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Abstract

Modern approaches to Ecosystem-Based Management and sustainable use of marine 

resources must account for the myriad impacts (interspecies, human and environmental 

pressures) affecting marine ecosystems. The network of feeding interactions between co-

existing species and populations (food webs) are an important aspect of all marine 

ecosystems and biodiversity. Here we describe and discuss a quantitative process to evaluate 

the selection of operational food-web indicators for use in evaluating marine ecosystem 

status. This process brought together experts in food-web ecology, marine ecology, and 

resource management, to identify available indicators that can be used to inform marine 

management. Standard evaluation criteria (availability of data, quality of data, conceptual 

basis, communicability, relevancy to management) were implemented to identify and 

evaluate practical food-web indicators ready for operational use and indicators that hold 

reasonable promise for future use in policy and management. It was recognized that structure 

and functioning of food webs were the major attributes for which indicators were required 

and that resilience of food webs was a key aspect of ecosystem behavior and environmental 

status. Over 60 potential food-web indicators were evaluated and the final selection of 

operational food-web indicators includes: the primary production required to sustain a 

fishery, the productivity of seabirds (or similar charismatic megafauna), zooplankton 

indicators based on community biomass, size structure and productivity, integrated trophic 

indicators (including mean trophic level, mean size, etc.), and the biomass of trophic guilds. 

It was emphasised that more efforts should be made to determine suitable reference points in 

terms of threshold identification for achieving Good Environmental Status, as well as a 

greater level of integration in the development of indicators for international use.  
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1. Introduction

Balancing the long-term maintenance of both biological diversity and human well-being is 

key to sustainable resource management (e.g. Garcia et al., 2015, 2012; Link, 2010; Ostrom 

et al., 1999; Pretty, 2003; Rockstrom et al., 2009). As such, ecosystem approaches to resource

management that address ecological and human interactions are an essential tool for 

conservation. While there are number of differing definitions for Ecosystem-Based 

Management (EBM), there is agreement about the need to move towards a more holistic 

environmental management approach that recognizes the full array of interactions within an 

ecosystem (Christensen et al., 1996; Link, 2010, 2005; McLeod et al., 2005). Currently, 

activities stemming from EBM are used to support a number of management actions in 

multiple ecosystems. In terrestrial habitats, EBM has been applied to management a number 

of times (e.g. Caldwell, 1970; Slocombe, 1998, 1993) and localized EBM efforts for shallow 

coastal habitats have also been undertaken (Kershner et al., 2011; Tallis et al., 2010). 

Globally, a push for EBM in marine ecosystems has been made to balance the trade-offs 

inherent in managing these complex ecosystems (Link, 2010). For example, EBM is central 

to NOAA’s Integrated Ecosystem Assessments (IEAs: Levin et al., 2009), Fisheries and 

Oceans Canada has implemented aspects of EBM in the Canada Oceans Act (Curran et al., 

2012), there has been a strong shift towards EBM in Australian fisheries driven by a number 

of policy directions and initiatives (Smith et al., 2007), the European Union’s Marine 

Strategy Framework Directive (MSFD) has developed an overarching plan to reach and 

maintain Good Environmental Status (GES;Rogers et al., 2010) and EBM is the recognized 

mechanism to implement the Convention on the Conservation of Antarctic Living Marine 

Resources (Constable, 2011; Constable et al., 2000). Thus there is a diverse and widespread 

effort to continue to better manage marine ecosystems by taking into account all pressures, 

responses and dynamics simultaneously.
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Many aspects of ecosystem dynamics are reflected in food webs, the networks formed

by the trophic interactions between species in ecological communities.  Historically, food 

web studies developed from simply recording biological data through to a phase where 

patterns in the data were identified and catalogued. Much work has since focused on 

interpreting data and patterns, using either phenomenological or mechanistic models in food 

webs (Rossberg, 2012). Among representations of food webs in the literature are simple 

directed graphs (topological webs), flow diagrams (energy budgets), representations 

aggregated by size or trophic level, and complex dynamic models (Link et al., 2005; Piroddi 

et al., 2015). Depending on the representation, different structural and dynamic properties of 

food webs emerge from the data. The relationships between these emergent patterns are the 

subjects of much ongoing research (de Ruiter et al., 2005; Link et al., 2015; Rossberg, 2013).

Ecological indicators are important to EBM because they serve as proxies for several 

ecological processes (e.g. growth dynamics, energy flow) and are representations of 

ecosystem state (e.g. biodiversity, resilience). In particular, food-web indicators have become

increasingly important as they represent ecosystem services about which policy makers and 

stakeholders are concerned. The global uses of these indicators to better inform management 

of living marine resources has continued to increase over time (Coll et al., 2008; Fay et al., 

2013; Jackson et al., 2001; Large et al., 2013; Large et al., 2015a; Levin et al., 2009). By 

addressing much of the inherent complexity of marine ecosystems, food-web indicators are 

one of the primary interfaces between policy and science. A critical step in the policy process

is to agree on food-web indicators that are compelling, intuitive, understandable and 

defensible to all stakeholders, but also capture key food-web states and processes that 

underlie critical and complex ecosystem dynamics. Important instances of such indicators are

those addressing emergent properties of food webs, which can be predicted without 

understanding in detail the intricate processes operating in these complex systems. This 
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predictability is reflected in the existence of simplified models or representations of food 

webs addressing specific emergent properties (ICES, 2013a; Rossberg, 2013). Examples are 

representations of food webs as food chains passing energy and biomass from lower to higher

trophic levels, representations in form of dynamically interacting aggregated groups of 

species, representations as graphs with arrows (feeding interaction) linking nodes (species), 

where a small number of top predators are supported by increasing numbers of species at 

lower-trophic levels (de Ruiter et al., 2005) or complementarily, representation of the 

distribution of community biomass over body sizes (Kerr and Dickie, 2001). It is important to

take into account these properties in selecting food-web indicators to develop pragmatic 

indicators applicable to describe ecosystems at regional or larger scales. 

For operational use, primary requirements are that food-web (or for that matter, any) 

indicators be sensitive, have a basis in theory and be measurable (Dale and Beyeler, 2001; 

Kershner et al., 2011; Link, 2010; Rice and Rochet, 2005a). Those indicators that are well 

studied and linked with emergent properties can address cumulative impacts, integrated 

dynamic responses, detect indirect and unintended consequences and can help to evaluate 

trade-offs in managing ecosystems. Globally, a set of best-practices is coalescing around 

indicator selection: a plethora of indicator selection criteria have been developed that identify

key facets of indicators (Fulton et al., 2005; Garcia et al., 2000; Greenstreet and Rogers, 

2006; Greenstreet et al., 2011; ICES, 2013a, 2013b; Institute for European Environmental 

Policy (IEEP), 2005; Link, 2005; Methratta and Link, 2006a; Piet and Jennings, 2005; Rice 

and Rochet, 2005b; Rochet and Rice, 2005; Shin and Shannon, 2009; Shin et al., 2010a, 

2010b) 

While there have been some efforts to develop operational ecological indicators to 

evaluate ecosystem status (ICES, 2015), the task of selecting specific food-web indicators has

been difficult for a number of reasons. Food-web ecology is a relatively new area of research 
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(compared to more established community ecology and population ecology) with rapidly 

emerging information and methods  (Link et al., 2015; Longo et al., 2015; Thompson et al., 

2012). In light of new methodologies, historical data is often unsuitable to calculate the 

necessary metrics to use potential food-web indicators for evaluating ecosystem status.  Like 

many other types of ecological indicators, selection of a specific set of food-web indicators 

can imply that some aspects of marine food webs are valued more than others. Therefore, a 

well-balanced selection process for indicators is required that encompasses all currently 

known properties of marine food webs with the necessary data to be confidently used by both

management and stakeholders.

This study aims to provide a list of operational food-web indicators that can be used to 

quantify the emergent properties of food webs in marine ecosystems. The context for this 

work was the EU’s MSFD need to delineate GES with regards to food webs (Descriptor 4;

ICES, 2014; Rogers et al., 2010), but was conducted cognizant of broader potential 

applications to assess ocean status. Here, we develop a strategy using the best available 

knowledge from scientific experts and a quantitative methodology for evaluating food-web 

indicators for implementation in EBM. We also discuss the future development of these 

indicators for practical use as reference points in management.

2. Methods

To address ongoing global requirements (Europe, North America and elsewhere), three 

objectives related to food-web indicators were explored: 

 To determine a defined process for selecting and developing food-web 

indicators.

 To develop a short list of suggested food-web indicators related to 

management contexts (EBM) in Europe and globally.
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 To establish future direction for operationalizing food-web indicators.

This approach led to a two-part set of efforts to a) identify and evaluate operational food-web 

indicators that can currently be used and b) identify food-web indicators that hold promise in 

the future for management, but that require further development. This guidance would allow 

for increased clarity in selecting food-web indicators coherently within and across regions 

and lead to more defined response and pressure targets for control rules in EBM. As part of 

this broader effort, this project was developed as part of the ICES workshop to develop food-

web indicators for operational use in EBM  (ICES, 2014). The workshop brought together 

international experts in food webs, marine ecology and management to identify appropriate 

food-web indicators for current use.   

2.1.     Food-web indicators

An initial set of 40 food-web indicators were selected from a list of over 60 candidate 

indicators presented by the workshop experts. Presentations covered all marine functional 

groups and all attributes of food webs that were considered necessary for a comprehensive 

evaluation. Duplicate and technically inappropriate indicators were eliminated from the pool 

of candidate indicators. The remaining 40 food-web indicators were grouped depending on 

three main food-web attributes which they addressed: functional indicators linked to energy 

flow, functional indicators linked to ecosystem resilience and structural indicators linked to 

diversity and ‘canary’ species (for more detailed descriptions see Appendix A). 

2.2.     Selection criteria

A list of 5 criteria and 13 sub-criteria (Table 1) was initially synthesized from a set of criteria 

determined by previous working groups of experts examining ecological indicators (ICES, 

2015; Kershner et al. 2011). These criteria were adapted to broadly examine the functionality 
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of the food-web indicators that could be operational within the global context (useful for 

several countries and regions). 

Each indicator was evaluated against the selection criteria and scored as 0, 1 or 2, where 0

= not met, 1 = partly met, and 2 = fully met. A Delphi method was used whereby sets of 

indicators were scored by small groups based on consensus, following a discussion 

establishing common understanding of the indicators themselves and how to apply the criteria

to the indicators. Each of the 13 sub-criteria was scored equally and no weighting was 

applied. Scores were presented as percentages of the total score available (maximum score by

the number of categories; i.e. 2 x 13 = 26). Indicators were ranked within the agreed 

attributes of food webs (Functioning – energy flows, Resilience - ability to recover from 

perturbation, Structure - species organization). Particular issues or concerns with individual 

scores were highlighted for subsequent discussions. These were then examined so that all 

scores were adjusted through consensus-based discussions. This process was used to quantify

the usefulness of indicators and to aid in the final selection. 

2.3.     Wider consideration for selecting food-web indicators

In addition to the specific criteria for each food-web indicator, a broader set of features was 

considered through consensus of the experts involved when evaluating the final 

recommended suite of indicators. The indicators were categorized into two groups, one set 

that may be currently implemented and one that holds promise for future development.  Key 

considerations were:

Relative ranks within the major food-web indicator attributes informed the choice of 

indicators, but were not adhered to in a strictly quantitative manner.
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Coverage of all attributes of food webs. To the extent practicable, all three main categories 

of food-web indicator attributes were represented.

Coverage of all functional groups found within a food web.  Recognizing that much 

indicator development has occurred for upper trophic level contexts, we ensured that lower 

trophic level taxa were not omitted, even though as a group they may have scored lower than 

more commonly or routinely monitored upper trophic levels.

Major indicator classes (structure, function and resilience) were as well represented as 

possible to ensure that important facets of food webs were included.

Current operability was effectively based on an ad hoc review (or weighting) of operability 

issues related to data availability, management relevance and existence of baselines, targets 

or related reference points, which although were selection criteria, were deemed critical 

enough to warrant additional consideration.  

Links to other indicator uses were considered to ensure that we emphasized food-web 

indicators that are unique to describing food webs. Other indicator uses include biodiversity, 

fisheries, eutrophication and sea floor integrity.

3. Results

Within each attribute, indicators tended to cluster into groups with similar underlying 

ecological theory. When selecting priority indicators for further development it was therefore 

considered necessary to review the full list of indicators and ensure that those that clustered 

together, but with lower scores, were also taken into consideration to maintain a diversity of 

indicator formulations.

The rank scores were obtained from the unweighted sum of all 13 evaluation sub-criteria 

(Table 2a, b).  When the evaluation was re-run separately using only the first six sub-criteria 
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in Table 1 (linked to practical aspects of indicator measurement), and the next seven criteria 

(linked to aspects of indicator implementation), there was relatively little difference in the 

final overall outcome.  This suggests that the rank scores were robust to variability in criteria 

selection and were minimally influenced by single criteria evaluations.

3.1. Energy flow indicators

A relatively large number of indicators were identified which had clear links to functional 

aspects of food webs (Table 2a). Production or biomass ratios for various parts of the food 

web detect gross structural changes in the energy flow through a food web which may have 

been caused by, for example, harvesting of key species, or disruption of distributional overlap

between predators and prey through climatic factors.  

Total Mortality Z (Fishing mortality + natural mortality or production to biomass 

ratio), is commonly used in the ecosystem modelling community (Ecopath with Ecosim:

Christensen and Pauly, 2008; Pauly et al., 2000). Despite the relatively high score this was 

not the most easily interpretable indicator of food web functioning. This was evident in the 

low score for the communication criteria (Table 2b). Ecosystem exploitation was considered 

useful to describe the harvesting pattern of exploited ecosystems.  It is an indicator of the 

pressure of the fisheries on the food web. 

Primary Production Required (PPR) to sustain a fishery has a solid conceptual basis

(Pauly and Christensen, 1995). However, the difficulty of explaining the concept to the lay 

public contributed to a moderate score for this indicator. Moreover, this indicator does 

require estimates of transfer efficiency (TE), which is generally assumed to be 10-15% 

between trophic levels. Note that indicators of transfer efficiency themselves were not 

selected as indicators for use immediately due to lack of data to systematically estimate TE. 

Monitoring intermediate marine productivity and chlorophyll a fronts by satellite using 
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remote observation was considered effective to estimate indicators of energy-flow in food 

webs.  

Four fairly similar indicators based on trophic level were evaluated (the mean trophic 

level of the catch, the mean trophic index of the fish community, the mean trophic level of 

the community and the trophic balance index).  Each has a slightly different formulation, but 

all require good quality and regularly updated data on dietary relationships, time series of 

survey catch or landings from broad regional seas to avoid local population or fleet effects, 

and accurate, agreed upon and regularly updated assessments of the trophic levels of the 

ingested food. Similarly the Trophic Balance Index, describing the fishing pattern of local 

métiers, can be useful in the context of assessing food web effects of fisheries harvesting, but 

has limited application for other pressures. 

Low scores allocated to indicators such as the disturbance index, loss in production 

index, mean transfer efficiency and Finn Cycling Index were due to uncertainty over the 

quality of the technical assessment (data needs and rigor) and the likely ease of 

implementation. However, some of the indicators may warrant further investigation.

3.2. Resilience indicators

It was interesting to note that the six indicators that had a link to resilience of the food web 

were generally scored lower than many other indicators (Table 2b). This may be because they

are more conceptually complex. It was considered that the top three in this category, the 

Mean number of trophic links per species, Ecological Network Analysis derived indicators, 

and the Gini-Simpson dietary diversity index, all held promise as food-web indicators, but the

group of experts felt that these would not be recommended as suitable for implementation in 

the short-term.  The conceptual and technical difficulty of measuring food-web resilience and

ability to recover from perturbation partly explains the low scores allocated to the assessment 
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criteria in the area of cost-effectiveness of data gathering, although they all have strong 

support in the literature. 

The indicators for this attribute that scored poorly (Herbivory: Detritivory Ratio, 

Ecological Network Indices, System Omnivory Indices) will take more time to develop.  The 

complexity of their formulation also suggests that, even if further developed, they may be 

difficult to explain in a management context. More importantly, these indicators need regular 

diet time series data encompassing the entire food web, which have not been made widely 

available even to support applied multispecies fishery assessments.

3.3. Structural indicators

Several indicators in this category obtained relatively high scores, suggesting that managers 

may want to use these indicators to help interpret patterns observed particularly at higher 

trophic levels. Another important consideration is the role of aggregated sets of structural 

indicators, such as those related to phytoplankton, zooplankton, forage fish, scavengers and 

birds, which together have important implications for food-web resilience (e.g. low or high 

biodiversity) as well as structure of the individual components. Many structural indicators are

describing the same ecosystem components in multiple ways (Table 2a, b) and due to the 

multi-faceted uses of these indicators (in addition to characterizing food webs) the data are 

likely to be collected and available.

Higher-scoring indicators were those which informed trends in absolute biomass, 

production, or ratios of both, for a number of guild-level ecosystem components, especially 

higher predators. For those structural indicators that aggregate across multiple components, it 

was generally thought preferable to have indicators comprising absolute values rather than 

ratios, as these data would be necessary anyway to interpret ratio metrics. Some of these 

abundance-related indicators may be given a higher priority if they are also useful for 
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informing an aspect of food web resilience.   For example, both the Gini-Simpson diversity 

indices for small and large fish and the Species Richness Index were thought to be potentially

useful for assessing food web resilience.

3.4.  Suggested food-web indicators

The following indicators are the refined set of food-web indicators recommended for current 

use based on the selection criteria (Table 1) and accounting for the wider considerations in 

the selection process (Table 2a,b): 

Guild level biomass (and production)

Guild-level biomasses and production address structural attributes of food webs, and can also 

serve as proxies for functioning.  It was noted that the typical use of this type of indicator has 

been for fishes, but if feasible this indicator should include multiple guilds across all trophic 

levels, such as primary producers, zooplankton, benthos, and charismatic megafauna, beyond 

just fish or upper tropic levels.  The guilds should be determined as appropriate for the taxa in

a given regional sea.

Primary Production Required to sustain a fishery (PPR)

This addresses the functioning attribute of food webs and is a measure of the ecological 

footprint of a fishery. However, this metric can (and often does) integrate a wide range of 

removals from the food web. Derivatives of this food-web indicator could, where feasible, be 

contrasted to measures of primary production to ensure it is directly appraised against field 

data. Satellite imagery makes estimates of primary production widely available (given the 

usual caveats of remotely sensed data), and typical landings and associated data are also 

widely available, making PPR more integrative and feasible than is often perceived.
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Seabird (charismatic megafauna) productivity

The breeding success of seabirds addresses the structural and functional attribute of a food 

web and can also serve as a proxy for resilience.  Although particular to seabirds, especially 

breeding success/chicks per pair, it was recognized that seabirds may not be prominent or 

important in all regional seas.  Similar productivity indicator could be calculated for marine 

mammal taxa (i.e. pup production rates). 

Zooplankton size biomass index

This indicator addresses both structural and functional attributes of food webs.  Although 

indicators associated with this taxonomic group were often ranked lower, they represent an 

important part of the food web - the link between primary production at lower trophic level 

and upper trophic level consumption and growth.  

Integrated trophic indicators (mean TL, mean size)

Trophic indicators address both structural and resilience attributes of food webs.  It was 

critical to include an explicitly integrative measure that provided some view of the overall 

system and did not focus on only certain facets of it. There are many possible indicators in 

this category from which to choose, such as mean trophic level, mean, or proportion at size of

the community (depending upon abundance) and trophic data availability in a given regional 

sea.

3.5. Indicators for development

Food-web indicators that were recommended for future development were Ecological 

Network Analysis indicators, the Gini-Simpson dietary diversity index and condition 

indicators. These indicators lacked the available data to be considered currently useful for 

management, but all were determined to be representative of multiple aspects of the food-web
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(integrated food-web perspective). Some indicators that were suggested to be currently 

operational (marine trophic level indicators, primary producers and zooplankton indicators) 

were also thought to require more development to fully meet their potential and range as 

indicators for food-web and other indicator uses. 

4. Discussion

The five food-web indicators recommended from this process cover important facets of 

food webs, particularly addressing structural, functional and resilient features of marine food 

webs (Jennings and Collingridge, 2015; Polis and Strong, 1996; Thompson et al., 2012).  It is

likely that multiple indicators are needed to track the multiple features that comprise food 

webs and delineation of GES (Large et al., 2015a, 2015b; Mallory et al., 2010; Rice and 

Rochet, 2005a) of which these five candidates are suitable options.  All of the five food-web 

indicators proposed here are generally applicable in terms of capturing the main facets of 

food-web dynamics (ICES, 2014; Methratta and Link, 2006b; Shannon et al., 2009) and 

readily link to known behaviors of food webs.  Many of these indicators are broad enough in 

context to be applied across many marine ecosystems (coastal, temperate, arctic, tropical, 

etc.; Andrews et al., 2013; Coll and Libralato, 2012; Fulton et al., 2005; Hayes et al., 2015; 

Parsons et al., 2008; Zador et al., 2014).

Yet even the five proposed indicators may not all have widely and consistently 

monitored data available to sufficiently calculate the metrics.  Although important to track 

lower-trophic level dynamics and linkages to upper-trophic level taxa, the zooplankton 

indicator may not have widely collected data nor be as easily interpreted, given the high 

seasonality of these taxa (Pershing et al., 2005; Stige et al., 2014; Vargas et al., 2006).  The 

integrated trophic indicators hold equal promise, but similarly may not always have measures

of trophic level or equivalent (TL; Gaichas et al., 2012; Hornborg et al., 2013; Pranovi et al., 

2012; Rossberg et al., 2006).  Justifiable assumptions regarding TL, using common databases
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on trophic ecology of taxa (e.g. fishbase; Froese and Pauly, 2013; Froese, 1992), may provide

a means to more readily calculate these indicators in the absence of local trophic data. Size-

based integrated indicators are an type of indicator that are less demanding on data and has 

been found to show clearer responses in food webs (Engelhard et al., 2015; Fung et al., 2013; 

Greenstreet et al., 2011; Shephard et al., 2011) The salient point is that there are well-studied 

extant indicators able to track and delineate environmental status in marine food webs (Houle

et al., 2012).  These were explored in the MSFD GES context (ICES, 2015, 2013b, 2008; 

Shephard et al., 2014), but are generally applicable for marine conservation considerations.

Regardless of the specific indicator set chosen, a replicable, transparent, defendable and 

clear process for selection is required (Dale and Beyeler, 2001; Link, 2010; Shin et al., 

2010a). The process demonstrated here is broadly applicable in a wide array of conservation 

situations and it is as important as the outcomes.  It is essentially a multi-criteria decision 

analysis (Mendoza and Martins, 2006), whereupon the selection of indicators is agreed-to 

before use in tracking ecosystem status. The criteria for indicator assessment used here are 

sufficiently robust to be applied in a range of situations, with one of the five main criteria 

specifically evaluating how useful a given indicator is to management. These criteria are 

converging in the marine management context, but can be readily used in other forms of 

natural resource management (e.g. terrestrial, estuarine).  Due to the well-documented 

quantitative and qualitative evaluation in the selection process, there is a high level of 

confidence in the choice of the final set of indicators. This process allows for regular updates 

and inclusion of novel information (Curtin and Prellezo, 2010; Kershner et al., 2011) while 

maintaining a record of how selections are made.  This process is general enough to be used 

regardless of the type of ecosystem and conservation issue being considered, as long as the 

criteria are agreed upon a priori (Espinosa-Romero et al., 2011; Martin et al., 2009).  
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Although similar selection processes have a wide history of use in conservation (Mendoza 

and Martins, 2006), it could be even more widely and rigorously applied. 

Based on the evaluation process, the food-web indicators selected in this study can offer 

some guidance towards possible management actions. Guild-level biomass reflects measures 

of biodiversity and structural relationships within ecosystems (Garrison and Link, 2000; 

Rosenfeld, 2002). It can be an integrative indicator to evaluate the status of a particular guild 

group in relation to another.  For instance, lower numbers of forage fish will have direct (and 

indirect) impacts on larger predators and seabirds (Cury et al., 2011; Garrison and Link, 

2000) or could indicate low levels of primary productivity (Jennings and Collingridge, 2015; 

Polivina et al., 2001). Either way, management responses to maintain forage fish could be 

identified based on the information that guild-level indicators provide (Heath et al., 2014).  

Similarly, integrated trophic indicators can address multiple aspects of structure, function and

resilience in ecosystems, where lower mean size or trophic level indicate impacts on large, 

predatory animals (Methratta and Link, 2006b; Pauly and Watson, 2005; Rosenfeld, 2002). 

Specific fisheries management actions with respect to changes in these indicators over time 

could include adjusting harvest control rules for particularly overexploited guilds, but could 

also include concentrating fishing efforts on lower age or size groups (Anderson et al., 2008).

Both higher-trophic (seabird and charismatic megafauna productivity) and lower-trophic 

indicators (PPR and zooplankton index) are reflective of bottom-up processes viewed from 

opposing ends of the food web (Cury et al., 2011; Einoder, 2009; Hilting et al., 2013). PPR is 

an integrative indicator that represents the amount of primary productivity to sustain a 

fishery, and offers a means to compare energy requirements across different fisheries

(Chassot et al., 2010; Gascuel et al., 2005). Seabird productivity is an indicator of food 

availability (forage fish) and can also be sensitive to contaminants and environmental 

pollutants (Mallory et al., 2010). Direct management actions to influence these indicators 
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could be either top-down control rules aimed at relieving fishing pressure on lower-trophic 

species or bottom-up policies directed to improve water quality or habitat, which may also 

include improved management at land-sea interfaces (Furness and Camphuysen, 1997; 

Kendall et al., 2010; King and Baker, 2010; Mallory et al., 2010; Teichert et al., 2015). 

Specific management actions will be dependent on regional circumstances and the responses 

of the indicators to local pressures, but by using common indicators it will be possible to 

compare ecosystem status between regions and to help management at all levels (from 

regional to national to international) and to make effective decisions to improve the world’s 

oceans.

This proposed set of candidate indicators is a start towards operationalizing the 

delineation of marine ecosystem status, but may require a few further steps before becoming 

fully operational.  Food-web indicators may be interesting scientifically and relevant for 

management, but if they cannot inform management actions directly they certainly have less 

utility. Establishing decision criteria that trigger management actions for EBM requires an 

understanding of how pressure variables influence indicators, as well as the level of a 

particular pressure at which significant changes in ecosystem structure or function appear

(Blanchard et al., 2010; Coll et al., 2010; Groffman et al., 2006; Link, 2010, 2002a; Samhouri

et al., 2010).  Such thresholds have been explored with a wide range of analytical methods, 

such as cumulative sums (CUSUM; Hinkley, 1970), sequential t-test (STARS; Rodinov, 

2004), empirical fluctuation processes (Zeileis and Kleiber, 2005), and significant zero 

crossings of piecewise regression models (Chaudihuri and Marron, 1999; Samhouri et al., 

2012, 2010; Sonderegger et al., 2008; Toms and Lesperance, 2003; Toms and Villard, 2015) 

or generalized additive models (Large et al., 2013), all to identify the level of pressure that 

results in a significant indicator response (Andersen et al., 2009). These univariate 

relationships are useful for establishing decision criteria (Fay et al., 2013; Large et al., 2013; 
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Samhouri et al., 2010), however, they do not fully account for multiple pressures that likely 

interact and occur concurrently. An assessment of ecosystem status based on suites of 

indicators will be more powerful. Using multiple indicators to evaluate ecosystems will help 

to avoid the possibility of misinterpretation which can occur when indicators are evaluated in 

isolation (Coll and Libralato, 2012; Longo et al., 2015; Rice and Rochet, 2005b). Multivariate

approaches exist to detect thresholds, including translating indicator response into a surface 

dependent on multiple pressures (i.e., fishing and environmental pressure; Frederiksen et al., 

2007; Large et al., 2015a; Scott et al., 2006), multivariate ordination methods (Baker and 

King, 2010; King and Baker, 2010) and extensions of regression tree and gradient forest 

analyses (Baker and Hollowed, 2014; Ellis et al., 2008; Large et al., 2015b; Liaw and Wiener,

2002; Pitcher et al., 2012; Prasad et al., 2006). Understanding how multiple pressure 

variables concurrently influence ecosystem status, as evinced by thresholds in indicators, will

help to further operationalize these indicators as reference points for management. 

Both the EU MSFD  and US IEA efforts have a similar framework that includes 

indicators as a critical part of the management decision-making process (Andrews et al., 

2013; Levin et al., 2009; Rogers et al., 2010; Shephard et al., 2014). Currently, many of the 

efforts from both the MSFD and IEA frameworks assess ecosystems by using a suite of 

indicators.  Despite the frequent absence of thresholds of indicators to establish reference 

points, there is still sufficient information and examples of using such indicators to inform 

marine ecosystem management advice.  Even qualitative and directional features of indicators

can and have been used operationally (Andrews et al., 2013; Espinosa-Romero et al., 2011; 

Foley et al., 2015; Greenstreet et al., 2012; Large et al., 2015a, 2015b; Link et al., 2015; 

Longo et al., 2015; Samhouri et al., 2012, 2010; Zador et al., 2014). Thus, the monitoring, 

tracking and presentation of the food-web indicators proposed here can help to operationally 

delineate GES.
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When assessing the status of marine ecosystems, it is important to adequately 

characterize the food web (Branch et al., 2010; Link, 2002b; Thompson et al., 2012).  

Certainly there are other aspects of marine ecosystem status, a fact which is explicitly 

acknowledged in the MSFD.  Yet, too often the development of marine indicators neglect to 

consider food webs (Hayes et al., 2015).  Understanding food webs in ecosystems is 

paramount because they are able to unify ecological sub-disciplines (behavior, dispersal, 

physiology, thermodynamics etc.) and to examine interactions among guilds (Polis and 

Strong, 1996; Rossberg, 2013; Thompson et al., 2012). Food webs are able to integrate 

species-based and functional-based approaches to examine biomass distributions and 

energetic flows within systems. Another key aspect of ecosystems that is encompassed by 

food webs is resilience. A resilient system reacts only weakly to pressure, but resilience 

might be lost with increasing pressures, leading to rapid changes to different states or 

regimes. Such transition is thus the result of an accumulation of the disturbing effects of 

pressures (Folke et al., 2004; Gunderson, 2000; Sasaki et al., 2015).  Additionally, 

ecosystems may exhibit legacy effects of earlier pressures (Folke, 2006; Hughes et al., 2005).

Despite the difficulty in studying food webs in their entirety (including large data 

requirements and advanced computational abilities), emergent trends have been established in

food-web ecology at both the community (Fredriksen, 2003; Neira et al., 2009) and 

ecosystem level (Link et al., 2015).

An important aim of EBM is to balance between multiple, often conflicting 

objectives. How management actions take shape depends on all user groups involved, 

including stakeholders, indigenous communities, fishers, tourists, NGOs, etc. (Branch et al., 

2006; Link, 2010; Marasco et al., 2007). The most successful implementation of EBM will 

one where user groups are equally engaged, can agree on a set objectives, work towards 

common economic-social-conservation management goals and ultimately overcome inertia in
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the decision making process (Arkema et al., 2006; deReynier et al., 2010; Espinosa-Romero 

et al., 2011; Leslie and McLeod, 2007; Link, 2010; Pitcher et al., 2009; Röckmann et al., 

2015; Sandström et al., 2015).  The set of indicators proposed in this study is an example of 

how such information can be used to more fully implement EBM by evaluating one facet of 

marine ecosystem objectives associated with food webs.  More so, the process described here 

is an important means to explore the tradeoffs not only in selecting these indicators but also 

the underlying objectives and dynamics that each represents.  

Ecological indicators for conservation (including food-web indicators) are useful to 

summarize complex information concerning marine ecosystem status (Cury and Christensen, 

2005; Dulvy et al., 2006; Fulton et al., 2005; Hayes et al., 2015; ICES, 2015; Methratta and 

Link, 2006b). Clearly defined, consistent metrics at the global scale can provide management 

in multiple countries with the tools to make EBM more operational (Leslie and McLeod, 

2007; Lester et al., 2010; Link, 2010; Link et al., 2011; Smith et al., 2007; Thrush and 

Dayton, 2010). As management efforts continue to implement EBM to meet conservation 

objectives, having a suite of indicators, a process to select them and ensuring that they map to

clear management needs will remain increasingly important.
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Table 1. Criteria and sub-criteria used in the selection process for operational food-web 
indicators. 

Criteria Sub-criteria (issues) Rationale

Availability of 
underlying data 

Existing and ongoing data Indicators are supported by current or planned monitoring programmes 
that provide the data necessary to derive the indicator. Ideal monitoring 
programmes should have a time series capable of supporting baselines 
and reference point setting. Data should be collected on multiple 
sequential occasions using consistent protocols.

Relevant spatial coverage Data should be derived from an appropriate proportion of the regional 
sea, at appropriate spatial resolution and sampling design, to which the 
indicator will apply.

Relevant temporal coverage Data should be collected at appropriate sampling frequency and for an 
appropriate extent of time relevant to the time scale of the process or 
attribute the indicator describes.

Quality of 
underlying data 

Indicators should be technically 
rigorous 

Indicators should ideally be easily and accurately determined using 
technically feasible and quality assured methods.

Reflects changes in ecosystem 
component that are caused by variation
in any specified manageable  pressures

The indicator reflects change in the state of an ecological component 
that is caused by specific significant manageable pressures (e.g. fishing 
mortality, habitat destruction). The indicator should therefore respond 
sensitively to particular changes in pressure. The response should based 
on theoretical or empirical knowledge, thus reflecting the effect of 
change in pressure on the ecosystem component in question; signal to 
noise ratio should be high. Ideally the pressure-state relationship should 
be defined under both the disturbance and recovery phases.

Magnitude, direction and variance of 
indicator is estimable

The indicator should exhibit a predictable direction, exhibit clear sense 
of magnitude of any change, and estimates of precision should allow for
detection of trends or distinct locales - requiring that some measure of 
sampling error or variance estimator is available.

Conceptual basis Scientific credibility Scientific, peer-reviewed findings should underpin the assertion that the
indicator provides a true representation of process, and variation 
thereof, for the ecosystem attribute being examined.

Associated with key processes The link between the indicator and a process that is essential to food 
web functioning should be clear and established, based on our current 
understanding of trophic dynamics.

Unambiguous The indicator responds unambiguously to a pressure.

Communication Comprehensible Indicators should be interpretable in a way that is easily understandable 
by policy-makers and other non-scientists (e.g. stakeholders) alike, and 
the consequences of variation in the indicator should be easy to 
communicate.

Management Relevant to management Indicator links directly to mandated management needs, and idealy to 
management response. The relationship between human activity and 
resulting pressure on the ecological component is clearly understood.

Management thresholds targets are 
estimable

Clear targets that meet appropriate target criteria (absolute values or 
trend directions) for the indicator can be specified that reflect 
management objectives, such as achieving GES.  Ideally control rules 
can be developed.

Cost-effectiveness Sampling, measuring, processing, analysing indicator data, and 
reporting assessment outcomes should make effective use of limited 
financial resources.
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Table 2a. Assessment of food-web indicators for Energy flow indicators against the criteria in Table 1. A maximum score for 
Availability of data= 6, Quality of data = 6, Conceptual = 6, Communication = 2, Management = 6 (maximum total score = 26). 
Asterisks (*) denote food-web indicators that were selected for current use. 

 Food-web indicator
Availabilit

y 
Qualit

y 
Conceptua

l
Communicatio

n
Managemen

t
Score

Percen
t 

Other indicator uses

E
n

er
gy

 F
lo

w
 in

d
ic

at
or

s

*Seabird breeding success 6 3 6 2 5 22 85 Biological diversity
Mean weight at age of predatory 
fish species from data 4 5 5 2 5 21 81 Fisheries

Total mortality  Z 4 5 4 1 5 19 73 Fisheries

Productivity of key predators 6 3 4 1 4 18 69
*Primary production required to 
support fisheries 4 3 6 0 5 18 69 Fisheries, Biological diversity

Productive pelagic habitat index 6 4 4 1 3 18 69 Eutrophication,Fisheries,Biological diversity

Ecosystem exploitation 5 3 2 1 5 16 62 Fisheries

Community condition 3 5 3 2 3 16 62 Fisheries

*Mean trophic level of catch 4 4 2 1 4 15 58 Fisheries
*Marine trophic index of the 
community 4 3 4 1 3 15 58
*Mean trophic level of the 
community 4 3 4 1 3 15 58  

Disturbance index 4 3 4 1 2 14 54
Loss in secondary production index 4 3 4 0 3 14 54 Fisheries
Cumulative distribution of biomass 
assessment 4 3 4 0 3 14 54 Fisheries

Trophic balance index 4 2 3 0 4 13 50  
Mean transfer efficiency for a given
trophic level or size 3 2 4 0 1 10 38
Finn cycling index 3 1 4 0 1 9 35 Fisheries
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Table 2b. Assessment of food-web indicators for Ecosystem resilience and Structural indicators against the criteria in Table 1. A 
maximum score for Availability of data= 6, Quality of data = 6, Conceptual = 6, Communication = 2, Management = 6 (maximum 
total score = 26). Asterisks (*) denote food-web indicators that were selected for current use.

 Food-web indicator Availability Quality Conceptual Communication Management Score Percent Other indicator uses

E
co

sy
st

em
 r

es
il

ie
n

ce
in

d
ic

at
or

s

*Mean trophic links per species 3 2 4 1 2 12 46 Biological diversity
Ecological network analysis derived 
indicators 4 1 4 1 2 12 46
Gini-Simpson dietary diversity index 3 2 4 1 1 11 42  

Herbivory to detritivory ratio 3 1 4 1 1 10 38
Ecological network indices of 
ecosystem status and change 4 1 4 0 1 10 38  

System omnivory index

3 1 2 0 1 7 27  

S
tr

u
ct

u
ra

l i
n

di
ca

to
rs

Guild surplus production models 6 6 6 1 6 25 96 Fisheries

Large fish indicator 6 6 5 2 6 25 96 Fisheries

*Total biomass of small fish 6 5 5 2 5 23 88 Fisheries

Proportion of predatory fish 6 3 5 2 6 22 85 Biological diversity,Fisheries

*Mean length of surveyed community 6 6 4 2 4 22 85 Biological diversity,Fisheries

Pelagic to demersal ratio 6 5 4 2 4 21 81 Fisheries,Eutrophication

*Biomass of trophic guilds 4 3 5 2 6 20 77 Biological diversity,Fisheries
Lifeform-based indicator for the 
pelagic habitat 6 5 4 1 4 20 77

Biological diversity,Eutrophication,Sea-floor 
integrity

Region-specific indicators of 
abundance and spatial distribution 6 3 4 1 5 19 73 Biological diversity,Fisheries,

Scavenger biomass 3 5 5 1 5 19 73 Biological diversity,Sea-floor integrity
Geometric mean abundance of 
seabirds 6 3 5 1 4 19 73 Biological diversity

Size spectra slope 6 4 4 1 4 19 73 Biological diversity,Fisheries,Sea-floor integrity
Fish biomass to benthos biomass 
from models 4 3 4 2 4 17 65 Biological diversity,Fisheries,Sea-floor integrity
*Zooplankton spatial distribution and 
total biomass 4 4 3 2 4 17 65 Biological diversity,Eutrophication,

Zooplankton mean size 4 4 3 2 4 17 65 Biological diversity,Eutrophication
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Gini-Simpson diversity index 6 2 2 0 4 14 54 Biological diversity

Species richness index 6 2 2 2 2 14 54 Biological diversity
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Appendix A:

Indicators that were examined (details, history, rationale).

Functional Indicators linked to Energy Flow 

Seabird breeding success

Many species of seabirds feed on lower trophic level forage species such as krill, squid, and 
pelagic fish. Seabirds summarize changes in these forage species communities that are often 
linked to patterns of exploitation (Cury and Christensen, 2005; Cury et al., 2011). Seabird 
breeding success has been consistently monitored across many ecosystems and provides robust 
estimates of both forage fish abundance and success of charismatic species (Cury et al., 2011). 
Seabird breeding success can be a useful indicator, however, it may overlap with other measures 
of forage fish success.

Productivity (production per unit biomass) of key predators

Metrics characterizing productivity of predators at high trophic levels have been identified by
Rogers et al. (2010) as an important class of food-web indicators. They argued that “[t]he 
abundance of species in the food web will generally be determined by the abundance of suitable 
prey taxa on which they can feed. Some species, or groups of species, may play a significant part
in food web dynamics and so their population status will effectively summarize the main 
predator-prey processes in the part of the food web that they inhabit.” Food quantity or quality is 
known to affect survival and reproduction of many marine species including birds (Wanless et 
al., 2005), mammals (Soto et al., 2006) and fishes (Litzow et al., 2006). It has been argued (Boyd
and Charles, 2006; Cury et al., 2011; Rogers et al., 2010) that required prey abundance to 
quantitatively and qualitatively sustain viable populations of predators constitutes a threshold 
value which can serve as a reference point for productivity based indicators. “Productivity 
(production per unit biomass) of key species or trophic groups” was listed among the Criteria for 
GES by the EC (EU, 2010). Among others, it has been implemented in form of the HELCOM 
(2013) core indicators “Pregnancy rates of marine mammals”, “White-tailed eagle productivity”, 
“Abundance of sea trout spawners and parr”, and “Abundance of salmon spawners and smolt”.

Mean weight at age of predatory fish species from data

Fish weight and condition metrics provide information on state (e.g., food limitation) in an 
ecosystem. The indicator proposed by Shephard et al. (2014) describes the average “weight 
anomaly” for the pelagic fish community in a given year, which is the deviation around an 
observed long-term mean. The youngest and oldest age groups of each stock are excluded to 
avoid sampling bias. Values are then averaged over all ages for each stock to obtain a mean 
annual anomaly for that stock. Stock anomalies are then averaged by year to obtain a regional 
mean weight anomaly for the whole pelagic or predatory fish communities, respectively, where 
indicator values should fluctuate around zero in the long-term. The comparison between species 
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and stocks can give additional information on whether food becomes limiting in general or 
whether just some species or trophic guilds are impacted. 

Changes in this indicator can be caused by changes in food availability as well as an increase or 
decrease in predator populations. The demand for food can be also influenced by temperature. 
Therefore, the indicator should only be interpreted in conjunction with additional information 
(e.g. biomass of forage fish, benthos, sea temperature, predator abundance, etc.). The indicator 
will respond predominantly to non-anthropogenic impacts and to a lesser degree to indirect 
anthropogenic impacts through food limitation.

Total Mortality Z (Production:Biomass ratio) 

Total mortality has a large effect on both year-to-year survival, long term reference points such 

as FMSY , and resilience. If mean weight of species in the stock and catch remain constant over 
time, this indicator is conceptually equivalent to production/biomass. Further, the inverse of total
mortality is a direct indicator of longevity, an indicator which is often more readily 
communicated outside the scientific community. It responds to management through direct 
fishing mortality and the abundance of predatory fish (ICES, 2013b). 

Primary Production Required to support fisheries

The energy contained in solar radiation lead to primary production (PP) by phytoplankton and so
fuels marine ecosystems. Subsequently, energy is transferred through food webs by predation 
and lost through metabolic processes. Ecosystem production results from the conversion of 
organic matter at each trophic level and is dependent on ecological features such as the number 
of feeding links, the efficiency of energy transfer from one trophic level to the next, and 
temperature (Chassot et al., 2010). Production available to fisheries depends upon fishing 
mortality and targeted trophic levels in the food web. Fisheries focusing only on lower trophic 
levels may be energetically more efficient than those focused on top predators (Gascuel and 
Pauly, 2009; Pauly and Christensen, 1995).

Primary Production Required (PPR) is the primary production and detritus flows from TL 1 that 
are required to sustain fisheries (expressed as t/km²/year). This allows the evaluation and 
comparison of fishing activities across ecosystems. The PPR is obtained by calculating the flows
backwards, expressed in primary production and detritus equivalents, for all pathways from the 
caught species down to the primary producers and detritus. The PPR increases with fishing 
intensity. PPR has been analyzed also in reference to PP, to reflect a percentage of PP used to 
sustain catches.

Productive pelagic habitat index (chlorophyll fronts)

Productive fronts (chlorophyll-a fronts) are key large-scale features in marine ecosystems since 
they last long enough to sustain zooplankton production and are considered among the main 
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vectors of ocean productivity along the food chain (Belkin et al., 2009; Druon et al., 2012, 2011; 
le Fevre, 1986; Olson et al., 1994; Polivina et al., 2001). 

The frequency of chlorophyll-a fronts with an intermediate range of chlorophyll-a content 
identifies the productive features that attract top-predators, i.e. areas of efficient energy transfer 
between trophic levels outside of low and high chlorophyll levels (from about 0.1 to 3.0 mg.m-3).
Indeed, high chlorophyll levels potentially correspond to eutrophic areas where the food chain is 
disrupted and primary production is not available to upper trophic levels. Nutrient availability, 
hydrological and atmospheric forcing are captured by this indicator, but it captures in particular 
the variability of ecosystem productivity available to high tropic levels, independently of fishing 
pressure.

The indicator of pelagic productivity results from the demonstrated links between top-predators 
and chlorophyll-a fronts observed for fast-moving predators such as Atlantic bluefin tuna
(Druon, 2010; Druon et al., 2011), and fin whale (Druon et al., 2012) and demersal nurseries in 
the Mediterranean Sea. The generic index of productive pelagic habitats yet requires a formal 
validation at European scale (https://fishreg.jrc.ec.europa.eu/fish-habitat).

Ecosystem exploitation (fisheries) 

This estimates the level of exploitation, integrated over all trophic levels, as the total yield 
divided by total production for all exploited species. Required data: Yield, biomass and 
production to biomass ratio for each exploited species.

Community Condition

Community condition is a measure of the overall condition (average weight at length) at the 
functional group level, and the overall community condition. Condition reflects food availability:
fish are heavier for their length when food abundance is plentiful and/or competition for food is 
low and lighter when food abundance is low and/competition for food is high. It is a reflection of
energy flow, food availability and resilience. 

Mean trophic level of the catch

Mean trophic level of the catch is one of a suite of trophic level indicators that is based on the 
average biomass weighted trophic level across all species. Initial work considered the mean 
trophic level of the catch, based on fishery-dependent catch or landing statistics (Pauly et al., 
1998). It describes the average trophic level at which species are removed by the fisheries. As 
more valuable upper-trophic level fish stocks are depleted, fishers may target lower-value, lower-
trophic level fish stocks (Pauly et al., 1998).  Recent work suggests that this indicator is a better 
indicator of fishing pattern and pressure than an indicator of ecosystem state (Shannon et al., 
2014).
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Marine trophic index of the community (MTI) 

The marine trophic index (MTI) (Pauly and Watson, 2005) is another trophic level indicator, 
calculated with a cut-off point of trophic level greater than 3.25. Originally calculated from 
fisheries landings data, here it is presented as the MTI of the community, based on scientific 
survey data, and is considered an indicator of food web functioning (Shannon et al., 2014). It has
most commonly been applied to fish (and cephalopods), but could be extended to a wider range 
of taxa. The marine trophic index of the community, like the mean trophic level of the 
community (see below), provides a measure of ecosystem integrity and resilience. Declining 
trophic levels may result in shorter food chains, which may leave ecosystems less able to cope 
with natural or human-induced change.

Mean trophic level of the community 

Average trophic level (TL) obtained from fishery-independent surveys is a commonly used 
metric that can be used to measure status and trends of ecosystem structure and functioning(Shin 
et al., 2010). Average TL of the community is expected to decrease in response to fishing, as 
fisheries tend to target species at upper trophic levels (Pauly et al., 1998). Additionally, fishing 
can also change the structure of marine food webs by reducing the mean TL and might also 
influence ecosystem functioning by shortening the length of food chains and releasing predation 
on lower trophic level organisms (Shin et al., 2010).

Disturbance index 

The disturbance index (DI) measures the change in trophic (or size) structure of the ecosystem 
and is calculated as the sum, across all TLs ≥2 (or size classes), of the absolute difference in the 
relative biomass (BTL/BTotal) within each TL for each year, relative to a reference period (Bundy 
et al. 2005). The reference period can represent a preferred state of the ecosystem, an ideal state, 
a theoretical state estimated from an ecosystem model or the beginning to the time period for 
which there is data. The DI has been shown to respond directly to fishing pressure, but may also 
be affected by other pressures such as environmental change.

The DI was originally proposed as one of 4 indicators comprising a 4D ecosystem exploitation 
index (Bundy et al., 2005). 

Loss in secondary production index (L index)

The decrease in secondary production was proposed as a proxy for quantifying ecosystem effects
of fishing on the basis of a theoretical development and application to a large set of data
(Libralato et al., 2008). The L index is calculated by integrating the primary production required 
to sustain the catches (PPR: Pauly and Christensen, 1995) relative to the primary production (PP)
in the ecosystem, taking account of transfer efficiencies (TE, i.e., the efficiency in the transfer of 
energy from a trophic level to another; Lindeman, 1942) and the trophic level of the catches 
(TLc; Pauly et al., 1998). Theoretically, these inputs can be combined to measure the loss in 
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secondary production due to fishing (L index) and to evaluate ecosystem effects of all fished 
species (Libralato et al., 2008). 

The application of the L index to a set of well-studied models allowed a probability of being 
sustainably fished (Psust) to be associated with each L index value, and, by fixing desired 
sustainability levels (e.g., 75% and 95%) it provide the basis for back-estimating the associated 
Ecosystem-based Maximum Sustainable Catches (EMSC) (Libralato et al., 2008).

Thus L index is formally defined as an index of ecosystem overfishing and allows application of 
the index using both landings data and ecosystem models. L index can give rough estimates of 
overfishing status and management advice measures allowing definition of a region of viable 
solutions (Cury et al., 2005). L index quantification can be adapted to specific spatial scales 
(regional spatial assessment) and to large pelagic areas exploiting data from satellite for 
estimating PP, catches and available data on diets (for TL estimates). 

Cumulative distribution of biomass assessment 

Accumulation of biomass has been documented for many marine food webs, with the 
intermediate TLs exhibiting the largest increase in the system cumulative biomass (Gascuel and 
Pauly, 2009; Link et al., 2009). Changes in this accumulation may reflect shifts in the ecosystem 
structure and function. According to these observations, from a theoretical point of view, a 
perturbed ecosystem should lower the stored, cumulative biomass and “stretch out” across TLs. 
To describe and quantify these changes, the biomass distribution across TLs is fitted to a logistic 
nonlinear regression model to estimate the main curve parameters: steepness (that is the slope of 
the tangent passing through the inflection point), inflection TL (that is the projection of the 
inflection point on the x-axis), inflection CumB (that is the projection of the inflection point on 
the y-axis), and the basal biomass (that is the y-axis intercept of the fitted curve). Tests, carried 
out by using both surveys and landings data, showed that the method is robust to possible 
'sampling errors' (in terms of TL assignment), sensitive to both environmental and anthropogenic
drivers, and when applied to fishery dependent data, responsive (Pranovi et al., 2014, 2012).

Trophic balance index (fishing pattern)

This index measures the evenness (pattern) of exploitation across TLs by comparing their 
exploitation rates, which are estimated as the sum of yield (Y) divided by the sum of production 
(P) at each TL. The evenness of exploitation is then given by the coefficient of variation of all Y/
P. Required data: Yield, biomass and P/B for each species in the yield.

Mean transfer efficiency for a given TL or size 

The transfer efficiency (TETL) is defined as the fraction of production that is passed from one 
integer trophic level to the next (Lindeman, 1942; Pauly and Christensen, 1995). It is thus 
quantifiable as the ratio between the production of the trophic level (TL) and the production at 
the precedent trophic level (TL-1). Several studies have estimated the pattern of TE by different 
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trophic level after Lindeman's work (Burns, 1989; Lindeman, 1942). It has been used as a 
diagnostic indicator in some cases (e.g. Libralato et al., 2004) but in most instances the 
ecosystem average is used as an integrated summary statistic.

Finn Cycling Index

The Finn’s cycling index (FCI: Finn, 1976) is the proportion of the total sum of flows in the food
web that is recycled in the system. It is measured as the proportion of the total flow that is 
flowing within circular pathways. Recycling is considered to be an indicator of an ecosystem’s 
ability to maintain its structure and integrity through positive feedback and is used as an 
indicator of stress and maturity (Christensen, 1995; Monaco and Ulankowicz, 1997; Ulanowicz, 
1992; Vasconcellos et al., 1997). FCI is an indicator of the recovery time of an ecosystem 
through development of routes to conserve nutrients. A high FCI would mean the system would 
recover faster from a perturbation, whereas a system would be expected to take longer to recover
(lower FCI) when it is in a more degraded state.

Functional Indicators linked to ecosystem resilience 

Mean trophic links per species

The mean number of trophic links per species reflects how connected a food web is and, 
potentially, how stable a food web may be (Link, 2002; Link, 2005; Methratta and Link, 2006). 
Changes to this indicator reflect notable differences in the structure and dynamics of a food web. 
As an understanding of temporal and spatial characteristics of marine trophic interactions it may 
not be entirely complete. This index should be used only as a tool to invoke further precautionary
action (Link, 2005).

Ecological Network Analysis derived indicators (overall mean Transfer 
Efficiency)

The mean transfer efficiency (TEm) for the food web is calculated as the geometric mean of 
transfer efficiencies for each of the integer trophic levels II to IV from models (Christensen and 
Pauly, 2008; Christensen et al., 2009). It is a variant of the mean transfer efficiency discussed 
above. There have been attempts to estimate average TE also on the basis of catches over trophic
levels on the assumption that fisheries were in balance for some periods (Pauly and Palomares, 
2005) – which would provide a fishing pressure indicator. Average transfer efficiency by 
ecosystem type based on model outputs have shown some variability across ecosystem types
(Libralato et al., 2008) and other pressures as shown in Heymans et al. (2012). The indicator has 
been proposed as a descriptor of ecosystem health in lakes (Xu and Mage, 2001). 

Gini-Simpson dietary diversity index

The Gini-Simpson dietary diversity index is defined as the average, over a representative sample 
of consumer species, of the Gini-Simpson diversity of the contributions of resource species to 
consumer diets, by volume or biomass (ICES, 2013b; Rossberg, 2013; Rossberg et al., 2011). It 
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can be determined from stomach-content data. The metric attains values between 0 and 1, with 0 
implying no diversity and 1 high diverse. In practice it is computed as 

Ddiet=1−Σij

[ p¿¿ ij ]2

Σij pij

¿
,

where pijis the proportional contribution of species i to the diet of j, and the sums run over all 
diet items resolved to species level (Rossberg, 2013; Rossberg et al., 2011). The indicator may 
be applied to any component of the ecosystem for which diet data is available, but has so far 
been computed only for fish (Rossberg et al., 2011). A target for the metric near 0.5 has been 
proposed (Rossberg, 2013; Rossberg et al., 2011) based on theory and observation data. The 
indicator may respond to pressures (e.g. Rossberg et al., 2011). 

Herbivory : detritivory ratio 

This indicator, proposed by (Ulanowicz (1992), is the ratio of the values of the detritivory flow 
(from detritus to level II) divided by the value for the herbivory flow (from primary producers to 
level II). It is sometimes presented as H/D (or abbreviated HDR). This indicator was inspired by
Lindeman (1942) when he referred to the role of saprophageous organisms and heterotrophic 
bacteria. This ratio has already been tested as a candidate for defining functional indicators of the
food web, but results seem to be case sensitive. For example, Ulanowicz (1992) observed a 
higher H/D ratio in disturbed situations whereas Dame and Christina (2007) observed exactly the
opposite trend. Then the disturbed situation showed a shift to a more detritus-based food web.

Ecological Network indices of ecosystem status and change (Ulankowicz)

Redundancy (R) (Monaco and Ulankowicz, 1997) indicates the system’s energy in reserve it 
describes the distribution of energy flow among the ecosystem pathways, and is an indicator of 
change in the degrees of freedom of the system (Heymans et al., 2007). Based on the description 
of R by (Ulanowicz, 2004), who suggested that, “… it strongly ties to the effective multiplicity 
of parallel flows by which medium passes between any two arbitrary system components”.  
Redundancy is linked by Christensen and Pauly (2008) with system stability and proposed by
Heymans et al. (2007) as an index of food-web resilience. According to Bondavalli et al. (2000) 
high redundancy signifies that either the system is maintaining a higher number of parallel 
trophic channels in order to compensate for the effects of environmental stress, or that it is well 
along its way to maturity. With regard to overall performance and robustness, ecosystem level 
indicators based on ecological network analysis and food-web analysis are informative on 
intermediate and long time-scales (Cury et al., 2005; IEEP, 2005; Moloney et al., 2005). But they
are difficult to use in annual updates and operational approach, and may be more difficult for 
stakeholders to understand (IEEP, 2005). In addition, use of food-web models and the ecological 
network analysis approach to explore different management scenarios, through simulation of 
fishery and nutrient management, could deliver integrated views at ecosystem level.
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System omnivory index

The system omnivory index (SOI) measures the distribution of feeding interactions among 
trophic levels of food webs, thus SOI evaluates the complexity and connectivity of food webs. It 
has been associated to ecosystem ability to recover from perturbations (Christensen, 1995; 
Libralato, 2008). Given a food web with n elements, the SOI is calculated as the weighted 
average of the elements' omnivory, the latter calculated as the omnivory index (OI). The OI 
of each consumer element i with trophic level TLi is quantified as the variance of the trophic 
levels of its preys (TLj) (Williams and Martinez, 2004). The SOI of a given trophic network is 
quantified as the weighted average of the OI of all consumers of the network, where the 
weighting factors are taken as the logarithm of each consumer food intake (Qi) (Christensen and 
Pauly, 1993). This allows for accounting of the different strengths of consumer interactions and 
the logarithm is used on the observation that consumption is approximately log–normally 
distributed within systems (Christensen and Pauly, 1993). 

The topological configuration of links and their weights affect SOI, but it is quite robust to the 
number of nodes in the web (Libralato, 2008). Comparison of stability and complexity indices 
including SOI for coastal marine food webs highlighted positive correlation between SOI, 
magnitude of change and recovery time, thus suggesting that SOI is inversely related to stability 
of marine ecosystems (Perez-Espana and Arreguin-Sanchez, 1999). Moreover, application of 
SOI and other ecological indicators, on the basis of outputs of protected and fished marine food 
webs standardized by number of elements, suggests that SOI is sensitive to fishing (Libralato et 
al., 2010). 

Structural Indicators linked to diversity and ‘canary’ species  

Guild Surplus Production models

Guild Surplus Production is tracked in the annual Ecosystem Assessment document for the North
Pacific Fisheries Management Council (Zador, 2013).  Species are grouped into functional guilds
based on feeding and life history studies.  Survey and catch time series for each species are used 
to calculate the surplus production for each guild.  To use as a catch limit, in addition to a single-
species limit for each managed stock, the sum of quotas for each guild cannot exceed the MSY 
for the guild as defined by a standard surplus production model.  Per-species reductions to meet 
this overall limit are not proscribed by this index; reductions can be made for stakeholder or 
economic reasons.  For Bering Sea (ecosystem-wide) indicator example, see Meuter and Megrey 
(2006).  The indicator uses is based on survey biomass and catch of the species within each 
guild.

Total biomass of small fish 

This indicator uses survey catch biomass of predefined small (pelagic) fish to assess exploitation 
levels of commercial stocks.  The amount of energy transferred from zooplankton to higher 
trophic levels by pelagic fish is ultimately limited by the biomass of pelagic fish available.
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Shephard et al. (2014) therefore suggest that both the biomass of individual stocks should be 
above precautionary reference points on average and the total stock biomass of all pelagic fish 
together should be above a joint community reference point. In practice, the community 
reference point is always reached when all individual stocks are above precautionary reference 
levels. However, in the case where one or more stocks are substantially below single stock 
reference points, additional care should be taken in the exploitation of the remaining stocks in the
area. 

Proportion of Predatory Fish 

Predatory fish species are defined as all surveyed fish species that are not largely planktivorous 
(i.e. phytoplankton and zooplankton feeders should be excluded: Shin et al., 2010). A fish 
species is classified as predatory if it is piscivorous, or if it feeds on invertebrates that are larger 
than the macrozooplankton category (0.2 cm). Detritivores should not be classified as predatory 
fish. This indicator captures changes in the trophic structure and changes in the functional 
diversity of fish in the ecosystem. It is sensitive to fishing pressure, but since it is a ratio, it will 
also be subject to changes in non-predatory fish, whose biomass may vary for other reasons (i.e. 
environmental driver: Bundy et al., 2010).

This indicator is calculated as the biomass of predatory fish surveyed / biomass surveyed, and the
data required are trawl survey data and food habits data (if not available locally, from 
information in the literature or from comparable systems).

Pelagic to demersal ratio 

The ratio of pelagic to demersal fish (P:D ratio) obtained from fishery-dependent or -independent
surveys is a commonly used metric that describes trophic energy flow and community structure
(de Leiva Moreno et al., 2000; Link, 2005; Rochet and Trenkel, 2003). Changes in P:D ratio 
have been linked to anthropogenic pressures such as fishing and eutrophication. Targeted fishing 
can result in notable shifts in this indicator, however, changes may be not be entirely clear, as an 
increase in the P:D ratio could be caused by an increase in pelagic fish or a relative decrease in 
demersal fish. As an indicator of food web properties, P:D ratio may overlap with other large 
and/or forage fish indicators, but does capture important trophic relationships.

Biomass of trophic guilds 

Biomass of trophic guilds is a measure of ecosystem structure, estimated as the aggregate 
biomass of each trophic guild. Individually they provide a measure of the change in biomass of 
trophic guilds. Collectively, they provide a measure of change in overall structure. It can be 
applied to all marine species if the information is available, based on survey data or model 
results. Work to date has largely focused on fish trophic guilds (Rochet et al., 2013; Shackell et 
al., 2012), but could be extended to invertebrates birds, and marine mammals. Measures of 
functional diversity could also be developed using these data. Data sources can be from research 
surveys or models.
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Lifeform-based indicator for the pelagic habitat

Ecosystem health theory (reviewed by Tett et al., 2013) suggests that ecosystem resilience, and 
the sustainability of services, depends inter alia on the abundance and relationships of non-
substitutable `functional groups' or 'lifeforms'. The abundances and trophic structural 
relationships of phytoplankters, and their protozoan and mesozooplankton consumers, change 
seasonally. The Plankton Index (Pi) method takes account of such seasonality and requires the 
plotting of log-transformed lifeform abundances, based on at least monthly samples, in sets of 2-
D state spaces (Gowen et al., 2011). These plots (Tett et al., 2008) often suggest a fuzzy 
doughnut. Using data for a reference period, an envelope can be drawn to include a fixed 
proportion (usually 90%) of points in this doughnut. Data from other years can be plotted against
this envelope; the Pi[j,t] value (for lifeform pair j and year t) is defined as the proportion of new 
points that fall inside the envelope. For a given value of t, values of Pi for different lifeform pairs
can be averaged.  A UK project has identified sets of lifeform pairs that may serve for 
assessment of environmental status. The lifeform pairs relevant to Food Webs are: (i) chlorophyll
concentration and mesozooplankton abundance; (ii) phytoplankton >= 20 µm abundance and 
phytoplankton < 20 µm abundance; (iii) [adult] copepods >= 2 mm abundance and [adult] 
copepods < 2 mm abundance. Reference conditions for any of the Pi are expected to be 
dependent on ecohydrodynamic (EHD) conditions (van Leeuwen et al., 2015). The UK is 
currently seeking EHD-specific references at sites in the Celtic or Greater North Sea MSFD 
ecoregions that are, according to expert judgement, in GES. Meanwhile, time-series of Pi will be 
generated from conditions observed during an agreed (but arbitrary) period of 3 years, and the 
time series will be assessed for (a) significant trends, and (b) significant correlation with relevant
pressures.

Region-specific indicators of abundance & spatial distribution, 

Indicators can be selected to track the abundance and spatial distribution of major species which 
represent key community and or/ecosystem properties. Ideally, species representing different 
communities or habitats (benthos, plankton, fish, top predators) should be selected, in this way 
covering a large part of the ecosystem. As ecosystems are typically characterized by few strong 
links and many weak links among species or trophic levels, one (or few) indicator populations 
can describe broader ecosystem state and/or human perturbation. Criteria in the MSFD for 
selecting the groups/species that could be included in this category are those with fast turnover 
rates, groups/species that are targeted by fisheries, the habitat-defining groups/species, those at 
the top of the food web, and those tightly linked to other trophic levels (Rogers et al., 2010).

Fish biomass : benthos biomass from models

Ratios are used to measure changes in community structure indicating the distribution of energy 
in the ecosystem. They are a supplement to biomass indicators and have the advantage that they 
do not reflect general increases or decreases in biomass in all components but only changes in 
the relative importance between the two groups. Hence, the ratio pelagic biomass : demersal 
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biomass represents the balance between pelagics and demersals whereas the fish/benthos ratio 
reflects the proportion of the biomass which is diverted to benthos, including detritivores.  The 
indicator captures changes in the trophic structure and changes in the functional diversity of the 
ecosystem. It is sensitive to fishing pressure, but since it is a ratio, it will also be subject to 
changes in non-manageable benthos, whose biomass may vary for other reasons (e.g. 
environmental driver, Bundy et al., 2010). Data sources can be research surveys (mainly nekton) 
or models (often benthos, since this is often not surveyed on appropriate spatial and temporal 
scales).

Zooplankton spatial distribution and total biomass 

This indicator, which describes the distribution of zooplankton, is still at the developmental stage
with methods, threshold and target values to be developed. The reasoning for this indicator is 
that zooplankton constitutes an important link between primary producers and higher trophic 
levels in the food web.  Zooplankton plays an important role in the energy transfer and nutrient 
cycling in the food web. Changes of the composition of the zooplankton community are coupled 
to environmental changes and can respond quickly to ecosystem changes.  Zooplankton biomass 
and abundance can e.g. respond to invasive species and local oil spills. 

Scavenger biomass

Fishery discards provide food subsidies that help maintain fish and seabird populations and may 
allow some of these populations to be more abundant than they would naturally be (e.g. Link and
Almeida, 2002; Polis and Strong, 1996). Surveys of non-targeted scavenger biomass or 
abundance may provide an index of disturbance (Link and Almeida, 2002; Methratta and Link, 
2006b). Additionally, some scavenger species might be viewed as “canary” or “iconic” species 
that can be used as an early warning of disturbance or excessive fishing pressure.

Geometric mean abundance of seabirds

The Geometric Mean Abundance of Seabirds is computed in regular intervals (e.g. yearly) as the 
geometric mean of the population sizes (e.g. numbers of individuals or breeding pairs) of those 
seabirds in the assessment region for which population time series are available, normalised such
that the indicator value at the beginning of the indicator time series is one. The indicator is 
designed after the Living Planet Index (LPI: Loh et al., 2005), which now underlies Aichi Target 
5 of the Convention for Biological Diversity. Modern indicator protocols take into account that 
species may enter or leave the set of species for which time series are available, and that 
population sizes at low abundances become uncertain. Methods to compute indicator confidence 
intervals have been developed (Buckland et al., 2011; Loh et al., 2005). By its definition, the 
proportional rate of change of the indicator equals the average population growth rate of all 
populations contained in the indicator (here seabirds). Under conditions where populations 
fluctuate and turn over but overall biodiversity does not change, the indicator is expected not to 
deviate significantly from one. A steady decline of geometric mean abundance signals 
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biodiversity loss. Seabird populations are known to be highly sensitive to food availability (Cury 
et al., 2011), and their differentiation of foraging niches (Fasola et al., 1989) is evidence of 
competition for food among them. Competitive exclusion resulting from loss of biodiversity 
among their marine resources (e.g. forage fish), or even at lower trophic levels (Rossberg, 2013),
can be expected to induce the slow decline of seabird diversity to which this indicator is designed
to be sensitive. Geometric mean abundance of seabirds is therefore sensitive to a collapse of the 
pyramidal distribution of species over trophic levels in food webs (de Ruiter et al., 2005).

Gini-Simpson diversity index (species dominance) of large and small fish by 
biomass

It is incompatible with GES to bring the foodweb into a state where only a few (large) predator 
or prey species dominate the system when the biomass of predators and prey was distributed 
more evenly in the system during the reference period. Species richness may be inadequate as an 
indicator as it often takes a long time to completely lose a species, while management should be 
informed and act earlier. The Gini-Simpson index (1-D) applied to the predator and/or prey 
community provides the possibility to detect unwanted changes in diversity. Simpson's Diversity 
Index is a measure of diversity which takes into account the number of species present, as well as
the relative abundance of each species. As species richness and evenness increase, so does 
diversity (ICES, 2013b).

Species Richness Index

Species richness measures the number of species within a community. A well-structured and 
functioning ecosystem will generally have many species (Fung et al., 2015); as a side effect of 
fishing, species richness may decrease (Rice, 2003, 2000). However, as a food web indicator 
species richness may provide ambiguous information, since multiple community configurations 
may produce similar values, as shown by Gislason and Rice (1998) and Rice and Gislason 
(1996).  In these studies the index was calculated as the number of species in any year whose 
numerical abundance or biomass was larger than some percentage of their value in a reference 
year. The IUCN Red List criterion of 20% was used as the reference value. Required data: 
species or functional group P/B, and species or functional group biomass/abundance to compare 
to reference points.

The Large Fish Indicator (LFI)

The Large Fish Indicator (LFI) is defined as the proportion by weight of large fish in the sample 
of a specified survey (Greenstreet et al., 2011), where large fish are defined as those longer than 
a threshold length Lth, a region-specific value. The threshold value is chosen such as to optimize 
the responsiveness of the indicator to fishing pressure, as determined from historic data
(Shephard et al., 2011). The LFI takes no account of species identity, only of individual sizes. 
However, it was shown to reflect mostly the proportion (by weight) of large-bodied species in 
communities (Shephard et al., 2012). Large-bodied species tend to be more vulnerable to fishing,

Page 52 of 54

1541
1542
1543
1544
1545
1546
1547

1548
1549

1550
1551
1552
1553
1554
1555
1556
1557
1558

1559

1560
1561
1562
1563
1564
1565
1566
1567
1568
1569

1570

1571
1572
1573
1574
1575
1576
1577



which is why the LFI is sensitive (Engelhard et al., 2015; Greenstreet et al., 2011; ICES, 2011; 
Shephard et al., 2013) and specific (Houle et al., 2012) to fishing pressure. Furthermore, by 
expressing the indicator in terms of proportions by weight, and not by numbers, and through 
judicious choice of the appropriate length threshold to define large fish, the indicator can be 
desensitized to variation in the abundance of small fish. The influence of environmentally driven 
recruitment events on indicator values can therefore be minimized (Greenstreet et al., 2011). 
Food-web models (Fung et al., 2013; Shephard et al., 2013) and data (Fung et al., 2012) suggest 
that recovery of the indicator from pressures can be slow (decadal scale). The LFI, as an OSPAR
EcoQO for the North Sea, is fully operational. It was named as an indicator for food-web GES
(EU, 2010), and has been chosen as a common food-web indicator by HELCOM and OSPAR (in
some OSPAR Subregions as a priority candidate indicator).

Mean length of surveyed community

Mean length (ML) of all species caught in a survey, whether fishery-independent, fishery-
dependent, or based on landings, can be a useful and simple indicator to evaluate the overall 
effects of fishing on an ecosystem (Dulvy et al., 2004; Nicholson and Jennings, 2004; Rochet 
and Trenkel, 2003; Shin et al., 2005). ML quantifies relative abundances of large and small 
individuals and describes the size distribution of a community (Shin et al., 2005). It is relatively 
responsive to key pressures (Link, 2010; Pauly et al., 1998). ML is considered measurable and 
generally robust, however, the direction of response may be caused by increasing stocks of large 
fish or decreasing in stocks of small fish, leading to potential ambiguity. Whilst the metric is 
sensitive to fishing pressure, it can also be strongly influenced by environmentally driven 
recruitment events that introduce large numbers of small fish into the community (Badalmenti et 
al., 2002; Lekve et al., 2002; Wilderbuer et al., 2002).

Size spectrum slope

Various measures of the change in size can be a useful indicator to describe composition of 
communities (Nicholson and Jennings, 2004). Size spectrum slope measures the relationships 
between the biomass (y) of individuals within a body size class and body size (x), both normally 
plotted on logarithmic scales. Frequently a logarithmic transformation is applied to body size, 
particularly when weight classes are used. When applied to fish communities, the slope of the 
relationship becomes increasingly negative in response to fishing pressure; fisheries reduce the 
abundance of large fish, through the direct effect of fishing and, as a consequence of reduced 
predation pressure from large fish, the abundance of small fish increases (Daan et al., 2005; 
Gislason and Rice, 1998; Nicholson and Jennings, 2004; Rice and Gislason, 1996). The size 
spectrum slope is considered measurable and robust. However, the direction of the response may 
not be entirely clear (Trenkel and Rochet, 2003), as the steepening of the slope could indicate a 
decrease of large fish or an increase of small fish. The slope is particularly sensitive to changes 
in the abundance of small fish, which markedly affect the intercept of the regression line, as such
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the size spectrum slope can be influenced by environmentally driven recruitment events
(Badalmenti et al., 2002; Lekve et al., 2002; Wilderbuer et al., 2002).

Zooplankton Size-Biomass index 

This is a zooplankton indicator reflecting both mean individual size and total biomass of the 
zooplankton community. The indicator represents food web capacity to sustain fish feeding 
conditions and grazing on primary producers. The rationale is that both mean body size in the 
community and total community biomass are positively related to fish feeding conditions, 
whereas total biomass alone is just representative of grazing pressure and trophic transfer 
efficiency (Fuchs and Franks, 2010). The effects of zooplankton community structure on energy 
transfer and food web resilience have been demonstrated in both freshwater and marine systems
(Jeppesen et al., 2011; Kane et al., 2009; Lougheed and Chow-Fraser, 2002). The index is 
currently considered as a core indicator for the Baltic Sea (HELCOM, 2013, 2012). In semi-
enclosed seas, such as the Baltic Sea, with strong salinity and temperature gradients, no single 
zooplankton group can adequately reflect community properties (Remm 1984), hence the need 
for this two-dimensional index. The index value decreases with increasing fishing pressure. 
Protocols for indicator assessment have been developed by HELCOM Zooplankton Expert 
Network (ZEN) using nine long-term monitoring datasets in the Baltic Sea (HELCOM, 2013, 
2012).  In all datasets, the indicator was found to predict deviations from GES conditions. 
Determination of GES boundaries for the indicator is straightforward and based on the regional 
basin-specific Environmental Quality Ratios for chlorophyll accepted within Water Framework 
Directive and weight-at-age for zoo-planktivorous fish (HELCOM, 2013, 2012).
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