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We consider the phase diagram of self-avoiding walks (SAW) on the simple cubic lattice subject to surface and
bulk interactions, modeling an adsorbing surface and variable solvent quality for a polymer in dilute solution,
respectively. We simulate SAWs at specific interaction strengths to focus on locating certain transitions and their
critical behavior. By collating these new results with previous results we sketch the complete phase diagram and
show how the adsorption transition is affected by changing the bulk interaction strength. This expands on recent
work considering how adsorption is affected by solvent quality. We demonstrate that changes in the adsorption
crossover exponent coincide with phase boundaries.

I. INTRODUCTION

Adsorption of polymers in dilute solution and the associ-
ated critical behavior is a long standing topic in statistical
physics [1–9]. The canonical model for such polymers is the
self-avoiding walk (SAW) on a regular lattice, allowing for
mean field-theoretic analysis [10–12] as well as extensive nu-
merical simulation [13, 14]. At high temperatures, a polymer
in a good solvent forms an extended coil configuration, seek-
ing to maximize entropy. Below a certain temperature Tads it
is energetically favorable for the polymer to be adsorbed to an
attractive surface where the fraction of the polymer lying on
the surface approaches unity. Solvent quality is another influ-
ence on the conformational properties of polymers in dilute
solution and is modeled by a monomer-monomer interaction.
Polymers modeled by SAWs are therefore an important model
for considering the interplay between surface and bulk inter-
actions.

The relevant order parameter for adsorption of polymers is
the fraction of the polymer lying on the surface

un =
〈a〉
n
∼ nφ−1, (1)

where a is the number of monomers adsorbed to the surface,
n is the length of the polymer chain and the scaling is deter-
mined by the exponent φ. Clearly, φ = 1 in fully adsorbed
phases but takes on other values in other phases and at the
transitions between phases. In a good solvent, φ becomes a
crossover exponent at the critical temperature Tads control-
ling critical behavior and it has been proposed [15, 16] that
φ = 1/2 for SAWs in any dimension, making φ superuniver-
sal at the adsorption transition. However, recent consensus
due to numerical simulation is that φ is not super universal
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[6, 8, 9, 17]. Numerical simulation is thus a useful tool in this
field and can be applied to other questions.

For the effect of the bulk interaction on polymer adsorp-
tion, recent work by Plascak et al [18, 19] has suggested that
altering the strength of the bulk interactions with respect to
the surface interactions has a significant effect on φ and the
critical temperature Tads. For the case where the bulk interac-
tion is made increasingly repulsive the critical temperature de-
creases slightly from the noninteracting case. While Ref. [18]
claims that φ also decreases slightly in the same limit, we have
used variations on the self-avoiding walk to mimic strongly
repulsive bulk interactions, finding no good evidence that φ
changes in this limit [20].

The complete phase diagram of SAWs with both surface
and bulk interactions has been extensively studied with nu-
merical simulations [21–23] and exact enumeration [24, 25]
but some details remain in doubt. There are many phases and
it can be hard to isolate particular transitions due to finite-size
effects [17] and difficulties with determining the correct signa-
ture of the transition [26]. In this article we look at the entire
phase diagram and present results of new simulations so as
to focus on attractive bulk interactions. The large changes to
φ and Tads as the bulk interaction strength is increased coin-
cide with the appearance of other phases where bulk collapse
is just as important as surface adsorption and the critical tem-
peratures are not Tads but are indicative of a transition to these
other phases. This implies a simpler picture of the variation
of φ with bulk interaction strength being constant on phase
boundaries between similar phases and discontinuously jump-
ing when the phase transition changes type: that is, the nor-
mal universal behaviour of exponents. Overall, we are able
to locate these other phase boundaries and thus sketch out the
entire phase diagram.

II. MODEL AND PHASE DIAGRAM

Single polymers are modeled as self-avoiding walks
(SAWs) on the positive half-space of the simple cubic lattice.
The canonical partition function for walks of length n with m
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bulk interactions and a surface interactions is

Zn(T ) =
∑
a,m

cn(a,m) exp
(

aεsurf + mεbulk

kBT

)
, (2)

where cn(a,m) is the density of states, −εsurf is the interac-
tion energy of a point in the SAW in contact with the surface
and −εbulk is the interaction energy of a pair of nonconsecu-
tive steps of the SAW on neighboring lattice points. There
is some freedom in how to parametrize the thermal or Boltz-
mann factor in Eq. (2) depending on perspective and prefer-
ence. In Ref. [18] the authors use temperature T and energy
ratio s = εbulk/εsurf. In particular, εsurf defines the energy scale
so that large s means bulk interactions are energetically favor-
able, small s means surface interactions are energetically fa-
vorable and negative s means bulk interactions are repulsive.

As an alternative, in our previous work we assign sepa-
rate Boltzmann factors to the bulk and surface interactions
so that the total thermal factor is written κaωm, where κ =

exp(εsurf/kBT ) and ω = exp(εbulk/kBT ). In this parametriza-
tion the energetically favored interaction is determined by the
larger of κ and ω and repulsive interactions are represented by
κ < 1 or ω < 1.

In the κ-ω picture, we show in Fig. 1 the schematic
phase diagram for adsorbing and interacting SAWs in three-
dimensions based on known results. The dashed lines show
how this picture maps on to the s-T parameterisation and the
blue lines demarcate the phases by joining the known val-
ues of the critical points. Starting from the pure-entropic
desorbed-extended (DE) phase at high temperature, in the
case of a non-interacting or repulsive surface (κ ≤ 1) the
polymer may undergo a θ-point transition to the desorbed-
collapsed (DC) phase, which for the simple cubic lattice oc-
curs at ω(3D)

θ = 1.31 [27]. In both desorbed phases, the av-
erage surface fraction is trivially zero, represented by φ = 0.
Conversely, in the case of zero or repulsive bulk interactions
(ω < ω(3D)

θ ), a polymer in the DE phase may undergo the ad-
sorption transition to the adsorbed-extended (AE) phase. At
the point of no bulk interactions (ω = 1), the critical temper-
ature Tads is equivalent to κads = 1.33 [6], but there is a small
shift in κads as ω is varied below ω(3D)

θ . For polymers fully
adsorbed to the surface φ = 1, but at the adsorption transi-
tion it is expected that φ = 1/2, from mean-field predictions.
The three-dimensional case is slightly different with numer-
ical evidence suggesting a slight deviation from the mean-
field value; recent Monte Carlo studies converge near Grass-
berger’s value φ ≈ 0.48 [6, 9, 17, 18] but other values are pos-
sible [28]. Further, there is some disagreement over the value
of φ as the bulk interaction is changed from non-interacting
(ω = 1) to strongly repulsive (ω = 0) [20].

As κ → ∞ the model changes to a two-dimensional one,
and the polymer may undergo collapse to a two-dimensional
adsorbed-collapsed (AC) phase as ω increases. The square
lattice is the two-dimensional limit of the simple cubic lattice
and the collapse occurs at ω(2D)

θ = 1.94 [29]. The collapse
transition in two dimensions is weaker than in three dimen-
sions and occurs at larger ω, for those models where the same
bulk interaction can be used.

DE

AE AC

SAG

DC

FIG. 1. Schematic phase diagram for adsorbing and interacting
SAWs in three-dimensions based on known critical points and ex-
ponents. The phase diagram is in the ω-κ parametrization and is
overlaid with contours of fixed s and T (dashed lines)

Finally, there is another three-dimensional phase where
bulk and surface interactions are strong and the polymer has
the configuration of a surface-attached globule (SAG). Com-
paring the volume of the globule to the fraction of its surface
area that rests on the interacting surface suggests that φ = 2/3
in this phase [7]. In the limit of large ω and large n the SAG-
DC transition is expected to occur at κ = 1, but there is still
uncertainty as to where this boundary connects to the 3D col-
lapse transition. However, this is not the main focus of the
current article.

The outstanding question in the study of adsorbing lattice
polymers in three dimensions is what happens to the adsorp-
tion transition when the bulk interaction is attractive, ω > 1.
As ω is increased the pure-adsorption AE-DE transition meets
the pure-collapse DE-DC transition and the SAG-AE transi-
tion at a multicritical point, where φ is believed to return to
its mean-field value of 1/2. The location and nature of the
SAG-AE boundary is less well understood. Precise determi-
nation of the critical temperature along this boundary is hin-
dered by a number of factors. Since the transition is both a
surface and bulk transition, it is not obvious what is the best
signature of the transition. The methods we have explored for
the adsorption transition [17] do not work as well here. The
complexity of the phase diagram limits the range of parame-
ters that are sure to hit only the SAG-AE boundary without
probing other transitions in the system. This is further com-
plicated by the appearance of a series of layering transitions in
the weak solvent regime ω > ω(3D)

θ [25, 30, 31]. These transi-
tions are omitted in Fig. 1 since they only appear in finite-size
systems but are a concern in numerical simulations. Further,
the location of the boundaries is dependent on n in finite-size
simulations so trying to calculate scaling of thermodynamic
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FIG. 2. Phase diagram of Ref. [18] (black circles) overlaid
with schematic phase boundaries of Fig. 1 transformed to s-T
parametrization (blue dotted), contours of fixed ω (dotted rays) and κ
(dashed horizontal). Red squares mark the critical temperatures from
our fixed κ simulations and mark the SAG-AE transition.

quantities over a range of κ and ω is difficult. Nevertheless,
we can make some progress towards mapping out the miss-
ing parts of the phase diagram and confirming some signature
properties of the phases, even if we do not have a high degree
of numerical precision for some quantities.

III. SIMULATIONS AND RESULTS

Walks are simulated using the flatPERM algorithm [32],
an extension of the pruned and enriched Rosenbluth method
(PERM) [27]. We have used this method previously to study
the adsorption transition without bulk interactions [17, 20].
The simulation works by growing a walk on a given lattice
up to some maximum length Nmax. At each step the number
of bulk interactions m and surface contacts a are calculated
and the cumulative Rosenbluth & Rosenbluth weight [33] is
compared with the current estimate of the density of states
Wn,m,a. If the current state has relatively low weight the walk
is ‘pruned’ back to an earlier state. On the other hand, if the
current state has relatively high weight, then microcanonical
quantities m and a are measured and Wn,m,a is updated. The
state is then ‘enriched’ by branching the simulation into sev-
eral possible further paths (which are explored when the cur-
rent path is eventually pruned back). When all branches are
pruned a new iteration is started from the origin. FlatPERM
enhances this method by altering the prune or enrich choice
such that the sample histogram is flat in the microcanonical
parameters n, m and a. Further improvements are made to
account for the correlation between branches that are grown
from the same enrichment point, which provides an estimate
of the number of effectively independent samples. We also run
10 completely independent simulations for each case to esti-
mate the statistical error. The main output of the simulation is
the density of states Wn,m,a which is an approximation to the

athermal density of states cn(a,m) in Eq. (2), for all n ≤ Nmax.
In practice, thermodynamic quantities are determined by spec-
ifying κ and ω and using the weighted sum

〈Q〉(κ, ω) =

∑
m,a Qm,aω

mκaWn,m,a∑
m,a ω

mκaWn,m,a
. (3)

Producing flat histograms over both a and m simultaneously
limits the maximum length n that can be simulated. Alterna-
tively, we can fix one of the weights, κ or ω, within the sim-
ulation by including it as a constant factor in the total weight
of the sample at all growth steps and only flatten over the
other microcanonical parameter. Fixing κ or ω in this fashion
is equivalent to simulating along horizontal or vertical lines
in the phase diagram, respectively, and allows much longer
walks to be simulated.

To map out the SAG-AE transition we first performed flat-
PERM simulations of SAWs on the cubic lattice up to length
n = 1024 at fixed values of κ in the range 1.4 ≤ κ ≤ 2.3
for a total of ten independent simulations, each producing an
average of 2.7 × 1011 samples. This range of κ avoids compli-
cations from where the multicritical points and other phases
are expected to be. The transition is a bulk transition as well
as a surface transition, so we are not constrained to look for a
specific signature of the transition like in the case of the ad-
sorption transition. We estimate the location of the critical
point by the peak of the variance of the order parameter

var(m)
n

=
〈m2〉 − 〈m〉2

n
, (4)

as a function of ω and over a range of n. The transition ap-
pears as a slightly broadened peak in the variance of the mi-
crocanonical parameters but this approach allows data to be
collected at longer lengths. The positions of the peaks for
the range of n are extrapolated to infinite lengths assuming a
power law in accordance with standard finite-size scaling the-
ory. This process is repeated for each value of κ to obtain a set
of (ω, κ) pairs marking the SAG-AE boundary. This method is
deliberately simple, partly due to the complications addressed
in Section II and partly because our chief interest is to de-
marcate the SAG-AE boundary in contrast to other features of
the phase diagram and not to obtain precise estimates of the
transition temperature.

With these estimates of the location of the SAG-AE transi-
tion as (ω, κ) pairs, we return to the question of parametriza-
tion of the phase diagram. In Fig. 2 we show the s-T phase
diagram from Ref. [18] (black circles) augmented with our
estimates of the SAG-AE transition transformed to the same
parameters (red squares). The blue dotted lines are the trans-
formed schematic phase boundaries from Fig. 1. Also shown
are contours of fixed ω (black dotted) and κ (black dashed) to
illustrate the transformation between parametrization and the
regions covered by each study.

It is immediately clear that results for s > 1 are actually
showing the SAG-DE transition, which is really a collapse
transition more like the θ transition, rather than a true sur-
face transition in the presence of weak bulk interactions. In
fact the weakly attractive bulk interaction regime, found at



4

●●●●●●●
●

●

●

●
●●●●

●
●

SAG

AE

●
●●●

●
●

●

●

●

●

●
●●●●●●

SAG

AE

FIG. 3. Exponent φ at (a) fixed κ = 1.8 and (b) fixed ω = 1.6,
across the SAG-AE boundary. In both cases results are consistent
with φ = 1 for the adsorbed phase and φ = 2/3 for the surface-
attached globule phase.

1 < ω < ωθ ≈ 1.31 in our parametrization, is contained en-
tirely within 0 < s . 1, since the multicritical point is, coinci-
dentally, very near s = 1. In contrast, The SAG-AE transition,
which is a surface transition as well as a bulk transition, does
occur near s = 1 but at smaller T .

In addition to the critical temperatures, Ref. [18] observed
a large change to the value of φ in the s > 1 regime, attributed
to effects due to multicritical points. We can now see that
the s > 1 regime does not contain any adsorption transitions.
We also note that the conjectured boundary between the SAG
and DC phases is indicated in Fig. 2 by large s and large T
but the DC phase is not well-defined in this parametrization.
For finite systems there may be some observable effect due
to the appearance of the DC phase at finite T and a possible
multicritical point at large s, but we do not expect this to be
significant in the energy ranges considered here. Therefore
there are no further multicritical points to consider for s > 1.
Instead, we expect the value of φ to be entirely dependent on
the expected configurations of the SAG and DE phases and
not display any critical behavior. We can now see that this is
the normal behavior of the system in the SAG and DE phases
and the transition between them.

It is also apparent from Fig. 2 that the regime of weakly at-
tractive bulk interactions, known to be between ω = 1 and
ω = ωθ, is contained entirely within 0 < s < 1, and as
such has not yet been investigated. This regime is of interest
for matching the noninteracting and repulsive bulk interaction
regimes, where we know that φ ≈ 0.48, to the expected mean-
field value φ = 1/2 at the multicritical point. For other values
of s the phase diagram is better understood. Where s ≤ 0
(or ω ≤ 1) the system is interpreted to have zero or repulsive
bulk interactions, since the surface interaction energy εsurf is
used as a reference. As the bulk interaction becomes more
repulsive the critical temperature decreases slightly. While
Ref. [18] found evidence that φ decreases in this regime, a
study of neighbor-avoiding walks that model the infinitely re-
pulsive limit imply that this could be within statistical and nu-
merical error [20]. Otherwise, the adsorption transition is rea-
sonably well understood in the case that the bulk interaction
is below the collapse point.

Our estimates of the critical point shown in Fig. 2 are a clear

signature of a transition occurring, but are not accurate enough
for determining other properties. This is because in order to
cover the whole SAG-AE boundary each point is from only
a single simulation instance and only considers the variance
of a single parameter. However, having established the loca-
tion of the phase boundaries we can focus on a specific point
in the phase diagram near the SAG-AE boundary in order to
investigate critical behavior.

For that purpose we ran two further simulations of SAWs
on the simple cubic lattice up to length 1024 at fixed weights
κ = 1.8 and ω = 1.6, corresponding to a horizontal and verti-
cal slice in the phase diagram, respectively. Each of these sim-
ulations combined ten independent instances for 7.1×1012 and
9.6 × 1012 total samples, respectively. This provides greater
accuracy, particularly regarding the scaling of the order pa-
rameter 〈a〉 with length n. The value of the exponent φ is
determined from 〈a〉 by adding a correction-to-scaling term to
Eq. (1), i. e.

un =
〈a〉
n
∼ nφ−1 f (0)(x)[1 + n−∆ f (1)(x) + . . .], (5)

where the f (i) are finite-size scaling functions of the scaling
variable x = (Tads − T ) nφ and so are assumed to be con-
stant near the transition. The exponent ∆ determines the first
correction-to-scaling term but its precise value has little ef-
fect provided ∆ . 1. Figure 3 shows the exponent φ across
the SAG-AE boundary in two ways: (a) a horizontal slice at
fixed κ = 1.8 over a range of ω and (b) along a vertical slice
at fixed ω = 1.6 over a range of κ. The intersection of these
slices is near the SAG-AE boundary so with respect to this
point, in the AE phase at smaller ω and larger κ the exponent
is φ = 1, consistent with the walk being fully adsorbed to the
surface. For larger ω and smaller κ, the SAG phase, our data
is consistent with φ = 2/3. Despite the increased focus on a
single value of κ and ω we are unable to determine precisely
where the critical point is with enough accuracy to determine
if φ = 2/3, φ = 1 or some intermediate value at the transition.
A dedicated study would be required to resolve this question.

IV. CONCLUSION

In this article we have resolved outstanding issues in the
phase diagram of SAWs with bulk and surface interactions.
The transition from the DE phase to the DC phase is inde-
pendent of the surface interaction strength, and similarly, the
bulk interaction strength only weakly affects the location of
the transition to the AE phase and probably does not effect the
critical behavior, namely the exponent φ. The collapse tran-
sition between the AE and AC phases, representing adsorp-
tion in two dimensions, occurs at higher values of the bulk
and surface interactions, meaning there is an additional phase
boundary joining the multicritical points. We have mapped
this boundary by varying the bulk interaction at fixed values
of the surface interaction. While finite-size effects inhibit our
ability to obtain highly accurate estimates of thermodynamic
parameters in each phase, we are able to show how the ex-
ponent φ which controls the scaling of the order parameter
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varies across this boundary. The behavior of φ is consistent
with the presence of a SAG phase and not due to multicritical
scaling as the system moves along the line of adsorption tran-
sition points to the multicritical point where collapse occurs,
as suggested by Ref. [18].

All phases in this system have been identified but there are
some remaining questions about the details that we have not
yet addressed. Having distinguished the SAG-AE transition
as the bulk interaction is varied, future work can focus on the
multicritical points or on deeper analysis of each transition.
The region near ω(3D)

θ for 1 < κ < κads requires careful atten-
tion to resolve where the DC-SAG transition joins the other
phase boundaries, particularly comparing finite n to infinitely

long chains. Understanding this transition will allow greater
focus to be put on the SAG-AE transition in order to locate
the phase boundary with enough accuracy to understand the
critical behavior of this transition.
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