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Abstract18

There exist a number of key macroecological patterns whose ubiquity suggests the spatio-temporal structure19

of ecological communities is governed by some universal mechanisms. The nature of these mechanisms, however,20

remains poorly understood. Here we probe spatio-temporal patterns in species richness and community composition21

using a simple metacommunity assembly model. Despite making no a priori assumptions regarding biotic spatial22

structure or the distribution of biomass across species, model metacommunities self-organize to reproduce well23

documented patterns including characteristic species abundance distributions, range size distributions and species24

area relations. Also in agreement with observations, species richness in our model attains an equilibrium despite25

continuous species turnover. Crucially, it is in the neighbourhood of the equilibrium that we observe the emergence of26

these key macroecological patterns. Biodiversity equilibria in models occur due to the onset of ecological structural27

instability, a population-dynamical mechanism. This strongly suggests a causal link between local community28

processes and macroecological phenomena.29
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Introduction30

Despite the colossal diversity of environments where life is found across the globe, there exist a number of spatio-temporal31

patterns in biodiversity which are observed in almost every ecological community that has been studied. The species abundance32

distribution (SAD), which highlights the overwhelming predominance of rare species in ecological communities, has long been33

considered universal (Fisher et al., 1943; Preston, 1948). A related pattern, the range size distribution (RSD), points to the34

prevalence of small (Brown et al., 1996; Gaston, 1996), aggregated (Brown, 1984) ranges, with few species occupying broad35

distributions. The species area relation (SAR), which denotes the sub-linear increase in diversity as a function of sample area,36

has been described as "one of community ecology's few genuine laws" (Schoener, 1976).37

The less extensively studied (and considerably more divisive) phenomenon of community-level diversity regulation, which38

constrains the number of species coexisting within an assemblage, has recently been proposed as a general ecological pattern39

(Gotelli et al., 2017; Magurran et al., 2018). Evidence of strong diversity regulation has been found in desert rodents (Brown40

et al., 2000), birds (Parody et al., 2001), marine �sh (Magurran et al., 2015), freshwater communities (Magurran et al., 2018),41

and in global-scale meta-analyses (Dornelas et al., 2014; Gotelli et al., 2017). At geological timescales, constrained diversi�cation,42

assumed to re�ect the impact of ecological limits on evolutionary processes, has been detected in the fossil record of a variety43

of taxa (Alroy, 2009, 2010; Liow and Finarelli, 2014; Benson et al., 2016; Close et al., 2019). Despite their apparent ubiquity,44

which strongly hints at some almost universal processes in macroecology, our mechanistic understanding of these spatio-temporal45

patterns in biodiversity remains disparate and incomplete.46

The theory of island biogeography (MacArthur and Wilson, 1967) suggests that patterns in biodiversity may be explained47

as a consequence of the dependence of diversi�cation rates � speciation, invasion and extinction � on standing diversity. In the48

�fty years since the Theory of Island Biogeography was �rst developed, however, the e�ects of environmental heterogeneity,49

landscape topography, local species interactions and dispersal have been shown to impact local and regional diversity patterns50

in complex ways (Shmida and Wilson, 1985; Holt, 1985; Pulliam, 1988). Contemporary metacommunity ecology (Leibold et al.,51

2004; Holyoak et al., 2005; Logue et al., 2011; Winegardner et al., 2012) shines a light on how these complex and overlapping52

processes interact. Perhaps due to the persistent view that local and regional ecological processes cannot be meaningfully53

uni�ed (Harmon and Harrison, 2015), surprisingly few studies consider metacommunity frameworks that explicitly incorporate54

community dynamics at multiple spatial scales (e.g. Pillai et al., 2010; Barter and Gross, 2017; but see Plitzko and Drossel,55

2015; Thiel and Drossel, 2018). Here we attempt to �ll this gap with a dynamically simple metacommunity assembly model56

which incorporates local ecological interactions and dispersal in an environmentally heterogeneous landscape, thus uniting the57

branches of population-dynamical and spatial ecology. Our primary focus in developing this model was the study of how58

biodiversity might be regulated in spatially resolved ecological assemblages, but we �nd an intriguing emergent relationship59
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between diversity regulation in model metacommunities and the appearance of widely observed macroecological patterns.60

In spatially unresolved models, the emergence of biodiversity regulation has been observed numerous times (e.g. Drossel61

et al., 2001; Yoshida, 2003; Pawar, 2009). Analytic theory (Rossberg, 2013) reveals that this phenomenon is caused by the loss62

of ecological structural stability, which denotes the robustness of assemblages to press (i.e. sustained) perturbations (Meszéna63

et al., 2006; Bastolla et al., 2005, 2009; Rossberg, 2013; Rohr et al., 2014; Barbier et al., 2018). The mechanism is most easily64

understood for the paradigmatic case of Lotka-Volterra competition models of the form65

dbi
dt

=

(
ri −

S∑
j

Aijbj

)
bi (1 ≤ i ≤ S), (1)

with population biomasses bi, linear growth rates ri, competition coe�cients Aij ≥ 0, and species richness S. If all S species66

co-exist (bi > 0, for all i), the equilibrium condition for this system can be written in matrix-vector notation as r −Ab = 067

and is solved by b = A−1r. Mathematical problems of this form are called `ill conditioned', implying that the solution b68

responds sensitively to changes in both A and r, when some eigenvalues of A approach zero. In ecological models we de�ne69

this sensitivity as ecological structural instability. Once this unstable condition arises, perturbation by external pressures or70

invaders, formally presentable by changes in A or r, can easily lead to extinctions. Structural stability (controlled by A) and71

linear/Lyapunov stability (controlled by the Jacobian matrix) should not be confused. While these two phenomena are related72

(Stone, 2018), each of them can independently control community structure and dynamics.73

Random matrix theory of the kind invoked by May (1973), but applied to the competition matrix A rather than the system's74

Jacobian matrix at equilibrium, robustly predicts that with increasing species richness some eigenvalues of A approach zero.75

The overall e�ect is thus that with increasing species richness structural instability increases, and accordingly, the likelihood76

that invasions cause species extinctions. Community assembly models therefore converge on dynamic steady states de�ned by77

the onset of structural instability. By applying alternative mathematical approaches to studying this phenomenon (Yodzis, 1988;78

Tokita, 2004; Rossberg, 2013; Dougoud et al., 2018; Barbier et al., 2018; Galla, 2018), structural instability can be interpreted79

as resulting from the ampli�cation of perturbations through complex indirect interactions in large communities.80

For other types of spatially unresolved community models, approximation techniques have been developed to map these81

onto competition models of the form Eq. (1) (layered food webs: Bastolla et al. 2005, mutualistic communities: Bastolla82

et al. 2009, arbitrary food webs: Rossberg 2013), and the theory applies analogously. Whether this is similarly the case for83

metacommunity models is unknown. In order to understand the relationship between diversity regulation, potentially via the84

onset of ecological structural instability, and processes active in metacommunities, we constructed a multi-species framework85

in which metapopulation dynamics at the regional scale are modelled using a spatial network of Lotka-Volterra competition86

equations with additional terms describing dispersal (see Dynamic equations and metacommunity assembly, below).87
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By comparing the model's behaviour to analytic predictions developed for spatially unresolved competitive communities88

(Rossberg, 2013), we show that intrinsic metacommunity-level diversity regulation can indeed be explained as a consequence of89

the onset of ecological structural instability at the regional scale. Surprisingly, and potentially very importantly, we �nd that, as90

model metacommunities approach diversity limits, they self organize to reproduce macroecological patterns previously identi�ed91

as central for the spatial structure of biodiversity (McGill, 2010): a skewed local and regional distribution of abundances, spatial92

aggregation of conspeci�c biomass, and apparent absence of species co-occurrence patterns. In combination, as McGill (2010)93

argued, these core patterns lead to sub-linear species area relations and other spatial biodiversity phenomena. That a diverse94

set of well known macroecological patterns emerges in a simple metacommunity model strongly supports the hypothesis that95

these patterns are indeed indirect consequences of local, niche-based population dynamics and dispersal.96

Results and discussion97

Metacommunity species richness98

Simulated metacommunities, assembled in our model via a constant, slow in�ux of invaders, converge on regional diversity99

equilibria at which species richness remains approximately stationary despite continuous turnover in composition (Fig. 1).100

Diversity relaxes back to the same approximate steady state after sudden removal or introduction of large numbers of species101

(Fig. 1).102

From previous theoretical work we know that the sensitivity of a spatially unresolved community to press perturbations is103

a function of the standing diversity and the intensity of ecological interactions within that community (Rossberg, 2013). The104

structurally unstable limit around which diversity in model communities converges, denoted S∗, is a function of the statistical105

distribution of the competition coe�cients, typically its �rst and second moments (mean, variance, covariances). By assuming106

a precisely analogous mechanism to operate at the metacommunity scale, the basic spatially unresolved theory predicts an107

approximate regional diversity of108

S∗ ≈

(
1− E[Cij ]

)2
2 var (Cij)

(i 6= j), (2)

(Rossberg, 2013, Eq. 17.5) where E[Cij ] and var (Cij) represent the expectation and variance of the interspeci�c competition109

coe�cients computed at the scale of the metacommunity, replacing the distribution of local interaction coe�cients Aij in the110

spatially unresolved theory. The eigenvalue spectrum of the competitive overlap matrix o�ers a convenient graphical tool for111

assessing the ecological structural stability of community models. The structurally unstable diversity limit occurs as the area112

covered by the spectrum in the complex plane approach the origin (Rossberg, 2013).113
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Regional-scale, interspeci�c competition coe�cients Cij were computed for model metacommunities assembled for a range114

of parameter combinations, and used to evaluate Eq. (2) (see Regional scale interaction matrices, C below). Comparing the115

diversity predicted by Eq. (2) with that in the steady state of the simulation, we found that the spatially unresolved analytic116

prediction explains 95% of variance in the equilibrium species richness in the spatially resolved models (Fig. 2A). Furthermore,117

the spectra of the matrices C approach the origin when the biodiversity equilibrium is reached (Fig. 2B), just as observed in118

spatially unresolved models (Rossberg, 2013). Thus, although an analytic prediction of the structurally unstable diversity limit119

in the metacommunity case is not available due to the intractability of the full model, we �nd strong evidence supporting the120

claim that ecological structural stability drives diversity regulation at the metacommunity scale.121

The relationship between local and regional competition coe�cients is non-trivial and depends on the degree of environmental122

heterogeneity (see Model landscape, below). Nonetheless, we found the o�-diagonal elements of Aij and Cij to be signi�cantly123

correlated in metacommunity models at regional diversity limits (p < 0.01, for all parameter combinations). This implies that124

local ecological interactions propagate to the metacommunity scale and in�uence regional diversity patterns (Rabosky and125

Hurlbert, 2015). For further discussion see Supporting Information.126

Local species richness127

In order to distinguish between local and regional diversity it is necessary to de�ne some criterion for assessing presence-absence128

in a local assemblage. We do this in two ways. First by setting an arbitrary limit, equivalent to a detection threshold, of 10−4
129

biomass units below which a species is considered to be absent from a local community. This value is four orders of magnitude130

lower than the maximum local biomass permitted in the model and therefore de�nes a detectable range that is in accordance131

with many empirical observations (e.g. Condit et al., 2002). We further distinguish among those populations exceeding the132

detection threshold by de�ning source and sink populations as those capable of self maintenance in a given location, and those133

that would decline without continuous immigration from adjacent communities (see Source-Sink classi�cation, below).134

During the assembly process (Fig. 1), we �nd that local community richness, de�ned by the detection threshold, saturates135

earlier than the regional assemblage (after around ∼ 500 and ∼ 4000 invasions, respectively, in the example shown). To136

con�rm whether this local community regulation occurs independently of metacommunity regulation, it is necessary to ask how137

α-diversity is related to γ-diversity. If local diversity limits are controlled indirectly by the size of the regional species pool138

(i.e. regulation occurs meaningfully at one scale only) we would expect a linear, or at least non-saturating local-regional species139

richness relation. Interestingly, however, both source and sink diversity, and, by extension, their sum, are saturating functions140

of the regional species richness in equilibrial metacommunities. As we show in Fig. 3A, for which the distribution of interspeci�c141

coe�cients Aij was �xed across all simulations and considering source populations only, average local diversity converged on142
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a horizontal asymptote of ∼ 50 once the regional assemblage reached ∼ 300 species. Similar convergence, though with greater143

scatter, is evident for sink populations, though the asymptote may occur outside of the range studied here. This suggests that144

local diversity is indeed independently regulated, such that in su�ciently large regional communities local diversity is e�ectively145

independent of the metacommunity-scale parameterization that determines the size of the regional species pool.146

To explore the mechanism responsible for local diversity regulation we determined, for any given patch, the sub-matrix147

of A corresponding to the local source populations only. We found that the spectra of these sub-matrices, too, approach the148

origin of the complex plane. Thus we concluded that structurally unstable dynamics regulate species richness not only at the149

metacommunity level, but also, independently at the local level (Fig. 3B), and de�ne sink populations as the super-saturated150

component of the local assemblage which depends on non-equilibrium dynamics (mass e�ects) for persistence.151

Temporal turnover152

Stationarity in species richness is a key and unambiguous characteristic of our model metacommunities. Less obvious is the153

fact that, rather than converging on a near-static, `climax' community, metacommunity composition in our models continuously154

turns over in response to the slow �ux of invaders (Fig. 4A). Interestingly, on average, local communities turn over faster than155

the regional metacommunity of which they form a part. This is seen in the rapid decay in community similarity at the local,156

relative to the regional scale (Fig. 4A). This might be explained by range contraction and expansion due to regional biotic157

turnover which occur faster than landscape-scale competitive exclusion.158

If the invader �ux is spontaneously stopped and species are experimentally removed from the metacommunity in increasing159

order of regional biomass, fast turnover at local scales bu�ers local communities from the diversity losses at metacommunity160

level (Fig. 4B). In the example shown in Fig. 4, a 20% decrease in regional species richness produced only a 13% drop at the161

local scale on average. It has been estimated that the current rate of global species loss is 100-1000 times the background rate162

(De Vos et al., 2015; Pimm et al., 2014; Ceballos et al., 2015), yet global meta-analyses have failed to detect a consistent loss of163

diversity at the local scale (Dornelas et al., 2014; Vellend et al., 2017; Gotelli et al., 2017). Our results suggest that independent164

regulatory processes operating at multiple spatial scales may account for the discrepancy between local and regional/global165

diversity trends.166

Spatial patterns in biodiversity and abundance167

By elegantly comparing the various major e�orts to devise uni�ed macroecological theory to date, McGill (2010) showed that168

three key macroecological phenomena are basic assumptions implicit to all frameworks. McGill argued that these key phenomena169

on their own are su�cient to give rise to a variety of emergent macroecological patterns, such as the sub-linear SAR. The three170
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key patterns are an uneven SAD at various spatial scales, the spatial aggregation of conspeci�c biomass underlying the observed171

skewed RSD, and the (apparent) non-signi�cant correlation in species' spatial distributions. The last phenomenon relates to172

the observation that statistically signi�cant positive or negative correlations in species' spatial distributions or co-occurrence173

patterns are surprisingly under-represented in empirical studies; most pair-wise correlations tend to be indistinguishable from174

random (Hoagland and Collins, 1997; Veech, 2006; Houlahan et al., 2007; D'Amen et al., 2018). We �nd that, surprisingly, each175

of these three patterns emerges in our model metacommunities in the neighbourhood of regional diversity equilibria (Fig. 5).176

Figure 5A shows that at both local and regional scale the SAD are left-skewed log-normal, as observed in communities177

ranging from marine benthos to Amazonian rain forest (McGill et al., 2007). The early onset of diversity regulation at the local178

scale already leads to highly skewed SAD at the regional scale, after which further accumulation of diversity at the regional179

scale drives the distribution to the left as average biomasses decline.180

In the early stages of the assembly process, as local diversity accumulates, weak biotic �ltering means species disperse across181

much of their fundamental geographic niche. Once local communities become constrained, regional invasions instead drive an182

increase in spatial β-diversity, the `regionalization' of the biota (Ricklefs, 2004), and a corresponding reduction of species ranges,183

which become highly spatially aggregated. At the metacommunity scale this is seen as a collapse in the RSD as the assemblage184

approaches regional diversity equilibrium (Fig. 5B). The skewed RSD for metacommunity models at regional diversity limits185

match patterns observed for a wide variety of taxa (Gaston, 1998), including pine species (Brown et al., 1996), tropical tree186

species (Xu et al., 2015) and in both regional (Gaston, 1996), and global distributions (Orme et al., 2006) of bird species.187

Reduction in average range sizes and the corresponding increase in the number of e�ective interactions with neighbouring188

populations may increase species' vulnerability to regional extinction (Ricklefs, 2004). As such we consider the emergent spatial189

aggregation in our metacommunity models to play an important role in regional scale diversity regulation.190

The dependence of RSD on species richness implies a strong impact of ecological interactions on species ranges. Counter-intuitively,191

however, the vast majority of species pairs show no signi�cant spatial correlation (Fig. 5C). As strong regional scale diversity192

regulation sets in and spatial ranges collapse, the percentage of species pairs for which it is possible to detect non-random spatial193

correlation drops to near zero, giving the impression of an eminently neutral system.194

We considered the possibility that this absence of demonstrable spatial correlations is explained by the systemic exclusion of195

competing species pairs during assembly. However, for fully assembled model metacommunities at the regional diversity limit,196

non-zero interspeci�c competition coe�cients made up 21.5�28.3% of the elements of the matrix Aij , only 1.7�8.5% less than197

in the statistical ensemble from which invaders are sampled.198

McGill (2010) argues that these three key phenomena (Fig. 5) can combine to produce sub-linearity in the SAR. Recent199

non-dynamical modelling approaches have also shown that local community processes and spatial aggregation at the population200
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scale can indeed generate high level macroecological con�gurations (Rogge et al., 2018; Takashina et al., 2019). Here we201

build on these results by showing that explicitly modelled population dynamics can drive spatial aggregation and produce the202

characteristic relationship between diversity and landscape area. The SAR in our models (Fig. 6) are well approximated by203

power laws with exponents ranging from 0.19 to 0.87, depending on the degree of spatial correlation in the model environment:204

a spatially more correlated, homogeneous environment produces an SAR with lower exponent. The exponents that emerge are205

well within the range found in a meta-analysis of almost 800 empirical SARs (Drakare et al., 2006). It has been shown (Rosindell206

and Cornell, 2007; Pigolotti et al., 2018) that realistic SAR emerge in spatially explicit neutral models. Here we show, in light207

of evidence against neutral community assembly at regional scales (Ostling, 2005), how sublinearity in the SAR can emerge via208

an explicit diversity dependent mechanism.209

Conclusions210

There is a growing body of evidence indicating that community level diversity regulation is a common characteristic of ecological211

communities at both local and regional scales (e.g. Alroy, 2009; Magurran et al., 2015, 2018; Gotelli et al., 2017; Dornelas et al.,212

2014). Proponents of this equilibrial paradigm concede that a precise mechanism explaining community regulation remains213

elusive (Magurran et al., 2018). Our numerical metacommunity model hints at a potential resolution to this problem and214

highlights an important avenue for the development of novel analytic theory. Inspection of recent results by Abernethy et al.215

(2019) for a spatially explicit food-web model in the light of our observations suggests that the phenomena we observe are not216

restricted to competitive communities, but may apply to a wider range of ecological models.217

With this study we set out to assess the degree to which spatially unresolved ecological theory can incorporate the complex218

spatial processes occurring within model metacommunities. To our surprise, metacommunity models which explicitly incorporate219

dynamics at both local and regional scales reproduce an unprecedented range of empirically ubiquitous macroecological patterns.220

Crucially, these patterns result indirectly from the local dynamics, and in the neighbourhood of regional diversity limits. From221

this observation we conclude that there is an important interaction between the system-scale dynamical process central to the222

theory of ecological structural stability, and these key macroecological con�gurations. The spatial decoupling of timescales we223

observe (Fig 4A) implies that for a metacommunity of su�ciently large spatial extent regional ecological turnover could occur224

at time scales comparable to evolutionary or long-term environmental processes (e.g. glaciation cycles), as discussed by Ricklefs225

(2004). Because these processes are not include in our model, the `regional' scale we refer to here must be understood as an226

intermediate spatial scale at which ecological processes operate comparatively fast.227

If we conclude, on the basis of this and similar studies, that diversity regulation is indeed a common or general feature of228
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ecological communities, this would entail a paradigm shift with important implications for the conservation and management229

of biodiversity. The assumption that local ecological dynamics have negligible impact on regional biotic distributions is still230

implicit in the majority of current conservation policies and programs. Species distribution modelling (SDM) is a widely231

used method for identifying ecological processes and responses of species distributions to environmental change. The basic232

SDM methodology assumes a comprehensive understanding of current and future climate is su�cient to predict range shifts233

under climate change. Our results suggest that ignoring biotic interactions, even if they cannot be explicitly detected using234

conventional tools, may strongly undermine the e�ectiveness of these models (Wisz et al., 2013). As such, we suggest that235

the development and application of more mechanistic distribution modelling (Dormann et al., 2018) should be a priority, that236

management models might focus on higher levels of biological organisation (e.g. feeding guilds or entire communities), and that237

designers of conservation and management strategies make a concerted e�ort to integrate factors relating to diversity regulation238

in their decision making.239

Methods240

Model landscape241

We generated a spatial network consisting of N patches by sampling the Cartesian coordinates (Px, Qx) of each patch x (with242

1 ≤ x ≤ N) from a uniform distribution in the range (0,
√
N). The local communities, were thus randomly distributed with243

density ≈ 1 over a model landscape of area N . Corridors were de�ned using the Gabriel algorithm (1969) which connects nodes244

x and y if the disc with diameter given by the line segment xy contains no other nodes. This non-trivial topography is more245

realistic than a complete graph, but was also selected for its relative computational e�ciency. In the limit of large N , the average246

patch degree does not exceed 4 (Matula and Sokal, 1980), as for a square lattice, which will permit implementation of parallel247

simulation methods currently under development. Numerical experiments with fully connected graph lead to qualitatively248

similar emergent properties (see Supporting Information).249

Environmental heterogeneity was modelled indirectly through spatial variation in species' intrinsic growth rates rix, where250

the subscript i is a species index, and x a patch index. The species speci�c distribution in rix represents the output of an251

implicit environmental response function, that, if explicitly modelled, would describe a population's maximum growth rate at252

low abundance (i.e. in the absence of competition) as a function of species traits and local environmental conditions. The values253

of rix were sampled from a Gaussian Random Field (Adler, 1981) (µ = 1.0, σ2 = 0.5), generated via spectral decomposition of the254

N by N landscape covariance matrix with elements ΣL,xy = exp
[
−φ−1dxy

]
, where dxy denotes the Euclidean distances between255

two patches x and y, and the parameter φ controls the spatial autocorrelation of the environment (Johnson and Wichern, 2002).256
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By varying the correlation length φ while keeping mean and variance of the �elds �xed, we modelled landscapes of varying257

degrees of environmental heterogeneity (see Supporting Information), thus though the environment is not modelled, the spatial258

autocorrelation in environmental variables is explicit in the vector rix. Parameters were chosen as N = 10, φ = 1 for Fig. 1,259

N = 20, φ = 1 for Figs. 4 and 5. (Temporal decoupling of spatial scales is clearer in larger regional communities, however for260

γ-diversity � α-diversity it becomes di�cult to represent local and regional assemblages on a single axis.) Figs. 2, 3, and 6261

summarize the complete parameter space studied: N = 2, 4, 6, 8, 10, 12, 15, 20, and 25; φ = 1, 2, 5, 10, 20, 40, 80, and 160,262

in all combinations. Landscapes of φ > 160 (in the spatial range studied here) showed no further decrease in gamma, or the263

exponent of the SAR, implying an e�ectively uniform environment.264

Dynamic equations and metacommunity assembly265

We used a spatial extension of the Lotka-Volterra multi-species competition equation to model local population dynamics and266

dispersal in our model metacommunities, thus building on the model family pioneered by Reichenbach et al. (2007). The rate267

of change of local biomass of species i at patch x is given by the non-linear ordinary di�erential equation268

dbix
dt

= bix

(
rix −

S∑
j=1

Aij bjx
)
− e bix

+
∑

y∈N (x)

e

ky
exp

(
−dxy`−1) biy. (3)

The system of N × S coupled equations can therefore be written as269

dB

dt
= B ◦ (R−AB) + BD, (4)

with ◦ denoting element-wise multiplication.270

The �rst term on the right hand side of Eq. (3) represents the local dynamics, where Aij are the entries of the spatially271

unresolved competitive overlap matrix. In simulations, the o�-diagonal entries Aij were sampled randomly, with Aij set to272

0.3 with probability 0.3 and to 0 otherwise. The diagonal entries, representing intraspeci�c competition, were always set to273

1. Together, Eq. (2) and Fig. 2 imply that the critical diversity at which a model community converges depends only on the274

expectation and variance of the regional interspeci�c interaction coe�cients. The details of the distribution from which the Aij275

are sampled do not enter the spatially implicit theory. For interaction matrices with pronounced structure (e.g. food webs),276

however, the underlying theory breaks down Rossberg (2013). The impact of the fundamental distribution from which the local277
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interactions Aij are sampled on spatial diversity patterns is subject of ongoing research.278

The second term on the right of Eq. (3) represents the rate at which biomass of species i emigrates away from patch x,279

while the third term gives the immigration rates from all patches y sharing an edge with x. The immigration rate decays280

exponentially with characteristic length `, kept �xed at 0.2. The parameter e, which represents the fraction of biomass leaving281

patch x per unit time, was kept �xed at 0.02. An exploration of the parameter space of e and ` revealed little qualitative shift282

in the emergent properties of the model over the biologically relevant range (see Supporting Information), thus values were283

selected that favoured computational e�ciency during model assembly. The normalization constant ky divides the biomass284

departing patches y between all other patches in the its local neighbourhood (N (y)), weighted by the ease of reaching each285

patch i.e. ky =
∑

z∈N (y) exp
(
−dyz`−1

)
.286

We adopted the community assembly modelling approach �rst developed by Post and Pimm (1983). In each iteration of287

the algorithm, a new species was added to the metacommunity. Invaders were selected by computing the e�ective growth rate288

at low abundance of new species i with randomly generated ecologies (rix and Aij), until a species with positive growth rate289

in at least one patch was found. This was then added to the patch in which its e�ective growth rate was greatest with a low290

invasion biomass of 0.01 times the detection threshold of 10−4 biomass units. During invader testing the competitive impact291

of the invader on the dynamics of resident species was set to zero, such that resident biomass was una�ected, to make sure292

we capture the invader's linear dynamics at low abundance. The metacommunity dynamics, including the spread of the new293

invader though the network and associated restructuring the local resident biomass distribution, were then simulated using the294

SUNDIALS numerical ODE solver (Hindmarsh et al., 2005) over 500 unit times, t. Those species whose biomass dropped below295

the detection threshold in all patches of the network were considered regionally extinct and removed from the system. By thus296

iteratively adding species to the community we modelled a constant �ux of invaders, which causes the regional assemblage to297

self-organize, eventually converging on an equilibrium at which the invasion and extinction rates are equal on average. To reach298

this equilibrium, total simulation time was chosen as 4000, 6000, 8000, 10000, and 12000 iterations for N ≤ 4, 6 ≤ N ≤ 10,299

12 ≤ N ≤ 15, N = 20 and N = 25, respectively.300

We note that
√
N determines the linear extension of the system, while φ and ` represent intrinsic length scales. There is a301

third intrinsic length scales, given by 1/
√

density of patches, and this scale we kept �xed at 1. Because of this, there is no easy302

way to eliminate variables by re-scaling lengths. It is conceivable that for very large system sizes N the discrete patch structure303

can give way to a continuum approximation with less parameters, but the question whether this is the case is beyond the scope304

of the present work.305
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Source-Sink classi�cation306

Source populations in a given patch x are those capable of locally maintaining themselves. Mathematically, source populations307

were de�ned as those for which local biomass was greater than the detection threshold and rix −
∑S

j=1 Aijbjx ≥ 0. Conversely,308

sink populations where those of biomass greater than the detection threshold and rix −
∑S

j=1 Aijbjx < 0.309

Regional scale interaction matrices, C310

In order to compare model metacommunity dynamics to theoretical predictions, we numerically computed a spatially unresolved311

competitive overlap matrix, denoted C, that summarized the macroscopic dynamics at the regional scale. For this we constructed312

a spatially unresolved Lotka-Volterra system,313

dBi/dt =

(
ρi −

S∑
j=1

ĈijBi

)
· Bi, (5)

where Bi represents total biomass of species i, as an approximation of the spatially resolved model (Eq. (3)). The aim of314

the following method is to arrive at a description of the e�ective interaction between pairs of species given the self-organized315

spatial structure of metacommunity, which permits regional coexistence via spatial niche segregation. This requires integrating316

ecological interactions over the entire landscape, which was done using the computational equivalent of a harvesting experiment,317

under the assumption that interaction strengths can be inferred from the changes in regional abundances that result from318

controlled changes in the regional abundances of harvested species (Gilbert et al., 2014). Speci�cally, we asked how the steady319

state community responds to spatially unselective, light harvesting of a single species in the full model, and determined the320

coe�cients Ĉij of the unresolved model such as to obtain identical responses to linear order in the harvesting rate.321

∆Bj = −Ĉ−1
ij h. (6)

The most computationally e�cient way of conducting the corresponding experiment for the meta-community is to use a322

numerical approximation of the Jacobian matrix. In doing so, we assume simulated metacommunities to be at �xed points, an323

approximation that is justi�ed retrospectively by the apparent e�cacy of the method. In fact, large metacommunity models324

begin to manifest periodic or irregular oscillations, a potentially important phenomenon which is the subject of ongoing research.325

For the present study we limited our numerical experiments to those spatial ranges in which such autonomous �uctuations are326

absent or weak, such that the numerical Jacobian represents a reasonable approximation of the dynamic coupling within the327

system and can be used to compute a time-independent, regional scale interaction matrix which meaningfully describes the328

structural stability of the metacommunity. The elements of the Jacobian are given by the general equation329
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Jixjy =
∂fix(b11, . . . , bS1, . . . , b1N , . . . bSN )

∂bjy
, (7)

evaluated at equilibrium. The functions fix denote the right hand side of Eq. (3).330

Light harvesting of a single focal species i at a rate h brings about a small shift in the equilibrium biomasses of the other331

species in the metacommunity and the dynamics of the harvested community near the unharvested equilibrium (b∗jy) can be332

approximated by333

dbix
dt

=

(∑
jy

Jixjy(bjy − b∗jy)

)
− hb∗ix, and (8a)

334

dbkx
dt

=

(∑
jy

Jkxjy(bjy − b∗jy)

)
for k 6= i . (8b)

Here h is the harvesting rate. We vectorize the matrix B (denoted ~B) such as to match the dimensionality of the spatially335

resolved Jacobian, and the write the equilibrium condition for Eq. (8a) as336

J(~B− ~B∗)− ~H = 0, (9)

where the elements of vector ~H are hb∗jy for j = i and 0 otherwise. From this, we obtain337

h−1
(
~B− ~B∗

)
= J−1h−1 ~H. (10)

The left hand side of Eq. (10) represents the local shift in biomasses due to the harvesting of the focal species i per unit h.338

From Eq. (10) we compute the change in total biomass ∆Bj =
∑

x bjx − b
∗
jx for each species j. Comparison with (6) gives row339

i of Ĉ−1. Iterating over all species i = 1 . . . S, we computed Ĉ−1 and from this the spatially unresolved interaction matrix Ĉ.340

Finally, in order to match the assumptions made in the derivation of Eq. (2) (Rossberg, 2013), we divided each row and column341

Ĉ by the square root of the corresponding diagonal element to obtain the e�ective competitive overlap matrix, C (which has342

ones along the diagonal).343

Temporal diversity patterns344

Temporal species richness and turnover in community composition were computed for a metacommunity at regional diversity345

limits for a period corresponding to 500 ecological invasions (Fig. 4). Species richness analysis requires the application of346

some presence-absence criterion. We assess local community diversity by reference to the source populations only, since sink347

populations are e�ectively decoupled from local �ltering processes by dispersal.348

14



Following the 500 invasions, species were removed in reverse order of regional abundance, in order to model a large scale349

mass extinction process. A single metacommunity of N = 20, φ = 2 was used for this analysis.350

Compositional turnover in metacommunities at regional diversity equilibria was measured using the Bray-Curtis (1957)351

similarity. An arbitrary initial metacommunity composition was selected (T = 0 in Fig. 4A) and the relative compositional352

change computed in the context of a constant invasion �ux using the function vegdist in the R package �vegan� (Oksanen353

et al., 2018). In order to generate Fig. 4A, regionally excluded or as yet uninvaded species were assigned biomass vectors with354

all elements set to zero.355

Species ranges356

In order to quantify range sizes of species, we �rst computed, for each species, the population covariance matrix357

Σi =

 var(Px) cov(Px, Qx)

cov(Px, Qx) var(Qx)

 (11)

of the locations (Px, Qx) of individuals forming the species' population, assuming population sizes are proportional to biomasses358

at each patch. For example, with i being the index of the focal species, var(Px) = B−1
i

∑
x bix(Px −P x)2, where Bi =

∑
x bix is359

total biomass, as above, and P x = B−1
i

∑
x bixPx is the P component of the centre of mass of the distribution. Correspondingly,360

var(Qx) = B−1
i

∑
x bix(Qx − Qx)2, cov(Px, Qx) = B−1

i

∑
x bix(Px − P x)(Qx − Qx), with Qx = B−1

i

∑
x bixQx. As a measure361

of range size, we computed the product of the square roots of the eigenvalues of Σi, i.e. the square root of its determinant,362 √
det |Σi|. By this measure, an even distribution of biomass over the full

√
N ×

√
N rectangle enclosing one of our model363

communities corresponds to a range size of N/12.364

Species co-occurrence365

In order to analyse the correlation in species spatial distributions within our model landscapes, we used the probabilistic model366

developed by Veech (2013) included in the R package �cooccur� (Gri�th et al., 2016). The observed pair-wise co-occurrence is367

computed as the probability of detecting species i in patch x given the detection of species j in that local community, which is368

then compared to that expected if two species were distributed independently within a discretized landscape.369
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Figure 1: Biodiversity regulation in model metacommunities. The emergence of diversity equilibria at multiple

spatial scales as a result of a stepwise invasion �ux in a typical model metacommunity (A). Regional diversity (γ,

black) and the average local diversity (ᾱ, blue) are shown, as well as that observed in three randomly selected patches

(α, coloured). Relaxation back to equilibrium following random removal or introduction of large numbers of species

(25% of the equilibrium richness, indicated by vertical dashed lines, A and B) reveals the strength and predictability of

metacommunity-scale regulation in model assemblages. Relaxation times following removal and introduction di�er by

several orders of magnitude since the re-accumulation of diversity occurs at the invasion timescale, while extirpations

occur at the population-dynamic timescale (measured in units t).
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Figure 2: Testing for biodiversity regulation by structural stability in metacommunity models.

A: Comparison of the regional equilibrium diversity predicted by Eq. (2) and that observed in simulated

metacommunities for 195 combinations of patch number and spatial heterogeneity. The dashed line signi�es equality.

B: The eigenvalue spectrum of a typical regional-scale competitive overlap matrix C. Both analyses strongly suggest

the mechanism regulating diversity at the metacommunity scale is the loss of ecological structural stability.

24



100 200 300 400 500 600 700

0
50

10
0

15
0

20
0

Regional species richness 

Lo
ca

l s
pe

ci
es

 ri
ch

ne
ss

 

Total Source Sink

A B

-2 0 2 4 6

-4
-2

0
2

4

Re(λi)

Im
(λ

i)

Figure 3: Demonstration of structurally unstable diversity regulation at the local scale. A: Average local

diversity (black), and that attributed to source (red) and sink (blue) populations, at regional diversity equilibrium,

plotted against regional species richness for the same 195 parameter combinations used in Fig. 2. The sublinearity

of the local-regional richness relation suggests local communities are saturated with respect to both source and sink

diversity for su�ciently high N . B: Comparison of the spectra of the full competitive overlap matrix A (grey circles)

with that of its sub-matrix matrix Asource (black circles) corresponding to source populations only, for a randomly

selected local community at regional diversity equilibrium. The spectrum of Asource demonstrates the role of structural

instability in regulating the diversity of the key, locally sustained component of the local assemblage.
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Figure 4: Temporal trends in community composition and species richness of model communities. The

temporal Bray-Curtis similarity (A) and source population species richness (B, T < 500) for a metacommunity at

regional equilibrium subject to a slow, discrete �ux of invaders. Data for the metacommunity (black), the local average

(blue) and three randomly selected local communities (coloured) are shown. After 500 invasions the invasion �ux in

panel (B) is switched o� and species are successively removed in order of increasing regional abundance.
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Figure 5: The e�ect of regional diversity regulation on macroecology in simulated metacommunities.

Species Biomass Distributions (A), Range Size Distributions (B), and (C) Co-occurrence Pro�les (Veech, 2006; Gri�th

et al., 2016) for a typical model metacommunity at 20, 50, and 100% of the regional diversity equilibrium of around

500 species. In B, an even distribution over the model landscape corresponds to a Range Size measure of 1.7, though

for species concentrated near the edges our measure of Range Size can give even larger values. In C, the percentage

of possible species pairs that exhibit statistically signi�cant (p < 0.05) negative spatial correlation is shown in blue

for each species, and for the community as a whole (right-most bar). Unsurprisingly, given the purely competitive

nature of local ecological interactions, in our model metacommunties, no signi�cant positive correlations were found.

All three distributions converge on patterns well represented in the empirical literature as metacommunities approach

the self-organized equilibrium.
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Figure 6: Species area relations for simulated metacommunities. Species richness increases as a function of

model area according to approximate power laws with exponents ranging from 0.19 to 0.87. Colours indicate the degree

of spatial environmental heterogeneity, φ. Error bars indicate standard deviations estimated from three independent

model runs for each parameterization, for which small di�erences between simulations arose largely due to the random

topography of the model landscapes.

28


