
Queen Mary University of London

School of Electronic Engineering and Computer

Science

Automatic detection and
classification of bird sounds in

low-resource wildlife audio datasets

Gnostothea-Veroniki (Veronica) Morfi

Submitted in partial fulfilment of the requirements
of the Degree of Doctor of Philosophy

2019

Statement of Originality

I, Gnostothea-Veroniki Morfi, confirm that the research included within

this thesis is my own work or that where it has been carried out in

collaboration with, or supported by others, that this is duly acknowledged

below and my contribution indicated. Previously published material is

also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work

is original, and does not to the best of my knowledge break any UK law,

infringe any third partys copyright or other Intellectual Property Right,

or contain any confidential material.

I accept that the College has the right to use plagiarism detection

software to check the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the

award of a degree by this or any other university.

The copyright of this thesis rests with the author and no quotation

from it or information derived from it may be published without the prior

written consent of the author.

Signature:

Date: 12/03/2019

3

Details of collaboration and publications:

Deductive refinement of species labelling in weakly labelled birdsong

recordings. In 2017 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP) Morfi and Stowell (2017).

Data-efficient weakly supervised learning for low-resource audio event

detection using deep learning. In Proceedings of the Detection and Clas-

sification of Acoustic Scenes and Events (DCASE) 2018 Workshop Morfi

and Stowell (2018a).

Deep learning for audio event detection and tagging on low-resource

datasets. In Applied Sciences. Morfi and Stowell (2018b).

NIPS4Bplus: a richly annotated birdsong audio dataset. Under re-

view in PeerJ CS. Morfi et al. (2018).

4

Abstract

There are many potential applications of automatic species detection

and classification of birds from their sounds (e.g. ecological research, bio-

diversity monitoring, archival). However, acquiring adequately labelled

large-scale and longitudinal data remains a major challenge, especially

for species-rich remote areas as well as taxa that require expert input

for identification. So far, monitoring of avian populations has been per-

formed via manual surveying, sometimes even including the help of vol-

unteers due to the challenging scales of the data. In recent decades, there

is an increasing amount of ecological audio datasets that have tags as-

signed to them to indicate the presence or not of a specific bird species.

However, automated species vocalisation detection and identification is a

challenging task. There is a high diversity of animal vocalisations, both

in the types of the basic syllables and in the way they are combined.

Also, there is noise present in most habitats, and many bird communi-

ties contain multiple bird species that can potentially have overlapping

vocalisations.

In recent years, machine learning has experienced a strong growth,

due to increased dataset sizes and computational power, and to advances

in deep learning methods that can learn to make predictions in extremely

nonlinear problem settings. However, in training a deep learning system

to perform automatic detection and audio tagging of wildlife bird sound

scenes, two problems often arise. Firstly, even with the increased amount

of audio datasets, most publicly available datasets are weakly labelled,

having only a list of events present in each recording without any tempo-

ral information for training. Secondly, in practice it is difficult to collect

enough samples for most classes of interest. These problems are partic-

5

ularly pressing for wildlife audio but also occur in many other scenarios.

In this thesis, we investigate and propose methods to perform audio

event detection and classification on wildlife bird sound scenes and other

low-resource audio datasets, such as methods based on image processing

and deep learning. We extend deep learning methods for weakly labelled

data in a multi-instance learning and multi task learning setting. We

evaluate these methods for simultaneously detecting and classifying large

numbers of sound types in audio recorded in the wild and other low-

resource audio datasets.

6

Acknowledgements

As Kavafis wrote in his poem ‘Ithaka’:

As you set out for Ithaka

hope the voyage is a long one,

full of adventure, full of discovery.

The journey is always more important than the destination. And it’s

most enjoyable when you have people around you to share it with. And

what a crowd of amazing people I had.

First, the C4DM crew, who are brilliant, supporting people, there

was never a boring day spent in their presence. And most importantly

out of them, I’d like to say a huge thank you to my supervisor Dan

Stowell, that also doubled as my therapist. I know sometimes my ex-

treme optimism may make me seem like I got everything under control

but whenever I was in doubt he was always there to put me back on

track. Another special shout-out to my lunch group: ladies thank you

for talking about anything and everything else except for work.

Next up, I’d like to say a special thank you to my dance crew and

family away from home: DGC. I was never one for extra-curriculum

hobbies but during my PhD I realised how important they are to keep

you sane. Also, having to dance K-pop in the middle of a crowded London

square or street is one thing I never thought I’d be doing, yet it’s the one

thing that makes me feel more alive than ever.

I’d also like to thank my other extra-curriculum hobby group, my

D&D family. It’s truly the best thing anyone can do when staying at

7

home. Thank you for allowing me to save the world a couple of times

and letting my imagination rage.

Finally, it wouldn’t be a proper PhD acknowledgements if I didn’t

thank my family. My dad once told me that studying was my job and

I shouldn’t worry about anything else. I was 8 years old and I think I

took it more literally than he intended to. So... I made studying my job.

And what a great job it is; full of adventure, full of discovery. Here’s to

many more research years to come.

8

Licence

This work is copyright c©2019 Veronica Morfi, and is licensed under the

Creative Commons Attribution-Share Alike 4.0 International Licence.

To view a copy of this licence, visit https://creativecommons.org/

licenses/by-sa/4.0/

9

‘Life is problems. Living is solving problems.’

Raymond E. Feist

10

Contents

Statement of Originality 3

Abstract 5

Acknowledgements 7

Licence 9

1 Introduction 23

1.1 Motivation . 23

1.2 Aim . 25

1.3 Thesis Structure . 26

1.4 Contributions . 27

1.5 Publications . 28

2 Background 30

2.1 Machine Learning . 34

11

12 CONTENTS

2.1.1 Machine Learning Algorithms 34

2.1.2 Feature Transformations of Input Data 36

2.2 Neural Networks . 37

2.2.1 Deep Learning . 39

2.2.2 Multilayer Perceptron 40

2.2.3 Convolutional Neural Network 41

2.2.4 Recurrent Neural Network 43

2.3 Audio Tagging . 46

2.4 Weak-to-strong prediction 48

2.5 Multi Instance Learning 50

2.6 Low-Resource Data Scenarios 54

2.7 Multi-Task Learning . 56

2.8 Strategy . 59

3 Automatic Segmentation-Classification of Bird Vocalisa-

tions 61

3.1 Segmentation . 62

3.1.1 Spectrogram Denoising 66

3.1.2 Evaluation of Segmentation on Natural Data . . . 68

3.2 Classification . 70

3.2.1 Deductive Label Refinement 71

CONTENTS 13

3.2.2 Convolutional Neural Network 85

4 A Richly-Annotated Birdsong Audio Dataset 90

4.1 Audio Data Collection 92

4.2 Annotations . 94

4.2.1 Tags . 94

4.2.2 Temporal Annotations 97

5 Deep Learning for Detection and Classification of Bird

Sounds via Task Factorisation 102

5.1 Pilot Study on Full Transcription Using Current Deep

Learning Architectures 104

5.2 Factorisation . 109

5.3 WHEN: Audio Event Detection 111

5.3.1 Neural Network Architecture 112

5.3.2 Loss Function for an MIL setting 114

5.3.3 Half and Half Training 118

5.4 WHO: Audio Tagging 119

5.4.1 Neural Network Architecture 119

5.5 Training Methods . 121

5.5.1 Separate Training 122

5.5.2 Joint Training . 123

5.5.3 Tied Weights Training 125

5.6 Evaluation . 126

5.6.1 Training Setup 129

5.6.2 Results . 130

6 Conclusions and Further Work 138

6.1 Summary of Thesis Contributions 139

6.2 Future Work . 140

6.3 Closing Remarks . 141

Bibliography 142

14

List of Tables

3.1 Evaluation of segmentation when all species labels are con-

sidered one common label (bird). 70

3.2 Classification Results for D. 80

3.3 Classification Results for D1000. 80

3.4 Evaluation of classification when we consider the segments

produced by the segmentation method to be correct. . . 83

3.5 Overall metrics for evaluation of segmentation and classi-

fication. 84

3.6 Overall metrics for evaluation of segmentation and classi-

fication. 84

4.1 NIPS4Bplus temporal annotations of the recording de-

picted in Figure 4.5. 99

15

5.1 WHEN network architecture. Size refers to either kernel

shape or number of units. #Fmaps is the number of fea-

ture maps in the layer. Activation denotes the activation

used for the layer and l2 reg the amount of l2 kernel reg-

ularisation used in the layer. 113

5.2 WHO network architecture. Size refers to either kernel

shape or number of units. #Fmaps is the number of fea-

ture maps in the layer. Activation denotes the activation

used for the layer and l2 reg the amount of l2 kernel reg-

ularisation used in the layer. 120

5.3 Area under the ROC curve (AUC) for the predictions of all

training approaches on NIPS4B data. [WHEN: xx; WHO:

yy] indicate the weights xx for WHEN task loss and yy for

WHO task loss that were used during joint training. Best

values are marked in bold. 136

5.4 Area under the ROC curve (AUC) for the predictions of all

training approaches on DCASE data. [WHEN: xx; WHO:

yy] indicate the weights xx for WHEN task loss and yy for

WHO task loss that were used during joint training. Best

values are marked in bold. 136

16

List of Figures

2.1 Artificial neural network that consists of an input layer, a

single hidden layer and an output layer, each consisting of

a different number of neurons. 38

2.2 A multilayer perceptron (MLP) with multiple hidden layers. 41

2.3 A convolutional neural network (CNN). Image credit to

Wikipedia. 42

2.4 A recurrent neural network (RNN) with one-way connec-

tions and its unfolded form. (x: input, h: hidden layers,

o: ouput, V: connection of previous’ hidden layer’s output

to next one, U and W: weight matrices). Image credit to

François Deloche. 44

2.5 Long short-term memory (LSTM) unit. Image credit to

François Deloche. 45

2.6 Gated recurrent unit (GRU). Image credit to François De-

loche. 46

2.7 Examples of positive and negative bags of instances in a

multi instance learning setting. 51

17

18 LIST OF FIGURES

2.8 Hard parameter sharing for multi-task learning in deep

neural networks. 58

2.9 Soft parameter sharing for multi-task learning in deep neu-

ral networks. 59

3.1 Example cases for the classification process. Case 1 de-

scribes what happens when there is an unallocated label

and a segment with MNF label. Case 2 describes what

happens when there is an unallocated label and multiple

segments have one of the other labels. 77

3.2 An example of inverse matching. Col 1: segment that

goes through the inverse matching method. Row 1, cols

2-4: possible matches returned from match template. Row

2: Inverse matching tries to match the whole segment of

col 2 to col 1 segment. Row 3: no match found. Row 4:

Inverse matching tries to match the segment of col 3 to

col 1 segment. Row 5: no match found. Row 6: Inverse

matching tries to match the segment of col 4 to col 1 seg-

ment. Row 7: match found, the labels of the recording

containing this segments will be used in deductive label

refinement (Algorithm 1). 82

3.3 The structure of the convolutional neural network used for

bird vocalisation classification. 86

3.4 Examples segments that make up the train, validation and

test datasets. 87

LIST OF FIGURES 19

3.5 Loss value of CNN for the train dataset (blue line) and

the validation dataset (red line). 89

4.1 Regions where the dataset recordings were collected from.

Green indicates Central France region Haute-Loire. Or-

ange indicates Southern France regions Pyrénées-Orientales,

Aude and Hérault. Blue indicates Southern Spain regions

Granada, Jaén and Almeria. 94

4.2 Number of occurrences of each sound type in recordings

collected from Spain, Southern France and Central France. 95

4.3 Distribution of number of active classes in dataset record-

ings. 96

4.4 Co-occurrence heat map for the labels of the dataset. . . 97

4.5 Mel-band spectrogram of a recording in NIPS4Bplus and

the visual representation of the corresponding temporal

annotations as noted in Table 4.1. 98

4.6 Distribution of simultaneous number of active classes on

the total duration of the recordings. 101

5.1 CRNN architecture used for our pilot studies on the NIPS4Bplus

data. First layers perform convolutional transformations

and max pooling, followed by the recurrent part of the net-

work that consists of bidirectional GRUs, and the dense

layers that predict the final transcription. 105

20 LIST OF FIGURES

5.2 A 5-layer dense block used in our implementation of a

DenseNet for our pilot studies on the NIPS4Bplus data.

Each layer takes all preceding feature maps as input. Im-

age credit to (Huang et al., 2017) 106

5.3 A deep DenseNet with three dense blocks used for our pi-

lot studies on the NIPS4Bplus data. The layers between

two adjacent blocks are referred to as transition layers and

change feature map sizes via convolution and pooling. Im-

age credit to (Huang et al., 2017) 108

5.4 Proposed factorisation of the full transcription task into

multiple simpler tasks. The WHEN network performs au-

dio event detection considering all labels as one label. The

WHO network performs audio tagging for all available la-

bels. The predictions of WHEN and WHO produce an

intermediate transcription that is used to boost the per-

formance of the full transcription network. 110

5.5 Separate training. Networks WHEN and WHO are de-

fined and trained independently of one another for differ-

ent tasks and with different types of inputs. 123

5.6 Joint training. A single network is defined for both tasks

of audio event detection and audio tagging. The network

consists of early shared convolutional layers between the

tasks and separate task specific layers that produce the

predictions. A single input type and two task specific loss

functions are used while training. 124

5.7 Tied weights training. A network defined per task. The

weights of the initial convolutional layers are shared be-

tween the tasks. Different input is used for training each

task. 126

5.8 Predicted transcription of a recording from the testing set

on the NIPS4B dataset. 5.8a depicts the results of our

WHEN network trained in a false strong labelling setting.

5.8b depicts the results of it trained with max loss. 5.8c

depicts the results of it trained with MMM loss. 132

5.9 Comparison of the progress of F1 score for our testing

sets (a)NIPS4Bplus and (b)DCASE, through epochs for

different loss functions, max mean min (MMM), max, max

mean and max min. 133

21

22

Chapter 1

Introduction

1.1 Motivation

The increasing human impact on the Earth’s ecosystems has led to

the massive eradication and fragmentation of natural habitats (Vitousek

et al., 1997). This change, along with the evolution of the climate sys-

tem, has accelerated the extinction of several species (Chapin et al., 2000)

and caused the endangerment of many ecological processes (Fearn et al.,

2008, 2010).

The complexity and increasing fragility of the interactions between

human and nature require new types of investigation if we are to be able

to face the challenge of environmental surprises and take into account

legacy effects (Liu et al., 2007). One recent approach to deal with these

challenges is acoustic ecology (Pijanowski et al., 2011). This area of

research focuses on studying of the soundscape, which is the acoustic

23

24 Chapter 1. Introduction

footprint of a landscape including its plants and animals, and may well

be a source of a vast amount of information that could be used efficiently

in monitoring schemes.

The application of soundscape analysis could enable us to efficiently

investigate the dynamics of animal behavior, particularly when habitats

are modified, fragmented, or destroyed. Birds are good bioindicators of

such changes and bird populations have long been regarded as a good

indicator of the broad state of wildlife, due to the fact that they oc-

cupy a wide range of habitats and respond to environmental pressures

that also operate on other groups of wildlife. Many studies have in-

deed focused on the monitoring of bird species’ richness and distribution

in an attempt to highlight differences in environmental health (Andrén,

1994; MacArthur et al., 1962). Because they are a well-studied taxo-

nomic group, drivers of change for birds are better understood than for

other species groups, which enables better interpretation of any observed

changes (Bardeli et al., 2010).

However, acquiring adequately labelled large-scale and long-term bird

soundscape data remains a major challenge, especially for species-rich

remote areas as well as taxa that require expert input for identifica-

tion (Ferraz et al., 2008). So far, monitoring of avian populations has

been performed via manual surveying, often even including the help of

expert volunteers due to the challenging scales of the data (Johnston

et al., 2014; Kamp et al., 2016). In recent decades, some ecological au-

dio datasets have been published that have tags assigned to them to

indicate the presence or absence of specific bird species. Despite these

1.2. Aim 25

datasets, that could be used to train an automatic system, automated

detection and classification of vocalisations remains a challenging task.

There is a high diversity of animal vocalisations, both in the types of the

basic syllables and in the way they are combined (Scott Brandes, 2008;

Kroodsma, 2005). Also, there is noise present in most habitats, and many

bird communities contain multiple bird species that can potentially have

overlapping vocalisations (Luther, 2008; Luther and Wiley, 2009; Pacifici

et al., 2008). All these limitations (i.e. lack of data, complex and over-

lapping vocalisations, habitat noise) make automatic monitoring of avian

populations challenging. In the present work we address these challenges,

and in particular we develop approaches that can be used whenever there

is a lack of soundscape data by applying machine learning techniques to

automatically detect bird vocalisations in wildlife recordings and classify

them to an originating species.

1.2 Aim

The aim of this work is to develop machine learning methods for achieving

automatic wildlife monitoring of songbirds by using soundscape audio

recordings. Due to the nature of songbird soundscape data these methods

should to be able to adjust to the low quantity of recordings, that may

contain complex or overlapping vocalisations from multiple species, as

well as the low quality of metadata such as annotations. These methods

should also be able to generalise to other types of audio with similar

characteristics.

26 Chapter 1. Introduction

1.3 Thesis Structure

Chapter 2 introduces the main bodies of existing research which we will

build upon. It begins by considering the previously proposed

machine learning approaches for audio event detection and

audio tagging for audio, speech and music, and then surveys

relevant research on songbirds vocalisations. The chapter

concludes by reflecting on this existing work to consider a

strategy for achieving the research aim.

Chapter 3 focuses on machine learning approaches used in image pro-

cessing for image denoising and template matching in order

to detect and classify, respectively, songbird vocalisations

from their spectrogram. Finally, the chapter highlights the

limitations of these methods.

Chapter 4 introduces NIPS4Bplus, the first ecological audio dataset

that contains bird species tags and temporal annotations,

and can be used for training supervised automated methods

that perform bird vocalisation detection and classification

and can also be used for evaluating methods that use only

audio tags or no annotations for training. This chapter de-

scribes the process of collecting and selecting the recordings

comprising the dataset, and then presents our approach of

acquiring the tags and temporal annotations. Finally, it pro-

vides statistical information about the labels and recordings

comprising the dataset.

1.4. Contributions 27

Chapter 5 investigates deep learning approaches that can be used for

audio event detection and classification and how factorising

the task into multiple less complex tasks can achieve a bet-

ter performance. Different settings of deep learning, such

as multi instance learning (MIL) and multi-task learning

(MTL) are combined and evaluated.

Chapter 6 concludes the thesis, drawing comparisons and contrasts be-

tween the proposed methods and their predecessors, and

considering the prospects for further research.

1.4 Contributions

The principal contributions of this thesis are:

• Chapter 3: a two step process, of detection/segmentation and clas-

sification, that can be applied to recordings with only audio tags

present in them in order to refine a list of possible labels for each

audio event. This process consists of a novel detection of areas

of interest, acquiring the segments in question and a novel classi-

fication approach via deductive label refinement using a template

matching algorithm.

• Chapter 4: the first ecological audio dataset that contains bird

species tags and temporal annotations.

• Chapter 5: a novel loss function for deep learning in a multi-

instance learning (MIL) setting for audio event detection that takes

28 Chapter 1. Introduction

into consideration every instance prediction in order to be com-

puted and can pick up harder-to-detect audio events, outperform-

ing the state-of-the-art MIL loss functions.

• Chapter 5: an approach to decompose a complex sound scene tran-

scription task into tractable sub-tasks which are then feasible to

train from limited data.

• Chapter 5: a novel multi-task learning (MTL) deep neural network

architecture that maintains the advantages of joint training and

also incorporates any advantages of independently training for each

task.

1.5 Publications

Portions of the work detailed in this thesis have been presented in na-

tional and international scholarly publications, as follows (journal publi-

cations highlighted in bold):

• Chapter 3: most of the work described in this chapter was presented

in the 42nd IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP) (Morfi and Stowell, 2017).

• Chapter 4: the detailed description of the NIPS4Bplus dataset is

currently under review in PeerJ Computer Science (Morfi et al.,

2018).

1.5. Publications 29

• Chapter 5: Section 5.3 on the new multi instance learning loss

function was presented in the 2018 Detection and Classification of

Acoustic Scenes and Events (DCASE) workshop (Morfi and Stow-

ell, 2018a).

• Chapter 5: The overall task factorisation work described in this

chapter was published in the Applied Sciences Special Issue on

Computational Acoustic Scene Analysis (Morfi and Stowell,

2018b).

Furthermore, an application of an adaptive Fourier transform for in-

dividual bird indentification was accepted and presented in the Inter-

national Speech Communication Association Conference (Interspeech)

(Stowell et al., 2016a). As this in not related with our main research

focus, a more detailed description is not included in this thesis.

Chapter 2

Background

The potential applications of automatic species detection and classifica-

tion of birds from their sounds are many: ecological research, soundscape

analysis, biodiversity monitoring, archival (Dawson and Efford, 2009;

Lambert and McDonald, 2014; Drake et al., 2016; Sovern et al., 2014;

Marques et al., 2013). Automatic bird soundscape analysis could enable

us to efficiently investigate the dynamics of behaviour in bird popula-

tions. By understanding their response to environmental pressures we

could generalise those observations to other groups of wildlife. With

birds being one of the most well-studied taxonomic groups, being able to

detect and classify bird vocalisations automatically will allow for more

progress in the domain of automatic soundscape monitoring.

In Section 1.1, we described some of the difficulties of acquiring ade-

quately replicated large-scale and longitudinal data, especially for remote

areas and species-rich taxa. Manual surveying is still one of the most

30

31

common ways of avian population monitoring, which requires extensive

manual labour. For many vocal taxa such as birds (Aide et al., 2013;

Furnas and Callas, 2015; Campos Cerqueira and Aide, 2016; Frommolt,

2017), insects (Fischer et al., 1997) and bats (Mac Swiney Gonzlez et al.,

2008; Armitage and Ober, 2010), automated audio recording offers a

powerful tool for acoustic monitoring schemes. Currently, the bottleneck

is not so much automated data collection for monitoring, as there is a

rapid build-up of audio databases (Ribeiro Jr et al., 2017; Wrege et al.,

2017; Stowell et al., 2016b), but more the process of detecting species vo-

calisations over extensive recordings covering tens of thousands of hours.

In recent decades, there has been an increasing amount of ecological

audio datasets that have tags assigned to them to indicate the presence

or not of a specific bird species. Utilising these datasets and the provided

tags, some research has investigated automatically determining if a bird

is active in a recording (i.e. bird audio detection) (Grill and Schlüter,

2017; Pellegrini, 2017; Adavanne et al., 2017; Cakir et al., 2017; Thakur

et al., 2017; Kong et al., 2017a) or which species of birds are vocalising in

a recording (i.e. bird species classification) (Goëau et al., 2017; Salamon

and Bello, 2017; Knight et al., 2017). However, the methods proposed for

either task typically do not predict any information about the temporal

location of each audio event (bird vocalisation) or the number of its

occurrences in a recording.

In this thesis, we will refer to labels that provide information only

about the absence/presence of an audio event in a recording as weak

labels or tags of a recording. By contrast, temporal annotations that

32 Chapter 2. Background

provide information about the temporal location of an audio event will

be referred to as strong labels. This terminology is adopted from work

on multi instance learning to which we turn in Section 2.5. In the rest

of this thesis we will refer to datasets that only have this type of weak

labels, may contain rare events and have limited amounts of training data

as low-resource datasets (see Section 2.6 for a detailed description).

The focus of this thesis is on birdsong detection and classification.

As noted, there are many difficulties that are posed due to the nature of

these tasks, with recordings from nature having vocalisations of differ-

ent bird species overlapping in time, and even recordings deriving from

a single forest containing up to hundreds of different bird species, while

the dataset size can be very small in comparison. By nature, the classes

will be quite unbalanced with some birds being active only in a couple

of recordings. Furthermore, annotating ecological data with temporal

annotations to train sound event detectors and classifiers is a time con-

suming task involving a lot of manual labour and expert annotators, due

to the high diversity of animal vocalisations and the noise present in most

habitats. These factors make detailed annotations laborious to gather,

while on the other hand acquiring audio tags takes much less time and

effort, since the annotator has to only mark the active sound event classes

in a recording and not their exact boundaries. This means that many

ecological datasets lack temporal annotations of bird vocalisations, which

is unfortunate since they are vital to the training of automated methods

that predict the temporal annotations which could potentially then solve

the issue of needing a human annotator. Also, vocalisations in reference

33

databases (e.g. Xeno-Canto: https://www.xeno-canto.org/) are typi-

cally based on targeted or manually curated recordings, hence lack both

biological and technical variation present in field data to be classified.

Our aim is to implement a polyphonic birdsong detector and classifier

-more than one species may be active at a specific time instance- that

given a birdsong dataset with only weak labels for the training set, can

automatically predict the temporal information of a bird vocalisation

(start and end time) and classify the species vocalising.

To establish the basis upon which this thesis is developed, in the rest

of this chapter we introduce the main research areas which are related to

our aim. We start with a brief introduction in the field of machine learn-

ing and deep learning that provides different methods and approaches

for audio tasks relevant to our research. We then introduce the task of

audio tagging and describe techniques that can predict the weak labels

of recordings. We continue with methods performing weak-to-strong pre-

diction. We present these both in a general audio setting and for bird

vocalisation applications. We also describe the multi instance learning

setting for machine learning that is widely used for weak-to-strong predic-

tion. We then introduce the type of data that is the focus and motivation

for our research. We describe a way of training for multiple tasks in a

multi task learning setting. We conclude the chapter by reflecting upon

how the state of the art in these fields bears upon our choice of strategy.

34 Chapter 2. Background

2.1 Machine Learning

Machine learning (Bishop, 2006) is a branch of artificial intelligence based

on the idea that systems can learn from data, identify patterns and make

decisions with minimal human intervention. Machine learning was born

from pattern recognition and the idea that computers can learn from

data. Machine learning algorithms build a mathematical model of sample

data, known as training data, in order to make predictions or decisions.

The iterative aspect of machine learning is important because as models

are exposed to new data, they are able to adapt. In this section, we

describe the main aspects of machine learning, focusing on the methods

and models we will be using for our experiments, which are also the most

commonly used ones in audio event detection and classification.

2.1.1 Machine Learning Algorithms

Machine learning algorithms are classified into several broad categories

according to the way the make use of their input data. Some of the

main ones are: supervised learning, semi-supervised learning, weakly

supervised learning, unsupervised learning.

In supervised learning, an algorithm builds a mathematical model of

a set of data that contains paired examples of the inputs and the desired

outputs. For example, if the task were determining whether a record-

ing contained a certain sound event, the training data for a supervised

learning algorithm would include recordings with and without that event

2.1. Machine Learning 35

(the input), and each recording would have a label (the output) desig-

nating whether it contained the event. Most classification and regression

algorithms are built in a supervised learning setting. Classification algo-

rithms are used when the outputs are restricted to a limited set of values

(classes). Regression algorithms can have any value within a range as

output.

In the case of semi-supervised learning algorithms, some of the train-

ing examples are missing their desired output. For example, if the task

were, once more, determining whether a recording contained a certain

sound event, the training data could be comprised of a small annotated

dataset and a larger dataset with no annotations.

Weakly supervised learning is supervision with uncertain or weakly

annotated data. The first type of labels refers to cases where the given

labels are not always the ground truth, while the second one refers to

cases where the training data are given with only coarse-grained labels

(weak labels). In this thesis we focus on the latter case, for weakly

supervised learning settings with weakly annotated data.

In unsupervised learning, the set of available training data contains

only inputs with no desired outputs. Unsupervised learning algorithms

are used to find structure in the data, e.g. grouping or clustering of

data points. Instead of responding to feedback, unsupervised learning

algorithms identify commonalities in the data and react based on the

presence or absence of such commonalities.

For all the above categories, a machine learning algorithm f will have

36 Chapter 2. Background

an input x, and try to learn parameters Θ in order to produce an output

o:

o = fΘ(x) (2.1)

2.1.2 Feature Transformations of Input Data

In order to solve any machine learning task meaningful characteristics

are extracted from the input data. These characteristics are called fea-

tures and in this section we will describe two different ways of extracting

features for machine learning tasks.

The first way of extracting features is called feature engineering and

involves using domain knowledge of the data to create features that make

machine learning algorithms work. This requires handcrafting appro-

priate features. For audio tasks, such as event classification or detec-

tion, some of the most commonly used manually engineered features are

spectrograms (time-frequency representations of an audio file) and mel-

frequency cepstral coefficients (MFCCs) (Zheng et al., 2001). Manual

feature engineering can, at times, be a difficult and computationally ex-

pensive process.

On the other hand, feature learning is a set of techniques that allows

a system to automatically learn the representations needed for temporal

detection or classification tasks from the input data. Feature learning is

often used as a pre-processing step before performing these tasks. This

replaces manual feature engineering, and allows a machine to both learn

2.2. Neural Networks 37

the features and use them to perform a specific task. Feature learning can

be either supervised or unsupervised. Examples of supervised and unsu-

pervised feature learning models include artificial neural networks, multi-

layer perceptrons, dictionary learning, independent component analysis,

autoencoders, matrix factorization and various forms of clustering.

2.2 Neural Networks

Artificial neural networks are one of the main models used in machine

learning. They are brain-inspired systems that try to replicate the way

the brain learns. Such systems do not have any predefined task-specific

rules but learn from input examples.

Neural networks consist of input and output layers, as well as hidden

layers consisting of connected units (neurons) that transform the input

into something that the output layer can use. Each connection between

neurons is called an edge and can transmit information from one neuron

to another. In common implementations, the signal at a connection

between neurons is a real number, and the output of each artificial neuron

is computed by some non-linear function of the sum of its inputs. Neurons

and edges typically have a weight that adjusts as learning proceeds. The

weight increases or decreases the strength of the signal at a connection.

Neurons at different layers may perform different kinds of transformations

on their inputs. Signals travel from the first layer (the input layer), to the

last layer (the output layer), possibly after traversing the hidden layers

multiple times. An example of a neural network with a single hidden

38 Chapter 2. Background

Figure 2.1: Artificial neural network that consists of an input layer, a
single hidden layer and an output layer, each consisting of a different
number of neurons.

layer is depicted in Figure 2.1. In this example network the outputs o

are produced by applying the transformation of hidden layer fH to the

input x and finally applying the output layer fO transformation to that:

o = fO(fH(x))) (2.2)

Even though they have been around since the 1940s (McCulloch and

Pitts, 1943; Farley and Clark, 1954; Kleene, 1956; Rochester et al., 1956),

it is only in the last several decades that neural networks have become a

major part of artificial intelligence due to the arrival of a technique called

backpropagation (Werbos, 1975), which allows networks to adjust their

hidden layers of neurons in situations where the outcome does not match

the ground truth. Also, available computing power increased through

the use of GPUs and distributed computing for training neural networks.

Another important recent advance is deep learning that consists of mul-

tiple hidden layers in a single network that are used to extract different

2.2. Neural Networks 39

features each to produce the final prediction.

2.2.1 Deep Learning

A deep neural network is defined as an artificial neural network with

multiple layers between the input and output layers (Schmidhuber, 2015).

Modern state-of-the-art deep learning is focused on training deep neural

network models. Training refers to the weight optimisation process in

which the error of predictions is minimized such that the network reaches

a specified level of accuracy. The method mostly used to determine the

adjustment of each neuron is called backpropagation (Werbos, 1975),

that calculates the partial derivatives of the loss function with respect to

each weight.

One of the main issues that can arise with naively trained deep neural

networks is overfitting. Overfitting occurs when a model is too closely fit

to a limited set of data points (training data) and cannot generalise to

unseen data. Deep neural networks are prone to overfitting due to the

added layers of abstraction, which allow them to model rare dependen-

cies in the training data. The most commonly methods used to alleviate

overfitting are dropout regularisation (Dahl et al., 2013), which randomly

omits units from the hidden layers during training, Ivakhnenko’s unit

pruning (Ivakhnenko, 1971), weight decay (l2-regularization), and spar-

sity (l1-regularization). Finally, data can be augmented via methods such

as cropping, rotating and stretching such that smaller training sets can

be increased in size to reduce the chances of overfitting. Furthermore,

40 Chapter 2. Background

validation-based early stopping (Prechelt, 2012) can be used while train-

ing to avoid overfitting. This method uses a validation set, separate from

the training data and the error on the validation set is used as a proxy

for the generalization error in determining when overfitting has begun.

In the rest of this section, we present some of the most widely used

classes of deep neural networks.

2.2.2 Multilayer Perceptron

An important general class of deep neural networks is the multilayer

perceptron (MLP). An MLP model consists of one or more hidden layers

and it can produce predictions by utilising nonlinear activation functions.

An MLP model can be used for binary or multi-class classification and

regression tasks. MLP is a type of feed-forward network where the in-

formation moves in one direction (forward) from the input to the output

nodes. In feed-forward networks there are no cycles or loops. Figure 2.2

depicts such a multilayer perceptron having multiple hidden layers that

follows equation 2.3 in order to predict the output predictions o. In equa-

tion 2.3 fHi
denotes the hidden layer transformations with i = 1, 2, ..., N ,

fO is the output transformation and x is the input to the MLP model.

o = fO(fHN
(...(fH2(fH1(x))))) (2.3)

2.2. Neural Networks 41

Figure 2.2: A multilayer perceptron (MLP) with multiple hidden layers.

2.2.3 Convolutional Neural Network

A convolutional neural network (CNN) (LeCun et al., 1999) is another

type of feed-forward network that is related to an MLP and can be used

when the input data are ordered e.g. in space (image pixels) or time

(audio frames). It usually contains one or more convolutional layers and

pooling followed by fully connected layers. The convolutional layer is the

building block of a CNN and uses a convolution operation applied to its

input passing the result to the next layer. The convolutional layer’s pa-

rameters can be described as a set of learnable filters (or kernels), which

have a small receptive field -the region visible to each kernel- but extend

through the full depth of the input. Each filter is convolved across the

width and height of the input, computing the dot product between the

entries of the filter and the input in order to produce a 2-dimensional

activation map of that filter. As a result, the network learns filters that

activate when it detects some specific type of feature at some spatial

position in the input. The final output of the convolutional layer derives

from stacking the activation maps for all filters along the depth dimen-

42 Chapter 2. Background

Figure 2.3: A convolutional neural network (CNN). Image credit to
Wikipedia.

sion. Convolutional networks may also include pooling layers, which

combine the outputs of neuron clusters at one layer into a single neuron

in the next layer. Figure 2.3 depicts such a CNN that consists of two

convolutional layers each followed by a pooling layer, a fully connected

hidden layer and a final fully connected layer to predict the output. The

prediction of the output follows equation 2.4:

o = fO(fH(p2(c2(p1(c1(x)))) (2.4)

where o denotes the output prediction for input x, ci represent the con-

volution layers and pi the pooling layers with i = 1, 2, fH indicates the

transformation of the hidden layer and fO denotes the transformation at

the final output layer.

One can notice that a convolutional neural network is quite similar

to an MLP with the only difference being that the weights of a convolu-

tional layers are constrained to be shift invariant rather than an arbitrary

function, as is the case with MLP.

2.2. Neural Networks 43

2.2.4 Recurrent Neural Network

A recurrent neural network (RNN) (Kolen and Kremer, 2001), unlike

a feed-forward neural network, is a neural network in which some con-

nections between neurons form a directed cycle enabling it to exhibit

dynamic temporal behaviour. It can use their internal memory to pro-

cess arbitrary sequences of inputs. This means that the output depends

not only on the present inputs but also on the previous steps’ neuron

state. In basic RNN architectures, each node in a recurrent layer is con-

nected with a directed (one-way or bi-directional) connection to every

other node in the next successive time step, as depicted in Figure 2.4. In

a supervised learning setting, sequences of input vectors arrive at the in-

put nodes, one vector at a time. At any given time step, each non-input

unit computes its current activation (result) as a nonlinear function of the

weighted sum of the activations of all units that connect to it. The error

for each individual sequence is the sum of the deviations of all targets

from the corresponding activations computed by the network. The over-

all error for multiple sequences is the sum of the errors of all individual

ones.

The output ot of a RNN for a specific time instance t can also be

described as:

ot = fO(ht) (2.5)

44 Chapter 2. Background

Figure 2.4: A recurrent neural network (RNN) with one-way connections
and its unfolded form. (x: input, h: hidden layers, o: ouput, V: con-
nection of previous’ hidden layer’s output to next one, U and W: weight
matrices). Image credit to François Deloche.1

where fO is the transformation applied at the output layer and:

ht = fH(ht−1, xt) (2.6)

where fH denotes the transformation of the hidden layer applied to input

xt and the output of the previous time instance ht−1. The hidden layers

h in a RNN describe the memory of the network and are usually referred

to as states. In equation 2.6, ht denotes the new state and ht−1 the old

state of the network for time instance t.

One of the appeals of RNNs is the idea that they might be able to

connect previous information to the present task. However due to the

long-term dependencies between input and output, RNNs can suffer from

the problem of the vanishing/exploding gradient (Bengio et al., 1994; Pas-

canu et al., 2013). The vanishing/exploding gradient problem manifests

when training very deep neural networks. As errors propagate from layer

to layer, they shrink or grow exponentially with the number of layers, im-

1https://commons.wikimedia.org/wiki/User:Ixnay

2.2. Neural Networks 45

Figure 2.5: Long short-term memory (LSTM) unit. Image credit to
François Deloche.

peding the tuning of neuron weights that is based on those errors. RNNs

are trained by unfolding their directed cycles into very deep feed-forward

networks, where a new layer is created for each time step of an input

sequence processed by the network. Hence, they can greatly suffer from

vanishing/exploding gradient.

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,

1997) is a specific recurrent neural network architecture composed of

LSTM units that can model temporal sequences and their long-range de-

pendencies more accurately than conventional RNNs, avoiding the van-

ishing gradient problem. A common architecture of LSTM units is com-

posed of a cell (the memory part of the LSTM unit) and three regulators,

referred to as gates, of the flow of information inside the LSTM unit: an

input gate, an output gate and a forget gate (Gers et al., 2000). Figure

2.5 shows the structure of an LSTM unit. It, Ot and Ft inside the LSTM

unit denote the input, output and forget gates, respectively, of the unit.

Gated recurrent units (GRUs) are a gating mechanism in recurrent

neural networks, introduced in Cho et al. (2014). In general GRUs have

46 Chapter 2. Background

Figure 2.6: Gated recurrent unit (GRU). Image credit to François De-
loche.

the same advantages as LSTM and perform even better when used on

smaller datasets, due to the fact that they have fewer parameters since

they lack an output gate as depicted in Figure 2.6, with Rt denoting a

reset gate and Zt an update gate.

All the machine learning and deep learning methods introduced have

been applied for multiple tasks for audio (e.g. audio tagging, audio event

detection) that relate to the research done in the scope of this thesis. We

will describe the different applications in detail in the following sections

to establish the basis upon which this thesis is developed.

2.3 Audio Tagging

In recent decades, there has been an increasing amount of audio datasets

that have labels manually assigned to them to indicate the presence or

not of a specific event type. We refer to these type of labels as weak labels

and they lack any temporal information such as the temporal location

of each event or the number of occurrences in a recording. Different

2.3. Audio Tagging 47

methods can utilise these labels for different tasks such as data mining.

Most common methods make use of machine learning (Sections 2.1) and

deep learning (Section 2.2.1).

A lot of research has been done in tagging of audio recordings with

their weak labels using machine learning and more specifically deep learn-

ing methods. In Choi et al. (2016); Dieleman and Schrauwen (2014), the

authors propose a music tagging algorithm using deep convolutional neu-

ral networks. In Xu et al. (2017a), the authors proposed to a deep neural

network to handle the multi-label audio tagging. In Xu et al. (2017b);

Adavanne et al. (2017), the authors use a stacked convolutional recur-

rent network, that consists of convolutional layers followed by recurrent

layers, to perform environmental audio tagging and tag the presence of

birdsong, respectively. While in Pons et al. (2018), the authors explore

models for end-to-end music audio tagging when there is a large amount

of training data.

In this thesis, we mainly focus on bird vocalisations. Early studies

on audio tagging for bird vocalisations focused on small datasets in or-

der to properly classify the species active in a recording. These datasets

were usually noise-free and/or manually segmented and only contained a

small number of species. Methods with fewer limitations followed (Lak-

shminarayanan et al., 2009; Damoulas et al., 2010; Briggs et al., 2012;

Lee et al., 2008). In more recent years, even though reliable automated

identification algorithms that would perform comparably to an expert

observer are still non-existent (de Camargo et al., 2017), many authors

have proposed methods for bird audio detection (Adavanne et al., 2017;

48 Chapter 2. Background

Pellegrini, 2017) and bird species classification, e.g. in the context of

LifeCLEF classification challenges (Goëau et al., 2015, 2016, 2017) and

more (Salamon and Bello, 2017; Knight et al., 2017).

However, more work is needed to address the problem of identifying

all species and the exact times of their vocalisations in noisy recordings

containing multiple birds. Moreover, these tasks need to be achieved with

minimal manual intervention, in particular without manual segmentation

of recordings into birdsong syllables, only using the weak labels of the

recordings. Furthermore, a large amount of data is needed in order to

train a neural network that can achieve a good quality performance.

However, acquiring that kind of annotated data for bird monitoring is a

nearly impossible task.

2.4 Weak-to-strong prediction

Recently, there has been an increase in demand for transcription pre-

dictions for a variety of audio recordings instead of just the tags of a

recording. Some potential applications where audio event transcription

is needed are context awareness for cars, mobiles, etc., surveillance for

dangerous events and crimes, analysis and monitoring of biodiversity,

recognition of noise sources and machine faults (Nandwana and Hasan,

2016; Stowell and Clayton, 2015; Eronen et al., 2006; Goetze et al., 2012).

Depending on the audio event to be detected and classified in each task

it may become difficult to collect enough samples for them. Furthermore,

different tasks use task specific datasets, hence the amount of recordings

2.4. Weak-to-strong prediction 49

available may be limited.

In comparison to supervised techniques that are trained on strong

labels, there has been relatively little work on learning to perform au-

dio event transcription using weakly labelled data. This type of setting

is sometimes referred to as weak-to-strong prediction. In Briggs et al.

(2012); Ruiz-Muñoz et al. (2015) the authors try to exploit weak labels

in birdsong detection and bird species classification. In Fanioudakis and

Potamitis (2017) the authors use deep networks to tag the location of

bird vocalisations with two different approaches: (a) they train multiple

neural networks, one to predict an approximation of the ground truth

and another one to refine the detected events and (b) extract spectral

blobs -regions of interest- from a spectrogram of a recording to use for

ground truth. The first approach needs a lot of training time and re-

sources and its evaluation is ambiguous, since it uses predicted segments

as ground truth, while for the second approach the blob detector can-

not differentiate between bird vocalisations and other sounds. In Roger

et al. (2018), the authors propose a bioacoustic segmentation based on

the hierarchical Dirichlet process hidden Markov model (HDP-HMM) to

infer song units in birdsong recordings, but is limited to a single species

vocalising in a recording. In Schlüter (2016) singing voice is pinpointed

from weakly labelled examples. In Kong et al. (2017b), the authors use a

joint detection-classification network that slices the audio into blocks and

an audio detector and classification on each block then uses the overall

audio tag to train using the weak labels of a recording. In Adavanne and

Virtanen (2017) the authors train a network that can perform automatic

50 Chapter 2. Background

scene transcription from weak labels and in Hershey et al. (2017) au-

dio from YouTube videos is used in order to train and compare different

previously proposed convolutional neural network architectures for au-

dio event detection and classification. Finally, in Kumar and Raj (2016,

2017) the authors use weakly labelled data for audio event detection in

order to move from the weak labels space to strong labels. The majority

of the datasets used for all the above methods either come from transcrip-

tion/detection challenges (e.g. challenge on Detection and Classification

of Acoustic Scenes and Events (DCASE)) or online sources that contain

a large number of training data, such as Youtube or Xeno-Canto. 2

Most of the above methods formulate the provided weak labels of

the recordings into a multi instance learning problem, which is the most

common formulation of weak-to-strong prediction. In the following sec-

tion we describe multi instance learning as a setting for training neural

networks to perform this task and its limitations.

2.5 Multi Instance Learning

The concept of multi instance learning (MIL) was first properly developed

in Dietterich et al. (1997) for drug activity detection. MIL is described

in terms of bags, with a bag being a collection of instances. The ex-

isting weak labels are attached to the bags, rather than the individual

instances within them. Positive bags have at least one positive instance,

an instance for which the target class is active. On the other hand, neg-

2https://www.xeno-canto.org/

2.5. Multi Instance Learning 51

Figure 2.7: Examples of positive and negative bags of instances in a multi
instance learning setting.

ative bags contain negative instances only, the target class is not active

in them. A negative bag is thus pure while a positive bag is presumably

impure, since the latter most likely contains both positive and negative

instances. Hence, all instances in a negative bag can be uniquely assigned

a negative label but for a positive bag this cannot be done. There is no

direct knowledge of whether an instance in a positive bag is positive or

negative. Thus, it is the bag-label pairs and not the instance-label pairs

which form the training data, and from which a classifier which classifies

individual instances must be learned.

Let the training data be composed of N bags, i.e. {B1, B2, ..., BN},

the i-th bag is composed of Mi instances, i.e. {Bi1, Bi2, ..., BiMi
}, where

each instance is a p-dimensional feature vector, e.g. the j-th instance of

the i-th bag is [Bij1, Bij2, ..., Bijp]
T . We represent the bag-label pairs as

(Bi, Yi), where Yi ∈ {0, 1} is the bag label for bag Bi. Yi = 0 denotes a

negative bag and Yi = 1 denotes a positive bag. Figure 2.7 presents a

few example cases of positive and negative bags and their corresponding

instances.

52 Chapter 2. Background

One näıve but commonly used way of inferring the individual in-

stances’ labels from the bag labels is assigning the bag label to each

instance in that bag: we refer to this method as false strong labelling,

because this makes use of a false inference. During training, a neural

network in the MIL setting with false strong labels tries to minimise the

average divergence between the network output for each instance and

the false strong labels assigned to them, identically to an ordinary su-

pervised learning scenario. However, it is evident that the false strong

labelling approach uses a biased substitute for the loss for a strong la-

bel prediction task, hence it has some disadvantages. When using false

strong labels some kind of early stopping is necessary since when perfect

accuracy is achieved on the training data that would mean all positive

instance predictions for a positive bag. However, there is no clear way of

defining a specific point for early stopping for the MIL scenario. This is

the same issue that all deep learning approaches in the MIL setting face

since the error we try to minimise is all of them is only an approximation

of the actual error. As mentioned before a positive bag might include

both positive and negative instances, yet false strong labels will force

the network towards positive predictions for both. Additionally, when

using false strong labels there is an imbalance of positive and negative

instance labels compared to the unknown ground truth, since a substan-

tial amount of negative instances are labelled as positive during training

leading the classifier to produce more false positives in general. Finally, a

negative instance may appear in both a negative and positive recording,

however due to the incorrect labelling of negative instances as positive in

positive bags, the network may not learn the proper prediction for this

2.5. Multi Instance Learning 53

kind of instance.

As an alternative to false strong labels, one can attempt to infer labels

of individual instances in bag Bi by defining a set of rules for each case. If

Yi = 0, all instances of bag Bi are negative instances, hence instance label

yij = 0,∀j, while on the other hand, if Yi = 1, at least one instance of

bag Bi is equal to one. For all instances of bag Bi, this relation between

the bag label and instance labels can be simply written as:

Yi = max
j

yij (2.7)

The conventional way of training a neural network for strong labelling

is providing instance specific (strong) labels for a collection of training

instances. Training is performed by updating the network weights to min-

imize the average divergence between the network output in response to

these instances and the desired output, the ground truth of the training

instances. In the MIL setting using equation (2.7) to define a charac-

teristic of the strong labels, we must modify the manner in which the

divergence to be minimized is computed, as proposed in Zhou and Zhang

(2002). Let oij represent the output of the network for input Bij, the

j-th instance in Bi, the i-th bag of training instances. We define the

predicted output label for bag Bi as:

Oi = max
1≤j≤Mj

(oij) (2.8)

and the bag-level divergence as:

54 Chapter 2. Background

Ei = L (Oi, Yi) (2.9)

where L refers to any suitable loss function (e.g. Euclidean distance,

binary crossentropy) and Yi is the ground truth label assigned to bag Bi.

The overall divergence on the training set is obtained by summing the

divergences of all the bags in the set:

E =
N∑
i=1

Ei (2.10)

Equation (2.9) indicates that if at least one instance of a positive bag

is perfectly predicted as positive, or all the instances of a negative bag

are perfectly predicted as negative, then the error on the concerned bag is

zero. Otherwise, the error is based on the instance whose corresponding

actual output value is the maximal among all the instances in the bag.

MIL scenarios are common for weak-to-strong prediction tasks due to

the many publicly available datasets that lack strong annotations. For

this thesis, we define an MIL scenario where the dataset not only contains

weak labels but is comprised by low-resource data, as we describe in the

following section.

2.6 Low-Resource Data Scenarios

The term low-resource was first encountered in speech studies as it refers

to spoken languages that lack a great number of speakers and/or proper

2.6. Low-Resource Data Scenarios 55

documentation or dictionary. According to LORELEI, low-resource lan-

guages are languages for which no automated human language technology

exists.3 More specifically in natural language processing (computational

linguistics) the term low-resource language refers to languages that for a

given task, there is no algorithm using currently available data to auto-

matically do the task with adequate performance.

In this thesis, we refer to low-resource datasets as datasets that, simi-

lar to low-resource languages, could have any of the following attributes:

• limited amount of data

• limited amount of reference recordings for each class

• rare classes

• weak labels (no strong labels)

In recent decades, there has been an increase in demand for tran-

scription predictions for a variety of audio recordings instead of just the

tags of a recording (see Section 2.4). Depending on the audio event to

be detected and classified in each task it may become difficult to collect

enough samples for them. Furthermore, different tasks use task specific

datasets (e.g. with specialised lists of events types), hence the amount of

recordings available may be limited. Additionally, it is easier to acquire

weak labels for the recordings instead of strong labels. Hence, a lot of low-

resource datasets are available for different research tasks. When used
3Low Resource Language for Emergent Incidents (LORELEI) is a US government

funded project aiming at developing human language technology for low-resource
languages. More information can be found at https://www.darpa.mil/program/

low-resource-languages-for-emergent-incidents.

56 Chapter 2. Background

for training audio event detectors, low-resource datasets often present

the issue of weak-to-strong prediction which will be one important focus

of this thesis.

2.7 Multi-Task Learning

In machine learning, optimisation usually occurs over an explicit perfor-

mance metric. In supervised learning the metric captures the accuracy

in performing a specific labelling task. In order to do this, a single model

or an ensemble of models is trained to perform the desired task and

then they are fine-tuned and tweaked until their optimal performance is

reached. So far acceptable performance has been achieved in ML tasks by

this type of training. However, when focusing on a single task, we ignore

information that might help improve on the metric in question; specifi-

cally, information from the training signals of related tasks. By sharing

representations between related tasks, we can enable our model to gen-

eralize better on our original task. This approach is called Multi-Task

Learning (MTL) (Caruana, 1997).

MTL aims to improve the performance of multiple learning tasks by

sharing useful information among them. So far, MTL has been used

successfully across a number of machine learning applications, such as

natural language processing (Collobert and Weston, 2008), speech recog-

nition (Deng et al., 2013) and computer vision (Girshick, 2015). MTL

can be very useful when using low-resource datasets since it can exploit

useful information from other related learning tasks to help alleviate the

2.7. Multi-Task Learning 57

issue of limited data. Based on the assumption that the multiple tasks

are related and thus there is some information in the data relevant to

more than one task, MTL is empirically and theoretically found to lead

to better performance than independent learning. MTL is similar to

transfer learning (Pan and Yang, 2010) which also transfers knowledge

from one task to another by storing knowledge gained while solving one

problem and applying it to a different but related problem. However,

the focus of transfer learning is to help a single target task by initially

training on one or multiple other tasks while MTL uses multiple tasks to

help each other. Furthermore, MTL can be viewed as a generalization

of multi-label learning (Zhang and Zhou, 2014) when different tasks in

multi-task learning share the same training data.

In a sense, MTL performs implicit data augmentation to the sample

size that we are using for training our model. When training a model

on one task, we aim to learn a good representation for this task that

ideally ignores the data-dependent noise and generalizes well. Different

tasks should have different noise patterns and a model that learns two

tasks simultaneously is able to learn a more general representation. While

learning just one task bears the risk of overfitting to it, learning two tasks

jointly with MTL enables the model to obtain a better representation

through averaging the noise patterns. Furthermore, if there is a lack of

training data, such as the low-resource data scenario, it can be difficult for

a model to differentiate between relevant and irrelevant features. MTL

can help the model focus its attention on those features that actually

matter as other tasks will provide additional evidence for the relevance

58 Chapter 2. Background

or irrelevance of those features. Finally, MTL acts as a regularizer by

introducing an inductive bias, a set of assumptions made by the model to

learn multiple target functions, from training for multiple tasks. Hence,

it reduces the risk of overfitting. An overview of MTL can be found in

Zhang and Yang (2018).

The two most common ways to perform MTL in deep neural networks

are referred to as hard and soft parameter sharing. Hard parameter shar-

ing has been the most commonly used approach so far and it goes back

to Caruana (1993). In hard parameter sharing some, usually the initial,

layers are shared between all tasks while each task also has task-specific

output layers, as depicted in Figure 2.8. Hard parameter sharing greatly

reduces the risk of overfitting as shown in Baxter (1997). This is due

to the fact that the more tasks we are learning simultaneously, the more

our model has to find a representation that captures all of them and the

less the chance of overfitting on our original task.

Figure 2.8: Hard parameter sharing for multi-task learning in deep neural
networks.

On the other hand, in soft parameter sharing each task has a separate

model and parameters, as depicted in Figure 2.9. The distance between

the parameters of the constrained layers of the model is then regularised

2.8. Strategy 59

(i.e. encouraged to take small values) in order to encourage similarity

between the parameters.

Figure 2.9: Soft parameter sharing for multi-task learning in deep neural
networks.

Based on the attributes of MTL it is a good fit for both the settings

of MIL and low-resource data and we will further explore it in following

chapters.

2.8 Strategy

In this chapter we have set the context for our research topic, introducing

the topics of audio tagging, weak-to-strong prediction, multi instance

learning, low-resource data and multi-task learning. We are now in a

position to reflect upon how to achieve our aim (Section 1.2) in light of

this context, and devise an appropriate strategy.

In machine learning, applications that try to achieve audio transcrip-

tion usually focus on the final task at hand. However training a model

to predict an audio transcription using a low-resource dataset can some-

times prove to be impossible, especially when using deep neural networks

60 Chapter 2. Background

since they need a large amount of data to train properly. A network needs

to have enough parameters to be able to predict all the different classes

without ignoring any rare events, but also be small enough or have just

the right amount of regularisation as to not overfit the limited amount

of training data available. This becomes even harder when the task is a

weak-to-strong prediction where the network needs to predict full tran-

scriptions from weak labels.

In this thesis, due to the low-resource setting, we first investigate ma-

chine learning methods that perform segmentation of areas of interest in

a spectrogram and then predict the class of those segments via template

matching. These methods are inspired by image processing methods and

tasks. However, such methods lack many of the generalisation properties

that are found in deep learning.

In order to achieve greater generalisation, we then investigate deep

learning approaches for our task. In a low-resource setting, there is no

specific way of defining a network and type of training that ensures that

a transcription task will be successful. However, a full transcription task

can be defined as multiple intermediate tasks of detection and classi-

fication that might be easier to train even when using a low-resource

dataset. We propose and investigate how training for intermediate tasks

can be used to boost the performance of a full transcription task. For

each intermediate task we propose a training setup to optimise their per-

formance. We also compare the results of training the intermediate tasks

independently and in multi-task learning setting.

Chapter 3

Automatic

Segmentation-Classification of

Bird Vocalisations

Our aim is to extract bird vocalisations in a fully automatic way out

of soundscapes and create an algorithm that classifies them in a low-

resource setting, where we only have the weak labels of the recordings. To

achieve our goal, we first explore a two step process: first a segmentation

algorithm that detects all vocalisations, and then a classification method

that labels the retrieved segments.

We implemented and tested two different systems. Both systems per-

formed segmentation by an event detection algorithm based on image

processing of spectrograms (Section 3.1). For the first system, the classi-

fication occurs through a deductive label refinement procedure, utilizing

61

62Chapter 3. Automatic Segmentation-Classification of Bird Vocalisations

the weak labels and using a template matching method throughout the

dataset (see Section 3.2.1). For the second system described in Section

3.2.2, a deep convolutional classifier is trained using the segments pro-

duced at the first step.

3.1 Segmentation

To segment bird vocalisations from spectrogram data, we employ the

event detection paradigm used in Fodor (2013), Lasseck (2015) and Potami-

tis (2015). This process is used in order to detect the specific coordinates

of the bird vocalisations taking place in a spectrogram, disregarding any

noise. In our case, since we have the labels per recording, only record-

ings labelled as having at least one bird species present are used in the

extraction of segments.

We combine and refine the three aforementioned paradigms, in or-

der to create a segmentation process that will best fit our automatic

transcription task. All three methods are very closely related but have

some differences. For all of them there are recordings for which one will

produce better results than the other two, in the sense of including seg-

ments that the other two fail to find or excluding segments produced by

noise that the other two detect as vocalisations. The method proposed

by Fodor was the first to appear in the context of bird recognition and

opened the way for others. The method proposed by Lasseck includes

a spectral enhancement stage that reduced the number of segments pro-

duced by noise and discards acoustic events that fill the whole recording

3.1. Segmentation 63

(e.g. Cicada songs, rain). Hence, in general, it produces fewer segments

than the other two methods. The different stages that compose each

method are showcased below.

Fodor segmentation:

1. Gaussian filter for smoothing the spectrogram

2. Local gradient applied to the spectrogram

3. Binarization that sets any value of the spectrogram that is in the

highest 10% as 1 and the rest as 0

4. Binary opening & binary closing for morphological noise removal

5. Filling of holes and removal of small objects that are too small to

be considered a bird call (size ≤ 100 pixels)

Potamitis segmentation:

1. Gaussian filter for smoothing the spectrogram

2. Enhancement of edges by adding the difference of smoothed spec-

trograms

3. Binary opening and binary closing

4. Filling the holes and removal of small objects (size ≤ 100 pixels)

Lasseck segmentation:

64Chapter 3. Automatic Segmentation-Classification of Bird Vocalisations

1. Normalisation of spectrogram to 1.0 based on the max value of the

spectrogram

2. Removal of the 4 lowest and 24 highest spectrogram rows, corre-

sponding to lowest 86 Hz and highest 516 Hz, respectively

3. Binarization via median clipping per frequency band and time frame

by setting each pixel to 1 if it is above 3 times the median of its cor-

responding row AND above 3 times the median of its corresponding

column, otherwise to 0

4. Binary closing, dilation and median filtering for further noise re-

duction

5. Removal of small objects (size ≤ 100 pixels)

For our purposes, a method that is robust to noise and does not gen-

erate noise segments is of great importance. This is due to the fact that

we use the labels for each recording and assume that all segments pro-

duced derive from one or many of those labels. Hence, we implement

a refinement of these segmentations based on the Lasseck segmentation,

incorporating aspects of the other segmentations. First we obtain the

spectrogram (time-frequency representation) of a recording via the li-

brosa Python library (i.e. librosa.core.stft), with window size of 512,

Hann window and overlap of 75%. Then, the following steps are per-

formed for the spectrogram derived from each recording:

Our proposed segmentation:

3.1. Segmentation 65

1. Normalisation of the spectrogram values to 1.0 using its absolute

max value

2. Removal of frequencies above 20 kHz and below 340 Hz. Since

no bird vocalisations occurred in those frequencies, the only audio

present there could be considered noise

3. Binarization via median clipping per frequency and time frame in

order to eliminate any noise: we set pixel to 1 if its value was 3

times higher than the median of its corresponding row and column,

otherwise it was set to 0

4. Binary closing (see (Gonzalez and Woods, 2006), pp.657-661) in

order to fill any small holes in a present feature (i.e. vocalisations).

Binary closing was applied in a rectangle neighbourhood of size

(3,3)

5. Removal of connected components of less than 5 pixels

6. Dilation (see (Gonzalez and Woods, 2006), pp.655-657) in a rect-

angle neighbourhood of size (7,7). Dilation sets a pixel at (i,j) to

the maximum over all pixels in the neighbourhood centred at (i,j).

Dilation was applied in order to enlarge the regions that contain

features (i.e. vocalisations) and remove small objects that could be

considered noise

7. Median filtering of size 5

8. Removal of connected components of less than 150 pixels

9. Dilation in a circular region of radius 3

66Chapter 3. Automatic Segmentation-Classification of Bird Vocalisations

10. Defined all connected pixels as a segment (segi)

In our implementation, an extra step, compared to the Lasseck method,

of removing small segments (step 5) is added before applying the first di-

lation (step 6). Since dilation enlarges regions where features are present,

using dilation without first removing small objects results in expanding

these regions. However, such small segments are mostly caused by noise

and are not actual vocalisations. Eliminating them in this early step fur-

ther reduces the noisy segments produced at the end of the segmentation

process. Additionally, an extra dilation (step 9) is applied at the end of

the algorithm. This second dilation has a much smaller neighbourhood

(disk of radius 3) than the first one and it is used as a refined way of

slightly expanding the borders of the segments detected and filling any

small holes still present. This is especially helpful in larger vocalisations

which are sometimes split into multiple smaller vocalisations, since this

dilation can connect two vocalisations if they are close enough to each

other (depending on the dilation neighbourhood). Compared to the orig-

inal algorithm presented by Lasseck, this variation produces fewer noise

segments and fewer, but larger, vocalisation segments.

3.1.1 Spectrogram Denoising

In order to improve segmentation, different denoising methods are tested

before our proposed segmentation took place. First we test non-local

means denoising (NL Means) (Buades et al., 2011). Unlike local mean

filters, which take the mean value of a group of pixels surrounding a

3.1. Segmentation 67

target pixel to smooth the image, non-local means filtering takes a mean

of all pixels in the image, weighted by how similar these pixels are to

the target pixel. This results in much greater post-filtering clarity, and

less loss of detail in the image compared with local mean algorithms.

If compared to other well-known denoising techniques, non-local means

adds method noise (i.e. error in the denoising process) which looks more

like white noise, which is desirable because it is typically less disturbing

in the denoised product (Buades et al., 2004).

For an image Ω, with discrete pixels, the discrete NL Means algorithm

is:

u(p) =
1

C(p)

∑
q∈Ω

v(q)f(p, q) (3.1)

where u(p) is the filtered value of the image at point p, v(q) is the unfil-

tered value of the image at point q and C(p) is given by:

C(p) =
∑
q∈Ω

f(p, q) (3.2)

Then, for a Gaussian weighting function:

f(p, q) = e−
|B(q)−B(p)|2

h2 (3.3)

where h is the filtering parameter (i.e., standard deviation) and B(p) is

given by:

B(p) =
1

|R(p)|
∑

i∈R(p)

v(i) (3.4)

where R(p) ⊆ Ω and is a square region of pixels surrounding p and |R(p)|

68Chapter 3. Automatic Segmentation-Classification of Bird Vocalisations

is the number of pixels in the region R.

The second method we test was Chambolle’s total variation denoising

method (Chambolle TV) (Chambolle, 2004). This method minimises

total variation and tends to produce piece-wise constant images. It is

quite efficient for regularizing images without smoothing the boundaries

of the objects. For more details see Duran et al. (2013).

3.1.2 Evaluation of Segmentation on Natural Data

In order to evaluate our proposed segmentation method and observe the

effect of the two denoising methods we used a subset of the training

dataset used in the Neural Information Processing Scaled for Bioacoustics

(NIPS4B) bird song competition of 20131 (Glotin et al., 2013). The

NIPS4B training dataset contains bird vocalisation recordings that have

already been weakly labelled with the species present in each of them.

However there are no strong labels available. Hence, for evaluation we

strongly annotated a subset of the original dataset. Out of the total 87

labels present in NIPS4B, we created our subset by annotating recordings

containing only 28 of the labels. This resulted in a subset of 63 recordings.

A full description of the NIPS4B training dataset can be found in Chapter

4.

For the purpose of evaluating our originally proposed segmentation

method and observing the effect of the denoising methods, we then ig-

nored the bird species labels to focus on the pure detection task. Hence

1http://sabiod.univ-tln.fr/nips4b/challenge1.html

3.1. Segmentation 69

the dataset had labels denoting the presence (label=1) or absence (la-

bel=0) of a bird vocalisation in a recording. Evaluation occurred with

the metrics found in DCASE 2016 for the task of sound event detection

in real life audio2. F-measure, precision and recall are all computed based

on the True Positives (TP), False Positives (FP), True Negatives (TN)

and False Negatives (FN) for each time frame based on whether each

segmentation method detected a bird active in the time frame or not,

and the ground truth of that frame.

Precision evaluates the number of True Positives compare to the total

number of positives produced by the method. The higher the precision

is, the fewer False Positive results.

precision =
TP

TP + FP
(3.5)

Recall, also known as sensitivity, is the fraction of True Positives over

the total amount of ground truth positives. The higher recall is, the

fewer ground truth positives are classified as negatives by the method.

recall =
TP

TP + FN
(3.6)

Finally, F-measure is a measure of the method’s accuracy. It considers

both precision and recall of the method to compute the score. F-measure

is the harmonic average of the precision and recall and can be used as an

2http://www.cs.tut.fi/sgn/arg/dcase2016/task-sound-event-detection-

in-real-life-audio

70Chapter 3. Automatic Segmentation-Classification of Bird Vocalisations

overall metric for the methods.

F −measure = 2
precision · recall
precision + recall

(3.7)

Table 3.1: Evaluation of segmentation when all species labels are consid-
ered one common label (bird).

F-measure precision recall

Original Method 88% 90% 88%
NL Means 87% 90% 91%
Chambolle TV 88% 91% 85%

In Table 3.1, the percentage results of the evaluation metrics for the

three segmentation methods are depicted. By studying this table, it

becomes apparent that adding a step of denoising before our originally

proposed segmentation does not boost the performance of the method

itself. However, the segments output from these three segmentations can

vary a lot. In the following section, we describe and evaluate the classifi-

cation methods proposed, and further we perform and overall evaluation

of both segmentation and classification.

3.2 Classification

Using the detected segments we investigated two distinct methods for

automatic classification. The first one we refer to as deductive label re-

finement and it performs segment classification by utilising a template

matching algorithm on the spectrograms.The second method is based on

3.2. Classification 71

deep learning and more specifically convolutional neural networks that

so far have proven to have a good performance for image classification.

We explain both methods in detail in the following sections.

3.2.1 Deductive Label Refinement

Following segmentation, an instance based classification algorithm with

no explicit training phase is implemented. In our approach, weakly la-

belled recordings are used. Hence, the species present are the labels of

that recording (labels rec), however, we have no further information as

to the specific vocalisations. For each recording, the segments that derive

from the segmentation process (segi) are considered to be attributable

to vocalisations from the bird species included in the weak labels.

For each segment, we create a list of possible labels (labels segi), ini-

tialized to the weak labels of the recording that contains the segment.

The labels segi list of a segment will later on be shortened to either one or

multiple labels by the classification process via deductive elimination of

the less possible labels for that segment. During classification, each seg-

ment in need of labelling is matched using normalized cross-correlation

(scikit-image’s match template function) to different recordings in order

to obtain all the possible label matches. In this process, normalized

cross-correlation is used to match a template (vocalisation) to a 2D tar-

get image (spectrogram of a recording). The result is a response image of

same size as the target image, with correlation coefficients between the

template and target image of values between -1.0 and 1.0. The matching

72Chapter 3. Automatic Segmentation-Classification of Bird Vocalisations

value between a segment and a specific recording is found by searching

for the maximum peak in the response image. Due to the number of

recordings and segments detected in each of them, this process is very

time consuming. However, similar bird sounds should appear in similar

frequencies, hence we reduce the computational load by constraining the

search to a smaller range of frequencies (within 5 frequency bins below

and above the segment frequencies which for our setting correspond to

approximately 200Hz above and below the segment frequencies). Fur-

thermore, since the weak labels of a recording and a segment are already

known, we only need to search for a segment match in recordings that

contained at least one of the segment labels (labels segi).

The proposed classification has no need for a separate training set

as it can classify vocalisations by finding matches within a provided set

of weakly labelled recordings. The performance of the method increases

as the number of recordings per species increased. The chance of the

classification process finding a match for a segment increases along with

the variation of each species’ vocalisations. This process is implemented

in three steps, namely the First Pass, Second Pass and Third Pass. All

three are applied to the recordings in order, as explained in the following

subsections and illustrated in Figure 3.1.

First Pass

In the First Pass of the classification, in order to best utilize the informa-

tion provided by the weak labels, we create groups of recordings recs(ci)

for each segment segi to find matches with, where ci denotes the differ-

3.2. Classification 73

ent label combinations produced by the initialised labels segi list. The

recordings in recs(ci) have label(s) ci present in their weak labels. For

each segment in need of a label the matching process searches through

the list of recordings recs(ci) increasing the number of weak labels (i.e.

|ci| = 1, 2, 3,...) until a match is found or there are no more recordings

remaining. Since match template always returns a result (maximum peak

in the response image), in our implementation, we consider that a match

is found when the similarity rate returned by match template was 0.4 or

greater. The 0.4 threshold was obtained after preliminary experimenta-

tion. All the different values of the matches found in these recordings for

each possible label combination ci are summed and the label(s) with the

highest sum(Ci) is(are) assigned as the segment’s label(s). If no match

is found in recs(ci) the Match Not Found (MNF) label is assigned to

segi. Segments with the MNF label and segments that have more than

one possible labels in labels segi are classified as Unknown in our evalu-

ation results (Section 3.2.1), even if the correct segment label is between

the multiple possible labels. Algorithm 1 describes this classification

procedure.

Second Pass

The Second Pass of the process derives from the need to solve the issue of

unclassified segments, MNF segments, produced during the First Pass

of the classification. Since we use only weakly labelled datasets, all the

labels of a recording must be assigned to at least one segment. A trivial

solution for reducing the MNF segments is: when there are MNF seg-

74Chapter 3. Automatic Segmentation-Classification of Bird Vocalisations

Algorithm 1: Classification Process (First Pass)

for each segment i = 1 : total segments:
labels segi = labels rec
for j = 1 : length(labels rec):

for each combination ci of j labels:
recs(ci) = recordings that contain only the labels in ci
if match template(segi, recs(ci)) ≥ 0.4:
match(ci) =

∑
match template(segi, recs(ci))

end if
end for
Ci = arg max(match)
if isempty(Ci):

continue for
end if

end for
if isempty(Ci):
labels segi = MNF

else:
labels segi = ∩(Ci, labels segi)

end if
end for

3.2. Classification 75

ments and labels with no corresponding segments in a recording (cun), we

assign the unallocated labels to all the MNF segments. This can solve

the issue of unallocated labels and MNF segments in a recording but

does not completely eliminate the Unknown segments (MNF segments

and segments with multiple labels), since more than one label may be

unallocated and thus assigned to a single segment. Case 1 in Figure 3.1

depicts what happens during the Second Pass when there is an unallo-

cated label (label B) and an MNF segment (segment 4). In this case, the

unallocated label is to be assigned to segment 4. Algorithm 2 describes

the Second Pass.

Algorithm 2: Classification Process (Second Pass)

if unallocated label(s) cun and any labels segi = MNF :

labels segi = cun, ∀MNF segments

end if

Third Pass

After reducing the MNF segments, there may still be labels unallocated

in some recordings. Hence, the Third Pass of the classification process

addresses the need for all labels of a recording to get assigned to at least

one segment. More specifically, in a recording for which all segments

have labels but some of the weak labels of the recording are not assigned

to any segments, there must be some labels that are assigned, most likely

incorrectly, to more than one segment. It is possible that more than one

76Chapter 3. Automatic Segmentation-Classification of Bird Vocalisations

segment may have the same label, but when a label is unallocated then

we assume that one of the segments matched to the same label is falsely

classified. We search for the best match for any unallocated label among

the multiple segments of the rest of the labels. If a match is found,

the label of the segment it derives from is changed to the unallocated

label. An example of the Third Pass is depicted in Case 2 of Figure 3.1,

where all segments have labels assigned to them, however label B is not

assigned to any of them. The best match with label B is found within

the segments that have the same label (segments 2, 3 and 4). Segment 4

has the max match of 0.57, thus label B is assigned to it. Algorithm 3

explains the Third Pass.

Algorithm 3: Classification Process (Third Pass)

if unallocated label(s) cun and |segments with label ci| ≥ 2, ∀c :

same(ci) = all segments labelled ci

match(cun) = match template(same(ci), recs(cun))

Find segment segi with max(match(cun))

labels segi = cun

end if

Evaluation on Synthetic Data

At that point in the PhD research, there was no public dataset with

strong time-frequency labelling of each bird vocalisation. Thus, in or-

der to evaluate our proposed method, we created a synthetic dataset D

3.2. Classification 77

Figure 3.1: Example cases for the classification process. Case 1 describes
what happens when there is an unallocated label and a segment with
MNF label. Case 2 describes what happens when there is an unallocated
label and multiple segments have one of the other labels.

78Chapter 3. Automatic Segmentation-Classification of Bird Vocalisations

where the boundaries of each vocalisation were known. The training au-

dio dataset provided during the NIPS4B bird song competition of 2013

contained recordings that had already been weakly labelled. Since there

was no per-unit annotation in it, we created a synthetic dataset of 50

recordings with vocalisations deriving from the single labelled recordings

in the NIPS4B training dataset. Out of the 87 labels of the NIPS4B

dataset, 51 had recordings that are labelled with only one species. For

our synthetic dataset, each recording was 5 seconds long and it consisted

of one of the recordings of NIPS4B with no labels as background, hence

containing only natural background noise in it. Each synthetic record-

ing was also allocated 2 to 4 randomly picked labels out of the above

mentioned 51 labels. A source recording was randomly picked for each

of the allocated labels and from that recording one segment produced

by our proposed segmentation process was randomly placed in the syn-

thetic recording by overlaying it to the background. Thus, each synthetic

recording contained 2 to 4 segments and labels. The resulting dataset

consisted of 50 recordings, with a total of 138 segments, hence a mean of

2.76 segments per recording. Any recording from the NIPS4B training

dataset not used in the making of the synthetic data was used in order to

search for the segment matches, hence providing our classification process

with a broader variation of species’ vocalisations than the one available

by using only the synthetic dataset. The boundaries of each segment

in the synthetic recordings were known, hence the following evaluation

measures are only for the classification process and its different variants.

In Table 3.2, the results of the segment classification using all three

3.2. Classification 79

passes are depicted. The First Pass produced a correct classification of

69% and 6% of Unknown segments, the latest one included segments that

were either not matched to any label, labelled as MNF , or segments that

had more than one labels assigned to them. After the Second Pass of

the algorithm, the percentage of Unknown segments was reduced to 4%,

while the correctly classified segments were increased. Finally, after the

Third Pass, we had a slight increase to the number of correct classifica-

tions, namely 4%, which led to the total result of 76% correctly classified

segments.

Most of the misclassifications happened due to the fact that the seg-

mentation process produced a lot of smaller segments that usually con-

tained very simple vocalisations, and in many cases, fragments of vocal-

isations, that could be matched to multiple labels easily. In the event

that the segments were part of vocalisations they were considered out

of context. When there were out of context segments the classification

results could be verified through a process of inverse matching. More ex-

plicitly, checking the recording where a match was found to see if it was

matched to a single segment or a part of a bigger segment, by checking

the area around where the match was found. If the segment was matched

to part of a bigger vocalisation then it should have had the remaining

of the vocalisation at a close by area in order for it to be considered a

correct classification. However, inverse matching could not be applied in

the synthetic dataset case, because the segments were chosen at random,

so they were not placed together with the rest of the vocalisation. We

discuss inverse matching in more detail in Section 3.2.1.

80Chapter 3. Automatic Segmentation-Classification of Bird Vocalisations

Table 3.2: Classification Results for D.

Correct Wrong Unknown

Chance 36% 64% —
First Pass 69% 25% 6%
Second Pass 71% 25% 4%
Third Pass 76% 20% 4%

Table 3.3: Classification Results for D1000.

Correct Wrong Unknown

Chance 33% 67% —
First Pass 66% 22% 12%
Second Pass 71% 22% 7%
Third Pass 74% 19% 7%

In order to evaluate classification when the out of context problem

does not occur as often, we created a second synthetic dataset D1000

of 50 recordings, where segment size ≥ 1000 time-frequency points. In

this dataset, recordings were created in the same way as before and each

recording contained 2 to 4 labels, with a total of 152 segments, hence

a mean of 3.04 segments per recording. The results produced by the

different classification steps are presented in Table 3.3. In the evaluation

of the classification process using D1000 almost the same results as the

one produced by dataset D can be noticed. This indicates that smaller

segments were not the limiting factor in classification performance. In the

D1000 results, even though the missclassifications of most of the smaller

out of context segments were not present, still there were segments with

simple structure (e.g. a straight line in frequency or time), which could

get matched to larger vocalisations.

3.2. Classification 81

Inverse Template Matching

As mentioned above, for dataset D a lot of the misclassifications were

caused by the smaller segments. In order to reduce these misclassifica-

tions and possibly even more caused when parts of the same vocalisation

end up in different segments we propose an inverse template matching

method. This inverse method runs after the original normalized corre-

lation template matching process and its task is to check the broader

context around a segment and try to see if it can get a match with any

of the matches returned by match template.

Figure 3.2 presents an example of how inverse matching works. In-

verse matching considers all the matches found by match template for a

segment. The segmentation algorithm is performed for all of the record-

ings that the match is found in and it produces all the segments of that

recording. Hence, we acquire the actual borders of the segment where

a match is found. Next, match template tries to match these segments

back to the original segment in question. If an inverse match is found

then the labels of this segment are considered for classification of the

original segment in question (Algorithm 1).

Evaluation on Natural Data

It is easier to evaluate inverse matching on natural data, since it can be

hard to synthesise data that preserve the broader context of vocalisation

segments. Hence, in order to evaluate and compare the results of inverse

matching and the original match template method along with the three

82Chapter 3. Automatic Segmentation-Classification of Bird Vocalisations

Figure 3.2: An example of inverse matching. Col 1: segment that goes
through the inverse matching method. Row 1, cols 2-4: possible matches
returned from match template. Row 2: Inverse matching tries to match
the whole segment of col 2 to col 1 segment. Row 3: no match found.
Row 4: Inverse matching tries to match the segment of col 3 to col 1
segment. Row 5: no match found. Row 6: Inverse matching tries to
match the segment of col 4 to col 1 segment. Row 7: match found, the
labels of the recording containing this segments will be used in deductive
label refinement (Algorithm 1).

3.2. Classification 83

Table 3.4: Evaluation of classification when we consider the segments
produced by the segmentation method to be correct.

Correct Wrong Unknown Total Segs

No
Inverse
Matching

Original Method 49% 32% 19% 766
NL Means 50% 32% 18% 726
Chambolle TV 51% 31% 18% 710

Inverse
Matching

Original Method 44% 26% 30% 766
NL Means 45% 27% 28% 726
Chambolle TV 46% 27% 27% 710

different denoised segmentations, we used the subset of NIPS4B training

data defined in Section 3.1.2. For the evaluation of classification methods

we used the 28 individual species labels, instead of a single positive or

negative label. Two different evaluations follow, one for classification

only and one for the whole process of segmentation and classification.

Firstly, we considered all the segments produced from the segmenta-

tion step to be correct and we only evaluated the classification with and

without the effects of inverse template matching. Table 3.4 presents these

results. The different segmentation methods produced different number

of segments. Also none of them had very different results from the other

two. Another thing to take into account from this table is that using

inverse matching did not have the results we expected: misclassifications

were reduced, however correct classifications were also reduced leading

to more Unknown segments (segments with no labels or more than one

labels assigned to them).

The second evaluation for the deductive label refinement algorithm

measured the overall and class-wise metrics for the whole two-step pro-

cess of finding the segments and assigning them with the correct label.

84Chapter 3. Automatic Segmentation-Classification of Bird Vocalisations

Table 3.5: Overall metrics for evaluation of segmentation and classifica-
tion.

Overall Metrics
(micro-average)

F-measure Precision Recall

No
Inverse
Matching

Original Method 55% 54% 56%
NL Means 55% 55% 55%
Chambolle TV 56% 56% 55%

Inverse
Matching

Original Method 52% 51% 53%
NL Means 52% 51% 53%
Chambolle TV 53% 53% 52%

Table 3.6: Overall metrics for evaluation of segmentation and classifica-
tion.

Class-wise metrics
(macro-average)

F-measure Precision Recall

No
Inverse
Matching

Original Method 53% 65% 53%
NL Means 55% 72% 53%
Chambolle TV 53% 65% 52%

Inverse
Matching

Original Method 53% 62% 52%
NL Means 54% 66% 53%
Chambolle TV 53% 63% 52%

Tables 3.5 and 3.6 present these results overall and class-wise. In both the

overall and class-wise results the performance between different denois-

ing methods did not have any great influence over the results, however

in all cases when using inverse template matching the F-measure value

dropped. This can be explained by the results of Table 3.4 where it is

apparent that the number of Unknown segments was increased. All Un-

known segments were considered as wrongly classified overall since no

actual Unknown label is present in the dataset.

3.2. Classification 85

3.2.2 Convolutional Neural Network

As an alternative classification paradigm we consider supervised machine

learning. Neural networks and deep neural networks with a large num-

ber of parameters are very powerful machine learning systems. Neural

networks are very diverse and can learn very complicated, nonlinear re-

lationships between their input and output. This makes them perfect

for classification tasks and more specifically, in our case, vocalisation

classification using the corresponding spectrogram representation.

For the second classification method we implement a convolutional

neural network (CNN) (Section 2.2.3). The structure that we use is a

CNN that consists of two convolutional and max-pooling stages, a fully-

connected hidden layer and a fully-connected output layer as seen in Fig-

ure 3.3. First, we apply a convolution layer which consists of 32 filters

of size 5x5. The nonlinearity chosen is the linear rectifier, so we obtain

rectified linear units (ReLUs). In concern to the weight initialization,

we choose the GlorotUniform initializer (Glorot and Bengio, 2010) that

provides a uniform distribution with a carefully chosen range. We then

apply max-pooling of factor 2 in both dimensions. We add another con-

volution and pooling stage like the ones before. Then, a fully-connected

layer of 256 units with 50% dropout on its inputs is added and finally, a

51-unit softmax output layer, again with 50% dropout.

86Chapter 3. Automatic Segmentation-Classification of Bird Vocalisations

Figure 3.3: The structure of the convolutional neural network used for
bird vocalisation classification.

Evaluation on Segmentation Data

As input for training our CNN we used the segments produced by our

segmentation process. We zero padded all segments to the maximum

width and height across all the segments produced. The segment in

question was placed in the middle of the zero padding. Examples of the

resulting segments that the train, validation and test datasets consist of

are depicted in Figure 3.4. For each input image the corresponding target

value (label) was also saved, in order to use in the training, validation

and testing of the CNN.

In order to evaluate our CNN method, only segments deriving from

single-labelled recordings in the dataset provided by the Neural Informa-

tion Processing Scaled for Bioacoustics (NIPS4B) bird song competition

of 2013, were used, because we needed to known the label of each seg-

ment in order to train the network. From the original 87 labels of the

NIPS4B dataset, 51 of them were present in at least one recording where

there were no other labels. In total, 230 recordings were used to extract

the 1285 vocalisations that were then used to create three datasets (i.e.

3.2. Classification 87

Figure 3.4: Examples segments that make up the train, validation and
test datasets.

88Chapter 3. Automatic Segmentation-Classification of Bird Vocalisations

train, validation, test). The train, validation and test sets consisted of

785, 100 and 400 segments, respectively.

During training mini-batches of 50 segments were used. The loss of

our network was minimized during the training and it was defined as the

categorical cross-entropy loss between the network output and the targets

(correct labels) and was computed as the mean of the loss over a mini-

batch. For updating our CNN, we used stochastic gradient descent (SGD)

with Nesterov momentum. For monitoring progress during training, after

each epoch, we evaluated the network on the validation set. A slightly

different loss expression was used in order to do so. The difference from

the train loss was that all nondeterministic layers were switched to a

deterministic implementation, so in our case, we disabled the dropout

layers when computing the predictions for the validation set.

The result of the classification accuracy on the test dataset was 27.25%.

This relatively low result could be most likely due to overfitting (see Fig-

ure 3.5), which was anticipated due to the small size of the dataset. Even

though the results are not very satisfying, there are many different meth-

ods and deep learning architectures that could be implemented in order

to obtain better results.

However, the restrictions imposed by the input of this network limit

our possible improvements. Firstly, the input of this network is not

ideal as can be noticed in Figure 3.1. Due to the varying sizes of the

segments produced by segmentation and the restriction of the input of

a network needing to be of the same shape, a lot of zero-padding was

used for the input segments. Also, in order to train the network we need

3.2. Classification 89

0 100 200 300 400 500
Epoch

0

1

2

3

4

5

6

7

8

Lo
ss

Train Loss
Validation Loss

Figure 3.5: Loss value of CNN for the train dataset (blue line) and the
validation dataset (red line).

segments that are produced from single-labelled recordings and not all

87 labels have single-labelled recordings. Due to these restrictions, a

network that can have the whole recording as an input regardless of how

many labels are assigned to it, will be more flexible and generalizable.

In Chapter 5 we propose some deep learning approaches that do not

face the same restrictions. However, in order for any generalizable deep

learning approach to be successful we need strongly annotated data in

order to evaluate the results. In the following chapter we give a detailed

presentation of the NIPS4B data and also discuss our method of acquiring

the strong labels for it.

Chapter 4

A Richly-Annotated Birdsong

Audio Dataset

In the field of automatic birdsong monitoring, advances in birdsong de-

tection and classification have approached a limit due to the lack of fully

annotated datasets. The lack of strong annotations imposes restrictions

on the methods we can use to achieve our aim. As we explained in previ-

ous chapters, acquiring strong annotations for any type of audio dataset

is a laborious task, and especially for bird soundscapes where vocalisa-

tions are highly diverse, originating from multiple birds and can overlap

in time. Hence, much time from an expert annotator is required for these

kind of bird soundscapes. This results in many ecological datasets lack-

ing temporal annotations of bird vocalisations even though they are vital

to the training of automated methods that predict detailed annotations

which could potentially remove the need for a human annotator.

90

91

Recently, BirdVox-full-night (Lostanlen et al., 2018), a dataset con-

taining some temporal and frequency information about flight calls of

nocturnally migrating birds, was released. The BirdVox-full-night dataset

contains 6 far-field, full night recordings, containing 35,000 flight calls

from 25 species of passerines recorded around Ithaka, New York. How-

ever, BirdVox-full-night only focuses on avian flight calls, a specific type

of bird calls, that usually have a very short duration in time. The tem-

poral annotations provided for them don’t include any onset, offset or

information about the duration of the calls, they simply contain a single

time marker at which a flight call is active. Additionally, there is no

distinction between the different bird species, hence no specific species

annotations are provided: only the time and frequency location of flight

calls through the duration of a recording is denoted. Hence, the dataset

can provide data to train models for flight call detection but is not ap-

propriate for models performing both event detection and classification

for a variety of bird vocalisations.

In this chapter, we introduce NIPS4Bplus, the first ecological au-

dio dataset that contains bird species tags and temporal annotations,

which can be freely accessed online at https://doi.org/10.6084/m9.

figshare.6798548, and can be used for either training supervised au-

tomated methods that perform bird vocalisation detection and classifi-

cation or be used for evaluating methods that use only audio tags or no

annotations for training.

92 Chapter 4. A Richly-Annotated Birdsong Audio Dataset

4.1 Audio Data Collection

In 2013, during the Neural Information Processing Scaled for Bioacous-

tics (NIPS4B) challenge for bird song classification a training and testing

dataset that contains multiple bird species was made public. For our pre-

vious experiments we used the NIPS4B training dataset and the weak

labels provided by the challenge organisers or a smaller set that we par-

tially annotated for our experiments. In this section we will describe

both the original dataset collected for the 2013 challenge and our process

of acquiring the strong annotations that we will late use for our next

experiments.

The recordings that comprise the NIPS4B 2013 training and testing

dataset were collected by recorders placed in 39 different locations, which

can be summarised by 7 regions in France and Spain, as depicted in

Figure 4.1. 20% of the recordings were collected from the Haute-Loire

region in Central France, 65% of them were collected from the Pyrénées-

Orientales, Aude and Hérault regions in south-central France along the

Mediterranean cost and the remaining 15% of the recordings originated

from the Granada, Jaén and Almeria regions in eastern Andalusia, Spain.

The Haute-Loire area is a more hilly and cold region, while the rest of

the regions are mostly along the Mediterranean coast and have a more

Mediterranean climate.

The recorders used to acquire the recordings were the SM2BAT using

SMX-US microphones. They were originally put in the field for bat

echolocation call sampling, but they were also set to record for 3 hours

4.1. Audio Data Collection 93

single channel at 44.1 kHz sampling rate starting 30 minutes after sunrise,

right after bat sampling. The recorders were set to a 6 dB Signal-to-Noise

Ratio (SNR) trigger with a window of 2 seconds, and acquired recordings

only when the trigger was activated.

Approximately 30 hours of field recordings were collected. Any record-

ing longer than 5 seconds was split into multiple 5 second files. SonoChiro,

a chirp detection tool used for bat vocalisation detection, was used on

each file to identify recordings with bird vocalisations.1 A stratified ran-

dom sampling was then applied to all acquired recordings, based on loca-

tions and clustering of features, to maximise the diversity in the labelled

dataset, resulting in nearly 5000 files being chosen. Following the first

stage of selection, manual annotations were produced for the classes ac-

tive in these 5000 files and any recordings that contained unidentified

species’ vocalisations were discarded. Furthermore, the training set and

testing set recordings were allocated so that the same species were active

in both. Finally, for training purposes, only species that could be cov-

ered by at least 7 recordings in the training set were included in the final

dataset, the rest were considered rare species’ occurrences that would

make it hard to train any classifier, hence were discarded. The final

training and testing set consist of 687 files of total duration of less than

an hour, and 1000 files of total duration of nearly two hours, respectively.

1http://www.leclub-biotope.com/fr/72-sonochiro

94 Chapter 4. A Richly-Annotated Birdsong Audio Dataset

Figure 4.1: Regions where the dataset recordings were collected from.
Green indicates Central France region Haute-Loire. Orange indicates
Southern France regions Pyrénées-Orientales, Aude and Hérault. Blue
indicates Southern Spain regions Granada, Jaén and Almeria.

4.2 Annotations

4.2.1 Tags

The labels for the species active in each recording of the training set were

initially created for the NIPS4B 2013 bird song classification challenge

(Glotin et al., 2013). There is a total of 61 different bird species active

in the dataset. For some species we discriminate between song, call and

drum. We also include some species living with these birds: 7 insects and

an amphibian. This tagging process resulted in 87 classes. A detailed

list of the class names and their corresponding species English and scien-

tific names can be found in https://doi.org/10.6084/m9.figshare.

6798548. These tags only provide information about the species active

in a recording and do not include any temporal information, hence they

are treated as weak labels for this dataset. In addition to the recordings

4.2. Annotations 95

F
igu

re
4.2:

N
u
m

b
er

of
o
ccu

rren
ces

of
each

sou
n
d

ty
p

e
in

record
in

gs
collected

from
S
p
ain

,
S
ou

th
ern

F
ran

ce
an

d
C

en
tral

F
ran

ce.

96 Chapter 4. A Richly-Annotated Birdsong Audio Dataset

containing bird vocalisations, some training files only contain background

noise acquired from the same regions and have no bird song in them, these

files can be used to tune a model during training. Figure 4.2 depicts the

number of occurrences per class for recordings collected in each of the

3 different general regions of Spain, South France and Central France.

Each tag is represented by at least 7 up to a maximum of 20 recordings.

Each recording that contains bird vocalisations includes 1 to 6 in-

dividual labels. These files may contain different vocalisations from the

same species and also may contain a variety of other species that vocalise

along with this species. Figure 4.3 depicts the distribution of the number

of active classes in the dataset.

Figure 4.3: Distribution of number of active classes in dataset recordings.

Figure 4.4 depicts the number of co-occurrences between pairs of la-

bels. We can notice that there are no notable patterns to the ways species

vocalisations co-occur. One interesting thing one can notice while study-

ing the co-occurrence heat map is that there is no strong correlation

between calls and songs from the same species, this is due to the differ-

ent functions between calls and songs produced. As calls may be related

4.2. Annotations 97

to self-maintenance activities such as species identification or holding the

flock together, while songs are mostly used for attracting a mate, estab-

lishing territories, intimidating enemies and learning through imitations

and practising.

Figure 4.4: Co-occurrence heat map for the labels of the dataset.

4.2.2 Temporal Annotations

Temporal annotations for each recording in the training set of the NIPS4B

dataset were produced manually using Sonic Visualiser.2 The temporal

2https://www.sonicvisualiser.org/

98 Chapter 4. A Richly-Annotated Birdsong Audio Dataset

annotations were made by a single bird expert annotator, Hanna Pamu la,

and can be found in https://doi.org/10.6084/m9.figshare.6798548.

Table 4.1 presents the temporal annotation format as is provided in

NIPS4Bplus and Figure 4.5 depicts a visual representation of the tempo-

ral annotations. For the experiments in this thesis, temporal annotations

and no annotations in the frequency axis were needed, hence these are

the strong labels we will use in the work that follows.

Figure 4.5: Mel-band spectrogram of a recording in NIPS4Bplus and the
visual representation of the corresponding temporal annotations as noted
in Table 4.1.

Regarding the temporal annotations for the dataset, we should men-

tion the following:

• The original tags were used for guidance, however some files were

judged to have a different set of species than the ones given in the

4.2. Annotations 99

Table 4.1: NIPS4Bplus temporal annotations of the recording depicted
in Figure 4.5.

Starting Time (sec) Duration (sec) Tag

0.00 0.37 Serser call
0.00 2.62 Ptehey song
1.77 0.06 Carcar call
1.86 0.07 Carcar call
2.02 0.41 Serser call
3.87 1.09 Ptehey song

original metadata. Similarly, in a few rare occurrences, despite the

tags suggesting a bird species active in a recording, the annotator

was not able to detect any bird vocalisation.

• An extra ‘Unknown’ tag was added to the dataset for vocalisations

that could not be classified to a class.

• An extra ‘Human’ tag was added to a few recordings that have very

obvious human sounds, such as speech, present in them.

• Out of the 687 recordings of the training set 100 recordings contain

only background noise, hence no temporal annotations were needed

for them.

• Of the remaining 587 recordings that contain vocalisations, 6 could

not be unambiguously labelled due to hard to identify vocalisations,

thus no temporal annotation files were produced for them.

• An annotation file for any recording containing multiple insects

does not differentiate between the insect species and the ‘Unknown’

label was given to all insect species present.

100 Chapter 4. A Richly-Annotated Birdsong Audio Dataset

• In the rare case where no birds were active along with the insects

no annotation file was provided. Hence, 7 recordings containing

only insects were left unlabelled.

• In total, 13 recordings have no temporal annotation files. These

can be used when training a model that does not use temporal

annotations.

• On some occasions, the different syllables of a song were separated

in time into different events while in other occasions they were

summarised into a larger event, according to the judgement of the

expert annotator. This variety could help train an unbiased model

regarding separating events or grouping them together as one con-

tinuous time event.

As mentioned above, each recording may contain multiple species

vocalising at the same time. This can often occur in wildlife recordings

and is important to be taken into account when training a model. Figure

4.6 presents the fraction of the total duration containing overlapping

vocalisations, as well as the number of simultaneously occurring classes.

In the following chapter, we propose methods that use data such as

these NIPS4Bplus recordings and annotations. We treat the dataset as

a low-resource one, due to the relatively limited amount of training data

and use the strong labels for evaluation purposes only, hence having only

the weak labels during training.

4.2. Annotations 101

Figure 4.6: Distribution of simultaneous number of active classes on the
total duration of the recordings.

Chapter 5

Deep Learning for Detection

and Classification of Bird

Sounds via Task Factorisation

Training a neural network to predict an audio transcription using a low-

resource dataset, such as the one described in Chapter 4, can sometimes

prove to be impractical. A network needs to have enough parameters

to be able to predict all the different classes without ignoring any rare

events, but also be small enough or have just the right amount of regular-

isation as to not overfit the limited amount of training data available. In

Choromanska et al. (2015), the authors discuss such difficulties of train-

ing both large- and small-size networks. Predicting full audio transcrip-

tion becomes even harder when the task is a weak-to-strong prediction

where the network needs to predict full transcriptions from weak labels

as described in Section 2.4.

102

103

Given a training problem, finding an appropriate network and input

encoding for that problem is of great importance, but it is not something

easily solved (Blum and Rivest, 1992). Hence, even though there is no

specific way of defining a network and type of training that ensures that

a transcription will be predicted successfully, a full transcription task can

be redefined as multiple intermediate tasks of audio event detection and

audio tagging that might be easier to train a network for, when using a

low-resource dataset. A similar approach is used to enhance the perfor-

mance of automatic speech transcription (Yu and Deng, 2016) by using

speaker diarisation (Anguera et al., 2012; Garcia-Romero et al., 2017) and

speaker recognition (Tirumala and Shahamiri, 2016) systems together in

order to structure an audio stream into speaker turns and provide the

speaker’s true identity, respectively. However, these speech approaches

are highly customised to characteristics of speech signals. Our method is

focused on general low-resource audio with speech events considered just

a single class amongst other audio events without distinguishing between

individual speakers.

In this chapter, we first contact a pilot study of full transcription

approaches using different model architectures and then we propose a

factorisation of the full transcription task into multiple simpler interme-

diate tasks of audio event detection and audio tagging in order to predict

an intermediate transcription that can be used to boost the performance

on the full transcription task. For each intermediate task, we propose

a training setup to optimise their performance and, finally, we train the

intermediate tasks independently and in two multi-task learning settings

104 Chapter 5. Task Factorisation on Deep Learning

and compare their results. More specifically, we introduce three novel

aspects: a task factorisation of the full audio transcription task for low-

resource data scenarios; a new multi instance learning loss function that

trains more reliably than the standard one; and an approach to multi-

task learning that allows for the training data being different within each

task, alleviates the issue of having to balance the values of different loss

functions while maintaining all the advantages of hard parameter sharing

between tasks.

5.1 Pilot Study on Full Transcription Us-

ing Current Deep Learning Architec-

tures

As our first pilot study in predicting a full transcription in a weak-to-

strong MIL setting when using a low-resource dataset, we use multiple

state-of-the-art neural network architectures: a deep convolutional neu-

ral network (CNN) with similar structure to the one in Figure 3.3; a

DenseNet (Huang et al., 2017) architecture as depicted in Figure 5.3;

and a stacked convolutional and recurrent neural network (CRNN) with

the structure of Figure 5.1. In these pilot studies many configurations

failed to train effectively and thus we do not present numerical results

from the pilot phase.

As input for training and validation we used the spectrograms of 513

recordings from the NIPS4Bplus data and used the remaining 187 record-

5.1. Pilot Study on Full Transcription Using Current Deep Learning Architectures105

Figure 5.1: CRNN architecture used for our pilot studies on the
NIPS4Bplus data. First layers perform convolutional transformations
and max pooling, followed by the recurrent part of the network that con-
sists of bidirectional GRUs, and the dense layers that predict the final
transcription.

ings for evaluation. We trained and evaluated a few different configura-

tions of all three architectures however the predictions for full transcrip-

tion would usually show no distinct or useful results for different classes

between recordings. This led us to the conclusion that simply training

a network for the full transcription task in this kind of setting might be

infeasible.

The difficulty of predicting full transcription for a low-resource dataset

is mainly due to the lack of a large amount of reference recordings for

each class. Furthermore in the NIPS4Bplus data, there is a large amount

of different classes with large variations in the type of audio event pro-

duced by each, hence this adds an additional difficulty for the network

to differentiate between them.

In order to help each network focus on a specific type of vocalisation,

we explore single class transcription for each individual class. We for-

mulate the task as a multi instance learning problem in order to make

use of the weak labels provided for each recording to predict the strong

temporal annotations. For each network, the spectrograms of the record-

106 Chapter 5. Task Factorisation on Deep Learning

Figure 5.2: A 5-layer dense block used in our implementation of a
DenseNet for our pilot studies on the NIPS4Bplus data. Each layer
takes all preceding feature maps as input. Image credit to (Huang et al.,
2017)

5.1. Pilot Study on Full Transcription Using Current Deep Learning Architectures107

ings containing the class in question are used as input, and the output

is a binary transcription of the recording, denoting which time frames

contain a vocalisation from the class and which do not. For this pilot

study on single class transcription, we use a DenseNet. DenseNets ensure

maximum information flow between layers in the network, as they have

dense blocks which connect all layers inside the block directly to each

other. To preserve the feed-forward nature, each layer obtains additional

inputs from all preceding layers and passes on its own feature maps to

all subsequent layers. Figure 5.2 illustrates the layout of a dense block

schematically. This produces L(L+1)
2

connections in a network with L

number of layers. A possibly counter-intuitive feature of the DenseNet is

that it requires fewer parameters than traditional networks, hence it was

the more suitable for this pilot study compared to CNN and CRNN, due

to the limited amount reference recordings for each label. Although the

number of connections grows quadratically with depth, the topology en-

courages heavy feature reuse. In DenseNets, all layers have direct access

to every feature map from all preceding layers, which means that there

is no need to re-learn redundant feature maps. Consequently, DenseNet

layers are very narrow and only add a small set of feature maps to the

collective knowledge of the whole network while keeping the remaining

feature maps unchanged. The DenseNet architecture explicitly differen-

tiates between information that is added to the network and information

that is preserved. The final classifier makes a decision based on the entire

knowledge of the network. Although they follow a simple generative rule,

DenseNets are very general and easy to train. One big advantage of the

DenseNet is its improved flow of information and gradients throughout

108 Chapter 5. Task Factorisation on Deep Learning

Figure 5.3: A deep DenseNet with three dense blocks used for our pi-
lot studies on the NIPS4Bplus data. The layers between two adjacent
blocks are referred to as transition layers and change feature map sizes
via convolution and pooling. Image credit to (Huang et al., 2017)

the network. Each layer has direct access to the gradients from the loss

function and the original input signal.

For our task, we adapted the structure of Figure 5.3 into preserving

the time axis, by using 1D max pooling, and changing the last layer out-

put into a vector that represents the labels for each time frame, instead of

one label for the whole recording. We trained a network for each species

in the NIPS4Bplus dataset. However, due to the very limited amount

of positive recordings for each species (7 to 20 positive recordings per

species out of a total of 687 recordings) the results were not satisfactory.

Furthermore, data augmentation, by mixing negative recordings (total

number of 100 recordings) with the positive ones for each class, did not

seem to boost the network performance.

Since both prediction of full transcription and prediction for each class

separately fail to produce any useful results we next consider another ap-

proach to our problem. The factors causing the two previous approaches

to fail can be mainly attributed to the large amount of classes and the few

amount of reference recordings per class. However, for the task of bird

vocalisation transcription the different vocalisations should have some

similarities due to the fact that they are all produced by birds. Taking

5.2. Factorisation 109

that into account along with the nature of transcription tasks, in the

following section we propose a task factorisation setting that can work

in low-resource scenarios.

5.2 Factorisation

A full audio transcription task can be described as a combination of au-

dio event detection and event classification. In order to properly train

a full transcription network, we need a large amount of data that is not

available in a low-resource dataset. Since it is very hard to train a net-

work to predict full transcription on a low-resource dataset, we factorise

the final task of full transcription into intermediate tasks that can pre-

dict an intermediate transcription matrix that can later be used to boost

the performance of a full transcription network. Figure 5.4 depicts the

overall task factorisation into the intermediate tasks and how they inter-

act with the final task of full transcription. We define a WHEN network

that performs audio event detection considering all classes as one general

class; in other words, it predicts when any event was present without

taking into consideration the different event classes. We also define a

WHO network that performs audio tagging without predicting any tem-

poral information. By combining the two different predictions from these

networks, we create an intermediate transcription that provides us with

the events present in a recording and the times where any of these events

can be present in a recording. This intermediate transcription is to be

used as supplementary information when training the full transcription

110 Chapter 5. Task Factorisation on Deep Learning

network in order to improve its performance by focusing its attention to

the classes present in a recording and the time frames that may contain

them.

Figure 5.4: Proposed factorisation of the full transcription task into mul-
tiple simpler tasks. The WHEN network performs audio event detection
considering all labels as one label. The WHO network performs audio
tagging for all available labels. The predictions of WHEN and WHO pro-
duce an intermediate transcription that is used to boost the performance
of the full transcription network.

When using a large enough dataset that provides satisfactory train-

ing data and has a good representation for each different class, many

methods have been successful in performing both of the intermediate

tasks. Examples for audio event detection can be found in Fanioudakis

and Potamitis (2017); Schlüter (2016), while for audio tagging in Kong

et al. (2017b); Xu et al. (2017a,b); Adavanne et al. (2017); Pons et al.

(2018); Choi et al. (2016). These tasks are less challenging to train for

than a full transcription task. However, using a low-resource dataset can

5.3. WHEN: Audio Event Detection 111

degrade their performance. Hence, in order to achieve a satisfactory per-

formance when training with a low-resource dataset, we propose some

specific training setups and techniques. The rest of this section describes

in detail the task specific setups and techniques that we use to reach our

goal.

5.3 WHEN: Audio Event Detection

In our proposed task factorisation, the WHEN network performs a sin-

gle class audio event detection as the first intermediate task towards full

transcription. For a multi-class dataset, training a separate network for

each class in order to perform single class event detection can sometimes

boost the performance of the detector as it only needs to learn the charac-

teristics of a single class. However, in a low-resource dataset, training an

audio event detector for each class can be nearly impossible. The number

of classes might be too large, making it a time-consuming task. Further-

more, some of the classes might have very rare occurrences, limited to

only a couple of recordings, hence making it infeasible to train a neural

network for them. Nevertheless, many low-resource datasets are used for

discriminating subclasses of a general class e.g., song of different bird

species, sound of different car engines, barking of different dog breeds,

and notes produced by an instrument. These subclasses usually share

some common features and characteristics, hence, in order to achieve a

good performance in the audio event detection task, we propose consider-

ing all subclasses as one general class and train a single WHEN network

112 Chapter 5. Task Factorisation on Deep Learning

to perform single class event detection. This reduces the training time

compared to training one network for each subclass and also resolves any

training issues caused by rare events.

5.3.1 Neural Network Architecture

From our pilot studies (see Section 5.1), we concluded that due to the na-

ture of sounds having a structure in time it is best to have a network that

can model the short-term and long-term temporal dependencies for each

recording. Hence for our audio event detector we use a state-of-the-art

stacked convolutional and recurrent neural network (CRNN) architec-

ture, instead of a purely convolutional network (i.e. CNN or DenseNet).

Table 5.1 describes the parameters of the proposed architecture.

The log mel-band energy feature extracted from the audio is fed to the

neural network, which sequentially produces the predicted strong labels

for each recording. The input to the proposed network is a T ×M feature

matrix. The convolutional layers in the beginning of the network are in

charge of learning the local shift-invariant features of this input. We use

a 3 × 3 receptive field and the padding arguments set as ‘same’ in order

to maintain the same size as the input in all our convolutional layers. The

max-pooling operation is performed along the frequency axis after every

convolutional layer to reduce the dimension of the feature matrix while

preserving the number of frames T . The output of the convolutional part

of the network is then fed to bidirectional gated recurrent units (GRUs)

with tanh activation to learn the short-term and long-term temporal

5.3. WHEN: Audio Event Detection 113

Table 5.1: WHEN network architecture. Size refers to either kernel shape
or number of units. #Fmaps is the number of feature maps in the layer.
Activation denotes the activation used for the layer and l2 reg the amount
of l2 kernel regularisation used in the layer.

Layer Size #Fmaps Activation l2 reg

Convolution 2D 3 × 3 64 Linear 0.001
Batch Normalisation - - - -
Activation - - ReLU -
Convolution 2D 3 × 3 64 Linear 0.001
Batch Normalisation - - - -
Activation - - ReLU -
Max Pooling 1 × 5 - - -
Convolution 2D 3 × 3 64 Linear 0.001
Batch Normalisation - - - -
Activation - - ReLU -
Convolution 2D 3 × 3 64 Linear 0.001
Batch Normalisation - - - -
Activation - - ReLU -
Max Pooling 1 × 4 - - -
Convolution 2D 3 × 3 64 Linear 0.001
Batch Normalisation - - - -
Activation - - ReLU -
Convolution 2D 3 × 3 64 Linear 0.001
Batch Normalisation - - - -
Activation - - ReLU -
Max Pooling 1 × 2 - - -
Reshape - - - -
Bidirectional GRU 64 - tanh 0.01
Bidirectional GRU 64 - tanh 0.01
Time Distributed Dense 64 - ReLU 0.01
Time Distributed Dense 1 - Sigmoid 0.01
Flatten - - - -

Trainable parameters: 320,623

114 Chapter 5. Task Factorisation on Deep Learning

structure of audio events. Next, we apply time distributed dense layers

to reduce feature-length dimensionality. Note that the time resolution of

T frames is maintained in both the GRU and dense layers. A sigmoid

activation is used in the last time-distributed dense layer to produce

a binary prediction of whether there is an event present in each time

frame. This prediction layer outputs the strong labels for a recording.

The dimensions of each prediction are T × 1. Finally, we calculate the

loss on this output as explained in the following section.

5.3.2 Loss Function for an MIL setting

As described in Section 2.5, in a multi instance learning setting, training

based on the bag (i.e. the whole recording) prediction deriving from

the max prediction of the instances is the most commonly used way.

However, the max predicted instance is typically the most easy to be

predicted as positive for a positive bag, while it is the most difficult to

be predicted as negative for a negative bag. It seems that this sets a low

burden on producing a positive output but a strong burden on producing

a negative output. As indicated in Amar et al. (2001), the value of a bag

is fully determined by its instance with the maximal output, regardless of

how many real positive or negative instances are in the bag. The burden

on producing a positive or negative output is not unbalanced at bag-level.

However, on an instance-level, when using max to compute the loss, only

one instance per bag contributes to the backpropagated gradient, which

may lead to inefficient training. Additionally, as mentioned earlier, in

positive bags a predictor only has to accurately predict the label for the

5.3. WHEN: Audio Event Detection 115

easiest positive instance to reach a perfect accuracy, thus not paying as

much attention to the rest of the positive instances that might be harder

to accurately detect.

Using all instances in a bag for computation of the loss and back-

propagated gradient is important, since the network ideally should ac-

quire some knowledge from every instance in every training iteration.

However, it is hard to find an elegant theoretical interpretation of the

characteristics of the instances in a bag. In Zhang et al. (2006), the au-

thors proposed the “noisy-or” pooling function for MIL tasks, with the

output label for bag Bi defined as:

Oi = 1−
∏

1≤j≤Mj

(1− oij) (5.1)

where oij represents the output of the network for input Bij, the j-th

instance in Bi, the i-th bag of training instances. The noisy-or pooling

function treats the predicted oij as the probability of the j-th instance

of the i-th bag being positive.

In Liu et al. (2017) the authors applied this pooling in a deep learn-

ing setting instead of using the max prediction. However, noisy-or has

been proven to not perform as well as max for audio event detection.

As discussed in Wang et al. (2018), a significant problem with noisy-or

is that the label of a bag is computed via the product of the instance

labels as seen in equation (5.1). This calculation relies heavily on the as-

sumed conditional independence of instance labels, an assumption which

is highly inaccurate in audio event detection. Furthermore, this can lead

116 Chapter 5. Task Factorisation on Deep Learning

the system to believe a bag is positive even though all its instances are

negative. Hence there is need for improved techniques to train machine

learning for MIL scenarios.

We introduce two additional assumptions about bag and instance

characteristics in order to compute a loss function that takes into account

all of the instance predictions. One assumption is to consider the mean of

the instance predictions of a bag. If a bag is negative, the mean should be

zero, while if it is positive it should be greater than zero. The true mean

is unknown in weakly labelled data. A näıve assumption is to presume

that approximately half of the time a specific event will be present in

a recording. Even though this is not true all of the time, it takes into

consideration the predictions for all instances, and also inserts a bias to

the loss that will keep producing gradient for training even after the max

term has reached its perfect accuracy. However, this is indeed a näıve

assumption that will guide the network to predict a balanced amount of

positives and negatives that may make it more sensitive to all kinds of

audio events, even when they are not the ones in question.

The second simple yet typically accurate assumption is that on both

negative and positive recordings the minimum predictions at an instance-

level should be zero. It is possible for a positive recording to have no neg-

ative frames; however, it is extremely rare in practice. This assumption

could be used in synergy with max and mean to enforce the prediction of

negative instances even on positive recordings and manage a certain level

of the bias that is introduced with considering mean in the computation

of the loss.

5.3. WHEN: Audio Event Detection 117

We train a network on a loss function that takes into account all the

above-mentioned assumptions and compute the max, mean and min from

the predictions of a recording and depending on whether a recording is

positive or negative we predict their divergence from different conditions.

Our proposed loss function is computed as:

Loss =
1

3

(
L(maxj(oij), Yi)+L(meanj(oij),

Yi

2
)+L(minj(oij), 0)

)
, (5.2)

where L(·, ·) is a function that computes the divergence between two

vectors (for our experiments we used binary cross-entropy), oij are all

the predicted instance labels of bag Bi, where j = 1...Mi with Mi being

the total number of instances in a bag, and Yi is the ground truth label

of the bag.

We refer to this as an MIL setting using a max, mean and min (MMM)

loss. For negative recordings, Equation (5.2) will compute the divergence

between the max, mean and min of the predictions of the instances of

a bag Bi and zero. This denotes that the predictions for all instances

of a negative recording should be zero. On the other hand, for posi-

tive recordings, the predictions should span the full dynamic range from

zero to one, biased towards a similar amount of positive and negative

instances. Our proposed loss function is designed to balance the positive

and negative predictions in a bag resulting in a network that has the

flexibility of learning from harder-to-predict positive instances even after

many epochs. This is due to the fact that there are no obvious local

118 Chapter 5. Task Factorisation on Deep Learning

minima to get stuck in as in the max case. We test and compare the

results of using different MIL loss functions for two low-resource datasets

in Section 5.6.

Following our introduction of MMM in Morfi and Stowell (2018a), this

loss function has been adopted by other researchers for weak-to-strong

prediction in a multi-class setting during the Detection and Classification

of Acoustic Scenes and Event (DCASE) 2018 challenge (Cances et al.,

2018). The authors successfully used the MMM loss in this setting by

adapting it to a multi-class input.

5.3.3 Half and Half Training

In the MIL setting for weak-to-strong labelling, it is of great importance

to have a good balance between positive and negative bags, in order for

the network to be able to distinguish what can be considered a positive

instance and what can be considered a negative one. A simple approach

to achieve this kind of balanced training is to have balanced training

batches as input to the network. In our approach, we implement this

by duplicating negative or positive recordings randomly during training

depending on which ones are fewer in the whole dataset. Thus, each batch

during training will consist of the same amount of positive and negative

recordings. We call this kind of input Half and Half (HnH). Please note

that balanced data for the WHEN task is not necessarily balanced data

for the WHO task, an issue that we will return to in Section 5.6.

5.4. WHO: Audio Tagging 119

5.4 WHO: Audio Tagging

The second intermediate task of our approach is the WHO network that

performs audio tagging using the provided weak labels of a low-resource

dataset. This task follows supervised training since the weak labels pro-

vided are the ones that the network will try to learn how to predict.

Hence, the training techniques that we use for the WHO network follow

standard approaches.

5.4.1 Neural Network Architecture

A similar network architecture to the one proposed for WHEN (see Table

5.1) is used for the first few layers of WHO in order to implement our

proposed training approaches that we will introduce in Section 5.5. Table

5.2 describes the structure of each individual layer used in the WHO

network.

Similar to the WHEN network, the log mel-band energy feature ex-

tracted from the audio is used as input with shape T × M , where T

is the number of time frames in a recording and M in the number of

features per time instance. The convolutional layers in the beginning of

the network are in charge of learning the local shift-invariant features of

this input. We use a 3 × 3 receptive field and the padding arguments

set as ‘same’. Max-pooling is performed along the frequency axis after

every convolutional layer to reduce the dimension for the feature matrix.

Global average pooling on both the time and frequency domain is finally

120 Chapter 5. Task Factorisation on Deep Learning

Table 5.2: WHO network architecture. Size refers to either kernel shape
or number of units. #Fmaps is the number of feature maps in the layer.
Activation denotes the activation used for the layer and l2 reg the amount
of l2 kernel regularisation used in the layer.

Layer Size #Fmaps Activation l2 reg

Convolution 2D 3 × 3 64 Linear 0.001
Batch Normalisation - - - -
Activation - - ReLU -
Convolution 2D 3 × 3 64 Linear 0.001
Batch Normalisation - - - -
Activation - - ReLU -
Max Pooling 1 × 5 - - -
Convolution 2D 3 × 3 64 Linear 0.001
Batch Normalisation - - - -
Activation - - ReLU -
Convolution 2D 3 × 3 64 Linear 0.001
Batch Normalisation - - - -
Activation - - ReLU -
Max Pooling 1 × 4 - - -
Convolution 2D 3 × 3 64 Linear 0.001
Batch Normalisation - - - -
Activation - - ReLU -
Convolution 2D 3 × 3 64 Linear 0.001
Batch Normalisation - - - -
Activation - - ReLU -
Max Pooling 1 × 2 - - -
Global Average Pooling 2D - - - -
Dense #labels - Sigmoid 0.001

Trainable parameters: 191,319

5.5. Training Methods 121

applied to the output of the convolutional part of the network and the

results are fed to a dense layer that has units equal to the number of

labels for our tagging task with sigmoid activation that predict the prob-

ability of each class being present in a recording. Finally, we calculate

the binary cross-entropy loss on this output and the ground truth ex-

tracted from the weak labels. Binary cross-entropy loss is used instead

of categorical cross-entropy since the recordings can contain more than

one class present, making this a multi-label task.

5.5 Training Methods

We investigate three different methods to train the two intermediate

tasks. One is the simple and usual approach of training each network

separately for each task. Additionally, two multi-task learning (MTL)

methods were tested, which we describe in the following sections. All

three different methods have advantages and disadvantages that we will

compare in detail in this section.

MTL (Caruana, 1997) aims to improve the performance of multiple

learning tasks by sharing useful information among them. MTL can be

very useful when using low-resource datasets since it can exploit useful

information from other learning tasks to help alleviate the issue of limited

data, based on the assumption that the multiple tasks are related. MTL

is similar to transfer learning (Pan and Yang, 2010) which also transfers

knowledge from one task to another. However, the focus of transfer

learning is to help a single target task by initially training on one or

122 Chapter 5. Task Factorisation on Deep Learning

multiple tasks while MTL uses multiple tasks to help each other. A

more detailed description of MTL and the reasons why we consider it a

suitable way of training for low-resource data scenarios can be found in

Section 2.7.

5.5.1 Separate Training

First, we use separate training for the two tasks. As depicted in Figure

5.5, two independent networks are defined, namely WHEN and WHO

with the architectures described in Sections 5.3 and 5.4, respectively.

The WHEN network performs audio event detection considering all la-

bels as a single general label, while the WHO network performs audio

tagging. Different kinds of input can be used for each network. HnH in-

put is used for WHEN and the conventional (nonHnH) input for WHO.

Thus, the batches used as input for the WHO network are randomly gen-

erated without taking into account the balance of positive and negative

recordings in them. Different types of input are used for each task since

their performance varies greatly depending on the type of input, even

though the source of training data for each one is the same.

The advantage of separate training is that each network can train with

the type of input that works better for it. WHEN uses a balanced batch

of positive and negative recordings (HnH) for input while WHO uses

the conventional randomly generated type of batch (nonHnH). The main

disadvantage of separate training is that each task trains independently

of the other, which may mean wasted computation, since these two tasks

5.5. Training Methods 123

Figure 5.5: Separate training. Networks WHEN and WHO are defined
and trained independently of one another for different tasks and with
different types of inputs.

are somewhat related, hence they should be able to focus the attention

of the network to important features and also regularise each other.

5.5.2 Joint Training

Joint training is one of the most common MTL approaches. In joint

training, the same network is trained for more than one task. Usually, the

network consists of a few shared layers in the beginning (most commonly

convolutional to extract meaningful features from the input) followed by

task specific layers before the predictions for each task. For each task, a

separate loss is computed and then combined into the general loss of the

network, as a weighted sum of the loss values. Joint training is a hard

parameter sharing approach, since all tasks are forced to share the same

early layers and weights. Figure 5.6 depicts how our intermediate tasks

are adapted to the joint training approach. The shared convolutional part

124 Chapter 5. Task Factorisation on Deep Learning

consists of the common convolutional and max pooling layers, while the

separate branches of the network consist of the task specific layers for

WHEN and WHO as described in Tables 5.1 and 5.2, respectively.

Figure 5.6: Joint training. A single network is defined for both tasks of
audio event detection and audio tagging. The network consists of early
shared convolutional layers between the tasks and separate task specific
layers that produce the predictions. A single input type and two task
specific loss functions are used while training.

The advantages of joint training are all the advantages presented by

MTL. More specifically, information is shared between the tasks to help

alleviate the issue of limited data. The model focuses its attention on

features that are more relevant to all tasks. In addition, it reduces the risk

of overfitting, since one task can act as the other’s regulariser. One of the

disadvantages of joint training is that both tasks train on the same input

data batches, which, depending on the type (HnH or nonHnH), degrades

the performance of one of the tasks (WHO or WHEN, respectively), as

we will show in Section 5.6.

5.5. Training Methods 125

5.5.3 Tied Weights Training

In order to achieve the advantages of both separate and joint training

without any of their disadvantages, we propose a new approach to MTL.

Tied weights training follows the hard parameter training convention,

where layers and their weights are shared between tasks. However, in con-

trast to joint training, different types of input can be used to train each

task. Figure 5.7 depicts the structure of tied weights training. Shared

convolutional part refers to the common convolutional and max pooling

layers of WHEN and WHO, and the weights between the two tasks are

constrained to be identical in these layers. Each task is trained consecu-

tively for one epoch, computing a separate loss value and updating the

weights of the shared layers. Using this approach, one can train each

network with independent types of input as in separate training while

keeping all the advantages of MTL learning. In contrast to joint training

the loss is not computed as an overall weighted sum of the individual task

losses, but each epoch is trained based on a different task loss specific to

the input type of that epoch, hence in our setting we alternate between

the two loss functions, the MIL MMM loss and a binary cross-entropy

loss for multi class classification.

The results of tests conducted on all three training approaches for

two low-resource data scenarios, one for birdsong and another one for

mammal vocalisations, are presented in the following section.

126 Chapter 5. Task Factorisation on Deep Learning

Figure 5.7: Tied weights training. A network defined per task. The
weights of the initial convolutional layers are shared between the tasks.
Different input is used for training each task.

5.6 Evaluation

In order to test our approach in a low-resource scenario we use two dif-

ferent datasets. The first one is Neural Information Processing Scaled for

Bioacoustics (NIPS4B), a birdsong dataset described in Chapter 4, and

the second one is a subset of one of the datasets used during the 2018

challenge on Detection and Classification of Acoustic Scenes and Events

(DCASE) for the task of large-scale weakly labelled semi-supervised

sound event detection in domestic environments (task 4).1 For the first

one we trained networks that perform birdsong event detection and clas-

sification, while for the second one we focused our attention to mammal

vocalisations including sound events produced by humans, dogs and cats.

For the NIPS4B dataset, along with the reference recordings, we

use the weak labels provided by the organisers during training, and the

NIPS4Bplus strong annotations that we acquired for evaluation purposes

1http://dcase.community/challenge2018/task-large-scale-weakly-

labeled-semi-supervised-sound-event-detection

5.6. Evaluation 127

only. The dataset contains a total of 87 classes, with each being active

in only 7 to 20 recordings. Each recording has 0 to 6 classes active in it.

Additionally, the total amount of training time is less than one hour. All

these make this dataset low-resource. A more detailed description of the

dataset and the annotations can be found in Chapter 4.

For our experiments, we split the NIPS4B training dataset into a

training set and a testing set. During the NIPS4B bird song competition,

only the weak labels for the training dataset were released, hence we could

only use these recordings for our experiments and could not make any use

of the testing dataset that consisted of more recordings. For our training

set, the first 499 recordings of the NIPS4B training dataset were used,

while the rest were included in our testing set, excluding 14 recordings

for which confident strong annotations could not be attained. Those 14

recordings were added to our training set resulting to a grand total of 513

training recordings and 174 testing recordings. Out of the 513 training

recordings a small subset of them were used during training for validation

purposes only. More specifically, the validation set we defined consisted

of 63 recordings (55 positive, 8 negative), with the rest 450 recordings

(385 positive, 65 negative) used only for training the model.

For the DCASE task 4 data, we first acquired the labelled training

set provided by the organisers. The set originally contained 1578 clips

deriving from YouTube videos, out of which we could only download 1537

due to copyright laws for the UK. Each clip is 10 seconds in duration.

Weak annotations were verified and cross-checked by the organisers for

this data. The set contains a total of 10 different classes: speech, dog,

128 Chapter 5. Task Factorisation on Deep Learning

cat, alarm/bell/ringing, dishes, frying, blender, running water, vacuum

cleaner, electric shaver/toothbrush. Each of the clips contains at least one

of these classes, however for our experiments having negative recordings

(recordings that do not contain any of the target events) is of great

importance for the WHEN task, hence we focus on a specific subset of

this classes. Namely, we combine three classes, speech, dog and cat, into

one general class: mammals. The remaining seven classes are ignored

and only recordings that contain any mammal vocalisation are marked

as positive with the rest being labelled as negative. Overall, out of the

1537 recordings, 865 of them are positive containing at least one mammal

vocalisation and 672 of them are negative. The reason behind choosing

to group together the three mammal classes is that even though the

vocalisations produced by each class are very distinct all three of them are

produced through a vocal system hence share some characteristics that

distinguish them from the other seven classes that are sounds produced

by objects.

The focus of our research is low-resource data scenarios, hence we

randomly selected a subset of the DCASE training set in order to form

the task into a low-resource one. More specifically, we randomly sampled

a total of 360 recordings totalling to an hour of training data. Out of

these 360 recordings, 300 were used for training our model and 60 for

validation only. For the 300 training recordings, 161 were positive for

mammal vocalisations and 139 were negative, while for the 60 validation

recordings, 39 were positive for mammal vocalisations and the remaining

21 were negative. For testing, we acquired the test set of the challenge

5.6. Evaluation 129

that originally contained 288 recordings, though once more we could only

download 230 of these clips from YouTube due to UK laws. This test set

was annotated with strong labels, with timestamps (obtained by human

annotators) by the organisers of the challenge.

5.6.1 Training Setup

The same general training setup and parameters are used for all networks

and for both datasets. Firstly, due to the nature of neural networks,

the input matrices during training should be of the same size, however

for the NIPS4B dataset some recordings have different sizes. Since the

max length of most recordings is 5 s, we extend the length of the other

recordings to this max value by looping them in time. All recordings

of the DCASE task 4 dataset have the same length of 10 s hence no

reshaping is needed. As input to all our networks, log mel-band energy

is extracted from audio in 23 ms Hamming windows with 50% overlap.

In order to do so, the librosa Python library is used. In total, 40 mel-

bands are used in the 0–22,050 Hz range. For a given length audio input,

the feature extraction produces a Tx40 matrix (T = 432 for NIPS4B

recordings and T = 864 for DCASE recordings).

The same hyper-parameters are used for training both WHEN and

WHO tasks for all three different approaches. Our batchsize is equal to

eight recordings. We use the Adam optimiser (Kingma and Ba, 2015)

with a learning rate scheduler that reduces the initial rate of 1e-5, for

NIPS4B data, and 1e-4, for DCASE data, by half every 20 epochs until it

130 Chapter 5. Task Factorisation on Deep Learning

reaches a minimum rate of 1e-8. We compare the MIL max loss function

with our proposed MMM loss function for the predictions of the WHEN

network in the bird vocalisation task and find the latter to perform better

for both datasets (see Section 5.6.2). For training the WHO task we use

a binary cross-entropy loss for multi-class predictions.

For the WHEN task, in order to efficiently use the data provided in

the NIPS4B and DCASE datasets, we consider all unique bird labels and

mammal labels, respectively, as one general label ‘bird’ and ‘mammal’

and train an audio event detection network for each general class.

All networks were trained using a single GeForce GTX 1080 Ti. The

framework used to implement them was Keras with Tensorflow backend.

Training time varied between WHEN and WHO tasks from 3 minutes to

3 seconds per epoch, respectively.

5.6.2 Results

First, we trained WHEN and WHO independently. WHEN was trained

with a HnH input, since not using HnH could cause the network to ignore

negative recordings. The MIL max loss and MMM loss were both used

and compared, as well as false strong labelling. Additional to these loss

functions, we trained two more networks using only the max and mean

terms and the max and min terms of MMM to compare the impact each

term had in the predictions of our audio event detector.

The first interesting aspect one can study is the individual results of

false strong labelling, the conventional max loss and our proposed MMM

5.6. Evaluation 131

loss. Figure 5.8 depicts a positive recording from our NIPS4B testing set

and the transcriptions predicted by each method. The first thing one can

notice is that using false strong labelling has a tendency of pushing all

the results closer to one when dealing with a positive recording. Some

structure is apparent in the predicted labels, hence the network is indeed

able to differentiate between positive and negative instances to some

degree, however all results for positive recordings are above the usual 0.5

threshold. We attribute this primarily to the nature of the false strong

labels: for a positive recording all time frames are labelled as positive. In

this example, the network trained on the max loss correctly predicts the

three more prominent events and then ignores all other events between

them. However, the network trained with the MMM loss is starting to

pick out some of the harder to detect events, due to the gradient provided

by using mean. It is evident from this example that once the max loss

reaches the perfect accuracy for a bag, it ignores the harder-to-predict

events.

Figures 5.9a and 5.9b present the progress of the F-measure value,

i.e. the harmonic average of the precision and recall of the predictions,

on the NIPS4B and DCASE testing sets respectively, during training.

One can notice that methods using the mean term in the loss prediction

tend to reach higher scores overall. For the NIPS4B dataset, we notice

that after training for a certain amount of epochs the results for most

methods are decreasing: this is due to the common issue of the MIL

setting which is the lack of any clear criterion for when one should stop

training. No F-measure values are provided for false strong labelling since

132 Chapter 5. Task Factorisation on Deep Learning

(a) MIL using FSL

(b) MIL using max

(c) MIL using MMM

Figure 5.8: Predicted transcription of a recording from the testing set
on the NIPS4B dataset. 5.8a depicts the results of our WHEN network
trained in a false strong labelling setting. 5.8b depicts the results of it
trained with max loss. 5.8c depicts the results of it trained with MMM
loss.

5.6. Evaluation 133

(a) F1 score of WHEN network predictions trained on the
NIPS4Bplus data computed throughout training for different
loss functions.

(b) F1 score of WHEN network predictions trained on the
DCASE data computed throughout training for different loss
functions.

Figure 5.9: Comparison of the progress of F1 score for our testing sets
(a)NIPS4Bplus and (b)DCASE, through epochs for different loss func-
tions, max mean min (MMM), max, max mean and max min.

134 Chapter 5. Task Factorisation on Deep Learning

all the predictions were always above the 0.5 threshold as depicted in the

example of Figure 5.8, thus we do not consider false strong labelling any

further.

As we showed, using the MMM loss function for training the WHEN

task has advantages over all the previously proposed MIL loss functions,

hence for all following experiments the results are acquired when training

the WHEN task with MMM loss.

For the WHO task we trained with a conventional nonHnH input

since using HnH for WHO made its performance worse, especially for

the NIPS4Bplus data. This is due to the fact that the active classes are

already very sparse (0 to 6 active classes out of 87 per recording) and,

for both datasets, the HnH input duplicates negative recordings, hence

decreasing the activation rate for each class, making it even harder to

train reliably. Furthermore, for the DCASE dataset, we found it hard

to train a network that would not overfit. We concluded that this was

due to the size of the network and the relatively easy task of classifying

between 3 classes, compared to the NIPS4Bplus task. For both datasets,

we used a binary cross-entropy loss for multi-class predictions. This setup

for the WHO task and the above MMM setup for WHEN were used for

the separate training.

Next, we trained two versions of the joint network: one of them used

a HnH input while the other a nonHnH input. In general, joint training

did not provide any advantages for the NIPS4B data, but it improved

the predictions for the WHO task on the DCASE data. As we mentioned

above, while training for the WHO task on the DCASE data, we found it

5.6. Evaluation 135

hard not to overfit, yet it appears that joint training on both WHO and

WHEN tasks acts as a regulariser. This was not the case with NIPS4B

data, where the number of class is much higher and their activations are

more sparse. When using HnH input while training on the NIPS4B data,

the WHO predictions tended to not have a satisfactory performance due

to the increase in negative recordings. When training the joint network

with the nonHnH input, the WHEN task performance was degraded for

both datasets. The loss value of the WHO task tended to be an order

smaller than the one for WHEN, hence we trained with two different

combinations of weights for the tasks. For one of them, both task losses

had the same weight of 0.5, while for the other one the weight for the

WHO task loss was an order larger than the WHEN; more specifically,

we used weight 0.5 for WHEN loss and 5.0 for WHO loss.

Finally, we performed a tied weights training. This solved the issue

of using only one type of input since it could train with both HnH and

nonHnH inputs separately for each task as if the tasks were trained in-

dependently, while still sharing the weights of the shared layers like the

joint training. Hence, we used the HnH input for training the WHEN

task and a nonHnH input for training the WHO task.

Table 5.3 shows the area under the ROC curve (AUC) results for each

training approach for the NIPS4B data. We can see that even though the

tied weights training had a better overall performance compared to the

joint training, separate training still had the best overall results. The best

overall results for joint training were produced when using weights 0.5 and

5.0 for WHEN and WHO loss, respectively and also using nonHnH input.

136 Chapter 5. Task Factorisation on Deep Learning

Table 5.3: Area under the ROC curve (AUC) for the predictions of all
training approaches on NIPS4B data. [WHEN: xx; WHO: yy] indicate
the weights xx for WHEN task loss and yy for WHO task loss that were
used during joint training. Best values are marked in bold.

Training Input Type WHEN WHO
Method WHEN — WHO AUC AUC

Separate HnH — nonHnH 0.90 0.94
Joint [WHEN: 0.5; WHO: 0.5] HnH 0.89 0.52
Joint [WHEN: 0.5; WHO: 0.5] nonHnH 0.47 0.57
Joint [WHEN: 0.5; WHO: 5.0] HnH 0.90 0.50
Joint [WHEN: 0.5; WHO: 5.0] nonHnH 0.82 0.75

Tied Weights HnH — nonHnH 0.87 0.77

Table 5.4: Area under the ROC curve (AUC) for the predictions of all
training approaches on DCASE data. [WHEN: xx; WHO: yy] indicate
the weights xx for WHEN task loss and yy for WHO task loss that were
used during joint training. Best values are marked in bold.

Training Input Type WHEN WHO
Method WHEN — WHO AUC AUC

Separate HnH — nonHnH 0.85 0.78
Joint [WHEN: 0.5; WHO: 0.5] HnH 0.83 0.83
Joint [WHEN: 0.5; WHO: 0.5] nonHnH 0.80 0.86
Joint [WHEN: 0.5; WHO: 5.0] HnH 0.82 0.85
Joint [WHEN: 0.5; WHO: 5.0] nonHnH 0.76 0.82

Tied Weights HnH — nonHnH 0.84 0.89

Hence, we can conclude that the WHO network was sharing important

information with the WHEN network that boosted its performance when

enough weight was given to its loss.

Table 5.4 shows the area under the ROC curve (AUC) results for each

training approach for the DCASE data. One can notice that the results

for the WHO task increased when we used joint or tied weights training.

This can be attributed to the fact that the information from the WHEN

task is acting as a regulariser for the WHO task. On the other hand, the

5.6. Evaluation 137

performance of the WHEN task dropped, especially when using nonHnH

input as we originally expected.

As mentioned before, any type of MTL training had so far been proven

to outperform independent training, which was not the case in some of

our experiments, especially concerning the NIPS4B data. This could

be attributed to some low-resource aspects of the dataset. In contrast

to the DCASE data, where MTL training produced improved results,

the NIPS4B dataset contains a much larger number of classes with most

of them being very sparsely active. Using MTL training introduces an

additional regulariser to an already hard to train for task. For this kind

of scenario a soft parameter sharing approach (Duong et al., 2015; Misra

et al., 2016; Yang and Hospedales, 2017; Ruder et al., 2017) may be more

suitable since the effect each task has on each other is less strong.

Chapter 6

Conclusions and Further

Work

In fulfilment of our aim to achieve automatic wildlife monitoring of song-

birds in low-resource scenarios, the central part of this thesis has been the

development of machine learning methods to apply towards this task. We

implemented and evaluated multiple methods on two main approaches:

event-based segmentation and classification; and deep learning in a multi

instance learning setting for whole recordings.

To conclude this thesis, we first summarise the contributions made.

We then consider some potential avenues for future work and finally

reflect on the results of our research.

138

6.1. Summary of Thesis Contributions 139

6.1 Summary of Thesis Contributions

• In Chapter 3, we developed and evaluated a two step process of seg-

mentation and classification of audio events. Both steps are based

on image processing methods. We evaluated their performance for

synthetic and natural data and acquired an insight into their limi-

tations that further motivated the use of deep learning methods.

• In Chapter 4, we introduced the first open access ecological audio

dataset that contains bird species tags and temporal annotations,

NIPS4Bplus. We also presented useful statistics about the num-

ber of occurrences of each label, the distribution of active labels

through the dataset and more. Finally, we described in detail the

temporal annotation process. NIPS4Bplus is a low-resource eco-

logical dataset and annotations that can be used for either training

supervised automated methods that perform bird vocalisation de-

tection and classification or be used for evaluating methods that

use only audio tags or no annotations for training.

• In Chapter 5, we developed a new loss function (MMM) for deep

learning in a multi-instance learning (MIL) setting for audio event

detection. We compared the performance of MMM to the tradi-

tional max MIL loss function, and results showed that using MMM

can detect harder to find vocalisations that max cannot.

• In Chapter 5, we also proposed and evaluated a task factorisation

of the full transcription task that can be used in a low-resource

MIL setting. We explored multiple ways for training the factorised

140 Chapter 6. Conclusions and Further Work

tasks and gained some insight into multi task learning. We also

developed a method, namely tied weights training, that has all the

advantages of separate training along with the positive aspects of

joint training in MTL.

Many of these contributions are represented in international peer-

reviewed conference and journal articles, as listed in Section 1.5.

6.2 Future Work

Further work that could follow on from the research of this thesis includes:

Full transcription: In this thesis we developed methods that

can predict what we refer to as intermediate transcription. A way

to combine this intermediate transcription with full transcription

prediction methods should be investigated in future work.

Improved MIL: One of the still unsolved issues in MIL is the lack

any specific criterion to stop training. Using terms that include all

instances in predicting the loss to be minimised may prove to be the

way to define a way of early stopping. Furthermore, future work

should include investigating a way to define a more appropriate and

flexible mean term in the loss function instead of the näıve 0.5 we

used during our experiments.

Use in other contexts: Our experiments focused on low-resource

scenarios. While the need for methods that can perform well when

6.3. Closing Remarks 141

there is a limited amount of data and annotations is great, the

methods could also be potentially applied to boost the performance

of predictors in a large scale setting.

6.3 Closing Remarks

During our research for automated wildlife monitoring the main recurring

issue was the lack of strongly annotated data. These type of data are

preferred when training full transcription predictors and are necessary

in order to evaluate any such model. Yet in order to acquire such data

human annotators are hard to find, may be expensive or slow in their

progress, so we try to train unsupervised or weakly supervised models

alleviate the need of human annotators. Yet we need some annotated

data to evaluate these models.

This issue is a vicious cycle. How does one get out of such a cycle?

With difficulty. Such problems are difficult to solve; since they’re cyclical,

one does not know where to start from.

It is hard to decide if it is better to spend time acquiring annotated

data by manual labour or to spend time trying to adjust a model to a low-

resource scenario. With the unlimited amount of different possible audio

events there will never be enough annotated data for each individual

possible audio class. Furthermore, the amount of unlabelled recordings

keeps on increasing fast, so that no amount of manual work will ever

be able to annotate all this data. Hence, low-resource scenarios and the

142 Chapter 6. Conclusions and Further Work

time and effort it takes to adjust models to them are a necessary evil.

The future of audio event transcription is open for methods that

can learn to adapt to training with a very small amount of annotated

data. These can either be methods that manage to take advantage of the

huge amount of unlabelled data and transfer that knowledge to the low-

resource data or methods that find a way to train and make an efficient

use of small amounts of data like the ones we explored in this thesis. And

we have shown, even methods such as deep neural networks, that were

originally thought to only behave well when there is a vast amount of

data, can train in low-resource scenarios when the correct training setup

is in place.

Bibliography

Adavanne, S., Drossos, K., Çakir, E., and Virtanen, T. (2017). Stacked

convolutional and recurrent neural networks for bird audio detection.

In 2017 25th European Signal Processing Conference (EUSIPCO),

pages 1729–1733.

Adavanne, S. and Virtanen, T. (2017). Sound event detection using

weakly labeled dataset with stacked convolutional and recurrent neural

network. In Detection and Classification of Acoustic Scenes and Events

(DCASE 2017).

Aide, T. M., Corrada-Bravo, C., Campos-Cerqueira, M., Milan, C., Vega,

G., and Alvarez, R. (2013). Real-time bioacoustics monitoring and

automated species identification. PeerJ, 1:e103.

Amar, R., Dooly, D. R., Goldman, S. A., and Zhang, Q. (2001). Multiple-

instance learning of real-valued data. In Proceedings of the 18th In-

ternational Conference on Machine Learning (ICML), ’01, pages 3–10,

San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Andrén, H. (1994). Effects of habitat fragmentation on birds and mam-

143

144 BIBLIOGRAPHY

mals in landscapes with different proportions of suitable habitat: A

review. Oikos, 71(3):355–366.

Anguera, X., Bozonnet, S., Evans, N., Fredouille, C., Friedland, G.,

and Vinyals, O. (2012). Speaker diarization: A review of recent re-

search. IEEE Transactions on Audio, Speech, and Language Process-

ing, 20(2):356–370.

Armitage, D. W. and Ober, H. K. (2010). A comparison of supervised

learning techniques in the classification of bat echolocation calls. Eco-

logical Informatics, 5:465–473.

Bardeli, R., Wolff, D., Kurth, F., Koch, M., Tauchert, K.-H., and From-

molt, K.-H. (2010). Detecting bird sounds in a complex acoustic envi-

ronment and application to bioacoustic monitoring. Pattern Recogni-

tion Letters, 31:1524–1534.

Baxter, J. (1997). A bayesian/information theoretic model of learning to

learn via multiple task sampling. Machine Learning, 28(1):7–39.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term

dependencies with gradient descent is difficult. IEEE Transactions on

Neural Networks, 5(2):157–166.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (In-

formation Science and Statistics). Springer-Verlag New York, Inc.,

Secaucus, NJ, USA.

Blum, A. L. and Rivest, R. L. (1992). Training a 3-node neural network

is NP-complete. Neural Networks, 5(1):117 – 127.

BIBLIOGRAPHY 145

Briggs, F., Lakshminarayanan, B., Neal, L., Fern, X., Raich, R., Hadley,

S. J. K., Hadley, A. S., and Betts, M. G. (2012). Acoustic classification

of multiple simultaneous bird species: A multi-instance multi-label

approach. Journal of the Acoustic Society of America, 131:4640–4650.

Buades, A., Coll, B., and Morel, J. M. (2004). On image denoising

methods. Technical report, Centre de Mathematiques et de Leurs Ap-

plications (CMLA).

Buades, A., Coll, B., and Morel, J.-M. (2011). Non-local means denoising.

Image Processing On Line, 1:208–212.

Cakir, E., Adavanne, S., Parascandolo, G., Drossos, K., and Virtanen,

T. (2017). Convolutional recurrent neural networks for bird audio

detection. In 2017 25th European Signal Processing Conference (EU-

SIPCO), pages 1744–1748.

Campos Cerqueira, M. and Aide, T. M. (2016). Improving distribution

data of threatened species by combining acoustic monitoring and oc-

cupancy modeling. Methods in Ecology and Evolution, 7:1340–1348.

Cances, L., Pellegrini, T., and Guyot, P. (2018). Sound event detection

from weak annotations: Weighted GRU versus multi-instance learning.

In Proceedings of the Detection and Classification of Acoustic Scenes

and Events 2018 Workshop (DCASE 2018).

Caruana, R. (1993). Multitask learning: A knowledge-based source of

inductive bias. In Proceedings of the 10th International Conference on

Machine Learning (ICML), pages 41–48. Morgan Kaufmann.

146 BIBLIOGRAPHY

Caruana, R. (1997). Multitask learning. Machine Learning, 28(1):41–75.

Chambolle, A. (2004). An algorithm for total variation minimization and

applications. Journal of Mathematical Imaging and Vision, 20(1):89–

97.

Chapin, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek,

P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O., Hobbie,

S. E., Mack, M. C., and Dı́az, S. (2000). Consequences of changing

biodiversity. Nature, 405(6783):234–242.

Cho, K., van Merrinboer, B., Gulcehre, C., Bougares, F., Schwenk, H.,

and Bengio, Y. (2014). Learning phrase representations using rnn

encoder-decoder for statistical machine translation. In Proceedings of

the 2014 Conference on Empirical Methods in Natural Language Pro-

cessing (EMNLP), pages 1724–1734. Association for Computational

Linguistics.

Choi, K., Fazekas, G., and Sandler, M. B. (2016). Automatic tagging

using deep convolutional neural networks. In Proceedings of the 17th

International Society for Music Information Retrieval Conference (IS-

MIR 2016).

Choromanska, A., Henaff, M., Mathieu, M., Ben Arous, G., and LeCun,

Y. (2015). The loss surfaces of multilayer networks. Journal of Machine

Learning Research, 38:192–204.

Collobert, R. and Weston, J. (2008). A unified architecture for natural

language processing: Deep neural networks with multitask learning. In

BIBLIOGRAPHY 147

Proceedings of the 25th International Conference on Machine Learning

(ICML), ’08, pages 160–167, New York, NY, USA. ACM.

Dahl, G. E., Sainath, T. N., and Hinton, G. E. (2013). Improving deep

neural networks for lvcsr using rectified linear units and dropout. In

2013 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 8609–8613.

Damoulas, T., Henry, S., Farnsworth, A., Lanzone, M., and Gomes, C. P.

(2010). Bayesian classification of flight calls with a novel dynamic

time warping kernel. In The 9th International Conference on Machine

Learning and Applications (ICMLA), pages 424–429. IEEE Computer

Society.

Dawson, D. K. and Efford, M. G. (2009). Bird population density esti-

mated from acoustic signals. Journal of Applied Ecology, 46(6):1201–

1209.

de Camargo, U. M., Somervuo, P., and Ovaskainen, O. (2017). Protax-

sound: A probabilistic framework for automated animal sound identi-

fication. PLOS ONE, 12(9):1–15.

Deng, L., Hinton, G., and Kingsbury, B. (2013). New types of deep neural

network learning for speech recognition and related applications: an

overview. In 2013 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 8599–8603.

Dieleman, S. and Schrauwen, B. (2014). End-to-end learning for music

audio. In 2014 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 6964–6968.

148 BIBLIOGRAPHY

Dietterich, T. G., Lathrop, R. H., and Lozano-Pérez, T. (1997). Solving

the multiple instance problem with axis-parallel rectangles. Artificial

Intelligence, 89(1):31–71.

Drake, K. L., Frey, M., Hogan, D., and Hedley, R. (2016). Using digi-

tal recordings and sonogram analysis to obtain counts of yellow rails.

Wildlife Society Bulletin, 40(2):346–354.

Duong, L., Cohn, T., Bird, S., and Cook, P. (2015). Low resource depen-

dency parsing: Cross-lingual parameter sharing in a neural network

parser. In Proceedings of the 53rd Annual Meeting of the Association

for Computational Linguistics and the 7th International Joint Confer-

ence on Natural Language Processing (Short Papers), pages 845–850.

Association for Computational Linguistics (ACL).

Duran, J., Coll, B., and Sbert, C. (2013). Chambolle’s Projection Al-

gorithm for Total Variation Denoising. Image Processing On Line,

3:311–331.

Eronen, A. J., Peltonen, V. T., Tuomi, J. T., Klapuri, A. P., Fagerlund,

S., Sorsa, T., Lorho, G., and Huopaniemi, J. (2006). Audio-based con-

text recognition. Transactions on Audio, Speech and Language Pro-

cessing, 14(1):321–329.

Fanioudakis, L. and Potamitis, I. (2017). Deep networks tag the location

of bird vocalisations on audio spectrograms. arXiv:1711.04347.

Farley, B. and Clark, W. (1954). Simulation of self-organizing systems

by digital computer. Transactions of the IRE Professional Group on

Information Theory, 4(4):76–84.

BIBLIOGRAPHY 149

Fearn, E., Redford, K. H., Woods, W., and Wildlife Conservation Society

(New York, N.Y.) (2008). State of the wild, 2008-2009 : a global

portrait of wildlife, wildlands, and oceans. Island Press.

Fearn, E., Redford, K. H., Woods, W., and Wildlife Conservation Society

(New York, N.Y.) (2010). State of the wild 2010-2011: a global portrait.

Island Press.

Ferraz, G., Marinelli, C. E., and Lovejoy, T. E. (2008). Biological mon-

itoring in the Amazon: Recent progress and future needs. Biotropica,

40(1):7–10.

Fischer, F. P., Schulz, U., Schubert, H., Knapp, P., and Schmger, M.

(1997). Quantitative assessment of grassland quality: Acoustic deter-

mination of population sizes of orthopteran indicator species. Ecolog-

ical Applications, 7(3):909–920.

Fodor, G. (2013). The Ninth Annual MLSP competition: First place.

International Workshop on Machine Learning for Signal Processing

(MLSP), pages 1–2.

Frommolt, K.-H. (2017). Information obtained from long-term acoustic

recordings: applying bioacoustic techniques for monitoring wetland

birds during breeding season. Journal of Ornithology, 158:659–668.

Furnas, B. J. and Callas, R. L. (2015). Using automated recorders and

occupancy models to monitor common forest birds across a large geo-

graphic region. The Journal of Wildlife Management, 79(2):325–337.

Garcia-Romero, D., Snyder, D., Sell, G., Povey, D., and McCree, A.

150 BIBLIOGRAPHY

(2017). Speaker diarization using deep neural network embeddings. In

2017 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 4930–4934.

Gers, F. A., Schmidhuber, J., and Cummins, F. (2000). Learning

to forget: Continual prediction with LSTM. Neural Computation,

12(10):2451–2471.

Girshick, R. (2015). Fast R-CNN. In 2015 IEEE International Confer-

ence on Computer Vision (ICCV), pages 1440–1448.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training

deep feedforward neural networks. In In Proceedings of the Interna-

tional Conference on Artificial Intelligence and Statistics (AISTATS).

Society for Artificial Intelligence and Statistics.

Glotin, H., LeCun, Y., Artières, T., Mallat, S., Tchernichovski, O., and

Halkias, X. (2013). Proc. neural information processing scaled for

bioacoustics, from neurons to big data. USA. NIPS Int. Conf.

Goëau, H., Glotin, H., Vellinga, W.-P., Planqué, R., and Joly, A. (2016).

LifeCLEF Bird Identification Task 2016: The arrival of Deep Learning.

Goëau, H., Glotin, H., Vellinga, W.-P., Planqué, R., and Joly, A. (2017).

LifeCLEF Bird Identification Task 2017.

Goëau, H., Glotin, H., Vellinga, W.-P., Planqué, R., Rauber, A., and

Joly, A. (2015). LifeCLEF Bird Identification Task 2015.

Goetze, S., Schroder, J., Gerlach, S., Hollosi, D., Appell, J.-E., and

BIBLIOGRAPHY 151

Wallhoff, F. (2012). Acoustic Monitoring and Localization for Social

Care. Journal of Computing Science and Engineering, 6(1):40–50.

Gonzalez, R. C. and Woods, R. E. (2006). Digital Image Processing (3rd

Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Grill, T. and Schlüter, J. (2017). Two convolutional neural networks for

bird detection in audio signals. In 2017 25th European Signal Process-

ing Conference (EUSIPCO), pages 1764–1768.

Hershey, S., Chaudhuri, S., Ellis, D. P. W., Gemmeke, J. F., Jansen,

A., Moore, R. C., Plakal, M., Platt, D., Saurous, R. A., Seybold, B.,

Slaney, M., Weiss, R. J., and Wilson, K. (2017). Cnn architectures for

large-scale audio classification. In 2017 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 131–135.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory.

Neural computation, 9:1735–80.

Huang, G., Liu, Z., and Weinberger, K. Q. (2017). Densely connected

convolutional networks. 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 2261–2269.

Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE

Transactions on Systems, Man, and Cybernetics, SMC-1(4):364–378.

Johnston, A., Newson, S., Risely, K., J Musgrove, A., Massimino, D.,

Baillie, S., and W Pearce-Higgins, J. (2014). Species traits explain

variation in detectability of UK birds. Bird Study, 61:340–350.

152 BIBLIOGRAPHY

Kamp, J., Oppel, S., Heldbjerg, H., Nyegaard, T., and F. Donald, P.

(2016). Unstructured citizen science data fail to detect long-term pop-

ulation declines of common birds in Denmark. Diversity and Distribu-

tions, 22:1024–1035.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic op-

timization. In 3rd International Conference for Learning Representa-

tions (ICLR), San Diego.

Kleene, S. C. (1956). Representation of events in nerve nets and finite au-

tomata. In Shannon, C. and McCarthy, J., editors, Automata Studies,

pages 3–41. Princeton University Press, Princeton, NJ.

Knight, E., C. Hannah, K., J. Foley, G., D. Scott, C., Brigham, R., and

Bayne, E. (2017). Recommendations for acoustic recognizer perfor-

mance assessment with application to five common automated signal

recognition programs. Avian Conservation and Ecology, 12(2):14.

Kolen, J. and Kremer, S. (2001). A Field Guide to Dynamical Recurrent

Networks. Wiley.

Kong, Q., Xu, Y., and Plumbley, M. D. (2017a). Joint detection and

classification convolutional neural network on weakly labelled bird au-

dio detection. In 2017 25th European Signal Processing Conference

(EUSIPCO), pages 1749–1753.

Kong, Q., Xu, Y., Wang, W., and Plumbley, M. D. (2017b). A joint

detection-classification model for audio tagging of weakly labelled data.

In 2017 IEEE International Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP), pages 641–645.

BIBLIOGRAPHY 153

Kroodsma, D. (2005). The Singing Life of Birds: Audio CD. The Singing

Life of Birds: The Art and Science of Listening to Birdsong. Houghton

Mifflin.

Kumar, A. and Raj, B. (2016). Audio event detection using weakly la-

beled data. In Proceedings of the 2016 ACM on Multimedia Conference,

MM ’16, pages 1038–1047, New York, NY, USA. ACM.

Kumar, A. and Raj, B. (2017). Deep CNN framework for audio event

recognition using weakly labeled web data. In 31st Conference on

Neural Information Processing Systems (NIPS 2017).

Lakshminarayanan, B., Raich, R., and Fern, X. (2009). A syllable-

level probabilistic framework for bird species identification. In 2009

8th International Conference on Machine Learning and Applications

(ICMLA), pages 53–59.

Lambert, K. T. A. and McDonald, P. G. (2014). A low-cost, yet simple

and highly repeatable system for acoustically surveying cryptic species.

Austral Ecology, 39(7):779–785.

Lasseck, M. (2015). Towards automatic large-scale identification of birds

in audio recordings. In Experimental IR Meets Multilinguality, Multi-

modality, and Interaction - 6th International Conference of the CLEF

Association, CLEF 2015, Toulouse, France, September 8-11, 2015,

Proceedings, pages 364–375.

LeCun, Y., Haffner, P., Bottou, L., and Bengio, Y. (1999). Object Recog-

nition with Gradient-Based Learning, pages 319–345. Springer Berlin

Heidelberg, Berlin, Heidelberg.

154 BIBLIOGRAPHY

Lee, C.-H., Han, C.-C., and Chuang, C.-C. (2008). Automatic classi-

fication of bird species from their sounds using two-dimensional cep-

stral coefficients. Transactions Audio, Speech and Language Processing,

16(8):1541–1550.

Liu, D., Zhou, Y., Sun, X., Zha, Z., and Zeng, W. (2017). Adaptive pool-

ing in multi-instance learning for web video annotation. In 2017 IEEE

International Conference on Computer Vision Workshops (ICCVW),

pages 318–327.

Liu, J., Dietz, T., Carpenter, S. R., Alberti, M., Folke, C., Moran, E.,

Pell, A. N., Deadman, P., Kratz, T., Lubchenco, J., Ostrom, E.,

Ouyang, Z., Provencher, W., Redman, C. L., Schneider, S. H., and

Taylor, W. W. (2007). Complexity of coupled human and natural

systems. Science, 317(5844):1513–1516.

Lostanlen, V., Salamon, J., Farnsworth, A., Kelling, S., and Bello, J. P.

(2018). Birdvox-full-night: a dataset and benchmark for avian flight

call detection. In 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 266–270.

Luther, D. (2008). Signaller: Receiver coordination and the timing of

communication in amazonian birds. Biology Letters, 4:651–654.

Luther, D. and Wiley, R. (2009). Production and perception of commu-

nicatory signals in a noisy environment. Biology Letters, 5:183–187.

Mac Swiney Gonzlez, M. C., M. Clarke, F., and Racey, P. (2008). What

you see is not what you get: The role of ultrasonic detectors in increas-

BIBLIOGRAPHY 155

ing inventory completeness in neotropical bat assemblages. Journal of

Applied Ecology, 45:1364–1371.

MacArthur, R. H., MacArthur, J. W., and Preer, J. (1962). On bird

species diversity. II. prediction of bird census from habitat measure-

ments. The American Naturalist, 96(888):167–174.

Marques, T. A., Thomas, L., Martin, S. W., Mellinger, D. K., Ward,

J. A., Moretti, D. J., Harris, D., and Tyack, P. L. (2013). Estimating

animal population density using passive acoustics. Biological Reviews,

88(2):287–309.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas im-

manent in nervous activity. The Bulletin of Mathematical Biophysics,

5(4):115–133.

Misra, I., Shrivastava, A., Gupta, A., and Hebert, M. (2016). Cross-

stitch networks for multi-task learning. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 3994–4003.

Morfi, V., Bas, Y., Pamula, H., Glotin, H., and Stowell, D. (2018).

NIPS4Bplus: a richly annotated birdsong audio dataset. PeerJ CS

(under review), abs/1811.02275.

Morfi, V. and Stowell, D. (2017). Deductive refinement of species la-

belling in weakly labelled birdsong recordings. In 2017 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 656–660.

156 BIBLIOGRAPHY

Morfi, V. and Stowell, D. (2018a). Data-efficient weakly supervised learn-

ing for low-resource audio event detection using deep learning. In Pro-

ceedings of the Detection and Classification of Acoustic Scenes and

Events 2018 Workshop (DCASE 2018), pages 123–127.

Morfi, V. and Stowell, D. (2018b). Deep learning for audio event detection

and tagging on low-resource datasets. Applied Sciences, 8(8):1397.

Nandwana, M. K. and Hasan, T. (2016). Towards smart-cars that can

listen: Abnormal acoustic event detection on the road. In 17th An-

nual Conference of the International Speech Communication Associa-

tion (Interspeech), pages 2968–2971, San Francisco, California, USA.

Pacifici, K., Simons, T. R., and Pollock, K. H. (2008). Effects of vegeta-

tion and background noise on the detection process in auditory avian

point-count surveys. The Auk, 125(4):998–998.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE

Transactions on Knowledge and Data Engineering, 22(10):1345–1359.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of

training recurrent neural networks. In 30th International Conference

on Machine Learning (ICML), volume 28.

Pellegrini, T. (2017). Densely connected cnns for bird audio detection. In

2017 25th European Signal Processing Conference (EUSIPCO), pages

1734–1738.

Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina,

A., Krause, B. L., Napoletano, B. M., Gage, S. H., and Pieretti, N.

BIBLIOGRAPHY 157

(2011). Soundscape ecology: The science of sound in the landscape.

BioScience, 61(3):203–216.

Pons, J., Nieto, O., Prockup, M., Schmidt, E. M., Ehmann, A. F., and

Serra, X. (2018). End-to-end learning for music audio tagging at scale.

In 2018 19th International Society for Music Information Retrieval

Conference (ISMIR).

Potamitis, I. (2015). Unsupervised dictionary extraction of bird vocalisa-

tions and new tools on assessing and visualising bird activity. Ecological

Informatics, 26(3):6–17.

Prechelt, L. (2012). Early Stopping — But When?, pages 53–67. Springer

Berlin Heidelberg, Berlin, Heidelberg.

Ribeiro Jr, J., Sugai, L., and Campos Cerqueira, M. (2017). Passive

acoustic monitoring as a complementary strategy to assess biodiversity

in the Brazilian Amazonia. Biodiversity and Conservation, 26:2999–

3002.

Rochester, N., Holland, J., Haibt, L., and Duda, W. (1956). Tests on

a cell assembly theory of the action of the brain, using a large digital

computer. IRE Transactions on Information Theory, 2(3):80–93.

Roger, V., Bartcus, M., Chamroukhi, F., and Glotin, H. (2018). Un-

supervised bioacoustic segmentation by hierarchical dirichlet process

hidden markov model. In Multimedia Tools and Applications for En-

vironmental & Biodiversity Informatics, pages 113–130. Springer.

Ruder, S., Bingel, J., Augenstein, I., and Søgaard, A. (2017). Sluice

158 BIBLIOGRAPHY

networks: Learning what to share between loosely related tasks.

abs/1705.08142.

Ruiz-Muñoz, J. F., Orozco-Alzate, M., and Castellanos-Dominguez, G.

(2015). Multiple instance learning-based birdsong classification using

unsupervised recording segmentation. In Proceedings of the 24th Inter-

national Conference on Artificial Intelligence, IJCAI’15, pages 2632–

2638. AAAI Press.

Salamon, J. and Bello, J. P. (2017). Deep convolutional neural networks

and data augmentation for environmental sound classification. IEEE

Signal Processing Letters, 24:279–283.

Schlüter, J. (2016). Learning to Pinpoint Singing Voice from Weakly

Labeled Examples. In Proceedings of the 17th International Society

for Music Information Retrieval Conference (ISMIR 2016), New York,

USA.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview.

Neural Networks, 61:85 – 117.

Scott Brandes, T. (2008). Automated sound recording and analysis tech-

niques for bird surveys and conservation. Bird Conservation Interna-

tional - BIRD CONSERV INT, 18:S163–S173.

Sovern, S. G., Forsman, E. D., Olson, G. S., Biswell, B. L., Taylor, M.,

and Anthony, R. G. (2014). Barred owls and landscape attributes

influence territory occupancy of northern spotted owls. The Journal

of Wildlife Management, 78(8):1436–1443.

BIBLIOGRAPHY 159

Stowell, D. and Clayton, D. (2015). Acoustic event detection for multiple

overlapping similar sources. In 2015 IEEE Workshop on Applications

of Signal Processing to Audio and Acoustics (WASPAA), pages 1–5.

Stowell, D., Morfi, V., and Gill, L. F. (2016a). Individual identity in

songbirds: signal representations and metric learning for locating the

information in complex corvid calls. In 17th Annual Conference of the

International Speech Communication Association (Interspeech), vol-

ume 2, pages 2607–2611, San Francisco, California, USA.

Stowell, D., Wood, M., Stylianou, Y., and Glotin, H. (2016b). Bird

detection in audio: A survey and a challenge. IEEE International

Workshop on Machine Learning for Signal Processing, pages 1–6.

Thakur, A., andW. P. Rajan, R. J., and Dileep, A. D. (2017). Rapid bird

activity detection using probabilistic sequence kernels. In 2017 25th

European Signal Processing Conference (EUSIPCO), pages 1754–1758.

Tirumala, S. S. and Shahamiri, S. R. (2016). A review on deep learning

approaches in speaker identification. In Proceedings of the 8th Inter-

national Conference on Signal Processing Systems, ICSPS 2016, pages

142–147, New York, NY, USA. ACM.

Vitousek, P. M., Mooney, H. A., Lubchenco, J., and Melillo, J. M. (1997).

Human domination of earth’s ecosystems. Science, 277(5325):494–499.

Wang, Y., Li, J., and Metze, F. (2018). Comparing the max and noisy-or

pooling functions in multiple instance learning for weakly supervised

sequence learning tasks. In 19th Annual Conference of the Interna-

160 BIBLIOGRAPHY

tional Speech Communication Association (Interspeech), pages 1339–

1343.

Werbos, P. (1975). Beyond Regression: New Tools for Prediction and

Analysis in the Behavioral Sciences. Harvard University.

Wrege, P., D. Rowland, E., Keen, S., and Shiu, Y. (2017). Acoustic

monitoring for conservation in tropical forests: Examples from forest

elephants. Methods in Ecology and Evolution, 8:1292–1301.

Xu, Y., Huang, Q., Wang, W., Foster, P., Sigtia, S., Jackson, P. J. B., and

Plumbley, M. D. (2017a). Unsupervised feature learning based on deep

models for environmental audio tagging. IEEE/ACM Transactions on

Audio, Speech, and Language Processing, 25(6):1230–1241.

Xu, Y., Kong, Q., Huang, Q., Wang, W., and Plumbley, M. D. (2017b).

Convolutional gated recurrent neural network incorporating spatial

features for audio tagging. 2017 International Joint Conference on

Neural Networks (IJCNN), pages 3461–3466.

Yang, Y. and Hospedales, T. (2017). Trace norm regularised deep multi-

task learning. In 5th International Conference on Learning Represen-

tations Workshop (ICLR).

Yu, D. and Deng, L. (2016). Automatic Speech Recognition. Springer.

Zhang, C., Platt, J. C., and Viola, P. A. (2006). Multiple instance boost-

ing for object detection. In Weiss, Y., Schölkopf, B., and Platt, J. C.,

editors, Advances in Neural Information Processing Systems 18, pages

1417–1424. MIT Press.

BIBLIOGRAPHY 161

Zhang, M. L. and Zhou, Z. H. (2014). A review on multi-label learning

algorithms. IEEE Transactions on Knowledge and Data Engineering,

26(8):1819–1837.

Zhang, Y. and Yang, Q. (2018). An overview of multi-task learning.

National Science Review, 5(1):30–43.

Zheng, T. F., Zhang, G., and Song, Z. (2001). Comparison of different

implementations of mfcc. Journal of Computer Science and Technol-

ogy, 16:582–589.

Zhou, Z.-H. and Zhang, M.-L. (2002). Neural networks for multi-instance

learning. In Proceedings of the International Conference on Intelligent

Information Technology, Beijing, China, pages 455–459.

