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Abstract

This thesis focuses on improving the accuracy of forecasts for economic aggregates by
developing applied methods that take advantage of the strengths from both the direct
and bottom-up approaches. The starting point for developing each one of these is
the idea that forecasting methods that may not in themselves provide an adequate
answer in a particular setting can nevertheless contribute valuable information to the
forecasting process. The challenge lies in identifying and appropriately incorporating
the relevant information.

The first of the three methods focuses on increasing overall forecasting accuracy
by jointly combining forecasts for an aggregate, any sub-aggregations and the com-
ponents, from any number of models and measurement approaches. The framework
seeks to benefit from each of the forecasting approaches, by accounting for their reli-
ability in the combination process and exploiting the constraints that the aggregation
structure imposes on the set of forecasts as a whole. The second method presented
is one that forecasts economic aggregates using purpose-built groupings of compon-
ents. The objective of developing such a method is to increase forecasting accuracy by
transforming the data in a way that avoids the problems associated with disaggregate
misspecification, while still allowing for distinct disaggregate dynamics to be picked up
in the process. Finally, a method is developed to produce an aggregate density forecast
from the density forecasts of its components in a way that considers the interaction
between them. The motivation for doing this rests on the assumption that accounting
for interdependencies should provide a more complete probabilistic assessment.

Overall, this research shows that there are benefits to be obtained from using altern-
ative aggregation approaches. The gains from using these methods, however, depend
critically both on how they are specified and on the particular dataset. In this context,
combining many specifications appears as a way of obtaining consistently good results.
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Chapter 1

Introduction

1.1 Motivation

The world can be seen as a highly complex and interconnected system, where millions
of agents are constantly at work, pursuing objectives that are unknown to most of the
rest of them. The economy is a part of this system, meaning that assessing its state and
providing an outlook for its likely path involves interpreting large amounts of data in
a coherent way. Economic aggregates are fundamental to this process, given that they
synthesise the information from countless sources into relatively few figures. Bearing
witness to this is the fact that with new releases, financial markets react, sentiments
are affected and agents revise their assessment of the economy, adjusting their beliefs
regarding the direction it is taking. In this context, considerable resources are devoted
to predicting key economic variables, and accurate forecasts are valued greatly. This is
especially the case at central banks and other policy-making institutions where decisions
are taken to steer the economy in a certain direction and, therefore, have a direct impact
on people’s lives. The relevance of the decisions by central banks, for example, can be
seen in the fact that their statements and minutes have a measurable effect on financial
market trading and economic expectations, particularly when they call for changes in
the views held by the committee members concerning the state of the economy (Reeves
and Sawicki, 2007; Rosa, 2013).

In this context, it is not surprising that the literature on forecasting economic ag-
gregates is vast and, with the ongoing increase in computational power and capacity,
the research in this area is likely to continue to expand. Notwithstanding the many dif-
ferent methods that exist, there is consensus regarding the fact that it is very unlikely
for a single one to outperform all of the others in every situation (Elliott and Timmer-
mann, 2005). As pointed out by Alessi et al. (2014), the significant deterioration in
forecasting power observed during the most recent financial crisis, in the case of many

9



1. Introduction 10

of the models that had previously performed well, only provides more evidence of this
fact. In an in-depth evaluation of the effects of crisis periods on forecasting models’
performance, Chauvet and Potter (2013) come to the conclusion that otherwise well-
performing models often fail to deliver when faced with rapidly-changing conditions
and abrupt increases in volatility. They also find that models perform very differently
in expansions and recessions.1 Because of the fact that empirical performance of any
model is fundamentally determined by the data, forecasters usually resort to an array
of different models to forecast economic variables. The challenge posed by doing so lies
in being able to extract the relevant information from each one of them in a timely
fashion (Hubrich and Skudelny, 2017).

As regards forecasting economic aggregates, there is a strand of research that has
devoted itself to determining whether forecasting an aggregate directly is better in
terms of aggregate accuracy than following a bottom-up approach: i.e. forecasting its
components and summing them up. In theory, the bottom-up approach should out-
perform the direct method, but in practice it is the data and the aggregation structure
that decide which of the methods is best (Lütkepohl, 1987). This is due to the fact
that it is usually impossible to specify the underlying disaggregate processes perfectly.
As Bermingham and D’Agostino (2014) point out, the bottom-up approach would be
more sensitive than the direct method to structural breaks and abnormalities in the
data, and macroeconomic time-series are known to be affected by these events relatively
often (Stock and Watson, 1996).

There is a lot of evidence, however, that using the components to forecast an ag-
gregate might improve its accuracy. The gains would be attributable to the fact that
doing so allows underlying dynamics to be explored that are imperceptible or very hard
to distinguish in the aggregate (Bache et al., 2010; Brüggemann and Lütkepohl, 2013).
Motivated by this, the subject of this thesis is to improve the overall accuracy of fore-
casts for economic aggregates by developing applied methods that take advantage of the
strengths of both direct and bottom-up approaches. This includes, but is not restricted
to, improving the aggregate forecast in view of the fact that in some situations the
accuracy of the underlying forecasting scenario is also of interest. The starting point
for developing each of the methods is the idea that forecasting approaches that may
not provide an adequate answer by themselves in a particular setting can nevertheless
contribute valuable information to the forecasting process. As in the case of using
different models, the challenge lies in identifying and appropriately incorporating the
relevant information so that it serves its purpose. The first method presented is motiv-
ated by the fact that in certain situations forecasts for a number of sub-aggregations
are required for analysis, in addition to one for the aggregate (Esteves, 2013; Espasa
and Senra, 2017). In this context, the method involves developing a framework to im-

1This last point has been previously documented in Marcellino (2008) who finds that in recessions
the more sophisticated models show a marked deterioration.
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prove the forecasting accuracy of the whole underlying forecasting scenario. With this
objective, a fully consistent forecasting scenario is produced by combining any number
of forecasts for an aggregate, its components and any desired sub-aggregation. The
framework seeks to benefit from the strengths of each of the forecasting approaches
by accounting for their reliability in the combination process and exploiting the con-
straints that the aggregation structure imposes on the set of forecasts as a whole. The
results for an empirical application of the method using Headline Inflation, a number
of common sub-aggregations and the disaggregate components, show that there are
gains in overall accuracy from including all of them together. In the following chapter,
a method is proposed to increase overall accuracy by forecasting purpose-built groups
of components. These groupings are selected on the basis of features of the data that
would favour forecasting them together. The idea behind the approach is to form sets
of groupings that allow the disaggregate dynamics to be modelled, while avoiding the
problems of disaggregate misspecification. The method works in two stages. In the first,
it uses a clustering technique to select a subset of groupings and, in the second, it selects
a definitive grouping based on a criterion. In an exercise with CPI data a number of
specifications are put to the test. The results show that some of them often outperform
the best traditional alternatives. In the last section, a framework designed to produce
an aggregate density forecast based on its components’ forecasts is presented. The
reason for doing this lies in the fact that accounting for the interdependencies between
components could provide a more complete probabilistic assessment. The approach
involves modelling the whole multivariate process using large Vector Autoregressions
and empirical Bayesian methods. In an exercise using CPI and GDP data it is found
that the framework performs well overall and, in particular, that it does better than the
univariate alternatives in dealing with the shocks produced by the most recent global
financial crisis. When combined with the direct approach, the combined forecasts are
often significantly better than those of the direct approach on its own.

1.2 Outline

This section provides a general outline of the thesis and its contributions to previous
research. A detailed outline with references to related literature can be found in the
introduction of each chapter. The thesis is divided into five chapters. Chapter 2
presents a flexible framework for combining forecasts simultaneously for an aggregate,
any number of sub-aggregations and its components, based on the merits of each one
of them. The reasoning behind wanting to do this is that forecasting different valid
representations of a series could provide a more complete picture of what to expect for
its future path.2 For economic aggregates, these valid forms of representation can come

2The underlying rationale is similar to the idea of different models helping to approximate the data
generating process of a series.
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from using different levels of aggregation and sub-aggregation. The research presented
in this chapter extends the current literature on forecast combination in two ways.
First, it incorporates multiple aggregation levels and representations into the same
combination process and, second, it considers the reliability across aggregation levels
of each individual forecast in the process. The method is formulated as the solution to
a problem of reconciling all the different forecasts so that the outcome is a single set
that is fully consistent. In practice, that means producing individual forecasts for the
aggregate, all sub-aggregations and all the components and considering them as initial
guesses. They are then updated on the basis of their relative reliability, so that they
comply with the corresponding identities that define the aggregate. The problem is set
as one of solving a sequence of analogous constrained quadratic programs. Under fairly
mild assumptions a general analytical solution is derived, meaning that the algorithm
that solves the entire problem is easy to implement and fast. An empirical application
is performed using CPI data for France, Germany and the United Kingdom for the
1991-2015 period. In the exercise, the reliability weights are determined empirically
using methods that are often used in the forecast combination literature. The results
show that the method performs as well as equivalent traditional combination methods,
in terms of aggregate accuracy, and equally well or better than the best single models
in terms of disaggregate accuracy. This would suggest that by effectively imposing
the aggregation structures on the individual forecasts, the framework translates the
accuracy of the better-performing approaches into increases in disaggregate accuracy.

In Chapter 3 a method is developed to forecast economic aggregates using purpose-
built groupings of components. The underlying idea is that summation can produce
new series with properties that differ quite significantly from those originating them
and, therefore, data could be transformed so that forecasting models perform better
than with an exogenously determined disaggregation structure. The task involves find-
ing groupings that avoid certain problems associated with disaggregate forecasting,
while still allowing for distinct disaggregate dynamics to be picked up in the process.
The work is novel in that it deals with the dimensionality problem associated with
using disaggregate data by applying concepts from the statistical learning literature,
while still retaining interpretability. In particular, a two-stage method that combines
statistical learning techniques and traditional economic forecasting evaluation is de-
veloped. In the first stage, Agglomerative Hierarchical Clustering is used to reduce the
size of the problem by choosing a subset of feasible groupings based on the commonal-
ity among the different components. In the second stage, selection procedures are used
on the resulting hierarchies to produce the final aggregate forecasts. These selection
procedures include choosing a single grouping based on some criterion and combining
the whole subset of groups. In an empirical application using CPI data for France, Ger-
many and the United Kingdom, different parameter choices are evaluated. The results
show that some of the methods for selecting a unique grouping perform better than
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the best benchmark methods. They also show that the forecast combination methods
perform well overall, suggesting that expanding the pool of forecasts by trying different
combinations of components provides a way of benefiting from the strengths of forecast
combination, without necessarily increasing the number of forecasting models.

In Chapter 4 the focus shifts to producing density forecasts for economic aggregates
based on the density forecasts for their components. The motivation for developing such
a method comes from the literature which argues that accounting for the dynamics of
the underlying components can contribute to a better understanding of a wide range of
uncertainties. The work extends the current literature in that a bottom-up framework
that models the whole multivariate process is developed. This means that the inter-
action between components is taken into consideration. To do so, the methodology
of large Bayesian VARs is used. The particular implementation allows for both fixed
and time-varying parameter VARs and for stochastic volatility. Acknowledging that
competing forecasts can serve a complementary role, the framework is extended so as
to admit combining direct and bottom-up forecasts. In doing this, two commonly used
approaches from the relevant literature are used: the linear and logarithmic opinion
pools. The empirical application uses CPI and GDP data from France, Germany and
the United Kingdom for the 1991-2015 time period. The results show that the mul-
tivariate methods are capable of producing bottom-up forecasts that are calibrated and
perform equally well or better than comparable aggregate methods. Their advantage
over the benchmark methods, however, is given mainly by their performance over the
financial crisis. This is probably the reason why combining the direct and the multivari-
ate bottom-up approaches is found to produce significant improvements in performance
over the individual approaches.

Finally, Chapter 5 summarizes the main conclusions of this work.



Chapter 2

Improving Underlying Scenarios
for Aggregate Forecasts:
A Multi-level Combination
Approach

2.1 Introduction

Macroeconomic aggregates play a fundamental role in assessing the state of the eco-
nomy. Consequently, many different people and institutions devote considerable re-
sources to predicting key economic variables. When it comes to policy-making institu-
tions, however, the interest usually goes beyond that of the aggregate alone. As Esteves
(2013) points out, these institutions often need to have detailed breakdowns of their
aggregate forecasts. One obvious reason for this is that they may wish on occasions
to provide the public with some additional information. It is likely, however, that the
strongest reasons have to do with the analysis that remains within the institution. In
the context of inflation forecasting, Espasa and Senra (2017) encourage looking beyond
the aggregate alone, based on the argument that a similar Headline Inflation can cor-
respond to very different inflation situations which, in turn, may require very different
actions to be taken by the authorities.

Policy-making institutions find it relevant to look at a breakdown of components,
because this can provide useful information concerning the components themselves,
provide better understanding of the aggregate and increase aggregate forecasting ac-
curacy (Espasa and Senra, 2017). In line with this view, it is not uncommon to find
alternative disaggregation scenarios being presented within the same assessment, as a

14



2. Improving Underlying Scenarios for Aggregate Forecasts 15

way of providing further insight for a particular topic. In this context, if forecasts for
the aggregate, any sub-aggregations and the components are produced independently
of one another, inconsistent and conflicting messages may appear. Because of this,
practitioners typically rely on using a bottom-up approach that includes all the ne-
cessary components to produce a consistent underlying forecasting scenario (Esteves,
2013; Ravazzolo and Vahey, 2014).

However, using the bottom-up approach alone can mean that aggregate accuracy
is negatively affected when compared with other methods. In particular, the relevant
empirical literature points out that, depending on the scenario, the direct methods may
produce more accurate forecasts than the bottom-up approach.1 There are strong argu-
ments in favour of using direct approaches instead of the bottom-up approach when the
concern is aggregate accuracy alone. One of these is that, due to cancellation between
components, aggregates can behave relatively smoothly even when the disaggregate
data has a high degree of volatility (Hyndman et al., 2011). Another is that common
factors that are relatively unimportant at an individual level may dominate the aggreg-
ate (Granger, 1987). A third is that bottom-up strategies that treat the disaggregate
components independently would almost certainly be misspecified, because they can-
not properly approximate the underlying multivariate process (Hendry and Hubrich,
2011). Practitioners who do not want to rely on the bottom-up approach have the
alternative of simply using direct methods for the aggregate and reconciling the disag-
gregate forecasts when needed. Proceeding in this way, however, has the undesirable
result that any useful information arising from the interactions between components
is discarded (Hyndman et al., 2011). As pointed out previously, the direct method is
better than the bottom-up approach in certain situations. In others, it is the latter
that performs best. A forecaster who is concerned with overall accuracy will, therefore,
want to benefit from both methods if possible.

If the concern were only for the aggregate, a popular way of dealing with compet-
ing forecasts would be simply to combine them. The idea of forecast combination was
put forward quite a while ago in Bates and Granger (1969) and deals with the issue
of exploiting the information contained in each individual forecast in the best possible
way. The evidence in favour of using these methods as a way of increasing forecast-
ing accuracy is substantial (Timmermann, 2006). As explained by Hoogerheide et al.
(2010), a common justification for using forecast combination is that in many cases
it is impossible to identify the true economic process and, therefore, different models
play a complementary role in approximating it. Another is that, in the context of
being unable to establish the single model that produces the smallest forecasting error

1This is supported by many empirical comparisons like: Espasa et al. (2002), Benalal et al. (2004),
Hubrich (2005) and Giannone et al. (2014) for inflation in the Euro area; Marcellino et al. (2003),
Hahn and Skudelny (2008), Burriel (2012) and Esteves (2013) for European GDP growth; and Zellner
and Tobias (2000), Perevalov and Maier (2010) and Drechsel and Scheufele (2013) for GDP growth in
specific industrialized countries.
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in advance, combination appears as a way of hedging against choosing an exceedingly
bad one (Hubrich and Skudelny, 2017). The second of these justifications seems par-
ticularly relevant for policy-makers, given their aversion to correcting their published
assessments.2

Notwithstanding the extensive literature on combination methods, almost all of it
deals with one variable at a time. In the context of forecasting economic aggregates
and their components, this means disregarding the aggregation structure as a source of
valuable information. A notable exception to this apparent omission in the combination
literature is that of Hyndman et al. (2011). They propose a combination method
to improve overall accuracy of an aggregate and its components, using the structure
underlying the aggregate and any sub-aggregations. Specifically, they use individual
forecasts for all levels of aggregation and combine them optimally. In their empirical
application, they find that the method improves overall accuracy. Despite their good
results, it is limited in at least two ways that could restrict its applicability to other
problems. On the one hand, the combination weights are determined solely by the
aggregation structure. On the other, the method can only handle a single hierarchical
structure.

In terms of the combination weights, there are situations where information regard-
ing the quality of the forecasts under consideration is available, in which case it could
be desirable to be able to incorporate this information into the combination process.
Such a situation could come up in a context where data is released asynchronously.
Because of the lag in the publication of GDP, for example, current quarter growth is
routinely estimated based on leading indicators (Antipa et al., 2012).3 In many cases
this involves estimating GDP components based on information that is usually not
published at the same time, meaning that a new estimate can be produced with every
new release (Bell et al., 2014; Higgins, 2014; Mogliani et al., 2017).4 In this context, it
should be expected that the relative reliability of the different forecasts would change
significantly every time a model is run. Also, even if no prior information regarding the
reliability of the forecasts is available, another reason why it may be desirable to have
some control over the combination weights is that the combination literature highlights
the gains that can be obtained from weighting different forecasts, based on their recent
performance (Timmermann, 2006).

As regards allowing more than one hierarchy to be considered, the appeal lies in the
fact that alternative measurement approaches and stratifications can provide valuable

2Goodhart (2004) argue that this aversion stems from the fact that perceived mistakes by the central
banks could rapidly undermine the public’s confidence in them.

3In Europe, for example, the first preliminary estimate of total GDP is released about 45 days after
the end of the reference quarter and the first complete estimate about 65 days later.

4The Federal Reserve Bank of Atlanta’s nowcasting tool, for example, is updated on average five or
six times a month following nearly every major economic data release (Higgins, 2014).
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information for the forecasting process. For example, based on the theoretical argu-
ments given by Clark (2004), Peach et al. (2013) and Tallman and Zaman (2017) find
significant improvements in aggregate accuracy from forecasting the prices of goods and
services separately. Hargreaves et al. (2006) and Jacobs and Williams (2014) make a
similar case for tradable and non-tradable inflation. Being able to consider both strat-
ifications in the combination process may therefore be desirable. The same argument
can be made for forecasts coming from different measurement approaches. Frale et al.
(2011), for example, find gains in aggregate accuracy from combining forecasts from
the production and expenditure approaches for measuring GDP, while Aruoba et al.
(2013) do so for the income and expenditure perspectives.

This chapter picks up on this point and, in order to improve overall accuracy of a
disaggregate forecasting scenario, develops a framework that is flexible enough to incor-
porate both these aspects. For this purpose, it brings together the literature devoted
to increasing forecasting accuracy through alternative disaggregation choices with that
of forecast combination. The method consists of producing individual forecasts for all
the series involved and considering them as initial guesses. They are then updated,
based on their relative reliability, so that they comply with the identities that define
the aggregate.

The rest of the chapter is organized as follows: Section 2.2 develops the framework
that allows series from different levels of aggregation from any number of measurement
approaches to be combined. Section 2.3 presents an empirical implementation using
CPI data for France, Germany and the United Kingdom. Section 2.4 summarizes the
conclusions.

2.2 A Framework for Combining Forecasts from Differ-
ent Aggregation Levels and Alternative Measurement
Approaches

The motivation for developing a multi-level combination method is that incorporating
the information regarding the aggregation structure into the forecasting process of the
components could improve their accuracy. Given that any set of component forecasts
necessarily implies an aggregate forecast, it is also desirable that the multi-level method
should exhibit the improvements that are expected from aggregate combination alone.
For this reason, in what follows, the task of developing a multi-level combination frame-
work is viewed as one of extending traditional single-variable combination methods so
that they allow the bottom-up aggregate forecasts to be expressed in terms of the
underlying component forecasts.



2. Improving Underlying Scenarios for Aggregate Forecasts 18

Figure 2.1: Different Aggregation Scenarios for an Aggregate

Note: Numbered squares highlight different aggregation scenarios: 1. A single one-level hierarchy, 2. Two
different measurement approaches for the same aggregate, each based on a one-level hierarchy, and 3. A two-
level hierarchy with two sets of non-nested sub-aggregations. The shaded rectangle highlights the type of
hierarchical structure considered in Hyndman et al. (2011).

In this context, a property that is required in developing the multi-level method is
that it should result in the same outcome as that of a comparable traditional method,
if the circumstances are equivalent. An example for this is that, in a context where
the direct aggregate and bottom-up forecasts are equally reliable, the final aggregate
forecast that results from combining both aggregate forecasts should be the same as
that of combining the direct aggregate forecasts with those of the components. In
incorporating the components into the combination process, two additional properties
are considered to be desirable. The first requires consistency between the reliability
of the components and that of the resulting aggregate. Although it could be argued
otherwise, it makes economic sense that if all components have the same reliability
according to some measure, this should be equal to the reliability of the aggregate that
results from adding up the components. The second additional property establishes
that once the reliability of the different forecasts is taken into consideration, in line
with considering the initial estimates as the best guesses, the combination procedure
should result in each of the definitive forecasts deviating as little as possible from its
initial estimate.

To have a notion of the forecasting setting under consideration, Figure 2.1 presents
a simple picture of the general aggregation structure. It shows two different measure-
ment approaches for the same aggregate, based on the same basic components. By
considering non-nested sub-aggregations, the structure is not strictly hierarchical in
the sense considered by Hyndman et al. (2011). Figure 2.1 also outlines the strategy
for developing a method to solve such a combination problem. It consists in starting
from a simple problem and progressively extending it to the more complex setting. The
numbered squares illustrate this progression. The first two steps consider developing
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the necessary framework to solve the problem for a single one-level hierarchy and then
extending it to admit multiple disjoint measurement approaches. The third and final
step consists in using the results from both the previous settings to solve the com-
bination for any number of levels and sub-aggregations. In practice, this is done by
formulating the general problem as one of a succession of one-level combinations.5

2.2.1 One-Level Hierarchies

People working on the compilation of aggregate statistics regularly face the need to bal-
ance information from different sources in order to produce official statistics. In many
of those applications, like the production of national accounts and social-accounting
matrices, the reconciliation process involves a massive amount of data, with the result
that procedures have been proposed over the years to iron out the differences (Dalgaard
and Gysting, 2004). In a recent paper, Rodrigues (2014) casts the whole problem of
balancing statistical economic data into a Bayesian framework. It suggests treating the
data as stochastic processes, modelling the prior properties accordingly and finding the
balanced posterior by means of relative entropy minimization.

The process proposed by Rodrigues (2014) equates to searching for a posterior
distribution that is as close as possible to the prior while satisfying the required re-
strictions. Although the implementation is specific to balancing economic data, the
principle behind the framework resembles the problem of any sort of forecast combin-
ation. The individual forecasts serve as best guesses, where different forecasts have
different reliability and cross-sectional identities must be met. It establishes that a
number of the conventional reconciliation methods are in fact particular cases of the
general framework and shows that there is a one-to-one correspondence. Based on this
correspondence, it is shown that it is possible to identify the conventional method’s
underlying assumptions and suggest using least squares approaches when uncertainty
estimates are available.

2.2.1.1 Optimization Problem for a Single One-Level Hierarchy

The problem of combining direct aggregate forecasts with the components from a
bottom-up approach is one of finding the set of forecasts that satisfies the required
restrictions and is as close as possible to the preliminary figures. For this purpose, a
least-squares formulation is used. This means letting the undefined criterion for “as
close as possible” be governed by some quadratic loss function.

The problem for a one-level hierarchy is expressed as a general constrained quadratic
5The general framework is derived step-by-step in section 2.A of the Appendix.
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program of the form:

min
α,β

A∑
i=1

fi,t (yi,t, αi,t, ϕi,t)2 +
D∑
d=1

N∑
j=1

gd,j,t (qd,j,t, βd,j,t, φd,j,t)2 (2.1)

subject to:

(1 + α1,t) y1,t −
N∑
j=1

(1 + β1,j,t)w1,j,tq1,j,t = 0

(1 + α1,t) y1,t − (1 + αi,t) yi,t = 0 for i = 2 to A

(1 + β1,n,t) q1,n,t − (1 + βd,n,t) qd,n,t = 0 for d = 2 to D, n = 1 to N

where yi,t is the preliminary forecast for time t of the i-th aggregate model of a total
of A, αi,t is the percentage deviation of the definitive forecast from the preliminary,
ϕi,t is its exogenously chosen optimization weight and fi,t is some function of the three.
Similarly, qd,n,t is the preliminary forecast for time t for component n of the d-th model
of a total of D disaggregate models, βd,n,t is the percentage deviation of the definitive
forecast from the preliminary, φd,n,t is its exogenously chosen optimization weight, gd,n,t
is some function of the three and wd,n,t is the respective aggregation weight.6

2.2.1.2 An Analytic Solution for a Single Set of Forecasts

With the problem formulated in this way, in addition to the obvious influence of the
reliability weights, it is the choice of loss function that ultimately determines the out-
come. To facilitate finding an appropriate loss function, the problem is first restricted
to that of combining one set of forecasts. That is, only one direct aggregate forecast
and a single set of disaggregate forecasts. In this context, the following loss function is
proposed:

ϕt (αtyt)2 +Qt

N∑
j=1

φj,twj,tqj,tβ
2
j,t (2.2)

with Qt = ∑N
j=1 (wj,tqj,t).

In deriving this particular loss function, the empirical success of the simple weighted
averages is used as the foundation that is then extended to admit aggregates and com-
ponents in the same problem. There is ample evidence suggesting that in practice
simple methods often perform better than more involved procedures (Timmermann,
2006), with the equal-weighted average standing out as a benchmark that is hard to
beat (Smith and Wallis, 2009; Elliott, 2017). To admit the components into the combin-
ation procedure, the proportional distribution approach proposed by Denton (1971) is

6All variables are in levels and for simplicity it is assumed that all components and aggregation
weights are strictly positive.
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used. As pointed out by Pavia-Miralles (2010), this is one of the most successful meth-
ods in the reconciliation literature, given its simplicity and overall good performance.
The approach fits well within the framework as it involves minimizing the percentage
deviation between the definitive series and the initial approximations.

Using this loss function and minimizing it subject to the restriction that the ag-
gregate has to be equal to the sum of the components produces as the solution that
the definitive aggregate forecast is:

ỹt = Q̃t =
Q2
t + yt

N∑
j=1

(
ϕt
φj,t

wj,tqj,t

)

Qt +
N∑
j=1

(
ϕt
φj,t

wj,tqj,t

) (2.3)

and the definitive forecast for any given component is:

q̃n,t =

1 + ϕt
φn,t
· yt −Qt
Qt +∑N

j=1
(
ϕt
φj,t

wj,tqj,t
)
 qn,t (2.4)

From these results, the fulfilment of the desirable properties set out in the intro-
duction to this section can be verified.

It is easy to see that the initial estimates of the components are modified by a factor
that is the same for all components, except the first term, ϕt

φn,t
. If all components have

equal reliability, that is φn,t = φt for all n, the expression ∑N
j=1

(
ϕt
φj,t

wj,tqj,t
)
is equal

to ϕt
φt
Qt meaning that the property regarding the coherence between aggregate and

disaggregate reliability weights is fulfilled. With this, equation (2.4) simplifies down to:

q̃n,t = qn,t + ϕt
φt + ϕt

· (yt −Qt)
qn,t
Qt

making obvious the proportional distribution of the difference between the preliminary
aggregate forecasts between components. Likewise, equation (2.3) simplifies to the
weighted average of the aggregate forecasts, meaning that the equivalence with the
traditional combination methods under comparable circumstances is met.

The suggested loss function results in the desired outcome for one set of forecasts.
If more than one set is considered for each variable, the outcome does not meet the
aforementioned conditions. The problem can be avoided, however, simply by combining
the multiple forecasts for the individual series before performing the combination of
different levels and choosing the optimization weights so as to reflect the previous
step.7

7This is shown in section 2.A of the Appendix.
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2.2.1.3 Extension to multiple disjoint measurement approaches

On occasions, forecasts from more than one measurement approach may be available.
An immediate example of this is the fact that there are three measurement perspectives
for GDP. In this context, it could be beneficial to incorporate them into the same
combination process. The one-level combination method developed in the previous
section can easily be extended to do so.

For an aggregate that can be obtained as the sum of K alternative measurement
approaches, where each approach is the result of the weighted sum of the respective
strictly positiveNk components, let there be a direct aggregate forecast y andK distinct
aggregate forecasts, each based on the corresponding Nk components’ forecasts.

The minimization problem involving the aggregate reliability weight ϕ, the disag-
gregate reliability weights φk,n and the aggregation weights wk,n, is:

min
α,β

ϕt (αtyt)2 +∑K
k=1

[
Qk,t

∑Nk
j=1 φk,j,twk,j,tqk,j,t (βk,j,t)2

+2λk
(
(1 + αt)yt −

∑Nk
j=1wk,j,t(1 + βk,j,t)qk,j,t

)]
Solving the problem subject to the corresponding constraints results in the definitive
aggregate forecast being:

ỹt =
yt +

K∑
k=1

(
Qk,t ·

Qk,t
χk,t

)

1 +
K∑
k=1

Qk,t
χk,t

(2.5)

where χk,t =
Nk∑
j=1

ϕt
φk,j,t

wk,j,tqk,j,t. The definitive forecast for any given component is

given by:

q̃k,n,t =
(

1 + ϕt
φk,n,t

· ỹt −Qk,t
χk,t

)
qk,n,t (2.6)

As in the case of a single hierarchy, for more than one set of forecasts, the same
combination process is followed, except that the multiple forecasts are combined in a
prior step and optimization weights are chosen to reflect this.

2.2.1.4 Bounds for and Response to Reliability Weight Values

From the solution given by equation (2.3), it is clear that reliability weights have a
defining impact on the final outcome. It is important, therefore, to establish the feasible
region in which they guarantee a unique solution for the minimization problem. It is
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also useful to learn about the sensitivity of the final outcome to the choice of weights.8

From the solutions it is immediately clear that what matters is the relative reliability
and therefore that the impact of a given value has to be examined in relation to the rest
of the components. Considering as a starting point that all weights are set equal to some
value, one extreme is to have no confidence in certain forecasts. If this were the case for
the aggregate forecast only, this would mean making ϕt = 0 and therefore ỹt = Qt. On
the other hand, if it were the case for a single component n = 1, making φ1,t = 0 means
that this component absorbs all the deviation. This is clear from appreciating that
ϕt
φ1,t
→ ∞ and therefore that limφ1,t→0 (1 + αt) yt = yt. This means that the forecasts

from all but this component are taken as given and that the definitive forecast q̃1,t is
found residually. It also means that only one forecast can have a reliability weight equal
to zero, otherwise the minimization problem has infinite solutions.

The other extreme is to be completely confident about some forecasts. If this were
the case for the aggregate forecast, this means making ϕt go to infinity. In such a
case it is easy to see that limϕt→∞ (1 + αt) yt = yt. On the other hand, for a single
component n = 1, making φ1,t go to infinity implies that ϕt

φ1,t
→ 0. This means that

the weight given to the direct forecast decreases but still remains positive. Taking it
to the extreme and making all component weights go to infinity decreases to zero the
weight given to the direct forecast. That is limφt→∞ (1 + αt) yt = Qt where φn,t = φt

for n = 1 to N .

For the purpose of allowing for some degree of combination it makes sense to restrict
the aggregate forecasts by giving them finite reliability weights. For the components,
on the other hand, one could have a weight that implies certainty, maybe due to the
early release of relevant data. Following these guidelines, however, does not necessar-
ily prevent nonsense results occurring. This might happen, for example, when some
forecasts are considered to be as good as certain. Setting valid but contradictory re-
liability weights could result in unintended outcomes such as components measured
in levels becoming negative, due to insufficient degrees of freedom in the combination
procedure.

As regards the sensitivity of the outcome to different values of the reliability weights,
it is possible to see how the solution in equation (2.3) is affected by varying ϕt and
φn,t by looking at the effect of the reliability of one component when the rest are held
constant. For this purpose, let φi,t = kϕt and φn,t = ϕt for all other components. Using
these weights results in the solution being:

ỹt =
(

1 + k

k − (k − 1)si

)−1 ( k

k − (k − 1)si
Qt + yt

)
(2.7)

8For simplicity the analysis is performed for a single hierarchy and only one set of forecasts.
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where si = wi,tqi,t
Qt

.

Not surprisingly, the additional weight that is given to the bottom-up forecast
depends on the relative reliability of the component and its weight within the aggregate.
If there were only one component -that is equivalent to having many components but
giving them all the same reliability- si = 1 and Qt would be given k times more weight
than yt. On the opposite side of the spectrum, as si tends to zero the extra weight
given to Qt converges to zero.

2.2.2 Multi-Level Hierarchies and Alternative Sub-aggregations

The approach for combining forecasts from two levels of aggregation may be useful in
many settings. In others it may be too restrictive to be applicable. It can be used,
however, as the basis for extending the approach to multiple levels of aggregation. The
multi-level method involves deriving a set of consistent component forecasts for each
forecast, for the aggregate and sub-aggregations, and then combining them to produce
a definitive bottom-up forecast. The approach effectively breaks down the whole prob-
lem into a sequence of one-level combinations. In terms of the aggregate forecasts, it
is shown that this is equivalent to combining the aggregate forecasts produced from
different intermediate aggregation levels for the case of equal reliability weights. By
construction, the result is a fully consistent forecasting scenario.9

2.2.2.1 An Aggregate Forecast Expressed as a Set of Reconciled Compon-
ents

Let there be a single aggregate forecast y and a single set of disaggregate forecasts qn
for n = 1 to N , the aggregate reliability weight ϕ, the disaggregate reliability weights
φn and the aggregation weights wn. In this context, based on the one-level framework,
the aggregate and component forecasts are given by equations (2.3) and (2.4). Then, to
have a disaggregate scenario that is consistent with y taking qn, for n = 1 to N , as the
best guesses, it is enough to make the aggregate reliability arbitrarily large, ϕ → ∞.
With this, the y-consistent component forecasts are given by:

q̂
(y)
n,t =

1 + yt −Qt
φn,t·

∑N

j=1

(
1
φj,t

wj,tqj,t

) qn,t (2.8)

Having taken into consideration the relative reliability of the components in the process
of producing the y-consistent components, the new set of forecasts can inherit the
reliability of y. With this, definitive component forecasts can be produced by combining

9The derivation is shown in detail in section 2.B of the Appendix,
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the original and y-consistent forecasts:

q̃altn,t = φn,tqn,t+ϕtq̂(y)
n,t

φn,t+ϕt

=
(

1 + ϕt
φn,t
· yt −Qt

(φn,t+ϕt)
∑N

j=1
1
φj,t

wj,tqj,t

)
qn,t

For equal weights among components, that is φn = φ, the sum of them results in a
definitive aggregate forecast that is the weighted average of both preliminary aggregate
forecasts.

This result, which is valid for one level of disaggregation, is extendible to unlim-
ited exhaustive groupings of components. Let there be S unique groupings of Ks

sub-aggregations of components. The best guess of the decomposition of any sub-
aggregation ys,k can be found using equation (2.8). That is:

q̂
(ys,k,t)
n,t =

(
1 + ys,k,t−Qs,k,t

φn,t·χs,k,t

)
qn,t

with χs,k,t = ∑
qn∈ys,k

1
φn,t

wn,tqn,t and Qs,k,t = ∑
qn∈ys,k

wn,tqn,t.

Following the same process as for the one-level case, the definitive forecast for the
components is given by:

q̃n,t =

1 + 1
φn,t+

S∑
s=1

ϕs,k,t

·
S∑
s=1

(
ϕs,k,t
φn,t
· ys,k,t−Qs,k,tχs,k,t

) qn,t (2.9)

Summing up these forecasts for the case where all forecasts within the same grouping
have the same reliability, results in the definitive aggregate being:

ỹt =
φtQt+

S∑
s=1

ϕs,tYs,t

φt+
S∑
s=1

ϕs,t

(2.10)

where Ys,t =
Ks∑
k=1

ys,k,t.

It becomes clear that, under these circumstances, the definitive forecast is a weighted
average of all the aggregate forecasts and, therefore, that for the case of equal weights,
combining the aggregate forecasts produced from different aggregation levels is equi-
valent to the aggregate bottom-up forecast that results from imposing the different
aggregate and intermediate forecasts on the component forecasts, and then combining
all the resulting component forecasts.
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2.2.2.2 Multi-level Combination Algorithm

The previous section shows that the process of combining many different aggregation
levels and measurement approaches can be broken down into a series of one-level com-
binations involving each sub-aggregation and the components. With this, the procedure
to generate the definitive aggregate forecast, and fully-consistent underlying scenario
is described by the following algorithm:

1. Forecasting Step:

(a) Produce individual forecasts for each of the models

(b) Establish reliability weights for each of the forecasts

2. Single-variable Combination Step:

(a) Combine all single variable forecasts

(b) Establish reliability weights for each of the single variable forecasts

3. Multi-level Combination Step:

(a) For each variable in all K sub-aggregations, perform a one-level combination
with the bottom-level components assigning the variable an arbitrarily large
reliability weight and using the components’ own reliability weights.

(b) For each of the N components, combine the original forecasts with the K
sets of sub-aggregation consistent component forecasts, using for the latter
the reliability weight of the corresponding sub-aggregation variable.

(c) With the definitive component forecasts, use a bottom-up approach to pro-
duce the definitive forecasts for the aggregate and sub-aggregations.

As in the case of the one-level combination, caution should be taken in making sure
that contradictory reliability weights are not used in the combination process. The
possibility of clashes between reliability weights could increase, given that in each step of
the multi-level combination the sub-aggregation is assigned an arbitrarily large weight.

2.3 Empirical Application

As an empirical application of the method, a forecasting exercise is performed using CPI
data from France, Germany and the United Kingdom. Six different forecasting models
and four different ways of establishing the combination weights are used within the
framework. The evaluation is performed over the 2001-2015 period in a quarterly rolling
scheme using a ten year window where in each period the models are re-estimated and
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a one-year-ahead quarterly forecast is generated. The aggregate forecasting accuracy is
assessed by comparing the results with that of the single models and traditional forecast
combinations. The forecasting accuracy of the components is evaluated against that of
the single models.

2.3.1 Data and Sub-aggregations

For the exercise, CPI data for France, Germany and the United Kingdom is used. The
data is quarterly and seasonally adjusted, spanning from 1991 to 2015 and available
from the OECD statistics database. For all three countries the chosen lowest level of
disaggregation are the twelve components presented in Table 2.1.

Table 2.1: Components Breakdown for Empirical Application

1. Food and non-Alcoholic beverages 6. Health
2. Alcoholic beverages, tobacco and narcotics 7. Transport
3. Clothing and footwear 8. Communication
4. Housing, water, electricity, gas and 9. Recreation and culture

other fuels 10. Education
5. Furnishings, household equipment and 11. Restaurants and hotels

maintenance 12. Miscellaneous goods and services

Regarding the sub-aggregations, three are chosen. The first two are in line with
the extensive literature considering core measures for inflation. Aron and Muellbauer
(2012) make a relatively extensive survey of studies that measure the benefits of remov-
ing certain components for forecasting, most of which find improvements from treating
food and energy separately from the rest of CPI. The first sub-aggregation is therefore
this breakdown. In line with Clark (2004), Peach et al. (2013) and Tallman and Za-
man (2017), the second sub-aggregation separates the remaining CPI components from
the first sub-aggregation in goods and services. The third follows Hargreaves et al.
(2006) and Jacobs and Williams (2014), who similarly argue that the forces driving
prices of tradables and non-tradables are very different in nature. They find significant
improvements in aggregate accuracy from considering them separately.

The distribution of the different components among the sub-aggregation follows
Johnson (2017) as closely as possible.10 Taking all these factors into consideration, the
aggregation structure for the empirical application is presented in Figure 2.2.

10The actual distribution is presented in section 2.D of the Appendix.
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Figure 2.2: Aggregation Structure of the Empirical Application

2.3.2 Forecasting Models

The literature on inflation forecasting is vast meaning that choosing a subset of appro-
priate forecasting models for each component and sub-aggregation would not only be
very time-consuming but necessarily an arbitrary process and therefore debatable. In
this context, this empirical application uses a relatively reduced set of simple univari-
ate and multivariate time-series models that are well proven and often serve as worthy
benchmarks against which to compare more sophisticated approaches.11

Univariate models

Regardless of the numerous developments in econometric modelling, univariate
methods continue to provide a strong benchmark against which to compare other mod-
els (Marcellino, 2008; Chauvet and Potter, 2013). They are also the methods used
in many of the aggregate-disaggregate forecasting competitions and are therefore a
reasonable starting point.

The first model is a random walk for the quarterly growth rate. The forecasts are
produced using:

x̂i,t+1|t = xi,t

where xi,t is the first difference of the logarithm of the variable. The second is an
autoregressive model of order one for the first differences of the variables, xi,t = ai +
ρixi,t−1 + εi,t, where the forecasts are then produced using:

x̂i,t+1|t = âi + ρ̂ixi,t

It is worth mentioning that aggregating AR(1) processes will usually not result
in an AR(1) process. In fact, the sum of an AR(p1) and AR(p2) process will be an
ARMA((p1 + p2), max(p1, p2)). This means that assuming that both the components

11GARCH models and Dynamic Factor Models would be obvious candidates to include.
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and all sub-aggregations actually follow AR(1) processes is an extremely strong as-
sumption. However, as pointed out by Bermingham and D’Agostino (2014), in practical
applications forecasts from overly parsimonious models may nevertheless outperform
theoretically correct ones because of the associated low estimation error and parameter
uncertainty. In this particular empirical application, allowing for higher lag orders does
not alter its main findings and overall conclusion.12

Multivariate models

To account for the interdependence between components, Bayesian Vector Autore-
gressive models (BVARs) are also used. Following the implementation in Banbura et al.
(2010), the estimated model is:

Xt = c + A1Xt−1 + . . .+ A5Xt−5 + εt

and the forecasts are produced using:

X̂t+1|t = ĉ + Â1Xt + . . .+ Â5Xt−4

In particular, four different approaches are used. In the first, separate VARs for
each sub-aggregation are estimated for the variables in first differences. Specifically,
than means estimating a first VAR including Gross Domestic Product (GDP) and
Headline CPI alone, a second VAR including GDP, Food, Energy and CPI excluding
Food and Energy, a third VAR including GDP, Food, Energy, Other Goods and Other
Services, a fourth VAR including GDP, tradable items and non-tradable items and
fifth VAR including GDP and the twelve components. The second approach follows
the same structure as the first but the variables are differentiated according to a unit
root test.13 Following the notion in Hendry and Hubrich (2011), the third approach
involves estimating a single large VAR that includes GDP and all CPI sub-aggregations
and components with all variables in first differences. As before, the fourth approach
follows the same structure as the third but the variables are differentiated according to
a unit root test.

The smallest VARs, that is the two that include GDP and only Headline CPI, are
estimated by OLS using two lags. All the others are estimated using five lags, and the
choice of overall tightness, as in Banbura et al. (2010), is made so that the in-sample
fit equals that of a two-variable VAR with five lags estimated by OLS over the first 10
years of the sample.

12Relative performance for AR models of up to order four and results of including them in the
multilevel combination are presented in section 2.D of the Appendix.

13The differentiation is presented in section 2.D of the Appendix.



2. Improving Underlying Scenarios for Aggregate Forecasts 30

All this results in six sets of forecasts over the forecasting horizon for each one of
the variables.

2.3.3 Empirical Reliability Weights

Even in the absence of relevant external knowledge, it may be desirable to determine
reliability weights based on the properties of the preliminary estimates. Timmermann
(2006) present an extensive survey on some of the suggestions from the combination
literature for single variables and more become available from ongoing research (Hansen,
2008; Wei and Yang, 2012; Hsiao and Wan, 2014). Taking into consideration the ease
with which each suggestion can be incorporated into the framework, four alternatives
are suggested.

Scheme 1: Equal Weights

An obvious choice for the first set of weights is equal weights. This, because it
serves as a natural benchmark against which to compare all the others and because in
the traditional combination literature it has proved to perform remarkably well.

Scheme 2: In-Sample Fit

Using in-sample fit to determine combination weights is not uncommon. Kapetanios
et al. (2008) find promising results from using weights calculated using information
criteria. Extending their particular approach to compare different series, however, is
not straightforward. As an alternative, a normalization of the measure used by Banbura
et al. (2010) to determine in-sample fit for their Bayesian VARs is implemented.

For this purpose, let the root mean square percentage error (RMSPE) at time u
using information up to time p for the h-step ahead forecast of xi be:

RMSPEi,u,p,h,v =

√√√√√1
v

u−h∑
s=u−h−v

(
xi,s+h|p
xi,s+h

− 1
)2

(2.11)

where xi,s+h|p is the fitted value for xi using the coefficients calculated at time p and
v determines how much data is included in the measure. The latter is limited by the
number of lags that are included in each model.

The weights based on in-sample fit are then defined as:

ωISPi,t,h,v = 1
RMSPEi,t,t,h,v

(2.12)

The reliability weights are calculated for every rolling window using the five most
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recent years of the window as evaluation sample.

Scheme 3: Out-of-Sample Past Performance

An obvious extension of the idea of weighting according to predictability is to weigh
the different forecasts based on their recent out-of-sample performance. This approach
goes as far back as Bates and Granger (1969). Empirical studies suggest that forecasts
weighted by the inverse of their mean square forecasting error (MSFE) are found to
work well in practice (Stock and Watson, 1999; Timmermann, 2006).

Following the same idea and arguments expressed for the in-sample fit weights, the
weights based on out-of-sample past performance are defined as:

ωOSPi,t,h,v = 1
RMSPEi,t,s,h,v

(2.13)

where in this case the s that goes into the formula as the time subscript is not a
parameter, but the index in the sum embedded in equation (2.11). The reliability
weights are calculated for every rolling window using the last two years as evaluation
window.

Scheme 4: Optimal weights

In the context of single variable combinations Granger and Ramanathan (1984)
address the problem of determining the optimal combination weights as a least-squares
regression problem. Hyndman et al. (2011) extend the approach to a setting with
variables from different aggregation levels. In their implementation, however, they
only consider forecasts from one hierarchy. To enable combining forecasts from both
sub-aggregations, an approximation is necessary.

The proposed approximation consists in treating all sub-aggregations as independ-
ent and calculating the weights following the procedure in Hyndman et al. (2011). A
primary hierarchy is chosen and the weights for the other sub-aggregations are sup-
plied from the other hierarchies, ensuring that they are consistent with those of the
chosen primary hierarchy. As the weights from this method depend on the aggregation
structure alone, they do not change from one period to the next.14

2.3.4 Forecasting Accuracy Evaluation

The forecasting accuracy is presented for different horizons by means of the model’s
MSFE relative to that of a benchmark model. That is, for variable i, horizon h and

14The derivation is presented in section 2.C of the Appendix



2. Improving Underlying Scenarios for Aggregate Forecasts 32

using model m, the relative MSFE is:

RelMSFE(i,h,m) =
MSFE(i,h,m)

T0,T1

MSFE(i,h,0)
T0,T1

with

MSFE(i,h,m)
T0,T1

= 1
T1 − T0 + 1

T1∑
t=T0

(
y

(m)
i,t+h|t− yi,t+h

)2

where y(m)
i,t+h|t is the forecasted value for t + h at time t and T0 is the last period of

actual data in the first sample used for the evaluation and T1 is the last period of actual
data in the last sample. As usual, a RelMSFE lower than one reflects an improvement
over the benchmark model for which m = 0.

As regards measuring the overall forecasting accuracy of the components, this is
done by comparing the cumulative absolute errors in the contribution to the aggregate
level. For this purpose the cumulative absolute root mean square forecasting error for
an aggregate with N components qn, horizon h and using model m is defined as:

CumRMSFE(h,m)
T0,T1

=

√√√√√ 1
T1 − T0 + 1

T1∑
t=T0

(
N∑
n=1

wn,t+h · abs
(
q

(m)
n,t+h|t− qn,t+h

))2

where q(m)
n,t+h|t is the forecasted value for t + h at time t and T0 is the last period of

actual data in the first sample used for the evaluation and T1 is the last period of actual
data in the last sample. To evaluate the significance of the differences, for both the
aggregations and components, the forecasts are compared using the Modified Diebold-
Mariano test for equality of prediction accuracy proposed by Harvey et al. (1997).

2.3.5 Results

The forecasting application involves six different forecasting models and five different
aggregation approaches. This means that for each country there are 30 alternative
aggregate forecasts from which to choose. Table 2.2 presents the individual models’
relative forecasting accuracy over the 2001-2015 sample for the three countries.

From inspecting the results, it becomes apparent that some of them occur in all
three countries. One is that the dispersion in the performance of the different models
is large, reaching 40% in the most extreme cases. Another is that the AR(1) models
perform best and large BVARs that differentiate the variables according to the unit root
test perform worst. Also, in all cases the best performing models show improvements
of at least 15 to 20% over the aggregate random walk, depending on the horizon.
Beyond that, however, differences appear. For France, for example, it would seem
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Table 2.2: Single Model Aggregate Forecasting Errors by Sub-aggregation

France Germany United Kingdom
Horizon 1 2 3 4 1 2 3 4 1 2 3 4

Headline CPI
RW 1.00°° 1.00°° 1.00°° 1.00°° 1.00° 1.00°° 1.00 1.00 1.00 1.00 1.00 1.00
AR 0.91 0.82 0.73 0.67 0.88 0.80 0.78 0.74 0.96°° 0.91°° 0.93°° 0.94°°
SVDIF 0.85 0.80 0.77 0.72 0.87 0.83 0.88 0.87 0.92°° 0.88 0.90 0.90
SVDDIF 0.93 0.95 0.99° 1.00 0.92 0.92 0.99 1.00 0.94 0.92 0.95 0.95
LVDIF 1.13°° 1.03°° 0.96°° 0.91°° 0.87 0.90 0.96 0.94 1.03°° 1.04° 1.05°° 1.09°°
LVDDIF 1.17°° 1.11°° 1.07°° 1.02°° 1.02°° 1.06° 1.17 1.20 1.16°° 1.19 1.19 1.24

Sub-agg.1
RW 1.02°° 1.01°° 1.01°° 1.02°° 1.00° 1.00°° 1.00 1.00 0.98 0.99 1.00 1.00
AR 0.91 0.84 0.76°° 0.71°° 0.87 0.80° 0.78 0.75 0.92°° 0.90°° 0.93°° 0.94°°
SVDIF 0.89 0.84 0.80 0.76 0.87 0.83 0.85 0.84 0.93°° 0.92 0.96 0.97
SVDDIF 0.89 0.87 0.88°° 0.87° 0.93° 0.93° 0.99 1.00 0.96°° 0.94 0.99 1.00
LVDIF 1.14°° 1.04°° 0.98°° 0.93°° 0.87 0.90 0.96 0.94 0.99°° 1.04°° 1.08°° 1.11°°
LVDDIF 1.19°° 1.12°° 1.06°° 1.02°° 1.02°° 1.06° 1.16 1.19 1.09°° 1.11° 1.10 1.14

Sub-agg.2
RW 1.01°° 1.01°° 1.01°° 1.01°° 1.00° 1.00°° 1.00 1.00 1.17 1.11 1.10 1.10
AR 0.89 0.82 0.76°° 0.70°° 0.87 0.79 0.78 0.75 1.02 0.92°° 0.93°° 0.93°°
SVDIF 0.88 0.80 0.76 0.72 0.85 0.82 0.83 0.82 1.06° 0.98°° 1.01° 1.01
SVDDIF 0.90 0.88 0.88°° 0.88° 0.94° 0.93° 0.99 1.00 1.05 0.98° 1.00 1.02
LVDIF 1.14°° 1.05°° 0.99°° 0.94°° 0.87 0.90 0.96 0.94 1.08°° 1.05°° 1.06°° 1.10°°
LVDDIF 1.18°° 1.12°° 1.06°° 1.02°° 1.02°° 1.06° 1.16 1.19 1.18°° 1.14°° 1.11° 1.15°

Sub-agg.3
RW 1.00°° 1.00°° 1.00°° 1.00°° 1.00° 1.00°° 1.00 1.00 0.79 0.87 0.89 0.87
AR 0.89 0.80 0.73 0.66 0.88 0.79 0.78 0.75 0.75 0.77 0.79 0.80
SVDIF 0.85 0.81 0.77 0.73 0.85 0.81 0.84 0.83 0.85°° 0.90 0.93 0.93
SVDDIF 0.95° 0.97 1.01° 1.01 0.91 0.91 0.98 1.00 0.82 0.90 0.93 0.92
LVDIF 1.13°° 1.04°° 0.97°° 0.92°° 0.87 0.90 0.96 0.94 1.02°° 1.05° 1.06° 1.06°
LVDDIF 1.17°° 1.12°° 1.08°° 1.03°° 1.01°° 1.05° 1.16 1.19 1.11°° 1.19° 1.20 1.22

Components
RW 1.00° 1.00°° 1.01°° 1.01°° 1.00° 1.00°° 1.00 1.00 0.83 0.91 0.94 0.95
AR 0.89 0.82 0.77 0.71 0.88 0.80 0.78 0.76 0.79 0.81 0.84 0.84
SVDIF 0.95 0.85 0.79 0.73 0.87 0.84 0.87 0.84 0.87°° 0.92°° 0.95°° 0.96°°
SVDDIF 0.99°° 0.89 0.86°° 0.82°° 0.93°° 0.91 0.96 0.94 0.94°° 0.97°° 1.01°° 1.04°°
LVDIF 1.11°° 1.05°° 0.99°° 0.93°° 0.87 0.90 0.95 0.93 0.95°° 1.03°° 1.07°° 1.08°°
LVDDIF 1.13°° 1.06°° 1.00°° 0.94°° 1.01°° 1.05° 1.12 1.13 1.03°° 1.09°° 1.09°° 1.12°°

Note: Mean square forecasting error (MSFE) of each model relative to that of the direct approach using the
random walk model for each horizon by sub-aggregation approach. The sub-aggregations are those of Figure 2.2.
The models are a random walk with drift (RW), a first-differences autoregressive model of order one (AR), two
small VARs including GDP and the series from each CPI sub-aggregation in first differences (SVDIF) and where
each variable is differenced according to a unit root test (SVDDIF) and two large VARs including GDP and the
series from all considered CPI sub-aggregations in first differences (LVDIF) and differenced according to a unit
root test (LVDDIF). In bold the lowest MSFE for each horizon and country. ° and °° denote that the respective
forecast is statistically worse than the best model for that country according to the Modified Diebold-Mariano
statistic at a 10 and 5% significance level. Calculated for one to four steps ahead forecasts over the 2001-2015
period.
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that forecasting the aggregate directly or using the separation between tradables and
non-tradables, i.e. Sub-aggregation 3, results in the most accurate forecasts. Also,
the improvements of the better models over the random walk and large BVARs are
statistically significant for all sub-aggregations. For Germany, on the other hand, the
choice of sub-aggregation does not seem to make much impact on the results with the
differences between models not being statistically significant in most cases. Finally,
for the United Kingdom using the AR(1) for Sub-aggregation 3, or with a bottom-
up approach using the components, produces the best results. Using the AR(1) with
other sub-aggregations produces forecasts that are significantly worse. As in the case of
France, in this case too the large BVARs are significantly worse than the better models.

The relatively large differences between the performance of the single models sup-
port the concerns regarding choice of one model as being potentially risky in terms of
forecasting accuracy. The appeal of forecast combination is that this is not necessary.
Table 2.3 presents the MSFE for both traditional and multi-level combination. As a
means of comparison, the results for the best and median single models for each country
are included. The weighting schemes are equivalent for both combination approaches in
the first three cases, that is equal weights, in-sample fit and out-of-sample performance.
For optimal weights, however, the two methods are not equivalent. For the aggregate,
the approach in Conflitti et al. (2015) is used. The method calculates the weights min-
imizing the MSFE and stipulating that weights should be non-negative and sum up to
one. A result of the latter is that it trims off the worst-performing models. For the
multi-level case, the approximation to the weighting scheme by Hyndman et al. (2011)
is used.

It is immediately noticeable that the best-performing combinations show no im-
provements over the best single models. They do, however, tend to be half way between
the minimum and median, therefore, supporting the view that, in a context where es-
tablishing the best model beforehand is not possible, combination will tend to reduce
the possibility of choosing a very bad one. The differences between methods, however,
are relatively small for all but the aggregate optimal weighting scheme. Its perform-
ance comes out as statistically worse than the best single models in most cases. There
is hardly any difference between the aggregate accuracy of the multi-level combina-
tions and their corresponding traditional counterparts. The only differences appear for
France for the in-sample and out-of-sample weighting schemes where the multi-level
versions are marginally worse and for the United Kingdom where they are marginally
better for the out-of-sample weighting scheme. In terms of the comparative perform-
ance among weighting schemes for the multi-level combination, the in-sample comes
out as worst of all. The differences between the other three schemes are marginal.
Only for France at the longer horizons does the out-of-sample scheme look slightly
better. Overall, the differences between the aggregate results from the traditional and
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Table 2.3: Combination Aggregate Forecasting Errors

Aggregate Multi-level
Horizon 1 2 3 4 1 2 3 4

France
Single Models

Minimum 0.85 0.80 0.73 0.66
Median 0.99 0.98 0.97 0.92

Combination
Eq.W. 0.90 0.85 0.81°° 0.78° 0.90 0.85 0.81°° 0.78°
ISP 0.96° 0.90° 0.86°° 0.80°° 0.98° 0.91° 0.86°° 0.81°°
OSP 0.90 0.84 0.80° 0.75 0.91 0.85 0.80°° 0.76
OPT 1.19°° 1.06°° 0.97°° 0.90°° 0.91 0.85 0.82°° 0.78

Germany
Single Models

Minimum 0.85 0.79 0.78 0.74
Median 0.90 0.91 0.96 0.94

Combination
Eq.W. 0.85 0.83 0.85 0.85 0.85 0.83 0.85 0.85
ISP 0.87 0.87 0.89 0.88 0.87 0.87 0.89 0.88
OSP 0.85 0.83 0.85 0.85 0.85 0.83 0.85 0.84
OPT 1.02°° 1.06°° 1.08 1.07 0.84 0.83 0.85 0.84

United Kingdom
Single Models

Minimum 0.75 0.77 0.79 0.80
Median 0.97 0.98 1.00 1.00

Combination
Eq.W. 0.85 0.86 0.87 0.88 0.85 0.86 0.87 0.88
ISP 0.89° 0.92 0.93 0.95 0.89° 0.92 0.93 0.95
OSP 0.85 0.87 0.89 0.90 0.84 0.86 0.87 0.88
OPT 0.99°° 1.04° 1.06° 1.08° 0.85 0.86 0.87 0.88

Note: Mean square forecasting error of each combination method relative to that of the direct approach using
the random walk model for each horizon. The combination weighting schemes are the simple average (EQ.W),
in-sample fit (ISP), out-of-sample performance (OSP) and optimal weights (OPT). For the aggregate optimal
weights we use the approach in Conflitti et al. (2015) that impose that weights should be non-negative and sum
up to one. ° and °° denote that the respective forecast is statistically worse than the best single model within
the sample according to the Modified Diebold-Mariano statistic at a 10 and 5% significance level. Calculated
over the 2001-2015 period.
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multi-level approaches seem negligible.

As regards disaggregate accuracy, Table 2.4 presents the cumulative MSFE of both
traditional and multi-level combination for all sub-aggregations relative to that of the
best single model within each approach for each horizon. For purposes of comparison,
the median cumulative error of the single models is also presented.

The first thing to note from the distribution of the figures in bold, which denote
improvements over the best single models, is that the positive impact of combination
is significantly larger for the United Kingdom than for the other two countries. In this
case, both the traditional and multi-level approaches show some improvement over the
best methods for all sub-aggregations. The multi-level method, however, outperforms
the traditional in all cases. The largest improvements are found for Sub-aggregation
2 for which the gains from using the out-of-sample weights go up to 16% with the
differences being statistically significant for all horizons but the longest. The gains from
the traditional method are quite moderate by comparison. As regards Sub-aggregations
1 and 3, the gains from the multi-level approach go up to 8 and 6% respectively while
the traditional counterparts correspondingly achieve 5 and 3% at best. For France and
Germany, on the other hand, there are also some improvements over the best models,
but these are restricted to the one-step-ahead forecasts. In these cases the multi-level
approach also performs equally well or better than the traditional combination in all
cases, but the size of the improvements are smaller. In terms of overall performance,
the combination methods tend to be well below the median cumulative error of the
single models that can go as high as 17 to 42% over the best model depending on the
horizon. In terms of relative performance of the different weighting schemes, one result
from the aggregate outcome that is also present at the disaggregate level for all three
countries, is that the in-sample weighting scheme comes out worst of all. For France, in
fact, the differences with the best single model are statistically significant. As regards
the other methods, however, differences appear at the disaggregate level. The equal
and approximate optimal weights remain very similar, but the out-of-sample weighting
scheme tends to outperform the others by a small margin, particularly for the longer
horizons.

These results suggest that using multi-level forecast combination can be beneficial
in terms of disaggregate accuracy. The fact that the aggregate accuracy is practically
the same as that of the equivalent traditional single-variable methods suggests that
the benefits of achieving disaggregate consistency do not come at the cost of the ag-
gregate accuracy. Furthermore, given that the multi-level combination method shows
disaggregate forecasting accuracy that is similar to or better than those of both the
best-performing single models and traditional combination, it would seem that the
constraints it imposes on the disaggregate forecasts have the desired effect.
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Table 2.4: Cumulative Disaggregate Forecasting Errors

France Germany United Kingdom
Horizon 1 2 3 4 1 2 3 4 1 2 3 4

Sub-agg.1
Single Model Median 1.12 1.17 1.23 1.30 1.07 1.16 1.28 1.34 1.09 1.11 1.14 1.18

Traditional Comb.
Eq.W. 1.03 1.04 1.08 1.11 1.00 1.06 1.12 1.19 0.97 0.96 0.95 0.98
ISP 1.08° 1.10° 1.14°° 1.15°° 1.04 1.09 1.15 1.20 1.01 1.02 1.01 1.04
OSP 1.03 1.04 1.07 1.10 1.00 1.05 1.10 1.15 0.98 0.97 0.96 1.00

Multi-level Comb.
Eq.W. 1.00 1.03 1.06 1.09 0.99 1.05 1.10 1.17 0.93* 0.95 0.94 0.97
ISP 1.06 1.09 1.12°° 1.14°° 1.02 1.08 1.14 1.19 0.96 1.00 1.01 1.03
OSP 1.00 1.03 1.05 1.07 0.99 1.04 1.09 1.14 0.92* 0.94 0.94 0.96
OPT 1.01 1.04 1.07 1.10 1.00 1.05 1.11 1.17 0.94 0.96 0.95 0.96

Sub-agg.2
Single Model Median 1.12 1.23 1.27 1.34 1.10 1.17 1.24 1.29 1.06 1.13 1.15 1.16

Traditional Comb.
Eq.W. 1.01 1.07 1.09 1.13° 1.03 1.06° 1.09 1.15 0.95 0.97 0.96 0.98
ISP 1.07 1.13°° 1.15°° 1.17°° 1.07°° 1.10°° 1.12 1.17 0.99 1.01 1.01 1.01
OSP 1.01 1.06 1.06 1.09 1.02 1.05 1.07 1.11 0.96 0.96 0.96 0.98

Multi-level Comb.
Eq.W. 0.98 1.04 1.06 1.10 1.01 1.06 1.08 1.13 0.84* 0.89* 0.90 0.91
ISP 1.04 1.10° 1.12° 1.15°° 1.04 1.09°° 1.11 1.16 0.87 0.93 0.94 0.95
OSP 0.98 1.04 1.04 1.07 1.01 1.05 1.07 1.11 0.84** 0.89** 0.89* 0.90
OPT 0.99 1.04 1.06 1.10 1.01 1.06° 1.08 1.14 0.85* 0.89* 0.90 0.90

Sub-agg.3
Single Model Median 1.17 1.25 1.33 1.42 1.07 1.16 1.26 1.32 1.03 1.12 1.19 1.22

Traditional Comb.
Eq.W. 1.06 1.06 1.11°° 1.16 1.00 1.06 1.11 1.16 0.97 0.97 1.00 1.03
ISP 1.14°° 1.12 1.15°° 1.19°° 1.03 1.08 1.14 1.19 1.04 1.04 1.08 1.10
OSP 1.07 1.05 1.08°° 1.12 1.00 1.04 1.09 1.13 0.97 0.98 1.00 1.02

Multi-level Comb.
Eq.W. 1.05 1.04 1.08°° 1.13° 0.99 1.04 1.09 1.14 0.94 0.96 0.98 1.03
ISP 1.12° 1.11 1.13°° 1.17°° 1.02 1.07 1.12 1.17 0.99 1.01 1.05 1.09
OSP 1.06 1.04 1.06° 1.11 0.99 1.03 1.08 1.12 0.94 0.95 0.98 1.01
OPT 1.05 1.04 1.08°° 1.13 0.99 1.04 1.09 1.13 0.94 0.95 0.97 1.01

Components
Single Model Median 1.12 1.18 1.22 1.24 1.05 1.10 1.16 1.19 1.09 1.14 1.16 1.18

Traditional Comb.
Eq.W. 1.03 1.05 1.06 1.08 0.99 1.03 1.05 1.07 1.00 1.01 1.02 1.03
ISP 1.08°° 1.09°° 1.11°° 1.11°° 1.03 1.05 1.08 1.10 1.04 1.06° 1.07° 1.08
OSP 1.02 1.04 1.05 1.06 0.99 1.02 1.04 1.06 0.99 1.00 1.01 1.01

Multi-level Comb.
Eq.W. 1.02 1.04 1.05 1.07 0.99 1.03 1.05 1.08 1.00 1.00 1.01 1.02
ISP 1.07° 1.08°° 1.10°° 1.11° 1.03 1.06 1.08 1.11 1.03 1.04 1.05 1.07
OSP 1.01 1.03 1.04 1.05 0.99 1.02 1.04 1.06 0.98 0.98 0.99 1.00
OPT 1.03 1.04 1.06 1.08 1.00 1.03 1.05 1.08 1.01 1.01 1.02 1.02

Note: Cumulative mean square forecasting error of the forecast that results from the combination approaches
for each method relative to the minimum achievable from the single models for each horizon. The combination
weighting schemes are the simple average (EQ.W), in-sample fit (ISP), out-of-sample performance (OSP) and
optimal weights (OPT). ° and °° denote that the respective forecast is statistically worse than the best model
for that country according to the Modified Diebold-Mariano statistic at a 10 and 5% significance level. * and **
denote that the respective forecast is statistically better than the best model for that country according to the
same statistic and significance levels. Figures below one are highlighted in bold. Calculated over the 2001-2015
period.
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As mentioned before, the impact of the combination method varies greatly between
countries. The results for the United Kingdom seem very positive, while for the other
two countries they are moderate at best. A possible explanation for these differences
could come from the characteristics of the data or the features of the forecasting models.
One of the arguments for using disaggregation is that modelling the aggregate can
become very challenging if the components follow very different processes. On the
contrary, if the disaggregate models are misspecified, forecasting the aggregate directly
can lead to better results. There is a middle-ground, however, where forecasting the
aggregate directly or through the bottom-up approach may give very similar results.
This could be merely due to coincidence or the fact that the estimated processes for
the aggregate end up being very similar. The results from the single models in Table
2.2 suggest that this may be the case for Germany and, to a lesser extent, for France.
For the former, the results for each forecasting model are almost identical across sub-
aggregations with the average difference between them being under 0.7 percentage
points. On the opposite side of the spectrum, for the United Kingdom the differences
appear comparatively large at 3.3 percentage points. France is between the two, with
1.8 percentage points.

This on its own, however, does not imply that there are no gains to be obtained from
choosing different aggregation levels. Alternative sub-aggregations could perform well
in different periods only to show similar results over the whole sample. Whether this is
in fact the case for this particular empirical application can be examined to some extent
in Figure 2.3. It presents the four-quarter rolling MSFE for the aggregate for all models
and forecasting horizons. The figure shows the dispersion of the single models referred
to as Min-max, the same measure trimming the best and worst-performing 25% and the
median. The differences between countries are immediately obvious. For Germany, the
dispersion of the forecasting errors is relatively low. For all horizons the middle 50% of
the models are almost undistinguishable from the median and for the shorter horizons
the whole distribution is very concentrated. All this suggests that across most models
and sub-aggregations the difference in performance is relatively small. For the United
Kingdom and France, on the other hand, the distribution of errors is fairly dispersed
over most of the sample. Based on this analysis alone, it would appear that France
should also show some positive results. As this is not the case, it would seem that there
are other factors besides forecasting error dispersion that affect the performance of the
multi-level combination. Nevertheless, the fact that the multi-level method performs
equally well or better than the alternatives, both under apparently favourable and
unfavourable circumstances, provides evidence of the robustness of the method and
supports its use as a way of safeguarding against mistakenly picking an outstandingly
bad model.

One non-trivial detail of the previous forecasting exercise is that the evaluation
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Figure 2.3: Dispersion of the Rolling Forecasting Error

Note: Four-quarter rolling mean square forecasting error for each horizon. The Min-Max shaded area shows
the span between the minimum and maximum MSFE from the 30 aggregate forecasts. The Perc.25-75 does the
same but trims off the top and bottom 25%. Calculated as four-quarter moving windows over the 2001-2015
period.

period includes the end portion of what has been called the Great Moderation and
the most recent financial crisis. A considerable body of literature has devoted itself
to understanding the effects of these periods on forecasting models and Chauvet and
Potter (2013) present a comprehensive review. Some of the conclusions state that many
models that perform well in stable times fail completely with increases in volatility, and
that models perform very differently in expansions and recessions. This could mean that
the results from this empirical application could be overly influenced by the particular
performance in the crisis years, simply because the forecasting errors could be massive.
From Figure 2.3 the impact of the financial crisis is obvious for all three countries,
for all horizons. Removing this period from the analysis, however, does not affect the
overall results. These are, aggregate accuracy similar to that of comparable traditional
single-variable combination methods and, in terms of disaggregate accuracy, cumulative
forecasting errors that are low relative to the median of the single-models and similar
to or better than the best-performing single models.15

Overall, in terms of the performance of the empirical weighting schemes, most of
the gains of doing multi-level combination are picked up by the equal-weighted scheme.
Some additional improvements are attainable, however, from using combination weights
based on the recent out-of-sample performance of the models. Finding these additional

15The results of the exercise excluding the crisis years are provided in section 2.D of the Appendix.



2. Improving Underlying Scenarios for Aggregate Forecasts 40

gains supports the idea that being able to assign reliability weights subjectively to
the forecasts from different levels can lead to an improvement in overall forecasting
accuracy.

2.4 Conclusion

The framework developed in this chapter incorporates an aggregate, any number of
sub-aggregations and its components into the same forecast combination process. The
method performs the combination, relying on the merits of the individual forecasts, and
acknowledges that for any realized outcome an aggregate is exactly the weighted sum
of its components. This method makes use of disaggregate components and ensures
that the accounting identities that underlie the aggregate are met, therefore delivering
a completely consistent forecasting scenario. The method contributes to the existing
literature in two aspects. First, it is flexible enough to incorporate forecasts from any
number of models, measurement approaches and sub-aggregations. Second, it allows the
use of weights that reflect the relative reliability of the preliminary forecasts themselves.

In the empirical application with CPI data from France, Germany and the United
Kingdom, the multi-level combination framework provides similar aggregate forecast-
ing accuracy to that of equivalent traditional forecast combination methods, and dis-
aggregate accuracy equal to or better than those of the best-performing single models.
In terms of the empirically determined weighting schemes, equal-weights attain most
of the benefits from combination, but some additional gains are possible from using
weights based on recent out-of-sample performance. All this suggests that this method
could show an improvement over the traditional bottom-up approaches, in terms of dis-
aggregate accuracy, when a fully consistent scenario is required. This is because some
degree of interdependence is forced on the components’ forecasts, no matter whether
they are generated independently in the first place or not. Additionally, the possibility
of establishing the weights could prove to be useful as a way of introducing external
information or judgement into the forecasting process. This is something that Central
Banks do regularly as a way of incorporating a broader assessment of relevant conditions
that are not explicitly accounted for in their models (Alessi et al., 2014).

In terms of furthering research, one possibility is to explore its uses in settings where
the asynchronous release of information means that at any given time some disaggregate
data is known for the period of interest while other data has to be forecasted. Another
possibility is to explore its use for density forecasting, in order to see how it affects the
whole distribution. From an applied perspective, it would be interesting to enrich the
set of models that are included in the combination process. Some obvious candidates
would be to add factor models that may boost the performance of direct aggregate
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forecasts (Stock and Watson, 1998; Forni et al., 2005) and at the same time incor-
porate disaggregate methods that include interactions and common features between
components within the process (Espasa and Mayo-Burgos, 2013; Esteves, 2013; Stock
and Watson, 2015).
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Appendix:

2.A Derivation for a One-level Combination

The premise upon which the derivation of the proposed method revolves around is that
the solution to the multi-level combination should be equivalent to that of traditional
single-variable methods if the conditions are comparable. This presentation explains,
among other things, why common reconciliation procedures do not meet the require-
ments, but how, by working from them, the proposed loss function is found. Then the
framework is developed, so that it works in a general setting.

Let there be a composite index that results from the simple sum of N ≥ 2 strictly
positive components and two forecasts for it. The first, y, comes from forecasting the
aggregate directly, while the second one, Q, is the simple sum of the forecasts of its
components qn.

Result 1: Failure of the Equal Distribution of Differences

The additive deviation approach proposed by Denton (1971) finds the definitive values
making the differences between them and the initial estimates equal in absolute terms.

The minimization problem for two aggregates can be written as:

min
α,β

[(1 + α) y − y]2 + [(1 + β)Q−Q]2 + 2λ [(1 + α) y − (1 + β)Q] (2.14)

The first order conditions imply that β = −α y
Q and (1+α)y = (1+β)Q. Then replacing

β in the latter gives:
(1 + α)y = Q− αy (2.15)

and solving for (1 + α)y gives the simple average.

If the additive approach is used directly on the components’ forecasts, however, the
minimization problem is the following:

min
α,βn

(αy)2 +∑N
j=1 (βjqj)2 + 2λ

[
(1 + α)y −∑N

j=1(1 + βj)qj
]

(2.16)

This time the first order conditions imply that βn = −α y
qn

for n = 1 to N and (1 +
α)y = ∑N

j=1(1 + βj)qj . Solving for (1 + α) y, the aggregate forecast resulting from the
combination is:

ỹ =
N · y +∑N

j=1 qj

N + 1 = 1
N + 1 (N · y +Q) (2.17)



2. Improving Underlying Scenarios for Aggregate Forecasts 43

that is different from the simple average, given that N ≥ 2 and both aggregate forecasts
are assumed to be distinct.

Result 2: Failure of the Proportional Distribution of Differences

Following Denton (1971), the proportional deviation approach from the reconciliation
literature finds the definitive values by making the differences between them and the
initial estimates proportional. The minimization problem for two aggregates is there-
fore:

min
α,β

[(1 + α) y − y
y

]2
+
[(1 + β)Q−Q

Q

]2
+ 2λ [(1 + α) y − (1 + β)Q] (2.18)

where α and β are the percentage deviations of the definitive value from the initial
estimates.

The first order conditions imply that Q = −β
αy and (1 + α) y = Q + βQ. The

aggregate forecast resulting from solving the problem is then:

ỹ = (1 + α) y = (1 + β)Q =
(

y ·Q
y2 +Q2

)
(y +Q) (2.19)

Using the inequality of arithmetic and geometric means shows that 0 ≤ (y −Q)2 =
y2 +Q2 − 2yQ. Then 2yQ ≤ y2 +Q2 and therefore:

y ·Q
y2 +Q2 ≤

1
2

meaning that the solution is strictly lower than an equal weighted average if both
forecasts are distinct.

Result 3: A Loss Function for One Set of Forecasts

From comparing the two approaches it can be seen that the only difference between
them is that the former eliminates the downward bias relative to the simple average
present in the latter by penalizing deviations based on the relative size of each aggregate
forecast. The same idea can be extended to find the appropriate penalty term for the
components.

Including an unspecified weight ηn for the disaggregate components in equation (2.16)
results in:

min
α,βn

(αy)2 +
N∑
j=1

(βjηj)2 + 2λ

(1 + α)y −
N∑
j=1

(1 + βj)qj

 (2.20)



2. Improving Underlying Scenarios for Aggregate Forecasts 44

This time the first order conditions imply that βn = − qn
η2
n
· αy for n = 1 to N and

(1 + α)y = ∑N
j=1(1 + βj)qj . Using this gives:

(1 + α) y =
N∑
j=1

(qj)−
N∑
j=1

(
q2
j

η2
j

· αy
)

Then matching with the intermediate step given by equation (2.15) results in:

Q−
N∑
j=1

(
q2
j

η2
j

· αy
)

= Q− αy

Then solving for ηn the weight for the components is:

ηn =
√
qn ·Q

With this, the loss function that produces the equal weighted result for the aggregate
is:

(αy)2 +
N∑
n=1

qjQ (βj)2 (2.21)

Result 4: Incorporating Multiple Component Forecasts

If more than one set of forecasts for the same components are included in equation
(2.21), a bias similar to that of equation (2.19) appears. This happens because not only
the definitive aggregate forecasts have to coincide, but also those of the components.

This can be seen by extending the framework in equation (2.21) to a setting with D
sets of disaggregate forecasts for the N components. The minimization problem may
be written as:

min
α,βn

(αy)2 +∑D
d=1

∑N
j=1 qd,jQdβ

2
d,j

+ 2∑D
d=1

(
λd
[
(1 + α)y −∑N

j=1(1 + βd,j)qd,j
])

+2∑D
d=2

∑N
j=1 (δd,j [(1 + β1,j)q1,j − (1 + βd,j)qd,j ])

(2.22)

Simplifying the problem to the particular case with one aggregate, two disaggregate
forecasts and N = 2 the first order conditions become:

1. ∂
∂α : αy + λ1 + λ2 = 0

2. ∂
∂β1,n

: β1,nQ1 − λ1 + δn = 0 for n = 1, 2

3. ∂
∂β2,n

: β2,nQ2 − λ2 − δn = 0 for n = 1, 2



2. Improving Underlying Scenarios for Aggregate Forecasts 45

4. ∂
∂λd

: (1 + α)y − (1 + βd,1)qd,1 − (1 + βd,2)qd,2 = 0 for d = 1, 2

5. ∂
∂δn

: (1 + β1,n)q1,n − (1 + β2,n)q2,n = 0 for n = 1, 2

After some algebra using conditions 1, 2, 3 and 5, (1+β1,n) = q2,n(Q1q2,n+Q2q1,n)−1(Q1+
Q2 − αy) for n = 1, 2. Using this in the corresponding condition in 4. results in:

ỹ = Φ(Q1 +Q2 − αy)

= Φ
1+Φ(y +Q1 +Q2)

(2.23)

where
Φ = Q2

1q2,1q2,2 +Q2
2q1,1q1,2

Q2
1q2,1q2,2 +Q1Q2(q1,2q2,1 + q1,1q2,2) +Q2

2q1,1q1,2

For equation (2.23) to be the simple average it is necessary for 1+Φ
Φ to be equal to

three. This is equivalent to saying that Φ−1 − 1, that is given by:

Φ−1 − 1 = Q1Q2(q1,2q2,1 + q1,1q2,2)
Q2

1q2,1q2,2 +Q2
2q1,1q1,2

has to be equal to one.

To explore the circumstances under which this is in fact true, the second set of
preliminary estimates is expressed as deviations from the first set, that is q2,1 = κ1q1,1

and q2,2 = κ2q1,2 where κ1 and κ2 can take any value. Assuming that Φ−1− 1 is in fact
equal to one would result in:

Q1(κ1q1,1 + κ2q1,2)(κ1q1,1q1,2 + q1,1κ2q1,2)
Q2

1κ1κ2q1,1q1,2 + (κ1q1,1 + κ2q1,2)2q1,1q1,2
= 1

Then:

(q1,1 + q1,2)(κ1q1,1 + κ2q1,2)(κ1 + κ2) = Q2
1κ1κ2 + (κ1q1,1 + κ2q1,2)2

(κ1q1,1 + κ2q1,2)(κ1q1,2 + κ2q1,1) = Q2
1κ1κ2

κ2
1q1,1q1,2 + κ2

2q1,1q1,2 = 2κ1κ2q1,1q1,2

κ2
1 − 2κ1κ2 + κ2

2 = 0

that results in (κ1 − κ2)2 = 0.

This condition only holds when κ1 = κ2, meaning that the outcome of equa-
tion (2.22) is a simple average only when the two sets of preliminary estimates are
exactly the same or the second one is simply the first multiplied by a constant.
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The problem that arises from trying to combine more than one set of forecasts
directly in the multi-level combination framework can be avoided simply by combin-
ing the multiple forecasts for the individual series before performing the multi-level
combination, and choosing the optimization weights so as to reflect the prior step.

Let the result for the prior step be:

y = 1
Γ

A∑
i=1

γiyi and qn = 1
∆n

D∑
d=1

δd,nqd,n (2.24)

with γi and δd,n being the reliability weights, Γ = ∑A
i=1 γi and ∆n = ∑D

d=1 δd,n.

The combination procedure remains unchanged except for the weights ϕ and φn,
which are set to reflect the reliability of the combined forecasts y and qn as opposed to
the initial preliminary forecasts yi and qd,n.

In the case of equal reliability, for example, this means accounting for the fact that
the problem as a whole involves A aggregate and D disaggregate forecasts. That is
accomplished by setting ϕ = A and φn = D making the solution for the aggregate
forecast:

ỹ = 1
A+D

A · y +D ·
N∑
j=1

wjqj

 (2.25)

By expanding the individual forecasts, given that γi and δd,n are equal to one, the
definitive aggregate forecast is left in terms of the preliminary estimates:

ỹ = 1
A+D

(
A · 1

A

∑A
i=1 yi +D ·

∑N
j=1

1
Dwj

∑D
d=1 qd,j

)

= 1
A+D

(∑A
i=1 yi +∑D

d=1
∑N
j=1wjqd,j

) (2.26)

that is the same as taking the simple average of all the available forecasts for the
aggregate.

Result 5: One-level Combination for Multiple Measurement Approaches

For an aggregate that can be obtained as the sum of K alternative measurement ap-
proaches, where each approach is the result of the weighted sum of the respective
strictly positive Nk components, let there be a direct aggregate forecast y and K dis-
tinct aggregate forecasts, each based on the corresponding Nk component’s forecasts.
The aggregation weights are assumed to be positive.

The minimization problem involving the aggregate reliability weight ϕ, the disag-
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gregate reliability weights φk,n and the aggregation weights wk,n, is:

min
α,β

ϕ (αy)2 +∑K
k=1

[
Qk
∑Nk
j=1 φk,jwk,jqk,j (βk,j)2

+2λk
(
(1 + α)y −∑Nk

j=1wk,j(1 + βk,j)qk,j
)]

The first order conditions are:

1. ∂
∂α : ϕαy +∑K

k=1 λk = 0

2. ∂
∂βk,j

: Qkφk,jβk,j − λk = 0 for j = 1 to Nk and k = 1 to K

3. ∂
∂λk

: (1 + α)y −∑Nk
j=1wk,j(1 + βk,j)qk,j = 0

From 2., for any k, φk,nβk,n = λk
Qk

, and plugging in the corresponding restriction in 3.
gives:

(1 + α)y = ∑Nk
j=1wk,jqk,j +∑Nk

j=1wk,jβk,jqk,j

y + αy = Qk + λk
Qk

∑Nk
j=1

(
1
φk,j

wk,jqk,j
)

λk =
[∑Nk

j=1
1
φk,j

wk,jqk,j
]−1

Qk (y + αy −Qk)

Then using 1. and dividing by ϕ:

αy =
K∑
k=1

([∑Nk
j=1

ϕ
φk,j

wk,jqk,j
]−1

Qk (Qk − y − αy)
)

=
K∑
k=1

Qk
χk

(Qk − y − αy)

where χk =
Nk∑
j=1

ϕ
φk,j

wk,jqk,j .

The previous equations can be manipulated as follows:

αy = ∑K
k=1

Qk
χk
Qk −

∑K
k=1

Qk
χk
y −

∑K
k=1

Qk
χk
αy

(
1 +∑K

k=1
Qk
χk

)
αy = ∑K

k=1
Qk
χk
Qk −

(
1 +∑K

k=1
Qk
χk

)
y + y
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Then the definitive aggregate forecast is seen to be a weighted average given by:

ỹ =
y +

K∑
k=1

(
Qk ·

Qk
χk

)

1 +
K∑
k=1

Qk
χk

(2.27)

The definitive component forecasts are obtained by combining 2. and λk:

Qkφk,nβk,n − ϕQkχk (y + αy −Qk) = 0

βk,n = ϕ
φk,n

Qk
χk

(y + αy −Qk) 1
Qk

with the final result being:

q̃k,n =
(

1 + ϕ

φk,n
· ỹ −Qk

χk

)
qk,n (2.28)

For more than one set of forecasts, the same joint combination process is followed,
only that the multiple forecasts are combined in a prior step and optimization weights
are chosen to reflect this.

An example of choosing appropriate weights can be seen from the simple equal
reliability scenario. Let there be a single aggregate forecast y and a single set of
disaggregate forecasts qn for n = 1 to N . The solution for the aggregate forecast is is
given by equation (2.27) and is:

ỹ =
Q2 + y

∑N
j=1

ϕ
φj
wjqj

Q+∑N
j=1

ϕ
φj
wjqj

(2.29)

that involves the aggregate reliability weight ϕ, the disaggregate reliability weights φn
and the aggregation weights wn.

If y and qn for n = 1 to N are the result of a prior combination, that is y =
1
Γ
∑A
i=1 γiyi and qn = 1

∆n

∑D
d=1 δd,nqd,n with γi and δd,n being the prior reliability

weights, Γ = ∑A
i=1 γi and ∆n = ∑D

d=1 δd,n, the equivalence with the simple average
of the initial forecasts can be shown by replacing them into the solution:

ỹ =

 N∑
j=1

wj

D∑
d=1

δd,j
∆j
qd,j

2

+
(

1
Γ

A∑
i=1
γiyi

) N∑
j=1

ϕ
φj
wj

D∑
d=1

δd,j
∆j
qd,j


 N∑
j=1

wj

D∑
d=1

δd,j
∆j
qd,j

+

 N∑
j=1

ϕ
φj
wj

D∑
d=1

δd,j
∆j
qd,j

 (2.30)



2. Improving Underlying Scenarios for Aggregate Forecasts 49

Then incorporating the equal reliability of forecasts by setting γi = δd,n,t = 1 and
reflecting the number of forecasts that are involved in the first stage with ϕ = A and
φn = φ = D, the solution then simplifies as follows:

ỹ =

(
1
D

∑D

d=1

∑N

j=1 wjqd,j

)2
+
(

1
A

∑A

i=1 yi
)(

A
D
· 1
D

∑D

d=1

∑N

j=1 wjqd,j

)
(

1
D

∑D

d=1

∑N

j=1 wjqd,j

)
+
(
A
D
· 1
D

∑D

d=1

∑N

j=1 wjqd,j

)

=

(
1
D

∑D

d=1

∑N

j=1 wjqd,j

)
+
(
A
D

∑I

i=1 yi
)

1+A
D

= 1
A+D

(
A∑
i=1
yi +

D∑
d=1

Qd

)

which is the simple average of all the aggregate forecasts.

2.B Foundation for the Multi-level Combination Method

The multi-level combination method consists on breaking down the whole problem into
a sequence of one-level combinations. This is done by expressing any aggregate forecast
in terms of a consistent set of component forecasts. It is shown that following this
approach and combining the resulting components’ forecasts is equivalent to combining
the aggregate forecasts produced from different intermediate aggregation levels in the
case of equal weights.

Let there be a single aggregate forecast y and a single set of disaggregate forecasts qn
for n = 1 to N , the aggregate reliability weight ϕ, the disaggregate reliability weights φn
and the aggregation weights wn. Based on the previous results, the definitive aggregate
forecast for this one-level combination is given by:

ỹ =
Q2 + y

∑N
j=1

ϕ
φj
wjqj

Q+∑N
j=1

ϕ
φj
wjqj

(2.31)

where Q = ∑N
j=1wjqj and the components are obtained from:

q̃n =

1 + ϕ

φn

y −Q
Q+∑N

j=1
ϕ
φj
wjqj

 qn (2.32)

With the objective of reconciling a set of components to an aggregate, equation
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(2.32) can be rewritten as follows:

q̃n =
(

1 + ϕ
φn
· y−Q
Q+
∑N

j=1
ϕ
φj
wjqj

)
qn

=
(

1 +
ϕ
φn
·(y−Q)

Q+
∑N

j=1
ϕ
φj
wjqj

)
qn

=
(

1 +
1
φn
·(y−Q)

1
ϕ
Q+
∑N

j=1
1
φj
wjqj

)
qn

Then, to have a disaggregate scenario that is consistent with the original forecast
y, taking qn, for n = 1 to N , as the best guesses, the aggregate reliability is made
arbitrarily large so that:

q̂
(y)
n =

(
1 + y−Q

φn·
∑N

j=1
1
φj
wjqj

)
qn (2.33)

Then, assigning the reliability of y to the y-consistent components and combining
them with the original forecasts for the components results in:

q̃altn = φnqn+ϕq̂(y)
n

φn+ϕ

=
φnqn+ϕqn+ ϕ(y−Q)

φn·
∑N

j=1
1
φj
wjqj

·qn

φn+ϕ

=
(

1 + ϕ
φn
· y−Q

(φn+ϕ)
∑N

j=1
1
φj
wjqj

)
qn

that is slightly different from q̃n in equation (2.32). For equal weights among compon-
ents, however, that is φn = φ:

q̃altn =
(

1 + ϕ
φ ·

y−Q
(φ+ϕ) 1

φ

∑N

j=1 wjqj

)
qn

=
(
1 + ϕ

φ+ϕ ·
y−Q
Q

)
qn

=
(
Q(φ+ϕ)+ϕ(y−Q)

φ+ϕ

)
qn
Q

=
(
φQ+ϕy
φ+ϕ

)
qn
Q

and by summing up the components the aggregate is:

ỹ = φQ+ ϕy

φ+ ϕ

which is the same as is obtained from setting φn = φ for the standard result in equa-
tion (2.32).

This is a useful result for a one-level disaggregation, but the process is in fact
extendible to unlimited exhaustive groupings of components.



2. Improving Underlying Scenarios for Aggregate Forecasts 51

Let there be S unique groupings of Ks sub-aggregations of components. Then the
best guess of the decomposition of any sub-aggregation ys,k can be found using equation
(2.33). That is:

q̂
(ys,k)
n =

(
1 + ys,k−Qs,k

φn·χs,k

)
qn

with χs,k = ∑
qn∈ys,k

1
φn
wnqn and Qs,k = ∑

qn∈ys,k
wnqn.

Then, by combining all the resulting component forecasts, the definitive one is
obtained from:

q̃n =
φnqn+

S∑
s=1

ϕs,k q̂
(ys,k)
n

φn+
S∑
s=1

ϕs,k

=

1 + 1

φn+
S∑
s=1

ϕs,k

·
S∑
s=1

(
ϕs,k
φn
· ys,k−Qs,kχs,k

) qn

For the case where all forecasts within the same grouping have the same reliability,
the aggregate is given by:

ỹ =
N∑
n=1

wn

1 + 1

φ+
S∑
s=1

ϕs

·
S∑
s=1

(
ϕs ·

ys,k−Qs,k
Qs,k

) qn
= Q+ 1

φ+
S∑
s=1

ϕs

·
S∑
s=1

ϕs ·
N∑
n=1

wn
(
ys,k
Qs,k
· qn − qn

)

= 1

φ+
S∑
s=1

ϕs

·
[
Q

(
φ+

S∑
s=1

ϕs

)
−

S∑
s=1

ϕsQ+
S∑
s=1

ϕs

Ks∑
k=1

(
ys,k
Qs,k
·

∑
qn∈Qs,k

wnqn

)]

= 1

φ+
S∑
s=1

ϕs

·
[
φQ+

S∑
s=1

ϕs

Ks∑
k=1

ys,k

]

By making Ys =
Ks∑
k=1

ys,k, it becomes clear that the definitive forecast is a weighted

average of all the aggregate forecasts:

ỹ =
φQ+

S∑
s=1

ϕsYs

φ+
S∑
s=1

ϕs

This shows that, for the case of equal weights, combining the aggregate forecasts
produced from different aggregation levels is equivalent to the aggregate bottom-up
forecast that results from imposing the different aggregate and intermediate forecasts
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on the component forecasts and then combining all the resulting component forecasts.

2.C Approximate Optimal Weights for Multiple Measure-
ment Approaches

Hyndman et al. (2011) propose a method for obtaining consistent forecasts for a whole
hierarchy of time series, using a regression approach. The data is described by

Yt = SYK,t (2.34)

where Yt is a vector containing the values for all the series in the hierarchy at time t,
S is the aggregation matrix that defines the structure of the hierarchy and YK,t is a
vector containing the values at time t for the series at the lowest level of the hierarchy
(maximum disaggregation).

For a hierarchy composed of four components, two intermediate aggregations and
the total, for example, the vector for lowest level would be Y2,t = [ y2,1,t y2,2,t y2,3,t

y2,4,t]′, the vector for all observations would be Yt = [ y0,t y1,1,t y1,2,t Y′2,t ]′ and
the aggregation matrix would be:

S =


1 1 0 1 0 0 0
1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 1 0 0 0 1



′

Hyndman et al. (2011) propose using this same structure to find consistent definitive
forecasts from a set of independent forecasts for all series. They set up the following
problem for the forecasts at time h:

Ỹh = SPŶh (2.35)

where Ŷh are the preliminary forecasts for all series, Ỹh are the consistent definitive
forecasts for all series and P is a balancing matrix. They use the regression approach
to find P and in particular assume that the forecast errors satisfy the same aggregation
constraint as the data. Under these assumptions they find that the optimal balancing
matrix is P = (S′S)−1 S′ and that therefore

Ỹh = S
(
S′S

)−1 S′Ŷh (2.36)
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The optimal combination method, however, does not contemplate multiple altern-
ative approaches. For the empirical application, an approximation is used. It consists
of treating all sub-aggregations as independent and calculating the weights following
the procedure in Hyndman et al. (2011). Then, a primary hierarchy is chosen and the
weights for the other sub-aggregations are supplied from the other hierarchies, ensuring
that they are consistent with those of the chosen primary hierarchy.

In the particular case of the empirical application depicted in Figure 2.2, the largest
hierarchy is chosen as the primary one, in other words the three-level one on the left.
Calculating the optimal weights using an appropriately built S matrix and the optimal
weights formula, S (S′S)−1 S′, provides the weights given to all series in the definitive
aggregate forecast, except for those of the tradable-non-tradable sub-aggregation. The
calculated weights are presented under the Hierarchy 1 heading in Table 2.5. The same
procedure is followed for the second hierarchy and the resulting weights are shown
in the same table under the Hierarchy 2 heading. As the weights given to the direct
method in both hierarchies are not the same, the ratio between the direct approach and
the sub-aggregations of the second hierarchy is preserved and the weights are adjusted
proportionally so that the weights given to the direct approach in both cases match.
The definitive approximate weights are presented in Table 2.5 under the Final heading.

Table 2.5: Approximate Optimal Weights for Empirical Application

Hierarchy 1 Hierarchy 2 Final
% % %

Headline CPI 56.3 63.1 56.3

1. Food and non-alcoholic beverages 14.6 14.6
2. Electricity, gas and other fuels 14.6 14.6
3. CPI excluding Food and Energy 27.2 27.2

1. Food and non-Alcoholic beverages 14.6 14.6
2. Electricity, gas and other fuels 14.6 14.6
3. Other goods 13.1 13.1
4. Other services 14.1 14.1

1. Tradable 30.8 27.5
2. Non-tradable 32.3 28.9

1. Food and non-Alcoholic beverages 14.6 14.6
2. Alcoholic beverages, tobacco and narcotics 3.3 3.3
3. Clothing and footwear 3.3 3.3
4. Housing, water, electricity, gas and other fuels 14.6 14.6
5. Furnishings, household equipment and maintenance 3.3 3.3
6. Health 2.3 2.3
7. Transport 2.3 2.3
8. Communication 2.3 2.3
9. Recreation and culture 2.3 2.3
10. Education 2.3 2.3
11. Restaurants and hotels 2.3 2.3
12. Miscellaneous goods and services 3.3 3.3
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2.D Additional Information from the Empirical Applica-
tion

Table 2.6: Differentiation for Empirical Application and Sub-aggregation Distribution
United Good or Tradable or

France Germany Kingdom Service Non-tradable
1. Food and non-alcoholic beverages 2 2 1 - NT
2. Alcoholic beverages, tobacco and narcotics 2 2 1 Good T
3. Clothing and footwear 1 1 1 Good T
4. Housing, water, electricity, gas and other fuels 1 2 2 - NT
5. Furnishings, household equipment and maintenance 2 2 1 Good T
6. Health 1 1 1 Service NT
7. Transport 1 1 1 Service T
8. Communication 1 2 1 Service NT
9. Recreation and culture 1 1 2 Service T
10. Education 2 1 2 Service NT
11. Restaurants and hotels 2 1 2 Service NT
12. Miscellaneous goods and services 2 2 1 Good NT

Note: Number of times the series is differentiated to make it stationary according to the parametric unit root
test in Gomez and Maravall (1996). Sub-aggregation distribution based on the distribution in Johnson (2017).
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Table 2.7: Aggregate Forecasting Errors of AR(p) Models

France Germany United Kingdom
Horizon 1 2 3 4 1 2 3 4 1 2 3 4

Headline CPI
RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AR(1) 0.91 0.82 0.73 0.67 0.88 0.80 0.78 0.74 0.96 0.91 0.93 0.94
AR(2) 0.93 0.85 0.77 0.70 0.89 0.81 0.80 0.76 0.93 0.87 0.89 0.90
AR(3) 0.94 0.88 0.81 0.75 0.88 0.82 0.81 0.79 0.93 0.85 0.84 0.83
AR(4) 0.97 0.94 0.91 0.87 0.85 0.82 0.81 0.79 0.96 0.88 0.88 0.87

Sub-agg.1
RW 1.02 1.01 1.01 1.02 1.00 1.00 1.00 1.00 0.98 0.99 1.00 1.00
AR(1) 0.91 0.84 0.76 0.71 0.87 0.80 0.78 0.75 0.92 0.90 0.93 0.94
AR(2) 0.93 0.87 0.80 0.75 0.90 0.83 0.81 0.77 0.87 0.83 0.86 0.87
AR(3) 0.95 0.89 0.83 0.77 0.89 0.83 0.80 0.77 0.85 0.82 0.83 0.83
AR(4) 0.96 0.90 0.85 0.81 0.88 0.83 0.81 0.78 0.93 0.91 0.92 0.92

Sub-agg.2
RW 1.01 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.17 1.11 1.10 1.10
AR(1) 0.89 0.82 0.76 0.70 0.87 0.79 0.78 0.75 1.02 0.92 0.93 0.93
AR(2) 0.91 0.85 0.79 0.73 0.89 0.81 0.80 0.76 0.99 0.92 0.92 0.91
AR(3) 0.92 0.87 0.82 0.76 0.88 0.82 0.80 0.77 0.98 0.93 0.92 0.90
AR(4) 0.93 0.87 0.83 0.79 0.89 0.83 0.81 0.78 1.07 1.02 1.05 1.04

Sub-agg.3
RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.79 0.87 0.89 0.87
AR(1) 0.89 0.80 0.73 0.66 0.88 0.79 0.78 0.75 0.75 0.77 0.79 0.80
AR(2) 0.91 0.83 0.76 0.69 0.90 0.84 0.81 0.77 0.78 0.83 0.84 0.84
AR(3) 0.92 0.85 0.79 0.73 0.89 0.83 0.80 0.77 0.81 0.86 0.88 0.88
AR(4) 0.91 0.87 0.83 0.79 0.87 0.83 0.81 0.79 0.85 0.92 0.97 0.99

Components
RW 1.00 1.00 1.01 1.01 1.00 1.00 1.00 1.00 0.83 0.91 0.94 0.95
AR(1) 0.89 0.82 0.77 0.71 0.88 0.80 0.78 0.76 0.79 0.81 0.84 0.84
AR(2) 0.91 0.86 0.81 0.75 0.90 0.82 0.81 0.77 0.79 0.84 0.86 0.86
AR(3) 0.94 0.90 0.86 0.81 0.89 0.83 0.80 0.77 0.79 0.86 0.88 0.88
AR(4) 0.90 0.90 0.87 0.82 0.89 0.85 0.83 0.81 0.84 0.94 0.98 0.99

Note: Mean square forecasting error of each model relative to that of the direct approach using the random walk
model for each horizon by sub-aggregation approach. The sub-aggregations are those of Figure 2.2. The models
are a random walk with drift (RW), a first-differences autoregressive model of order one to four. Calculated for
one to four steps ahead forecasts over the 2001-2015.
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Table 2.8: Cumulative Disaggregate Forecasting Errors for Exercise Including AR(p)

France Germany United Kingdom
Horizon 1 2 3 4 1 2 3 4 1 2 3 4

Sub-agg.1
Single Model Median 1.10 1.10 1.12 1.16 1.04 1.05 1.07 1.11 1.07 1.04 1.06 1.09

Traditional Comb.
Eq.W. 1.03 1.03 1.05 1.07 0.97 1.00 1.03 1.07 0.97 0.96 0.95 0.97
ISP 1.05 1.07 1.09°° 1.11°° 0.99 1.02 1.05 1.09 0.99 0.99 0.98 1.01
OSP 1.03 1.02 1.04 1.06 0.97 0.99 1.02 1.05 0.98 0.96 0.96 0.99

Multi-level Comb.
Eq.W. 0.98 1.00 1.02 1.05 0.97 0.99 1.02 1.06 0.93** 0.94 0.93 0.95
ISP 1.02 1.05 1.06° 1.08° 0.99 1.02 1.05 1.09 0.94 0.97 0.97 0.99
OSP 0.98 1.00 1.01 1.02 0.97 0.99 1.01 1.05 0.92** 0.93 0.92 0.95
OPT 0.99 1.01 1.03 1.05 0.97 0.99 1.02 1.07 0.95 0.94 0.93 0.95

Sub-agg.2
Single Model Median 1.07 1.10 1.11 1.12 1.05 1.06 1.04 1.05 1.04 1.07 1.12 1.12

Traditional Comb.
Eq.W. 1.00 1.03 1.04 1.06 1.00 1.00 1.00 1.05 0.96 0.95 0.94 0.95
ISP 1.02 1.08° 1.08 1.09°° 1.02 1.03 1.03 1.06 0.98 0.98 0.97 0.98
OSP 1.00 1.02 1.02 1.03 0.99 0.99 0.99 1.02 0.96 0.95 0.95 0.97

Multi-level Comb.
Eq.W. 0.97 1.01 1.02 1.05 0.98 1.00 1.00 1.04 0.84** 0.87** 0.88** 0.90*
ISP 1.00 1.06 1.06 1.08° 1.00 1.02 1.03 1.06 0.86* 0.90** 0.91* 0.92
OSP 0.97 1.01 1.00 1.01 0.98 0.99 0.99 1.02 0.84** 0.87** 0.88** 0.89*
OPT 0.98 1.01 1.02 1.05 0.98 1.00 1.00 1.04 0.86** 0.87** 0.88** 0.89*

Sub-agg.3
Single Model Median 1.12 1.09 1.12 1.17 1.07 1.06 1.06 1.09 1.04 1.09 1.15 1.17

Traditional Comb.
Eq.W. 1.05 1.01 1.03 1.07 0.97 1.00 1.02 1.06 0.97 0.97 0.98 0.99
ISP 1.10° 1.06 1.07° 1.09° 0.99 1.02 1.04 1.07 1.02 1.00 1.03 1.05
OSP 1.06 1.01 1.01 1.04 0.97 0.99 1.01 1.03 0.97 0.97 0.99 1.00

Multi-level Comb.
Eq.W. 1.03 1.00 1.03 1.07° 0.97 0.99 1.01 1.04 0.94 0.94 0.96 1.00
ISP 1.09 1.05 1.07° 1.10°° 0.98 1.01 1.03 1.07 0.97 0.97 1.01 1.04
OSP 1.04 1.00 1.01 1.05 0.97 0.98 1.00 1.03 0.94 0.94 0.96 0.99
OPT 1.04 1.00 1.02 1.07 0.96 0.98 1.01 1.04 0.95 0.94 0.95 0.98

Components
Single Model Median 1.05 1.07 1.10 1.13 1.03 1.04 1.06 1.06 1.05 1.08 1.12 1.13

Traditional Comb.
Eq.W. 1.00 1.02 1.03 1.04 0.96 0.98 0.99 1.01 0.97 0.98 1.00 1.01
ISP 1.04 1.05 1.06°° 1.06° 0.99 1.01 1.01 1.03 1.01 1.02 1.04 1.04
OSP 1.00 1.01 1.02 1.02 0.96 0.98 0.98 1.00 0.97 0.98 0.99 1.00

Multi-level Comb.
Eq.W. 1.00 1.01 1.02 1.03 0.96 0.98 0.99 1.01 0.99 0.97 0.99 1.00
ISP 1.03 1.04 1.04 1.05 0.99 1.01 1.01 1.03 1.00 1.00 1.01 1.03
OSP 0.99 1.00 1.00 1.00 0.96 0.98 0.98 1.00 0.97 0.96* 0.97 0.98
OPT 1.01 1.01 1.02 1.03 0.97 0.99 0.99 1.02 1.00 0.98 0.99 1.00

Note: Cumulative mean square forecasting error of the forecast that results from the combination approaches
for each method relative to the minimum achievable from the single models for each horizon. The combination
weighting schemes are the simple average (EQ.W), in-sample fit (ISP), out-of-sample performance (OSP) and
optimal weights (OPT). ° and °° denote that the respective forecast is statistically worse than the best model
for that country according to the Modified Diebold-Mariano statistic at a 10 and 5% significance level. * and
** denote that the respective forecast is statistically better than the best model for that country according to
the same statistic and significance levels. Calculated over the 2001-2015 period excluding 2008 and 2009.
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Table 2.9: Single Model Aggregate Forecasting Errors Excluding Crisis

France Germany United Kingdom
Horizon 1 2 3 4 1 2 3 4 1 2 3 4

Headline CPI
RW 1.00°° 1.00°° 1.00°° 1.00 1.00°° 1.00°° 1.00°° 1.00°° 1.00 1.00 1.00 1.00
AR 0.80 0.71 0.67 0.73 0.84 0.77 0.78 0.80 1.00°° 0.97°° 0.99°° 1.01
SVDIF 0.79 0.74 0.72 0.78 0.85 0.84°° 0.95°° 1.00° 0.92 0.85 0.85 0.85
SVDDIF 0.86 0.82 0.82 0.85 0.88 0.83°° 0.85°° 0.86° 0.93° 0.90 0.91 0.90
LVDIF 1.13°° 1.10°° 1.10°° 1.19°° 0.81 0.74 0.77° 0.81° 0.96° 0.95 0.99 1.04°°
LVDDIF 1.21°° 1.14°° 1.13°° 1.24°° 0.95°° 0.91°° 1.04°° 1.16°° 0.98° 1.01 1.03 1.07°°

Sub-agg.1
RW 1.03°° 1.03°° 1.03°° 1.04 1.00°° 1.00°° 1.00°° 1.00°° 1.00 1.00 1.00 1.01
AR 0.85°° 0.78°° 0.75°° 0.82°° 0.84 0.76 0.76 0.79 0.94 0.91°° 0.95°° 0.98
SVDIF 0.84 0.78 0.76 0.82 0.80 0.70 0.67 0.71 0.87 0.82 0.85 0.86
SVDDIF 0.88°° 0.82 0.81 0.87 0.88 0.82°° 0.85°° 0.87° 0.92° 0.89 0.93 0.94
LVDIF 1.16°° 1.13°° 1.13°° 1.22°° 0.80 0.74 0.76 0.81° 0.95° 0.96 1.00 1.07°°
LVDDIF 1.25°° 1.19°° 1.17°° 1.28°° 0.95°° 0.91°° 1.04°° 1.16°° 1.00°° 1.03 1.06 1.11°

Sub-agg.2
RW 1.02°° 1.02°° 1.02°° 1.03 1.00°° 1.00°° 1.00°° 1.00°° 1.27 1.18 1.16 1.16
AR 0.81°° 0.74°° 0.73° 0.80 0.83 0.75 0.76 0.79 1.09 0.96°° 0.98°° 1.00
SVDIF 0.82 0.76 0.75 0.83 0.80 0.71 0.68 0.71 1.06 0.90 0.90 0.90
SVDDIF 0.89°° 0.83 0.82 0.88 0.90 0.83°° 0.85°° 0.87° 1.10 0.95 0.95 0.94
LVDIF 1.18°° 1.13°° 1.14°° 1.23°° 0.80 0.74 0.77 0.81° 1.11° 1.02 1.01 1.08°°
LVDDIF 1.25°° 1.19°° 1.18°° 1.30°° 0.95°° 0.91°° 1.05°° 1.16°° 1.17°° 1.09° 1.07 1.10°°

Sub-agg.3
RW 1.00°° 1.00°° 1.00°° 1.00 1.00°° 1.00°° 1.00°° 1.00°° 0.71 0.83 0.84 0.81
AR 0.78 0.69 0.67 0.73 0.84 0.75 0.75 0.78 0.71 0.79 0.83 0.86
SVDIF 0.79 0.74 0.73 0.78 0.79 0.71 0.71 0.75 0.76 0.83 0.85 0.84
SVDDIF 0.88° 0.84° 0.84 0.87 0.86 0.81° 0.83°° 0.86°° 0.73 0.83 0.85 0.81
LVDIF 1.13°° 1.10°° 1.10°° 1.19°° 0.80 0.74 0.76 0.81° 0.91° 0.94 0.97 1.00°
LVDDIF 1.20°° 1.14°° 1.14°° 1.24°° 0.95°° 0.90°° 1.04°° 1.16°° 0.96°° 1.06 1.08 1.09°°

Components
RW 1.01°° 0.99° 0.98° 0.99 1.00°° 1.01°° 1.01°° 1.01°° 0.81 0.90 0.91 0.91°°
AR 0.79 0.73 0.74 0.82 0.84 0.76 0.76 0.80 0.78 0.84 0.90 0.93
SVDIF 0.88 0.79 0.77 0.80 0.79 0.72 0.73 0.76 0.83 0.89° 0.95 0.99
SVDDIF 0.96°° 0.85 0.84 0.91 0.86 0.81°° 0.82°° 0.84 0.87 0.91 0.97 1.02
LVDIF 1.12°° 1.11°° 1.12°° 1.21°° 0.81 0.75 0.77 0.80° 0.87 0.93 0.99 1.04
LVDDIF 1.18°° 1.13°° 1.12°° 1.22°° 0.96°° 0.90°° 1.00°° 1.10°° 0.91° 1.00 1.04 1.10°

Note: Mean square forecasting error of each model relative to that of the direct approach using the random
walk model for each horizon by sub-aggregation approach. The sub-aggregations are those of Figure 2.2. The
models are a random walk with drift (RW), a first-differences autoregressive model of order one (AR), two small
VARs including GDP and the series from each CPI sub-aggregation in first differences (SVDIF) and where each
variable is differenced according to a unit root test (SVDDIF) and two large VARs including GDP and the series
from all considered CPI sub-aggregations in first differences (LVDIF) and differenced according to a unit root
test (LVDDIF). ° and °° denote that the respective forecast is statistically worse than the best model for that
country according to the Modified Diebold-Mariano statistic at a 10 and 5% significance level. Calculated for
one to four steps ahead forecasts over the 2001-2015 period excluding 2008 and 2009.
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Table 2.10: Combination Aggregate Forecasting Errors Excluding Crisis

Aggregate Multi-level
Horizon 1 2 3 4 1 2 3 4

France
Single Models

Minimum 0.78 0.69 0.67 0.73
Median 0.98 0.92 0.91 0.95

Combination
Eq.W. 0.88° 0.81 0.78 0.83 0.88° 0.81 0.78 0.83
ISP 0.95°° 0.89° 0.87 0.93 0.97°° 0.90°° 0.88 0.94
OSP 0.87° 0.79 0.75 0.80 0.89° 0.81 0.77 0.82
OPT 1.25°° 1.12°° 1.11°° 1.16°° 0.88° 0.81 0.78 0.82

Germany
Single Models

Minimum 0.79 0.70 0.67 0.71
Median 0.86 0.81 0.82 0.85

Combination
Eq.W. 0.80 0.74 0.73 0.76 0.80 0.74 0.73 0.76
ISP 0.81 0.75 0.76 0.80 0.81 0.75 0.76 0.80
OSP 0.80 0.74 0.73 0.75 0.80 0.73 0.72 0.75
OPT 0.96°° 0.92°° 0.93° 0.97° 0.80 0.74 0.74 0.76

United Kingdom
Single Models

Minimum 0.71 0.79 0.83 0.81
Median 0.94 0.94 0.97 1.00

Combination
Eq.W. 0.79 0.79 0.81 0.83 0.79 0.79 0.81 0.83
ISP 0.81 0.83 0.85 0.89 0.80 0.83 0.85 0.88
OSP 0.79 0.81 0.82 0.85 0.77 0.79 0.80 0.82
OPT 0.86 0.94 0.97 0.99° 0.79 0.79 0.80 0.82

Note: Mean square forecasting error of each combination method relative to that of the direct approach using
the random walk model for each horizon. The combination weighting schemes are the simple average (EQ.W),
in-sample fit (ISP), out-of-sample performance (OSP) and optimal weights (OPT). For the aggregate optimal
weights we use the approach in Conflitti et al. (2015) that impose that weights should be non-negative and sum
up to one. ° and °° denote that the respective forecast is statistically worse than the best single model within
the sample according to the Modified Diebold-Mariano statistic at a 10 and 5% significance level. Calculated
over the 2001-2015 period excluding 2008 and 2009.
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Table 2.11: Cumulative Disaggregate Forecasting Errors Excluding Crisis

France Germany United Kingdom
Horizon 1 2 3 4 1 2 3 4 1 2 3 4

Sub-agg.1
Single Model Median 1.15 1.23 1.29 1.31 1.10 1.16 1.26 1.26 1.09 1.13 1.15 1.16

Traditional Comb.
Eq.W. 1.05 1.08° 1.09 1.09° 1.03 1.08°° 1.10°° 1.13°° 0.98 0.98 0.98 0.99
ISP 1.11° 1.16°° 1.19°° 1.19°° 1.06 1.08° 1.12° 1.15°° 1.02 1.05 1.06 1.08
OSP 1.04 1.08° 1.08 1.09 1.03 1.06° 1.09°° 1.09°° 0.98 0.98 0.98 1.01

Multi-level Comb.
Eq.W. 1.00 1.05 1.07 1.07 1.02 1.07°° 1.10°° 1.12°° 0.92 0.96 0.97 0.97
ISP 1.07 1.13° 1.16°° 1.16°° 1.05 1.07°° 1.11°° 1.14°° 0.94 1.02 1.04 1.05
OSP 1.01 1.05 1.04 1.05 1.02 1.06°° 1.09°° 1.09°° 0.90 0.96 0.95 0.96
OPT 1.01 1.06 1.08 1.07 1.03 1.08°° 1.12°° 1.13°° 0.93 0.96 0.96 0.95

Sub-agg.2
Single Model Median 1.16 1.26 1.30 1.32 1.11 1.17 1.27 1.26 1.09 1.14 1.15 1.15

Traditional Comb.
Eq.W. 1.03 1.07 1.07 1.09 1.05 1.09°° 1.12°° 1.13°° 0.98 0.96 0.94 0.93
ISP 1.10 1.14°° 1.15 1.17° 1.09°° 1.10°° 1.14° 1.15° 1.01 1.01 0.99 0.99
OSP 1.03 1.05 1.04 1.05 1.05 1.07° 1.11°° 1.09°° 0.98 0.97 0.94 0.93

Multi-level Comb.
Eq.W. 0.98 1.03 1.03 1.05 1.02 1.08°° 1.12°° 1.12° 0.82 0.87* 0.87* 0.86
ISP 1.05 1.10 1.11 1.14 1.05 1.08°° 1.15°° 1.15° 0.84 0.90 0.91 0.91
OSP 0.98 1.03 1.00 1.02 1.02 1.07°° 1.12°° 1.10° 0.81 0.86** 0.85** 0.84*
OPT 1.00 1.03 1.03 1.05 1.02 1.09°° 1.14°° 1.14° 0.83 0.86** 0.86* 0.85

Sub-agg.3
Single Model Median 1.21 1.34 1.39 1.33 1.09 1.14 1.19 1.18 1.03 1.05 1.10 1.09

Traditional Comb.
Eq.W. 1.10° 1.13°° 1.11 1.08 1.02 1.06 1.06 1.08 0.96 0.92 0.94 0.93
ISP 1.18°° 1.22°° 1.21° 1.19 1.04 1.06 1.08 1.11° 1.02 0.98 1.02 1.02
OSP 1.10° 1.11° 1.08 1.05 1.01 1.04 1.03 1.03 0.95 0.92 0.94 0.94

Multi-level Comb.
Eq.W. 1.08 1.11 1.09 1.08 1.01 1.05 1.05 1.07 0.94 0.90* 0.92 0.95
ISP 1.17°° 1.22°° 1.20 1.20 1.03 1.05 1.07 1.10 0.97 0.94 0.98 1.01
OSP 1.08 1.11° 1.07 1.07 1.01 1.04 1.03 1.03 0.92 0.89** 0.91 0.93
OPT 1.08 1.11 1.08 1.07 1.01 1.05 1.06 1.07 0.94 0.89** 0.91 0.93

Components
Single Model Median 1.16 1.21 1.24 1.26 1.06 1.09 1.11 1.12 1.08 1.11 1.13 1.13

Traditional Comb.
Eq.W. 1.05 1.06 1.05 1.06 1.01 1.03 1.01 1.02 1.00 1.00 1.00 1.00
ISP 1.11°° 1.12° 1.11 1.12°° 1.04° 1.04° 1.03 1.05 1.05 1.05 1.05 1.06
OSP 1.04 1.05 1.03 1.04 1.01 1.03 1.00 1.00 1.00 0.99 0.98 0.98

Multi-level Comb.
Eq.W. 1.05 1.06 1.04 1.04 1.02 1.04 1.01 1.01 1.01 0.99 0.98 0.97
ISP 1.11°° 1.11° 1.10 1.11°° 1.04° 1.05° 1.04 1.05 1.04 1.02 1.01 1.02
OSP 1.04 1.04 1.01 1.02 1.01 1.03 1.01 1.00 0.98 0.96 0.95 0.95
OPT 1.06° 1.06 1.04 1.05 1.02 1.04 1.02 1.02 1.02 1.00 0.98 0.97

Note: Cumulative mean square forecasting error of the forecast that results from the combination approaches
for each method relative to the minimum achievable from the single models for each horizon. The combination
weighting schemes are the simple average (EQ.W), in-sample fit (ISP), out-of-sample performance (OSP) and
optimal weights (OPT). ° and °° denote that the respective forecast is statistically worse than the best model
for that country according to the Modified Diebold-Mariano statistic at a 10 and 5% significance level. * and
** denote that the respective forecast is statistically better than the best model for that country according to
the same statistic and significance levels. Calculated over the 2001-2015 period excluding 2008 and 2009.



Chapter 3

Forecasting Aggregates Using
Dynamic Component Grouping

3.1 Introduction

When forecasting economic aggregates, practitioners are often faced with the choice
of either forecasting them directly or forecasting their components and then summing
them up. Sometimes the decision may be determined by considerations other than
accuracy, such as when a question cannot be answered just by looking at the aggregate,
or an underlying scenario for the aggregate forecast is needed. Nevertheless, aggregate
forecasting accuracy is usually also a concern in these cases too (Esteves, 2013).

The options available for forecasting are many, even when the only aspect considered
is the level of disaggregation. These include forecasting at the level of disaggregation
required to answer a particular question, disaggregating further, or forecasting at a
more aggregate level and reconciling the lower levels of disaggregation if necessary.

The usual argument behind using the components to forecast an aggregate is that
allowing for different specifications across disaggregate variables may capture more pre-
cisely the dynamics of a process that becomes too complex through aggregation (Barker
and Pesaran, 1990). In support of this view, Granger (1990) shows that the sum of
many simple stationary processes can produce a fractional integrated aggregate, while
Bermingham and D’Agostino (2014) show that the dispersion of the persistence of in-
dividual series has an accelerating effect on the increase of complexity in the aggregate.

A point in favour of forecasting the aggregate directly is that, in practical applic-
ations, it is likely that the disaggregate models may suffer from misspecification. For
example, if the disaggregate models neglect the fact that a number of components share

60
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common factors, the forecasting errors will tend to cluster, producing a negative effect
on the aggregate forecast (Granger, 1987). The direct aggregate forecast would be less
affected by these features in the data and other problems, such as those resulting from
data measurement error and structural breaks (Grunfeld and Griliches, 1960; Aigner
and Goldfeld, 1974).

The theoretical literature supports using the disaggregate forecasts, or bottom-up
approach, but the results in the empirical literature are mixed.1 Ultimately, whether
the magnitude of the aggregation error compensates the specification errors in the
disaggregate model depends on the particular forecasting models and data (Pesaran
et al., 1989).

An option to improve forecasting performance in this setting is to work on the
modelling, like Hendry and Hubrich (2011), who include disaggregate information in
a direct aggregate approach or Bermingham and D’Agostino (2014) who include com-
mon factors in a bottom-up approach. Another less obvious way is to look for data
transformations that allow existing models to perform better. As mentioned before,
adding components together results in new series with characteristics that may differ
quite significantly from those of the originating ones. In this context, it may be possible
to search deliberately for specific groupings that show more desirable properties than
those of the individual components and the aggregate. On this line, Espasa and Senra
(2017) argue that for disaggregation to be useful for forecasting, it should not only
follow economic and institutional criteria, but result in sub-aggregations that possess
properties that allow for proper modelling. Some authors have proposed using purpose-
built groupings to increase overall forecasting accuracy, but it would seem that, at least
in economic forecasting, this has had little impact (Duncan et al., 2001). A reason for
this is that the number of possible groupings grows exponentially with the number of
components. This means that traditional methods, that would usually rely on eval-
uating all possible outcomes, are really only usable for problems with relatively few
components (Espasa and Senra, 2017).

An exception to this apparent lack of research is Espasa and Mayo-Burgos (2013)
who, in the context of inflation forecasting, propose a method that groups components
by searching for common trends and cycles. They do however, use a limited pairwise
testing procedure due to computational concerns. In other fields of research, how-
ever, methods to deal with large problems of the kind have been developed. One that
has been relatively successful recently, particularly given the increase in popularity of
methods for dealing with large datasets, is one that performs grouping conditional on

1Examples of these comparisons are Espasa et al. (2002), Benalal et al. (2004), Hubrich (2005) and
Giannone et al. (2014) for inflation in the Euro area; Bermingham and D’Agostino (2014) for inflation
in the U.S. and the Euro area; Marcellino et al. (2003), Hahn and Skudelny (2008), Burriel (2012) and
Esteves (2013) for European GDP growth; and Zellner and Tobias (2000), Perevalov and Maier (2010)
and Drechsel and Scheufele (2013) for GDP growth in specific industrialized countries.
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some feature of the original data. These have been in use for a while in the context of
electricity price forecasting (Weron, 2014) and, with the relatively recent surge in com-
putational power, computer intensive methods and availability of high-frequency data,
they have expanded to other areas of research. For example, Yan et al. (2013) report
significant improvements in the context of wind-power prediction, Jha et al. (2015) for
inventory planning in retail, and Gao and Yang (2014) for forecasting stock-market
returns.

The success of these methods, however, depends on the chosen feature being useful
for obtaining the desired outcome. The assumption upon which many of these models
are built is that, by grouping series that behave in a similar way, the idiosyncratic
errors within groups tend to offset each other, while the more relevant individual dy-
namics are retained to be modelled. Building on their promising results, this chapter
develops a method to forecast economic aggregates based on purpose-built groupings
of components, using statistical learning techniques. The two-stage method consists of
trying to find the grouping of components that produces the best aggregate forecast
at each point in time. In the first stage, Agglomerative Hierarchical Clustering is used
to reduce the dimension of the problem and, in the second, a final single aggregate
forecast is selected following a procedure on the previously chosen hierarchy.

The rest of the chapter is organized as follows: Section 3.2 presents the compon-
ent grouping framework, Section 3.3 presents an empirical implementation using CPI
data for France, Germany and the United Kingdom, and Section 3.4 summarizes the
conclusions.

3.2 A Purpose Driven Grouping Framework for Aggreg-
ate Forecasting

As pointed out by James et al. (2013), statistical learning refers to a broad set of tools
for understanding data. These include some approaches that are intended for prediction
based on the relation between exogenous variables and the variable of interest within
a training sample. Other methods try to do this by exploiting useful relationships and
structure in the data. The latter work directly and produce results based on features
of the original data and are therefore relatively inexpensive in terms of computation.
The challenge of using these methods lies in tuning the algorithms so that they achieve
a desired result.

Although the implementations and techniques differ, the assumption on which many
of the models intended to forecast time-series are based is that forecasting series that
behave similarly as a group will tend to produce more accurate aggregate forecasts than
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those modelled separately. According to Espasa and Senra (2017), this assumption
would also seem reasonable within the context of forecasting economic aggregates. In
terms of producing useful sub-aggregations, they advocate selecting groupings that
posses very different distributional properties. This is also in line with the literature
which shows that accounting for commonality among components is key to forecasting
accuracy (Duarte and Rua, 2007; Bermingham and D’Agostino, 2014).2

In terms of actually performing the grouping based on the features of the data,
there are many methods in the statistical learning literature.3 One that seems well-
suited for the particular setting is Hierarchical Clustering. This method is concerned
with discovering unknown subgroups in data. The most commonly-used method is the
agglomerative alternative, which starts with a set of groups, or clusters, that contain
a single element each and proceeds by grouping the data into fewer units with more
elements in each one.4 The only thing the algorithm needs in order to work is some
sort of dissimilarity measure between each pair of observations and then one for each
cluster that is formed. For the fused clusters, those containing more than a single
observation, the dissimilarity measures are typically calculated from the original dis-
similarity measures, following a procedure referred to as linkage. The result of running
the algorithm is always a hierarchical structure that has exactly as many levels as the
number of initial components, with the individual components as the lowest level and
the aggregate as the highest.

As the hierarchical clustering proceeds by fusing two observations or series at a
time, it produces an intuitive tree-based representation of the final structure. This
representation is called a dendrogram and an example of one is presented in Figure
3.1. At the bottom are all the individual elements. Moving up, some of the elements
are paired with similar observations producing a number of clusters. Higher up, the
clusters themselves fuse, either with single elements or other clusters. Each new fusion
generates a new aggregation level that differs from the last by having one new element
more and two existing elements less. The dissimilarity is measured on the vertical
axis and, therefore, choosing a grouping based on some specific dissimilarity level is
equivalent to drawing a horizontal line across the dendrogram at the desired level and
using the groupings that are formed below that line. Doing so at each fusion in Figure
3.1 highlights all possible aggregation alternatives. It also makes it clear that each
suggested aggregation corresponds to an interval of dissimilarity levels, with the direct
aggregate and bottom-up approaches being always available as options to be chosen to

2This view goes beyond the direct versus bottom-up debate. The success of the dynamic factor
models, proposed initially by Geweke (1977) and extended by Stock and Watson (2002) and Forni
et al. (2005) among others, is just an example.

3For example, Yan et al. (2013) use Support Vector Machines, Gao and Yang (2014) use Hierarchical
Clustering and Support Vector Regression and Jha et al. (2015) use Self Organizing Maps.

4The less popular divisive approach starts from one large group that contains all the elements and
divides it up accordingly.
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Figure 3.1: Aggregation Levels on a Dendrogram

produce the definitive forecast.

At first sight, it could seem that Hierarchical Clustering might be the solution to
the grouping problem. However, the method provides no guidance as to whether the
groupings in the structure are meaningful, nor if one grouping is better than another
in any particular sense (Murphy, 2012).5 The problem with identifying an appropriate
grouping right away is that, even if one exists, the particular dissimilarity threshold
below which components should be grouped in order to obtain the most accurate ag-
gregate forecast is unknown. By narrowing down the set of groupings, however, the
clustering process reduces the initial problem to a manageable size that can then be
tackled with direct evaluation methods, including those that are common in the tradi-
tional forecasting literature.

In this context, for an aggregate with n components and an evaluation sample going
from t = 1 to T , the two-stage dynamic grouping procedure is described by the following
sequence:

For period t= 1 to T :

1. Grouping subset selection through Hierarchical Clustering6

• Start with each of the n series in their own cluster

For s = 0 to n− 1:

• Obtain pairwise dissimilarity between the n− s clusters

• Aggregate the two clusters with the lowest dissimilarity to form a new series
in a new cluster.

5This is the case for the widely used deterministic approach. Heller and Ghahramani (2005) develop
a probabilistic approach that does provide guidance from within the clustering process.

6Detailed descriptions of Agglomerative Hierarchical Clustering may be found in standard Statistical
Learning texts and surveys like Hastie et al. (2009), Murtagh and Contreras (2012) or James et al.
(2013).
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• Remove the two clusters used in the fusion of the previous step.

Next s

2. Produce definitive aggregate forecast

• Select one or more grouping alternatives out of the subset of size n

• Produce forecasts for all components and sub-aggregations in the chosen
grouping alternatives.

• For each grouping alternative aggregate component and sub-aggregation
forecasts to produce an aggregate forecast.

• Combine the available aggregate forecasts if more than one grouping altern-
ative was chosen,

Next t

3.3 Empirical Application

As an empirical application of the method, a forecasting exercise using CPI data from
France, Germany and the United Kingdom is performed. Univariate autoregressive and
Bayesian multivariate methods are used to forecast the data and evaluate the aggregate
forecasting accuracy of the grouping procedure by comparing the results with those of
the direct forecast, the corresponding bottom-up approach and a combination of both.7

3.3.1 Data

For the exercise, CPI data is used for France, Germany and the United Kingdom
disaggregated to twelve components. The data is quarterly and seasonally adjusted,
spanning from 1991 to 2015 and available from the OECD statistics database.8

The breakdown of the aggregate is the following:
7That is, the exercise involves comparing the improvement of the grouping against the corresponding

direct and bottom-up approach as opposed to finding the best aggregation from the whole pool of
alternative forecasts.

8No inconsistencies arise from the seasonal adjustment given that the aggregates are adjusted in-
directly, that is as the sum of the seasonally adjusted components.
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Table 3.1: Components Breakdown for Empirical Application

1. Food and non-Alcoholic beverages 6. Health
2. Alcoholic beverages, tobacco and narcotics 7. Transport
3. Clothing and footwear 8. Communication
4. Housing, water, electricity, gas and 9. Recreation and culture

other fuels 10. Education
5. Furnishings, household equipment and 11. Restaurants and hotels

maintenance 12. Miscellaneous goods and services

3.3.2 Forecasting Models

Autoregressive Model of Order One (AR1)

Many of the aggregate-disaggregate forecasting competitions use univariate autore-
gressive methods and therefore seem like a sound choice to start off with. Regardless
of the numerous developments in econometric modelling, they continue to perform
well (Marcellino, 2008; Chauvet and Potter, 2013). In particular, the exercise uses an
autoregressive model of order one, xi,t = ai + ρixi,t−1 + εi,t, for the variables made
stationary through differentiation according to unit root tests.9 The forecasts are then
produced using:

x̂i,t+1|t = âi + ρ̂ixi,t

Bayesian VAR (BVAR)

Acknowledging that interdependencies among components could play an important
role, Bayesian Vector Autoregressive models (BVARs) are also used for forecasting.
This is done by following the implementation in Banbura et al. (2010). In practice,
the whole multivariate process is forecasted using five lags and, as in Banbura et al.
(2010), the overall tightness that produces the same in-sample fit as that of the direct
aggregate forecast is chosen.

The estimated model is

Xt = c + A1Xt−1 + . . .+ A5Xt−5 + εt

and the forecasts are produced using

X̂t+1|t = ĉ + Â1Xt + . . .+ Â5Xt−4
9The differentiation for each series is presented in section 3.B of the Appendix
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3.3.3 Alternatives for Measures of Dissimilarity

Dissimilarity measures and linkage methods have a defining impact on results, and the
relevant literature provides many alternatives to choose from. As James et al. (2013)
point out, the choice of which alternative to use depends on the type of data and
question at hand. In the statistical learning literature it is not unusual to use simple
correlation as the dissimilarity measure for time-series. The forecasting literature,
however, points towards the notion of commonality. The problem is that there is
not one single way of measuring it. For this reason six different possibilities are used
based on what has been suggested in the literature.

Alternative 1: Pearson’s Correlation

In the statistical learning literature there are many alternatives, but in the context
of time-series the most obvious are measures for correlation. Probably the best-known is
Pearson’s correlation coefficient, which measures the strength of the linear relationship
between two variables. Although its limitations are many, its widespread use make it
an obvious benchmark for the rest of the measures.

The correlation coefficient between xi and xj is defined as ρxixj = cov(xi,xj)
σxiσxj

, where
cov(xi, xj) is the covariance between xi and xj and σxi ,σxj are the respective standard
deviations. As a higher correlation, in absolute terms, is associated with similarity, the
corresponding dissimilarity measure is defined as:

PCxi,xj = 1− abs
(
cov(xi, xj)
σxiσxj

)

Alternative 2: Spearman’s Correlation

As pointed out by Hauke and Kossowski (2011), sometimes Pearson’s correlation
coefficient can produce results that are undesirable or misleading. This may be because
it is restricted to linearity or requires variables to be measured on interval scales.

Spearman’s rank correlation coefficient is a non-parametric rank statistic that as-
sesses how well an arbitrary monotonic function can describe the relationship between
two variables. Therefore it is not affected by non-linearity. In practice, however, it
is just the Pearson’s Correlation coefficient, in which the data are converted to ranks
before calculating the coefficient.

The rank correlation coefficient between xi and xj is defined as rxixj = cov(xranki ,xrankj )
σ
xrank
i

σ
xrank
j

,

where xranki and xrankj are the ranks of xi and xj respectively. Again, as a higher correl-
ation, in absolute terms, is associated with similarity, the corresponding dissimilarity
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measure is defined as:

SCxi,xj = 1− abs

cov(xranki , xrankj )
σxranki

σxrankj



Alternative 3: Latent Factor

In the context of measuring commonality in applications with financial data, Adrian
(2007) and Bussière et al. (2015) use the variance explained by the first principal
component to measure the commonality among a set of variables. As they explain, the
decomposition transforms the original variables into a new set that are orthogonal and
in which they are ordered so that the first retains most of the variation present in all
of the original variables while the last has the least. This is in line with the approaches
in the Dynamic Factor Models literature that try to capture the common factors using
Principal Component Analysis (Stock and Watson, 1998, 2002).

As explained by Hastie et al. (2009), for n series of length T , the sample’s cov-
ariance matrix 1

T XT X can be rewritten using the eigen decomposition as VD2 VT .
The columns of V, the eigenvectors, are the principal component directions of X and
z1 = Xv1, with v1 being the first column of V, is the first principal component. The
values on the diagonal of D2 are the eigenvalues associated with each eigenvector, that
is d2

1 for v1.

It can be shown that Var(z1) = Var(Xv1) = d2
1
T . Then the total variance explained

by the first principal component is d2
1/
∑n

l=1 d
2
l . As a higher total explained variance is

associated with similarity, the corresponding dissimilarity measure is defined as:

LFxi,xj = 1−
(

d2
1∑n

l=1 d
2
l

)

Alternative 4: Persistence

Bermingham and D’Agostino (2014) point out that series that have very different
persistence will tend to suffer more from omitted variable bias if they are forecasted
together than series with a similar persistence. They advocate forecasting series with
different persistence separately.

To take this point into consideration, an AR(1) model is fitted to each component,
xi,t = ai + ρixi,t−1 + εi,t, and the difference in the estimated persistence parameter is
used as a measure for dissimilarity:

PExi,xj = abs (abs (ρ̂i)− abs (ρ̂j))
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Alternative 5: Forecast-error Clustering

Granger (1987) states that ignoring the common factor and interdependencies between
components will tend to make forecasting errors cluster instead of cancelling out. With
this phenomenon in mind, AR(1) models are fitted to each component and the correl-
ations of the resulting out-of-sample forecasting errors for the most recent periods are
used as the dissimilarity measure.

Specifically, for each component i, xi,t−p+1 = ai + ρxi,t−p + εi,t, where p is the
number of periods that are evaluated for the measure. With the model, forecasts are
generated from t − p + 1 to t and the corresponding forecasting errors are calculated
as x̂i,s|s-1 − xi,s for s = t − p + 1 to t. They are then collected in êti. With this, the
dissimilarity measure is defined as:

ECxi,xj = 1− abs

cov(êti, êtj)
σêti

σêtj



Alternative 6: Bayesian Hierarchical Clustering

The final alternative uses a procedure developed by Cooke et al. (2011) based on
a method by Heller and Ghahramani (2005). The criterion for commonality is given
by the probability of two different time-series having been generated from the same
underlying function and therefore belonging to the same cluster. In the framework,
this probability is referred to as the probability that two series should be merged.

The essence of the method can be seen from the explanation in Murphy (2012).10

Let D = {x1, . . . , xn} represent all the data and Di the data at subtree Ti. Then, at
each step, subtrees Ti and Tj are compared to see if they should be merged together.
The hypothesis to be evaluated is that xi and xj come from the same probabilistic
model p(x | θ) of unknown parameters θ. Then define Dij as the merged data, and let
Mij equal one if they should be merged and zero if they should not. The probability
of a merge is given by

rij = p(Dij |Mij = 1)p(Mij = 1)
p(Dij |Mij = 1)p(Mij = 1) + p(Dij |Mij = 0)p(Mij = 0)

p(Mij = 1) is the prior probability of a merge and can be computed from the data
(Heller and Ghahramani, 2005). If Mij is equal to one, the data is assumed to come

10A complete description can be found in Savage et al. (2009). They present the R/BHC computa-
tional package to perform Bayesian Hierarchical Clustering. Their package is used for the empirical
application.
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from the same model meaning

p(Dij |Mij = 1) =
∫  ∏

xn∈Dij
p(xn | θ)

 p(θ | λ)dθ

with λ being a hyperparameter that can be provided or estimated from the data. If
Mij is equal to zero, the data is assumed to have been generated independently and

p(Dij |Mij = 0) = p(Di | Ti)p(Dj | Tj)

3.3.4 Alternatives for Producing the Definitive Aggregate Forecast

The outcome from the clustering algorithm is a complete hierarchy and, because of the
way the algorithm works, it will offer a number of levels of aggregation equal to the
number of original components. As mentioned before, the algorithm by itself does not
provide any advice with regard to which grouping to use. This means that an exo-
genous criterion is required. For this purpose, six different alternatives are presented,
separating the methods into those that seek to select a single level of disaggregation
and those that use a combination of the different groupings.

3.3.4.1 Disaggregation Level Selection

Scheme 1: In-sample Fit

Probably the approach most commonly used to judge a model in the forecasting
literature is in-sample fit. It has some known drawbacks, but its widespread use makes
it a natural choice. For this particular case the in-sample forecasting error is used. To
choose the level of aggregation for forecasting period t+ 1, for each level of aggregation
within the proposed hierarchy at time t, the forecasting models and parameters calcu-
lated using data up to period t are used, to calculate the one-step-ahead mean square
forecasting error (MSFE) for the sample up to period t.

With this, the in-sample fit for disaggregation level i, at time t is:

ISFi,t,v = 1
v

t−1∑
s=t−1−v

(
x̂i,s+1|t − xi,s+1

)2

where v determines how much data is included in the measure.

The level of aggregation with the lowest in-sample forecasting error is then used to
forecast period t+ 1.
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Scheme 2: Past Out-of-sample Forecasting Performance

One of the drawbacks of in-sample criteria is that they will tend to over-fit the
data (Eklund and Karlsson, 2007). It is therefore very common to use out-of-sample
evaluation as an alternative. The out-of-sample criterion, for forecasting period t + 1,
is calculated in this case using a recursive out-of-sample forecasting exercise. For each
level of aggregation within the proposed hierarchy at time t, the parameters with data
up to period t − v are estimated and period t − v + 1 is forecasted. The parameters
with data up to period t− v+ 1 are then estimated and t− v+ 2 forecasted, continuing
in the same way and stopping with the forecast for period t. Then, the MSFE using
these forecasts is calculated.

With this, the out-of-sample performance for disaggregation level i, at time t is:

OOSi,t,v = 1
v

t−1∑
s=t−1−v

(
x̂i,s+1|s − xi,s+1

)2

where v determines how much data is included in the measure.

The level of aggregation with the lowest out-of-sample forecasting error is then used
to forecast period t+ 1.

Scheme 3: Lowest Average Error Dissimilarity Threshold

Unsupervised learning, of which the clustering method used to produce the subset
of groups is part, is often challenging because there is no response variable. In this
context, however, the ultimate objective is to find the level of aggregation at which the
resulting aggregate forecast error is lowest. For this purpose, a supervised method can
be used to try to learn the best grouping for the purpose of forecasting.

For this particular measure, the degree of commonality, as measured by the value
of the corresponding dissimilarity measure, is assumed to be related to the forecast-
ing error. The method to estimate this relation proceeds by calculating the average
forecasting error conditional on the level of dissimilarity for the training sample. In
practice, this involves calculating the forecasting errors associated with the values on
the vertical axis of all the dendrograms for the sample up to period t and averaging
the results. To make the averaging over different periods possible, a smoothing spline
is used to interpolate the forecasting errors for each period. To forecast period t + 1
the level of aggregation associated with the dissimilarity that is closest to the minimum
average error is chosen.

Scheme 4: Probabilistic Criterion

The Bayesian Hierarchical Clustering method proceeds by building the hierarchy



3. Forecasting Aggregates Using Dynamic Component Grouping 72

based on the estimated probability of two observations coming from the same under-
lying function. Heller and Ghahramani (2005) suggest that a natural decision rule for
groupings in this context is only to perform fusions that have a posterior merge prob-
ability greater than 50%. This criterion, however, can only be applied to hierarchies
produced by the probabilistic algorithm.

3.3.4.2 Disaggregation Level Averaging

A popular way of dealing with the choice between two or more competing forecasts is
to avoid the decision altogether and combine them. The idea of forecast combination
has been around for a long time and deals with the issue of exploiting the information
contained in each individual forecasts in the best possible way. The literature on it is
extensive and the surveys by Clemen (1989), Diebold and Lopez (1996), Newbold and
Harvey (2002) and Timmermann (2006) not only bear witness to it but also highlight
the robustness of the gains in forecasting accuracy due to its use.

Scheme 5: Equal Weights Among Aggregate Forecasts

A very attractive feature of forecast combination is that simple combination schemes
are surprisingly effective (Timmermann, 2006). In fact, the equal-weighted forecast
combination performs so well that researchers have tried to explain why this should
occur (Smith and Wallis, 2009; Elliott, 2017). In view of this, given that each level of
the hierarchy produces an aggregate forecast, the simplest thing to do is to average the
aggregate forecasts for all levels.

Scheme 6: Equal Weights Among Distinct Forecasts

In this context, however, averaging the aggregates is not the same as assigning equal
weights to each distinct forecast. To see why, it is helpful to look back at the dendrogram
in Figure 3.1. The last-but-one fusion of the algorithm involves components 7 and 12.
If the forecasts are generated independently of each other, for all of the groupings
below their fusion, the corresponding aggregate forecasts include those for these two
individual components. So when all aggregate forecasts are averaged, the forecasts for
these two components are implicitly given a weight that is ten times larger than the
forecasts of the components that are fused in the first step.11

An alternative approach to averaging the aggregate forecasts is to give equal weights
to each single forecast. That means including each individual component forecast, each
intermediate aggregate forecast and the aggregate forecast only once.12

11This is not the case for the multivariate forecasting models.
12To do this it is necessary to combine forecasts from multiple levels of aggregation and this is done

using the method described in section 3.A of the Appendix. This approach can also be used to obtain
a consistent underlying forecasting scenario.
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3.3.5 Forecasting Accuracy Comparison

3.3.5.1 Set-up of the Evaluation Exercise

The evaluation exercise is performed over the 2001-2015 period, leaving the first ten
years of data to estimate the models. It is set up in a quarterly rolling scheme using
a ten-year window, where in each period the models are re-estimated and a one-step-
ahead forecast is generated.

The forecasting accuracy is presented by means of the model’s MSFE relative to
that of a benchmark model. For variable i and using model m, the relative MSFE is

RelMSFE(i,m) =
MSFE(i,m)

T0,T1

MSFE(i,0)
T0,T1

with

MSFE(i,m)
T0,T1

= 1
T1 − T0 + 1

T1∑
t=T0

(
y

(m)
i,t+1|t− yi,t+1

)2

where y(m)
i,t+1|t is the forecasted value for t+1 at time t and T0 is the last period of actual

data in the first sample used for the evaluation and T1 is the last period of actual data
in the last sample. As usual, a RelMSFE lower than one reflects an improvement over
the benchmark model for which m = 0. To evaluate the significance of the differences,
the forecasts are compared using the Modified Diebold-Mariano test for equality of
prediction accuracy proposed by Harvey et al. (1997).

3.3.5.2 Benchmark Forecasting Approaches

The objective of the whole exercise is to find out whether there are successions of inter-
mediate aggregations that may improve forecasting accuracy, as opposed to restricting
oneself to using either the direct or the full bottom-up approach. As a starting point,
these two approaches are therefore obvious comparison points.

As mentioned before, there is a lot of literature supporting the gains in forecast-
ing accuracy achieved by using forecast combination and particularly the good per-
formance of the unsophisticated equal-weighted variant. Therefore, as a second set
of benchmarks, the results of the grouping procedure are measured up against the
equal-weighted combination of the direct and bottom-up approaches.

Bermingham and D’Agostino (2014) find that the performance of the bottom-up
approach may improve if common features among components are accounted for. To
see whether the univariate models in this exercise are negatively affected by not in-
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corporating this point, a factor-augmented autoregressive model is presented alongside
the benchmark models. This is done by extending each univariate autoregressive model
from the bottom-up approach to include one factor:

xi,t = ai + ρixi,t−1 + γiFt−1 + εi,t

The factor, F , is estimated with the first principal component from the whole set of
components following Stock and Watson (2002). The corresponding forecast for each
component is generated using:

x̂FAARi,t+1|t = âi + ρ̂ixi,t + γ̂iF̂t

3.3.6 Results

3.3.6.1 Aggregate Forecasting Performance Evaluation

The exercise seeks to determine the potential benefits of using dynamic grouping meth-
ods. A first step is therefore to evaluate how the benchmark models perform. Table
3.2 shows what would be a traditional aggregate-disaggregate comparison for the three
series by presenting the MSFE of the direct and bottom-up approaches and their com-
binations. It also presents the results for the factor-augmented AR models to have
a notion of whether the suggestion by Bermingham and D’Agostino (2014) is able to
improve the univariate bottom-up methods in these particular settings.

In terms of comparing the direct and bottom-up approaches, the results for the
benchmark models show that in five out of six cases the respective bottom-up approach
performs better. It is only for the BVAR for the United Kingdom that the direct
approach performs better. In terms of comparing the AR(1) and BVAR, the univariate
approach tends to do better with improvements going from 5 to 12%. In the cases of
France and the United Kingdom, the AR(1)s show improvement over the direct method
by 9 and 12% respectively. For Germany, on the other hand, the BVAR is marginally
better than the AR(1) improving over the direct approach by 6%. Although in some
cases the magnitude of the improvements seems large, none are statistically significant.
In the case of the combinations, on the other hand, the resulting forecasts from the
AR(1)s are statistically better for France and the United Kingdom even when the size
of the improvements are the same as those of the respective bottom-up approaches.
Similarly, for the BVARs the results for France and Germany are statistically better,
with the magnitudes being slightly different, lower for France and higher for Germany.
In the case of the United Kingdom, the use of combination means an improvement
in accuracy over both the direct and bottom-up approaches by 6 and 23 percentage
points respectively, but neither is statistically significant. As mentioned before, in their
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Table 3.2: Aggregate Forecasting Performance of Benchmark Methods

Factor aug. AR(1) BVAR
AR(1) Bottom-Up Combination Bottom-Up Combination

France 0.91 0.91 0.91** 0.95 0.93**
Germany 0.98 0.95 0.96 0.94 0.95*
United Kingdom 0.88 0.88 0.88** 1.17 0.94

Note: Mean square forecasting error relative to the direct method. Benchmark models are the bottom-up
and equal-weight combination of the direct and bottom-up approaches of the AR(1) and BVAR and a factor
augmented AR(1) following Bermingham and D’Agostino (2014). * and ** denote significance of the forecasting
performance difference based on the modified Diebold-Mariano test at a 10 and 5% significance level. Calculated
over 2001-2015.

implementation Bermingham and D’Agostino (2014) find that using factor-augmented
univariate models for the components shows improvements over the univariate models
alone. In this case, their method does not seem to have the intended impact.

Moving on to the grouping framework, Table 3.3 presents the MSFE of the group-
ing methods relative to the direct approach for the three countries and both models.13

Figures in bold denote that the corresponding grouping method shows an improvement
over the best benchmark model. Looking at the details by country and model shows
that for France and the univariate models, almost all grouping methods are better
than the direct approach and in many cases they are an improvement over the best
benchmark. The maximum improvement over the direct approach is 11% with the
best methods being the Bayesian/in-sample (B/IS), persistence/dissimilarity threshold
(P/DT) and many of the methods that involve the combination of all the aggregation
levels. All of these show improvements that are statistically significant. For the BVARs
on the other hand, many of the grouping methods are better than the direct approach
and some are an improvement over the best benchmark. The maximum improvement
over the direct approach is also 11%, with the best methods being the P/DT and
many of the combinations. For Germany and the univariate models, most grouping
methods perform better than the direct approach, but by a smaller magnitude than
for France. In only a few cases the grouping methods are an improvement over the
best benchmark, but in these cases the improvement is comparatively large: 11% over
the direct approach and 6% over the best benchmark. In this case, the best methods
are P/DT and both combination choice methods that use the persistence dissimilarity
measure. For these three methods, the improvements are statistically significant. For
the BVARs on the other hand, less than half the grouping methods show an improve-
ment over the direct approach and none over the best benchmark. The best methods
are Bayesian/dissimilarity threshold and again P/DT with a maximum improvement
of 5%. The latter is the only method for which the difference is statistically signific-
ant. For the United Kingdom and the univariate models, as with France, almost all
grouping methods perform better than the direct approach and in many cases they are

13In this context and for the rest of this section, grouping method refers to the pairing of a dissimil-
arity measure and a choice method.
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Table 3.3: Aggregate Forecasting Errors of Grouping Methods by Country and Model

AR(1) BVAR

Choice In- Diss. Prob. In- Diss. Prob.
method samp. O-o-S Thres. crit. FC1 FC2 samp. O-o-S Thres. crit. FC1 FC2

France
Pearson’s corr. 0.92 0.96 0.92* 0.89** 0.92** 1.01 0.98 0.96 0.89** 0.91**
Spearman’s corr. 0.91 0.93 0.93 0.89** 0.92** 1.06 1.08 1.06 0.94 0.93*
latent factor 0.96 0.96 0.99 0.92** 0.93** 1.00 1.03 0.98 0.93* 0.92**
persistence 0.91 0.93 0.90** 0.90* 0.90** 1.04 0.98 0.90** 0.94 0.92**
f-error clustering 0.91 0.93 0.91 0.89** 0.91** 1.04 1.04 0.98 0.94 0.94*
Bayesian 0.89* 0.93 0.92 1.02 0.92 0.94 1.00 1.00 0.98 1.03 0.95 0.95

Germany
Pearson’s corr. 0.98 1.02 1.00 0.99 0.98 1.05 1.11 1.06 1.00 0.99
Spearman’s corr. 0.98 1.01 1.02 0.99 0.98** 1.06 1.12 1.05 1.00 0.98
latent factor 0.99 1.01 1.01 0.99 0.99 1.05 1.01 1.04 1.00 0.99
persistence 0.97 0.97 0.89** 0.93** 0.94** 1.07 1.02 0.96** 0.97 0.96
f-error clustering 0.99 1.01 0.97 0.99 0.98 1.11 1.06 0.98 0.97 0.98
Bayesian 0.98 0.99 0.96 1.00 0.96* 0.97* 0.98 1.08 0.95 1.02 0.97 0.97

United Kingdom
Pearson’s corr. 0.90 0.90 0.95 0.88 0.86** 0.91 0.88 0.93 0.95 0.90
Spearman’s corr. 0.89 0.95 0.87 0.90 0.89* 1.00 0.91 1.00 0.98 0.91
latent factor 0.86 0.94 0.86 0.86* 0.88* 0.96 0.99 0.89 0.89 0.90
persistence 0.94 0.94 1.00 0.94 0.90 0.93 1.02 0.95 1.01 0.97
f-error clustering 0.96 0.99 0.86 0.89 0.86** 0.96 1.00 1.04 0.94 0.91
Bayesian 0.86 0.91 0.88 1.11 0.89* 0.90* 0.87 0.94 1.16 1.18 0.95 0.95

Note: Mean square forecasting error relative to the direct method. Grouping method dissimilarity measures:
Pearson’s correlation, Spearman’s correlation, latent factor given by the variance explained by the first principal
component, similarity in persistence measured as the difference of the estimated rho for an AR(1), forecasting
error clustering for AR(1) and Bayesian Hierarchical Clustering. Choice methods: In-sample criterion, out-of-
sample criterion, dissimilarity threshold, probabilistic criterion, forecast combination that assigns equal weights
to the aggregate forecasts (FC1) and forecast combination that assigns equal weights to each distinct forecast
(FC2). In bold MSFE lower than the lowest of either the respective full bottom-up approach or the direct
approach. * and ** denote significance of the forecasting performance difference based on the Modified Diebold-
Mariano test at a 10 and 5% significance level. Calculated over 2001-2015.

an improvement over the best benchmark. The maximum improvement over the direct
approach is 14% with many different methods achieving the best performance. Only in
the case of some of the combination methods, however, are the improvements statistic-
ally significant. Finally, for the BVARs most of the methods are better than the direct
approach and many show an improvement over the best benchmark. The best method
is B/IS with an improvement of 13% over the direct approach and 7 percentage points
over the best benchmark. None of the differences, however, come out as statistically
significant.

These results seem to show some aspects that are common to all the different cases
and others that are not. In order to draw some overall conclusions, an absolute and a
relative summarizing measures are presented. The former uses the average of the de-
viation of the respective MSFE from that of the corresponding best overall performing
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Table 3.4: Overall Aggregate Forecasting Performance of Grouping Methods

Average Percentage Deviation Average Rank Difference
from Best Method with Best Method

In- Diss. Prob. In- Diss. Prob.
Choice method samp. O-o-S Thres. crit. FC1 FC2 samp. O-o-S Thres. crit. FC1 FC2

Pearson’s corr. 7.4 9.0 8.9 4.5 3.8 15.3 19.8 18.8 9.3 8.3
Spearman’s corr. 10.1 11.9 10.5 6.4 4.6 17.8 23.7 22.0 13.7 9.5
latent factor 8.4 11.1 7.5 4.3 4.8 17.3 23.3 15.7 9.5 11.7
persistence 9.5 9.6 4.9 6.2 4.5 16.3 18.8 9.0 10.3 8.3
f-error clustering 11.4 12.5 7.4 5.0 4.2 20.8 25.2 12.3 9.8 8.5
Bayesian 4.2 9.1 9.3 18.9 5.5 6.1 7.0 20.3 12.0 25.5 11.3 13.5

Note: Relative performance of the grouping methods as measured by the average deviation of the respective
MSFE relative to that of the best performing grouping method by category and as the average difference in rank
according to MSFE over the six sets of forecasts. Grouping method dissimilarity measures: Pearson’s correlation,
Spearman’s correlation, latent factor given by the variance explained by the first principal component, similarity
in persistence measured as the difference of the estimated rho for an AR(1), forecasting error clustering for AR(1),
Bayesian Hierarchical Clustering. Choice methods: In-sample criterion, out-of-sample criterion, dissimilarity
threshold, probabilistic criterion, forecast combination that assigns equal weights to the aggregate forecasts
(FC1) and forecast combination that assigns equal weights to each distinct forecast (FC2). In bold the five best
performers in each category. Calculated over 2001-2015.

grouping method over all six sets of forecasts. The latter presents the average difference
in rank of the grouping methods, where the most accurate in the MSFE sense is ranked
first and the least accurate is ranked last, that is 31st. For both measures a smaller
number means a better performing model. The outcome for the measures is presented
in Table 3.4 and both tell a similar story. In terms of selecting a single level for obtaining
the definitive forecasts, the B/IS and P/DT methods come out as best by a fair margin.
In terms of the combination methods, the performance of most methods is good, relat-
ive to the remaining single-level methods. When comparing combination approaches,
although the differences are relatively small, the approach that gives equal weight to
each distinct forecast comes out better, with the best results being observed for the
Pearson’s Correlation, persistence and forecast-error clustering dissimilarity measures.
The two summarizing measures do differ, however, in identifying the ordering of the
best methods. The absolute measure identifies the Person’s/distinct forecast combina-
tion as the best method, while the relative measure puts the B/IS first. The difference
in magnitudes in the scores used for the specific rankings, however, is relatively small.

All this suggests that the B/IS, P/DT and combination methods are better on
average than the rest in terms of aggregate accuracy. The evaluation sample, however,
includes the financial crisis, meaning that the results could be affected considerably
by this episode alone. After removing the crisis years from the sample, however, the
overall results remain and in some cases improve slightly.14 The better performing
grouping methods used with the univariate model improve around 2 percentage points
across countries. For the BVARs the results are similar except for the United Kingdom,
where the gap between the best grouping method and the best benchmark broadens

14The corresponding tables are presented in section 3.B of the Appendix.
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to 13 percentage points. In terms of the relative accuracy of the aggregation level
choice methods, the best single-level methods do not change but fall behind most of
the combination methods, all this in a context where univariate benchmark models are
hardly affected, while the performance of the BVARs benchmarks deteriorate slightly
both for the bottom-up approach and combination.15

Taking all of this into consideration, the overall results suggest that the use of the
dynamic grouping method can result in improvements in forecasting accuracy. They
also show, however, that the outcome depends greatly on the specification, dataset
and models used. Looking into the workings of each grouping method in more detail
could provide some insight into the differences between methods and why some perform
better than others.

3.3.6.2 Grouping Method Performance Comparison

In this particular exercise, 31 different specifications for the dynamic grouping method
are evaluated, using six different sets of forecasts. As it can be seen from Table 3.3, the
performance of the different specifications is quite heterogeneous. It can also be seen
that there is neither a dissimilarity measure nor a choice method that outperforms the
rest outright. There are, however, certain pairings that seem to work better. Examining
some aspects of the performance of the different specifications could result in a better
understanding of the differences between them. As the grouping methods involve two
steps, a way of approaching further analysis is to look at the subset selection and level
choice methods separately and try to establish the merits of each one of them.

To evaluate the grouping subset selection process alone, it is first necessary to
establish some way of measuring the performance of each dissimilarity measure inde-
pendently of the choice method. One way of comparing them is in terms of the best
possible improvements for each dissimilarity measure. Table 3.5 presents the MSFE
relative to the direct method of the succession of aggregation level selections that lead
to the lowest MSFE over the whole sample by dissimilarity measure. Considering all
scenarios, the improvements range from 25 up to 57 percentage points. Common to all
countries is that the improvements over the direct method are larger for the BVARs
than for the univariate models by about 5 percentage points and that the differences
between measures are small relative to the potential improvement. This suggests that
the good performance of one grouping method or another is not solely due to the group-
ing subset selection process. In fact, the selection processes associated with the two
best performing grouping methods, that is the persistence and Bayesian dissimilarity
measures, do not come out on top in the comparison.

15A more noticeable difference is that the improvements over the direct method of the combination
using BVARs cease to be statistically significant.
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Table 3.5: Lowest Achievable Forecasting Errors by Dissimilarity Measure

France Germany United Kingdom

Choice method AR(1) BVAR AR(1) BVAR AR(1) BVAR

Pearson corr. 0.66 0.59 0.75 0.67 0.54 0.48
Spearman corr. 0.67 0.61 0.75 0.69 0.53 0.49
1st princ.comp 0.69 0.58 0.75 0.69 0.53 0.43
persistence 0.67 0.63 0.75 0.69 0.56 0.51
f-error clustering 0.66 0.63 0.75 0.69 0.55 0.50
Bayesian 0.69 0.64 0.75 0.69 0.53 0.49

Min - Max 0.02 0.06 0.01 0.02 0.03 0.08
Note: Mean square forecasting error relative to the direct method of the succession of aggregation level selections
that lead to the lowest MSFE over the whole sample by dissimilarity measure. Dissimilarity measures: Pearson
correlation, Spearman correlation, variance explained by the first principal component, similarity in persistence
measured as the difference of the estimated rho for an AR(1), forecasting error clustering for AR(1) and Bayesian
Hierarchical Clustering. Calculated over 2001-2015.

Using the best possible performance as a benchmark alone, however, could be mis-
leading with regards to the role of the dissimilarity measure. It could be that some
measures perform well consistently, even though they do not lead to the lowest pos-
sible MSFE. To have a notion of whether this could be the case, Figures 3.2 and 3.3
present absolute and relative summary measures for the aggregation levels by dissim-
ilarity measure, country and model. The former presents the percentage deviation in
MSFE relative to the direct method for each aggregation level while the latter presents
the distribution by aggregation level that results from ranking each one according to
MSFE over the whole sample.

From what can be observed in Figure 3.2, the performance of the different dis-
similarity measures is not as homogeneous as the comparison with the best possible
improvement might suggest. Some cases do look similar, as in the case of France using
the AR(1)s for example, but in most cases there are substantial differences. Probably
the most outstanding one is for the German univariate models. In this case, four of the
dissimilarity measures show a negligible impact, but the other two achieve relatively
large gains through their particular selection of groupings. In this case, as it can be seen
from the results in Table 3.3, the P/DT method improves 11% over the direct method
as opposed to only 4% of the next best method. All this suggests that, although not
wholly responsible, the choice of dissimilarity measure has a defining impact on the
outcome.

In terms of analysing the choice methods alone, the task is not straightforward
either, given that their performance is conditional on the dissimilarity measures. In
this context, two perspectives are examined. The first consists of comparing the relative
performance of the choice methods across dissimilarity measures and the second involves
assessing how the methods perform compared to simply selecting a given aggregation
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Figure 3.2: Mean Square Forecasting Error by Aggregation Level

Note: Mean square forecasting error relative to the direct method for each aggregation level by dissimilarity
measure, country and model. Presented as the percentage deviation. Negative numbers reflect a lower MSFE and
therefore an improvement. The horizontal axis presents the eleven aggregation levels other than the aggregate
that is used as the benchmark and with one being the full bottom-up approach. Dissimilarity measures: Pearson
correlation, Spearman correlation, variance explained by the first principal component, similarity in persistence
measured as the difference of the estimated rho for an AR(1), forecasting error clustering for AR(1) and Bayesian
Hierarchical Clustering. Calculated over 2001-2015.

level for the entire exercise. In terms of the relative performance, from the results in
Table 3.3, it is clear that the probabilistic choice criterion does not work as intended in
this context. In all scenarios it almost always performs worse than the other grouping
methods. Although not so extreme, another method that does not perform well relative
to others is the past out-of-sample performance choice criterion. In most cases, it is
beaten either by the in-sample, persistence and combination criteria. With regard to
these methods, their relative performance depends on the dissimilarity measure and
dataset.

In terms of examining the performance of the choice methods for a given dissimil-
arity measure, the performance of different aggregation levels is usually quite hetero-
geneous. This becomes apparent from looking in more detail at the charts in Figure
3.2, where within the same hierarchy in many cases specific aggregation levels exhibit
a significantly lower MSFE than others. This can be seen most clearly for the BVARs
for France using Pearson’s Correlation and Germany using persistence. This raises
the question of whether these aggregation levels consistently perform well relative to
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the other aggregation levels. In that case, choosing the appropriate grouping level for
forecasting should be relatively straightforward. A lower MSFE over a given period,
however, does not mean that an aggregation level is necessarily better all the time. To
have a notion of the consistency with which the aggregation levels perform, Figure 3.3
presents the distribution by aggregation level that results from ranking each one by
MSFE for each period over the whole sample. If an aggregation level were to perform
better than the rest on a regular basis, one would observe a short bar close to the
bottom, and if this happened all of the time, the distribution would collapse on one.

From what can be observed, this does not occur. There are some cases where the
distribution is relatively concentrated, but all of these are located in the middle of the
ranking. Although based on the medians alone there are aggregation levels that rank
better than the rest in most of the scenarios, once the distribution is considered it
is clear that the aggregation level rankings fluctuate considerably in all scenarios. In
most cases the 10 to 90% interval covers nearly the whole ranking and for some of them
the 25 to 75% interval does so too. In this context, it would seem that dynamically
choosing a succession of aggregation levels that lead to improvements could be quite
challenging.

Focusing only on the choice methods that seek to determine a single aggregation
level for forecasting, some evidence of improvements actually occurring can be found
by comparing the MSFE by aggregation level with the outcome of the choice methods
presented in Table 3.3. The clearest example is seen in the case of the BVAR for the
United Kingdom. Here, the grouping methods improve over the direct and bottom-up
approaches by as much as 13%. The best of the aggregation levels presented in Figure
3.2, however, improve less than 6% with most of the aggregation levels actually being
worse then the direct approach. To a lesser extent, the same is true for the univariate
models for Germany, where the P/DT method shows an improvement of 3 percentage
points over the best performing aggregation level. This improvement in performance,
however, is not generalized. That of the other choice methods greatly depends on the
dissimilarity measure being used.

The performance of the combination methods, on the other hand, are less hetero-
geneous and are good overall. This is not entirely surprising in light of the preceding
analysis that suggests that the persistence of the forecasting performance of the ag-
gregation levels is relatively low. This phenomenon is not uncommon in the forecasting
literature where, in the context of forecasting model comparison, models that perform
well up to a point suddenly stop doing so (Aiolfi and Timmermann, 2006). In the given
scenario, dynamically choosing successions of aggregation levels that lead to improve-
ments could prove to be very challenging. In this context, Hubrich and Skudelny (2017)
find that forecast combination helps with hedging against bad forecast performance.
This seems to be the case here.
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Figure 3.3: Ranking Distribution of Forecasting Performance by Aggregation Level

Note: Distribution of ranking according to MSFE of the resulting aggregate forecast for each level of aggregation
when the whole sample is considered. The horizontal axis presents each level and the vertical the ranking, from
first to 12th. The lightly shaded area represents the 10 to 90% percentile interval, the dark area the 25 to 75%
and the circles denote the median. Calculated over the 2001-2015 sample.

In spite of the apparently unfavourable characteristics of the forecasting scenario,
two of the grouping methods that seek to dynamically select a single aggregation level
exhibit results that are comparable to those of the combination methods. In order to
help identify whether a specification is appropriate or not, one might ask whether these
two methods share any common characteristics that are lacking in the rest. Nothing
obvious appears in the previous analysis and comparing the succession of aggregation
level choices of the different methods provides no additional insight either.16 One pos-
sible source for this better performance is that both methods attempt to determine the
measure for commonality from a function of the data instead of the data itself. Data
often includes idiosyncratic noise that affects the estimated coefficients and causes un-
predictable effects on sub-aggregations. Both the Bayesian and the persistence methods
estimate the dissimilarity measures and therefore include an error term. This could po-
tentially lead both methods to be less affected by idiosyncratic noise that is present in
the data. Corroborating whether this is in fact the case is left for further research.

16The information for all aggregation choices is presented in section 3.B of the Appendix.
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3.3.6.3 Overall Assessment

The overall evaluation is that the dynamic grouping methods are capable of increasing
forecasting accuracy, but that improvements depend critically on specification. The
analysis of the data reveals that the aggregation levels that are formed in the subset
selection procedure exhibit low performance persistence. One would expect this to
contribute to making the choice of the best aggregation level for forecasting partic-
ularly hard. Nevertheless, two of the grouping methods that seek to select a single
aggregation level for forecasting every period perform relatively well. These are the
Bayesian/in-sample and persistence/dissimilarity threshold methods. The reason why
they outperform many of the other methods is not clear, but a possible explanation
could come from the fact that they both take into account the idiosyncratic noise in the
data in the grouping process. The combination methods, on the other hand, perform
well overall. In line with what has been observed in the forecasting literature that
deals with model comparison in similar situations, this suggests that using them in this
context can provide a way of introducing the robustness of forecasting combination into
the procedure without having to introduce different forecasting models. The evaluation
sample includes the most recent financial crisis, but the overall results do not change
when it is removed from the sample.

3.4 Conclusions

This chapter presents a framework to forecast economic aggregates based on purpose-
built groupings of components. The idea underpinning this approach is that there
are reasons to support both forecasting an aggregate directly and as the sum of its
components. In particular, the literature emphasises the importance of accounting for
commonality among components, so the focus is put on this feature. To produce the
groupings, a two-stage approach is followed. First, the dimension of the problem is
reduced by selecting a subset of possible groupings through the use of Agglomerative
Hierarchical Clustering. The second step involves producing the definitive forecast
either by choosing the appropriate grouping from the subset or combining all of the
options in the subset.

The results from the empirical application support the thesis that grouping meth-
ods can improve overall accuracy. On the one hand, some of the methods that select
a single grouping perform significantly better than the best performing non-grouping
methods. On the other hand, the forecast combination choice methods perform well
overall. The analysis of the performance of the grouping methods highlights the fact
that the persistence of the performance of the aggregation levels for these datasets is
low. In this context, the chosen sub-aggregations have a defining impact on forecast-
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ing accuracy. These results also suggest, although unintentionally, that institutionally
imposed aggregations could be inefficient in terms of aggregate forecasting accuracy.
Another conclusion that can be extracted from the results of the empirical exercise
is that the biggest overall improvements are observed in the case where the bottom-
up approach is less accurate than the direct approach. However, maybe because the
exercise contemplates only moderate disaggregation for the bottom-up approaches, in
five out of the six scenarios the bottom-up approach out-performs the direct method.
This could suggest, in line with Espasa and Mayo-Burgos (2013) and Bermingham and
D’Agostino (2014) who encourage using the maximum disaggregation possible in order
to benefit from the disaggregate dynamics, that further gains could be obtained from
using these methods with higher degrees of disaggregation.

In terms of further research, two directions seem natural. The first relates to ex-
tending the grouping method to incorporate information from more periods than just
the one in question. Currently, the process approaches each period independently.
This setting could be affected by sudden jumps in classification resulting from unusual
shocks. A possible extension could be to implement smooth transitioning between
hierarchical structures or cross-validation of the incidence of specific data. The second
points at adding robustness to the choice of dissimilarity measures. This would include
developing more sophisticated dissimilarity measures and choice methods on which to
base the grouping methods and also explore using the combination of many features
simultaneously, instead of having to choose a single one. The motivation for the latter
stems from the good performance of the combination methods and the fact that the
literature recommends trying many different parameters and comparing results (Hastie
et al., 2009; James et al., 2013).
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Appendix:

3.A Equal Weighting of Distinct Forecasts in a Multi-level
Combination

In the context of combining forecasts from the different aggregation levels resulting from
a hierarchical clustering process, combining the different aggregate forecasts with equal
weights implicitly gives higher reliability weights to components that are fused later
in the algorithm, if the component forecasts are generated independently. This can be
visualized by looking at Figure 3.1. Horizontal lines are drawn on this dendrogram every
time a fusion occurs to illustrate the twelve options for groupings and the corresponding
dissimilarity thresholds. At the very top is the aggregate and at the very bottom all of
the components in their own cluster. Let an aggregate forecast for a given grouping,
Q, be denominated by the superscript of the number of fusions that have occurred in
that grouping and for simplicity that aggregation weights are all equal to one. The full
bottom-up forecast, that is the sum of the forecasts of the n individual components qn,
is then written as Q(0) = ∑N

n=1 q
(0)
n . The aggregate forecasts for the grouping after the

first fusion is Q(1), the one after the second fusion Q(2) and so on.

For all other aggregation levels, the multi-level combination procedure presen-
ted in chapter 2 can be used to obtain forecasts of components that are consist-
ent with each level of aggregation. For the example shown in Figure 3.1, the fore-
cast for the aggregation level that includes only the first fusion is produced from
Q(1) = ∑N

n 6={2,5} q
(1)
n + Q{2,5} where Q{2,5} is the forecast of the sum of components

2 and 5 and ∑n6={2,5} q
(1)
n is the sum of the forecasts of all the remaining components.

To have a complete disaggregate scenario, components 2 and 5 need to be inferred from
the forecast for their sum. Using the aforementioned method, q(0)

2 and q(0)
5 are recon-

ciled with Q{2,5} obtaining q̃
(1)
2 and q̃(1)

5 . With this Q(1) = ∑N
n 6={2,5} q

(1)
n + q̃

(1)
2 + q̃

(1)
5 .

The same procedure can be used for every level, finishing with the direct aggregate
forecast given by y = Q(11) = ∑N

n=1 q̃
(11)
n .

The whole set of forecasts can be written as:

q =



q
(0)
1 q

(0)
2 q

(0)
3 q

(0)
4 q

(0)
5 q

(0)
6 · · · q

(0)
12

q
(1)
1 q̃

(1)
2 q

(1)
3 q

(1)
4 q̃

(1)
5 q

(1)
6 · · · q

(1)
12

q
(2)
1 q̃

(2)
2 q

(2)
3 q̃

(2)
4 q̃

(2)
5 q

(2)
6 · · · q

(2)
12

...

q̃
(11)
1 q̃

(11)
2 q̃

(11)
3 q̃

(11)
4 q̃

(11)
5 q̃

(11)
6 · · · q̃

(11)
12


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where ∼ denotes component forecasts that are the result of reconciling the individual
forecasts, q(0)

n , with a forecast for an intermediate aggregate.

The equal-weighted aggregate forecast combination can be written as:

Q =
[

1 · · · 1
] 

Q(0)

...
Q(11)

 =
[

1 · · · 1
]

q


1
...
1

 =
[
q̄1 · · · q̄12

] 
1
...
1


where q̄n denotes the equal-weighted forecast combination for component n.

If the forecasts are produced using a univariate model, all those that do not involve
reconciling will be the same, unless the model is changed deliberately for each level of
aggregation. The same is true of fusions that are not fused again with other clusters at
that aggregation level. In the example it is clear that for the first fusion, q(0)

n = q
(1)
n for

all n except for 2 and 5 and this can be expanded to the whole hierarchy. Replacing
the unaltered forecasts with the original ones produces a particular pattern, in that
forecasts only change after fusions at that levels:

qIndep. =



q
(0)
1 q

(0)
2 q

(0)
3 q

(0)
4 q

(0)
5 q

(0)
6 · · · q

(0)
12

q
(0)
1 q̃

(1)
2 q

(0)
3 q

(0)
4 q̃

(1)
5 q

(0)
6 · · · q

(0)
12

q
(0)
1 q̃

(2)
2 q

(0)
3 q̃

(2)
4 q̃

(2)
5 q

(0)
6 · · · q

(0)
12

...

q̃
(11)
1 q̃

(11)
2 q̃

(11)
3 q̃

(11)
4 q̃

(11)
5 q̃

(11)
6 · · · q̃

(11)
12


(3.1)

From this, it is clear that if one were to average Q(0) and Q(1), it would implicitly
give higher reliability weights to the forecasts from all the components other than 2 and
5, meaning that equal-weight aggregate combination in this case does not give equal
weight to each distinct forecast. In fact, the later in the process that the component
is fused, the greater the implicit additional reliability. This can be seen from what
the definitive forecast would be for component twelve, the last single component to be
fused in the example from Figure 3.1. This would be q̄12 = 1

12(10q(0)
12 + q̃

(10)
12 + q̃

(11)
12 ).

However, given the structure of equation 3.1, it is quite easy to comply with giving
each distinct forecast the same weight by simply removing the repeated forecasts from
the component averages. In the case of component twelve, q̄∗12 = 1

3(q(0)
12 + q̃

(10)
12 + q̃

(11)
12 ).
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3.B Additional Information from Empirical Application

Table 3.6: Differentiation for Empirical Application
United

France Germany Kingdom
1. Food and non-alcoholic beverages 2 2 1
2. Alcoholic beverages, tobacco and narcotics 2 2 1
3. Clothing and footwear 1 1 1
4. Housing, water, electricity, gas and other fuels 1 2 2
5. Furnishings, household equipment and maintenance 2 2 1
6. Health 1 1 1
7. Transport 1 1 1
8. Communication 1 2 1
9. Recreation and culture 1 1 2
10. Education 2 1 2
11. Restaurants and hotels 2 1 2
12. Miscellaneous goods and services 2 2 1

Note: Number of times the series is differentiated to make it stationary according to the parametric unit root
test in Gomez and Maravall (1996).

Table 3.7: Benchmark Aggregate Forecasting Performance Excluding Crisis

Factor aug. AR(1) BVAR
AR(1) Bottom-Up Combination Bottom-Up Combination

France 0.88* 0.90 0.91** 0.98 0.94
Germany 0.96 0.95 0.96 0.97 0.96
United Kingdom 0.90 0.90 0.88* 1.25 0.96

Note: Mean square forecasting error relative to the direct method. Benchmark models are the bottom-up
and equal-weight combination of the direct and bottom-up approaches of the AR(1) and BVAR and a factor
augmented AR(1) following Bermingham and D’Agostino (2014). * and ** denote significance of the forecasting
performance difference based on the modified Diebold-Mariano test at a 10 and 5% significance level. Calculated
over 2001-2015 excluding from 2008.III to 2009.II.
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Table 3.8: Aggregate Forecasting Errors by Country and Model Excluding Crisis

AR(1) BVAR

In- Diss. Prob. In- Diss. Prob.
Choice method samp. O-o-S Thres. crit. FC1 FC2 samp. O-o-S Thres. crit. FC1 FC2

France
Pearson’s corr. 0.92 0.97 0.94 0.88** 0.90** 1.03 0.97 1.00 0.91* 0.93**
Spearman’s corr. 0.90* 0.93 0.90* 0.88** 0.91** 1.10 1.11 1.09 0.95 0.95
latent factor 0.94 0.95 0.98 0.90** 0.92** 1.05 1.08 1.04 0.96 0.95
persistence 0.88* 0.87** 0.89** 0.87** 0.88** 1.03 0.97 0.93 0.94 0.93*
f-error clustering 0.90* 0.91** 0.90* 0.88** 0.90** 1.06 1.06 1.02 0.97 0.96
Bayesian 0.88** 0.90** 0.91 0.98 0.89** 0.91** 1.03 1.05 1.03 1.04 0.96 0.97

Germany
Pearson’s corr. 0.99 1.01 1.01 1.00 0.99 1.11 1.16 1.09 1.01 1.00
Spearman’s corr. 0.99 1.00 1.02 1.00 0.98 1.14 1.15 1.06 1.02 0.99
latent factor 0.99 1.00 1.00 1.00 0.99 1.10 1.01 1.06 1.00 0.99
persistence 0.97 0.95 0.88** 0.92 0.93* 1.11 1.05 0.97* 0.96 0.95
f-error clustering 0.99 0.99 0.98 0.99 0.99 1.19 1.12 1.01 0.98 0.99
Bayesian 0.99 0.98 0.96 1.00 0.97 0.98 1.03 1.12 0.99 1.03 0.99 0.99

United Kingdom
Pearson’s corr. 0.87 0.88 0.91 0.87 0.84* 0.88 0.83 0.86 0.95 0.88
Spearman’s corr. 0.87 0.95 0.88 0.90 0.89 0.96 0.87 0.99 1.00 0.92
latent factor 0.84 0.93 0.84 0.84* 0.88 0.98 1.00 0.88 0.91 0.93
persistence 0.97 0.98 1.04 0.98 0.93 0.92 1.01 0.99 1.07 1.02
f-error clustering 0.92 0.96 0.87 0.88 0.85* 0.91 0.92 1.04 0.95 0.92
Bayesian 0.89 0.90 0.89 1.19 0.93 0.93 0.89 0.95 1.24 1.25 1.00 0.99

Note: Mean square forecasting error relative to the direct method. Grouping method dissimilarity measures:
Pearson’s correlation, Spearman’s correlation, latent factor given by the variance explained by the first principal
component, similarity in persistence measured as the difference of the estimated rho for an AR(1), forecasting
error clustering for AR(1) and Bayesian Hierarchical Clustering. Choice methods: In-sample criterion, out-of-
sample criterion, dissimilarity threshold, probabilistic criterion, forecast combination that assigns equal weights
to the aggregate forecasts (FC1) and forecast combination that assigns equal weights to each distinct forecast
(FC2). In bold MSFE lower than the lowest of either the respective full bottom-up approach or the direct
approach. * and ** denote significance of the forecasting performance difference based on the Modified Diebold-
Mariano test at a 10 and 5% significance level. Calculated over the 2001-2015 excluding from 2008.III to 2009.II.
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Table 3.9: Overall Aggregate Forecasting Performance Excluding Crisis

Average Percentage Deviation Average Rank Difference
from Best Method with Best Method

In- Diss. Prob. In- Diss. Prob.
Choice method samp. O-o-S Thres. crit. FC1 FC2 samp. O-o-S Thres. crit. FC1 FC2

Pearson’s corr. 9.3 9.9 9.8 6.4 4.6 14.5 18.0 18.0 9.5 7.3
Spearman’s corr. 12.6 13.5 12.6 8.8 6.7 17.3 22.5 20.8 15.0 10.2
latent factor 11.7 13.1 9.6 6.1 6.9 18.0 23.2 17.3 10.5 12.3
persistence 11.4 10.3 8.4 8.9 7.1 15.2 14.7 10.3 10.2 8.7
f-error clustering 12.9 12.7 10.3 7.0 6.3 19.3 20.8 14.3 10.7 10.0
Bayesian 7.8 11.9 14.2 23.2 8.8 9.2 12.3 18.0 15.0 24.7 12.3 14.2

Note: Relative performance of the grouping methods as measured by the average deviation of the respective
MSFE relative to that of the best performing grouping method by category and as the average difference in rank
according to MSFE over the six sets of forecasts. Grouping method dissimilarity measures: Pearson’s correlation,
Spearman’s correlation, latent factor given by the variance explained by the first principal component, similarity
in persistence measured as the difference of the estimated rho for an AR(1), forecasting error clustering for AR(1),
Bayesian Hierarchical Clustering. Choice methods: In-sample criterion, out-of-sample criterion, dissimilarity
threshold, probabilistic criterion, forecast combination that assigns equal weights to the aggregate forecasts
(FC1) and forecast combination that assigns equal weights to each distinct forecast (FC2). In bold the five best
performers in each category. Calculated over the 2001-2015 excluding from 2008.III to 2009.II.
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Figure 3.4: Empirical Aggregation Level Choices for AR(1) Models

France:

Germany:

United Kingdom:

Note: Succession of aggregation level choices for the hierarchy resulting of the particular clustering process by
disimilarity measure and choice method. The vertical axis measures the aggregation level. Path of minimum
MSFE included for comparison. Calculated over the 2001-2015 sample.
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Figure 3.5: Empirical Aggregation Level Choices for BVAR Models

France:

Germany:

United Kingdom:

Note: Succession of aggregation level choices for the hierarchy resulting of the particular clustering process by
disimilarity measure and choice method. The vertical axis measures the aggregation level. Path of minimum
MSFE included for comparison. Calculated over the 2001-2015 sample.



Chapter 4

Aggregate Density Forecasting
from Disaggregate Components
Using Large Bayesian VARs

4.1 Introduction

Economic aggregates play an important role in assessing the current state of the eco-
nomy and a lot of effort is therefore put into understanding and forecasting them. As
they are built from disaggregate information, there is an ongoing debate as to whether
and how to incorporate disaggregate information in order to improve aggregate fore-
casts. For point forecasts there is sufficient evidence, in terms of aggregate accuracy,
to support the benefits of including disaggregate information in the forecasting process
(Brüggemann and Lütkepohl, 2013). Therefore, much attention has been paid over the
years to determining whether forecasting the aggregate as the sum of its components’
forecasts achieves better results than forecasting the aggregate directly. This may be
due partly to the fact that policy-making institutions often require a consistent un-
derlying scenario for their forecasts and the bottom-up approach provides them with
one (Esteves, 2013; Ravazzolo and Vahey, 2014). In terms of how the bottom-up ap-
proach performs compared with other methods, Lütkepohl (1987) show that it depends
on the disaggregate processes and the aggregation matrix of the particular problem.
The differing results from many practical comparisons confirm that identifying the best
method is an empirical matter.1

1Examples of these comparisons are Espasa et al. (2002), Benalal et al. (2004), Hubrich (2005) and
Giannone et al. (2014) for inflation in the Euro area; Marcellino et al. (2003), Hahn and Skudelny
(2008), Burriel (2012) and Esteves (2013) for European GDP growth; and Zellner and Tobias (2000),
Perevalov and Maier (2010) and Drechsel and Scheufele (2013) for GDP growth in specific industrialized
countries.

92
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The amount of research for point forecasts contrasts with that for density fore-
casting. It would seem that making use of disaggregate components in a probabilistic
setting has remained a relatively unexplored area. This is hard to explain, given that
probability forecasting is being used increasingly in both finance and economics to as-
sess the uncertainty surrounding forecasts (Mitchell and Hall, 2005). What is more,
Bache et al. (2010) argue that using the components could allow a wide range of uncer-
tainties to be explored and provide some useful insights into tail events, for example.
Pre-crisis models are often criticized as being ill-equipped for this purpose (Del Negro
et al., 2016).

Nevertheless, there are some exceptions to this relative scarcity. Proietti et al.
(2017) produce forecasts for an aggregate monthly GDP measure, using density fore-
casts from both production and expenditure components. In their framework they
forecast each component using a different dynamic factor model, use the original GDP
weights to produce an aggregate forecast for each measurement approach, and then
combine them to produce the definitive forecast. Mazur (2015), on the other hand, fore-
casts each component by means of a small Vector Autoregression (VAR) constructed
following a variable selection procedure. In both cases, however, by treating each com-
ponent independently they ignore important interactions between components. This
could lead to poor calibration of the resulting aggregate density forecasts (Ravazzolo
and Vahey, 2014). For this reason, Bache et al. (2010) and Ravazzolo and Vahey (2014)
follow an alternative path in an attempt to benefit from the components. They use
ensemble forecasting, a method adapted from the meteorology literature, where uni-
variate autoregressive models are used for the components and aggregation weights are
estimated in order to produce a well-calibrated aggregate forecast. In this method,
however, the link between the aggregate and the components is broken, meaning that
no consistent underlying scenario is available to provide support for the assessment if
needed.

The reasoning behind forecasting each component independently includes the fact
that univariate models are indisputably popular among practitioners (Bache et al., 2010;
Ravazzolo and Vahey, 2014) and considerations regarding the computational burden
traditionally associated with large specifications (Mazur, 2015). Over the last decade,
however, the advances in forecasting methods have meant that alternatives capable of
dealing effortlessly and efficiently with large multivariate processes have been made
available. As pointed out by Carriero et al. (2015), much attention has concentrated
on using Bayesian Vector Autoregressions (BVAR) with large datasets for forecasting,
particularly since Banbura et al. (2010) developed their intuitive and computationally
cheap implementation. It would seem, however, that the research that has developed
from these advances has gone beyond answering questions that traditional VARs cannot
handle and centred around forecasting economic aggregates in a data-rich environment.
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Many empirical applications suggest that they are a worthy alternative to the popular
Dynamic Factor Models (Gupta and Kabundi, 2011). On the other hand, the potential
of BVARs as a means for producing bottom-up density forecasts seems to have been
overlooked.

This chapter picks up on this point and explores whether BVARs can be used to
produce well-calibrated bottom-up density forecasts. The novelty of this approach is
that by modelling the whole multivariate process, the main misspecification concerns
present in the current literature could be avoided. For this purpose, a framework is
presented to estimate the aggregate density forecast based on the outcome of a large
BVAR. It is worth mentioning that using BVARs is not the only way of accounting for
the interaction between components. An alternative could be to follow an approach
similar to that of Bermingham and D’Agostino (2014) in which they forecast each
component using a factor-augmented autoregressive models (FA-AR) where the factor
is extracted from all of the components. The appeal of alternative methods is left for
further research.

As regards specifying the BVARs, different alternatives that relax the constraints
of the univariate framework are explored. These include considering both fixed and
time-varying parameter BVARs and allowing for stochastic volatility. The appeal of
permitting these two features to be modelled is that there is ample evidence for the
frequent instabilities of financial and economic time-series meaning that the more re-
cent applied econometric literature has focused on accounting at least for changes in
the estimated coefficients and variance (Rossi, 2013; González-Rivera and Sun, 2017).
Considering these aspects seems particularly relevant for density forecasting given that
it is the whole distribution that is being forecasted and not a single moment as is the
case with point-forecasting. To make the framework easy to implement, an empirical
method that is relatively simple and computationally cheap is chosen to estimate the
BVARs. Then, subscribing to the view that different models may play a complementary
role in forecasting an unknown process, the possibility of benefiting from both direct
and bottom-up approaches through forecast combination is also explored. In doing
so, different common weighting schemes are compared and the impact of evaluation
window length on the estimated combination weights is examined. The results from
the proposed framework and those from the subsequent combination with the direct
approach are evaluated by performing an empirical application using GDP and CPI
data from France, Germany and the United Kingdom.

The contributions of this research are three-fold. First, the model it presents pro-
duces bottom-up forecasts that, in terms of calibration, are similar to or better than
those of the direct aggregate approach, in circumstances where a univariate bottom-
up approach performs poorly. Second, the proposed framework provides a consistent
underlying scenario for the aggregate forecasts, given that the original aggregation
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weights are used. This could be especially useful at policy-making institutions. Third,
it investigates empirically how it can serve as a complement to the direct method to
increase its overall performance. The evaluation with GDP and CPI data shows that
the performance of the combination can result in a significant improvement over the
direct method alone.

The rest of the chapter is organized as follows: Section 4.2 presents the methodology
for estimating multivariate bottom-up density forecasts. This section also evaluates how
they perform relative to the direct approach in an empirical implementation using GDP
and CPI data for France, Germany and the United Kingdom. Section 4.3 presents the
combination of the direct and bottom-up approaches and, using the same data, evalu-
ates empirically its improvement over the individual methods. Section 4.4 summarizes
the conclusions.

4.2 Disaggregate Density Forecasting Methodology

Over the last decade there has been a growing interest in Bayesian methods for policy
analysis and forecasting. As pointed out in Carriero et al. (2015), much attention has
concentrated on using BVARs with large datasets for point and density forecasting. The
idea behind the BVAR is that prior information is imposed on the VAR coefficients to
avoid overparametrization. Until relatively recently, most approaches were technically
and computationally demanding. This was seen as a stumbling block for their adoption
in contexts where the production of forecasts is subject to very tight time constraints
(Koop, 2013; Carriero et al., 2015). In the last decade, however, alternatives that avoid
the more intensive simulation have become available. The implementation suggested
by Banbura et al. (2010) has received considerable attention since it was first presented.
They suggest a relatively simple way of using Bayesian shrinkage to overcome the di-
mensionality problem in traditional VARs. They do, however, only contemplate using
constant coefficients and assume homoskedastic errors. The forecasting literature has
established that accounting for evolving conditions can be very important if forecast-
ing methods are to be successful. Koop and Korobilis (2013) build on the success of
Banbura et al. (2010) and take things a step further by developing a methodology that
also allows implementing time-varying parameters and stochastic volatility without in-
creasing computational demands. Due to this extra flexibility, and other convenient
features of the implementation, it is the method chosen for producing the bottom-up
density forecasts in this framework.
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4.2.1 Large Time-varying Parameters VARs

4.2.1.1 The Model

Koop and Korobilis (2013), hereafter K&K, formulate the problem of estimating the
BVAR in state-space form:

yt = Xtβt + εt εt ∼ i.i.d.N(0,Σt)

βt+1 = βt + ut ut ∼ i.i.d.N(0, Qt)

(4.1)

where εt and us are independent of one another for all s and t. yt for t = 1, ..., T
is an M × 1 vector containing observations on M time series and Xt is an M × k

matrix defined so that each equation contains an intercept and p lags of each of the M
variables.

To estimate the model, instead of proceeding in a standard Bayesian manner by
using Markov Chain Monte Carlo methods, K&K suggest replacing Qt and Σt with
estimates. They proceed in this manner because they argue that even for relatively
small problems the computational burden could be quite significant. To overcome this
problem, while still retaining time-varying parameters and stochastic volatility, they use
forgetting factors to produce their approximation at each point in time. This means
estimating empirically the desired parameters, but in a way that downplays, to a chosen
extent, the contribution of less recent data.

With regard to the time-varying parameters, they start by noting that Qt only
appears in one place in the Kalman filtering process, specifically in the prediction
step. Then, following the forgetting factors approach, they replace Qt for (λ−1 −
1)Vt−1|t−1, where Vt−1|t−1 is the variance of βt−1|yt−1, resulting in Vt|t−1 = 1

λVt−1|t−1.
The forgetting factor λ is restricted to being strictly positive and less than one, being
the constant coefficient specification achievable by setting λ = 1. Similarly, to avoid
using a posterior simulation algorithm to model volatility, they use an Exponentially
Weighted Moving Average estimator for the measurement error covariance matrix. This
is done by making Σ̂t = κΣ̂t−1 +(1−κ)ε̂tε̂′t with ε̂t = yt−Xtβt|t−1. Here the forgetting
factor κ is also restricted to being between zero and one.

With this, following the exposition in Koop and Korobilis (2012), the algorithm
proceeds by estimating the problem recursively for periods t=1,...,T starting from the
initial conditions given by β0 ∼ N(b0, V0) and Σ0. The prediction step sets:

βt|t−1 = βt−1|t−1 and Vt|t−1 = 1
λVt−1|t−1
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Then the updating step estimates ε̂t = yt − Xtβt|t−1 and Σ̂t = κΣ̂t−1 + (1 − κ)ε̂tε̂′t.
With this,

βt|t = βt|t−1 + Vt|t−1X
′
t

(
Σ̂t +XtVt|t−1X

′
t

)−1
ε̂t

and
Vt|t = Vt|t−1 − Vt|t−1X

′
t

(
Σ̂t +XtVt|t−1X

′
t

)−1
XtVt|t−1

With regard to the estimation of the coefficients of the BVAR, that is the β’s, they use
a Normal prior. Given their choice of variable transformation, for β0 they set the prior
mean to zero and the covariance matrix to be diagonal. Specifically, for var(β0) = V ,
with V i being its diagonal elements, they define V i = γ/r2 for coefficients on the r-th
lag and for the intercepts use a noniformative prior. This results in having a single
hyperparameter γ to control the shrinkage of the coefficients. In this case 0 ≤ γ <∞.

4.2.1.2 Parameter Selection

The model proposed by K&K is relatively simple and capable of incorporating many
features, despite being governed by only three parameters. These parameters, however,
have to be provided by the researcher.

As to the values governing the time-varying parameters and stochastic volatility,
they provide values that would be consistent with previous literature in those areas.
They do acknowledge, however, that a method that determines them from the data
would be very appealing, and they therefore go on to develop one based on dynamic
model selection (DMS).

They set the problem up as one of selecting one model definition from a set of mod-
els that are the same in terms of explanatory variables, but differ in terms of parameter
values.2 Their criterion is to choose the specification with the highest probability of
being the appropriate one for forecasting at any given time. They estimate this prob-
ability by implementing a recursive algorithm developed by Raftery et al. (2010) that
can be run conveniently within the normal Kalman filtering process used to produce
the forecasts.3

In this context, the prediction step is extended slightly with the additional equation:

πt|t−1,j =
παt−1|t−1,j
J∑
l=1
παt−1|t−1,l

(4.2)

2K&K go on to extend the approach to also allow for differing explanatory variables.
3The algorithm by Raftery et al. (2010) is explained in detail in Section 2.3 of Koop and Korobilis

(2013).
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where πt|t−1,j is the probability that model j should be used to forecast at time t given
the information up to t−1, α is a forgetting factor and J is the number of specifications
being considered. The updating step is extended by adding:

πt|t,j =
πt|t−1,jpj

(
yt | yt−1)

J∑
l=1
πt−1|t−1,lpl (yt | yt−1)

(4.3)

where pj
(
yt | yt−1) is the predictive likelihood.

The idea behind the algorithm is that good performance in the recent past increases
the probability of the model being the appropriate one to forecast for the following
period. The predictive likelihood serves as the measure of forecast performance and
the forgetting factor α to define what is understood as recent past. In this case, an
α close to zero leads approximately to the equal weighting for all time periods, while
setting α = 1 corresponds to using the marginal likelihood. The procedure is sufficiently
general, so K&K also use it as the method to estimate the prior hyperparameter which
controls coefficient shrinkage for the VAR equations.

4.2.2 Multivariate Bottom-up Aggregate Density Estimation

As pointed out by Ravazzolo and Vahey (2014) practitioners often rely on univariate
models because of the difficulties involved in modelling the dependencies between com-
ponents. Ignoring these dependencies, however, means that using a traditional bottom-
up approach could yield poor aggregate density forecasts. If the multivariate process
is modelled well, on the other hand, using the index weights would be appropriate and
should produce well-calibrated aggregate forecasts. Determining the distribution of a
sum of random variables is generally quite complicated, but in this case the task is
simplified greatly by the fact that the densities for the components are produced using
a sampling algorithm. As any given draw describes the whole multivariate process, the
aggregate forecast for that draw can be produced simply by summing the components’
forecasts using the appropriate index weights. Doing this for all draws provides the
aggregate bottom-up density forecast.

As pointed out by K&K, the one-step-ahead predictive density depends only on
quantities that are known at time t and is given directly by:4

p (yt+1|yt) ∼ N(Xt+1βt+1|t, Σ̂t+1 +Xt+1Vt+1|tX
′
t+1)

Then, following Proietti et al. (2017), let y(r)
i,t+1 denote the rth draw of the one-step-

ahead forecast of the ith component, i = 1, ..., N, at time t. Then, the rth draw from
4For forecasts beyond one period, predictive simulation is required.
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the bottom-up aggregate forecast is given by:

Q
(r)
I,t+1 =

N∑
i=1

wi,t+1y
(r)
i,t+1 (4.4)

where wi,t+1 is the aggregation weight for component i at time t+ 1.

4.2.3 Density Forecast Evaluation

A popular way of assessing the calibration of the density forecasts is testing the sequence
of probability integral transform (PIT) values. These are defined as pt = Ft(xt), where
Ft is the predictive cumulative distribution function and xt is the observed realization.
If Ft coincides with the true data-generating process, the PITs are uniform U(0, 1)
for any forecast horizon and i.i.d. for one-step-ahead forecasts (Diebold et al., 1998).
Geweke and Amisano (2010) describe this approach as comparing the distribution of
the observed data with the distribution that would have resulted if the model under
consideration had been used to generate the data. Mitchell and Hall (2005) point out,
however, that testing in this context is not straightforward, given that the impact of
dependence on uniformity tests and vice versa is unknown. The empirical literature
has relied therefore on using a number of tests simultaneously. Following Mitchell
and Wallis (2011) and Ravazzolo and Vahey (2014) this application uses Pearson’s
chi-squared test to assess the goodness-of-fit of the PIT histogram to a univariate
distribution and the Anderson-Darling test to evaluate the uniformity of the empirical
cumulative distribution function of the PITs. Independence is tested directly using a
Ljung-Box test using autocorrelation of up to four lags. Finally, the test proposed by
Berkowitz (2001) is used to test goodness-of-fit and independence.5

A problem with testing the calibration alone is that it is a dichotomous assessment.
That is, a density is either well-calibrated or not. In this context, it would not be
uncommon to find that two or more competing forecasts are equally well-calibrated, in
which case practitioners that are looking to pick a single model are only slightly better
off (Gneiting et al., 2007). An alternative approach is to use scoring rules. These
assign a numerical score based on the predictive likelihood and the realization of the
variable. Scores are affected by both the location and dispersion of a density (Bjørnland
et al., 2011). They will suffer both for over-dispersed distributions, because probability
mass is too high for infrequent values, and for under-dispersed distributions, because
too many observations carry a low probability. Therefore, based on the difference in
their scores, models can effectively be compared. Following Carriero et al. (2015), the
average logarithmic predictive density score is used to assess the relative performance

5The test is in fact applied on the inverse normal transform of the PITs to test for normality. We
use the three degrees of freedom version that tests against a first-order autoregressive alternative and
wrong mean and variance.
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of each forecast.

To evaluate whether the results of the alternative approaches are significantly dif-
ferent, the test of equal predictive accuracy based on the Kullback–Leibler information
criterion (KLIC) proposed by Mitchell and Hall (2005) is used. The test is based on
the distance between a density forecast and the true density as measured by the KLIC.
For a model i the distance at time t is defined as:

KLICi,t = E [ln gt (xt)− ln fi,t(xt)]

where gt (xt) is the true unknown density. The smaller this distance, the closer the
density forecast is to the true density. Mitchell and Hall (2005) show that a test for
equal-density forecast accuracy of two competing density forecasts can be constructed,
based on the difference between their estimated KLIC distance measures. The null
hypothesis of equal accuracy being:

H0 : KLICi −KLICj = 0⇒ E [ln fj,t(xt)− ln fi,t(xt)] = 0

Mitchell and Hall (2005) show that a Diebold-Mariano-type test can be constructed
using the sample mean of the distance measure, given by d̄ = 1

T

∑T

t=1 [ln fj,t(xt)
− ln fi,t(xt)], where d̄/

√
Sd/T

d→ N (0, 1). This test is equivalent to the unweighted
likelihood ratio test of Amisano and Giacomini (2007).

For the forecasting exercise, aggregate univariate AR models and bottom-up fore-
casts using univariate AR models for the components are used as benchmarks against
which to compare the densities from the multivariate methods. One to four lags are
considered for both methods and the best performer according to the logarithmic score
is chosen.

4.2.4 Empirical Application

The success of the proposed method depends on two factors. The first is whether
it performs well in circumstances where the univariate bottom-up approach fails to
produce a well-calibrated aggregate forecast. The second, which may be more relevant
in practical settings, is how it performs relative to other methods. The extent to which
this can be measured depends fundamentally on the properties of the data used. For this
reason, to have a broader assessment, more than one dataset is considered. Specifically,
an out-of-sample forecasting exercise using GDP and CPI data from Germany, France
and the United Kingdom is performed. The evaluation exercise data spans from 1991
to 2015 with the first ten years being used to estimate the models and from 2001
onwards for the forecasting evaluation. As the evaluation sample includes the most
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Figure 4.1: Annual Growth Rate of the Quarterly Series

Source: OECD statistics database.

recent global financial crisis, one could expect the overall results of the forecasting
models to be influenced by this episode. To have a notion of how this event affects
the series that are considered in the evaluation exercise, Figure 4.1 presents the annual
growth-rate of the quarterly series for both GDP and CPI on the same scale. As can
be seen, the effect of the crisis on GDP is considerably larger than on CPI. In the light
of this, it becomes apparent that their time-series characteristics over the sample are
fundamentally different and very different results are therefore to be expected. Finally,
the application is set up in a quarterly rolling scheme using a ten-year window where
in each period the models are re-estimated and the density forecasts are generated.6

Regarding the forecast horizon, the scope of the exercise is restricted to one-step-
ahead. The reason for this is that, in the context of this exercise, as the series considered
are produced using either a fixed-base or annual overlap chain-linking method, the
definitive weights for the one-step-ahead forecast are always available at the time of
forecasting. For longer horizons, however, they are not. This means that for longer
horizons forecasts for the weights would also be necessary. In this context, the simple
method for estimating the bottom-up aggregate forecast, presented in section 4.2.2,
would not be appropriate. One option would be to use the previous period’s weights, as
practitioners often do (Ravazzolo and Vahey, 2014), but Lütkepohl (2011) and Hendry
and Hubrich (2011), among others, discuss the problems that arise from assuming
weights to be unchanging and emphasize that, if the actual weights change through
time, forecast performance can deteriorate quickly, with longer horizons being affected
the most.

6It is worth noting, that the exercise does not mimic real-time forecasting, given that data revisions
are not accounted for.
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Table 4.1: Components Breakdown for Empirical Application

GDP
1. Agriculture, forestry and fishing 7. Financial and insurance activities
2. Manufacturing 8. Real estate activities
3. Industry and energy, excluding 9. Professional, administrative and support

manufacturing service activities
4. Construction 10. Public adm., defence, social security,
5. Trade, transport, accommodation and education and health

food services 11. Other service activities
6. Information and communication 12. Taxes less subsidies

CPI
1. Food and non-alcoholic beverages 6. Health
2. Alcoholic beverages, tobacco and narcotics 7. Transport
3. Clothing and footwear 8. Communication
4. Housing, water, electricity, gas and 9. Recreation and culture

other fuels 10. Education
5. Furnishings, household equipment and 11. Restaurants and hotels

maintenance 12. Miscellaneous goods and services

4.2.4.1 Data

The exercise uses data for GDP from the production approach and CPI for Germany,
France and the United Kingdom. The data is quarterly and seasonally adjusted, span-
ning from 1991 to 2015 and available from the OECD statistics database.7 The break-
down of the aggregates is the one presented in Table 4.1.

4.2.4.2 BVAR Specifications

In terms of the specification for the BVARs, four combinations for λ and κ are used.8

First, a homoskedastic VAR that is obtained by setting both λ and κ equal to one and
in which case Σ̂t is estimated by 1

1−t
∑t−1
i=1 ε̂iε̂

′
i. Second, a homoskedastic time-varying

parameter VAR (TVP-VAR) with λ = 0.99, a value that K&K argue is equivalent to
what has previously been used in the relevant literature and for which, in the case of
quarterly data, observations five years back receive approximately 80% as much weight
as last period’s observation.9 They argue that such a value leads to a gradual change in
coefficients and stable models. Based on this, the third model is a heteroskedasic VAR
with κ = 0.99. Finally, to allow for both features, the fourth model is a heteroskedasic

7For the United Kingdom the production data on the OECD database starts in 1995. The first four
years of the sample are obtained by splicing backwards the historical reference tables available from
the Office for National Statistics. No inconsistencies arise from the seasonal adjustment given that the
aggregates are adjusted indirectly; that is, as the sum of the seasonally-adjusted components.

8Four lags are used for all models.
9The closer to zero the less consideration is given to older information.
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Table 4.2: Tests on PITs for One-step-ahead Forecasts

Germany France United Kingdom

Model Bkw.LR AD χ2 LB Bkw.LR AD χ2 LB Bkw.LR AD χ2 LB

GDP
Bottom-Up AR 0.02 0.00 0.21 0.01 0.00 0.28 0.37 0.16 0.00 0.00 0.14 0.16
Direct AR 0.41 0.00 0.01 0.14 0.06 0.05 0.40 0.08 0.06 0.15 0.26 0.02

Homsk. VAR 0.46 0.02 0.13 0.91 0.12 0.57 0.72 0.59 0.03 0.11 0.33 0.35
Homsk. TVP 0.51 0.01 0.14 0.89 0.12 0.38 0.67 0.59 0.03 0.06 0.92 0.45
Hetsk. VAR 0.00 0.00 0.00 0.77 0.40 0.02 0.31 0.86 0.00 0.00 0.34 0.21
Hetsk. TVP 0.00 0.00 0.00 0.52 0.30 0.03 0.03 0.68 0.00 0.00 0.33 0.21
DMS 0.72 0.08 0.30 0.72 0.17 0.54 0.89 0.70 0.01 0.02 0.11 0.29

CPI
Bottom-Up AR 0.00 0.08 0.04 0.10 0.00 0.06 0.07 0.52 0.00 0.93 0.79 0.03
Direct AR 0.22 0.41 0.50 0.71 0.09 0.39 0.59 0.23 0.85 0.66 0.12 0.35

Homsk. VAR 0.81 0.01 0.07 0.62 0.44 0.10 0.09 0.69 0.68 0.66 0.40 0.69
Homsk. TVP 0.91 0.36 0.69 0.55 0.68 0.06 0.02 0.84 0.49 0.66 0.55 0.42
Hetsk. VAR 0.42 0.11 0.04 0.47 0.00 0.18 0.41 0.08 0.09 0.71 0.43 0.12
Hetsk. TVP 0.84 0.06 0.26 0.56 0.00 0.16 0.44 0.58 0.03 0.85 0.07 0.15
DMS 0.67 0.59 0.86 0.65 0.66 0.05 0.04 0.64 0.43 0.93 0.98 0.13

Note: P-values for the calibration tests on the probability integral transform (PIT) of the one-step-ahead
forecasts for each model for the three countries. The tests are the LR test proposed by Berkowitz (2001)
(Bkw.LR), the uniformity tests by Anderson-Darling (AD) and a Pearson’s chi-squared (χ2), the Ljung-Box
test (LB) for independence. The models are the bottom-up univariate model (Bottom-up AR), the direct
univariate AR model (Direct AR), the homoskedastic VAR, the homoskedastic TVP-VAR, the heteroskedastic
VAR, the heteroskedastic TVP-VAR and the result of dynamic model selection over the four VARs (DMS). P-
values in bold signify that the null of the respective test are not rejected at 5%. Calculated over the 2001-2015
period.

TVP-VAR with both λ and κ equal to 0.99.10 With regard to setting the value for
the overall shrinkage of the coefficients, the parameter selection algorithm described in
section 4.2.1.2 is used over a wide grid for all specifications.11

K&K argue that the TVP-VARs are well-suited for modelling gradual evolution of
coefficients. To accommodate more sudden changes, they advocate using DMS over a
whole array of model specifications. Given that the sample includes the years of the
financial crisis, allowing for abrupt changes in parameters could be particularly relevant.
Then, as the final approach, a procedure is implemented that consists of choosing at
each point in time the forecast from the model that has the highest probability of being
appropriate, according to the aforementioned algorithm.12

4.2.4.3 Results

Table 4.2 presents the p-values for the tests on the PITs for the one-step-ahead forecast-
ing exercise for GDP and CPI for all three countries. As Ravazzolo and Vahey (2014)

10K&K also choose λ and κ empirically over a grid. In this particular exercise the results are not
significantly different from those obtained from setting both parameters to 0.99.

11Specifically, γ = ei selecting i from {-7, -6, ... , -1}.
12That is, the model with the highest value for πt|t−1,j from equation (4.2).
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Table 4.3: Log Scores for One-step-ahead GDP Forecasts

GDP CPI

United United
Model Germany France Kingdom Germany France Kingdom

Direct AR 7.4 22.9 7.0 4.7 0.2 -0.4

Homsk. VAR 12.0 26.1 10.1 2.8 2.9 1.8

Homsk. TVP 15.7 25.8 10.1 3.0 4.5 1.5

Hetsk. VAR 2.4 23.0 5.2 4.8 4.0 0.0
Hetsk. TVP 4.3 24.1 5.3 5.2 1.3 -0.1
DMS 19.3 25.9 8.3 4.6 4.8 0.6

Note: Log predictive density scores of the one-step-ahead forecasts for each model for the three countries
expressed in terms of the percentage improvement over the bottom-up univariate model (Bottom-up AR). The
models are the direct univariate AR model (Direct AR), the homoskedastic VAR, the homoskedastic TVP-VAR,
the heteroskedastic VAR, the heteroskedastic TVP-VAR and the result of dynamic model selection over the
four VARs (DMS). Log scores in bold denote improvement over the direct univariate model. * and ** denote
significance of the forecasting performance difference with respect to the direct univariate model based on the
KLIC test at a 10 and 5% significance levels. Calculated over the 2001-2015 period.

put it, well-calibrated forecasts should give high probability values for all four tests.
The overall impression from the results for GDP, however, is that few specifications pass
all four diagnostic tests.13 For Germany, for example, only the DMS model appears
to be well-calibrated; while none does for the United Kingdom. This is not surprising,
however, given that the evaluation sample includes the financial crisis. The compar-
able performance of the Direct AR suggests that there is more to poor calibration
than merely a generalized shortcoming in the bottom-up approach. On the contrary,
for CPI, the forecasts from most models appear to be well-calibrated according to the
tests. The univariate bottom-up model, however, fails at least one test in each case.
Where multivariate models are concerned, those that include stochastic volatility are
similarly well-calibrated to those that do not. The results for all datasets tend to sup-
port the claims of Ravazzolo and Vahey (2014) regarding the likelihood of obtaining
poorly-calibrated forecasts from using a univariate bottom-up approach.

As mentioned before, the outcome of the PITs tests is binary and it is therefore
inadequate as a way of ranking different forecasting methods. The average logarithmic
predictive density scores (log scores) are used for this purpose. Table 4.3 presents them
expressed in terms of the percentage improvement over the bottom-up univariate model.
As one might expect after looking at the PITs, the multivariate models perform better
than the univariate bottom-up approach, but the improvements are heterogeneous. In
the case of GDP, overall, it is the homoskedastic models that show the best performance,
improving over the aggregate univariate model by as much as eight percentage points.
From the performance of the four different BVARs, it would seem that most of the

13That is that the null hypothesis of no calibration failure cannot be rejected at the 5% significance
level. The tests are conducted on an individual basis which imply a Bonferroni-corrected (joint) p-value
of 1.25%.
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gains come from allowing the process to be modelled using a multivariate model and
that further gains can be obtained by allowing for the coefficients to vary over time.
In contrast, incorporating stochastic volatility has a negative effect. This is consistent
with the results from DMS. For Germany it performs very well, showing the highest
accuracy with an improvement of nearly 12% over the aggregate AR. It is also the only
model for which uniformity and independence are not rejected by any of the tests. For
France it performs virtually the same as the homoskedastic multivariate models both in
terms of calibration according to the PITs tests and log score. For the United Kingdom
it performs better than the Direct AR but worse than the homoskedastic multivariate
models. In the case of CPI, on the other hand, the improvements of the multivariate
models are smaller than for GDP, and heterogeneous between countries. For example,
for Germany, the methods improve over the univariate bottom-up approach but are only
marginally better than the direct AR if stochastic volatility is included. For the other
two countries, there is little difference in accuracy between the univariate methods, but
in the case of France the multivariate methods improve by as much as 5% while for the
United Kingdom these are below 2%.

The improvements over the bottom-up univariate model in some cases seem quite
substantial, up to 26% in the case of French GDP, so an obvious question to ask is
whether the differences in predictive accuracy are significant or not. To assess whether
they are, the KLIC test is used. As mentioned before, it compares two loss differential
series in a way that is analogous to the point forecast accuracy test popularized by
Diebold and Mariano (1995). Although the improvements seem quite large in mag-
nitude, the differences are not significant according to the test. This would seem odd
at first, but the recursive log scores that are presented in Figure 4.2 could provide some
insight into why this is the case.14

For GDP, it is immediately obvious that the crisis produces a sharp decline in
the scores. Common to all three countries is that the bottom-up univariate model
is by far the most affected of all models. The second most affected model, however,
is the aggregate AR. Although the univariate models are among the best performers
until the crisis, the multivariate models show falls that are proportionally smaller and
therefore end up being better over the whole sample, at least in some cases.15 The
performance of both homoskedastic VARs is slightly worse than that of the univariate
methods up to the crisis, but the comparatively smaller impact of the crisis suggests
that the increased uncertainty due to the estimation of additional parameters could
be worthwhile. The opposite seems to be the case with the methods that incorporate
stochastic volatility. For CPI, on the other hand, it is still the case that the multivariate

14For each series, the homoskedastic models are presented in the top panel and the heteroskedastic
models and DMS in the bottom. The aggregate AR is included in both to serve as a reference point.

15The recursive log scores calculated excluding the crisis years, not reported, show that the univariate
models perform very well over the restricted sample.
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Figure 4.2: Recursive Log Scores for One-step-ahead Forecasts

GDP:

CPI:

Note: Recursive log scores calculated over the 2001-2015 period. The models are the aggregate univariate model
(Direct AR), the bottom-up forecast using univariate AR models for the components (Bottom-Up AR), the
homoskedastic VAR, the homoskedastic TVP-VAR, the heteroskedastic VAR, the heteroskedastic TVP-VAR
and the result of dynamic model selection over the four VARs (DMS).
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models are proportionally less affected than the univariate models, but the overall
impact of the crisis is smaller. This translates into there being no significant difference
between models in terms of performance. Unlike the case of GDP, here the added
complexities do not seem to pay off.

As a summary of the results, it can be said that, although the performance of
the different methods varies quite significantly depending on the dataset, there are a
number of things that can be learned from them. The first is that, in line with the
concerns raised by Ravazzolo and Vahey (2014), the univariate bottom-up approach
would be likely to produce poorly calibrated forecasts in certain circumstances. In the
same setting the proposed multivariate bottom-up methods perform similarly to the
direct approach or better. The varying degrees of success of the different specifications,
however, also suggest that the added complexities may not always be justified in terms
of performance. It would seem that most of the improvements are attainable in the
homoskedastic fixed-parameter setting. This comes as good news for practitioners, as
it suggests that the more extended implementation by Banbura et al. (2010) would
probably also work well in the same setting.

4.3 Combination of Direct and Bottom-up Density Fore-
casts

The differences between the results for GDP and CPI in the empirical application in the
previous section suggest that the strengths of the multivariate methods only emerge if
the interactions among variables are sufficiently strong. The more significant effects of
the financial crisis on GDP, both in magnitude and persistence, would seem to be the
reason behind the multivariate methods beating the univariate alternatives. The KLIC
tests and the evaluation excluding the crisis years support this view. These results
reinforce the idea that the model of choice will differ, depending on the situation.

In this context, where competing forecasts are available for the same variable, there
is a growing literature to support combining these forecasts instead of choosing between
them. For point forecasts, the idea has been around for quite some time (Bates and
Granger, 1969), and many surveys like Clemen (1989), Diebold and Lopez (1996),
Newbold and Harvey (2002) and Timmermann (2006) highlight the robustness of the
gains in forecasting accuracy due to its use. More recently, the attention has shifted
to density forecasts. The appeal of combined density forecasts over individual ones has
been argued by Mitchell and Hall (2005), Ranjan and Gneiting (2010) and Mitchell
and Wallis (2011) among others.

In section 4.2, the direct and bottom-up approaches are presented as competing
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methods to forecast an aggregate. In contrast, the aim here is to evaluate whether
combining them may result in an improvement over the individual approaches. To this
effect, the densities resulting from combining the forecasts from the direct and each of
the bottom-up approaches of the previous section, plus pooling them all, are compared
against those of the direct method.

4.3.1 Empirical Framework

4.3.1.1 Density Combination Methods

A very attractive feature of forecast combination for point forecasts is that simple
combination schemes are surprisingly effective (Timmermann, 2006). In fact, the equal-
weighted forecast combination performs so well that researchers have tried to explain
why this should be so (Smith and Wallis, 2009; Elliott, 2017). It is not surprising, that
simple weighting schemes are also popular for probabilistic forecasting. As pointed out
by Ranjan and Gneiting (2010) the weighted linear combination, which is often referred
to as a linear opinion pool, is probably the most popular method, and substantial
empirical evidence attests to its benefits. Specifically, the combined aggregate density
forecast from the linear opinion pool is given by:

p(QC)t+1 =
J∑
j=1

ωj,t+1p(Qj)t+1 (4.5)

where ωj,t+1 and p(Qj)t+1 are the combination weight and aggregate density forecast
for approach j for time t+ 1.

There is evidence, however, that it has at least one important drawback. The prob-
lem stems from the fact that density forecasts have to be as sharp as possible, subject to
being well calibrated. In some cases, however, a linear combination of well-calibrated in-
dividual predictive distributions necessarily produces poorly calibrated forecasts (Hora,
2004; Ranjan and Gneiting, 2010).16

An alternative to the linear opinion pool that has been proposed in the literature
is the logarithmic opinion pool. This is a geometric weighted average of the individual
densities given by:

p(QC)t+1 = K
J∏
j=1

p(Qj)
ωj,t+1
t+1 (4.6)

where K is a constant that ensures the density adds up to one. As pointed out by
16Calibration measures how close conditional event frequencies are to the forecast probabilities.

Sharpness describes how far away the forecasts are from the marginal event frequency (Gneiting et al.,
2007).
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Bjørnland et al. (2011), there are a number of differences between the linear and log-
arithmic opinion pools, but probably the most defining one is the fact that the latter
will result in a zero combined density for any region in which a single density has zero
density. Therefore, the resulting densities of the log opinion pool tend to be less dis-
persed than those of the linear opinion pool. Which pooling method performs better,
however, depends on the particular scenario.

4.3.1.2 Estimated Combination Weights

Following Proietti et al. (2017), both the linear and logarithmic opinion pools are
supplied with estimates coming from three popular weighting schemes. Based on the
good performance in the point forecast setting, equal weights and weights based on the
mean square error (MSE) are used. Following the likes of Hall and Mitchell (2007) and
Jore et al. (2010) weights based on the log scores are also used.

The weights for model j are given by:

ωj,t+1 = sj,t+1∑J
j=1 sj,t+1

where for equal weights sj,t+1 = 1. For the weights based on MSE sj,t+1 = 1
MSEj,t

with
MSEj,t = 1

t−ts+1
∑t
i=ts (xi − x̂j,i)2 where, for time i, xi is the observed realization,

x̂j,i is the mean of the density forecast from model j, fj,i, and ts is the first period
considered in the evaluation window. For weights based on the log score the average
over the evaluation window is used. That is, sj,t+1 = exp

[
1

t−ts+1
∑t
i=ts logSi

]
with

Si = log fj,i(xi).

Based on the findings by Aiolfi and Timmermann (2006) regarding the weakening of
forecasting performance persistence over longer evaluation windows and strong evidence
of abrupt changes in relative performance of models, three different window lengths are
considered and weights computed over each one:

1. Short window: the performance in the previous period alone is used, ts = t.

2. Rolling window: the average performance over the last two years is used, ts = t−7.

3. Expanding window: all the available information is used, ts = T0 where T0 is the
first period in the forecast evaluation sample.
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4.3.1.3 Combined Density Estimation

In terms of actually producing the combined aggregate density forecast, the approach
by Bjørnland et al. (2011) is followed. The cumulative distributions of the different
density forecasts are represented by using piecewise linear functions, with knots at a
common grid of points g ∈ {g1, g2, . . . , gM}, where gj−1 < gj .

Let model j have a simulation sample
{
Q

(1)
j , Q

(2)
j , . . . , Q

(B)
j

}
, then its empirical

cumulative distribution at point g is given by

FM (Qj≤g; j) = 1
B

B∑
k=1

I
(
Q

(k)
j ≤ g

)
(4.7)

where

I
(
Q

(k)
j ≤ g

)
=

 1 if Q(k)
j ≤ g

0 if Q(k)
j >g

(4.8)

The linear and log opinion pools are then computed at {g1, g2, . . . , gM} using equa-
tions (4.5) and (4.6).17

4.3.2 Empirical Evidence

As in section 4.2, to examine how the different combination alternatives perform relat-
ive to the individual models, the log scores are compared. Likewise, the significance of
the differences in predictive accuracy are assessed by means of the KLIC test. Then,
to understand how the different models contribute to the combined outcome, the be-
haviour of the estimated combination weights is examined over the different evaluation
window lengths.

4.3.2.1 Relative Forecasting Performance

Tables 4.4 and 4.5 present the logarithmic scores for the GDP one-step-ahead forecast
combination using linear and logarithmic opinion pools. To keep the results comparable
to those of section 4.2, the scores are expressed in terms of the percentage improvement
over the corresponding bottom-up univariate model. Scores in bold highlight those that
are higher than the corresponding individual models.18

The first thing that becomes apparent from the proportion of scores in bold is that
17If necessary, the components’ forecasts can be reconciled with the combined aggregate forecast so

as to have a consistent underlying scenario. A possible way of doing this is presented in the Appendix.
18The tests on the PITS are found in the Appendix.
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Table 4.4: Log Scores for One-step-ahead GDP Forecast Combination

Linear Opinion Pool Logarithmic Opinion Pool

Eq.w MSE weights LogScore weights Eq.w MSE weights LogScore weights

Germany Exp.w Roll.w Short.w Exp.w Roll.w Short.w Exp.w Roll.w Short.w Exp.w Roll.w Short.w

Bottom-up AR 6.5 6.9 7.4 7.7 6.5 6.5 10.4** 3.3 3.4 3.7 3.7 3.0 3.0 10.0**

Homsk. VAR 14.1 14.6 14.9 16.2 14.1 14.4 15.0 12.5 13.3 13.5 14.9* 12.3 12.4* 16.0*

Homsk. TVP 17.5 18.0 18.2 19.8* 17.4 17.2 18.2* 14.3* 14.9** 15.1** 16.9** 14.0** 13.5** 19.3**

Hetsk. VAR 7.7 9.1 8.8 12.7 9.7 9.2 14.9 12.2 12.4 11.9 13.8 10.8 9.9 21.0

Hetsk. TVP 8.9 10.3 10.0 14.1 10.2 9.1 15.5 12.2 12.4 11.6 14.2 11.0 10.5 21.1

DMS 17.3 17.5 18.1 19.6* 17.1 17.1 21.3 15.7* 15.8** 16.6** 17.1** 15.5** 15.5** 22.4*

All models 14.1 15.9 15.3 18.4 16.6 16.2 21.6 14.1* 14.9** 14.8* 17.0** 12.9** 12.5** 23.3**

France
Bottom-up AR 19.3 19.5 19.8 21.5 18.5 18.0 27.5** 11.4 11.4 11.8 13.4 10.2 10.2 26.1*

Homsk. VAR 26.1 26.2 26.4 28.3** 26.0 26.0 28.9* 26.1 26.2 26.4* 27.9** 25.9* 25.9* 29.7**

Homsk. TVP 25.8 25.8 26.0 27.5* 25.7 25.8 28.4* 25.8 25.7 26.0* 27.1** 25.6 25.7* 29.1**

Hetsk. VAR 24.9 25.0 25.3 27.7 25.1 25.1 27.6 25.2 25.4 25.6 27.1* 25.1 24.9 29.2*

Hetsk. TVP 25.4 25.5 25.8 27.7* 25.6 25.5 27.9 25.4 25.5 25.7 27.1** 25.2 25.3 29.0*

DMS 26.3 26.3 26.4 28.3** 26.2 26.3 28.8* 26.0 26.0* 26.2* 27.6** 25.8* 25.9* 29.6**

All models 26.1 26.4 26.8 30.1** 26.3 26.2 29.3* 23.4 23.7 24.2 27.0** 22.0 21.5 30.1**

United
Kingdom
Bottom-up AR 10.4* 10.4* 10.9** 12.2** 10.4* 10.6* 11.3* 5.3 5.7 6.1 7.7 5.5 5.8 8.1

Homsk. VAR 12.1* 12.1* 12.5** 14.4** 12.1* 12.3* 13.9** 10.5* 10.4* 10.9** 13.2** 10.5* 10.7* 14.3**

Homsk. TVP 11.9* 11.9* 12.2* 13.7** 11.9* 12.0* 13.6** 10.5* 10.4* 10.7** 12.6** 10.4* 10.5* 13.9**

Hetsk. VAR 9.7 10.1 10.5 12.1* 10.1 10.2 11.3 8.7 8.7 9.1 11.2* 8.8 8.9 11.7*

Hetsk. TVP 9.4 9.8 10.1 11.8 9.9 9.9 10.8 8.7 8.7 9.0 11.0* 8.8 8.9 11.8*

DMS 11.5 11.6* 12.1* 13.2** 11.7* 11.8* 12.9** 9.9 9.8* 10.2** 12.0** 9.8* 10.0* 12.7**

All models 9.6 10.1 10.4 12.8* 10.0 10.1 12.3 7.5 8.1 8.4 10.5 7.8 8.0 10.3
Note: Log predictive density scores of the one-step-ahead forecast combination using the weighting schemes of
each model and the direct AR for the three countries expressed in terms of the percentage improvement over
the bottom-up univariate model (Bottom-up AR). The models are the indirect univariate AR model (Bottom-
up AR), the homoskedastic VAR, the homoskedastic TVP-VAR, the heteroskedastic VAR, the heteroskedastic
TVP-VAR and the result of dynamic model selection over the four VARs (DMS). The weighting schemes are
equal weights (Eq.w) and based on recent past mean square error (MSE.w) and based on the log score (LS.w).
The combination weights estimation window lengths are one quarter (Short), eight quarters (Roll.) and all the
available sample (Exp.). Log scores in bold denote improvement over both the direct univariate model and
the corresponding bottom-up method. The scores for the pool of all models are compared with those obtained
by the DMS approach. * and ** denote significance of the forecasting performance difference with the direct
univariate model based on the KLIC test at a 10 and 5% significance levels. Calculated over the 2001-2015
period.
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Table 4.5: Log Scores for One-step-ahead CPI Forecast Combination

Linear Opinion Pool Logarithmic Opinion Pool

Eq.w MSE weights LogScore weights Eq.w MSE weights LogScore weights

Germany Exp.w Roll.w Short.w Exp.w Roll.w Short.w Exp.w Roll.w Short.w Exp.w Roll.w Short.w

Bottom-up AR 4.6 4.8 4.9 6.5 4.5 4.6 7.4** 3.9 4.2 4.3 5.7 3.8 3.9 7.7**

Homsk. VAR 6.7 7.4 7.4 9.6** 7.0 7.1 8.0* 6.5 6.7* 6.7 8.7** 6.6 6.7 8.3**

Homsk. TVP 6.3 7.1 7.0 8.7* 6.7 6.7 7.3 6.7 6.8* 6.7 8.2** 6.8 6.8 8.1**

Hetsk. VAR 6.1 6.4 6.7 8.8** 6.2 6.4 8.1* 6.6 6.7 7.1* 8.7** 6.7 6.9 8.9**

Hetsk. TVP 7.4 7.9 8.0 9.8* 7.6 7.8 8.8 7.1 7.0* 7.3* 8.7** 7.2 7.4* 9.3**

DMS 7.2 7.6 7.6 9.5** 7.5 7.5 8.2* 6.5 6.6* 6.6* 8.2** 6.6 6.7 8.1**

All models 6.3 6.8 7.0 10.3** 6.5 6.7 8.5 6.3 6.6 6.8 9.6** 6.4 6.6 9.7**

France
Bottom-up AR 2.1* 2.4** 2.6** 4.5** 2.7** 2.8** 4.6** 2.3 2.5 2.7 4.1** 2.9* 3.0* 5.4**

Homsk. VAR 3.7* 4.0* 4.1** 6.0** 3.9** 3.9** 5.8** 3.0* 3.3** 3.5** 5.6** 3.2** 3.2** 6.0**

Homsk. TVP 4.4** 4.7** 4.8** 6.5** 4.5** 4.6** 6.2** 3.8** 4.2** 4.4** 6.1** 4.0** 4.0** 6.5**

Hetsk. VAR 5.1* 5.1 5.1 6.9** 5.1* 5.2* 6.3** 4.5** 5.4** 5.4** 6.7** 4.9** 4.9** 7.6**

Hetsk. TVP 3.5 3.9 3.9 5.4* 3.8 3.9 5.2 3.4* 3.3* 3.5* 5.5** 3.5* 3.5* 6.7**

DMS 5.0* 5.2* 5.2* 6.8** 5.1* 5.2* 6.8** 4.2** 4.6** 4.6** 6.3** 4.3** 4.4** 7.5**

All models 5.7* 6.2** 6.3** 8.2** 6.2** 6.3** 8.2** 5.6** 6.3** 6.6** 8.1** 6.3** 6.4** 9.7**

United
Kingdom
Bottom-up AR 3.4** 4.4* 4.7** 7.2** 4.1* 4.2** 6.8** 3.3 3.1 3.9 6.6** 3.3 3.5 7.8**

Homsk. VAR 3.0* 3.4* 3.7** 5.7** 3.5* 3.5* 5.1** 3.3** 3.9** 4.2** 6.3** 4.1** 4.2** 6.2**

Homsk. TVP 2.6* 3.0* 3.4* 5.2** 3.1* 3.2* 4.5** 3.0** 3.6** 4.0** 5.8** 3.8** 3.9** 5.6**

Hetsk. VAR 1.7 1.8 2.3 4.1** 2.1 2.2 3.5* 1.9 2.4 2.8* 4.6** 2.8* 2.9* 4.5**

Hetsk. TVP 1.5 1.7 2.2 3.9** 1.9 2.1 3.3* 2.0* 2.6 3.0* 4.6** 2.9* 3.0* 4.5**

DMS 2.1 2.5 2.8* 4.5** 2.6 2.7 4.1** 2.6** 3.1* 3.4** 5.2** 3.3* 3.5** 5.2**

All models 2.5 3.1 3.4 6.1** 2.9 3.0 4.6** 3.3 3.8 4.2* 6.7** 3.6 3.7 6.2**
Note: Log predictive density scores of the one-step-ahead forecast combination using the weighting schemes of
each model and the direct AR for the three countries expressed in terms of the percentage improvement over
the bottom-up univariate model (Bottom-up AR). The models are the indirect univariate AR model (Bottom-
up AR), the homoskedastic VAR, the homoskedastic TVP-VAR, the heteroskedastic VAR, the heteroskedastic
TVP-VAR and the result of dynamic model selection over the four VARs (DMS). The weighting schemes are
equal weights (Eq.w) and based on recent past mean square error (MSE.w) and based on the log score (LS.w).
The combination weights estimation window lengths are one quarter (Short), eight quarters (Roll.) and all the
available sample (Exp.). Log scores in bold denote improvement over both the direct univariate model and
the corresponding bottom-up method. The scores for the pool of all models are compared with those obtained
by the DMS approach. * and ** denote significance of the forecasting performance difference with the direct
univariate model based on the KLIC test at a 10 and 5% significance levels. Calculated over the 2001-2015
period.
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the effect of combining is positive in most cases. However, the magnitude and signi-
ficance of the improvements vary considerably from one model to another depending
on the weight estimation window length and method. One result that repeats itself for
all datasets and combination methods, is that the short combination weight estimation
window produces considerably higher scores than those of the longer windows. In most
cases the improvements over the direct method are statistically significant according to
the KLIC test while this is not necessarily so in the case of longer windows. In terms
of the improvement in performance for each model, the univariate bottom-up approach
improves the most. Focusing only on the results from the short weight evaluation win-
dow, for GDP, these vary between 3 percentage points for Germany and 28 percentage
points for France. For CPI, they vary between nearly 4 percentage points for France
and 8 percentage points for Germany and the United Kingdom. The improvements
of the multivariate methods are less impressive, but only because of the good per-
formance of the non-combined methods. The log scores of the heteroskedastic VARs
increase between 3 and 15 percentage points, while the improvements of the homoske-
dastic VARs and DMS are comparatively smaller. In terms of significance, most of the
combinations using the short window are significantly better than the direct method
alone. An interesting result for the DMS combination and pooling of all models for
Germany, is that, although the scores are not higher than those of the DMS approach
alone, they are statistically better than the direct approach, while the DMS approach
by itself is not.

When comparing the combination methods, it is not clear in terms of the magnitude
of the log scores whether the linear opinion pool is better than the logarithmic opinion
pool. However, the latter does produce forecasts that are statistically better than the
direct approach in more cases. This probably comes as a result of the fact that the
aforementioned method produces more focused densities. In terms of comparing the
approach for calculating the weights, that is using MSE or log scores, neither comes
out as significantly better than the other.

As regards pooling all the models together, the overall results are good. Most of the
scores are relatively high and in many cases the differences with the direct approach
are statistically significant. For CPI, in most cases, the forecasts are better than the
other combination approaches in terms of log scores. For GDP, this is also the case,
except for the United Kingdom, where they are usually beaten by at least one of the
other methods.

4.3.2.2 Behaviour of the Combination Weights

Examining how the combination weights evolve over the evaluation sample can provide
some insight into the performance of the different models and the influence of the
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weighting methods. Figures 4.3 and 4.4 present the combination weights for the cor-
responding bottom-up methods for GDP and CPI for the three countries over the
2001-2015 period.19 The shaded areas highlight years 2008 and 2009 so as to be able
to assess the effects of the financial crisis on the models.

As regards comparing the equal, MSE and log score weights, it is clear that those
based on the MSE are considerably more volatile than those based on the log scores.
This is obvious for the short weight evaluation window, but also visible for the rolling
and expanding windows. It can be observed that for MSE, it is often the case that
short window weights go to the extremes, either zero or one. The rolling window,
although less erratic, shows abrupt changes and the expanding window often shows
visible steps. All this is not entirely surprising, given that this weight calculation
method only considers the first moment of the distribution. For the log score weights
on the other hand it seems that they are centred more around the equal weights, and
deviate when necessary.

In terms of assessing the performance of the individual models, the weights calcu-
lated using the short evaluation window reveal some evidence of the poor calibration
of the univariate bottom-up approach. For all datasets, at some point during the crisis
years, it is given zero or almost zero weight in the combination, while for some datasets
this happens even if the crisis years are ignored. This suggests that this method is very
inferior to the direct approach. The opposite happens for the multivariate bottom-up
methods. During the crisis years, it is the direct method that gets given almost zero
weight, while in the rest of the sample the weights mostly wander around the 0.5 of equal
weights. All this suggests that the considerably higher scores of the short evaluation
windows, with regard to the equal weights, are mainly due to the better performance
of the multivariate bottom-up models during the crisis years. From this perspective, it
would seem that expanding and long windows are not flexible enough to pick up all the
benefits of models that excel in very particular circumstances. Another thing that can
be appreciated is that, in the case of GDP, adding stochastic volatility to the BVARs
results in the models producing over-dispersed densities. This can be seen in that they
are consistently given a lower weight than the corresponding homoskedastic versions.

In conclusion, the main findings of this section are that, for this empirical im-
plementation the strengths of the multivariate bottom-up methods become apparent
during the crisis. In this perspective, to benefit fully from these strengths when using
forecast combination, it is necessary for the weighting strategy to be flexible enough to
allow for some considerable switching between models. Last but not least is the fact
that simply pooling all models together coupled with a short weight-evaluation window,

19That is, a weight of zero corresponds to giving all the weight to the direct approach. The figures
for the fixed-parameter models have been dropped for clarity and because the main findings are present
in their time-varying counterparts.
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Figure 4.3: GDP Combination Weights

Note: Estimated combination weights for the corresponding bottom-up method used in the one-step-ahead
forecast combination with the direct method. The estimated weighting schemes are based on mean square error
(MSE) and log scores. The estimation window lengths are one quarter (Short), eight quarters (Roll.) and all
the available sample (Exp.). Calculated over the 2001-2015 period. Shaded area highlights years 2008 and 2009.
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Figure 4.4: CPI Combination Weights

Note: Estimated combination weights for the corresponding bottom-up method used in the one-step-ahead
forecast combination with the direct method. The estimated weighting schemes are based on mean square error
(MSE) and log scores. The estimation window lengths are one quarter (Short), eight quarters (Roll.) and all
the available sample (Exp.). Calculated over the 2001-2015 period. Shaded area highlights years 2008 and 2009.
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although not always the best performer, produces very good results.

4.4 Conclusions

This chapter presents a methodology to use the information at a component level to
produce well-calibrated and competitive aggregate density forecasts. To do this, large
Bayesian VARs are used to extend to a probabilistic setting the bottom-up approach
used commonly for point forecasts. The implemented method is relatively simple, being
both flexible and computationally cheap and able to consider both fixed and time-
varying parameter VARs and stochastic volatility. Finally, the framework is extended
so as to benefit from the strengths of both the direct and bottom-up approaches through
forecast combination.

The empirical application using CPI and GDP data for France, Germany and the
United Kingdom shows that overall the multivariate methods are capable of producing
bottom-up forecasts that are calibrated and perform equally well or better than the
aggregate benchmarks. The results also suggest that there are additional gains from
allowing for time-varying parameters. The largest improvements, however, are obtained
from combining the direct and multivariate bottom-up methods. The analysis of the
results seems to suggest that this is mainly due to the impact of the financial crisis.
This would tend to support the claims by Bache et al. (2010) that components are
useful to explore events in the tails of the distribution.

In terms of future research, there are many possibilities. One is to produce the
estimates for the time-varying and stochastic volatility parameters, using alternative
methods which include using a full Bayesian approach and comparing the results with
those of the approximations. A natural extension would be to couple the method with
one designed to forecast the aggregation weights and use the augmented framework to
forecast at longer horizons. A third direction for research could be to incorporate useful
economic indicators and other relevant variables into the forecasting process in a way
similar to that of Banbura et al. (2010).
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Appendix:

4.A Additional Information from Empirical Application

Table 4.6: Tests on PITs for GDP Forecasts using Linear Opinion Pool Combinations

Germany France United Kingdom

Model Bkw.LR AD χ2 LB Bkw.LR AD χ2 LB Bkw.LR AD χ2 LB

Equal Weights:
Bottom-Up AR 0.13 0.00 0.01 0.02 0.00 0.18 0.11 0.12 0.04 0.01 0.02 0.06

Homsk. VAR 0.56 0.00 0.02 0.64 0.47 0.27 0.19 0.29 0.17 0.14 0.30 0.12
Homsk. TVP 0.76 0.00 0.04 0.69 0.41 0.21 0.55 0.22 0.15 0.07 0.24 0.13
Hetsk. VAR 0.05 0.00 0.00 0.81 0.91 0.04 0.53 0.35 0.05 0.01 0.31 0.06
Hetsk. TVP 0.72 0.00 0.00 0.80 0.79 0.11 0.05 0.33 0.03 0.01 0.15 0.07

DMS 0.72 0.00 0.01 0.44 0.53 0.35 0.78 0.33 0.13 0.04 0.27 0.10

All models 0.36 0.00 0.01 0.76 0.66 0.16 0.35 0.55 0.02 0.01 0.23 0.18

MSE based:
Bottom-Up AR 0.23 0.00 0.00 0.04 0.00 0.16 0.27 0.13 0.04 0.00 0.03 0.07

Homsk. VAR 0.62 0.00 0.00 0.53 0.48 0.02 0.03 0.19 0.08 0.00 0.07 0.05
Homsk. TVP 0.83 0.00 0.00 0.54 0.43 0.02 0.03 0.13 0.07 0.01 0.17 0.06
Hetsk. VAR 0.03 0.00 0.00 0.87 0.90 0.00 0.04 0.33 0.02 0.00 0.01 0.03
Hetsk. TVP 0.62 0.00 0.00 0.62 0.64 0.01 0.19 0.27 0.01 0.00 0.03 0.04

DMS 0.69 0.00 0.00 0.54 0.50 0.03 0.18 0.13 0.10 0.00 0.08 0.06

All models 0.16 0.00 0.00 0.89 0.57 0.00 0.05 0.54 0.01 0.00 0.00 0.07

Log score based:
Bottom-Up AR 0.12 0.00 0.01 0.02 0.00 0.23 0.49 0.13 0.03 0.01 0.02 0.06

Homsk. VAR 0.57 0.00 0.02 0.60 0.46 0.17 0.36 0.26 0.18 0.14 0.29 0.10
Homsk. TVP 0.80 0.00 0.05 0.65 0.41 0.18 0.47 0.20 0.16 0.06 0.30 0.12
Hetsk. VAR 0.41 0.00 0.00 0.53 0.88 0.05 0.58 0.28 0.07 0.01 0.15 0.05
Hetsk. TVP 0.96 0.00 0.00 0.55 0.81 0.12 0.70 0.28 0.06 0.01 0.14 0.05

DMS 0.67 0.00 0.07 0.41 0.53 0.32 0.62 0.29 0.14 0.04 0.24 0.08

All models 0.73 0.00 0.00 0.64 0.67 0.20 0.81 0.47 0.02 0.01 0.22 0.17

Note: P-values for the calibration tests on the probability integral transform (PIT) of the one-step-ahead
forecast combination of each model with the direct AR forecast for the three countries. The tests are the LR
test proposed by Berkowitz (2001) (Bkw.LR), the uniformity tests by Anderson-Darling (AD) and a Pearson’s
chi-squared (χ2), the Ljung-Box test (LB) for independence. The models are the bottom-up univariate model
(Bottom-up AR), the direct univariate AR model (Direct AR), the homoskedastic VAR, the homoskedastic
TVP-VAR, the heteroskedastic VAR, the heteroskedastic TVP-VAR and the result of dynamic model selection
over the four VARs (DMS). Calculated over the 2001-2015 period.
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Table 4.7: Tests on PITs for GDP Forecasts using Log Opinion Pool Combinations

Germany France United Kingdom

Model Bkw.LR AD χ2 LB Bkw.LR AD χ2 LB Bkw.LR AD χ2 LB

Equal Weights:
Bottom-Up AR 0.10 0.00 0.01 0.01 0.00 0.07 0.36 0.12 0.01 0.00 0.01 0.08

Homsk. VAR 0.46 0.00 0.01 0.52 0.32 0.13 0.19 0.28 0.11 0.15 0.50 0.11
Homsk. TVP 0.61 0.00 0.05 0.54 0.26 0.14 0.10 0.22 0.13 0.15 0.63 0.11
Hetsk. VAR 0.95 0.00 0.00 0.44 0.26 0.00 0.04 0.24 0.11 0.02 0.15 0.04
Hetsk. TVP 0.87 0.00 0.00 0.48 0.75 0.05 0.21 0.26 0.12 0.03 0.09 0.05

DMS 0.51 0.00 0.03 0.34 0.35 0.19 0.09 0.31 0.14 0.06 0.21 0.07

All models 0.58 0.00 0.02 0.54 0.01 0.00 0.02 0.35 0.01 0.00 0.09 0.17

MSE based:
Bottom-Up AR 0.20 0.00 0.00 0.03 0.00 0.06 0.07 0.13 0.01 0.00 0.00 0.07

Homsk. VAR 0.55 0.00 0.00 0.42 0.39 0.01 0.09 0.18 0.07 0.01 0.15 0.04
Homsk. TVP 0.79 0.00 0.00 0.43 0.33 0.01 0.14 0.13 0.08 0.01 0.26 0.04
Hetsk. VAR 0.83 0.00 0.00 0.87 0.75 0.00 0.00 0.24 0.06 0.00 0.02 0.02
Hetsk. TVP 0.95 0.00 0.00 0.73 0.81 0.01 0.01 0.21 0.03 0.00 0.25 0.03

DMS 0.62 0.00 0.00 0.40 0.42 0.02 0.09 0.13 0.14 0.00 0.14 0.05

All models 0.88 0.00 0.00 0.81 0.01 0.00 0.00 0.32 0.01 0.00 0.00 0.07

Log score based:
Bottom-Up AR 0.09 0.00 0.01 0.01 0.00 0.09 0.09 0.13 0.01 0.00 0.01 0.08

Homsk. VAR 0.46 0.00 0.01 0.49 0.30 0.11 0.21 0.25 0.11 0.14 0.38 0.10
Homsk. TVP 0.45 0.00 0.03 0.51 0.25 0.14 0.22 0.19 0.12 0.13 0.50 0.09
Hetsk. VAR 0.97 0.00 0.00 0.34 0.19 0.00 0.03 0.20 0.10 0.02 0.06 0.03
Hetsk. TVP 0.59 0.00 0.01 0.35 0.68 0.04 0.09 0.23 0.14 0.03 0.14 0.04

DMS 0.50 0.00 0.03 0.32 0.33 0.16 0.18 0.28 0.13 0.06 0.21 0.06

All models 0.40 0.00 0.07 0.44 0.00 0.00 0.02 0.30 0.01 0.00 0.25 0.16

Note: P-values for the calibration tests on the probability integral transform (PIT) of the one-step-ahead
forecast combination of each model with the direct AR forecast for the three countries. The tests are the LR
test proposed by Berkowitz (2001) (Bkw.LR), the uniformity tests by Anderson-Darling (AD) and a Pearson’s
chi-squared (χ2), the Ljung-Box test (LB) for independence. The models are the bottom-up univariate model
(Bottom-up AR), the direct univariate AR model (Direct AR), the homoskedastic VAR, the homoskedastic
TVP-VAR, the heteroskedastic VAR, the heteroskedastic TVP-VAR and the result of dynamic model selection
over the four VARs (DMS). Calculated over the 2001-2015 period.
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Table 4.8: Tests on PITs for CPI Forecasts using Linear Opinion Pool Combinations

Germany France United Kingdom

Model Bkw.LR AD χ2 LB Bkw.LR AD χ2 LB Bkw.LR AD χ2 LB

Equal Weights:
Bottom-Up AR 0.18 0.23 0.57 0.47 0.08 0.02 0.25 0.50 0.31 0.40 0.05 0.32

Homsk. VAR 1.00 0.04 0.19 0.84 0.52 0.02 0.20 0.45 0.27 0.55 0.45 0.49
Homsk. TVP 1.00 0.04 0.45 0.75 1.00 0.21 0.59 0.58 0.18 0.44 0.52 0.42
Hetsk. VAR 0.94 0.17 0.08 0.71 0.01 0.70 0.51 0.42 0.06 0.56 0.62 0.43
Hetsk. TVP 0.98 0.05 0.25 0.68 0.50 0.06 0.31 0.20 0.04 0.65 0.32 0.43

DMS 0.98 0.34 0.72 0.77 0.61 0.42 0.85 0.48 0.19 0.51 0.64 0.41

All models 0.98 0.05 0.18 0.56 0.62 0.04 0.24 0.64 0.12 0.71 0.42 0.29

MSE based:
Bottom-Up AR 0.36 0.03 0.06 0.56 0.11 0.00 0.02 0.36 0.27 0.08 0.03 0.39

Homsk. VAR 0.90 0.00 0.11 0.77 0.85 0.00 0.05 0.58 0.04 0.01 0.00 0.63
Homsk. TVP 0.95 0.00 0.00 0.86 0.90 0.00 0.04 0.77 0.03 0.00 0.00 0.53
Hetsk. VAR 0.87 0.01 0.14 0.47 0.00 0.00 0.02 0.14 0.00 0.01 0.00 0.51
Hetsk. TVP 0.87 0.00 0.01 0.56 0.17 0.00 0.00 0.25 0.00 0.05 0.01 0.60

DMS 0.93 0.02 0.04 0.51 0.24 0.00 0.00 0.60 0.03 0.03 0.03 0.67

All models 0.57 0.00 0.00 0.53 0.10 0.00 0.00 0.35 0.02 0.01 0.00 0.52

Log score based:
Bottom-Up AR 0.16 0.20 0.31 0.46 0.07 0.02 0.17 0.54 0.22 0.55 0.36 0.24

Homsk. VAR 1.00 0.05 0.21 0.85 0.53 0.02 0.21 0.46 0.23 0.57 0.89 0.53
Homsk. TVP 1.00 0.05 0.47 0.76 0.99 0.19 0.54 0.59 0.15 0.50 0.96 0.44
Hetsk. VAR 0.96 0.20 0.37 0.73 0.01 0.64 0.77 0.41 0.04 0.47 0.52 0.42
Hetsk. TVP 0.98 0.07 0.24 0.70 0.63 0.09 0.36 0.20 0.03 0.75 0.45 0.41

DMS 0.98 0.40 0.82 0.78 0.60 0.47 0.78 0.47 0.16 0.50 0.56 0.43

All models 0.99 0.05 0.08 0.55 0.55 0.05 0.33 0.62 0.14 0.70 0.58 0.25

Note: P-values for the calibration tests on the probability integral transform (PIT) of the one-step-ahead
forecast combination of each model with the direct AR forecast for the three countries. The tests are the LR
test proposed by Berkowitz (2001) (Bkw.LR), the uniformity tests by Anderson-Darling (AD) and a Pearson’s
chi-squared (χ2), the Ljung-Box test (LB) for independence. The models are the bottom-up univariate model
(Bottom-up AR), the direct univariate AR model (Direct AR), the homoskedastic VAR, the homoskedastic
TVP-VAR, the heteroskedastic VAR, the heteroskedastic TVP-VAR and the result of dynamic model selection
over the four VARs (DMS). Calculated over the 2001-2015 period.
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Table 4.9: Tests on PITs for CPI Forecasts using Log Opinion Pool Combinations

Germany France United Kingdom

Model Bkw.LR AD χ2 LB Bkw.LR AD χ2 LB Bkw.LR AD χ2 LB

Equal Weights:
Bottom-Up AR 0.03 0.15 0.37 0.43 0.02 0.02 0.25 0.56 0.16 0.67 0.15 0.31

Homsk. VAR 0.89 0.19 0.86 0.80 0.16 0.05 0.31 0.45 0.64 0.92 0.81 0.49
Homsk. TVP 0.92 0.24 0.38 0.66 0.73 0.17 0.18 0.52 0.46 0.69 0.60 0.41
Hetsk. VAR 0.88 0.37 0.54 0.72 0.83 0.37 0.59 0.29 0.29 0.67 0.94 0.41
Hetsk. TVP 0.98 0.21 0.73 0.67 0.87 0.05 0.16 0.13 0.27 0.78 0.43 0.46

DMS 0.87 0.64 0.91 0.79 0.83 0.14 0.43 0.46 0.54 0.78 0.43 0.42

All models 0.82 0.06 0.01 0.50 0.43 0.00 0.09 0.65 0.36 0.62 0.80 0.29

MSE based:
Bottom-Up AR 0.14 0.02 0.02 0.53 0.07 0.00 0.01 0.42 0.41 0.08 0.04 0.38

Homsk. VAR 0.95 0.00 0.01 0.75 0.66 0.00 0.05 0.58 0.09 0.01 0.00 0.65
Homsk. TVP 0.99 0.01 0.02 0.82 1.00 0.00 0.02 0.74 0.06 0.00 0.00 0.53
Hetsk. VAR 0.90 0.01 0.00 0.48 0.06 0.00 0.00 0.26 0.01 0.02 0.00 0.50
Hetsk. TVP 0.97 0.00 0.00 0.58 0.75 0.00 0.00 0.13 0.02 0.06 0.00 0.61

DMS 0.94 0.02 0.01 0.52 0.72 0.00 0.01 0.55 0.10 0.04 0.03 0.67

All models 0.89 0.00 0.00 0.48 0.77 0.00 0.00 0.54 0.25 0.00 0.00 0.46

Log score based:
Bottom-Up AR 0.02 0.13 0.08 0.42 0.03 0.03 0.27 0.59 0.05 0.75 0.18 0.19

Homsk. VAR 0.86 0.24 0.94 0.78 0.17 0.04 0.33 0.46 0.50 0.75 0.80 0.51
Homsk. TVP 0.88 0.25 0.42 0.67 0.77 0.16 0.26 0.53 0.33 0.60 0.97 0.42
Hetsk. VAR 0.86 0.39 0.52 0.73 0.84 0.53 0.80 0.29 0.13 0.48 0.14 0.39
Hetsk. TVP 0.96 0.24 0.92 0.68 0.83 0.09 0.35 0.14 0.12 0.57 0.45 0.43

DMS 0.84 0.60 0.94 0.79 0.87 0.15 0.25 0.46 0.44 0.66 0.89 0.43

All models 0.75 0.07 0.04 0.49 0.43 0.01 0.09 0.66 0.27 0.60 0.56 0.23

Note: P-values for the calibration tests on the probability integral transform (PIT) of the one-step-ahead
forecast combination of each model with the direct AR forecast for the three countries. The tests are the LR
test proposed by Berkowitz (2001) (Bkw.LR), the uniformity tests by Anderson-Darling (AD) and a Pearson’s
chi-squared (χ2), the Ljung-Box test (LB) for independence. The models are the bottom-up univariate model
(Bottom-up AR), the direct univariate AR model (Direct AR), the homoskedastic VAR, the homoskedastic
TVP-VAR, the heteroskedastic VAR, the heteroskedastic TVP-VAR and the result of dynamic model selection
over the four VARs (DMS). Calculated over the 2001-2015 period.
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A Procedure for Obtaining Combined Components’ Density Forecast.

To produce the combined disaggregate density forecasts for an approach the procedure
is as follows:

1. Simulate the combined aggregate density by producing B realizations, the same
number as that used to produce the bottom-up forecasts.

2. Sort the draws from the simulated combined density, QC,t+1 =
{
Q

(1)
C,t+1, Q

(2)
C,t+1,

. . . , Q
(B)
C,t+1

}
by value from smallest to largest.

3. Sort the draws from the aggregate forecast resulting from the bottom-up ap-
proach, QI,t+1.

4. Use the combination procedure presented in Chapter 2 to reconcile the disaggreg-
ate forecasts corresponding to the smallest value of QI,t+1 with the smallest of
QC,t+1 by assigning total confidence to the latter.

5. Do the same with the second smallest value and so on for all B realizations.



Chapter 5

Summary

This thesis centres around forecasting economic aggregates and their components. The
focus is on improving overall performance through the development of applied methods
that benefit from the strengths of both direct and bottom-up approaches. The research
is divided into three chapters. The first two concentrate on point forecasts, while the
third shifts the attention towards density forecasts.

Chapter 2 presents a framework for jointly combining forecasts for an aggregate,
any intermediate sub-aggregations and the components from any number of measure-
ment approaches, based on the subjective reliability of each of the forecasts involved.
The rationale for doing this is that incorporating the coherence that is required by the
aggregation structure explicitly could lead to improvements in overall accuracy. By
accounting for the reliability of each forecast, the objective is for the strengths of the
better-performing ones to spill over to the others. An empirical application using CPI
data from France, Germany and the United Kingdom suggests that this is in fact the
case. The results from the exercise show that the overall forecasting accuracy of the
weaker aggregation approaches often improves without any significant effects on the
other forecasts. Also, although the performance of different models varies greatly, de-
pending on the country, aggregation approach and whether the years from the financial
crisis are included in the evaluation period, the multi-level combination method often
performs at least as well as the best-performing single methods and in most cases sig-
nificantly better than the median of the single models, both in terms of aggregate and
disaggregate accuracy. This would suggest that it retains the desirable feature from
traditional forecast combination methods of safeguarding against committing large mis-
takes because of uncertainty regarding the best model.

In Chapter 3 a method to forecast economic aggregates using purpose-built group-
ings of components is presented. The objective in developing such a method is to
improve the performance of any forecasting model by transforming the data in a way
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that avoids the problems associated with disaggregate misspecification, while still al-
lowing for distinct disaggregate dynamics to be picked up in the process. The method
relies on using Agglomerative Hierarchical Clustering to reduce the dimension of the
problem by choosing a subset of feasible groupings based on the commonality among
the different components. A single definitive forecast is then produced, based on this
subset. An empirical application of the method using CPI data for France, Germany
and the United Kingdom is performed to evaluate the outcome for many different spe-
cifications. The results show that some of the specifications often perform better than
the best benchmark methods. The methods that perform well include a couple that aim
to select a unique grouping and many that use a combination of all the groupings in the
initial subset. The good performance of the latter suggests that expanding the pool of
forecasts by trying different combinations of components provides a way of benefiting
from the strengths of forecast combination without necessarily increasing the number
of forecasting models. The results are robust to whether the financial crisis years are
included in the evaluation sample or not.

In Chapter 4 the attention is drawn to producing density forecasts for economic
aggregates based on the density forecasts for their components. The motivation for
doing this is born of the idea that accounting for the dynamics of the underlying
components can contribute to a better understanding of a wide range of uncertainties.
With the aim of incorporating the dynamics of the components, but also the interaction
between them, a framework that models the whole multivariate process is developed.
An empirical application using CPI and GDP data from France, Germany and the
United Kingdom shows that the multivariate methods are capable of producing bottom-
up forecasts that are calibrated and perform equally well or better than comparable
aggregate methods. The differences between the results for GDP and CPI, where for
the former the effects of the most recent financial crisis are significantly larger both
in magnitude and persistence, suggest that the strengths of the multivariate methods
might only emerge if the interactions among variables are strong enough. Based on
these results, which involve acknowledging that the strengths of the direct and bottom-
up approaches may appear under different circumstances, the framework is extended
to allow combining both. The outcome from doing so in the same empirical exercise
are results that are significantly better in terms of aggregate accuracy than those of
the direct method, both for GDP and CPI.

To conclude, this research shows that it is possible to benefit from alternative meas-
urement approaches and aggregations even when these, taken separately, cannot solve
the problem at hand. The gains from using these methods will depend both on how
they are specified and on the particular dataset. The results from the empirical ap-
plications suggest that going for many specifications and combining the results is an
effective way to avoid making large forecasting errors.
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