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The dynamics of vortex shedding from bluff bodies has been investigated 

experimentally for many decades, with the simple geometric case for the 

investigation being a uniform circular cylinder aligned with its axis normal to the 

flow. Even though much information regarding the dynamics of the flow has been 

accumulated over the years, the actual understanding of the phenomenon has 

progressed slowly.  

The motivation for the present study comes from the fact that the vast 

majority of previous work has been concerned with the shedding of vortices from 

uniform cylinders with the flow normal to its axis. This classic arrangement is seen 

to produce vortices that are parallel to the axis of the cylinder, depending on the end-

conditions. Even this seemingly simple symmetric arrangement is seen to produce 

results characterised by large discrepancies and varied interpretations. The question 

that one could ask now is what would happen if there were a slight variation in the 

geometry of the cylinder. A linear variation of the diameter of the body along its 

span would raise additional problems, but on the other hand might provide new and 

useful insight to the problem of vortex shedding itself, since the cross-section would 

still be circular.  

In this work a comprehensive study of the effect of the introduction of a slight 

spanwise taper on the phenomenon of vortex shedding is presented. The study 

involved the extensive use of experimental data obtained using hot-wire anemometry 
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and particle image velocimetry techniques. The effect of the taper on the onset of 

vortex shedding and the variation of vortex shedding along the span are two of the 

topics that are investigated in the present work. Even though the cross-section of 

these cones was circular the onset of vortex shedding was delayed, with the extent 

depending on the severity of taper.  

The results of the study of onset characteristics were also seen to be of 

importance in the investigation/prediction of transonic buffet onset on two-

dimensional airfoils. It is known that near the critical conditions for the onset of 

transonic buffet, there is flow separation followed by large scale lift oscillations. 

Global flow instability has been shown to be a source of this unsteadiness (Crouch et 

al., 2009). Crouch et al. (2007) considered a generalised approach to predicting the 

onset of flow unsteadiness based on the global-stability theory. In order to assess the 

generalised approach they studied the onset of vortex shedding about a cylinder 

cross-section as a limiting case in 2-D. A study of the onset of unsteadiness about 

more complex geometries such as cones using full 3-D unsteady Navier-Stokes 

simulations incorporating global stability analysis (Garbaruk et al., 2009) is seen to 

be more analogous to flows of practical interest, viz. flow about a tapered wing. The 

present work provided important data pertaining to the dynamics of vortex shedding 

from cones, with particular interest in the frequency of vortex shedding at the onset 

of unsteadiness.  

It is also shown that the taper ratio does have a major effect on the vortex 

shedding process, with the normal periodic shedding being replaced by a deeply 

modulated form. This non-linear amplitude modulation was found to be a global 

process controlling the vortex shedding all along the span of body, especially those 

with small taper ratios.  
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Finally an attempt has been made to mathematically model the vortex 

shedding process in terms of non-linear oscillators, with a coupling that represents 

the interaction of the shed vortices along the span. It turns out that the modelling 

techniques using a series of spanwise oscillators with a simple coupling term, as seen 

in the literature, is not sufficient to fully represent the flow.  
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2.1 Introduction 

The fluid mechanics of bluff body wakes has been of interest to the scientific 

community for a long time (Strouhal 1878; Kovasznay 1949; Roshko 1954; Tritton 

1959; Gaster 1969, 1971; Williamson 1988, 1989; etc). One of the most intriguing 

aspects of the flow across bluff bodies is the unsteady process of the formation of 

vortices when the Reynolds number based on a certain length scale exceeds a so-

called critical value. 

This unsteady phenomenon is characterised by its frequency of occurrence, or 

more appropriately, by a corresponding non-dimensional form called the Strouhal 

number (St). One of the main objectives of bluff body aerodynamics research is to 

seek a functional relationship between the Strouhal number (St) and the drag 

coefficient (Cd) as functions of the Reynolds number (Re). One of the important 

differences between the aerodynamics of streamlined and bluff bodies is that bluff 

bodies tend to develop inherent large-scale unsteadiness, for steady oncoming flows 

of low turbulence. This is not the case with streamlined bodies; there is no 

unsteadiness involved if the flow is not turbulent or if there is no imposed 

unsteadiness.  

There are quite a few aspects of bluff body flows involving vortex shedding 

that are not completely understood, even though it has been exhaustively studied in 

the literature. For instance, the vortex shedding phenomenon has been identified as a 
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form of instability (Batchelor, 1973) but it was not until recently that this was 

identified as a form of absolute instability (Strykowski & Sreenivasan, 1990).  

Theodore von Kármán’s (1911) work on the stability of vortex streets (Lamb 

1959) tells us about the nature of the regular pattern of vortices formed due to 

shedding of vortices from a bluff body (the vortex street), and how it is stable only 

when there is an asymmetric arrangement of vortices. This establishes a theoretical 

link between the vortex street structure and the drag on the body. The analysis is 

based on the stability of an ideal vortex system, starting with a symmetrical double 

row of vortices (figure 2.1a), which was shown to be unstable. von Kármán proved 

that the system would be stable if the ratio of the distance between vortex rows to the 

inter-vortex spacing in one row is 0.281, which means that the arrangement of 

vortices is required to be asymmetric, as seen in figure 2.1b.  

 

Figure 2.1. Double row of vortices shed from a two-dimensional cylinder (shaded). Flow is from left 

to right.  (a)- symmetric arrangement; (b)- asymmetric arrangement. 

 

The above analysis provides a picture of what is happening in a two-

dimensional sense (as the result was deduced from two-dimensional, inviscid 

theory). But in practice, there is nothing like a true two-dimensional vortex shedding, 

a 

b 
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as the effects induced by the end/boundary conditions almost always affect the nature 

of vortex shedding (Williamson, 1989). Experiments conducted by Gharib et al. 

(1989) and Vorobieff et al. (1999) using very thin suspended soap films, with a 

thickness of the order of 10-15μm  considered the flow within the film to be of a two-

dimensional nature. 

Vortex shedding from three-dimensional bluff bodies such as tapered circular 

cylinders is more complex when compared to a truly two-dimensional version (the 

parallel circular cylinder). An example of this complexity is the existence of 

“cellular” vortex shedding (Gaster, 1971) along the span of the cylinder, where the 

frequency of vortex shedding is constant within a cell. This can be easily understood 

by the local dimensional argument 

                                                      (2.1) 

where f is the frequency of shedding,  is the velocity of the fluid stream, and d is 

the local diameter, C is a constant. If there is a spanwise variation of diameter as in 

three-dimensional geometries such as a cone, it is conceivable that the frequency will 

vary continuously along the span with the shedding more frequent at the thinner end 

than thicker end of span. However Helmholtz’s theorem (Batchelor, 1967) requires 

that vortex tubes cannot end abruptly in fluid. This means the shed vortices which 

are varying continuously in number (in unit time) will have to connect among 

themselves across the span and this leads to the so-called cellular vortex shedding. 

Another view on this continuous variation of frequency of vortex shedding was given 

by Gaster (1984) in his work on flows over tapered flat plates, where he suggests that 

the process involves a conservation of the product of vortex strength and the 

frequency.    
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2.2 Vortex shedding from bluff bodies. A Review 

 

In this chapter, the literature on vortex shedding of two-dimensional and 

three-dimensional bodies will be reviewed. 

 

a 

 

b 

 

c 

 

d 

Figure 2.2. Flow past a circular cylinder at various Reynolds numbers. Van Dyke (1982); (a) Re<<1, 

(b) 5< Re<30, (c) 30<Re<45 and (d) Re>48; Flow is from left to right. 

 

Consider a canonical bluff body such as a straight circular cylinder (Roshko, 

1993) in a fluid flow with its axis normal to the direction of flow, see figure 2.2. 

Here the flow is dependent on the non-dimensional quantity of Reynolds number  

                                                         (2.2) 

(where d is a length scale representing the dimension of the bluff body, U  is the 

upstream flow velocity and is the kinematic viscosity of the fluid).  

At very low Reynolds numbers (<1) where the inertial forces are negligible, 

the dominant process in the flow is the diffusion of vorticity away from the body 

(Batchelor, 1973). This diffusion results in the flow being very nearly symmetric 

upstream and downstream of the bluff body (the circular cylinder in this case), as 

seen in figure 2.2(a). 
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As the Reynolds number is increased, the diffusion of vorticity becomes less 

effective. The flow attains a fore-and-aft asymmetry, as a result of the convection of 

vorticity downstream of the cylinder. Hence the fluid that comes round the cylinder, 

close to it, moves away from it before reaching the rear point of symmetry. This 

asymmetry can be seen in figure 2.2(b). 

The asymmetry in the flow causes closed streamlines to appear at the rear of 

the cylinder as a result. This wake behind the cylinder consists of two parts, the twin 

recirculating vortices and a trail, at a Reynolds number =6 (Taneda, 1956).  

Between 6<Re<48, the following scenario occurs: the backward flow, which was 

induced, encounters the forward moving fluid and deflects it away from the rear of 

the cylinder, and this tends to strengthen the rotational motion in the standing eddy. 

As the Reynolds number increases, the fluid in these eddies circulates continuously 

not moving off down stream and becomes more and more elongated in the flow 

direction. The eddies are attached in this form on the rear end of cylinder until a 

critical Reynolds number of approximately Re=48 is reached, when the eddies break 

up into vortices, which are alternately shed from either side. This is referred to as the 

von Kármán vortex street. 

It is generally thought that some form of instability (Batchelor, 1973) is the 

basic cause of vortex shedding. At a value of Re between 30 and 40, the steady flow 

becomes unstable to small disturbances, since the dissipative action of viscosity is 

weak. In the case of the cylindrical bluff body, this instability first affects the wake, 

at Re=30 (Taneda, 1956), at some distance downstream from the cylinder in the so-

called trail region, and gives rise to a slow oscillation of the wake, approximately 

sinusoidal in both time and the stream-wise direction, with an amplitude that 

increases with downstream distance. 
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For Re>35, tiny irregular “pools” appear in the boundary of the twin vortices, 

move downstream along the boundary-line till they reach the rear end of the twin-

vortices, tremble for a short time and die away. This small irregular motion, 

however, does not produce any affect on the flow behind the twin- vortices until the 

critical Reynolds number is reached (Taneda, 1956). 

As the Reynolds number is increased beyond the critical value at which an 

instability first appears, the oscillation of the wake moves closer to the cylinder. 

When the critical Reynolds number is reached, the flow in the wake becomes 

unsteady and the oscillation of the wake begins to exert an influence upon the two 

stationary eddies immediately behind the cylinder. The two standing eddies oscillate 

together in lateral position, and the “pools” of the twin vortices are elongated along 

the trail. The twin vortices break up and start shedding some rotating fluid at the end 

of every half period, alternately. They arrange themselves in a regular pattern, with 

all the vortices on one side rotating in the same sense, and those on opposite sides in 

an opposite sense. Longitudinally, the vortices on one side are midway between 

those on the other. 

The frequency of vortex shedding can be represented in a non-dimensional 

form, called the Strouhal number, which is given as  

 (2.3) 

where f is the frequency of vortex shedding, U  is the freestream velocity, and d is 

the representative length scale- in this case the diameter of the circular cylinder. 

Following Kovasznay’s (1949) studies on the wake of cylinders, Roshko 

(1954) carried out systematic investigations on vortex shedding from uniform 

cylinders with large aspect ratios, using hot-wire probes. He found that the vortex 

shedding was very regular between Reynolds numbers ranging from 47 to about 170. 
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Above this upper limit, the process was found to become irregular and the shedding 

frequency difficult to define. From his observations Roshko defined an empirical 

relationship between the frequency of vortex shedding and the Reynolds number, 

where the frequency was non-dimensionalised as 

 (2.4) 

 (also known as the Roshko number). The relationship is given as   

          
 (2.5) 

and is widely-used empirically, and agrees with earlier results of Kovasznay (1949), 

who observed regular shedding below Re 160.  

By comparing the signals from two hot wires spaced along the span, Roshko 

observed that above a certain critical Reynolds number vortices were not shed at the 

same instant along the whole length of the model. The variation in phase of these 

signals suggested that the vortices were inclined to the model axis, as seen in figure 

2.3, which was also observed by Berger (1964) in his flow visualization studies. 

 

Figure 2.3. An example of oblique vortex shedding from a straight cylinder. Flow is from left to right. 

Williamson (1988) 

 

Tritton (1959) performed similar experiments on circular cylinders and 

observed that there was a discontinuity in the frequency-velocity parameters of the 

vortex wake. He found that his results matched with those of Roshko’s up to a 

Reynolds number of 90, which was then followed by a drop of 5% in frequency, as 

seen in figure 2.4. It was also noted by Tritton that the signals in the region of the 

 Flow 
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aforementioned discontinuity were modulated. Tritton also observed that there was a 

presence of oblique vortex shedding from the cylinder. He measured the angle 

between the axis of the cylinder and the vortex to be about 30
0
. Figure 2.4 shows the 

graphs of vortex shedding frequency versus Reynolds numbers (Tritton, 1959) for 

three different experimental settings with the discontinuity (encircled) occurring at 

three different local Reynolds numbers. 

 

Figure 2.4. Plots of vortex shedding frequency versus Reynolds number. Tritton (1959). 

 

Gaster (1969), conducted experiments on tapered bodies such as cones and 

observed the signals to be modulated, as in the case of Tritton. But he did not notice 

any discontinuity in the frequency-Reynolds number relation, leading him to suggest 

that the discontinuity observed by Tritton was due to upstream flow non-uniformity. 

This led to Tritton (1971) rejecting Gaster’s claims and conducting a series of 

experiments in a different experimental facility, only to observe the discontinuity to 

appear , but at a different Reynolds number.  

Gaster (1971) conducted experiments on slightly tapered models and 

observed that the vortex wake structure consisted of a number of discrete cells 

having different shedding frequencies across the span. Four cells were observed 

along the span within which the signals were periodic and of constant amplitude 

except at the boundaries where modulation was observed. At higher flow velocities 

the vortex structure appeared to become similar to that observed on highly tapered 
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cones (Gaster, 1969), with modulated signals over the entire span of the model. 

Gaster (1971) observed that the discontinuity disappeared when small end-plate disks 

were placed 70 diameters apart along the span of the model, and he suggested that 

these endplates limited the spanwise movement of the cells. Mathis, Provansal & 

Boyer (1984) also proposed that the Strouhal discontinuity is caused by flow non-

uniformity, in support of Gaster’s (1971) claims. 

Berger & Wille (1972) claimed that the mode of vortex shedding (parallel or 

oblique) was dependent on the free-stream turbulence level of the experimental 

facility, such that higher turbulence levels cause oblique shedding to occur.  

Gerich & Eckelmann (1982) studied the effect of end plates on the vortex 

wake of a circular cylinder. They found low frequency cells (10% lower than the 

other parts of the cylinder) present near the ends of the cylinders. These so-called 

end cells extended up to a distance of 10 diameters towards the center of the span. 

For larger aspect ratios (length-to-diameter ratios; L/D), the flow in the central region 

of the span (outside of the end cells) was assumed to be independent of the ends, i.e. 

unaffected by the ends. On the other hand they saw that when the aspect ratio was 

reduced to around 30, the end cells merged, causing a single low frequency of 

shedding over the whole span of the cylinder. 

Van Atta & Gharib (1987) showed that discontinuities in the frequency-

Reynolds number relation could be related to cylinder vibrations due to aeroelastic 

coupling. They demonstrated that if the cylinder were completely vibration-free, the 

frequency-Reynolds number relation would have absolutely no discontinuities. This 

suggests the existence of a continuous frequency-Reynolds number curve. 

Williamson (1988, 1989) showed that the existence of discontinuities in the 

frequency-Reynolds number relationship is not because of any mechanisms 
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suggested by others. He suggested that frequency-Reynolds number discontinuity 

and oblique vortex shedding are directly related to each other, and both are 

influenced by the boundary conditions at the ends of the cylinder, even for spans of 

hundreds of diameters in length. He showed that the discontinuity in the frequency-

Reynolds number relationship is caused by the transition from one mode of oblique 

shedding to another mode of oblique shedding. This transition is caused by a change 

from one mode, where the end conditions are unable to match the flow over the span 

(when the vortex was found to be bowed) to another mode where the flow over the 

span matches the end conditions (chevron patterned) see figure 2.3. Williamson also 

managed to promote parallel vortex shedding by altering the end conditions. He 

introduced endplates at a certain angle, as seen in figure 2.5, which induced parallel 

shedding. 

 

Figure 2.5. Parallel vortex shedding induced by using angled end plates. Williamson (1988). 

 

Williamson defined a transformation based on Squire’s theorem, which 

relates the frequency of vortex shedding for oblique data to the frequency of vortex 

shedding for parallel data, given as: 

                                                       
(2.6) 

Flow 
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where S0 refers to the Strouhal number for parallel shedding and S  is the Strouhal 

number for oblique shedding, with  being the angle of obliqueness. Using this 

transformation, he showed that the data for oblique vortex shedding would collapse 

onto a single curve, which was universal, as shown in figure 2.6. 

 

 

Figure 2.6. Strouhal-Reynolds number relationship due to Williamson (1988), showing a collapse of 

oblique-shedding data onto a single curve using a cos  relation. The solid line represents a curve 

through the obtained data for oblique-shedding, S . The symbols represent the transformed oblique-

shedding data using the formula given in equation 2.6. 

 

2.3 Vortex shedding from cones and tapered cylinders. 

As discussed earlier, Gaster investigated the nature of three dimensionality of 

flow in the wake of cones (1969) and tapered cylinders (1979). In the former case, 

Gaster found low frequency modulated shedding all along the span, and cells of 

distinct shedding frequencies in the latter. In order to model the velocity fluctuations 

arising from the vortex shedding, he suggested the use of a van der Pol oscillator of 

the form  

 

 

 

(2.7) 

 

S0=-3.3265/Re+0.1816+1.6*10
4 
Re

 

S0= S /cos  
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where  is a parameter that controls the strength of damping and y is the dynamical 

variable representing the position coordinate which is dependent on time t.  

The model of the flow on a slender cone consisted of a series of such non-linear 

oscillators with an inviscid spanwise coupling term which was introduced to account 

for the taper present in the cone although the actual mechanism was not very clear. 

Such a nonlinear oscillator is said to be both self limited and self-excited in 

amplitude.  

Noack & Eckelmann (1991) introduced a viscous spanwise coupling term in 

their extension of Gaster’s model. In order to simplify the problem of the complex 

flow in the wake of cones, Lewis & Gharib (1992) used a local discontinuity in the 

cylinder diameter. For this configuration, the vortex shedding was found to occur 

either in a direct mode or an indirect-mode. In the direct-mode, which occurred when 

the ratio of the end diameters was small, two distinct frequencies were found on 

either side of the step, which interacted directly with one another in a narrow zone. 

In the indirect mode, which occurred when the ratio of the two diameters was large, a 

third frequency, which was lower than the two shedding frequencies, appeared near 

the interface; the shedding frequencies did not interact with each other directly. The 

indirect mode had a modulation zone wherein the frequency of modulation was 

constant. Hence, this was compared to be equivalent to the case of the cone 

mentioned earlier where there was a global modulation activity across the span, with 

the frequency variation being handled by a series of the aforementioned direct 

modes. Valles et al. (2002 a) reproduced numerically the vortex linkages and the 

interaction of the so-called direct-mode interactions in the wake of a stepped 

cylinder, confirming the observations of Lewis & Gharib (1992).  
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Papangelou (1992) revisited the aspect of vortex shedding from slender 

cones, using cones with various tapers. He observed that as the local Reynolds 

number increased, due to variation of diameter along the span, there was a change in 

frequency of modulation of the shed vortices, suggesting that it is due to the variation 

of the dominant frequency that the tapered cylinder exhibits cellular shedding. He 

noticed that as the Reynolds number was increased the cellular nature or regime 

started to breakdown. This breakdown was more severe at the tip, with the cell near 

the base being the last one to break down. He goes on to say that as a result, the tip 

and base have very different roles to play. It is also mentioned that the critical 

Reynolds number of one of the cones (the one with the maximum taper angle) was as 

small as 25, due to spanwise coupling, which induces vortices near the tip.  

By an analysis of the time series using a complex demodulation model, 

Papangelou reports that the modulating effect is fundamental to the fluid dynamics of 

the system under consideration. He rules out the fact that the amplitude modulation is 

not due to the so-called beating effect. Papangelou used a model based on the 

Landau-Stuart equation with added terms to account for the spanwise coupling, of 

the form 

 (2.8) 

with representing viscosity and being a real number and l represents the length of 

the cone. 

Even though the computed results of the model were qualitatively good, it 

does not fare very well quantitatively. This could be explained by the possibility of 

inappropriate choice in using a diffusive term in the Landau-Stewart equation. 

Piccirillo & Van Atta (1993) performed experiments on the vortex shedding 

from various tapered cylinders to cover the laminar vortex shedding range. It was 
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observed that the number of cells remained constant after a certain value of Reynolds 

number, based on centre span diameter, was reached. As seen by Papangelou (1992) 

cell size was found to decrease with local diameter. Individual cell size was found to 

be roughly self similar. Strouhal number and Reynolds number based on the 

diameter at cell centre showed a collapse for different taper ratios. Components of 

velocity, normal and parallel to the forward surface of tapered cylinder were used for 

scaling the shedding and modulation frequencies respectively. Cell boundary 

locations were found to be unaffected by the movement of end plates. The vortex 

splitting phenomenon was observed near the cell boundary and was said to be 

responsible for the modulated signal. A cross street connection of vortex tubes was 

also seen after vortex splitting and this was contrasted with the vortex connection on 

the same side of the vortex street as in Williamson’s experiments involving end cells 

of a uniform straight cylinder.  Also, the flow in the wake was seen to become more 

chaotic with increase in taper ratio for a given Reynolds number. 

Valles et al. (2002b) conducted numerical simulations of flow behind tapered 

cylinders, to demonstrate the experimental findings of Piccirillo & Van Atta (1993).  

Even though the simulation reproduced the cellular structure of vortex shedding, 

other important parameters such as the variation of Strouhal number along the span 

were not generated, showing a large discrepancy in the obtained results, as seen in 

figure 2.7. This might be due to the imposed end conditions, which confirms the fact 

that the end conditions do play a very important role.   

Provansal & Monkewitz (2006) conducted experiments on tapered cylinders 

in a free surface water channel and studied the wake using hydrogen bubbles. A 

technique called radon transform was used to analyse the vortex shedding angles in 

order to obtain time-series information. Two small water streams were used to 
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control the end effects, but the authors do not mention the effect of these streams on 

the vortex shedding. They reported from their analysis that the shedding frequency 

varies in a stepwise manner along the span of the tapered cylinder.  

Recently Narasimhamurthy & Andersson (2009) have conducted a series of 

studies using Direct Numerical Simulations (DNS) of flow past tapered cylinders. 

They reported the existence of multiple cells of constant vortex shedding frequency 

along the span and also highlighted the influence of secondary flow on the stability 

parameters. 

 

Figure 2.7. Variation of local Strouhal numbers versus local Reynolds numbers. Valles et al. (2002b). 

Cases A, B and C refer to the numerical simulations by Valles et al, - , Case A; - ,Case B; - , 

Case C.  , Jespersen &Levit (1991); others are from experiment; Williamson (1988) and 

Piccirillo& Van Atta (1993). 
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3.1 Introduction 

The experiments were conducted in the 300mm x 300mm test section water 

channel of the School of Engineering at Queen Mary, University of London. The 

water channel is of an open return type as shown in figure 3.1. Metal mesh screens 

were provided to make the flow uniform and reduce the variations in the longitudinal 

velocity. This is followed by a honeycomb section measuring 300mm x 250mm x 

300mm and having a cell size of 5mm located downstream of the contraction that 

helps straighten the flow by reducing the lateral components of mean velocity and of 

the larger scale structures. The above-mentioned dimensions (ratio of cell size to cell 

length) are in agreement with the ones recommended by Mehta & Bradshaw (1979).  

The free stream turbulence level in the working section was measured to be less than 

0.3% over the velocity range of operation.  

 
Figure 3.1. Schematic of the water channel used in the present work. 

 

Water is pumped from a dump tank, with the pump motor being controlled by 

a digital motor-speed controller. The bluff bodies were suspended vertically into the 

glass working section, with rubber dampers to avoid possible vibrations. A three-
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dimensional traverse was employed to allow traverses of the hot-wire probe along 

the span of the cone. Accurate manual movement of the hot-wire probe in the 

vertical, streamwise and cross-streamwise directions was possible with the use of 

micrometers.  

 
(a) 

 

 
(b) 

 
Figure 3.2. (a) Schematic representation of the coordinate system with respect to the models used. (b) 

Experimental arrangement showing the model used along with the traverse and the hot-wire probe. 

The arrows indicate the direction of traverse movement with respect to the model.     
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Figures 3.2a and 3.2b show the schematic representation of the coordinate system 

used and the orientation of the cone with respect to the hot-wire probe, traverse and 

the water channel, respectively. 

3.2 Models used 

Experiments were conducted using cones of different taper ratios, made of 

polished brass; the taper ratio here is defined as the ratio of the difference in 

diameters between any two points along the span of the cone to the length between 

the points. The dimensions of the cones are given in the table 3.1.  

Taper ratio (TR) Diameter (mm) Length (mm) 

18 D1 = 0.00          D2 = 8.34 150 

36 D1 = 0.00          D2 = 5.10 185 

72 D1 = 2.91          D2 = 5.00 150 

288 D1 = 4.47          D2 = 5.00 150 

576 D1 = 4.73          D2 = 5.00 150 

Table 3.1. Details of models used. 

 

3.3 Hot-wire anemometry 

A single normal hot-wire probe operated by a constant current type 

anemometer (CCA) was used to measure the fluctuations in velocity in the wake of 

the cones and cylinders caused by the periodic shedding of vortices. The hot-wire 

probes were not calibrated as the present work only dealt with the study of the 

dynamics of variation in vortex shedding frequency along the span of cones and 

cylinders. The technique used for velocity measurement will be discussed in the 

following sub-chapters. 

3.3.1 General operating principle 

The electrical resistance of metals and metallic wires changes with the 

ambient temperature. According to Joule’s law, the temperature of a heated wire 
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depends on the electric power dissipated in the wire and the rate at which the 

surrounding medium (fluid) removes the heat from the power, and is expressed as  

 

 

(3.1) 

where Q is the heat generated by a constant current I flowing through a conductor 

of electrical resistance R, for a time t. The rate of heat removal or dissipation is a 

function of the velocity of the fluid convecting past the heated wire. Thus 

fluctuations in flow velocity leads to fluctuations in the heat loss, and the output 

signal from the hot-wire anemometer varies accordingly. Even though the 

anemometer is described as maintaining a given variable "constant", it does not 

strictly accomplish this (Stainback & Nagabushana, 1993). 

3.3.2 System used in the present work 

A purpose built Constant Current Anemometer (CCA) was used in the present 

work because of its simplicity, ease of operation and adequate frequency response 

over the current flow conditions (Brunn, 1995). The circuit, shown in figure 3.3, 

consists of a hot-wire probe in series with a load resistor, which is a potentiometer in 

the present case.  

 
Figure 3.3. Constant current anemometer circuit. 
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A low noise wire-wound multi-turn potentiometer was used to control the 

current in the circuit. By altering the current the temperature of the wire and thereby 

the sensitivity of the hot-wire probe could be adjusted to a suitable value. It was 

ensured that the chosen circuit current did not cause electrolysis. In the design of the 

hot-wire anemometer for the present work it was necessary to consider electronic 

noise, which is defined as the minimum detectable change in signal that can be 

measured. The electronic noise could primarily be associated with the noise due to 

the mains (electromagnetic interference), and the resistors in the anemometer circuit.  

To eliminate mains noise, the circuit was powered by high capacity nickel metal 

hydride (3000 mAh, Ni-Mh) batteries and the circuit output was connected to an RC 

filter with a rising frequency response. The low pass RC filter was designed to cut 

off all frequencies beyond 10 Hz as the frequencies of interest lay between 0.1 Hz 

and 3Hz. This reduced noise levels significantly and improved the signal quality. A 

low noise amplifier was used to amplify the filtered signal before it was stored on a 

PC, via a National Instruments data acquisition card. 

The hot-wire probe was fabricated by attaching two 300 m diameter stainless 

steel needles to the probe body. In order to prevent vibration of the sensor wire, the 

length of the needles was chosen appropriately. The needles were mounted 2 mm 

apart on a 3 mm diameter plastic plug, which was fixed to the end of the hollow 

probe body. Wiring to the needles were drawn though the hollow probe body, with 

the free end sealed off using epoxy resin to make it water tight. The needles were 

coated with a thin layer of insulating varnish, with only the needle tips exposed for 

fixing the sensor wire. The hot-wire probe had a sensor element made up of 5 m 

diameter tungsten wire, which was spot-welded to the needle tips. The wire had an 
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aspect ratio (l/d) of approximately 400 and an electrical resistance between 2  and 

3 .  

3.4 Spectral Analysis 

The frequency content of the velocity fluctuation signals obtained from hot-

wire anemometry was extracted using the discrete Fourier transform (DFT). A 

purpose written discrete Fourier transform Fortran program was used in the present 

work. The analysis equations for the calculation of the DFT are given below. 

ReX k[ ] = x i[ ]
i= 0

N 1

cos 2 ki N( )  (3.2 a) 

ImX k[ ] = x i[ ]
i= 0

N 1

sin 2 ki N( )  (3.2 b) 

In the above equations x i[ ]  is the time domain data/signal being analysed and 

ReX k[ ]  & ImX k[ ] are the real and imaginary parts of the frequency domain being 

calculated, respectively. N represents the number of samples in the time domain.   

Since the input waveform is time-sampled the signal was first multiplied by a 

Hanning window function. Applying a window function enhances the ability of the 

DFT to extract spectral data from the signals by reducing the effects of spectral 

leakage that occurs during the process (Oppenheim & Schafer, 1989).  

The Hanning window is a temporal weighting function, which has a 

maximum value of 1 and tapers towards 0 on both ends. It is expressed as 

 (3.3) 

where N is the width of the window function, t  is the sample index (Proakis & 

Manolakis, 1996).  

An example of spectral analysis routine used in the present study is shown in 

figure 3.4 a-d. Figure 3.4(a) shows 512 seconds (16384 samples) of velocity 
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fluctuation data collected at a rate of 32Hz in the wake of a cone shedding vortices. 

This signal was multiplied by the Hanning window shown in figure 3.4(b), resulting 

in the windowed signal shown in figure 3.4(c). The frequency spectrum of the 

windowed signal was found using the discrete Fourier transform, and is displayed in 

figure 3.4(d).    

3.4.1 Frequency spectrum resolution 

The resolution of frequency spectrum, which is useful for distinguishing 

frequency components that are close together, depends on the length of the discrete 

Fourier transform or the number of data samples in the acquired data set and the 

frequency at which these sample are acquired at. Since a frequency spectrum 

calculated by an N point discrete Fourier transform consists of (N/2 + 1) samples 

equally spaced between zero and one-half of the sampling frequency it is necessary 

to have a sample spacing that is smaller than the difference of any two closely spaced 

spectral features.  

According to the sampling theorem, also known as the Nyquist sampling 

theorem (Oppenheim & Schafer, 1989), a continuous signal can be sampled properly 

only if the signal does not contain frequency components that are larger than one-half 

of the sampling frequency. To avoid the effects of aliasing and to improve resolution, 

data was acquired at a rate of 32Hz, as mentioned before. This is more than twice the 

maximum frequency of interest, which of the order of 1Hz.  

In order to satisfactorily represent the low frequency components, of the order 

of 0.1 Hz in the spectrum, it was necessary to acquire long records of data, typically 

of the order of 600 seconds. The spectrum of velocity fluctuations in the wake of a 

cone is shown in figure 3.4. A total of 19200 samples were acquired, and block 

averaged before being subject to spectral analysis. A total of 4 blocks were used with 
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a block size of 4096 samples. Block averaging helps reduce the noise, if any, present 

in the acquired data sets.  

 
Figure 3.4. A typical spectral analysis routine involving windowing of the measured signals and its 

discrete Fourier transform in order to extract the frequency information present therein. The measured 

signals represent the velocity fluctuations in the wake of a cone, shedding vortices. 

 

3.5 Hot-wire probe location 

A brief study of the effect of hot-wire probe position in the wake of the bluff 

body is presented here. The study helped in determining the most optimum position 

of the hot-wire probe in the wake of the cylinder or cone. The location of the hot-

wire probe in the wake of the cylinder determines the amplitude and frequency 

content of the vortex shedding signal.   

(a)  

(b)  

(c)  (d)  
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The hot-wire probe, mounted on a 3-axis traverse was positioned at the mid-

span location of a uniform cylinder having a diameter of 0.003m. The cylinder axis is 

considered to be the datum in any given spanwise plane. To locate the hydrodynamic 

datum position at a given spanwise location, the hot-wire probe was moved to a 

position 1 diameter downstream of the cylinder and traversed in the cross streamwise 

direction until the spectrum of the vortex shedding signal shows a pronounced effect 

of the second harmonic. The probe is then traversed cross-streamwise to a position 

where the amplitude of the vortex shedding signal is found to be a maximum. The 

details of the datum identification process are given in the following subsection.  

3.5.1 Datum Identification 

The position of the hot-wire probe directly downstream of the cylinder axis is 

considered as the datum position. In order to identify the datum position, the vortex 

shedding signal was used. The hot-wire probe was positioned 3D (local) downstream 

of the cylinder axis and traversed in the cross-streamwise direction until the 

frequency of the observed oscillations became exactly twice that of the vortex 

shedding frequency. Figure 3.5 shows the hot-wire signals and their corresponding 

frequency spectrum at various cross-stream locations. It is shown that the influence 

of the second harmonic decreases as the hot-wire probe is moved away from the axis 

of the cylinder. It should be noted that the signal does not represent the pure second 

harmonic, as the width of the sensor is only slightly smaller than the width of the 

cylinder. The experiments were repeated on both sides of the axis and the signals 

were identical. The hot-wire probe was moved to a position 1D downstream of the 

axis, where the effect of the second harmonic is more pronounced. This is shown in 

figure 3.6 where the signal and its corresponding spectrum are presented.  
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                Time (s)                                                                      Frequency (Hz) 

 

Figure 3.5. Velocity fluctuations and the corresponding frequency spectra across the wake of a 

uniform cylinder of diameter 0.003 m. The measurements were made at a location 3 diameters 

downstream of the cylinder. 

 

 

 
 

Figure 3.6. Velocity fluctuations and the corresponding frequency spectra across the wake of a 

uniform cylinder of diameter 0.003 m. The measurements were made at a location 1 diameter 

downstream of the cylinder. 

 

At a location of 1D in the cross-stream direction the amplitude of the signal is 

approximately 50% smaller than the amplitude at 0.5D. Since the flow in the wake of 

a bluff body is very sensitive to disturbances due to probe interference (Strykowski 
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& Sreenivasan, 1990), a compromise was necessary with regards to the position of 

the hot-wire probe in the present study. It was noted that at a location of typically 3 

diameters downstream the probe interference was negligible. All measurements 

present henceforth were made at a location of 0.5D across and 3.0D downstream of 

the cylinder/cone 

3.6 Water channel flow speed measurement 

Accurate and rapid measurement of flow speed in the water channel, in the 

range of 0.005 m/s to 0.03 m/s, was essential in the experiments conducted. The low 

flow speed meant that conventional flow measurement techniques using Pitot-static 

tubes were impractical. A vane type anemometer with a linear frequency/speed 

feature was tested and was found to be prone to error probably linked to mechanical 

friction at very low flow speeds.  

Roshko (1954) in his work on the development of turbulent wakes from 

vortex streets proposed a now widely used empirical relation between the frequency 

of vortex shedding and the mean flow speed. The frequency and flow speed were 

non-dimensionalised as Roshko number, Ro ( ) and Reynolds number, 

Re ( ) respectively.  

 (3.4) 

Using the relation proposed by Roshko the wake of a cylinder could be used 

as a vortex-shedding device for accurate and practical detection of flow speed, in the 

Reynolds number range of 50 < Re< 150. But inconsistencies between the 

calibrations as reported by various experimentalists in literature reduced the 

effectiveness and reliability of such a device. This inconsistency has been attributed 

to the presence of discontinuities in the variation of shedding frequency with flow 
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speed, as observed by Teissie-Solier et al. (1937), Tritton (1959). We now know 

(Gaster (1971), Persillon et al. (1997) and Braza et al. (2001)) that the observed 

discontinuities are attributed to the spanwise movement of the so-called cells along 

the cylinder. It turns out that this spanwise movement of cells can be prevented by 

appropriate positioning of barriers or end-plates, thereby raising the possibility of 

constructing a vortex shedding anemometer without the effects of spanwise 

discontinuities. 

Several researchers (Gerich & Eckelmann (1982), Williamson (1988), 

Eisenlohr & Eckelmann (1989)) have studied the effect of end-plates on vortex 

shedding from cylinders. Close to the end plates there appears to be a local cell 

where the Roshko relation does not apply. It is noted from their study that for a low-

aspect-ratio case ( ), there is a dominance of the end-cells and an increase in 

the critical Reynolds number for onset of shedding. Papangelou (1992) also reported 

that the effect of having low aspect-ratios was very pronounced ratio shedding 

devices that were tested, with shedding beginning at a Reynolds number in excess of 

100, which is much higher than the usual value of around 50 for a high aspect ratio 

cylinder. This could be due to the fact that the end plates were promoting and/or 

enhancing the stability of the wake. The difficulty of end plate choice and its 

alignment prompted Papangelou (1993) to develop a vortex shedding anemometer 

using low aspect ratio cylinders with spheres replacing the end plates. In a wind 

tunnel Papangelou showed that such a device produced linear characteristics over a 

substantial range of speeds. The end-spheres combined with the low aspect ratio 

cylinder were seen to promote parallel vortex shedding by fixing the end cells and 

eliminating any possible aforementioned discontinuities. Even though such a device 
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could be used in the wind tunnel with satisfactory results, the calibrations would not 

hold well over the speeds required in the present work.  

Williamson (1988, 1989) found that the discontinuity in frequency is linked to 

the angle at which vortices are shed, with different shedding modes occurring at 

different slant angles. This shows that the parallel shedding mode is the most 

universal one, and by forcing the shedding to be parallel, a universal Strouhal-

Reynolds number relationship results.  

This was followed by Eisenlohr & Eckelmann (1989) who suggested a 

method of producing parallel vortex shedding by “decoupling” the wake flow from 

the ever-present disturbances from the cylinder ends, by modifying the cylinder ends 

using the so-called end-cylinders. They showed that for a cylinder of an aspect ratio 

of 60, in the Reynolds number regime of 50 < Re < 150, the shedding frequency as a 

function of the flow velocity followed the relation proposed by Roshko very closely, 

as shown in figure 3.7. This result was confirmed in the work by Williamson (1989), 

mentioned earlier. 

Because of the ease of use and its apparent agreement with Roshko’s relation 

it was decided to follow the simple modification of the cylinder ends as proposed by 

Eisenlohr & Eckelmann (1989). Two cylinders of diameters 3 mm and 5 mm, to 

cover the range of Reynolds numbers required, were fabricated with two end 

cylinders. The aspect ratio (L/D) was 50 in both the cases, and the geometric 

similarity was better than 1%. 
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Figure 3.7. Reynolds number versus Strouhal number comparison for cylinder fitted with end-

cylinders and – Roshko’s frequency law. Eisenlohr&Eckelmann (1989). 

 

The diameter and length of the end cylinder in both the cases was 2.0 d and 

5.0 d respectively. It is to be noted that the end cylinders were mounted about 5.0 d 

from the free end of the main cylinder, since an end cylinder would produce the same 

result near a free end.  

A hot-wire probe was placed 3.0D downstream in both the cases, and offset 

from the axis of the cylinder by 0.5D in order to maximise the signal strength. The 

signal was low pass filtered and amplified before being acquired at a rate of 32 Hz, at 

any given flow speed. The frequency, f, was determined using a purpose written 

FORTRAN Discrete Fourier Transform program, as mentioned before.  

The flow speed, U, was then determined using the universal Strouhal-

Reynolds number relationship proposed by Williamson (1989), which is  

 (3.5) 

Here A = -3.3265, B = 0.1816, and C = 1.600*10
-4

. 
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Flow visualization was conducted to confirm the parallelism of the shed 

vortices. A mixture of condensed milk and fluorescein dye was coated on the 

cylinder surface and let to dry partially. This thin coating dissolved gradually in the 

flow, with the dye following the path of the shed vortices                        

The accuracy of such a vortex anemometer is very hard to ascertain. There is very 

little mention in literature about the accuracy of such devices. In order to analyse the 

reliability and accuracy of the vortex anemometer used in the present work, it was 

decided to test the onset Reynolds number for shedding from a uniform cylinder 

having a diameter of 2 mm. The vortex anemometer along with the universal 

Strouhal-Reynolds number relationship was used in parallel as a flow speed 

measurement device. A hot-wire probe was placed 3.0 d downstream, and offset 

from the axis of the test cylinder. The low pass filtered and amplified hot-wire 

signals in the wake of the test cylinder showed periodic oscillations, which 

correspond to the passing of eddies or vortices, at a Reynolds number of 

approximately 47 – 48. Figure 3.8 shows a selection of hot-wire signals at various 

upstream flow speeds.  
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Figure 3.8. Time history of hot-wire signal in the wake of the test cylinder at various upstream flow 

speeds. Reynolds numbers are based on the diameter of the test cylinder and velocity determined 

using the vortex anemometer. 

 

The Reynolds numbers indicated are based on the diameter of the test cylinder 

and the velocity determined using the vortex anemometer. A periodic variation of 

amplitude of the hot-wire signal is seen when the local Reynolds number is larger 

than the onset Reynolds number for shedding, which is universally known to be 

between 47 – 48 (Coutanceau & Bourad (1977), Nishioka & Sato (1978)). Flow 

uniformity in the water channel, especially at the monitoring and testing stations was 

verified by interchanging the test cylinder and the vortex anemometer device. The 

results of these tests confirm that the error in the flow speed derived using the vortex 

anemometer device to be approximately less than 1%. For the purpose of studying 

the vortex shedding behind various cones and related bodies this is more than 

sufficient to show differences in characteristics. 

Time (s) 

Re = 68.6 

Re = 59.4 

Re = 54.5 

Re = 52.3 

Re = 49.5 

Re = 47.5 

Re = 46.7 

Re = 45.2 
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3.7 Particle Image Velocimetry 

A TSI Particle Image Velocimetry (PIV) system was used to measure various 

components of the wake along both the planes of the models. The PIV system was 

found to be particularly useful to analyse the flow all along the span of the cone at 

any given instant of time. The system consisted of a twin 150mJ double-pulsed Nd-

YAG laser to illuminate a two-dimensional plane and a PowerView 4M Plus Charge-

Coupled Device (CCD) camera with a resolution of 2048 X 2048 pixels. The images 

were captured using a 64 bit frame grabber card installed on to a standard PC 

workstation running TSI’s Insight 3G image acquisition and processing software. 

The software also controlled the frame grabber, the lasers and the camera. Data was 

obtained at a frame rate of 5Hz and a total of 90 image-pairs (the number is limited 

by system resources) were captured per acquisition set. A Nikon 50mm lens was 

fitted to the camera to obtain images at an increased magnification. The laser light 

sheet, produced using a cylindrical lens arrangement, was found to be approximately 

0.9 to 1.0 mm thick, which was found appropriate in order to avoid errors which 

might arise due to particles moving out-of-plane of the laser sheet. This cylindrical 

lens arrangement and the camera were mounted on a purpose built traverse, which 

accurately moved both, without having to unnecessarily re-focus the camera. Figures 

3.9a and 3.9b show a schematic of the arrangement used to view the two planes of 

the cone. In mode A, the laser illuminated the whole span of the cone, whereas in 

mode B one could illuminate any plane corresponding to a particular diameter along 

the span. Since unfiltered water was the fluid medium, it was not necessary to 

introduce any artificial particle seeding. Closer inspection of the acquired PIV image 

pairs revealed the size of the individual particles to be approximately 3-5  in 

diameter. This average particle size was equivalent to approximately 4-5 pixels in 
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diameter, which is known to be an appropriate particle size in order to avoid the 

effects of peak locking (Prasad et al., 1992 & Raffel et al., 1998). The particles were 

seen to be homogenous enough to avoid erroneous vectors, which would increase the 

chances of possible errors of mean and fluctuating velocities. 

Since PIV measurements are based on the relation between the displacement 

of a particle over a given time interval, it requires calibrating or defining of the 

mapping between the image plane and the physical plane. In other words a relation 

between the pixel size of the CCD and physical length scale needs to be established. 

In the present work the calibration was achieved by placing a planar calibration 

target with regularly spaced marks at exactly the position of the laser light sheet and 

relating the distance between two known points along the target to the number of 

CCD pixels between them. The calibration target consisted of a thin ruler with black 

rulings having a spacing of 1mm fixed to a machined aluminium tri-square. A single 

calibration image of the target was recorded and the distance between two points was 

then correlated to the number of pixels using the calibration function available in the 

software provided. Since mode A and mode B operations require different camera 

zoom settings to capture the vortex structures appropriately, the calibration resulted 

in each pixel to be equal to 46.3μm  and 26.46μm  in length, respectively. For a CCD 

resolution of 2048 X 2048 pixels this is equivalent to a physical domain having a 

dimension of 0.095m X 0.095m and 0.0542m X 0.0542m, for the two modes 

mentioned. 

The velocity vectors were calculated from the PIV image pairs using a multi-

pass cross-correlation algorithm provided within the TSI software. Since the seeding 

density in the present set-up was fixed, using smaller interrogation windows 

containing less number of particle pairs necessary for correlation would lead to errors 
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due to noise. On the other hand using smaller window size would have improved the 

spatial resolution, resulting in more accurate results.  

 

Figure 3.9a. Schematic of PIV arrangement- Mode A. 

 

 

Figure 3.2b. Schematic of PIV arrangement- Mode B. 
 

Fincham & Delerce (2000) suggest that processing with larger interrogation 

windows is more robust and results in less spurious vectors. The multi-pass 

technique in the present study uses a larger window of interrogation for the first pass 

Laser 

 

Cone 

 

Laser
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in order to provide a sturdy displacement for the following pass. The second pass 

uses a smaller interrogation window that is centered on the displacement identified 

from the results of the first pass. The use of successive passes allows the 

displacement field of the previous pass to be used to deform the present interrogation 

window, which is known to increase the accuracy (Scarano & Riethmuller, 2000). 

 A cross-correlation technique was used in the algorithm of the software 

provided by TSI to obtain the displacement of particles based on the PIV image pairs 

obtained at each time period. The correlation algorithm is given in equation 3.6 

 (3.6) 

where  is the correlation coefficient defined as a function of displacement, x 

and y are the pixel coordinates, I represents the pixel intensity, with M  N the area 

of the interrogation window and the subscripts 1 and 2 represent the first and second 

image. The time between two images was adjusted such that the average particle 

displacement was 6-8 pixels, which was less than 1/3 the interrogation window size. 

The signal strength for double-framed PIV is known to be proportional to the 

average number of particle-pairs in the interrogation window (Keane & Adrian, 

1991). Signal strength is seen to reduce due to the effects of large velocity gradients, 

out-of-plane losses and random errors. This results in the reduction of the correlation 

peak in comparison to the level of noise. According to Keane & Adrian (1991), the 

performance of a PIV is said to be optimum when the number of particle pairs 

available for correlation is more than 10-20. It is also suggested that the losses due to 

out-of-plane movement be kept below 25%.  

The errors occurring due to out-of-plane movement of particles produce a 

false in plane displacement or what is known as a perspective-error. This error can be 
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reduced by decreasing the thickness of the laser sheet or by increasing the distance 

from the camera to the light sheet. An estimate of the greatest possible error, based 

on the flow velocity and the movement of all particles in the interrogation window 

from one side of the laser sheet to the other, is less than 10% of the local mean 

velocity and is much less with the spatial averaging over the interrogation window.  
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4.1 Introduction 

 

The Reynolds number is one of the parameters that characterises the fluid 

flow past a body. The behaviour of flow when the Reynolds number is varied has 

been well documented in the literature (Dyke, 1982; Tritton, 1988) and it is reported 

that the flow behind circular cylinders is steady and two-dimensional (figure 4.1) up 

to a particular Reynolds number. Beyond this critical value of Reynolds number the 

steady flow becomes unstable and leads to the formation of a periodic, oscillating 

Bénard-von Kármán vortex street (figure 4.2).  These vortices or localised packets of 

high vorticity are shed alternately from either side of the cylinder and are convected 

downstream, and the downstream distance that these vortices survive before they 

dissipate depends on the Reynolds number (Sreenivasan et al., 1987).   

 
Figure 4.1. A photograph of the steady, closed counter-rotating eddies in the wake of a cylinder at 

Re=26. Taken from Milton Van Dyke’s Album of Fluid Motion (1982). 
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Figure 4.2. A photograph of the Bénard-von Kármán vortex street in the wake of a circular cylinder at 

Re=85.  Chetan & Luff (2007). 

 

4.1.1 Evolution of the von Kármán vortex street- Hopf Bifurcation. 

 

The evolution of the von Kármán vortex street or in other words, the onset of 

vortex shedding from a circular cylinder can be seen as a qualitative change from one 

state to another, based on a certain control parameter- the Reynolds number in the 

present case. The symmetry breaking associated with a change from a non-shedding 

scenario to a shedding scenario, at an experimentally determined Reynolds number 

of around 47-50 (Berger & Wille 1972; Coutanceau & Bouard 1977 a,b; Friehe 

1980; Gaster 1971; Gerrard 1978; Hussain & Ramjee 1976; Kovasznay 1949; Mathis 

et al. 1984; Nishioka & Sato 1974, 1978; Perry et al. 1982; Roshko 1954; Tritton 

1959,1971; Zdravkovich 1969), depends on the quality of the experimental setup, 

and is seen to be a so-called bifurcation.  

This bifurcation is analogous to the case of a plain Euler strut where the 

application of load results in its buckling (figure 4.3) at a critical load. The analytical 

solution of the equilibrium equation of the strut has a structure of the form of a 

pitchfork bifurcation (see figure 4.4).  
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Figure 4.3. Schematic diagram of the buckling of a plain Euler strut due to an applied compressive 

load L. Dotted line indicates the state of the strut before the application of load, and the solid line 

represents the deformed state after the load L is increased beyond a certain critical value. 

 

The load at which the strut buckles is the critical-load L and the bifurcation 

parameter, which is the end load L, dictates the amount of midspan displacement. If 

the struts preferred directionality of bending can be neglected, a parallel can be 

drawn with the onset of vortex shedding at a critical Reynolds number (Re~47).  

Several researchers (Marsden & McCracken 1976, Sreenivasan et al. 1986, 

Jackson 1987, Barkley 2006) have used this analogy and confirmed that the 

bifurcation associated with the onset of vortex shedding from circular cylinders is of 

the Hopf type, which is very similar to the pitchfork bifurcation mentioned before 

since the number of parameters needed to be varied for the bifurcation to occur is the 

same.  
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Figure 4.4. Bifurcation diagram of the buckling of an Euler strut.Lc is the critical load at which the 

strut deforms.  
 

The researchers mentioned above modelled the vortex shedding process as an 

oscillator tuned to a certain frequency depending on the Reynolds number. This 

oscillator could be a simple van der Pol type oscillator or a Stuart-Landau (Stuart 

1971) type global oscillator, with a control parameter, which is linked to the local 

Reynolds number. The resulting bifurcation structure of these weakly non-linear 

oscillators is identified to be of the Hopf type, which gives rise to a simple periodic 

time-dependent state starting from a stationary solution. At very small values of the 

control parameter the solution is initially in a stable steady state, and will return to 

this state even if imposed upon by small perturbations. As the value of the control 

parameter is increased, the steady state becomes unstable and results in a periodic 

motion which grows in amplitude as  

 
 

(4.1) 
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where Recrit is the lowest/critical Reynolds number at which self-sustained 

oscillations are observed (Sreenivasan et al, 1986). This is illustrated in figure 4.5. 

 

 
Figure 4.5. Schematic diagram of a Hopf bifurcation leading to a simple periodic motion. 

 

Further, Hopf bifurcation requires the eigenvalue of the Jacobian matrix of the 

flow equations to be complex conjugates of each other and to cross the imaginary 

axis, with the crossing taking place at Recrit (Marsden & McCracken 1976), which 

requires measurements or calculations of the temporal growth and decay rates of 

disturbances in the wake of the bluff body under scrutiny. 

Given the fact that at any given spanwise location the cross-section of the 

cone is circular, it is not unreasonable to assume that the local onset characteristics 

would mimic that of a circular cylinder. In this chapter it is intended to address the 

issue of onset characteristics of cones and the differences compared to a circular 

cylinder. Based on these facts it is intended to study the onset characteristics for 

vortex shedding from cones.  

 

y 

z 
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4.2 Experimental technique 

The details of the overall experimental setup are given in Chapter 3. In this 

section the details of the technique used to determine the onset Reynolds number for 

uniform cylinders and cones is presented.      

Hot-wire anemometry was the principle quantitative technique that was used 

in the investigation of onset conditions for vortex shedding. In all the cylinder and 

cone cases to be described the hot-wire probe was positioned three diameters 

downstream and one diameter offset of the axis, at their corresponding centre-span 

locations. The centre-span location was chosen so that the effects of any possible 

end-conditions could be avoided (Williamson, 1996). 

The flow speed was monitored carefully at all times by measuring the vortex 

shedding frequency of a cylinder set in parallel in the water channel with the cones 

under scrutiny. In order to promote parallel vortex shedding, the cylinder was fitted 

with end-cylinders, which essentially dissociates the wake flow from the omnipresent 

disturbances due to end conditions by preventing the strain caused by the vortex axes 

being curved due to the cylinder ends (Eisenlohr & Eckelmann 1989). Details of the 

dimensions of the cylinder used for flow speed monitoring can be found in Chapter-

3. A separate hot-wire probe was employed to measure the fluctuations associated 

with the vortex shedding and the frequencies of vortex shedding were converted to 

velocities using the frequency law proposed by Roshko (1954), since the shedding 

frequency as a function of velocity compares very well with the measurements of 

Roshko (1954).  

4.2.1 Parameter stepping 

The growth rate measurements of velocity fluctuations during the onset of 

vortex shedding require the flow velocity to be set abruptly to a desired Reynolds 



 

 46 

number above the critical value, typically of the 0.2s to 0.5s (Provansal et al. 1987, 

Sreenivasan 1987). In the present study any abrupt variation in flow velocity was not 

possible because of the limitations of the experimental setup, with respect to the 

inertial effects due to the flow medium being water. This prompted the study of the 

onset mechanism in terms of parameter-stepping. The parameter-stepping process 

involves a stepwise increase in flow speed starting from a subcritical local Reynolds 

number through to a suitable supercritical local Reynolds number. Even though this 

technique does not provide the growth rates, the amplitudes of the vortex shedding 

signals at various local Reynolds number can be obtained. The amplitude distribution 

with respect to the Reynolds number yields the structure of the dynamical system 

undergoing a change from one state to another.  

4.2.2 Identification of onset 

Since the time-series signals are a representative of the velocity fluctuations, 

the amplitude of the fluctuations could be used to determine the onset conditions for 

vortex shedding from bluff bodies- cylinders and cones in the present case. The 

amplitude of vortex shedding signal depends on the strength of the vortex which 

passes the hot-wire probe, and this is seen to depend directly on the Reynolds 

number. The flow velocity was varied in a step-wise manner with the step size 

becoming smaller as the critical Reynolds number range was approached. Since it is 

well known from the literature that onset Reynolds number for vortex shedding from 

a circular cylinder is about 47, the parameter step-size was made finer below a 

Reynolds number of 50. 

Figure 4.6 shows the time series of the vortex-shedding signal in the wake of 

a circular cylinder at different Reynolds numbers.  
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Figure 4.6. Time series of vortex shedding signal in the wake of a circular cylinder at various local 

Reynolds numbers.  

Since the amplitude of the vortex shedding signal depends on the Reynolds 

number, as mentioned earlier, the technique used to identify the onset Reynolds 

number involved measurement of the spectral magnitude of the frequency of vortex 

shedding at various Reynolds numbers. The onset Reynolds number was estimated to 

be the one where the spectral magnitude of the vortex shedding signal became larger 

than the spectral magnitude of any possible noise in the system. A similar technique 

was used by Piccirillo and van Atta (1993) to estimate the onset Reynolds numbers 

for vortex shedding from tapered cylinders. Figure 4.7 shows the spectrum of the 

hot-wire signals in the wake of the uniform cylinder having a diameter of 0.003m at 

four separate Reynolds numbers with and without vortex shedding. The spectrum of 

hot-wire signal at a Reynolds number of 40 shows no significant peaks associated 

with periodic vortex shedding, while the spectrum of the hot-wire signal at a 



 

 48 

Reynolds number of 48 shows a presence of periodic activity as marked by the peak 

at a frequency of around 0.7Hz. The corresponding Strouhal number based on the 

cylinder diameter and the frequency of vortex shedding at onset is 0.13 and the 

obtained numbers are very similar to the results reported in the literature. Table 4.1 

shows the onset Reynolds number for vortex shedding and the corresponding 

Strouhal numbers as observed by various researchers. The subtle difference seen in 

the onset Reynolds numbers might be due to several reasons, including the quality of 

flow in the experimental facility or the technique one uses to determine the onset of 

vortex shedding itself. For example, Coutanceau & Bourad (1977) used the onset of 

transverse displacement of the near-wake as a visual indication of the 

commencement of wake instability leading to vortex shedding, while Kovasznay 

(1949) used a hot-wire probe to identify the onset Reynolds number and to measure 

the periodic fluctuations in the wake of a uniform cylinder.   

Researchers Onset Reynolds 

Number 

Strouhal Number 

Kovasznay (1949) 40 - 

Nishioka & Sato (1974) 48 0.12 

Coutanceau & Bourard (1977) 43 - 

Mathis et al. (1984) 47 - 

Jackson (1987) 45-46 0.136-0.138 

   

Present study 48 0.13 

Table 4.1 Strouhal number of the vortex shedding signal at onset as observed by various researchers. 
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Figure 4.7. Spectrum of hot-wire signals in the wake of a cylinder at four different Reynolds 

numbers.  

4.3 Mean square amplitude variation 

4.3.1 Uniform Cylinder 

 

As mentioned earlier the amplitude of vortex shedding signal depends directly 

on the Reynolds number of the flow. Figure 4.8 shows the variation of the mean 

square amplitude of the acquired hot-wire signals in the wake of a uniform circular 

cylinder at various Reynolds numbers. 

It has to be borne in mind that the hot-wire signals are un-calibrated and the 

units used for representing the amplitude is volts. The use of the un-calibrated hot-

wire probe to obtain the vortex shedding signal is justified since the calibration, if 

performed, would still yield the same trend of the velocity distribution. This is due to 

the fact that even though the typical calibration curve for an unbalanced constant-

current type anemometer is generally considered to be non-linear for the narrow 
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range of velocities that the present study is being conducted in the calibration can be 

considered to be fairly linear. 

 

Figure 4.8. Distribution of the mean square amplitude of hot-wire signals in the wake of a cylinder in 

the Reynolds number regime covering pre and post onset of vortex shedding. 

 

The distribution of the mean-square amplitude of the vortex shedding signals 

at various Reynolds numbers is used to identify the characteristics of the onset 

conditions. Figure 4.8 shows the mean square amplitude of the vortex shedding 

signals plotted against their corresponding Reynolds numbers. The onset of vortex 

shedding is seen to occur at a Reynolds number of 47. 

4.3.2 Cones 

 

A similar procedure as used to determine the onset conditions for vortex 

shedding from cylinders was used in the case of cones. Figure 4.9 shows a sample of 

the vortex-shedding signal in the wake of a cone of taper ratio 18:1. It has to be 

borne in mind that the vortex shedding signal in the wake of cones, especially in the 

case of highly tapered cones is modulated. The mean-square value of the vortex 

shedding signal from a cone at any particular local diameter is therefore slightly 



 

 51 

lower than that of a uniform cylinder of the same diameter.  To aid the identification 

of onset Reynolds number, the spectral quantity of the hot-wire signals was 

inspected. Figure 4.10 shows the spectrum of the hot-wire signals in the immediate 

vicinity of the onset of vortex shedding. 

The distribution of mean squared amplitude of the vortex shedding signal at 

various local Reynolds numbers is presented in figure 4.11.  

 
Figure 4.9. Time series of vortex shedding signals in the wake of the 18-1 taper ratio cone at various 

local Reynolds numbers illustrating the route to onset of vortex shedding. The local Reynolds number 

decreases towards the bottom of the image.  
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Figure 4.10. Spectrum of hot-wire signals in the wake of an 18-1 taper ratio cone at five different 

Reynolds numbers. The Reynolds numbers mentioned are based on a local diameter of 4mm.    

 

The hot-wire signals in the wake of the 36-1, 72-1, 288-1 and 576-1 taper 

ratio cones are presented in what follows (figures 4.12 to 4.15), followed by the 

composite plot of the distribution of the mean square amplitudes at different 

Reynolds numbers (figure 4.16). It is to be noted here that the units of the mean 

square amplitude values are in volts due to the uncalibrated hot-wire unit used in the 

present study. 
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Figure 4.11. Distribution of the mean square of the amplitude of hot-wire signals in the wake of 18-1 

taper ratio cone in the Reynolds number regime covering pre and post onset of vortex shedding. The 

Reynolds numbers mentioned are based on a local diameter of 0.003m.  

 

 

 
Figure 4.12. Time series of vortex shedding signals in the wake of the 36-1 taper ratio cone at various 

local Reynolds numbers illustrating the route to onset of vortex shedding. The local Reynolds number 

decreases towards the bottom of the image, with the largest value being 110.  
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Figure 4.13. Time series of vortex shedding signals in the wake of the 72-1 taper ratio cone at various 

local Reynolds numbers illustrating the route to onset of vortex shedding. 

 

 

Figure 4.14. Time series of vortex shedding signals in the wake of the 288-1 taper ratio cone at 

various local Reynolds numbers illustrating the route to onset of vortex shedding. 
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Figure 4.15. Time series of vortex shedding signals in the wake of the 576-1 taper ratio cone at 

various local Reynolds numbers illustrating the route to onset of vortex shedding. The time series are 

arranged in a descending order from the top.  

 

 
Figure 4.16. Distribution of the mean square of the amplitude of hot-wire signals in the wake of  72-

1,  288-1 and  576-1 taper ratio cones in the Reynolds number regime covering the pre and post 

onset of vortex shedding. 
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4.4 Discussions and Conclusions 

4.4.1 Imperfect Hopf Bifurcation 

As mentioned earlier, the bifurcation accompanying the onset of vortex 

shedding from cylinders is of the Hopf type. The measure of temporal growth and 

decay rates in the wake of the uniform cylinders is generally used to identify the 

presence of the Hopf bifurcation. On the other hand the bifurcation accompanying 

the onset of vortex shedding from cones has not been reported in the literature. Since 

the cross-section of the cone at any spanwise location is circular one might assume 

the vortex shedding occurs strictly according to the Hopf bifurcation. It has already 

been demonstrated that the distribution of the mean-square amplitude of the hot-wire 

signals in the Reynolds number regime covering the pre and post onset scenarios in 

the wake of uniform cylinders follow a certain trend which agrees with the 

requirements of Hopf bifurcation. In comparison, the distribution of the mean-square 

amplitude of the hot-wire signals in the wake of a highly tapered cone as shown in 

figure 4.11 demonstrates a trend where the gradient of the amplitudes post onset is 

reduced. The reason for this reduction in the gradient is partly due to the modulation 

present in the vortex shedding signals due to non-linear interactions. This further 

confirms the fact that the mechanism responsible for the onset of vortex shedding is 

affected and it is surmised here that the mechanism responsible for the onset could be 

an imperfect form of Hopf bifurcation. 

4.4.2 Effect of taper on the onset of vortex shedding 

Table 4.2 gives the critical Reynolds number for onset of vortex shedding 

from cones of various taper-ratios. The delay in onset of vortex shedding, and the 

dependence of taper ratio on the critical Reynolds number is apparent from the data 

presented in table 4.2.  
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Cone 
Taper Ratio 

Onset Reynolds 

Number 

A 18:1 ~63 

B 36:1 ~54 

C 72:1 ~50 

D 288:1 ~50 

E 576:1 ~50 

F Cylinder 47 ± 1 

Table 4.2. Experimentally determined onset Reynolds numbers for vortex shedding from cones of 

various taper ratios. 

 

Van Atta & Piccirillo (1990) and Piccirillo & Van Atta (1993) reported that 

the onset of vortex shedding from tapered cylinders (as opposed to cones) was 

independent of the taper ratio. The average critical Reynolds number for the onset of 

vortex shedding in their experiments was estimated to be approximately 60. This 

average value was due to the large scatter observed in the determination of the onset 

Reynolds numbers for cylinders of various taper ratios, thereby leading them to 

report that the onset Reynolds number was independent of the taper ratio. This is in 

poor agreement with the results obtained in the present work, where a dependence of 

the onset Reynolds number on the taper ratio of cones is observed. One has to note 

here that the dependence of the onset Reynolds number on taper ratio is seen to be 

stronger for cones with small taper ratios. This dependence is elucidated in the 

difference between figure 4.11 and figure 4.16, where the route to onset of vortex 

shedding is presented for the different cones. Large taper ratio cones have an onset 

Reynolds number for vortex shedding which is very close to that of a uniform 

cylinder and moreover the behaviour of the amplitude of vortex shedding past the 

onset is very similar to that of uniform cylinder. This suggests that the route to onset 

of vortex shedding from large taper ratio cones is also governed by a non-linear 

mechanism, which is of the Hopf type.  
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Assuming the same kinematic process leading to the onset of vortex shedding 

from cylinders holds good for cones (since the cross section of a cone at any given 

spanwise location is circular), a question regarding the reason for the delay in onset 

of vortex shedding, based on the arguments relating to the stability of the wake of 

cones could be raised. 
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5.1 Introduction 

 

Hot-wire signals in the wake of a uniform cylinder of diameter D = 0.003m 

shedding vortices at two different flow velocities is shown in figure 5.1 and the 

corresponding spectra are shown in figure 5.2. The frequency of vortex shedding 

depends on the cylinder diameter and the flow velocity and it can be expressed in 

terms of the simple empirical relationship, the Strouhal Number (Strouhal, 1878), 

given as,  

 
 

(2.2) 

where f is the frequency of vortex shedding, D is the diameter of the uniform 

cylinder and U is the free-stream velocity.  If one assumes that the length of the 

cylinder is sufficiently long, the vortex shedding process is considered to be self-

similar. 

The time series of the hot-wire signal for the cone of taper ratio 18:1, obtained 

at various locations along the span, for a free-stream velocity of 0.026m/s are shown 

in figure 5.3. The regular periodic variation of the time series signal generated by a 

cylinder is strongly contrasted by the presence of a low frequency modulation similar 

to the ones first reported by Gaster (1969). The gradual change in diameter results in 

a corresponding change in the local Reynolds numbers. The modulation, which is 

observed to be regular and periodic at smaller diameters, becomes less well behaved 

as the diameter increases and the vortices become transitional. The modulated signal 
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is also observed to be skewed, not symmetric, which is a common trait of non-linear 

systems.  

Re 
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Figure 5.1. Hot-wire signals in the wake of a uniform cylinder of diameter D=0.003m at two flow 

velocities, showing the variation of vortex shedding frequency. 
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Figure 5.2. Frequency spectrum of the hot-wire signals in the wake of a uniform cylinder of diameter 

D=0.003m at two flow velocities, showing the variation of vortex shedding frequency. 

 

The variation of vortex shedding and modulation frequency along a cone at 

two free-stream velocities is presented in figure 5.4. The vortex shedding frequency 
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varies continuously for the case presented (18-1 Taper Ratio cone), following the 

change in local diameter along the span of the cone. The modulation frequency is 

constant, and is solely dependent on the flow velocity. This is consistent with the 

results observed in the literature (Gaster, 1969; Piccirillo & Van Atta, 1993). This 

implies that the modulation of the hot-wire signal in the wake of a cone shedding 

vortices is controlled by a global parameter viz. the freestream velocity, unlike the 

vortex shedding itself which is controlled by local parameters viz. the local diameter 

as mentioned before. 

As mentioned before the vortex shedding frequency can be scaled with 

respect to the local diameter and the flow velocity. This raises a question as to 

whether the frequency of modulation in the wake of a cone can be scaled in a similar 

fashion. Since it has been already established that the modulation is controlled by the 

three-dimensionality of the geometry, the use of local length scales such as diameter 

or the midspan diameter is inappropriate. Piccirillo & Van Atta (1993), in their 

experiments on a series of linearly tapered cylinders, which exhibited cellular vortex 

shedding, used the diameter of the cone at the midspan location of the cell length as a 

length scale. Since in highly tapered cones the concept of true cellular vortex 

shedding is ambiguous the use of a local “cellular” length scale is deemed 

inappropriate here. 
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Figure 5.3. Hot-wire signals from cone of 18:1 Taper ratio at various spanwise locations. (120 

seconds). 
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Figure 5.4. Variation of vortex shedding and modulation frequency with change in local diameter at 

fixed free-stream velocities; Cone (18:1 Taper Ratio); Free stream velocities;  &  U =0.022m/s,  

&  U =0.026m/s. The closed symbols represent vortex shedding frequency and the open symbols 

represent modulation frequency. 

 

Gaster (1969) non-dimensionalised the free-stream velocity and the frequency 

of modulation based on the cone length. The use of the cone length as the length 

scale applies that the modulation depends on the cone length and the free-stream 

velocity. This would mean that the length would effectively become a common 

factor and would drop out of both the terms involved (free-stream velocity and the 

frequency of modulation), due to the data points having a linear trend. 

5.2 Results and Discussions 

 

Few experimental data exist in the literature with regards to the effect of cone 

length on the vortex shedding characteristics. Experiments were conducted to 

ascertain the effect of cone length on the vortex shedding and modulation 

frequencies. Two cone lengths were considered with the smaller length being one 

half of the original. Since the taper-ratio of a cone does not depend on its length the 
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same cone was used with just the cone being moved out of the free-stream. This 

effectively changed the local diameter at the base of the now smaller cone.  

Figure 5.5 shows the time-series of the hot-wire signals at various spanwise 

stations at a given local Reynolds number. Time has been non-dimensionalised in all 

the plots presented. It shows that even though the frequency of vortex shedding is the 

same at a given local Reynolds number, the frequency of modulation is not. The 

modulation frequency is seen to depend only on the free-stream velocity and the 

taper ratio, irrespective of the cone length. 

 
Figure 5.5. Normalised hot-wire fluctuation data at different spanwise locations. The local Reynolds 

number is 82.9. 

 

The change in flow velocity is seen to affect the modulation frequency 

globally. The question that one could put forth is whether any change in the global 

length scale would alter the vortex shedding. If the change in length does affect the 

overall vortex shedding, in terms of the frequencies of vortex shedding and 

modulation, then one can show conclusively that the system is not self-similar. To 

test this theory, the effective length of the cone was changed while maintaining the 
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same spanwise location and free-stream velocity. This essentially moved the 

spanwise position in question closer to the new base of the cone.  Figures 5.6 (a) & 

(b) shows the hot-wire signals in the wake of the 18-1 taper ratio cone at a local 

diameter of 0.004m for six different effective lengths at two different free-stream 

velocities. 

 
                    (a) 

 

 
                      (b) 

 
Figure 5.6. The effect of the cone length on vortex shedding at free-stream velocities of 0.0212 m/s 

(a) and 0.0243 m/s  (b). The unit of effective length is ‘m’. 

 

The time-scale has been normalised using the local diameter and the free-

stream velocity.  It appears that the hot-wire signals are very similar to each other at 
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all effective lengths. When the measurement location moves very close to the new 

base, as seen in the last case, the end-effects seem to have an influence on the vortex 

shedding.  

Contrary to the arguments made before, the vortex shedding about the cone is 

indeed self-similar, in that the vortex shedding at a given spanwise location would be 

the same no matter what the length of the cone is. 
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6.1 Introduction 

The complexity of the wake of a cone of taper ratio 18-1 shedding vortices, as 

compared to a cylinder shedding vortices is shown in figure 6.1 (a) and figure 6.1 

(b). At any given flow velocity, the uniform cylinder sheds vortices that are parallel 

to its axis and the phase of the shed vortices along the span is constant (Williamson, 

1996). The linear variation of local diameter along the span of the cone results in the 

vortices being shed at different frequencies, depending on the local diameter. It has 

to be borne in mind that at this stage the concept of a constant variation of vortex 

shedding frequency is assumed since it is thought to be most generic. 

 

Figure 6.1(a). Flow visualization image of parallel vortex shedding in the wake of a uniform cylinder 

fitted with end-cylinder to promote parallel vortex shedding. Flow is from left to right. 
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Figure 6.1(b). Flow visualization image of a rather complex vortex shedding structure in the wake of 

an 18-1 taper ratio cone. Flow is from left to right, with the wider end of the cone towards the top and 

the tip towards the bottom. 

 

Secondary instabilities occurring in the flow across a body with a circular 

cross-section at Reynolds numbers past a value of 190 (Barkley & Henderson, 1996) 

can lead to the loss of two-dimensionality. In the case of uniform cylinders the so-

called three-dimensionalities introduce variations of velocity along the span. For 

instance the above-mentioned spanwise variations results in non-parallel vortex 

shedding from uniform cylinders (Williamson, 1996). 

Gaster (1969) first reported the complexity of vortex structures in the wake of 

a cone of small taper ratio shedding vortices, by showing amplitude modulated hot-

wire signals all along the span of the cone. The existence of discrete cells of shed 

vortices in the wake of a slightly tapered cylinder was first reported by Gaster 

(1971). The frequency of vortex shedding within these cells was constant. Here one 

can draw an analogy between a slightly tapered body shedding vortices in cells and 
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the vortex shedding from a stepped cylinder. Since Gaster’s (1971) work there have 

been several publications in the literature (Jespersen & Levit (1991), Papangelou 

(1992), Piccirillo & Van Atta (1993), Valles et al (2002), Monkevitz & Provansal 

(2005), Narasimhamurthy et al (2007 a & b)) which deal with vortex shedding from 

linearly tapered circular cylinders with attention paid to the spanwise behaviour of 

vortex shedding. 

Figure 6.2 shows the hot-wire signals for cone with taper ratio of 18-1 at four 

different spanwise positions at a given flow velocity. Even though a change in the 

dominant or the vortex shedding frequency at different locations is quite obvious, the 

nature of this variation will be studied in the forthcoming subsections. Another 

important aspect of the hot-wire signal is the presence of low frequency modulation 

at all four representative spanwise locations. The signals also appear to be skewed 

and it is more apparent at the larger diameters, and this is a common trait of 

nonlinear systems. The cause and/or effect of this low frequency modulation will be 

discussed in the subsequent sections.  

 

Figure 6.2. Hot-wire signals in the wake of an 18:1 taper ratio cone at 4 different spanwise locations  



 

 70 

6.2 Experimental Arrangement 

 

The experimental setup was discussed in detail in Chapter 3. Data acquired 

using hot-wire anemometry and PIV will be used here. Flow visualization was also 

used to obtain a physical understanding of the flow characteristics in the wake of the 

bluff bodies in question. The hot-wire anemometer was traversed in very fine steps 

along the span of the cones while maintaining the same distance from the axis with 

respect to the local diameter. PIV measurements were made with the laser light sheet 

aligned along and across the axis of the cones in order to obtain the data necessary to 

compute the variation of spanwise vorticity in both space and time. 

6.3 Results 

 

The spanwise variation of vortex shedding in the wake of cones of various 

taper ratios is presented. Starting from cones having the largest taper ratio, the 

dependence of the so-called cells on the taper ratio and the flow velocity will be 

discussed. Representative PIV results at the mid-span locations of the cones will be 

presented to illustrate the presence of modulation and how it affects the different 

aspects of the flow field. 

6.3.1 Taper Ratio = 576-1 

 The 576-1 taper ratio cone was the closest in geometry to a uniform cylinder. 

The streamwise velocity fluctuations and corresponding spectra and frequency 

variation along the span for four different flow velocities will be presented.  

Figure 6.3 shows the streamwise velocity fluctuations at a freestream velocity 

of 0.02 m/s. The corresponding spectra and their spanwise frequency variation is 

shown in figure 6.4.  
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The y-axis in figure 6.3 represents the equi-spaced hot-wire locations along 

the span of the cone. The distance between each hot-wire measurement was 0.005m. 

The velocity fluctuations in the wake at the wider end of the cone are at the top of the 

time-series set shown. This trend will be adopted in all the spanwise velocity 

fluctuations to be presented henceforth.  

 
Figure 6.3. Variation of velocity fluctuations along the span of a 576-1 taper ratio cone. The velocity 

fluctuations measured at the wider end of the cone are at the top of the figure. The free-stream 

velocity is 0.02 m/s. 

 

At the lowest free-stream velocity, the velocity fluctuations along a 

considerable portion of the span look similar to that in the wake of a uniform 

cylinder. The presence of modulated signals suggests the occurrence of a 

discontinuity, which results as a consequence of possible cellular vortex shedding.  

The spectra of the velocity fluctuations at the above mentioned free-stream 

velocity is presented in figure 6.4. It has to be borne in mind that the order of the 

spectra (local Reynolds numbers) presented is the same as seen in the time series, 

above. This same trend will be followed through out the chapter. In the region of the 

modulation along the span of the cone, the spectra show the presence of a peak at the 



 

 72 

frequency that is equal to the difference of the vortex shedding frequency within the 

end cell and the vortex shedding frequency of the central region of the span of the 

cone. The interaction of these two frequencies can be described as a simple beating 

phenomenon, which is a superposition of two separate frequencies. The difference in 

vortex shedding frequencies at the end-cells and the central region of the cone is 

small and of the order of 0.1 Hz. This subtle variation of vortex shedding frequency 

along the span results in the shed spanwise vortices to be tilted, with the vortices 

shed at the thinner end of the cone leading the vortices shed at the base. Figure 6.5 

shows the time-evolution of the streamwise velocity component sampled along a line 

3  downstream of the axis of the cone, using data obtained by spanwise PIV 

studies. 

 
Figure 6.4. Spectra of velocity fluctuations at various locations along the span of a 576-1 taper ratio 

cone. The spectrum of velocity fluctuations measured near the wider end of the cone are at the top of 

the series. Free-stream velocity is 0.02 m/s. 

 

The discontinuities associated with the modulating velocity fluctuations are 

clearly seen in the spatio-temporal variation plot and these discontinuities are 
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associated with the boundary between two consecutive constant frequency vortex 

shedding cells (Parnaudeau et al, 2007).  

The non-existence of modulated velocity fluctuations in the wake at the mid-

span location is illustrated by the set of vorticity contours presented in figure 6.6. 

The 16 consecutive vorticity contours were obtained at a rate 5 Hz, with a difference 

of 0.2 seconds between each other. The vorticity contours very closely resemble the 

un-modulated vortex shedding seen in the wake of a uniform cylinder. 

 
Figure 6.5. Time evolution of streamwise velocity (U) along the entire span of a 576-1 taper ratio 

cone at a freestream velocity of 0.02 m/s, using data obtained by PIV. The velocities were sampled at 

3  downstream from the axis of the cone. The wider end of the cone is at the top of the picture and 

the Y-axis represents the location number along the span of the cone. 

 

In what follows the subsequent figures will show the results corresponding to 

the spanwise variation of vortex shedding at different free-stream velocities, as 

obtained using hot-wire anemometry and PIV techniques.  
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Figure 6.6. Voriticity contours in the wake of a 576-1 taper ratio cone. The measurements were made 

at the midspan location of the cone and at a free-stream velocity of 0.02m/s. 

 

 

 
Figure 6.7. Variation of velocity fluctuations along the span of a 576-1 taper ratio cone. The velocity 

fluctuations measured at the wider end of the cone are at the top of the figure. The free-stream 

velocity is 0.027 m/s. 
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Figure 6.8. Spectra of velocity fluctuations at various locations along the span of a 576-1 taper ratio 

cone. The spectrum of velocity fluctuations measured near the wider end of the cone is at the top of 

the series. Free-stream velocity is 0.027 m/s. 

 

An increase in the free-stream velocity from 0.02 m/s to 0.027 m/s results in 

the local Reynolds number at the widest end of the cone to be equal to 130. The 

spectra of spanwise velocity fluctuations, shown in figure 6.8, shows a more 

pronounced cellular nature of the vortex shedding system. A corresponding contour 

plot of the time-evolution of streamwise velocity is shown in figure 6.9. The periodic 

and pronounced nature of the discontinuities defining the extent of the end-cell is 

consistent with the spectra, measured using hot-wire anemometry, as shown earlier. 

The frequency of modulation is also seen to increase with the increase in free-stream 

velocity, which is consistent with the observations of previous investigators (Gaster, 

1969; Piccirillo & Van Atta, 1991 and Papangelou, 1991). A study regarding the 

general nature of the spanwise variation of modulation frequency in the wake of a 

cone, which exhibits cellular vortex shedding, with respect to the free-stream 

velocity will be discussed later in the chapter. 
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Figure 6.9. Time evolution of streamwise velocity (U) along the entire span of a 576-1 taper ratio 

cone at a freestream velocity of 0.027m/s, using data obtained by PIV. The velocities were sampled at 

3  downstream from the axis of the cone. The wider end of the cone is at the top of the picture and 

the Y-axis represents the location number along the span of the cone. 

 

The contours of the time evolution of streamwise velocity along the span for 

the free-stream velocities of 0.029m/s, 0.031m/s are presented in figures 6.10 and 

6.11 respectively. The frequency of vortex shedding, being roughly proportional to 

the free-stream velocity, increases with the increase in free-stream velocity. This 

increase is also true for the frequency of occurrence of discontinuities in the regular 

vortex shedding in the region of the cell boundaries. Another observation, which is 

of worthy note, is the boundary or extent along the span of the cone to which the 

velocity fluctuations are modulated due to the presence of discontinuities as the free-

stream velocity is increased. To a certain extent the boundary of the discontinuities 

seem to be fixed to around the spanwise location marked 30 along the Y-axis of the 

contour plots as shown.  Even though the free-stream velocity is increased to 0.031 
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m/s, the change in the extent of the cells is seen to be minimal. This small change in 

the extent of the cells is seen to be consistent with the observations of earlier 

researchers working on the effect of aspect ratio of a cylinder on the spanwise 

variation of cellular vortex (Lee & Budwig, 1991). At a flow velocity of 0.029 m/s, 

which corresponds to a local Reynolds number of 140 at the maximum diameter 

location, the extent of the cells is seen to be the same as at a flow velocity of 0.031 

m/s. 

 
Figure 6.10. Time evolution of streamwise velocity (U) along the entire span of a 576-1 taper ratio 

cone at a free-stream velocity of 0.029m/s, using data obtained by PIV. The velocities were sampled 

at 3  downstream from the axis of the cone. The wider end of the cone is at the top of the picture 

and the Y-axis represents the location number along the span of the cone. 
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Figure 6.11. Time evolution of streamwise velocity (U) along the entire span of a 576-1 taper ratio 

cone at a free-stream velocity of 0.031m/s, using data obtained by PIV. The velocities were sampled 

at 3  downstream from the axis of the cone. The wider end of the cone is at the top of the picture 

and the Y-axis represents the location number along the span of the cone. 

 

The variation of the vortex shedding frequency non-dimensionalised as 

Strouhal number ( ) with respect to the normalised spanwise 

location, as measured using hot-wire anemometer is presented in figure 6.12. It can 

be noted from figure 6.13 that the difference between the local Reynolds numbers at 

either ends of the cone is less than 5. Even with this very small difference, any 

increase in free-stream velocity results in the difference between the vortex shedding 

frequency of the end cells and the rest of the cone to become more conspicuous. The 

increase in Reynolds number results in the weakening of the effects of viscosity, in 

other words the information from one part of the cone to the other communicated 

through viscous diffusion is mitigated. This could lead to the pronounced change in 
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the vortex shedding frequency along the span of the cone, as seen in figure 6.14 

showing the plot of vortex shedding frequency versus the local diameter.  

 
Figure 6.12. Variation of non-dimensionalised vortex shedding frequency with spanwise location in 

the wake of the cone having a taper ratio of 576-1. 

 

 

 

 
Figure 6.13. Variation of non-dimensional shedding frequency parameter with local Reynolds 

number for the 576-1 taper ratio cone. 
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Figure 6.14. Variation of vortex shedding frequency along the span of the cone having a taper ratio of 

576-1, showing the step change therein. 

 

 

 

 
Figure 6.15. Time averaged velocity-magnitude (m/s) profiles at fixed x/D locations from the axis of 

the 576-1 taper-ratio cone at the midspan location at a local Reynolds number of approximately 40. 
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Figure 6.16. Time averaged velocity-magnitude (m/s) profiles at fixed x/D locations from the axis of 

the 576-1 taper-ratio cone at the midspan location at a local Reynolds number of 100. 

 

The variation of the time-averaged absolute value of streamwise velocity in 

the wake of the cone at two local Reynolds numbers (50 and 100) are shown in 

figure 6.15 and figure 6.16 respectively. The magnitude of the velocity, with 

increased Reynolds number, is seen to reduce as one progresses downstream of the 

cone, even though the profiles look qualitatively similar. This might be due to 

production of disturbances associated with larger Reynolds numbers. The effect of 

turbulence is not likely to be a contributing factor since the local Reynolds number at 

the widest end of the cone would still be below the so-called transition in the shear 

layer (TrSL) flow regime (Zdravkovich, 1997). 

6.3.2 Taper Ratio = 288-1 

 

The spanwise variation of vortex shedding in the wake of the 288-1 taper ratio 

cone is presented here. The route map of analysis will be similar to that of the 576-1 

taper ratio cone, as seen in the earlier section. 
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Hot-wire signals depicting the velocity fluctuations at equally spaced 

locations along the span at four different free-stream velocities are presented, starting 

with 0.018 m/s. This results in a linear variation of local Reynolds number along the 

span, with a maximum Reynolds number of approximately 90. The streamwise 

velocity fluctuations at a free-stream velocity of 0.018 m/s are presented in figure 

6.17.  

 
Figure 6.17. Variation of velocity fluctuations along the span of a 288-1 taper ratio cone. The velocity 

fluctuations measured at the wider end of the cone are at the top of the figure. The free-stream 

velocity is 0.018 m/s. 

 

Instantly one can notice the presence of modulated velocity fluctuations near 

the thinner end of the cone, which is very similar to the modulated signals observed 

in the wake of the 576-1 taper ratio cone. The periodic modulations, as discussed 

before, represent the boundary of the so-called cellular regions, which shed vortices 

at a single frequency. As one moves beyond this modulated region, along the span, 

the velocity fluctuations are again periodic and comparable to the regular vortex 

shedding in the wake of a uniform cylinder. 
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Figure 6.18. Spectra of velocity fluctuations at various locations along the span of a 288-1 taper ratio 

cone. The spectrum of velocity fluctuations measured near the wider end of the cone are at the top of 

the series. Free-stream velocity is 0.018 m/s. 

 

The variation of the frequency of vortex shedding along the span of the 288-1 

taper ratio cone is shown in figure 6.18. The frequency of modulation is seen to be 

approximately 0.1 Hz and this appears to be the difference between the vortex 

shedding frequency of the end-cells and the main portion of the span. The sharp 

change from one vortex shedding frequency to the other can be noted from the 

spectra, with the interface between the two shedding frequencies being represented 

by the modulated region.  

The extent of the end-cell and the modulated interface is clearly shown in the 

spatio-temporal contour plot of the streamwise velocity, sampled at a distance of 

3 from the axis of the cone, using data obtained by spanwise PIV measurements 
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(figure 6.19). The spanwise location of the aforementioned discontinuities is very 

similar to that seen in the case of the 576-1 taper ratio cone. 

 
Figure 6.19. Time evolution of streamwise velocity (U) along the entire span of a 288-1 taper ratio 

cone at a freestream velocity of 0.018m/s, using data obtained by PIV. The velocities were sampled at 

3  downstream from the axis of the cone. The wider end of the cone is at the top of the picture and 

the Y-axis represents the location number along the span of the cone. 
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Figure 6.20.  Time sequence of vorticity contours in the wake of the 288-1 taper ratio cone at a local 

Reynolds number of 80. The difference in time between two consecutive vorticity contours in 0.2 

seconds. 

 

In what follows, the spanwise variation of vortex shedding at three different 

free-stream velocities is presented. The velocities being U=0.022 m/s. U=0.025 m/s 

and U=0.029 m/s. 
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Figure 6.21. Variation of velocity fluctuations along the span of a 288-1 taper ratio cone. The velocity 

fluctuations measured at the wider end of the cone are at the top of the figure. The free-stream 

velocity is 0.022 m/s. 

 

 
Figure 6.22. Spectra of velocity fluctuations at various locations along the span of a 288-1 taper ratio 

cone. The spectrum of velocity fluctuations measured near the wider end of the cone are at the top of 

the series. Free-stream velocity is 0.022 m/s. 
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Figure 6.23. Time evolution of streamwise velocity (U) along the entire span of a 288-1 taper ratio 

cone at a freestream velocity of 0.022m/s, using data obtained by PIV. The velocities were sampled at 

3  downstream from the axis of the cone. The wider end of the cone is at the top of the picture and 

the Y-axis represents the location number along the span of the cone. 

 

 

 
Figure 6.24. Variation of velocity fluctuations along the span of a 288-1 taper ratio cone. The velocity 

fluctuations measured at the wider end of the cone are at the top of the figure. The free-stream 

velocity is 0.025 m/s. 
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Figure 6.25. Spectra of velocity fluctuations at various locations along the span of a 288-1 taper ratio 

cone. The spectrum of velocity fluctuations measured near the wider end of the cone are at the top of 

the series. Free-stream velocity is 0.025 m/s. 

 
Figure 6.26. Time evolution of streamwise velocity (U) along the entire span of a 288-1 taper ratio 

cone at a freestream velocity of 0.025m/s, using data obtained by PIV. The velocities were sampled at 

3  downstream from the axis of the cone. The wider end of the cone is at the top of the picture and 

the Y-axis represents the location number along the span of the cone. 
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Figure 6.27. Variation of velocity fluctuations along the span of a 288-1 taper ratio cone. The velocity 

fluctuations measured at the wider end of the cone are at the top of the figure. The free-stream 

velocity is 0.029 m/s. 

 

 

 

 

 
Figure 6.28. Spectra of velocity fluctuations at various locations along the span of a 288-1 taper ratio 

cone. The spectrum of velocity fluctuations measured near the wider end of the cone is at the top of 

the series. Free-stream velocity is 0.029 m/s. 
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Figure 6.29. Time evolution of streamwise velocity (U) along the entire span of a 288-1 taper ratio 

cone at a freestream velocity of 0.029m/s, using data obtained by PIV. The velocities were sampled at 

3  downstream from the axis of the cone. The wider end of the cone is at the top of the picture and 

the Y-axis represents the location number along the span of the cone. 

 

The relationship between flow velocity and the vortex shedding frequency is 

clearly demonstrated in the preceding figures showing the spectra of the velocity 

fluctuations along the span at different free-stream velocities. The time-series and 

spectra of the velocity fluctuations, especially towards the wider end of the cone, at a 

free-stream velocity of 0.029 m/s show the presence of noise in the mean-signal. 

This is due to the fact that the flow in the wake is tending to towards becoming more 

transitional and any further increase in the local Reynolds number would make it 

chaotic/turbulent as the flow-regime would then transit into a so-called transition-in-

the-shear layer (TrSL) range (Zdravkovich, 1997). 

The change in the taper ratio of the cone from 576-1 to 288-1 seems to have 

had little effect on the extent of the end-cell in particular and the spanwise variation 
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of the vortex shedding frequency in general. This is consistent with the results of 

Narasimhamurthy et al (2009), who demonstrated that a change in the taper ratio by 

a factor of two does not affect the spectral content of the signals. The spanwise 

variation of vortex shedding frequency for the various free-stream velocities is 

shown in figure 6.30. As the flow velocity is increased the difference in the vortex 

shedding frequency of the end-cells and the rest of the cone is seen to increase, the 

reasons for which were discussed earlier. 

 
Figure 6.30. Variation of vortex shedding frequency along the span of the cone having a taper ratio of 

288-1, showing the step change therein. 

 

The difference between the Reynolds numbers at the two ends of the cone is 

approximately 10, as shown in figure 6.31, and it is surmised that for this given taper 

ratio a Reynolds number difference of the order seen here is not sufficient enough to 

produce more cells.  
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Figure 6.31. Variation of non-dimensionalised vortex shedding frequency (Strouhal number) with 

local Reynolds number along the span of the cone having a taper ratio of 288-1. 

 

6.3.3 Taper Ratio = 72-1 

 

The spanwise variation of vortex shedding in the wake of a 72-1 taper ratio 

cone at four different free-stream velocities is presented here. The flow velocities are 

identical to that discussed earlier, in the case of the 288-1 taper ratio cone.  

The velocity fluctuations and the corresponding spectra measured along the 

span at a free-stream velocity of 0.02 m/s are shown in figure 6.32 and 6.33 

respectively.  
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Figure 6.32. Variation of velocity fluctuations along the span of a 72-1 taper ratio cone. The velocity 

fluctuations measured at the wider end of the cone are at the top of the figure. The free-stream 

velocity is 0.02 m/s. 

 

 

 
Figure 6.33. Spectra of velocity fluctuations at various locations along the span of a 72-1 taper ratio 

cone. The spectrum of velocity fluctuations measured near the wider end of the cone are at the top of 

the series. Free-stream velocity is 0.02 m/s. 
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The spanwise spectrum of the velocity fluctuations exhibits a step-wise 

variation in the vortex shedding frequency, and the presence of 3 cells is evident. The 

difference between the shedding frequencies of the vortex shedding cells is very 

small, of the order of 0.08 Hz, and it is due to this fact that the spatio-temporal 

contour plot of streamwise velocity fluctuations, shown in figure 6.34, does not show 

the presence of discontinuities.  

 
Figure 6.34. Time evolution of streamwise velocity (U) along the entire span of a 72-1 taper ratio 

cone at a freestream velocity of 0.02m/s, using data obtained by PIV. The velocities were sampled at 

3  downstream from the axis of the cone. The wider end of the cone is at the top of the picture and 

the Y-axis represents the location number along the span of the cone. 

 

As the free-stream velocity is increased, the presence of cells becomes more 

pronounced. However the number of cells remains the same. One observation that 

needs to be highlighted is the fact that even though the vortex shedding frequency at 

the thinner end of the cone is always larger than the vortex shedding frequency at the 

central portion of the cone, the vortex shedding frequency of the topmost cell is only 
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very slightly lower than that of the central portion. This disproportional distribution 

of vortex shedding frequencies might be due to the reduction in the spanwise 

gradient due to increased local Reynolds numbers. 

In what follows, the velocity fluctuations and the corresponding spectra and 

time evolution contours at three different free-stream velocities will be presented. 

 

 
Figure 6.35. Variation of velocity fluctuations along the span of a 72-1 taper ratio cone. The velocity 

fluctuations measured at the wider end of the cone are at the top of the figure. The free-stream 

velocity is 0.022 m/s. 
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Figure 6.36. Spectra of velocity fluctuations at various locations along the span of a 72-1 taper ratio 

cone. The spectrum of velocity fluctuations measured near the wider end of the cone are at the top of 

the series. Free-stream velocity is 0.022 m/s. 

 
Figure 6.37. Time evolution of streamwise velocity (U) along the entire span of a 72-1 taper ratio 

cone at a freestream velocity of 0.022m/s, using data obtained by PIV. The velocities were sampled at 

3  downstream from the axis of the cone. The wider end of the cone is at the top of the picture and 

the Y-axis represents the location number along the span of the cone. 
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Figure 6.38. Variation of velocity fluctuations along the span of a 72-1 taper ratio cone. The velocity 

fluctuations measured at the wider end of the cone are at the top of the figure. The free-stream 

velocity is 0.025 m/s. 

 

 

 

 

 
Figure 6.39. Spectra of velocity fluctuations at various locations along the span of a 72-1 taper ratio 

cone. The spectrum of velocity fluctuations measured near the wider end of the cone are at the top of 

the series. Free-stream velocity is 0.025 m/s. 
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Figure 6.40. Time evolution of streamwise velocity (U) along the entire span of a 72-1 taper ratio 

cone at a freestream velocity of 0.025m/s, using data obtained by PIV. The velocities were sampled at 

3  downstream from the axis of the cone. The wider end of the cone is at the top of the picture and 

the Y-axis represents the location number along the span of the cone. 

 

 
Figure 6.41. Variation of velocity fluctuations along the span of a 72-1 taper ratio cone. The velocity 

fluctuations measured at the wider end of the cone are at the top of the figure. The free-stream 

velocity is 0.029 m/s. 
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Figure 6.42. Spectra of velocity fluctuations at various locations along the span of a 72-1 taper ratio 

cone. The spectrum of velocity fluctuations measured near the wider end of the cone are at the top of 

the series. Free-stream velocity is 0.029 m/s. 

 
Figure 6.43. Time evolution of streamwise velocity (U) along the entire span of a 72-1 taper ratio 

cone at a freestream velocity of 0.029m/s, using data obtained by PIV. The velocities were sampled at 

3  downstream from the axis of the cone. The wider end of the cone is at the top of the picture and 

the Y-axis represents the location number along the span of the cone. 
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The increase in local Reynolds number results in the number of cells 

increasing with the difference between the frequency of each shedding cell also 

increasing (figure 6.44). The Reynolds number increase also brings about the effect 

of spanwise interaction of shedding frequencies in the form of discontinuities, which 

is clear in the figure 6.43. As already mentioned, the major difference with the 576-1 

and 288-1 cones is that the frequency of vortex shedding towards the thinner end of 

the cone is higher than the rest of the cone, as seen in figure 6.44 and is in agreement 

with the shedding laws. The influence of the larger diameter end of the cone is seen 

to reduce with the increase in the amount of taper; which increases the gradient of 

Reynolds numbers along the span of the cone. 

 
Figure 6.44. Variation of vortex shedding frequency along the span of the cone having a taper ratio of 

72-1, showing the step change therein. 
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Figure 6.45. Variation of non-dimensional vortex shedding frequency along the span of the cone 

having a taper ratio of 72-1, showing the step change therein. 

 

6.3.4 Taper Ratio = 36-1 

 

Presented in figure 6.46 are the spanwise velocity fluctuations in the wake of 

a 36-1 taper ratio cone. Again, the study involved four different free-stream 

velocities, as seen in the earlier cases. 

 
Figure 6.46. Variation of velocity fluctuations along the span of a 36-1 taper ratio cone. The velocity 

fluctuations measured at the wider end of the cone are at the top of the figure. The free-stream 

velocity is 0.02 m/s. 
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The marked difference in the velocity fluctuations in the wake of the 36-1 

taper ratio cone and the preceding cases is the presence of modulated fluctuations at 

nearly all positions along the span. This characteristic change in the velocity 

fluctuations is seen to occur at all the four free-stream velocities at which the cone 

was tested. The spanwise spectra of the velocity fluctuations at a free-stream velocity 

of 0.02 m/s are presented in figure 6.47. The emergence of cell like behaviour can be 

observed.  The spanwise variation of streamwise velocity fluctuations and the 

corresponding spectra for three different free-stream velocities is presented in what 

follows. 

 
Figure 6.47. Spectra of velocity fluctuations at various locations along the span of a 36-1 taper ratio 

cone. The spectrum of velocity fluctuations measured near the wider end of the cone are at the top of 

the series. Free-stream velocity is 0.02m/s. 
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Figure 6.48. Variation of velocity fluctuations along the span of a 36-1 taper ratio cone. The velocity 

fluctuations measured at the wider end of the cone are at the top of the figure. The free-stream 

velocity is 0.022 m/s. 

 

 

 

 
Figure 6.49. Spectra of velocity fluctuations at various locations along the span of a 36-1 taper ratio 

cone. The spectrum of velocity fluctuations measured near the wider end of the cone are at the top of 

the series. Free-stream velocity is 0.022 m/s. 
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Figure 6.50. Variation of velocity fluctuations along the span of a 36-1 taper ratio cone. The velocity 

fluctuations measured at the wider end of the cone are at the top of the figure. The free-stream 

velocity is 0.025 m/s. 

 

 

 
Figure 6.51. Spectra of velocity fluctuations at various locations along the span of a 36-1 taper ratio 

cone. The spectrum of velocity fluctuations measured near the wider end of the cone are at the top of 

the series. Free-stream velocity is 0.025 m/s. 
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Figure 6.52. Variation of velocity fluctuations along the span of a 36-1 taper ratio cone. The velocity 

fluctuations measured at the wider end of the cone are at the top of the figure. The free-stream 

velocity is 0.029 m/s. 

 

 
Figure 6.53. Spectra of velocity fluctuations at various locations along the span of a 36-1 taper ratio 

cone. The spectrum of velocity fluctuations measured near the wider end of the cone are at the top of 

the series. Free-stream velocity is 0.029 m/s. 
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Figure 6.54. Time evolution of streamwise velocity (U) along the entire span of a 72-1 taper ratio 

cone at a freestream velocity of 0.029m/s, using data obtained by PIV. The velocities were sampled at 

3  downstream from the axis of the cone. The wider end of the cone is at the top of the picture and 

the Y-axis represents the location number along the span of the cone. 

 

It can be seen that as the free-stream velocity is increased, the velocity 

fluctuations get increasingly modulated, with the spectra still showing the influence 

of the wider end of the cone across a small length of the cone. The existence of 

discontinuities at several locations along the span is highlighted in the contour plot of 

the evolution of streamwise velocity, shown on figure 6.54. The discontinuities seem 

to have a period of around 10s, which is consistent with the spanwise spectrum in 

figure 6.53, where a peak can be seen at a frequency of approximately 0.1 Hz. Apart 

from this it is interesting to note the constant variation of vortex shedding frequency 

in the vicinity of the tip. This is clearly shown in figure 6.54, where the vortex 

shedding frequency is seen to decrease in a linear fashion across a part of the cone 

and then exist as constant frequency cells. The comparison of data from different 
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cones, so far, shows that there seems to be a gradual changeover from a fully cellular 

type vortex shedding to a scenario where the vortex shedding frequency changes 

gradually along the span of the cone. 

 
 

Figure 6.55. Variation of vortex shedding frequency along the span of the cone having a taper ratio of 

36-1, showing the step change therein. 

 

 

 
 

Figure 6.56. Variation of non-dimensional vortex shedding frequency along the span of the cone 

having a taper ratio of 36-1, showing the step change therein. 
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6.3.5 Taper ratio = 18-1 

 

The spanwise variation of velocity fluctuations in the wake of the 18-1 taper 

ratio cone, which represents the largest taper in the set of cones under consideration, 

is presented in this section. The major difference, compared to the other cones, is the 

presence of modulated velocity fluctuations at all positions along the span of the 

cone. Hot-wire traces at four different free-stream velocities are presented here. 

Since the onset Reynolds number for vortex shedding from an 18-1 taper ratio cone 

is delayed compared to a uniform cylinder and is approximately 65, some cases 

represent partial shedding along the span (Zdravkovich, 1997).  

Because of the severity of taper in the present case, it was found necessary to 

operate at slightly higher Reynolds numbers at the maximum diameter location, as 

very low values meant only partial length along the span would be actually shedding 

vortices. This meant that the flow in the wake of the cone would consist of a range of 

flow-regimes including the laminar unsteady wake (L3), transition-in-the-wake 

(TrW) and transition-in-the-shear layer (TrSL) along the span.  

The velocity fluctuations in the wake at a free-stream velocity of 0.018 m/s 

are shown in figure 6.57. The Reynolds number at the maximum diameter location is 

approximately 137. The modulated velocity fluctuations persist along most of the 

span and at the larger diameter end the end-effects show up as un-modulated 

fluctuations.  

The spectra of the velocity fluctuations show the presence of a multiple-

frequency interaction, which results in the formation of multiple sidebands with a 

primary peak corresponding to the vortex shedding frequency. 
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Figure 6.57. Variation of velocity fluctuations along the span of a 18-1 taper ratio cone. The velocity 

fluctuations measured at the wider end of the cone are at the top of the figure. The free-stream 

velocity is 0.018 m/s. 

 

The spanwise variation of the spectra (figure 6.58) shows the presence of the 

low frequency modulation as a peak at 0.06 Hz. This modulation frequency is seen to 

be of the same value at all positions along the span of the cone. The vortex shedding 

frequency changes from being higher towards the tip to being lower at the wider end. 

The change over from one vortex shedding frequency to another is shown in figure 

6.59. The spectra from three consecutive spanwise positions show a fundamental 

shedding frequency and the accompanying sidebands. The presence of multiple 

sidebands is characteristic of non-linear interaction of the vortex shedding system, 

which according to Miksad et al (1982) is suggestive of strong amplitude and phase 

modulation. The frequency of vortex shedding in the vicinity of the wider end of the 

cone is constant due to the end effects, as mentioned before. Apart from this 

constant-frequency region, an inspection of the harmonics in the rest of the 

individual spectra reveals the fact that the vortex shedding frequency changes 

gradually. The absence of a strong stepwise change, as seen in the previous cones, 
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suggests a different mechanism, possibly a global one that is responsible for the 

gradual increase in vortex shedding frequency. The mechanics of this global process 

will be discussed at the end of this section. 

 
Figure 6.58. Spectra of velocity fluctuations at various locations along the span of a 18-1 taper ratio 

cone. The spectrum of velocity fluctuations measured near the wider end of the cone are at the top of 

the series. Free-stream velocity is 0.018 m/s. 
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Figure 6.59. Spectra of velocity fluctuations at three consecutive locations along the span of an 18-1 

taper ratio cone. Free-stream velocity is 0.018 m/s. 
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The spatio-temporal contour plot of the velocity fluctuations along the span of 

the 18-1 taper ratio cone at a free-stream velocity of 0.018 m/s is shown in figure 

6.60. The presence of a discontinuity emerging very close to the start of the time-

series is to be noted. Due to the very low frequency of modulation/discontinuities, 

only one such event was captured in the time-series.  

 
Figure 6.60. Time evolution of streamwise velocity (U) along the entire span of a 18-1 taper ratio 

cone at a freestream velocity of 0.018m/s, using data obtained by PIV. The velocities were sampled at 

3  downstream from the axis of the cone. The wider end of the cone is at the top of the picture and 

the Y-axis represents the location number along the span of the cone. 

 

In the following the hot-wire records and their corresponding spectra, along 

with the time-evolution charts for the rest of the free-stream velocities will be 

presented. 

The velocity fluctuations and corresponding spectra at a free-stream velocity 

of 0.022 m/s show the presence of modulation and the effect of multiple frequency 

interactions in the form of side-bands in the spectra. Again one can note the gradual 
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change in dominant peaks along the span and the strong low-frequency peak 

indicating the presence of amplitude and phase modulation, as mentioned before, and 

the end-effects which results in a constant frequency region towards the wider end of 

the cone. 

 
Figure 6.61. Variation of velocity fluctuations along the span of the 18-1 taper ratio cone. The 

velocity fluctuations measured at the wider end of the cone are at the top of the figure. The free-

stream velocity is 0.022 m/s. 
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Figure 6.62. Spectra of velocity fluctuations at various locations along the span of a 18-1 taper ratio 

cone. The spectrum of velocity fluctuations measured near the wider end of the cone are at the top of 

the series. Free-stream velocity is 0.022 m/s. 

 

The time-evolution contour plot of streamwise velocity (figure 6.63) recorded 

in the wake of the cone reveals the presence of discontinuities at several locations 

along the span. The spanwise spacing of these discontinuities is constant and small 

compared to the length of the cone and this further confirms the conjecture of 

gradual change of vortex shedding frequency along the span, controlled by the 

modulation. 
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Figure 6.59. Time evolution of streamwise velocity (U) along the entire span of a 18-1 taper ratio 

cone at a freestream velocity of 0.022m/s, using data obtained by PIV. The velocities were sampled at 

3  downstream from the axis of the cone. The wider end of the cone is at the top of the picture and 

the Y-axis represents the location number along the span of the cone. 

 

Further increase in free-stream velocity results in the quality of the spectra 

becoming noisy due to the higher local Reynolds numbers (figure 6.64). One has to 

be judicious with the spectra since it can be misleading as to whether the vortex 

shedding frequencies are constant along the span or not. A quick study of the 

harmonics of the vortex shedding frequencies shows that the frequencies do change 

gradually along a large percentage of the span, albeit with a constant frequency 

vortex shedding near the wider end. 
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Figure 6.64. Variation of velocity fluctuations and the corresponding spectra along the span of an 18-

1 taper ratio cone. The velocity fluctuations measured at the wider end of the cone are at the top of the 

figure. The free-stream velocity is 0.025 m/s. 

 

The time-evolution contour (figure 6.65) now shows a complete modulation cycle 

represented by the discontinuities. As the flow evolves in time one can see the 
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movement of the discontinuity, starting from a spanwise location number 40 to a 

spanwise location number 30. The start of the next cycle of this 

modulation/discontinuity can be seen at a time t=17, again at the spanwise location 

number 40. It must also be noted that the cone does not shed vortices towards the tip 

region as the local Reynolds numbers are below the critical value of around 64. 

 
Figure 6.65. Time evolution of streamwise velocity (U) along the entire span of an 18-1 taper ratio 

cone at a freestream velocity of 0.025m/s, using data obtained by PIV. The velocities were sampled at 

3  downstream from the axis of the cone. The wider end of the cone is at the top of the picture and 

the Y-axis represents the location number along the span of the cone. 

 

As the free-stream velocity is increased further the local Reynolds number at 

the wider end of the cone goes past the laminar flow-regime and as a result the 

velocity fluctuations become increasingly irregular, as seen in figure 6.66. The 

spectra of the corresponding velocity fluctuations, shown in figure 6.67, now exhibit 

spectral broadening of the peaks. This spectral broadening is seen to persist along the 

span, even though the local Reynolds numbers are in the laminar flow-regime. The 

frequency of modulation on the other hand remains constant along the span, being 

dependent only on the taper ratio and the free-stream velocity. The 
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discontinuities/modulations are again seen to occur periodically all along the span of 

the cone. The time-evolution contour presented in figure 6.68 shows the increased 

frequency of modulation, compared to the previous case. 

 

 
Figure 6.60. Variation of velocity fluctuations along the span of a 18-1 taper ratio cone. The velocity 

fluctuations measured at the wider end of the cone are at the top of the figure. The free-stream 

velocity is 0.029 m/s. 
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Figure 6.61. Variation of velocity fluctuations and the corresponding spectra along the span of an 18-

1 taper ratio cone. The velocity fluctuations measured at the wider end of the cone are at the top of the 

figure. The free-stream velocity is 0.029 m/s. 

 
Figure 6.62. Time evolution of streamwise velocity (U) along the entire span of an 18-1 taper ratio 

cone at a freestream velocity of 0.029m/s, using data obtained by PIV. The velocities were sampled at 

3  downstream from the axis of the cone. The wider end of the cone is at the top of the picture and 

the Y-axis represents the location number along the span of the cone. 
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6.4 Discussion 

 

From the analysis of the spanwise variation of vortex shedding, especially for 

the cones with large tapers (small taper-ratios) it can be seen that there is a distinct 

and progressive shift from what is known in the literature as cellular vortex shedding. 

A gradual change in vortex shedding frequency along a considerable length of the 

span, as seen in the case of the 18-1 and 36-1 taper ratio cones suggests that the 

mechanism by which this change in vortex shedding frequency is brought about is 

different compared to that of a cone with a mild taper that shows fixed cells. The 

point worth noting is the presence of modulated velocity fluctuations at almost all 

locations along the span, which when studied in a spatio-temporal point of view 

reveals the presence of what appears to be a gradual progression of discontinuities 

from the wider end of the cone towards the tip. Even though the Reynolds number 

and hence the local vortex shedding frequency change according to the local 

diameter, the frequency of these discontinuities/modulations remains constant, 

appearing to be independent of the flow locally. This suggests that the discontinuities 

and their movement along the span have a much larger role in the dynamics of the 

vortex shedding system in the wake of highly tapered cones.  

6.4.1 Moving cells 

 

Earlier, the contours of time-evolution of streamwise velocity along the span 

of an 18-1 taper ratio at several free-stream velocities were shown to exhibit the 

movement of discontinuities along the span. An attempt is made in this section to 

explain its role in the spanwise variation of vortex shedding frequency and the nature 

of the vortex shedding system. 
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The vortex shedding system in the wake of very mildly tapered cones, such as 

the 576-1 taper-ratio cone is seen to be cellular in nature. It was mentioned earlier in 

the chapter that the flow in the wake at the wider end of the cone controlled the 

frequency of vortex shedding along a major part of the span. The spanwise 

interaction of the vortex shedding from this region with the end-effects arising due to 

the tip resulted in modulated velocity fluctuations. The time evolution of the 

spanwise velocity in the vicinity of these discontinuity revealed that they occur at the 

same location. Clearly there is no movement of the discontinuity along the span, 

neither do these discontinuities occur at any other spanwise location. This was true 

for all the free-stream velocities investigated. The spanwise (x-y plane) flow 

visualization images presented in figure 6.69 show consecutive dye traces 

representative of the shed vortices. The discontinuity can be noted at a location 

approximately two-thirds the length of the span from the top. It can be noted that 

even though the top half of the cone is shedding vortices in parallel, the rest seem to 

be tilted to form a very sharp loop like structure, which was also noticed by Lewis & 

Gharib (1992) and Piccirillo & Van Atta (1993). This pattern evolves in time with 

changes seen in the angle of the shed vortices. The tilting of the vortex lines reaches 

a certain angle before the appearance of the discontinuity. This suggests that there 

exists a certain angle of the vortex lines for the discontinuity to occur.  The important 

point to note here is the lack of any spanwise movement of the discontinuity.  
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Figure 6.63. Time evolution of vortex discontinuity along the span of a 576-1 taper ratio cone. Flow 

is from the left and the wider end of the cone is towards the top of the image. 

 

The hot-wire data showed that the increase in amount of taper resulted in the 

increase in the number of vortex shedding cells in the wake. In the case of mildly 

tapered cones the occurrence of modulated velocity fluctuations was associated with 

cellular vortex shedding, with the discontinuities responsible for these modulations 

occurring at discrete locations along the span. With the velocity fluctuations being 

modulated at all locations along the span of the highly tapered cone (18-1 taper ratio) 

questions regarding the mechanism responsible for this could be raised. 
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(a)                                                         (b) 

     
(c)                                                        (d) 

 

Figure 6.70. (a, b, c, d). For caption see next page. 
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(e)                                                                     (f) 

             
                              (g) 
Figure 6.70. (a), (b), (c), (d), (e), (f), (g) Flow visualization of vortex shedding in the wake of an 18-1 

taper ratio cone at a flow velocity of 0.025 m/s showing the progression of discontinuity along the 

span of the cone. The base of the cone is towards the top of the image while the tip is towards the 

bottom of the image. 

 

The time evolution of vortex shedding in the wake of the highly tapered cone 

is presented in the set of flow visualization pictures shown in figure 6.70. The 

discontinuity is seen to occur at the junction of the parallel and tilted vortex lines. It 

is seen here in the flow visualization as an interface between the two and looks very 
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three-dimensional. The corresponding streamwise velocity contours are shown in 

figure 6.71. Comparing the two, one can confirm that the activity seen in the junction 

of the parallel and tilted vortex lines is indeed the discontinuity in the vortex 

shedding system. It is clear from the flow visualization images that the discontinuity 

appears to move down the span of the cone in time. The noticeable feature is the 

appearance of vortex lines with a strong streamwise component, which results in the 

tilting of the same. But the spanwise vortices do not appear to be shed at an angle at 

all times. This tilting of vortices is seen to be a periodic activity. To understand this 

let us assume that the cone sheds vortices at all locations along the span. According 

to the frequency laws relating the local diameter to the frequency of vortex shedding, 

for a given flow velocity, the smaller the diameter the higher would be the vortex 

shedding frequency and vice-versa. So in effect the number of vortices shed per unit 

time at the thinner end would be more than the number of vortices shed at the wider 

end. This results in the spanwise vorticity component, which is responsible for the 

tilting of vortices.  

The process of tilting continues as time progresses and it is surmised here that 

as the vortex lines reach a certain large angle the process gets disrupted, resulting in 

the so-called discontinuity. This process is then seen to occur at next spanwise 

location, until it reaches a local diameter where the Reynolds number might be too 

low to sustain periodic vortex shedding, then starting again at the larger Reynolds 

number end. The process is clearly identifiable in figure 6.71, which shows the 

spanwise velocity fluctuations as obtained using particle image velocimetry.  
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Figure 6.71. (a), (b), (c), (d), (e), (f), (g), (h), (i) Spanwise variation of streamwise velocity in the 

wake of an 18-1 taper ratio cone at a flow velocity of 0.025 m/s showing the progression of 

discontinuity along the span of the cone. The base of the cone is towards the top of the image while 

the tip is towards the bottom of the image. 

 

Thus a strong non-linear interaction of multiple frequencies resulting from the 

movement of the discontinuity in the wake of the highly tapered cone could lead to a 

scenario where the so-called cells could be considered to be non-stationary, or in 

other words moving.  
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6.4.2 Modulation- Possible Effect of. 

 

 
Figure 6.72. Time sequence of vorticity contours in the wake of an 18-1 taper ratio cone at a local 

Reynolds number of 100. 

 

Figure 6.72 shows a sequence of 16 vorticity contours in the wake of an 18-1 

taper ratio cone at a local Reynolds number of 100. The time difference between the 

consecutive contours is 0.2 seconds. The sequence of contours presented in figure 

6.72 represents the time interval in the vortex shedding process where the 

modulation is seen to occur. Vorticity contours numbered 1 through 4 show a typical 

vortex shedding process with the clockwise/negative vorticity represented in shades 

of blue and anticlockwise/positive vorticity represented in shades of red. Vorticity 

contour numbered 5 through 12 shows the time sequence when the process of 

modulation occurs. This is followed by the resumption of normal vortex shedding 

leading to another cycle of modulation. Attention is drawn now to the sequence of 

vorticity contours in the modulated state, especially contours numbered 10 and 11. 
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The alternate shedding of vortices from the cone ceases to occur at the point of 

modulation. 

It is also interesting to note the change in the overall width of the wake when 

the aforementioned discontinuity in the vortex structure occurs. The vorticity 

contours numbered 10 to 12 show a decreased wake width, which corresponds to the 

discontinuity as compared to the other vorticity contours where normal vortex 

shedding is seen to occur. This is consistent with the flow visualisation study 

conducted in the present work which shows the existence of ‘holes’, which are 

attributed to three-dimensionality in the wake, as described by Piccirillo & Van Atta 

(1993) in the wake of a tapered cylinder and by Williamson (1991) in the wake of 

non-tapered cylinders.  

 
Figure 6.73. Flow visualisation using fluorescein dye showing vortex shedding in the wake of an 18-1 

taper ratio cone at two instances during the modulation cycle. The image on the left shows regular 

vortex shedding as opposed to the image on the right where the wake width appears to be smaller due 

to modulation. 

 

Figure 6.73 shows the flow visualization images of vortex shedding from an 

18-1 taper ratio cone at two time instances in the modulation cycle. Since the dye 

was introduced at the mid-span location with the light sheet perpendicular to the 

cones axis, the picture shows a cross-section of the vortex activity along the span. 

The dye pattern reveals what appears to be an interaction of vortex tubes across the 

vortex street. 

Presented in figure 6.74 are the instantaneous vorticity profiles for the above-

mentioned case of the 18-1 taper ratio cone at three different time instances in the 

vortex-shedding regime. The vorticity profiles were obtained at a distance of three 
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diameters downstream of the cone axis, with a time interval of 1.2 seconds between 

them. It is noted that during the regular vortex shedding phase, the instantaneous 

vorticity profile would have a single peak corresponding to the sign of the shed 

vortex. This is seen as a single peak, either positive or negative in the vorticity 

profiles. During the phase in the vortex shedding regime where the velocity time-

series signal is almost reduced to zero, which corresponds to the onset of the above 

mentioned discontinuity, the vorticity profile is seen to have an equal representation 

of positive and negative vorticity. 

 
Figure 6.74. Instantaneous vorticity profiles in the wake of an 18-1 taper ratio cone at three different 

time instances of the vortex-shedding regime. The local Reynolds number is 100. 

 

The vorticity profile at the peak of modulation is very similar to the vorticity 

profiles in the early stages of development of the wake of an impulsively started 

bluff body. Periodic occurrence of the twin recirculating eddies could result in the 

velocity component that is in the direction opposite to that of the freestream, 

rendering a possible very low frequency sinuous motion in the streamwise direction.  
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6.4.3 Modulation Frequency 

The hot-wire signals in the wake of cones having large taper angles are seen 

to be modulated, as described in the preceding sections. It was also discussed that the 

modulation is due to the non-linear interaction of multiple frequencies existing in the 

system. In this section a study of the spanwise variation of the frequency of 

modulation is presented. In particular the case of the 18-1 taper ratio cone is dealt 

with as the hot-wire signals are modulated at all locations along the span, for any 

given flow velocity.  

Gaster (1969) reported the low-frequency modulation to be a constant along 

the span of the cones. He speculated that the non-dimensional modulation frequency 

parameter  was a constant and that modulation frequency was independent of 

any physical length-scale of the model. Since the non-dimensional frequency 

mentioned before was derived using a proportionality relationship between non-

dimensional frequency  and non-dimensional velocity the length scale 

being a common factor in both, drops out, due to the data points having a linear 

trend.  

A linear dependence of the modulation frequency on the flow velocity was 

observed in the present experiments. A near constant value of modulation frequency 

was observed along the span of the cone for a given flow velocity. Piccirillo & Van 

Atta (1993) also reported the modulation to be roughly constant even though the 

cones of large taper angles showed a considerable amount of scatter. In figure 6.75, 

the modulation frequency along the span is plotted against the local diameter at 

various flow velocities. The modulation frequency is constant all along the span for 

the flow velocities presented. 
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The vortex shedding frequency on the other hand is seen to vary with respect 

to the local diameter, for a given flow velocity. The dependence of vortex shedding 

frequency on the local diameter, resulting in the possible evolution of cellular vortex 

shedding will be discussed in later sections of this chapter. For the present case of the 

18-1 taper ratio cone, the vortex shedding frequency is seen to vary continuously 

with respect to the local diameter. The fact that the modulation frequency is constant 

at all locations along the span suggests that the modulation is a global process. From 

the conjecture of the modulation being a global process, one can surmise that the 

modulation depends only on the geometry of the cone, for a given flow velocity.  

The scaling of the modulation frequency would then require the length scale 

to be a global one. As mentioned before the length of the cone would be irrelevant as 

a length scale due to the self-similarity of the shed vortices with respect to the length 

of the cone. Piccirillo & Van Atta (1993) used the centre-span Reynolds number and 

scaled the modulation frequency using a rather complicated combination of the 

diameter at the midpoint of the shedding cells and the component of velocity 

corresponding to the taper angle of the cone. 
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Figure 6.75. Modulation frequency variation along the span of an 18-1 taper ratio cone at various 

free-stream velocities. 

 

They conjectured that the forward surface of the tapered cylinder/cone was 

what determined the shedding frequencies, while the component parallel to this 

forward surface determined the modulation frequency. Since in the present study of 

cones with large taper angle (18-1 taper ratio) the presence of a true cellular type 

vortex shedding is not observed, using the above length scales would not be relevant. 

The scaling of modulation frequency with respect to local length scales as shown in 

figure 6.76 using the local diameter and the flow velocity as the scaling parameters 

would be irrelevant, even though there appears to be an underlying collapse of the 

data points. 
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Figure 6.76. Non-dimensional modulation frequency (Strouhal number) versus local Reynolds 

number along the span of an 18-1 taper ratio cone at various free-stream velocities.  

 

Papangelou (1991), from dimensional considerations assumed the modulation 

frequency to be a function of and using a least-squares fit obtained a constant 

of proportionality, which gradually increased with taper angle. This is in contrast to 

the observations of Gaster (1969), where no explanations were offered for this 

discrepancy.  

A comparison of the publications in literature involving the study of 

modulation frequency in the wake of cones and tapered cylinders has yielded in 

varied understanding of the physics behind the cause and/or effect thereof. The 

present study has resulted in a slightly better if not different understanding of the 

modulation frequency. The global nature of the modulation frequency coupled with 

the fact that vortex-shedding system itself is self-similar along the span results in a 

conflicting choice of appropriate length scales to normalise the modulation 

frequency. It may well be that the modulation frequency is independent of any length 

scales.     
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7.1 Introduction 

In the Reynolds number range of 47-160, vortices shed from an ideal (end 

effects excluded) uniform cylinder are known to be parallel, coherent and periodic, 

with the process of vortex shedding being self-limited and self-excited. The 

frequency of vortex shedding along the span is known to be constant for a given free-

stream velocity, as discussed in the earlier chapters. At any given spanwise location, 

the vortex shedding process is analogous to a simple harmonic oscillator which is 

self excited and self-limited. On the other hand, a cone sheds vortices at different 

frequencies depending on the local diameter, in some cases. It was also discussed in 

the earlier chapter that the vortex shedding process might be controlled by an 

underlying global control parameter, the modulation. In this chapter an attempt will 

be made to investigate some of the underlying complexities of shedding from cones 

based on mathematical models. A brief introduction to some of the relevant work 

done in this direction in the literature will be presented here, starting with Gaster 

(1969) who proposed the use of a series of weak non-linear oscillators, to account for 

the change in frequency, of the van der Pol type to model the vortex shedding in the 

wake of cones. The generic van der Pol equation, which describes self-sustained 

oscillations, is given by 
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 (7.1) 

where  is a nonlinear scalar parameter, which when set to zero results in the 

equation describing simple harmonic motion. 

In order to extend the van der Pol equation to represent vortex shedding in the 

wake of cones, Gaster (1969) added a second-order coupling term that was scaled 

with a local dimension. Even though these coupled van der Pol equations were not 

solved, they provided a benchmark for future researchers who investigated the vortex 

shedding from cylinders with a linear change in diameter along the span. 

The interaction of the individual oscillators is controlled by the coupling term. 

This determines the frequency and the amplitude of the output of the individual 

oscillators. At this point it is felt essential to draw attention to the analogy of 

coupling to a simple physical device made up of a series of pendulums having 

different lengths. The period of oscillation , of the pendulums is dependent on the 

length  and is given as  

 (7.2) 

Suppose one was to connect the individually oscillating pendulums with a 

weak elastic/rubber band, the frequency and amplitude of oscillations of the 

individual pendulums would be slightly affected. There would be a global effect 

involving modulations as seen in the present work. This could be considered as a 

form of weak elastic coupling, with the stiffness of the band being related to the 

degree or strength of the coupling term. The choice of the kernel of the coupling 

term, it being viscous or diffusive, is seen to have a profound effect on the individual 

outputs. 
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Noack et al. (1987) made use of the temporal variation of velocity as 

described by the solution of non-stationary perturbation of the steady solution of the 

Navier-Stokes equation (Drazin & Reid, 1981). The third-order approximation of 

which is the Landau equation, and is given by 

 (7.3) 

where  is the variation of velocity,  and  are the complex constants of the 

Landau equation describing the amplitude and phase. The use of the Landau-Stuart 

equation to describe the periodic oscillations of velocity associated with vortex 

shedding was made by Sreenivasan et al. (1987) who experimentally determined the 

constants of the Landau equation and showed that the mechanism involved with the 

onset of vortex shedding from bluff-bodies having a circular cross-section was a 

result of a Hopf type bifurcation.  

The choice of coupling term has varied depending on the researcher, with 

Noack et al. (1991) opting for a coupling term that included the effects of viscosity 

to account for the spanwise interaction of vortex shedding from a uniform cylinder as 

modelled using van der Pol oscillators. Vortex shedding from slender cones was 

modelled using a Landau-Stuart type oscillator system by Papangelou (1992), with a 

spanwise diffusive term to act as the coupling mechanism.  Even though the output 

of the model was qualitatively comparable to the empirical results, the finer details of 

the dynamics of vortex shedding were not adequately represented. The shortcomings 

of the model could be attributed to the choice of the coupling term.  

7.1 Procedure & Results 
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In the present work the fluctuations in the near wake of the cones is modelled 

by a continuous distribution of van der Pol oscillators arranged along the span. The 

interaction of these spanwise oscillators will be via a viscous coupling, similar to the 

one proposed by Noack et al. (1991). The equation is given as  

 (7.4) 

where the coupling term is represented by  in a non-dimensional form. A fourth 

order Runge-Kutta method was used to time march a second-order-accurate finite-

difference scheme. In order to represent the end-effects, a zero disturbance condition 

was imposed at the end nodes. To start with a critical Reynolds number of 47, based 

on a uniform cylinder, was used. But a question regarding the validity of this critical 

Reynolds number in the case of a cone, which was seen to depend on the taper ratio, 

could be raised. The shedding frequency for the oscillators were approximated to the 

law proposed by Roshko (1954), which is given as  

                                             (7.5) 

 which is valid in the Reynolds number region of 45 to 160. 

The value of , which is the control parameter that defines the strength of 

damping or resistance within the oscillator, was set as 0.1. This value was found to 

produce oscillations that were less skewed as seen in figure 7.1.  

As the value of the control parameter is increased, the non-linearity of the 

output increases, with the shape of the signal being more skewed. The solution of the 

series was considered to have converged once the amplitudes of the oscillators had 

attained a maximum value. The distribution of the oscillation amplitudes in the pre 

and post onset regimes of vortex shedding was studied. To simulate the onset of 

vortex shedding from a uniform cylinder, the same series of oscillators with the 
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diameter variation data pertaining to the taper of a cone was used, with the coupling 

turned off. For a given free-stream velocity, the behaviour of the system is very 

similar to having a constantly varying Reynolds number scenario that exists when 

either the diameter or the free-stream velocity is changed.  

 
Figure 7.1. The effect of control parameter variation on the oscillations of the output of a van der Pol 

oscillator. 

 

The figure 7.2 shows the mean square amplitude of the oscillator output at 

different Reynolds numbers for the uncoupled case. The qualitative similarity with 

the experimentally determined results is readily noticeable. The critical Reynolds 

number at which the mean square of the amplitude of oscillations is seen to have a 

positive value is 47. This is not unexpected as it was dictated by the model equations 

on the oscillator system, as mentioned before.  

The oscillator system with the coupling turned on related to the vortex 

shedding from cones, with a linear variation in diameter. It can be recalled from the 

chapter regarding the study of the onset of vortex shedding from cones that the 

Reynolds number at which vortex shedding is seen start, as a result of an absolute 

instability of the wake, is delayed. It was experimentally determined that the onset 
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Reynolds number depended on the taper ratio of the cone and the 

variation/distribution of the mean-square of the amplitude of vortex shedding with 

the local Reynolds number was different from that of a uniform cylinder. Could the 

same be reflected in the numerical simulations? 

 
Figure 7.2. The variation of the mean square of amplitude of the uncoupled oscillator output at 

various local Reynolds numbers, replicating the onset behaviour of uniform cylinders. 

 

Figure 7.3 shows the distribution of the mean square amplitudes at different 

local Reynolds numbers for the case of the 18-1 taper ratio. It is apparent that the 

distribution is strikingly similar to the experimentally observed results. It must be 

noted here that the onset Reynolds number of 47 is not consistent with the 

experimentally observed values. 
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Figure 7.3. The variation of the mean square of amplitude of the coupled oscillator output at various 

local Reynolds numbers, replicating the onset behaviour of a highly tapered cone. 

  

 
Figure 7.4. The iso-contours of modulation of oscillator output along the spanwise nodes for an 

oscillator set representing the 18-1 taper ratio cone. The circles represent the spanwise extent of 

modulated fluctuations.   

 

The time evolution of oscillations along the span, in figure 7.4, shows the 

effect of the imposed frequency gradient. From an analytical point of view, these 
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periodic modulations are seen to result in a pattern that resembles cellular type 

vortex shedding. The distribution of these modulated signals are very similar to the 

observations of Facchinetti et al. (2002), who suggest that the distribution as seen is 

probably due to the local effects, imposed on the model, controlling the overall 

dynamics.  

 
Figure 7.5. The power spectrum of fluctuations at different spanwise nodes. 

 

The power spectra of the fluctuations at six typical spanwise nodes are shown 

in figure 7.5. Instantly one can note the presence of a dominant peak, which 

represents the frequency of oscillations and the associated sidebands. The number of 

sidebands seems to remain constant, which does suggest the existence of multiple 

frequencies due to a marked spanwise interaction and is qualitatively very similar to 

the spectra obtained from experimental data. The major difference between the 

spectra of the data obtained from the numerical simulations and those obtained from 

experiments is the lack of a low frequency peak that is associated with the frequency 

of modulation. As one moves from a lower to a higher frequency node, the 
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amplitudes of the sidebands change accordingly, with the dominant frequency 

emerging from the consecutive sidebands. This change over from one dominant 

frequency to the other is seen to occur in discrete steps.  

A waterfall plot of the frequency variation along the spanwise nodes of the 

oscillator set defining the 18-1 taper ratio cone at a flow velocity of 0.02 m/s is given 

in figure 7.6a. The cellular nature of the model output can be noted and an increase 

in the flow velocity to 0.03 m/s results in a marked increase in the number of cells. 

The spectrum of the oscillations at the nodes representing the thinner end of the cone 

is placed at the top of the plot.  

 
Figure 7.6 a. For captions see figure below 
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Figure 7.6b. Variation of oscillator frequency along the span of a geometry representing the 18-1 

taper ratio cone at 0.02 m/s (above) and 0.03 m/s, showing the effect of velocity increase on the 

number of constant frequency cells. 

 

The frequency of the cells were seen to be slightly lower than that observed in 

the experiments. Again the reason for this difference might be due to the imposed 

diameter-frequency relation, as prescribed by Roshko (1954), which might not be 

appropriate to represent the shedding from cones.  

7.1 Conclusions 

 

In the case of a uniform cylinder, the critical Reynolds number is known to be 

approximately 47. In the present numerical simulations, this critical Reynolds 

number was imposed on the system. Even though the results of this can be validated 

in the case of a uniform cylinder, as shown, the same could not be done in the case of 

the cones. It is known from the experimental data that the onset of vortex shedding is 

delayed depending on the severity of taper and this aspect does not seem to be an 

explicit result of the model. Even with this apparent difference, the distribution of the 
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mean-square amplitude with respect to the local Reynolds number matches 

qualitatively with the experimental results.  

The absence of modulation frequency in the spectra might be due to the 

output of the oscillator model not being sufficiently non-linear.  It is believed that by 

increasing the value of the control parameter in the model equations, one could make 

the output more non-linear, even though in the actual wake of the cone, the non-

linearity is brought about by the rather complex interaction of the different vortex 

shedding frequencies along the span. 

Even though the model might qualitatively represent the frequency of vortex 

shedding and its distribution along the span, depending on the amount of tuning one 

provides via a prudent choice of coupling parameters, the finer details of the 

mechanism of vortex shedding are not included.  
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8.1 Introduction 

In the present work extensive experimental investigation of several features of 

vortex shedding from cones of various taper ratios have been conducted. Limited 

work regarding the mathematical modelling of the phenomenon was also carried out. 

The study involved the use of techniques such as hot-wire anemometry and particle 

image velocimetry to measure the fluctuations in velocity arising from the cones 

shedding vortices, in both spanwise and streamwise planes. Since the work by Gaster 

(1969) several attempts have been made to understand the dynamics of the flow in 

the wake of bodies of circular cross-section with a linear variation in diameter along 

the span. In the present work several important aspects like the influence of the 

three-dimensionality on the onset of vortex shedding, the spanwise variation of 

vortex shedding leading to cellular and non-cellular frequency distribution in the 

near wake of a cone shedding vortices were scrutinised.   

8.2 Onset of vortex shedding 

The taper ratio of the cone was found to have a major influence on the onset 

of vortex shedding. The mechanism responsible for the onset of vortex shedding 

from uniform cylinder is known to be of the Hopf type. Experimental studies 

revealed that the onset of vortex shedding was indeed delayed for cones, with the 

variation of mean square amplitude being altered. This could be due to an altogether 
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different mechanism responsible for the onset, even though locally the cross-section 

of a cone is circular. Even if one assumes that the onset mechanism is of the Hopf 

type, the post onset regime also seems to be affected. The delay of onset was also set 

to have a direct dependence on the taper ratio of the cone. The smaller the taper ratio, 

the greater would be the delay. This is true for the highly tapered cases with the 

influence of taper wearing off as the taper angle reached a certain value. In the 

present work, it was found that past a taper ratio of 72-1 the onset Reynolds number 

was approximately equal to that of a uniform cylinder. A study of the growth and 

decay rates of disturbances in the wake of such true three-dimensional bodies using 

calibrated hot-wire units, where one could directly convert the voltages to velocities, 

could throw more light on why the onset is delayed and the mechanism responsible.  

8.3 Self-Similarity 

The vortex shedding from a uniform cylinder is said to be self-similar, in that, 

a dynamic similarity can be maintained by varying either the diameter or the 

velocity, rendering the spanwise length of the cone independent. In the case of a cone 

with a large taper (small taper-ratio), with its diameter varying linearly along the 

span, the length of the cone is seen to be an important factor. The vortex structure 

and its components seem to remain the same even if the effective length of the cone 

is varied. This brings about a dynamic similarity with respect to the length of the 

cone.  

Even though the vortex shedding frequency can be maintained by altering the 

free-stream velocity, the modulation frequency is seen to change as it depends solely 

on the free-stream velocity and the severity of taper. This is seen as a very important 
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factor especially for the dimensional analysis of the two frequency components that 

exists in the vortex shedding system of a cone. 

8.4 Spanwise effects; Modulation 

The spanwise variation of vortex shedding is influenced by the end-effects, 

with the effects being most pronounced in the case of very slender cones. For the 

taper-ratios under consideration in the present work, the aspect ratio and/or the 

length of the cone also seemed to have an influence on the spanwise variation, with 

the vortex shedding at the wider end of the cone controlling the major portion of the 

span. The influence of end conditions is seen to be less pronounced for the cones 

with a large taper (small taper-ratio). The existence of spanwise shedding cells is 

seen to prevail in some cases. The ratio of the frequencies along the span of the cone 

results in what is known as oblique vortex shedding, with the vortex lines being tilted 

away from the thinner end of the cone. In order to satisfy Helmholtz theorem, the 

vortex lines connect amongst themselves resulting in a discontinuity that is seen as 

modulations in the hot-wire signals. The resultant of this tilt is seen to give rise to a 

spanwise velocity gradient (via Biot-Savart law). This discontinuity is seen to be a 

periodic, self-limiting mechanism, which is a resultant of the tilting of the vortex 

lines along the span of the cone. The spanwise movement of this discontinuity is 

seen to produce what is now referred to as a moving cell, resulting in a continuous 

variation of vortex shedding frequency along the span of the cone. The dislocation is 

a global process and is seen to control the spanwise distribution of vortex shedding 

frequency. The vortex shedding frequency can be expressed in terms of a non-

dimensional parameter such as Strouhal number, which is based on local length 

scales, since the modulation frequency is dependent only on the free-stream velocity 
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and the severity of taper, it is independent of local length scales. This results in the 

modulation frequency being scaled in terms of local length scales, which is 

considered to be inappropriate. The cause/effect of the modulation is seen to only 

depend on the taper ratio. 

8.5 Numerical simulations 

An attempt at modelling the vortex shedding in the wake of cones using 

coupled van der Pol oscillators was made in the present study. The results, especially 

the variation of mean square amplitudes with Reynolds numbers in the pre and post 

onset regimes for both the uniform cylinder and the 18-1 taper ratio cone were seen 

to qualitatively match the experimental data. The onset of vortex shedding for 

uniform cylinders was seen to occur at a Reynolds number of 47, as this condition 

was forced upon in the governing equations. This resulted in the onset of vortex 

shedding for cones to follow suite. The present work used a second-order-centred 

discretization scheme to approximate the solution of coupled van der Pol equation 

along the span. The presence of multiple shedding cells was observed, with the 

number of cells being proportional to the free-stream velocity. Since the vortex 

shedding at any spanwise location in the wake of cones, especially the highly tapered 

ones, is beset with multiple frequency interactions, it may be of benefit to have a 

higher order non-centred discretization across the spanwise elements. This higher-

order scheme should be based on the possible influence of Reynolds at the individual 

spanwise locations. Even though the numerical simulations qualitatively represented 

the vortex shedding from cones as seen in the experiments, the accuracy of the same 

could not be established.  
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The coupling coefficient that relates the spanwise nodes is seen to have a 

major influence on the formation of the so-called cells in the wake of simulated 

cones. The coupling mechanism that is responsible for this has not been identified. 

Further investigation into the effect of the abovementioned tilting of vortices could 

be incorporated into the model.  
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