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Success, but not failure feedback guides learning during neurofeedback: An ERP study 

 

Abstract 

Neurofeedback is a promising self-regulation technique used to modify specific targeted brain 
patterns. During neurofeedback, target brain activity is monitored in real time and fed back to the 
subject in a chosen format (e.g. visual stimulus). To date, we do not know how success and failure 
feedback are processed during neurofeedback learning. Here we analysed the event related potentials 
(ERPs) in response to success and failure feedback during a single neurofeedback session in two 
experiments. Participants in experiment 1 (n = 127) took part in one of the three neurofeedback 
conditions: RLA: trained to increase alpha power on the right frontal in relation to the left; LRA: the 
reverse of the RLA; FPA: trained to increase alpha power on the mid-frontal in relation to the mid-
parietal region. In experiment 2 (n = 45), participants took part in a similar session but one group 
received random feedback whereas the other received valid feedback to increase right frontal alpha 
power. We analysed the feedback related negativity (FRN), correct positivity (CP), and P3a and P3b 
in response to success and failure feedback. We observed stronger FRN and CP in response to success 
compared to failure feedback. Additionally, the P3a in response to success feedback was higher in 
epochs preceded by subsequent good adjustments. Our findings indicate that people respond more 
strongly to success than failure feedback and that the P3a might mediate the encoding of the 
reinforced patterns in the brain. 

 

Key-words: neurofeedback, FRN, ERP, learning, feedback. 

 

1. Introduction 

 

Neurofeedback is a technique which enables people to learn to regulate their own brain 

activity (Sitaram et al., 2017). During neurofeedback, target brain signals or patterns are recorded 

(e.g. EEG, fMRI) and presented to the participant in real time as feedback in any sensory modality 

(e.g. visual, auditory). The participant’s task is to learn how to control the feedback by modifying 

her/his own brain activity, and several studies have shown that this learning can occur in as little as a 

single session (for a review, see: Enriquez-Geppert, Huster, & Herrmann, 2017).  Neurofeedback is a 

promising technique which can be used to investigate brain function or to improve cognitive and 

affective function (Sitaram et al., 2017). For instance, it was observed  that training to increase frontal 

alpha asymmetry (to the right) was associated with a reduction in stress (Quaedflieg et al., 2016) and 

mood disorders (Mennella, Patron, & Palomba, 2017). Neurofeedback has also been used to increase 

creativity in performing arts (Gruzelier, 2014). 

The success of neurofeedback depends directly on how well people can learn to regulate the 

target brain signals. Therefore, it is crucial that we understand how people learn in this context. Most 

researchers in the field claim that learning during neurofeedback happens through operant 

conditioning. The first study reported with this technique  monitored the activity of monkeys’ single 
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neurons and delivered food pellets when these neurons increased firing (Fetz, 1969). It was found that 

the pairing of this target increase in firing with the reward was associated with an increase in neural 

firing, up to 500%. Neurofeedback was later used in humans: for example, feedback based on EEG 

has been used to increase control over alpha waves (for a historical perspective, see: Kamiya, 2011), 

and, more recently, neurofeedback has been used with fMRI to regulate activity in target brain regions 

with a high spatial resolution (for a review, see: Ruiz, Buyukturkoglu, Rana, Birbaumer, & Sitaram, 

2014). Most studies in the field rely on operant conditioning as the main mechanism of learning, but 

do not evaluate the neural mechanisms associated with processing feedback during neurofeedback 

learning. As such, we know very little about how people process the feedback information for 

learning. This is interesting since the feedback is crucial for learning in this context. 

To the best of our knowledge only one study to date  has looked into how people process 

success and failure feedback in a neurofeedback session (Radua, Stoica, Scheinost, Pittenger, & 

Hampson, 2018). This study recorded fMRI signals during a neurofeedback session designed to 

increase activity in the orbitofrontal cortex. They observed that failure was associated with a 

deactivation of the cuneus and posterior cingulate cortex, whereas success was associated with the 

deactivation of the medial prefrontal cortex and anterior cingulate cortex. Interestingly, they observed 

that only the responses to feedback indicating success were associated with learning, suggesting 

different processes for learning from success vs. failure feedback information. Because this was an 

fMRI study, it is difficult to know the fast and dynamical responses to feedback, especially 

considering that in most used EEG-neurofeedback protocols, feedback is provided at every half 

second of brain activity, which is not well-captured by fMRI. 

There is a great deal of research investigating very early and fast brain responses to 

performance feedback, rewards and punishments, and how they are associated with learning using 

EEG (some good reviews: Cohen, Wilmes, & van de Vijver, 2011; Ullsperger, Fischer, Nigbur, & 

Endrass, 2014; Walsh & Anderson, 2012). One of the most well-known event related potentials 

(ERPs) associated with feedback processing is the feedback-related negativity (FRN). The FRN is a 

negative deflection in the ERPs at the mid-frontal areas which starts as early as 140 ms following the 

feedback presentation (Miltner, Braun, & Coles, 1997). The FRN is sensitive to a number of 

parameters of the feedback, including its relevance, probability and learning (Walsh & Anderson, 

2012). Other important ERP components associated with feedback processing are the correct 

positivity (CP) (Holroyd, Pakzad‐Vaezi, & Krigolson, 2008) and the P300 or P3 (Polich, 2007). These 

signals are highly informative of the learning mechanisms involved in feedback guided learning (for a 

review: Luft, 2014), however no study has investigated whether they are similar in a neurofeedback 

task and how they enable learning of self-regulated brain activity.  
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In this study, we investigated the event-related potentials in response to success and failure 

feedback during a neurofeedback task. This is necessary since success and failure are not equally 

processed in the brain. Knowing how the brain learns from these two types of feedback is crucial for 

the development of more efficient neurofeedback protocols. It is of interest to understand how the 

brain responses to feedback affect how we learn to regulate brain signals. In most feedback learning 

situations, feedback information has to be constantly used to update our models of the environment. 

During neurofeedback, this brain response has to effectively update predictions about brain activity 

itself, which could possibly affect the process, creating a special type of feedback learning. In order to 

address this question, we conducted two experiments. In the first, we monitored the ERPs in response 

to success and failure feedback during a neurofeedback session using three different protocols to train 

a change in: right-left alpha brain asymmetry (RLA), left-right alpha brain asymmetry (LRA) and 

mid-fronto-parietal alpha difference (FPA). In this experiment, we focused on brain asymmetry 

neurofeedback since the RLA is often used to treat affective disorders (e.g. Mennella et al., 2017; 

Quaedflieg et al., 2016). In a subsequent experiment, we compared the ERP responses to success and 

failure feedback when the feedback was random (invalid) vs. when it was valid in a session which 

trained participants to up-regulate their alpha power in the right frontal region. We investigated: 1) the 

differences in the ERPs in response to success and failure neurofeedback, focusing on the main ERP 

components associated with feedback learning (FRN, CP and P3); 2) whether the ERP responses to 

success and failure feedback were associated with subsequent adjustments in brain activity; 3) 

whether these brain responses are dependent on the specific trained parameter; 4) whether the 

differences in the ERP responses to success and failure feedback are similar when the feedback is 

non-informative (random); 5) whether these differences remain significant in a protocol to up-regulate 

a single brain parameter.  

 

2. Methods Experiment 1  

2.1. Participants 

One-hundred and thirty neurologically healthy adults (67 females) aged between 18 - 32 years 

(21.88 ± 2.63; Mean ± SD) with normal or corrected-to-normal vision (self-reported) took part in the 

experiment. Three participants were not included in the analysis due to noisy EEG data. Each 

participant was randomly assigned to one of three neurofeedback conditions: 1) Right alpha up 

(right/left) (RLA; N = 41): Participants were trained to increase alpha power on right frontal in 

relation to left frontal regions (electrodes F4/F3); 2) Left alpha up (left/right) (LRA; N = 43): 

Participants were trained to increase alpha power on left frontal in relation to right frontal regions 

(F3/F4); and 3) Mid-frontal alpha up (frontal/parietal) (FPA; N = 43): Participants were trained to 
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increase alpha power in the mid-frontal in relation to parietal regions (Fz/Pz). All groups were 

matched for age and gender.  

Participants were recruited opportunistically through word of mouth and were reimbursed at a 

rate of £7.50 per hour. All participants gave written informed consent before the beginning of the 

experiment. The study protocol was approved by the QMUL college ethics board. Ethical 

considerations were met as all the data were kept anonymous and confidential, by using a unique 

identifier code for each participant. All participants were informed of their right to withdraw, and 

were debriefed at the end of the study.  

 

2.2. Neurofeedback (NF) 

Each participant completed three 5-minute bouts of neurofeedback (NF) while their EEG was 

recorded (see Figure 1). A fixation cross was presented in the centre of the screen for 1.5 minutes 

before and after each NF session while the resting state EEG was recorded with eyes open. At the start 

of each bout, a small white square was presented in the centre of the screen. Every 500 ms the power 

at the target electrodes (depending on the NF group) was calculated using fast fourier transform. The 

trained EEG patterns were different in each group. For the RLA, the natural log of alpha power (8-12 

Hz) was calculated at the right and left frontal electrodes (F4 and F3) and then subtracted from each 

other ([F4 – F3]). For the LRA, the same procedure was adopted but the final value was the reverse 

subtraction ([F3 – F4]). Finally for the FPA, the index was the natural log of the alpha power on the 

mid-frontal minus mid-parietal ([Fz – Pz]). After each epoch was processed (600 epochs per 

neurofeedback bout), the participant received feedback (time-delay was tested and under 10ms). The 

feedback could be either success or failure. If the target EEG pattern increased, the size of the square 

increased and went green. If the target EEG pattern decreased, the square became smaller and red. 

The size of the increase/decrease was defined by its number of pixels, calculated as: increase: 

squaresize = current squaresize + (100 +  squaresize*0.001); decrease: squaresize = current squaresize 

- (100 +  squaresize*0.001). The square size changed at every epoch but only by the described 

proportional amount. Participants were required to try to increase the size of the square whilst 

learning to control and alter their own brain activity. As one bout was 5 mins and feedback was given 

every 500 ms, feedback was provided 600 times in each bout. The size of the square increased (or 

decreased) the same amount of pixels each time, independently of the amount of change of the EEG 

signal. Therefore, participants knew that they improved (or not), but were not aware of the amount of 

improvement (or decrement).  
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Figure 1. Illustration of experimental design. Each session consisted of three 5-minute 
neurofeedback (NF) bouts. Before, in between, and after the NF bouts, there were four 1.5-
minute resting state blocks (top figure). EEG was  recorded throughout the session. An 
example of a few NF trials is given (bottom figure). Every 500 ms the EEG is processed with 
Fast Fourier Transform (600 epochs per bout). If the EEG pattern increases (depending on the 
NF condition), the square becomes larger and goes green, whereas if it decreases it becomes 
smaller and red. It is important to notice that the change was only dependent on whether the 
trained pattern increased or decreased, which means that it was independent of the amount of 
the increase. This was done to ensure that the effects of the feedback valence were not 
confounded by the size of it and that the participants have some control over the feedback but 
not to the point of changing the proportion/probability of success and failure feedback. 

 

2.3. Procedure 

Participants were seated in front of a computer in a quiet room. Through written instructions 

on screen, they were informed that they would be trained to control their brain waves. They were 

instructed to try to increase the size of the square by manipulating their brain/thoughts. They were 

verbally informed that the size and colour of the square was related to their brain activity at that 

moment, as it would be analysed real-time. The overall duration was approximately 20 minutes. The 

neurofeedback task was programmed in Matlab. The communication between StarStim and Matlab 

was interfaced using Matnic (Neuroelectrics, Spain, 

http://www.neuroelectrics.com/products/software/matnic-remote-stimulation-client/) and the visual 

feedback was presented using the Psychtoolbox (Brainard & Vision, 1997). 

 

2.4. EEG recording and pre-processing 
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The EEG signals were recorded with 18 PiStim electrodes placed according to the extended 

10-20 electrode system (Jasper, 1958) using a battery-driven system (StarStim, Neuroelectrics, Spain). 

The EEG electrodes were: P8, F8, F4, C4, T8, P4, Fp2, Fp1, Fz, Cz, Pz, Oz, P3, F3, F7, C3, T7, and 

P7. Two ECG electrodes were attached to the right cheek bone to reduce noise, especially at 50 Hz.  

The EEG data were re-referenced to the algebraic mean of the right and left earlobe electrodes 

(Essl & Rappelsberger, 1998). Continuous data were band-pass filtered from .5 - 47 Hz, and epoched 

from -.1 to 0.5 around the onset of the feedback. Data from electrodes with consistently poor signal 

quality, observed by visual inspection and by studying the topographical maps of their power spectra, 

were removed and reconstructed by interpolation from neighbouring electrodes. Subsequently, 

independent component analysis was run to correct for eye-blink related artefacts. Epochs with 

amplitude exceeding ± 70 uV were automatically removed. Further, the epoched data was low-pass 

filtered at 30 Hz, and baseline corrected to -100 ms before the feedback presentation. The data was 

averaged separately for each condition to analyse the ERPs. 

 

2.5. Data analysis 

Neurofeedback learning: In order to investigate whether any of the neurofeedback groups learned and 

improved during the neurofeedback session, we calculated the mean trained EEG patterns for each 

bout, separately for each group. Trained EEG patterns are defined differently for each group; for 

example, the trained EEG pattern of the RLA group is the value of the natural log of the right frontal 

alpha minus the natural log of left frontal alpha power. The higher the trained EEG pattern, the more 

successful the neurofeedback learning was. The statistical analyses adopted to address each question 

are described in the results section. 

Feedback-related negativity (FRN) and correct positivity (CP) during neurofeedback: We analysed 

two ERP components elicited in response to failure and success feedback: first, a feedback-related 

negavity (FRN)-like component peaking around 120-200 ms after feedback, and, second, a correct 

positivity (CP)-like component peaking around 220-300 ms after feedback. Mean ERP amplitudes 

were calculated at the Fz electrode.  

Neurofeedback adjustment following feedback: In order to investigate whether the responses to 

success and failure feedback actually resulted in adjusted brain activity during neurofeedback, we 

divided the data according to whether the feedback was followed by a good vs. bad/maladaptive 

change in the trained EEG index (increase vs. decrease, respectively). We analysed three ERPs: FRN 

(120 to 200 ms at Fz), P3a (220 to 300 ms at Pz) and P3b (320 to 450 ms at Pz)-like components. 

Mean ERP amplitudes were obtained for each of these component’s time windows and locations. All 
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statistical analyses were conducted using the IBM Statistical Package for the Social Sciences (IBM 

Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.). 

 

3. Results Experiment 1 

 

3.1. Neurofeedback learning 

 

First, we examined whether participants successfully learned the neurofeedback (three 

different neurofeedback protocols) during the three 5-minute bouts. We entered the mean trained EEG 

indices for each group in each bout in a 3 (neurofeedback condition: RLA, LRA, FPA) X 3 (training 

bout: 1, 2, 3) mixed ANOVA. We observed a significant main effect of training bout (F(2,248) = 3.42, p 

= .034, partial η2 = .027) due to an increase in alpha power over the bouts, confirmed by a linear 

trend in the within-subject contrasts (F(1,124) = 4.97, p = .028, partial η2 = .028) (Fig. 2A).  There was 

also a significant effect of neurofeedback condition (F(2,126) = 3.67, p = .028, partial η2 = .056), as the 

trained values were lower for the FPA group compared to the other groups (Fig. 2B). This is attributed 

to the fact that posterior alpha power is normally higher than frontal, making it hard for the FPA 

group to increase their frontal alpha compared to the posterior. Pairwise contrasts indicated significant 

differences between FPA and LFA (bout 1: t(60.43) = 2.27, p = .027; bout 2: t(61.3) = 2.63, p = .011; bout 

3: t(61.0) = 2.31, p = .025). There was no significant difference between the RLA and LRA groups in 

any of the bouts (p > .3). Importantly, there was no interaction between training bout and 

neurofeedback condition (F(4,248) = .516, p = .724, partial η2 = .008), suggesting that this effect was 

independent of the neurofeedback protocol. Pairwise contrasts showed that the trained EEG indices 

increased significantly from the first to the last bout (t(126) = 2.22, p = .028), but only marginally from 

the first to the second (t(126) = 1.97 p = .051) and not significantly from the second to the third bout 

(t(126) = .598, p = .551). This suggests that participants improved incrementally from the first to the 

last bout of neurofeedback.  

Considering that asymmetry is a relative measure, the participants could learn by either 

downregulating alpha in one site or up-regulating alpha on the other. For example, in the RLA 

condition the participants could learn by either increasing alpha power in the right frontal or by 

decreasing alpha power in the left frontal. Since there are different mechanisms associated with up 

and down-conditioning (Thompson, Chen, & Wolpaw, 2009), we investigated whether the observed 

changes in alpha asymmetry (right/left and frontal/posterior) were associated with increasing the 

activity in one site or decreasing in another. In order to evaluate that, we compared the alpha power 

values between neurofeedback bouts in each of the trained sites (F3, F4, Fz, Pz) and entered the 

values (separated by site) in a repeated measures ANOVA with training bout as a factor. We 
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conducted one ANOVA per neurofeedback condition (RLA, LRA, FPA). First, we observed a 

significant increase in alpha power over in the right frontal (F4) only in the RLA group (F(1.36,57.1) = 

4.04, p = .037, partial η2 = .088), but not in the LFA (F(1.43,61.4) = .295, p = .670, partial η2 = .007), 

nor in the FPA (F(1.64,68.7) = 2.49, p = .100, partial η2 = .056). Alpha power on the left frontal did not 

change significantly in the RLA group (F(1.38,58.1) =.572, p = .506, partial η2 = .013) nor in the LRA 

group (F(1.38,59.5) =.647, p = .473, partial η2 = .015), but increased in the FPA group (F(1.53,64.3) = 4.46, 

p = .023, partial η2 = .096). We observed a significant increase in alpha power at the frontal midline 

electrode (FZ) over the FPA session (F(2,1.51) = 4.40, p = .025, partial η2 = .095), but not for the 

groups which trained to change frontal asymmetry, including the RLA (F(1.25,52.9) = 1.82, p = .183, 

partial η2 = .041) and the LRA (F(1.45,62.4) = .629, p = .487, partial η2 = .014). Finally, we tested the 

differences in alpha power at the posterior midline (Pz) and observed no significant effect in any of 

the training conditions including RLA (F(1.33,55.9) = 1.84, p = .178, partial η2 = .042), LRA (F(1.73,74.3) = 

.051, p = .931, partial η2 = .001) and FPA (F(1.64,68.8) = 1.37, p = .259, partial η2 = .032). Altogether, 

these findings seem to indicate that the participants might learn to change their brain asymmetry by 

up-regulating their alpha activity on one region rather than the opposite. 

We also tested whether changes in the trained EEG indices would outlast the neurofeedback 

by comparing their values during rest before and after the session. We entered the trained values in a 2 

(resting state session: before and after) X 3 (neurofeedback condition: RLA, LRA, FPA) mixed-

design ANOVA (Fig. 2C). We observed no significant main effect of resting state session (F(1,126) = 

.149, p = .700, partial η 2= .001) or interaction between resting state session and neurofeedback 

condition (F(1,126) = .513, p = .600, partial η2 = .008). There was a significant effect of neurofeedback 

condition (F(2,126) = 6.95, p = .004, partial η2 = .099) due to the same reason explained above. The 

trained value of the FPA group was smaller than the asymmetry of the RLA and LRA in both pre- 

(FPA vs. RLA: t(66.27) = 2.28, p = .026; FPA vs. LRA: t(56.39) = 2.58, p = .013) and post-neurofeedback 

(FPA vs. RLA: t(61.36) = 2.99, p = .004; FPA vs. LRL: t(58.1) = 3.17, p = .002). There was no significant 

difference between the RLA and LRA groups in the pre- or post-neurofeedback session (p > .7). 

Since this study is focused on the evoked responses to feedback, we looked into the 

percentage of success feedback in relation to the total feedback (total = success + failure). Even 

though the amplitude of the trained signal seemed to have increased over the session, we observed a 

similar percentage of success and failure feedback, around 50% (Fig. 2D). We entered the percentage 

of success feedback in a 3 (neurofeedback condition: RLA, LRA, FPA) X 3 (training bout: 1, 2, 3) 

mixed ANOVA. We observed no significant effect of training bout (F(2,248) = 1.68, p = .188, partial η2 

= .013) nor interaction with neurofeedback condition (F(4,248) = .960, p = .430, partial η2 = .015). 

There was also no main effect of neurofeedback condition (F(2,124) = 2.41, p = .123, partial η2 = .019). 
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Figure 2. Performance before, during and after neurofeedback. A. Average trained EEG 

pattern (see in B) during the three 5-minute neurofeedback bouts. B. Average power ratio at 

the trained pattern in each neurofeedback condition and each bout. The trained pattern was 

different for each group – RLA: right alpha minus left alpha band power, LRA: left alpha 

minus right alpha, FPA: mid-frontal alpha minus mid-parietal alpha. C. Average trained EEG 

pattern during rest before (blue) and after (red) the neurofeedback session. D. Proportion of 

success feedback during each neurofeedback bout for each neurofeedback condition. Error 

bars represent +/- 1 S.E.M.  

 

3.2. Feedback-related negativity (FRN) and correct positivity (CP) during neurofeedback 

 

We investigated ERP responses to success and failure feedback during neurofeedback. An 

FRN-like component peaking at the fronto-central midline was observed around 120 to 200 ms after 

both types of feedback (Fig. 3AB). This component was followed by a large positivity resembling a 

correct positivity (CP) peaking between 220 to 300 ms after the feedback (Fig. 3AB). We analysed 
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these two components in two separate 2 (feedback valence: success vs. failure) X 3 (neurofeedback 

condition: RLA, LRA, FPA) mixed-design ANOVAs.  

For the FRN (average amplitude at the Fz electrode from 120 to 200 ms after feedback), we 

observed a significant effect of feedback type (F(1,125) = 14.26, p < .001, partial η2  = .102), since the 

FRN was larger following success compared to failure feedback (Fig. 2C). There was no significant 

effect of neurofeedback condition (F(2,125) = .394, p = .675, partial η2 = .006), however, there was a 

significant interaction between feedback type and neurofeedback condition (F(2,125) = 3.75, p = .026, 

partial η2 = .057). Follow up pairwise contrasts showed that only one of the groups (LRA) did not 

show a significant difference in the FRN between success and failure feedback (t(42) = .045, p = .964), 

whereas this difference was statistically significant for both the FPA (t(42) = 3.765, p < .001) and RLA 

groups (t(41) = 2.597, p = .013). For the CP-like component (average amplitude at the Fz electrode 

from 220 to 300 ms after feedback), we observed a significant effect of feedback type (F(1,125) = 35.43, 

p < .001, partial η2 = .221), since the amplitude of CP was higher following success compared to 

failure feedback. There was no significant effect of neurofeedback condition (F(2,125) = .041, p = .959, 

partial η2 = .001), and no significant interaction between the variables (F(2,125) = 2.84, p = .062, partial 

η
2 = .043) (Fig. 3D). 

 

 

Figure 3. ERP responses to success and failure feedback. A. ERP waveforms in response 
to success (blue) and failure (red) feedback at the Fz electrode. The highlighted areas are 
associated with the FRN (feedback-related negativity) and CP (correct positivity) and their 
averages per condition are shown in C and D, respectively. B. Topographical distributions of 
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the ERP amplitudes following failure and success feedback, as well as the difference between 
them in the two time windows highlighted in A. C. Average amplitudes in response to 
feedback at Fz from 120 ms to 200 ms after feedback (first highlighted time window, FRN). 
D. Average amplitudes in response to feedback at Fz from 220 ms to 300 ms after feedback 
(second highlighted time window, CP). Error bars represent +/- 1 S.E.M. 

 

 

3.3. Neurofeedback adjustment following feedback 

 

In order to investigate whether the brain responses to feedback are relevant to adjusting brain 

activity during neurofeedback, we divided the data according to whether the success and failure 

feedback was followed by subsequent good vs. bad/maladaptive changes in the trained EEG patterns 

(increase vs. decrease, respectively). In Fig. 4A we present the ERP waveforms in response to success 

(left) and failure (right) feedback in trials followed by good (blue) and bad (red) adjustments. We 

analysed the FRN (120 to 200 ms at Fz), and P3 (P3a:220 to 300ms / P3b: 320 to 450 ms at Pz) -like 

ERP components. For each of these components, we entered the values as the dependent variable in a 

2 (feedback valence: success vs. failure) X 2 (adjustment: good vs. bad) X 3 (neurofeedback 

condition: RLA, LRA, FPA) mixed-design ANOVA.  

Regarding the FRN, there was no statistically significant difference between trials which were 

followed by a good vs. a bad performance adjustment (adjustment: F(1,125) = .007, p = .935, partial η2 

< 0.001), and no significant interaction between feedback valence and adjustment (F(1,125) = .001, p = 

.979, partial η2 = < 0.001). There was a significant effect of feedback valence (F(1,125) = 4.745, p = 

.031, partial η2 = .037), since success feedback was associated with a higher FRN-like amplitude as 

previously shown.  

With regards to the P3a-like component (Fig. 4A, second row), we observed a significant 

interaction between feedback valence and adjustment (F(1,125) = 5.07, p = .026, partial η2 = .039) since 

a stronger P3a was elicited in response to success feedback on trials immediately before a good 

adjustment or improvement. Pairwise contrasts indicated a significantly higher P3a in response to 

success feedback leading to a subsequent good adjustment compared to a bad adjustment (t(127) = 2.56, 

p = .012), whereas there was no such a difference between P3a preceding good and bad adjustments 

following failure feedback (t(127) = -.637, p = .525). No significant effects or interactions with the 

neurofeedback group were observed (p > .1), suggesting that this result was consistent across 

conditions (Fig. 4B). 

The difference in the ERPs in response to feedback leading to good and bad performance 

adjustments carried on to a later time window corresponding to the P3b (320-450 ms, Fig. 4C). We 
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observed an interaction between feedback type and adjustment (F(1,125) = 8.09, p = .005, partial η2 = 

.061), since the differences between good and bad adjustments were only significant in response to 

success feedback (t(127) = 2.98, p = .003) but not to failure feedback (t(127) = -.998, p = .326). We also 

found a three-way interaction between feedback type, adjustment and neurofeedback condition (F(1,125) 

= 3.93, p = .022, partial η2 = .059): this reflected the fact that the FPA group also showed a difference 

between good and bad adjustments in response to failure feedback (t(42) = -3.76, p = .001), but this 

difference was not significant in the RLA (t(41) = .636, p = .529) or LRA feedback conditions (t(42) = 

1.42, p = .164). 

 

  

Figure 4. ERP responses to success and failure feedback in trials preceding good and 
bad adjustments in brain activity. A. ERP waveforms in response to success (left) and 
failure (right) feedback in trials followed by good (blue) and bad/maladaptive (red) brain 
activity adjustments at the mid-frontal electrode (Fz: top plots) and at the mid-parietal 
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electrode (Pz: second row). The highlighted areas show the time-windows associated with 
adequate adjustments in brain activity. B. Average amplitude at Pz during the P3a time-
window (220-300 ms) in trials leading to good (blue) and bad (red) adjustments following 
success feedback. C. Average amplitude at Pz during the P3b time-window (320-450 ms) in 
trials leading to good (blue) and bad (red) adjustments following success feedback. *Note 
that the error bar figures for the failure feedback are not presented as we observed no effects 
in response to incorrect feedback. Error bars represent +/- 1 S.E.M. 

 

4. Methods Experiment 2 

 We conducted another experiment to investigate the differences in the ERP responses to 

feedback when the feedback is invalid/random vs. when it is valid and the protocol targets an increase 

in alpha activity in a single region. 

 

4.1. Participants 

Fifty neurologically healthy adults (25 females) aged between 17 - 41 years (22.18 ± 3.81; 

Mean ± SD) with normal or corrected-to-normal vision (self-reported) took part in one experimental 

session. The participants were randomly assigned to one of the two conditions, to avoid potential 

carry-over effects of one condition to the other: 1) Random neurofeedback (N = 30); and 2) Right 

frontal alpha neurofeedback (valid feedback) (N = 20). Three participants had to be excluded due to 

technical problems and two participants were excluded due to poor data quality. The final sample was 

26 participants in in the random feedback group and 19 in the valid feedback group. Participants gave 

written informed consent before the beginning of the experiment and were reimbursed at a rate of 

£7.50 per hour. The study protocol was approved by the QMUL ethics board. Ethical considerations 

were met as all the data were kept anonymous and confidential, by using a unique identifier code for 

each participant. All participants were informed of their right to withdraw, and were debriefed at the 

end of the study.  

 

4.2. Neurofeedback (NF) 

The neurofeedback session followed the same procedure of Experiment 1, i.e. there were 

three 5-minute bouts of NF, separated by 1.5 min of resting state EEG recording (Fig.1). However, for 

the random group the feedback was completely random: half of the times (300 epochs) the size of the 

square increased and it went green, whereas half of the times (300) the size of the square decreased 

and it went red (random order). The random feedback was defined by a random vector before the start 

of the experiment, and was different for each participant. The valid neurofeedback group received 
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success feedback everytime alpha power (calculated using the same methods described in experiment 

1) increased in the F4 electrode (right frontal). 

 

4.3. Procedure 

Participants were seated in front of a computer in a soundproof room. They were given the 

same instructions as in Experiment 1, i.e. they were instructed to try to increase the size of the square 

by manipulating their brain/thoughts. The overall duration was approximately 20 minutes. The 

neurofeedback task was programmed in Matlab. The communication between StarStim and Matlab 

was interfaced using Matnic (Neuroelectrics, Spain, 

http://www.neuroelectrics.com/products/software/matnic-remote-stimulation-client/) and the visual 

feedback was presented using the Psychtoolbox (Brainard & Vision, 1997). 

 

4.4. EEG recording and pre-processing 

We used the same EEG set-up and followed the same pre-processing steps as in Experiment 

1. 

 

3.5. Data analysis 

Neurofeedback learning: We calculated the mean relative alpha power in each neurofeedback bout for 

random and valid neurofeedback and also before and after the neurofeedback. The statistical analysis 

is described in the results section. 

Feedback-related negativity (FRN) and correct positivity (CP) during neurofeedback: We analysed 

two ERP components elicited in response to failure and success feedback: first, a feedback-related 

negavity (FRN)-like component peaking around 120-200 ms after feedback, and, second, a correct 

positivity (CP)-like component peaking around 220-300 ms after feedback. Mean ERP amplitudes 

were calculated at the Fz electrode.  

Neurofeedback adjustment following feedback: We compared the ERP responses to success and 

failure feedback which were followed by good vs. bad performance adjustments (i.e. increase in alpha 

power). We focused on the P3a (mean amplitude at Pz from 220 ms to 300 ms after feedback) and the 

P3b (mean amplitude at Pz from 320 ms to 450 ms after feedback) for this analysis since these were 

the significant components observed in experiment 1. 

 

5. Results Experiment 2  
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5.1. Neurofeedback learning 

First, we examined whether participants increased the trained pattern (right frontal alpha 

power) during the three 5-minute bouts in the real compared to the random feedback session (Fig.5A). 

We entered the mean trained alpha power for each group in each bout in a 2 (feedback validity: valid 

vs. random) X 3 (training bout: 1, 2, 3) mixed design ANOVA. The results showed a main effect of 

training bout (F(2,86) = 3.87, p = .025, partial η2 = .082), reflecting an increase in alpha during the 

session. Since it increased in the same direction in both groups, there was no significant interaction 

between feedback validity and training bout (F(2,86) = 2.15, p = .127, partial η2 = .047). Nonetheless, 

pairwise comparisons showed a significant increase in alpha power over the bouts only in the group 

which performed neurofeedback with valid feedback, from bout 1 to bout 3 (t(18) = 2.32, p = .032), but 

not significant from bout 2 to bout 3 (t(18) = 1.90, p = .073) or from bout 1 to 2 (t(18) = 1.14, p = .112). 

For the random feedback, alpha power was not significantly different in any contrast, between bout 1 

and 3 (t(25) = 0.646, p = .524), bout 1 vs. 2 (t(25) = 0.81, p = .427) and between 2 and 3 (t(25) = -0.11, p 

= .911).  

Second, we investigated whether these effects outlasted the feedback session. We compared 

alpha power over the right frontal electrode (F4) during rest before and after the neurofeedback 

session (Fig. 5B). We entered the values into a 2 (feedback validity: valid vs. random) x 2 (resting 

state session: before vs. after) repeated-measures ANOVA. We observed significant effects of resting 

state session (F(1,43) = 5.89, p = .019, partial η2 = .121), a trend for the interaction between resting 

state and feedback validity (F(1,43) = 3.45, p = .070, partial η2 = .074), and no main effect for feedback 

validity (F(1,43) = .672, p = .417, partial η2 = .015). Pairwise contrasts were similar to the during 

session alpha contrasts: a significant increase in alpha in the post-test in the group that received valid 

feedback (t(18) = 2.25, p = .037), but not for the group which received random feedback (t(25) = 0.57, p 

= .574). Altogether these findings showed that there was a trend towards improvement for the valid 

feedback group, but the effects were not robust enough to show that solid learning occurred for the 

group. 
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Figure 5. Performance before, during and after neurofeedback. A. Average trained EEG 
pattern (normalised alpha power at F4) during the three 5-minute neurofeedback bouts of the 
session with random (blue) vs. valid (red) feedback. B. Average trained EEG pattern during 
rest before (blue) and after (red) the neurofeedback sessions with random (transparent) vs. 
Valid (solid) feedback. Error bars represent +/- 1 S.E.M.  

 

5.2. Feedback-related negativity (FRN) and correct positivity (CP) during neurofeedback 

 

 We investigated the differences in the FRN and CP in response to valid vs. random feedback. 

We entered the FRN values in a 2 (feedback validity: valid vs. random) x 2 (feedback valence: 

success vs. failure) mixed-design ANOVA. We observed a main effect for feedback valence (F(1,43) = 

5.54, p = .023, partial η2 = .114), replicating the key previous finding of stronger FRN in response to 

success feedback (Fig.6A). There was no interaction with feedback validity (F(1,43) = 0.009, p = .926, 

partial η2 < .001), suggesting that this effect was similar when participants did the task with 

invalid/random feedback. Next, we conducted the same 2 x 2 mixed-design ANOVA using the CP as 

the dependent variable. Consistent with experiment 1, there was a strong effect of feedback valence 

(F(1,43) = 22.911, p < .001, partial η2 = .348) since the CP was higher in response to success feedback. 

We observed a non-significant interaction trend (F(1,43) = 2.94, p = .094, partial η2 = .064) between 

feedback validity and valence. This reflected the fact that the difference in the CP between success 
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and failure feedback was stronger in the participants who received valid (t(18) = 3.65, p = .002) vs. 

random (t(25) = 2.76, p = .011) feedback, even though the effect was statistically significant in both 

groups. 

 In order to track how the responses to feedback changed over the course of the feedback 

session, we compared the FRN and the CP across the three bouts of neurofeedback (Fig. 6B). First, 

we entered the FRN values in a 3 (neurofeedback bout: 1, 2, and 3) x 2 (feedback valence: success vs. 

failure) x 2 (feedback validity: valid vs. random) mixed-design ANOVA. Beyond the already 

observed main effects of feedback valence, we observed a significant interaction between feedback 

valence and neurofeedback bout (F(2,86) = 5.36, p = .006, partial η2 = .111), showing that the 

differences between success and failure feedback were significantly higher at the beginning than the 

end of the session (see pairwise contrasts in Fig. 6C). There was a significant main effect of 

neurofeedback bout (F(2,86) = 3.86, p = .025, partial η2 = .082) which suggests that the decrease in 

difference between success and failure was accompanied by a more general decrease in FRN. There 

were no significant effects of feedback validity nor other significant interactions (p > .1). We 

conducted the same statistical analysis using the CP as the dependent variable. Similarly to the 

analysis of the FRN, we observed a significant main effect of neurofeedback bout (F(2,86) = 6.02, p = 

.004, partial η2 = .123), and this factor interacted with feedback validity (F(2,86) = 3.45, p = .036, 

partial η2 = .074), as the group receiving valid feedback did not reduce their CP as much as the group 

receiving random feedback did. Pairwise contrasts indicate that the group receiving valid feedback 

showed a trend towards higher difference in CP between success and failure feedback over the course 

of the session, but the contrasts did not reach significance (p > .05, Fig.6D). 
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Figure 6. ERP responses to success and failure feedback in response to random vs. valid 
feedback. A. ERP waveforms in response to success (blue) and failure (red) feedback at the 
Fz electrode in response to random feedback (left) and valid feedback (right). B. First row: 
ERP responses to success (blue) and failure (red) feedback in the random condition in each 
bout (from left to right); Second row: the same ERP waveforms but in the valid feedback 
condition.  C. FRN difference between success and failure feedback in each bout during 
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random and valid feedback neurofeedback conditions. D. CP difference in each 
neurofeedback bout during random and valid feedback. Error bars and shades represent +/- 1 
S.E.M. *p < .05. 

 

5.3. Neurofeedback adjustment following feedback 

 We tested whether stronger P3a and P3b components in response to success feedback were 

also predictive of a good adjustment, as was observed in experiment 1. We entered the P3a values in a 

2 (feedback valence: success vs. failure) x 2 (feedback adjustment: good vs. bad) repeated-measures 

ANOVA. In the group receiving valid feedback, we observed a significant effect of feedback valence 

(F(1,18) = 6.27, p = .022, partial η2 = .258) and a significant interaction between feedback adjustment 

and valence (F(1,18) = 6.24, p = .022, partial η2 = .258), but no main effect of adjustment (F(1,18) = 2.12, 

p = .162, partial η2 = .106). This is because the differences in amplitude between good and bad 

adjustments were only significant following success feedback (see contrasts in Fig.7B). Importantly, 

there was no significant effect of these factors in the P3a in the group receiving random feedback: the 

main effects of feedback adjustment (F(1,25) = 0.81, p = .779, partial η2 = .003) and feedback valence 

(F(1,25) = 1.83, p = .188, partial η2 = .068), and the interaction (F(1,25) = .563, p = .460, partial η2 = 

.022) all failed to reach significance. We conducted the same analyses using the P3b as the dependent 

variable. As it is visible in Fig.7, none of the effects were significant (p > .5) except for the effect of 

feedback valence during valid feedback (F(1,18) = 4.90, p = .040, partial η2 = .214). This suggests that 

there is a possibility that the effects we observed in P3b in experiment 1 were a residual of P3a. The 

main findings (FRN, CP and P3a) of experiments 1 and 2 can be visualised in Figure S1 

(Supplementary Material).  
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Figure 7. ERP responses to success and failure feedback in trials preceding good and bad 
adjustments in brain activity. A. ERP waveforms in response during random (left) and 
valid (right) feedback neurofeedback sessions in response to failure (top) and success 
(bottom) feedback followed by either good (blue) or bad/maladaptive (red) brain activity 
adjustments at the mid-parietal electrode (Pz). B. Average amplitude at Pz during the P3a 
time-window (220-300 ms) in trials leading to bad (red) and good (blue) adjustments 
following failure success feedback during sessions with random (left) and valid (right) 
feedback. Error bars represent +/- 1 S.E.M. *p < .05/ ** p < .01. 

 

 

6. Discussion 

 

This is the first study to investigate the event related potentials (ERPs) in response to 

feedback during neurofeedback. It is also the first to analyse how these responses are associated with 
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subsequent adjustments to the trained brain activity. We observed stronger ERP responses to success 

feedback, including higher feedback related negativity (FRN) and correct positivity (CP). The 

strength of the responses to success feedback on the later components (P3a and P3b) were associated 

with good adjustments on the subsequent epochs, whereas the responses to failure feedback were 

uninformative (unknown to the participants). All of these results, except for the P3b, were replicated 

in experiment 2, in which we contrasted random and valid feedback using a different neurofeedback 

protocol. Our findings contribute to the existing neurofeedback and feedback processing literature in 

four important ways. First, these results indicate that the ERPs in response to feedback during 

neurofeedback are similar to the ERPs in response to feedback in other learning contexts. Although 

this was hypothesised by Radua et al. (2018), our study is the first to examine this question directly. 

Second, we demonstrated that success feedback elicits stronger responses than failure feedback, 

suggesting that in a neurofeedback task, success feedback might be the most relevant for subsequent 

adjustments to brain activity. Third, we found that specific ERP responses to success feedback were 

higher preceding adaptive adjustment, whereas the responses to failure feedback were not. Finally, 

our results showed that the trained brain patterns improved during feedback in a single neurofeedback 

session, but not at rest once the feedback had ceased. In this section the discussion of the main ERP 

findings is followed by an explanation of how responses to success feedback can be quickly integrated 

to facilitate learning, elaborating on why success feedback might be more relevant to learning through 

neurofeedback.  

Our findings confirm the prediction by Radua et al. (2018) that the processing of feedback 

during neurofeedback resembles the processing of success and failure in other feedback learning 

contexts. We found an FRN-like component in response to feedback, which is an important signature 

of feedback processing  (Miltner et al., 1997) and the most investigated ERP component in the 

feedback learning literature (Walsh & Anderson, 2012). We observed a negative deflection starting 

around 120 ms after feedback and lasting until around 200 ms and peaking at the midfrontal region. 

This is similar to a typical FRN, although slightly earlier than originally described  (Miltner et al., 

1997). This negativity was observed following both failure and success feedback. This finding is 

surprising for three reasons. First, the FRN is hypothesised to be a signature of processing reward 

prediction errors (Holroyd & Coles, 2002) or unsigned prediction errors (Hauser et al., 2014), hence it 

is generally found to be higher in response to less likely outcomes (e.g. Cohen, Elger, & Ranganath, 

2007; Hauser et al., 2014; Oliveira, McDonald, & Goodman, 2007; Walsh & Anderson, 2011; Walsh 

& Anderson, 2012). However, in the current study success and failure feedback were equally likely 

(both around 50%). Second, in situations where feedback types are equally likely (as in our study), we 

would expect the FRN in response to failure feedback to be higher due to the previously observed 

optimistic bias effect on the FRN (Oliveira et al., 2007). This study found the opposite: a higher FRN 

in response to success feedback. Third, the FRN seems to be more sensitive to failure than success 
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feedback (e.g. Hajcak, Moser, Holroyd, & Simons, 2006; Luft, Nolte, & Bhattacharya, 2013; Yeung 

& Sanfey, 2004). Since neurofeedback depends on implicit brain processes which cannot be easily 

monitored without external feedback, we suggest that the FRN codes the relevance of the provided 

information. This suggestion is supported by studies showing a stronger FRN in response to more 

reliable (e.g. Ernst & Steinhauser, 2018) and more informative (e.g. Schiffer, Siletti, Waszak, & 

Yeung, 2017) feedback.  

We also observed a steep positive deflection on the ERPs, especially at the midline fronto-

central area after the FRN. This component resembles the early positivity (early Pe) which is a 

positive deflection starting immediately after the FRN at the same mid-frontal region around 200ms 

after feedback (for a review see: Ullsperger et al., 2014). A similar positivity is the P2a, which was 

first observed in selective attention tasks (Kenemans, Kok, & Smulders, 1993) and it was later 

observed in response to rewards (Potts, Martin, Burton, & Montague, 2006). To avoid confusion, here 

we called this component correct positivity (CP). This component has been found to code the 

motivational relevance of the stimulus (Potts et al., 2006), which can be used to signal the need for 

enhanced control of the prefrontal cortex.  

Here we suggest that the increased FRN and CP in response to success feedback indicate that 

this information is more relevant for learning how to regulate brain activity. Neither of these 

components were associated with adjustments in the trained brain activity, which suggests that they 

signal the importance of the event without necessarily assuring the integration of such information 

into the subsequent epoch. One important difference between a neurofeedback task and more 

traditional cognitive tasks is that learning is highly implicit during neurofeedback as it is not clear 

how one can control her/his own brain activity. For instance, a previous study observed that explicit 

instructions did not help neurofeedback learning (in fMRI) to control the activity in the supplementary 

motor area whereas monetary rewards did (Sepulveda et al., 2016). A previous review study from our 

group (Luft, 2014) observed that the FRN was only relevant for learning when the experimental task 

was explicit (e.g. probabilistic learning tasks). Therefore, we suggest that these components are 

associated with the initial processing of the feedback depending on its relevance for neurofeedback 

learning. 

Regarding the incorporation of feedback information into the subsequent time, we observed 

that a later component around the P3 time-window was found to be associated with subsequent 

adaptive brain activity adjustment. The positive deflection started slightly earlier, around 200 ms, in 

the parietal region and lasted until almost the end of the epoch (around 450ms). The component 

resembles the well-known P3 (Sutton, Braren, Zubin, & John, 1965) which is a positive deflection in 

the ERPs in response to unexpected or relevant attentional stimuli of multiple sensory modalities. In 

the current study, the P3 was associated with adaptive adjustments to feedback. In line with previous 
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work in the feedback learning literature (for a review: Polich, 2007), we also identified two sub-

components which we labelled the P3a and P3b. In an insightful review (Polich, 2007), it was 

suggested that the P3a increases in response to motivationally or sensory salient stimulus, leading to 

higher attentional mechanisms, whereas the P3b promotes memory operations in temporal-parietal 

areas for subsequent memory processing. In our case, both sub-components seem to have led to good 

adjustments on the following trial in experiment 1, which suggests that such operations are important 

for incorporating the feedback into the coming time-window for learning. However, in experiment 2 

the P3b effect was not replicated, which seems to indicate that P3a is more relevant for successful 

short-term adjustments required in the neurofeedback task. In sum, then , our findings indicate that the 

P3a in response to success feedback is crucial for retaining the trained brain patterns during 

neurofeedback. 

Importantly, our findings illuminate the discussion regarding the learning adjustment 

mechanisms of neurofeedback. Most researchers on neurofeedback theoretise that one can learn how 

to control her/his own brain activity through operant or instrumental conditioning (Enriquez-Geppert 

et al., 2017): in other words, promoting strong associations between a specific pattern of brain activity 

and a specific outcome can allow individuals to learn how to control this activity to obtain the desired 

outcomes. This was the key idea behind the first studies of neurofeedback with animals. For instance, 

Fetz (Fetz, 1969) recorded the activity of single neurons in the precentral cortex of unanesthetized 

monkeys and provided rewards when their firing rates increased (food pellet paired with auditory and 

visual feedback). He observed that monkeys increased the activity of newly isolated cells by 50 to 

500%. It is important to note that this study relied on rewards (success feedback) as a teaching signal. 

Considering that the brain is a complex dynamical system which exhibits a large range of random and 

ordered activity (Chialvo, 2010), it has been hypothesised (Ros et al., 2016) that these fluctuating 

signals will eventually meet the threshold for reward, and after some repeated events/rewards they can 

be “tuned” to the feedback through synaptic plasticity. This will cause the brain to memorize a new 

“set-point” and tune to it for reaching the rewards. Notably, in such a scenario success feedback 

would be more informative. Failure feedback would be less informative since memorizing the brain 

activity leading to failure would require incredibly large memory resources given the infinite 

possibilities of variable brain states. Our current findings support this explanation since the FRN, CP 

and P3 were higher in response to sucess feedback and these signals are sensitive to the relevance of 

feedback information for learning (for a review: Luft, 2014). Since most neurofeedback studies in 

humans present  provide both success and failure feedback (e.g. Mennella et al., 2017; Ros et al., 

2016), we suggest that future studies test the efficacy of providing feedback only when the participant 

presents the desired pattern, as this might be more effective (as in Quaedflieg et al., 2016). 

Interestingly, a recent study (Radua et al., 2018) analysing the brain responses to varying 

posititive and negative feedback using fMRI observed a progressive reduction of sensitivity to failure 
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and an increase in response to success feedback. They also observed that only the responses 

associated with processing success feedback (i.e. deactivation of the medial prefrontal cortex and 

anterior cingulate cortex) were correlated with neurofeedback learning. We suggest that it could be 

that the failure signals are processed more intensely at the beginning of learning, but as they do not 

provide enough information for effective learning, they start being inhibited in order to favour the 

most informative feedback for learning. In our study the differences between the ERPs in response to 

success and failure feedback reduced during the course of the session, and the ERPs were overall 

weaker, but this reduction was higher when the feedback was random. Altogether these findings 

might suggest that the responses to feedback reduce more when they are not informative or are 

redundant. 

In this study, we can conclude that success feedback is processed more intensely than failure 

feedback during neurofeedback. We did not find consistent differences in feedback processing 

between different neurofeedback protocols, which might suggest that this is a general learning 

mechanism in EEG-neurofeedback protocols. As such, the feedback processing mechanisms we 

observed may be valid for a variety of neurofeedback protocols. However, our study was limited to a 

single and short session. Additionally, the learning we observed in this short session was weak and 

limited by the format of the feedback, which did not scale to the size of the change in the brain signal. 

Future studies need to investigate how these signals relate learning over multiple sessions, and how 

this could lead to long-term changes in resting state brain activity, which were not observed in this 

study.  
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