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Abstract

A regular clique in a regular graph is a clique such that every vertex outside of
the clique is adjacent to the same positive number of vertices inside the clique. We
continue the study of regular cliques in edge-regular graphs initiated by A. Neumaier
in the 1980s and attracting current interest. We thus define a Neumaier graph to
be an non-complete edge-regular graph containing a regular clique, and a strictly
Neumaier graph to be a non-strongly regular Neumaier graph. We first prove some
general results on Neumaier graphs and their feasible parameter tuples. We then
apply these results to determine the smallest strictly Neumaier graph, which has
16 vertices. Next we find the parameter tuples for all strictly Neumaier graphs
having at most 24 vertices. Finally, we give two sequences of graphs, each with
ith element a strictly Neumaier graph containing a 2i-regular clique (where i is a
positive integer) and having parameters of an affine polar graph as an edge-regular
graph. This answers questions recently posed by G. Greaves and J. Koolen.

Mathematics Subject Classifications: 05C69, 05E30

1 Introduction

A regular clique, or more specifically an m-regular clique, in a regular graph Γ is a clique
S such that every vertex of Γ not in S is adjacent to the same positive number m of
vertices of S. A regular clique can be equivalently viewed as a clique which is a part of an
equitable 2-partition (see [5, 16]), or a completely regular code of radius 1 (see [24] and
[4, p. 345]). It is well known that a clique in a strongly regular graph is regular if and
only if it is a Delsarte clique (see [1]; [4, Proposition 1.3.2(ii)]; [4, Proposition 4.4.6]).

In the early 1980s, A. Neumaier [23] studied regular cliques in edge-regular graphs,
and a certain class of designs whose point graphs are strongly regular and contain regular
cliques. He then posed the problem of whether there exists a non-complete, edge-regular,
non-strongly regular graph containing a regular clique. We thus define a Neumaier graph
to be a non-complete edge-regular graph containing a regular clique and define a strictly
Neumaier graph to be a non-strongly regular Neumaier graph. (This is analoguous to the
definitions of Deza graphs and strictly Deza graphs [12].)

Informed about the problem by L. Soicher in 2015, G. Greaves and J. Koolen then gave
an answer by constructing an infinite family of strictly Neumaier graphs [19]. A. Gavrilyuk
and S. Goryainov then searched for examples in a collection of known Cayley-Deza graphs
[17], leading to the discovery of four more strictly Neumaier graphs. Recently, Greaves and
Koolen [18] presented another infinite family of strictly Neumaier graphs, which contains
one of the four strictly Neumaier graphs found by Gavrilyuk and Goryainov. Then Evans
and Goryainov observed that the new infinite family of strictly Neumaier graphs can be
generalised. Moreover, all four of the strictly Neumaier graphs found by Gavrilyuk and
Goryainov are contained in the generalisation of the infinite family of graphs presented in
[18].

Further to a discussion with Koolen, Goryainov and his student D. Panasenko found
the smallest strictly Neumaier graph, using methods similar to some of their work on Deza
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graphs. At roughly the same time, Evans found the smallest strictly Neumaier graph in a
collection of vertex-transitive edge-regular graphs which had been provided by G. Royle
[21]. Subsequent communications led to the collaboration found in the current paper.

In their paper [19], Greaves and Koolen pose two further questions about strictly
Neumaier graphs which naturally arose from their work:

(A) [19, Question A] What is the minimum number of vertices for which there exists a
non-strongly-regular, edge-regular graph having a regular clique?

(B) [19, Question B] Does there exist a non-strongly-regular, edge-regular graph having
a regular clique with nexus greater than 2?

Indeed, before our work, all known strictly Neumaier graphs had at least 24 vertices, and
contained m-regular cliques only for the value m = 1.

In this paper we answer both of the above questions. In Section 3 we give some
general results on Neumaier graphs and their feasible parameter tuples. In particular,
we concentrate on conditions involving parameter tuples that force a Neumaier graph to
be strongly regular. We also give a classification of Neumaier graphs with parameters
achieving equality in a certain inequality. In Section 4 we apply the results found in
Section 3 to determine the smallest strictly Neumaier graph, which turns out to be vertex-
transitive and has 16 vertices, valency 9 and a 2-regular 4-clique.

In Section 5 we present two new infinite sequences of strictly Neumaier graphs. Each
of these sequences has first element the unique smallest strictly Neumaier graph. The ith

element of each of these sequences is a strictly Neumaier graph which contains a 2i-regular
clique. In fact, all of these graphs contain a subgraph isomorphic to a clique extension (see
the definition of a clique extension in [4, p. 6]) of the unique smallest strictly Neumaier
graph. These constructions show that the nexus of a clique in a strictly Neumaier graph
is not bounded above by some constant number. Furthermore, each of the graphs in these
sequences has the edge-regular graph parameters of an affine polar graph.

2 Preliminaries

In this paper we only consider finite, undirected graphs that contain no loops or multiple
edges. Let Γ be such a graph. We denote by V (Γ) the vertex set of Γ, and E(Γ) the
edge set of Γ. For a vertex u ∈ V (Γ), we define the neighbourhood of u in Γ to be the
set Γ(u) = {w ∈ V (Γ) : uw ∈ E(Γ)}. The complement of a graph Γ, denoted by Γ, is
the graph with vertex set V (Γ) = V (Γ), and for distinct vertices u,w ∈ V (Γ), we have
uw ∈ E(Γ) if and only of uw 6∈ E(Γ).

Let Γ be a graph and v = |V (Γ)|. The graph Γ is said to be k-regular if every vertex has
neighbourhood of size k. The graph Γ is called regular if there exists a value k such that
Γ is k-regular. The graph Γ is edge-regular if it is non-empty, k-regular, and every pair of
adjacent vertices have exactly λ common neighbours. Then Γ is said to be edge-regular
with parameters (v, k, λ), and refer to this as a parameter tuple. Denote by ERG(v, k, λ)
the set of edge-regular graphs with parameters (v, k, λ). The graph Γ is co-edge-regular if
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it is non-complete, k-regular and every pair of distinct non-adjacent vertices have exactly
µ common neighbours. Then Γ is said to be co-edge-regular with parameters (v, k, µ).
The graph Γ is strongly regular if it is both edge-regular and co-edge-regular. If Γ is
edge-regular with parameters (v, k, λ), and co-edge-regular with parameters (v, k, µ), the
graph is said to be strongly regular with parameters (v, k, λ, µ).

A clique in a graph Γ is a set of pairwise adjacent vertices of Γ, and a clique of size s
is called an s-clique. A clique S in a regular graph Γ is regular if every vertex not in S is
adjacent to the same number m > 0 of vertices in S. In this case we say that S has nexus
m and is m-regular. Let us give several examples of strongly regular graphs containing a
regular clique.

Example 1. Let Kr×t be the complete multipartite graph which has r parts of size t. Let
S be a set consisting of exactly one vertex from each part of Γ. Then S is a (r−1)-regular
r-clique.

Example 2. For n > 2, the square lattice graph L2(n) has vertex set {1, 2, . . . , n} ×
{1, 2, . . . , n}, and two distinct vertices are joined by an edge precisely when they have the
same value at one coordinate. This graph is strongly regular with parameters (n2, 2(n−
1), n− 2, 2). Let S be a set consisting of all vertices of L2(n) which have the same fixed
value at the same fixed coordinate. Then S is a 1-regular n-clique.

Example 3. For n > 3, the triangular graph T (n) has vertex set consisting of the subsets
of {1, 2, . . . , n} of size 2, and two distinct vertices A,B are joined by an edge precisely
when |A∩B| = 1. This graph is strongly regular with parameters (

(
n
2

)
, 2(n− 2), n− 2, 4).

Let S be a set consisting of all vertices of T (n) which contain a fixed element from
{1, 2, . . . , n}. Then S is a 2-regular (n− 1)-clique.

A Neumaier graph is a non-complete edge-regular graph which contains a regular
clique. We denote by NG(v, k, λ;m, s) the set of Neumaier graphs which are edge-regular
with parameters (v, k, λ), and contain an m-regular s-clique, where s > 2. A strictly
Neumaier graph is a Neumaier graph which is not strongly regular (the definition of a
strictly Neumaier graph is analoguous to the definition of a strictly Deza graph, see [12]).

The tuple (v, k, λ) is said to be extremal if ERG(v, k, λ) is non-empty and contains
only strongly regular graphs. Similarly, the tuple (v, k, λ;m, s) is said to be extremal if
NG(v, k, λ;m, s) is non-empty and contains only strongly regular graphs.

To answer Question A, we collect a series of conditions on the parameters (v, k, λ;m, s)
that force at least one of the following to occur;

1. ERG(v, k, λ) is empty.

2. (v, k, λ) is extremal.

3. NG(v, k, λ;m, s) is empty.

4. (v, k, λ;m, s) is extremal.

In the current paper, we will present both new and known results on extremal parameter
tuples (v, k, λ) and (v, k, λ;m, s). Conditions for a parameter tuple (v, k, λ) to be extremal
is an interesting area of study, and many instances of this type of extremality condition
can be found in the literature (for example, in [7] or [4, Section 1.4]).
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2.1 Edge-regular graphs

First we state simple results concerned with taking the complement of the graphs we work
with.

Lemma 2.1. The following statements hold.

(i) Suppose Γ is a k-regular graph. Then Γ is a (v − k − 1)-regular graph.

(ii) Suppose Γ is an edge-regular graph with parameters (v, k, λ). Then Γ is co-edge-
regular, with parameters (v, v − k − 1, v − 2k + λ).

(iii) Suppose Γ is a co-edge-regular graph with parameters (v, k, µ). Then Γ is edge-
regular, with parameters (v, v − k − 1, v − 2− 2k + µ).

Corollary 2.2. Let Γ be a strongly regular graph with parameters (v, k, λ, µ). Then Γ is
strongly regular with parameters (v, v − k − 1, v − 2− 2k + µ, v − 2k + λ).

The next lemma gives basic properties of an edge-regular graph.

Lemma 2.3 ([4], Chapter 1). Let Γ be an edge-regular graph with parameters (v, k, λ).
Then:

(i) v > k > λ;

(ii) v > 2k − λ;

(iii) 2 divides vk;

(iv) 2 divides kλ;

(v) 6 divides vkλ.

2.2 Edge-regular graphs with regular cliques

Let Γ be an edge-regular graph with parameters τ = (v, k, λ). Our main tool in the
investigation of Neumaier graphs is the clique adjacency polynomial, which is defined in
[27], and given by

Cτ (x, y) := x(x+ 1)(v − y)− 2xy(k − y + 1) + y(y − 1)(λ− y + 2).

The following theorem uses the clique adjacency polynomial to give a criterion for when
any s-clique in any graph Γ from ERG(v, k, λ) is m-regular.

Lemma 2.4 ([28], Theorem 3.1). Let Γ be a graph in ERG(v, k, λ) having an s-clique S,
with s > 2. If m is a positive integer then

Cτ (m− 1, s) = Cτ (m, s) = 0 (1)

if and only if S is an m-regular clique.

Further, we list several more tools which we use in the investigation of Neumaier
graphs. The next result gives arithmetic conditions on the parameters of a Neumaier
graph. By analysing these relations further, we reconstruct s and m as functions of
v, k, λ. The property of these expressions to be integral numbers can then be seen as
necessary conditions for an edge-regular graph to contain a regular clique.
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Lemma 2.5. Let Γ be a graph in NG(v, k, λ;m, s). Then:

(i) (v − s)m = (k − s+ 1)s;

(ii) (k − s+ 1)(m− 1) = (λ− s+ 2)(s− 1);

(iii) s is the largest root of the polynomial

(v − 2k + λ)y2 + (k2 + 3k − λ− v(λ+ 2))y + v(λ+ 1− k);

(iv) m is the largest root of the polynomial

(v − s)x2 − (v − s)x− s(s− 1)(λ− s+ 2).

Proof.

(i) By Lemma 2.4, Cτ (m, s) = Cτ (m− 1, s) = 0 where τ = (v, k, λ). Then (i) is found
by evaluating 0 = Cτ (m, s)− Cτ (m− 1, s).

(ii) Take the equation in (i) and substitute into Cτ (m, s).

(iii) Multiply the expression in (ii) by (v− s) and use (i) to substitute for (v− s)m. We
see that s is a root of the polynomial. Note that v > 2k − λ and v(λ + 1 − k) 6 0
by Lemma 2.3. This means there is at most one positive root to the polynomial.

(iv) Multiply the expression in (i) by (m−1) and use (ii) to substitute for (k−s+1)(m−1).
We see that m is a root of the polynomial. Note that λ − s + 2 > 0 as an edge in
an s-clique is in at least s− 2 triangles of the graph Γ. This means there is at most
one positive root of the polynomial.

Now we present a collection of results giving properties of all regular cliques in a
Neumaier graph.

Lemma 2.6 ([23], Theorem 1.1). Let Γ be a graph in NG(v, k, λ;m, s). Then:

(i) the maximum size of a clique in Γ is s;

(ii) all regular cliques in Γ are m-regular cliques;

(iii) the regular cliques in Γ are precisely the cliques of size s.

We finish this section by giving a lower bound on the size of a regular clique in a
strictly Neumaier graph. We can understand such a result as saying the following: Take
a parameter tuple (v, k, λ;m, s) where s is less than the bound. Then the parameters
(v, k, λ;m, s) are extremal.

Lemma 2.7 ([19], Prop. 4.2). Let Γ be a strictly Neumaier graph from NG(v, k, λ;m, s).
Then s > 4, and consequently, λ > 2.
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2.3 Affine polar graphs V O+(2e, 2)

Let V be a (2e)-dimensional vector space over a finite field Fq, where e > 2 and q is a
prime power, provided with the hyperbolic quadratic form Q(x) = x1x2 + x3x4 + . . . +
x2e−1x2e. The set Q+ of zeroes of Q is called the hyperbolic quadric, where e is the maximal
dimension of a subspace in Q+. A generator of Q+ is a subspace of maximal dimension
e in Q+.

Lemma 2.8 ([3, Theorem 7.130]). Given an (e−1)-dimensional subspace W of Q+, there
are precisely two generators that contain W .

Denote by V O+(2e, q) the graph on V with two vectors x, y being adjacent if and only
if Q(x− y) = 0. The graph V O+(2e, q) is known as an affine polar graph (see [3, 5, 6]).

Lemma 2.9. The graph V O+(2e, q) is a vertex-transitive strongly regular graph with
parameters

v = q2e

k = (qe−1 + 1)(qe − 1)

λ = q(qe−2 + 1)(qe−1 − 1) + q − 2

µ = qe−1(qe−1 + 1).

(2)

Note that V O+(2e, q) is isomorphic to the graph defined on the set of all (2 × e)-
matrices over Fq of the form (

x1 x3 . . . x2e−1
x2 x4 . . . x2e

)
, (3)

where two matrices are adjacent if and only if the scalar product of the first and the
second rows of their difference is equal to 0.

Lemma 2.10. There is a one-to-one correspondence between cosets of generators of Q+

and maximal cliques in V O+(2e, q).

Proof. Since V O+(2e, q) is vertex-transitive and the additive shift by an element is an
automorphism of V O+(2e, q), it suffices to prove that every maximal clique containing
the zero vector is a generator. The fact that every maximal clique containing the zero
vector is a generator can be seen from [3, Theorem 7.3], [3, Corollary 7.16] and [3, Corollary
7.137].

Lemma 2.11. Every maximal clique in V O+(2e, q) is a qe−1-regular qe-clique.

Proof. This follows from Lemma 2.9, Lemma 2.10 and [4, Proposition 1.3.2(ii)].

A spread in V O+(2e, q) is a set of qe disjoint maximal cliques that correspond to all
cosets of a generator.
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3 Conditions on parameters to be extremal

We will now give a collection of conditions on parameter tuples to show they are extremal.
We first consider the tuples associated with edge-regular graphs, and then consider the
tuples associated with Neumaier graphs.

3.1 The triple of parameters (v, k, λ)

When the triple (v, k, λ) is extremal, there are no edge-regular graphs in ERG(v, k, λ)
which are not strongly regular. Thus there is no strictly Neumaier graph with these edge-
regular parameters. This fact will be heavily used when analysing the smallest Neumaier
graph.

The following lemma gives a list of sufficient conditions for (v, k, λ) to be extremal.

Lemma 3.1. Suppose ERG(v, k, λ) is non-empty for some v, k, λ. Then the triple (v, k, λ)
is extremal if at least one of the following holds:

(i) v = 2k − λ.

(ii) v = 2k − λ+ 1.

(iii) There is a strongly regular graph with parameters (v, v − k − 1, 0, v − 2k + λ).

Proof.

(i) These graphs are exactly the graphs Ks×t (see [28, Theorem 4.1]).

(ii) Take an edge-regular graph with parameters (v, k, λ), with v − 2k + λ = 1. By
Lemma 2.1, we see that Γ is co-edge-regular with parameters (v, v− k− 1, 1). Then
by [4, Lemma 1.1.3], Γ is strongly regular. Thus Γ is strongly regular.

(iii) Let ∆ be a strongly regular graph with parameters (v, v − k − 1, 0, v − 2k + λ).
By Corollary 2.2, ∆ is strongly regular with parameters (v, k, λ, µ). A standard
counting argument (see [4, Lemma 1.1.1]) shows us that k(k−λ−1) = µ(v−k−1).

Now let u ∈ V (Γ). First we partition V (Γ) into V1 = {u}, V2 = Γ(u) and V3 =
V (Γ) \ (Γ(u) ∪ {u}). Since each vertex in V2 has k − λ − 1 neighbours in V3, there
are k(k − λ− 1) edges between V2 and V3.

Define b as the average number of neighbours a vertex in V3 has in V2. Then the
number of edges between V3 and V2 is b(v− k− 1). Therefore, we have k(k− λ− 1)
is equal to both b(v − k − 1) and µ(v − k − 1), so b = µ.

Let w ∈ V3. The number of neighbours of w in V2 is at least k − (v − k − 2) = µ,
as |V3| = v − k − 1. As b = µ is the average of numbers at least as big as b, they
must all equal b. This means the number of common neighbours of u and w in Γ is
exactly µ, and so Γ is strongly regular.
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3.2 The quintuple of parameters (v, k, λ;m, s)

Next we will give a necessary condition for the existence of a graph in NG(v, k, λ;m, s),
in the form of an inequality that is linear in the parameters k, λ,m, s. When equality is
achieved, we show that the parameters (v, k, λ;m, s) are extremal.

Firstly, we give a useful lemma involving Neumaier graphs where the neighbourhood
of any vertex has a certain structure.

Lemma 3.2. Let Γ be a graph from NG(v, k, λ;m, s). Further suppose that every vertex in
Γ has neighbourhood consisting of l vertex disjoint cliques of size s−1. Then Γ is strongly
regular, with parameters v = s+(l−1)(s−1)s/m, k = l(s−1), λ = (m−1)(l−1)+s−2
and µ = lm.

Proof. Take any vertex u ∈ V (Γ) and w 6∈ Γ(u). The neighbourhood of u consists of
disjoint (s − 1)-cliques. Together with u each of these cliques define an s-clique. These
cliques are necessarily m-regular by Theorem 2.4. Thus w is adjacent to m vertices in
each of these cliques, and has exactly lm neighbours in common with u. This proves Γ is
strongly regular with µ = lm.

The formulae for k and λ can be derived by simple counting arguments. Then for v,
we use Proposition 2.5.

Now we give the inequality of the parameters (v, k, λ) of a Neumaier graph. In
the equality case, we show we are in a situation covered by Lemma 3.2, proving that
(v, k, λ;m, s) is extremal.

Theorem 3.3. Let Γ be a graph from NG(v, k, λ;m, s). Then

k − λ− s+m− 1 > 0 (*)

Equality holds if and only if every vertex in Γ has a neighbourhood consisting of two vertex
disjoint (s − 1)-cliques. In this case, Γ is strongly regular with v = s + (s(s − 1)/m),
k = 2(s− 1), λ = s+m− 3 and µ = 2m.

Proof. Let S be an m-regular s-clique in Γ and u ∈ S. Consider a vertex w ∈ V (Γ) \ S,
with uw ∈ E(Γ). We know that u has k − s other neighbours in V (Γ) \ S, and w has
m − 1 neighbours in S \ {u}. Thus u and w have exactly m − 1 common neighbours in
S, and at most k − s common neighbours in V (Γ) \ S. As u,w have exactly λ common
neighbours, we must have λ 6 k − s+m− 1.

When equality holds, we see that w must be adjacent to all neighbours of u in V (Γ)\S.
By repeating the argument for all other edges uz, with z ∈ V (Γ) \ S, we see that u has a
neighbourhood consisting of two vertex disjoint cliques.

By Proposition 2.5 (ii) and k = λ+s−m+1, we deduce that (λ−s−m+3)(s−m) = 0.
If s = m, Γ is necessarily complete. Otherwise, λ = s+m−3 and k = 2(s−1). This proves
that for all u ∈ S, u has a neighbourhood consisting of two vertex disjoint (s− 1)-cliques.

Now take a vertex u ∈ V (Γ) \ S. As m > 1, u is adjacent to a vertex w ∈ S. As the
neighbourhood of w consists of (s− 1)-cliques, u is contained in S

′
, which is one of these
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(s− 1)-cliques. Then S = S
′ ∪ {w} is an s-clique that contains u. Thus, we have proved

that every vertex is contained in an s-clique.
By Theorem 2.4, any s-clique is necessarily m-regular. So we can apply the above

argument to show that any vertex u ∈ V (Γ) has a neighbourhood consisting of two vertex
disjoint (s− 1)-cliques in Γ. The result then follows from Lemma 3.2.

3.2.1 Classifying the graphs in the equality case

In fact, we can give a full description of all Neumaier graphs with parameters satisfying
equality in (*).

Theorem 3.4. Let Γ be a graph from NG(v, k, λ;m, s), where k − λ − s + m − 1 = 0.
Then Γ is one of the following strongly regular graphs:

(i) the square lattice graph L2(s);

(ii) the triangular graph T (s+ 1), where s > 3;

(iii) the complete s-partite graph Ks×2, with parts of size 2.

We prove this theorem by taking cases on the value of m. We start with the case
m = 1.

Lemma 3.5. Let Γ be a graph from NG(v, k, λ;m, s), where k − λ− s+m− 1 = 0 and
m = 1. Then Γ is isomorphic to the square lattice graph L2(s).

Proof. By Theorem 3.3, Γ is strongly regular with parameters (s2, 2(s− 1), s− 2, 2). Any
strongly regular graph with parameters (s2, 2(s−1), s−2, 2) must be isomorphic to L2(s),
unless s = 4 (see [26]). In this case, there is only one strongly regular graph that is not
isomorphic to L2(4), called the Shrikhande graph. This graph does not contain a regular
clique (see [9]).

Next we consider the case m = 2.

Lemma 3.6. Let Γ be a graph from NG(v, k, λ;m, s), where k − λ− s+m− 1 = 0 and
m = 2. Then Γ is isomorphic to the triangular graph T (s+ 1).

Proof. By Theorem 3.3, Γ is strongly regular with parameters (s2, 2(s− 1), s− 2, 2). Any
strongly regular graph with parameters (

(
s+1
2

)
, 2(s − 1), s − 1, 4) must be isomorphic to

T (s + 1), unless s = 7 (see [10, 20, 25] or [9]). In this case, there are only three strongly
regular graphs that are not isomorphic to T (8), called the Chang graphs. Each of these
does not contain a regular clique (see [9]).

Now we only need to consider the case m > 3. For this case, we can show that m is
particularly large with respect to s, which forces the graph to be isomorphic to Ks×2.

Lemma 3.7. Let Γ be a graph from NG(v, k, λ;m, s), where k − λ− s+m− 1 = 0 and
m > 3. Then Γ is isomorphic to Ks×2.
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Proof. We will first show that m > 1 + s/2.
Let Γ be a graph in NG(v, k, λ). Take a subset S ⊂ V (Γ), S = {u1, u2, . . . , us},

where S a m-regular s-clique in Γ. Without loss of generality, let w ∈ V (Γ) \ S, with
{u1, u2, u3} ⊆ Γ(w) ∩ S. Note that by the equality case of Theorem 3.3, w is adjacent to
all neighbours of u1, u2, u3 in V (Γ) \ S.

As Γ is k-regular, we have |N(ui) ∩ V (Γ) \ S| = k − s + 1 for all i ∈ {1, . . . , s}. Also
we must have |N(ui) ∩ N(uj) ∩ V (Γ) \ S| = λ − s + 2 for all i, j ∈ {1, . . . , s}. Thus we
have

|(N(u1) ∪N(u2) ∪N(u3)) ∩ V (Γ) \ S| =3(k − s+ 1)− 3(λ− s+ 2)

+ |(N(u1) ∩N(u2) ∩N(u3)) ∩ V (Γ) \ S|

We see that w is adjacent to at least m+ 3(k − λ− 1) vertices. Therefore, this has to be
less than k. By using λ = k − s + m − 1 and k = 2(s − 1) (by Theorem 3.3), we have
shown that m > 1 + s/2.

Let u,w ∈ V (Γ) \ S. As S is m-regular and m > s/2, there must exist a i ∈ S such
that iu, iw ∈ E(Γ). We also know that the neighbourhood of i in V (Γ) \ S is a clique, so
uw ∈ E(Γ). Thus we have shown that V (Γ) \ S is a clique in Γ.

By maximality of S, we must have |V (Γ)\S| 6 s. Also, because k = 2(s−1), we must
have |V (Γ) \ S| > s − 1. As Γ is non-complete, we have |V (Γ) \ S| = s, and m = s − 1.
By Theorem 3.3, v = 2s, λ = 2(s − 2). Applying Proposition 3.1, we have shown the
result.

4 Small extremal parameter tuples and the smallest strictly
Neumaier graph

The following tables list all tuples (v, k, λ, s,m) of integers, such that the following hold:

1. 0 < k < v − 1, v 6 24, 0 6 λ < k, 2 6 s 6 λ+ 2 and m > 1.

2. 2 divides both vk and kλ, and 6 divides vkλ (see Lemma 2.3).

3. Cτ (m− 1, s) = Cτ (m, s) = 0, where τ = (v, k, λ) (see Lemma 2.4).

These tables were obtained by a straightforward computation using GAP [14]. All calcu-
lations were exact and took a total of about 20 CPU milliseconds on a desktop PC.

Thus, if there is a Neumaier graph from NG(v, k, λ;m, s) such that v 6 24, then the
tuple v, k, λ,m, s appears in our tables. The rightmost column of our tables display a
result which proves that the tuple (v, k, λ) or the tuple (v, k, λ;m, s) is extremal, or the
symbol ‘-’ otherwise. For example, L3.1 (i) refers to Lemma 3.1 part (i), and T3.3 refers
to Theorem 3.3.

We see that Table 1 rules out all possible parameter tuples (v, k, λ;m, s) for a strictly
Neumaier graph when v < 16. Further, the table shows that any strictly Neumaier graph
on 16 vertices is from NG(16, 9, 4; 2, 4). A graph in NG(16, 9, 4; 2, 4) is given in the next
section. So Table 1 and this graph give the answer to Question A.
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v k λ m s result
4 2 0 1 2 L3.1 (i)
6 3 0 1 2 L3.1 (i)

4 2 2 3 L3.1 (i)
8 4 0 1 2 L3.1 (i)

6 4 3 4 L3.1 (i)
9 4 1 1 3 L2.7

6 3 2 3 L3.1 (i)
10 5 0 1 2 L3.1 (i)

6 3 2 4 L3.1 (iii)
8 6 4 5 L3.1 (i)

12 5 2 1 4 T3.3
6 0 1 2 L3.1 (i)

4 1 6 T3.3
8 4 2 3 L3.1 (i)
9 6 3 4 L3.1 (i)
10 8 5 6 L3.1 (i)

v k λ m s result
14 7 0 1 2 L3.1 (i)

9 6 3 7 T3.3
12 10 6 7 L3.1 (i)

15 6 1 1 3 L2.7
3 1 5 T3.3

8 4 2 5 T3.3
10 5 2 3 L3.1 (i)

6 3 5 Lii
12 9 4 5 L3.1 (i)

16 6 2 1 4 T3.3
8 0 1 2 L3.1 (i)

6 1 8 T3.3
9 4 2 4 -
10 6 3 6 L3.1 (iii)
12 8 3 4 L3.1 (i)
14 12 7 8 L3.1 (i)

Table 1. Possible parameters of Neumaier graphs on v 6 16 vertices

Table 1 and 2 together show that (24, 8, 2) is the only possible parameter tuple for a
strictly Neumaier graph containing a 1-regular clique when v 6 24.

Finally, direct computations can show that there is only one strictly Neumaier graph
in NG(16, 9, 4; 2, 4), up to isomorphism, and there are no strictly Neumaier graphs with
parameter tuples (21, 14, 9; 4, 7) and (22, 12, 5; 2, 4). Let us explain some ideas of the
computations. We fix a subgraph induced by vertices of a clique with given size. Then we
exhaust all regular graphs such that the fixed clique is regular with given nexus. Using
MAGMA [2], we find that the graphs in NG(16, 9, 4; 2, 4) are isomorphic pairwise.

Thus we have found that any strictly Neumaier graph on at most 24 vertices must
have parameters (16, 9, 4; 2, 4) or (24, 8, 2; 1, 4).

4.1 Vertex-transitive strictly Neumaier graphs

The authors discovered the smallest strictly Neumaier graph independently, using com-
pletely different approaches.

Goryainov and Panasenko were looking for strictly Neumaier graphs that admit a
partition into regular cliques and used this pattern for computer searching.

Evans found the graph in a collection of vertex-transitive edge-regular graphs received
from Gordon Royle. Holt and Royle have recently enumerated all transitive permutation
groups of degree at most 47 [21]. From this, Royle was able to enumerate all vertex-
transitive edge-regular graphs on less than 47 vertices.

Thus we also find all vertex-transitive strictly Neumaier graphs on at most 47 vertices
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v k λ m s result
18 7 4 1 6 T3.3

9 0 1 2 L3.1 (i)
12 6 2 3 L3.1 (i)
15 12 5 6 L3.1 (i)
16 14 8 9 L3.1 (i)

20 10 0 1 2 L3.1 (i)
15 10 3 4 L3.1 (i)
16 12 4 5 L3.1 (i)
18 16 9 10 L3.1 (i)

21 8 1 1 3 L2.7
5 1 7 T3.3

10 5 2 6 T3.3
12 7 3 7 T3.3

8 3 9 T3.3
14 7 2 3 L3.1 (i)

9 4 7 -
15 10 4 6 L3.1 (ii)
16 12 6 9 L3.1 (ii)
18 15 6 7 L3.1 (i)

v k λ m s result
22 11 0 1 2 L3.1 (i)

12 5 2 4 -
14 9 4 8 T3.3
16 12 6 11 T3.3
20 18 10 11 L3.1 (i)

24 8 2 1 4 -
4 1 6 T3.3

9 6 1 8 T3.3
12 0 1 2 L3.1 (i)

10 1 12 T3.3
16 8 2 3 L3.1 (i)
18 12 3 4 L3.1 (i)

15 6 16 T3.3
20 16 5 6 L3.1 (i)

17 10 16 T3.3
21 18 7 8 L3.1 (i)
22 20 11 12 L3.1 (i)

Table 2. Possible parameters of Neumaier graphs on 16 < v 6 24 vertices

using the enumeration [21]. We list the parameters of all vertex-transitive strictly Neu-
maier graph on at most 47 vertices, and the number of vertex-transitive strictly Neumaier
graphs with these parameters.

(i) 1 graph with parameters (16, 9, 4; 2, 4).

(ii) 4 graphs with parameters (24, 8, 2; 1, 4).

(iii) 2 graphs with parameters (28, 9, 2; 1, 4).

(iv) 1 graph with parameters (40, 12, 2; 1, 4).

We note that the four vertex-transitive strictly Neumaier graphs in NG(24, 8, 2; 1, 4) ap-
pear in [17]. They come about in a search for Deza graphs, which are a certain generali-
sation of strongly regular graphs.

5 Two constructions and two generalisations of the smallest
strictly Neumaier graph

In this section, we will construct two sequences of strictly Neumaier graphs that generalise
the smallest strictly Neumaier graph. The motivation behind both constructions is as
follows.

the electronic journal of combinatorics 26(2) (2019), #P2.29 13



Consider a graph Γ, and two disjoint subsets S, T of the vertices of Γ. Now we introduce
an important operation on the graph Γ. For each vertex v in S, we do the following. First
take N = N(v) ∩ T , the neighbours of v in T , and M = T \N . Then delete all edges vu
where u is in N , and insert all edges vu where u is in M . We will call this operation a
switching of the edges between S and T in the graph Γ.

Note that the smallest Neumaier graph contains disjoint 2-regular 4-cliques. A switch-
ing between any distinct pair of these cliques will not change the fact that they are 2-
regular. Therefore, if we could find a strongly regular graph with these parameters and
containing disjoint 2-regular 4-cliques, we could hope that the smallest Neumaier graph
is the result of switching edges between them.

In the following subsections we will see that the smallest Neumaier graph is the result
of two consecutive switchings of the graph V O+(4, 2). We then generalise our switchings to
the graphs V O+(2e, 2) for larger e, and construct infinite sequences of strictly Neumaier
graphs with the same edge-regular parameters as V O+(2e, 2). From now on, we will
denote V O+(2e, 2) as the graph Γe. Throughout this section we use matrix notation with
stars ‘*’ as entries, which denotes the set of corresponding matrices where the stars take
all possible values independently.

5.1 The first construction of the smallest Neumaier graph

Consider the 1-dimensional subspace

W =

(
∗ 0
0 0

)
.

According to Lemma 2.8, the subspace W is contained in exactly two generators. These
are the spaces

W1 =

(
∗ ∗
0 0

)
and W2 =

(
∗ 0
0 ∗

)
.

Take the vector

v =

(
0 0
1 0

)
and consider the cosets

v +W1 =

(
∗ ∗
1 0

)
,

v +W2 =

(
∗ 0
1 ∗

)
,

whose intersection is

v +W =

(
∗ 0
1 0

)
.

In this setting, the adjacency matrix of the affine polar graph Γ2 = V O+(4, 2) can be seen
in Figure 1. The graph Γ2 is isomorphic to the complement of the square lattice graph
L2(4).
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We note that switching edges between the cliques W1, v+W1 gives a graph isomorphic
to the complement of the Shrikhande graph. The switching of edges between the cliques
W1, v + W1 and then between the cliques W2, v + W2 is equivalent to inverting the
highlighted entries in Figure 1. This gives the strictly Neumaier graph Γ2,1 on 16 vertices,
whose adjacency matrix is presented in Figure 2. The notation in the rightmost column
of Figure 2 means the following. Two rows have the same letter if and only if they
correspond to non-adjacent vertices having 8 common neighbours; two rows have the
same number if and only if they correspond to non-adjacent vertices having 4 common
neighbours. Otherwise, every two non-adjacent vertices have 6 common neighbours; every
two adjacent vertices have 4 common neighbours.

5.2 The first generalisation of the smallest strictly Neumaier graph

In this subsection we generalise the construction from Subsection 5.1.
Take the (e− 1)-dimensional subspace

W =

(
∗ . . . ∗ ∗ 0
0 . . . 0 0 0

)
,

where the size of matrices is 2×e. According to Lemma 2.8, the subspace W is contained
in exactly two generators. These are the spaces

W1 =

(
∗ . . . ∗ ∗ ∗
0 . . . 0 0 0

)
and W2 =

(
∗ . . . ∗ ∗ 0
0 . . . 0 0 ∗

)
.

Take the vector

v =

(
0 . . . 0 0 0
0 . . . 0 1 0

)
and consider the cosets

v +W1 =

(
∗ . . . ∗ ∗ ∗
0 . . . 0 1 0

)
, v +W2 =

(
∗ . . . ∗ ∗ 0
0 . . . 0 1 ∗

)
,

whose intersection is

v +W =

(
∗ . . . ∗ ∗ 0
0 . . . 0 1 0

)
.

Denote by Γe,1 = Γe(W,W1,W2, v) the graph obtained from Γe = V O+(2e, 2) by
switching edges between the cliques W1, v+W1 and then between the cliques W2, v+W2.
Let (n, k, λ, µ) be the parameters of the affine polar graph Γe = V O+(2e, 2) as a strongly
regular graph.

Theorem 5.1. The graph Γe,1 is a strictly Neumaier graph with parameters

(22e, (2e−1 + 1)(2e − 1), 2(2e−2 + 1)(2e−1 − 1); 2e−1, 2e).

Further, the number of common neighbours of two non-adjacent vertices in the graph takes
the values µ− 2e−1, µ and µ+ 2e−1.
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11
11
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Figure 1. The adjacency matrix, A2, of Γ2 = V O+(4, 2)

Proof. For any a, b, c, d ∈ F2, let
ab
cd

denote the set of matrices (
∗ . . . ∗ a b
0 . . . 0 c d

)
.
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Figure 2. The adjacency matrix, A2,1, of the graph Γ2,1

Consider the subgraph ∆ of Γe = V O+(2e, 2) induced by the set of all matrices(
∗ . . . ∗ a b
0 . . . 0 c d

)
,

where a, b, c, d run over F2. The adjacency matrix of the subgraph ∆ is presented
by the block-matrix in Figure 3, where K denotes the adjacency matrix of the complete
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graph on 2e−2 vertices; J denotes the all-ones matrix of size 2e−2 × 2e−2; Z denotes the
all-zeroes matrix of size 2e−2 × 2e−2.
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Figure 3. The adjacency matrix, Ae, of the subgraph ∆ of Γe = V O+(2e, 2)

We invert a block of the matrix by inverting each entry of the block. Therefore,
inverting a block with entry J results in a block with entry Z, and inverting a block with
entry Z results in a block with entry J. Switching edges between the cliques W1, v +W1

and then between the cliques W2, v+W2 is equivalent to inverting the highlighted entries
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in Figure 3. This gives the submatrix of the adjacency matrix of Γe,1 = Γ(W,W1,W2, v)
presented in Figure 4. Note that every switched edge connects vertices from the subgraph
∆. This means that the switching preserves all edges having a vertex outside of ∆.
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Figure 4. The adjacency matrix, Ae,1, of the subgraph ∆ of Γe,1 = Γe(W,W1,W2, v)

Let (n, k, λ, µ) be the parameters of the affine polar graph Γe = V O+(2e, 2) as a
strongly regular graph. We have to check that the obtained graph is a strictly Neumaier
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graph. Note that W1 is a regular clique in Γe,1 = Γ(W,W1,W2, v). Let us check that any
pair of vertices in Γe,1 is OK, i.e., any two adjacent vertices have λ common neighbours.
Also, we investigate which values of µ occur in Γe,1.

Let us consider any two vertices inside of ∆. The notation in the right column of the
matrix in Figure 4 means the following. Two block-rows have the same letter if and only
if any row from the one block-row and any row from the other block-row correspond to
non-adjacent vertices having µ+ 2e−1 common neighbours; two block-rows have the same
number if and only if any row from the one block-row and any row from the other block-
row correspond to non-adjacent vertices having µ− 2e−1 common neighbours. Otherwise,
every two non-adjacent vertices corresponding to rows of this submatrix have µ common
neighbours; every two adjacent vertices have λ common neighbours. This means that all
pairs of vertices inside of ∆ are OK.

Let us consider any two vertices outside of ∆. Their neighbours and, consequently,
their common neighbours are preserved by the switching. This means that all pairs of
vertices outside of ∆ are OK.

Let us consider a vertex x in ∆ and a vertex y outside of ∆. If the neighbours of
x are preserved by the switching, then x,y are OK. Assume that the neighbours of x
are switched. Then the vertices x,y are OK since the vertex y is adjacent to half the of
vertices of each block of ∆. In fact, the vertex y is given by a matrix(

y1 . . . y2e−5 y2e−3 y2e−1
y2 . . . y2e−4 y2e−2 y2e

)
,

where there is at least one non-zero among y2, y4, . . . , y2e−4. Without loss of generality,
assume that y2 = 1. Let us show that y is adjacent to half of the vertices in a block(

∗ . . . ∗ a b
0 . . . 0 c d

)
.

We have

y +

(
∗ . . . ∗ a b
0 . . . 0 c d

)
=

(
∗ . . . ∗ a′ b′

1 . . . y2e−4 c′ d′

)
=

(
0 . . . ∗ a′ b′

1 . . . y2e−4 c′ d′

)⋃(
1 . . . ∗ a′ b′

1 . . . y2e−4 c′ d′

)
= Y0 ∪ Y1

Note that |Y0| = |Y1|, and the form Q has value 0 on one of the sets Y0, Y1 and value
1 on the other. We have proved that the switching preserves the number of common
neighbours x and y, completing the proof of the theorem.

5.3 The second construction of the smallest strictly Neumaier graph

Consider the graph Γ2 = V O+(4, 2). Take the generator

W1 =

(
∗ ∗
0 0

)
,
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the vector

v =

(
0 0
0 1

)
and the coset

v +W1 =

(
∗ ∗
0 1

)
.

Divide vertices of the 2-regular 4-cliques W1 and v +W1 into two parts as

W1 = V0 ∪ V1,

v +W1 = V2 ∪ V3,
where

V0 =

(
∗ 0
0 0

)
,

V1 =

(
∗ 1
0 0

)
,

V2 =

(
∗ 0
0 1

)
,

V3 =

(
∗ 1
0 1

)
.

Note that there are all possible edges between V0 and V2, there are all possible edges
between V1 and V3, there are no edges between V0 and V3, and there are no edges between
V1 and V2. Denote by Γ′2 the graph obtained from Γ2 by switching edges between the
cliques W1 and v +W1. Note that each of the sets V0 ∪ V3 and V1 ∪ V2 induces a 4-clique
in Γ′2.

The set

C :=

(
∗ 0
1 ∗

)
induces a 2-regular 4-clique in the graph Γ′2 as well as in Γ2 since the switching between
W1 and v + W1 did not modify the neighbourhoods of the vertices from C. Moreover,
C ∩ (W1 ∪ v + W1) = ∅ holds, and any vertex from C is adjacent to half of the vertices
of each of the sets V0, V1, V2, V3. This means that the switching between the cliques
V1 ∪ V2, C and the switching between the cliques V0 ∪ V3, C preserve the regularity of
Γ′2. Denote by Γ′′2 and Γ′′′2 the graphs obtained from Γ′2 by applying these two switchings,
respectively. One can prove that the graphs Γ′′2 and Γ′′′2 are isomorphic to the smallest
Neumaier graph. Now we show how can the adjacency matrix of the graph Γ′′2 be obtained
from the adjacency matrix of Γ2.

In this setting, the adjacency matrix of the affine polar graph Γ2 = V O+(4, 2) can be
written as in Figure 5.

Switching edges between the cliques W1, v+W1 and then between the cliques V1∪V2,
C is equivalent to inverting the highlighted entries in Figure 5. This gives the strictly
Neumaier graph Γ2,2 on 16 vertices, whose adjacency matrix is presented in Figure 6.
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0 1 1 0 1 0 1 0 0 0 1 1 1 1 0 1

11
11

1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0

Figure 5. The adjacency matrix, B2, of Γ2

The notation in the rightmost column of Figure 6 means the following. Two rows have
the same letter if and only if they correspond to non-adjacent vertices having 8 common
neighbours; two rows have the same number if and only if they correspond to non-adjacent
vertices having 4 common neighbours. Otherwise, every two non-adjacent vertices have 6
common neighbours; every two adjacent vertices have 4 common neighbours.
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Figure 6. The adjacency matrix, B2,2, of Γ2,2

5.4 The second generalisation of the smallest strictly Neumaier graph

In this subsection we generalise the construction from Subsection 5.3 and present one
more family of strictly Neumaier graphs.

For any e > 2, consider the affine polar graph Γe = V O+(2e, 2) and take the regular
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clique given by the generator

W1 =

(
∗ . . . ∗ ∗ ∗
0 . . . 0 0 0

)
.

For the vector

v =

(
0 . . . 0 0 0
0 . . . 0 0 1

)
,

take the regular clique

v +W1 =

(
∗ . . . ∗ ∗ ∗
0 . . . 0 0 1

)
,

which lies in the spread given by W1. Divide W1 and v +W1 into two parts as

W1 = V0 ∪ V1,

v +W1 = V2 ∪ V3,

where

V0 =

(
∗ . . . ∗ ∗ 0
0 . . . 0 0 0

)
,

V1 =

(
∗ . . . ∗ ∗ 1
0 . . . 0 0 0

)
,

V2 =

(
∗ . . . ∗ ∗ 0
0 . . . 0 0 1

)
,

V3 =

(
∗ . . . ∗ ∗ 1
0 . . . 0 0 1

)
.

Note that there are all possible edges between V0 and V2, there are all possible edges
between V1 and V3, there are no edges between V0 and V3, and there are no edges between
V1 and V2. Denote by Γ′e the graph obtained from Γe by switching edges between the
cliques W1 and v+W1. Note that each of the sets V0 ∪ V3 and V1 ∪ V2 induces a 2e-clique
in Γ′e.

The set

C :=

(
∗ . . . ∗ ∗ 0
0 . . . 0 1 ∗

)
induces a 2e−1-regular 2e-clique in the graph Γ′e as well as in Γe since the switching between
W1 and v + W1 did not modify the neighbourhoods of the vertices from C. Moreover,
C ∩ (W1 ∪ v+W1) = ∅ holds, and any vertex from C is adjacent to half of the vertices of
each of the sets V0, V1, V2, V3. This means that the switching between the cliques V1 ∪ V2,
C and the switching between the cliques V0 ∪ V3, C preserve the regularity of Γ′e. Denote
by Γe,2 the graph obtained from Γ′e by switching edges between the cliques W1∪W2 and C.
Let (n, k, λ, µ) be the parameters of the affine polar graph Γe = V O+(2e, 2) as a strongly
regular graph.
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Theorem 5.2. The graph Γe,2 is a strictly Neumaier graph with parameters

(22e, (2e−1 + 1)(2e − 1), 2(2e−2 + 1)(2e−1 − 1); 2e−1, 2e).

Further, the number of common neighbours of two non-adjacent vertices in the graph takes
the values µ− 2e−1, µ and µ+ 2e−1.

Proof. For any a, b, c, d ∈ F2, let
ab
cd

denote the set of matrices (
∗ . . . ∗ a b
0 . . . 0 c d

)
.

For the affine polar graph Γe = V O+(2e, 2), consider the subgraph ∆ induced by the set
of all matrices (

∗ . . . ∗ a b
0 . . . 0 c d

)
,

where a, b, c, d run over F2. The adjacency matrix of the subgraph ∆ is presented by the
block-matrix in Figure 7, where K denotes the adjacency matrix of the complete graph
on 2e−2 vertices; J denotes the all-ones matrix of size 2e−2×2e−2; Z denotes the all-zeroes
matrix of size 2e−2 × 2e−2.

Switching edges between the cliques W1, v+W1 and then between the cliques V1∪V2,
C is equivalent to inverting the highlighted entries in Figure 7. This gives the submatrix
of the adjacency matrix of Γe,2 presented in Figure 8. Note that every switched edge
connects vertices from the subgraph ∆. This means that the switching preserves all edges
having a vertex outside of ∆.

Let (n, k, λ, µ) be the parameters of the affine polar graph V O+(2e, 2) as a strongly
regular graph. We have to check that the obtained graph Γe,2 is a strictly Neumaier graph.
Note that the vertices (

∗ . . . ∗ ∗ 1
0 . . . 0 1 ∗

)
induce a 2e−1-regular 2e-clique in Γe,2 as well as in Γe. Let us check that any pair of
vertices in Γe,2 is OK, i.e., any two adjacent vertices have λ common neighbours. Also,
we investigate which values of µ occur in Γe,2.

Let us consider any two vertices inside of ∆. The notation in the right column of
the matrix in Figure 8 means the following. Two block-rows have the same letter if and
only if any row from one block-row and any row from the other block-row correspond to
non-adjacent vertices having µ+ 2e−1 common neighbours; two block-rows have the same
number if and only if any row from one block-row and any row from the other block-
row correspond to non-adjacent vertices having µ− 2e−1 common neighbours. Otherwise,
every two non-adjacent vertices corresponding to rows of this submatrix have µ common
neighbours. Any two adjacent vertices have λ common neighbours. This means that all
pairs of vertices inside of ∆ are OK.
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Figure 7. The adjacency matrix, Be, of the subgraph ∆ of Γe

Let us consider any two vertices outside of ∆. Their neighbours and, consequently,
their common neighbours are preserved by the switching. This means that all pairs of
vertices outside of ∆ are OK.

Let us consider a vertex x in ∆ and a vertex y outside of ∆. If the neighbours of
x are preserved by the switching, then x,y are OK. Assume that the neighbours of x
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Figure 8. The adjacency matrix, Be,2, of the subgraph ∆ of Γe,2

are switched. Then the vertices x,y are OK since the vertex y is adjacent to half of the
vertices of each block of ∆. In fact, the vertex y is given by a matrix(

y1 . . . y2e−5 y2e−3 y2e−1
y2 . . . y2e−4 y2e−2 y2e

)
,

where there is at least one non-zero among y2, y4, . . . , y2e−4. Without loss of generality,
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assume that y2 = 1. Let us show that y is adjacent to half of the vertices in a block(
∗ . . . ∗ a b
0 . . . 0 c d

)
.

We have

y +

(
∗ . . . ∗ a b
0 . . . 0 c d

)
=

(
∗ . . . ∗ a′ b′

1 . . . y2e−4 c′ d′

)
=

(
0 . . . ∗ a′ b′

1 . . . y2e−4 c′ d′

)⋃(
1 . . . ∗ a′ b′

1 . . . y2e−4 c′ d′

)
= Y0 ∪ Y1.

Note that |Y0| = |Y1|, and the form Q has value 0 on one of the sets Y0, Y1 and value
1 on the other. We have proved that the switching preserves the number of common
neighbours x and y, completing the proof of the theorem.

6 Concluding remarks

Let us note that the smallest strictly Neumaier graph can also be constructed as a Cayley
graph over Z2 × Z8 with generating set

{(0, 1), (0, 2), (0, 4), (0, 6), (0, 7), (1, 1), (1, 2), (1, 6), (1, 7)}.

There are four known non-isomorphic strictly Neumaier graphs with parameters
(24, 8, 2; 1, 4), all of which are vertex-transitive. An interesting open problem is to deter-
mine all strictly Neumaier graphs with these parameters (up to isomorphism). This will
complete the classification of strictly Neumaier graphs on at most 24 vertices.

For e = 3 and 4, the two generalisations in Section 5 are known to give non-isomorphic
graphs. We conjecture that the ith element of the first sequence of graphs is not isomorphic
to the ith element of the second sequence of graphs, except for the value i = 1.

Both of the constructions in Section 5 involve taking two pairs of disjoint regular
cliques, and carrying out a switching between the cliques in each pair. Starting with
the graph V O+(6, 2), it can be shown computationally that any two such consecutive
switchings between regular cliques give rise to only two distinct strictly Neumaier graphs,
each of which appear in one of the above constructions. We also note that we can continue
to apply switchings on disjoint regular cliques, and obtain many new strictly Neumaier
graphs with the same parameters. For example, in this way we can show that there
are at least 4 non-isomorphic strictly Neumaier graphs with the same parameters as
V O+(6, 2). A natural question to ask is how many non-isomorphic strictly Neumaier
graphs can we construct in this manner. We hope to use this iterative process to observe
prolific constructions of strictly Neumaier graphs, similar to some prolific constructions
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of strongly regular graphs (see Wallis [29], Fon-Der-Flaass [13], Cameron & Stark [8] and
Muzychuk [22]).

The above constructions show that the nexus of a clique in a strictly Neumaier graph
is not bounded above by some constant number. However, all known Neumaier graphs
contain regular cliques with nexus 2j, for j a non-negative integer. So we ask if there
exist strictly Neumaier graphs containing regular cliques with nexus not a power of two?
Finally we ask if we can generalise the above constructions to the case q an arbitrary
prime power, which would give strictly Neumaier graphs containing a regular clique with
nexus a prime power.

Acknowledgments

We would like to express our gratitude to Leonard Soicher, Alexander Gavrilyuk and
Yaokun Wu for introducing the authors and their continued support. We are also grateful
to Jack Koolen and Gary Greaves for their advice and suggestions on the topics discussed.
Finally, we would like to thank Derek Holt and Gordon Royle for providing us with their
enumeration of small vertex-transitive edge-regular graphs.

References

[1] S. Bang, A. Hiraki and J.H. Koolen, Delsarte clique graphs, Europ. J. Combin., 28,
501–516 (2007).

[2] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user
language, J. Symbolic Comput., 24(3–4), 235–265 (1997).

[3] B. De Bruyn, An Introduction to Incidence Geometry, Frontiers in Mathematics,
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