of collapse (e.g. slip versus toppling 

failure) being determined by the length of the tension crack relative to the height of the bank (Darby 

and Thorne, 1994). Natural undercutting and tension crack development tends to occur over 

lengths of river bank that are significantly greater than individual burrows, and between-burrow 

bank material will act to maintain stability. The significance of these effects are therefore likely to 

be determined by the lateral extent and intensity of burrowing, together with the burrow 

architecture, and revised stability equations will need to be developed to aid predictions of bank 

failure due to the geotechnical effects of burrowing. Similar processes will operate at other aquatic 

margins including estuaries, marsh edges and creeks and lake shores, with the nature of failure 

reflecting the sediment characteristics and geometry of the bank, shore or margin.  

  

Physical changes to the internal structure of river banks caused by animal burrows may, alone, be 

sufficient to cause mass failure via the mechanisms described above. The probability of mass 

failure is, however, likely to increase where these effects are compounded by coincident 

hydrological changes within the river bank. The presence of animal burrows in river banks can 

significantly alter the hydrological behavior of the bank. Evidence from a limited number of studies 

suggests that crustacean burrows modify the spatial distribution of pore-water pressure within 

banks (Onda & Itakira, 1997; Xin et al., 2009). This is significant as Equation 1 shows how 

increased pore-water pressures can reduce the strength of banks. The occurrence of positive pore-

water pressures in banks during the receding limb of flood events where the water surface elevation 

in the channel falls rapidly has long been recognized as a cause of bank instability and erosion 

(Simon et al., 2000) and the presence of burrows will enable such conditions to occur at greater 

depths within cohesive banks than might otherwise be expected. Even in unsaturated conditions, 

relatively small losses of negative pore-water pressures have been shown to be capable of 

generating bank failures (Casagli et al., 1999; Simon & Curini, 1998). The following modified 

version of the Mohr-Coulomb equation demonstrates how an increase in pore-water pressure 

decreases the effective stress of the soil and, thus, the soil shear strength (Darby & Thorne, 1996; 

Fox & Wilson, 2010):  

  

𝑆r = 𝑐′ + (𝜎 − 𝜇a)tan𝜑′ + (𝜇a − 𝜇w)tan𝜑𝑏          Equation 4  

  

where Sr is the shear strength (kPa); c′ is the effective cohesion (kPa); σ is the normal stress (kPa); 

μa is the soil pore-air pressure (kPa), μw is the pore-water pressure (kPa), φ′ is the effective angle 

of internal friction in degrees, and φb is the angle indicating the rate of increase in shear strength 

relative to matric suction (Fredlund & Rahardjo, 1993; Simon et al., 2000).  

  

Onda & Itakira (1997) show that the presence of burrows modifies the location of the phreatic 

surface within the bank, increases the hydraulic gradient and concentrates subsurface (seepage) 

flow. Together, these effects have been shown to cause within-burrow erosion and the collapse of 

overhanging material (Onda & Itakira, 1997). These effects can be considered akin to horizontal 



macropores (soil pipes) that develop in banks and hillslopes above water-restricting layers and act 

as preferential flow pathways (Hagerty, 1991a; Hagerty, 1991bFaulkner, 2006; Lindow et al., 

2009; Fox & Wilson, 2010). Concentration of subsurface flow along these pathways leads to bank 

undercutting, tension crack formation and eventual collapse due to mass failure (Hagerty, 1991a; 

Hagerty, 1991b; Fox & Wilson, 2010). We hypothesize that animal burrows will perform a similar 

hydrological function during the rapid drawdown of soil moisture following high magnitude flood 

events, with the extension of the burrow into the bank causing elevated pore-water pressures at the 

lower bank face and accentuating the likelihood of slip failures at the bank face once the water 

level falls below the elevation of the burrow entrance (Figure 3). Under baseflow conditions, 

however, increased drainage of the bank associated with burrow presence may reduce antecedent 

near-bank face pore water pressures, reducing susceptibility to erosion during lower magnitude 

flow events. A similar effect has been observed in artificially drained high, steep river banks 

(Shields et al., 2009). Further research is needed to quantify the hydrological significance of 

burrows and their implications for bank stability. As with any potential geotechnical effects, the 

lateral extent and intensity of burrowing, together with the burrow architecture and typical position 

relative to the mean water level are likely to act as important determinants of the magnitude of any 

hydrological effect, in combination with the magnitude and frequency of water level fluctuations 

as determined by the hydrological regime. Similar processes will operate at other aquatic margins, 

but with key differences in the nature, magnitude and frequency of hydrological fluctuations 

associated with tidal and lentic hydrological systems.  

   



   
Figure 3 Conceptual basis for geotechnical and hydrological effects of burrowing. Hypothesized 

spatial distribution of pore water pressure and position, length and angle of potential failure planes 

immediately following a flood event under the following scenarios: (a) a cohesive river bank 

without burrows; (b) the same bank burrowed by M. coypus; and (c) the same bank burrowed by 

P. leniusculus. Note: the exact hydrological response of a bank following flood drawdown will be 

determined by its geometry, material properties and the nature of the event.  



4.2 Hydraulic effects of burrowing  

We hypothesize that the hydraulic effects of animal burrowing (and, thus, their potential impact on 

fluvial erosion at the bank face) will vary with spatial scale. At the scale of individual burrows, 

cavities are known to modify near-bank flow structures in open channels, for example by 

generating high levels of vorticity as flow passes over their leading (upstream) and trailing 

(downstream) edges (Ozalp et al., 2010; Jackson et al., 2015; Figure 4). Enhanced turbulence 

around the entrances to animal burrows (in contrast to that typically encountered on smooth bank 

faces) may therefore amplify the direct entrainment of particles from the surface of the bank.  

  

  
  

Figure 4 Conceptual basis for hydraulic effects of burrowing at the cavity scale, showing 

streamlines and contours for vorticity (Reynolds number = 1700; negative values in blue, positive 

values in red shading). Schematized diagram based on the experimental results of Ozalp et al. 

(2010), with permission from Elsevier (Figures 5 and 6).  

  

At the wider bank section scale, however, the collective effect of multiple burrows may be to 

reduce overall rates of fluvial erosion as a result of increased roughness. Bank erosion rates are 

generally quantified using an ‘excess shear stress’ formula, whereby the erosion rate reflects the 

shear stress applied by the flow in relation to an erodibility coefficient and a critical shear stress 

value (Rinaldi & Darby, 2007). The total shear stress can be partitioned into ‘skin friction’, arising 

from the fluid stresses acting on the boundary and the ‘drag stress’ arising from the pressure 

differential created by flow past topographic irregularities (Kean et al., 2009). Partitioning of skin 

friction and form drag is critical for accurate prediction of erosion rates, but understanding of 

relationships between bank roughness and erosion is relatively limited and largely derived from 



laboratory experimentation due to the complexities associated with modelling the highly irregular 

surfaces of river banks.   

  

For macrorough flow (where roughness elements approach the order of magnitude of channel 

dimensions) and under laboratory conditions, rectangular cavities can influence vertical mixing 

layers, wake zones, recirculation gyres, coherent structures and skin friction, with the overall effect 

of significantly increasing flow resistance (Meile et al., 2011). Smaller-scale topographic features 

characteristic of natural river banks may have similar effects. Natural banks (without burrows) are 

characterized by small scale topographic undulations produced by erosional processes and/or 

vegetation which create near-bank disturbance layers, exerting form drag that can profoundly 

modify flow resistance (Kean & Smith, 2006a; 2006b; Figure 5). Such effects can be sufficient to 

drive periodic changes in erosion potential associated with changes in the relative magnitude of 

form and skin stresses through time (Leyland et al., 2015). For instance, bank failures resulting 

from high magnitude flows can generate complex bank geometries, increasing form drag relative 

to skin friction and offering protection from further erosion, while smoothing of the bank face in 

intervening periods of lower-magnitude flows can increase erosion potential by reducing form drag 

in relation to skin friction (Leyland et al., 2015). We hypothesize that the nature and magnitude of 

the hydraulic effect of burrows will be influenced by burrow size, shape and density. Individual or 

widely spaced burrows may generate localized increases in turbulence intensity and particle 

entrainment around burrow entrances, with burrow size and shape determining the nature of 

alterations to the flow field. In contrast, for banks with higher burrow densities the combined effect 

of multiple burrows may increase flow resistance and potentially reduce hydraulic erosion rates. 

Hydraulic effects of burrows are likely to be most pronounced for aquatic margins in river and 

tidal systems, but wind-induced turbulence in lentic systems may also be relevant.  

  

  
Figure 5 Conceptual basis for hydraulic effects of burrowing at the bank section scale showing the 

effect of multiple bank protrusions on the near-bank disturbance layer, reproduced from Kean and 

Smith (2006b). Dashed lines represent the multiple disturbance layers generated by four types of 

roughness element, with faster growing layers (e.g. Zo3) envelop slower growing layers of smaller 

elements (Zo2). Solid lines represent the first part of the wake for each element.   

  

4.3 Geochemical and biological effects on sediment stability and erodibility  

Geochemical and biological factors also play an important role in determining the stability or 

erodibility of soils and sediments (particularly cohesive sediments), although these factors are less 

well understood (Grabowski et al., 2011). The clay fraction in cohesive sediments is the most 

electrochemically active, characterized by high particle surface area and strong electrochemical 

charges and, as a result, strongly influences cohesive behavior. These properties mean that the 



chemistry of the pore water, as well as the characteristics of the sediment, influence the erodibility 

of cohesive banks and margins. Spatial and temporal variations in factors such as temperature, pH 

and salinity will therefore influence the stability and erodibility of cohesive aquatic margins and 

hence the processes discussed in the previous sections (Arulanandan et al., 1971). Microscopic and 

macroscopic organisms in soils and sediments also have diverse effects on sediment stability 

including biostabilisation through biofilms and root or fungal networks (Mermillod-Blondin and 

Rosenberg, 2006; Grabowski et al., 2011; Wilkes et al., 2019) and changes to organic matter 

content and particle size distributions through feeding and egestion (e.g. Wharton et al., 2006). 

Again, spatial and temporal variations in these effects will influence the nature and magnitude of 

processes outlined in the previous sections.   

  

Bioturbating animals increase the mixing of the various constituents of sediment including 

inorganic particles, organic matter, oxygen and nutrients (Grabowski et al., 2011). Burrowers may, 

therefore, also influence stability and erosion through changes to geochemical and biological 

properties of the sediment and pore water. This may include effects associated with burrow 

construction and maintenance, subsequent exchanges between the burrow and the outer flow, and 

the non-burrowing effects of burrow occupants, such as feeding and egestion. For example, burrow 

construction and maintenance has been shown to increase oxidation of sediments through mixing 

of oxidized and less oxidized sediment, potentially changing the reduction potential of the sediment 

(Pulmans et al., 2014). Animal burrow networks are also flushed with water originating from the 

sediment-water interface (‘bioirrigation’). This process can significantly influence solute 

exchange, for example by return of nutrients to the outer flow, and introduction of oxidants into 

burrows at depth (Miele et al., 2001). The effects of bioturbation on biogeochemical processes, 

however, depends on the physical (hydrodynamic) properties of the system (Mermillod-Blondin 

and Rosenberg, 2006). Burrowing has also been linked with the exclusion of plants that might 

otherwise have a biostabilizing effect on the sediment (e.g. Hughes and Paramour, 2004) and can 

contribute significantly to the mobilization and transport of fine sediment and increased water 

turbidity (Harvey et al., 2014; Rice et al., 2016). This generates potential for indirect effects on 

sediment stability and erodibility through changes to light penetration, water chemistry and aquatic 

organism health (Harvey et al., 2011). Additional effects of burrowing invaders on the biological 

factors contributing to sediment erodibility may include consumption of biofilms (Scott et al., 

2012), processing of organic matter and alterations to microbial communities (Boeker & Geist, 

2015). Here, we recognize the potential importance of geochemical and biological effects on 

sediment stability and erodibility in combination with those discussed in sections 4.1 and 4.2, and 

emphasize that these will vary spatio-temporally, and according the burrowing species and their 

wider ecological interactions.  

  

  

5 Conclusions and future directions  

Burrowing animals can make numerous contributions to ecosystem functioning, but invasive 

species can represent a special case as a result of their potential to cause major geomorphic changes 

and environmental stresses. Concerns over threats to waterways, flood defense infrastructure and 

waterside landmarks from invasive burrowers are raised in numerous scientific contributions and 

media reports, but there is a lack of quantitative research on the geophysical impacts. Our review 



explores a range of animals of global interest, including crustaceans, fish, reptiles and mammals. 

Example species are widely distributed at the global level, and we identify the potential for 

combined impacts from multiple species in over 20 different countries, states or territories 

worldwide. The group of species explored is not exhaustive and is intended to illustrate the nature 

and global relevance of the issue.  Furthermore, the current trajectory of global species invasions 

means that other species of interest will likely emerge in the future.  A range of environments are 

exposed to the impacts of burrowing invasive species, including pond and lake margins, the banks 

of rivers, creeks and estuaries, salt marsh edges, wetlands, canals and drainage ditches in addition 

to flood control structures including earthen dams, levees and flood walls.    

  

Using established models of geotechnical, hydrological and hydraulic drivers of bank instability 

and erosion, we have demonstrated four ways in which burrows can be expected to influence bank 

stability and erosion. We hypothesize that burrow presence will: (i) alter failure plane position, 

decrease failure plane length and increase failure plane angle (thereby decreasing bank shear 

strength) in banks and slopes at aquatic margins; (ii) modify the spatial distribution of pore water 

pressure, thereby increasing subsurface flow (seepage), reducing cohesion and increasing the 

likelihood of slip failures at the bank face; (iii) increase turbulence and sediment entrainment at 

burrow entrances and (iv) alter flow resistance at the bank face. The first three effects are expected 

to increase bank instability/erosion in most cases, while in contrast higher densities of burrows 

may increase flow resistance at the bank face, and hence potentially reduce erosion by fluvial 

action. The density, architecture and positioning of burrows together with the characteristics of the 

sediment and the hydrodynamic environment will determine the relative importance and 

interactions of these different effects and, in turn, the net effect on erosion rates. Alongside the 

geotechnical, hydrological and hydraulic effects of burrows on sediment stability and erosion, 

burrowing animals may also influence geochemical and biological factors that can contribute to 

sediment erodibility, including through changes to pore water chemistry and bio-stabilization or -

destabilization of sediment. As a result of the interacting factors described above, the effects of 

burrowing invasive species on instability and erosion may include increases, decreases or no 

significant effects depending on the species and the environment in question. Our conceptual 

model is applicable beyond invasive species, and may, for example, support investigation of the 

impacts of native ‘pest’ species.  

  

Burrowing impacts of invasive species have the potential to generate distal as well as local 

sediment management issues, including downstream increases in sedimentation arising from 

increased fine sediment delivery to the river network. The extent and magnitude of distal impacts 

will depend upon the connectivity of the system as well as the magnitude of site-level sediment 

inputs. Further research is required to test these hypotheses and quantify the magnitude of impacts 

in different environments and for different invasive species. Quantification of bank stability and 

erosion is notoriously challenging as a result of practical limitations of field measurement, high 

spatial variability and the event-driven nature of the process. However, physical modelling and 

mesocosm experiments along with numerical modelling of flow hydraulics and slope stability in 

3D can be used to explore the effects of burrow properties (density, morphology/architecture, 

positioning) on the geotechnical, hydrological and hydraulic processes in different environments. 

The information on burrow characteristics (e.g. density, morphology) provided in this review can 



be used to inform the design of these experiments. Enclosure/ exclosure field experiments and 

longer-term monitoring will be required to demonstrate the ‘real world’ magnitude and 

significance of changes in erosion rates and associated sediment transfer. Addressing these 

knowledge gaps will require novel, interdisciplinary approaches to field and modelling studies.  
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