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Reactive Magnetic-field-inspired Navigation for Non-holonomic Mobile
Robots in Unknown Environments*

Ahmad Ataka1, Hak-Keung Lam1, and Kaspar Althoefer2

Abstract— In this paper, we present a reactive robot nav-
igation method for a non-holonomic mobile robot taking in-
spiration from the phenomena observed in magnetic fields.
The algorithm is shown to be able to guide mobile robots in
arbitrary-shaped convex environment without being trapped
in local minima by exploiting the local sensory information
without priori knowledge about the environment. A preliminary
validation study involving simulation of and experiments with
a TurtleBot mobile robot platform show the advantage of the
proposed method over existing ones.

I. INTRODUCTION

In recent years, robotics applications have moved from
static, well-defined environments of factory floors to en-
vironments that are dynamic, often unknown environment
and where the close proximity or even physical interaction
between robots and humans are unavoidable. This new way
of making use of robots has led to a shift of paradigm
in many areas of robotics, including the field of robot
navigation. The classic planning technique [1], [2], which
aims to find a geometrical collision-free path from initial
configuration to the final configuration under the assumption
of perfect environmental knowledge, is no longer sufficient.
The use of reactive navigation, which attempts on simulta-
neously solving planning and control problem on-line using
feedback signals and sensory information, is preferable since
it does not rely on a priori information of obstacles, avoids
computationally expensive and time-consuming calculations,
and hence, makes it perfectly suited for unknown and unpre-
dictable environment with strong real-time constraints.

One of the most popular examples of reactive navigation
is the electric-field-inspired Artificial Potential Field (APF)
method [3]. The APF method uses the gradient of a potential
function as a feedback signal to guide the robot’s movement,
whereby obstacles show a repelling behavior while the goal
has an attractive influence on the robot. Despite its simplicity,
the APF method and a lot of its variances (such as those
reported in [4]-[5]) suffer from local minima where the robot
gets stuck in the saddle points of the potential [6].
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On attempting to solve the local minimum problem while
maintaining the reactive property, the use of a vortex field,
in which the vector field is designed to circulate rather than
to emanate outwardly from the obstacle, was proposed for
mobile robot [7] and multiple flying robots [8]. These meth-
ods, however, do not present a collision avoidance or goal
convergence guarantee in the presence of arbitrary-shaped
obstacles. A recent reactive navigation method used the
power diagram to design a globally stable feedback planner
with unique attractors in each of the saddle points besides
the final goal position [9]. Nonetheless, this approach is only
suitable for a topologically simple spherical environment.

The idea of creating a vector field which deviates rather
than repels the robot has motivated the use of artificially-
induced magnetic fields for mobile robots [10]-[11] and
navigation methods for rigid-link manipulators [12]. At-
tempts to make this type of vector field reactive were
made, for example by using a ’gyroscopic force’ employed
to guide a planar point-like robot for boundary following
[13], [14], obstacle avoidance [15] and formation control of
multiple vehicles [16]. Efforts to extend these works into
3D environments have also been made recently for obstacle
avoidance purpose [17] and formation control [18]-[20].
Albeit successfully creating a vector field without a local
minimum, some of the works still need a priori information,
such as the obstacle’s geometry [10]-[11] and location of its
center point [12], or these approaches are only applicable to
certain specific shapes of obstacles [17]. Meanwhile, other
navigation methods could only be used for specific purposes
such as boundary following [13], [14], or collision avoidance
among point-like agents [18]-[20], incapable of coping with
environments with large and arbitrary-shaped obstacles.

In this paper, a magnetic-field-inspired reactive navigation
is presented. Relying only on a local sensory information, a
robot will induce an artificial electric current on the surface
of the closest obstacle, which in turn will produce an artificial
magnetic field with the ability to alter the robot’s direction of
motion. The algorithm is shown to work without affecting the
robot’s energy, and hence, leave the global convergence prop-
erty of the attractive field to the goal unchanged. Moreover,
obstacle avoidance is guaranteed for any types of convex-
shaped obstacles. This paper focuses on applying the basic
navigation algorithm to the case of a non-holonomic mobile
robot (TurtleBot) with limited sensor field of view.

II. MOTIVATING PHENOMENA

The physical phenomena which motivated the creation of
this algorithm can be described by the theory of classical
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Fig. 1. (a) A current-carrying wire creates a magnetic field in the
surrounding space. (b) The magnetic field induced by electrical current
affects the motion of a moving charged particle.

electromagnetism. According to Biot-Savart law, an electrical
current io flowing along a straight wire with infinitesimal
length dlo produces magnetic field dB in a point whose
position denoted by r with respect to the wire, as illustrated
in Fig. 1a. The corresponding magnetic field is given by

dB =
µ0

4π

iodlo× r
|r|3

, (1)

where µ0 stands for a permeability constant while × stands
for the vector cross product operation.

As shown in Fig 1b, this magnetic field will influence
the movement of a charged particle q, producing a force F
which is perpendicular to both the magnetic field B and the
particle’s velocity v as follows

F = qv×B. (2)

Abandoning the infinitesimal notation in (1), the force, pop-
ularly known as Lorentz force, can be expressed as follows

F =
µ0qio

4π

v× (lo× r)
|r|3

. (3)

As illustrated in Fig. 1b, this type of force works by
altering the particle’s direction of motion, in contrast to the
repelling nature of an electric field. Hence, applying this
characteristic to the problem of robot navigation, a robot can
be seen as a charged particle whereas the obstacle surface
can be viewed as a current-carrying wire. The produced force
can be regarded as a vector field which works as a control
signal to control the robot’s motion in avoiding the obstacle.

Applying this perspective, a robot located at position p will
induce an artificial current lo on the closest obstacle surface
located at vector position ro with respect to the robot, which
in turn produces the artificial magnetic field B with the ability
to affect the robot’s movement by a force F. Considering the
fact that ro =−r, the force in (3) can be rewritten to be

F = c la× (ro× lo) f (|ro|, |ṗ|), (4)

where c > 0 is a positive constant, la denotes the robot’s
direction, while f (|ro|, |ṗ|) ≥ 0 is a function of robot-to-
obstacle distance |ro| and the robot’s speed |ṗ|.

III. MAGNETIC-FIELD-INSPIRED NAVIGATION

Suppose we have a point-like non-holonomic mobile robot
in R2 with a 360◦ range sensor moving in proximity to
the flat-surfaced obstacle as illustrated in Fig. 2. For the
robot to avoid collision, the desired direction of motion is

y

x

lo
ro la

θ

F

Fig. 2. The non-holonomic mobile robot with 360◦ range sensor (magenta
area) in the vicinity of flat-surfaced obstacle (drawn in black).

chosen to be parallel to the obstacle’s surface. Among the
two possible choices, the artificial current direction is chosen
to be the one with the smallest angle to the robot’s velocity
direction la to minimize oscillation due to the change in the
direction of motion. To fulfill this requirement, the artificial
induced current lo is chosen to be the projection of the robot’s
direction of motion la on to the closest obstacle surface,
as depicted in Fig. 2. This can be accomplished using the
following expression

lo = la−
(lTa ro)ro

|ro|2
. (5)

In order to force the robot to follow the desired direction
in (5), the original force equation in (4) is changed to

F = c la× (lo× la) f (|ro|, |ṗ|), (6)

where the robot’s movement’s direction is defined as la = ṗ
|ṗ| .

Lemma 1: The vector field F in (6) does not change the
mobile robot’s linear speed v= |ṗ|, but will affect the angular
speed whose magnitude is described as follows

ωa =
|F|
mv

, (7)

in which m denotes the mass of the robot.
Proof: Without loss of generality, we can safely assume

that c f (|ro|, |ṗ|) = 1. Suppose we define lo × la = a, by
definition of vector product operation, we get

lTa F = lTa (la×a) = 0. (8)

The dynamics of the robot is expressed as

F = m
dṗ
dt

= m(
dv
dt

la + v
dla
dt

). (9)

Substituting the vector field F to (8) and the fact that lTa
dla
dt =

0 will lead to lTa F = m dv
dt = 0, which will converge to the rate

of speed equals zero ( dv
dt = 0), meaning that the linear speed

is constant. The only component of vector field F relates
to the change of direction given by F = mv dla

dt . The robot’s
angular speed is defined as the rate of change of the robot’s
direction la, i.e. ωa =

dla
dt . Thus, we can easily conclude that

ωa =
|F|
mv .

Remark 1: The fact that the vector field F does not change
the speed v leads to an important feature: the vector field has
no effect on the robot’s energy. Thus, the proposed vector
field F can be applied in addition to any attractive field with a
globally stable property without losing its stability property.
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Fig. 3. The diagram showing how the vector field F (blue arrow) relates
to the velocity la (orange arrow) and angular speed Ω.

Lemma 2: The vector field F will change the mobile
robot’s heading angle with the rate of change described as

θ̇ =
|F|
mv

Ωz, (10)

where Ωz is a component of Ω =
[
0 0 Ωz

]T
= la×F
|la×F| .

Proof: Lemma 1 gives us an expression for the angular
speed ωa in (7). From the kinematic model of a mobile robot,
we can easily conclude that this will serve as the magnitude
of the heading angle’s rate of change |θ̇ |. For the scenario
illustrated in Fig. 2, we can observe that the produced vector
field F, which is perpendicular to the velocity direction la,
tends to decrease the heading angle θ , yielding a negative
rate of change. Hence, we can conclude that the sign of θ̇

relates to the vector cross product operation between robot
direction la and vector field F, which is defined as a unit
vector Ω= la×F

|la×F| as illustrated in Fig. 3. As a consequence of
considering a R2 environment, the only non-zero component
of Ω is Ωz and with the help of illustration in Fig. 2 and Fig.
3, we can easily conclude that sgn(θ̇) = sgn(Ωz). We can
complete the description of θ̇ by weighting the magnitude
of ωa in (7) by Ωz and hence, completing the proof.

Lemma 3: Assuming that the robot does not hit an obsta-
cle, the vector field F with the direction described in (6) will
change the robot’s direction of movement such that its final
direction is parallel to the artificial current lo.

Proof: From the scenario illustrated in Fig. 2, we could
express the closest obstacle point’s location with respect to
the robot as ro =

[
0 ro

]T and the robot’s velocity direction
as la =

[
cosθ sinθ

]T . The induced artificial current in (5)
can then be written as lo =

[
cosθ 0

]T . After setting the
scalar f (|ro|, |ṗ|) = 1, the vector field F can be expressed as

F = c
[
sin2

θ cosθ −sinθ cos2 θ
]T

, (11)

where the magnitude can be simply written as |F| =
csinθ cosθ . From the angular speed expression in (10), we
can write

θ̇ =− c
mv

sinθ cosθ . (12)

To get the final angle θ f , we integrate the above equation
until infinite time as follows∫

θ f

θ0

1
cosθ sinθ

dθ =−
∫

∞

0

c
mv

dt, (13)

which will yield to θ f = 0, meaning that the robot’s direction
of movement is parallel to the obstacle surface and artificial
current lo.

To ensure obstacle avoidance, the scalar function
f (|ro|, |ṗ|) is designed to be as follows

f (|ro|, |ṗ|) =
|ṗ|
|ro|

. (14)

Lemma 4: The vector field F will avoid the robot to touch
any convex-shaped obstacle surface as long as the robot’s
initial direction la is not perpendicular to the obstacle surface.

Proof: Suppose we start with simple scenario as
illustrated in Fig. 2. Combining (5), (6), and (14), the vector
field magnitude can be written as

|F|= cv
r

sinθ cosθ , (15)

where r = |ro|. From (10) and the fact that Ωz = −1, the
heading angle’s rate of change is expressed as

θ̇ =− c
mr

sinθ cosθ . (16)

Focusing on movements along the y-axis, the rate of decrease
in distance r is equal to the velocity component in y direction

vsinθ =−ṙ⇔ dr
dθ

θ̇ =−vsinθ . (17)

Combined with (16) and the fact that the closest distance
to the obstacle occurs when ṙ = −vsinθ = 0, meaning that
θ = 0 for θ ∈

[
0 π

2

]
, the integration can be simplified to∫ r f

r0

1
r

dr =
mv
c

∫ 0

θ0

1
cosθ

dθ , (18)

in which r0 and r f stand for the initial and final distance
between the robot and the obstacle respectively while θ0
stands for the initial angle between the robot’s direction of
movement and the obstacle surface. This will lead to

r f =
r0

|secθ0 + tanθ0|C
. (19)

where C = mv
c . The final distance r f ≥ 0 can then only be zero

when the initial angle θ0 =
π

2 , i.e. when the robot’s direction
of movement is exactly perpendicular to the obstacle surface.
Apart from this case, the robot’s final distance to the flat-
surfaced obstacle will never be zero, and this will also be
the case for any convex-shaped obstacle due to its convexity.

Lemma 5: The final robot’s direction of movement pre-
sented in Lemma 3 (θ f = 0) is globally asymptotically stable.

Proof: Suppose the positive semi-definite Lyapunov
function candidate V ≥ 0 is defined as

V =− ln(cosθ), (20)

where θ ∈
[
0 π

2

]
. Substituting θ̇ from (16), we get

V̇ =− c
mr

sin2
θ . (21)

Recalling the fact that c > 0, m > 0, and r > 0 according
to Lemma 4, thus the condition V̇ ≤ 0 will always hold.
Globally stable equilibrium occurs when V = V̇ = 0, which
only happens when θ = θ f = 0, and hence, concluding the
proof.

Remark 2: All the features presented in Lemma 3-5 are
true under the assumption that the robot has a necessary
energy to produce the desired control signal.



IV. IMPLEMENTATION ON TURTLEBOT

A non-holonomic mobile robot is modeled as

ṗ = v
[
cosθ sinθ

]T
θ̇ = ω

. (22)

The input for the robot consists of linear and angular speed
defined as u =

[
v ω

]T . The linear speed is influenced by
the goal located at pg as follows

v =

{
KPδ if |p−pg| ≥ δ

KP|p−pg| if |p−pg|< δ
, (23)

where KP > 0 denotes a proportional constant.
The angular speed will be influenced by both the goal and

the closest obstacle. The angular speed terms induced by an
obstacle is given in (10) as ωo =

|F|
mv Ωz. The vector field F is

chosen to influence the robot only when the robot is closer
than distance rl from the obstacle as follows

F =

{
c la× (lo× la) |ṗ|

|ro| if |ro|< rl

0 if |ro| ≥ rl
. (24)

To guide the robot towards the direction of the goal
without suffering from parametric singularity, the geometric
control term, modified from work shown in [21], is employed
as follows

ωg =−Kω log(Re), (25)

where Kω ≥ 0 stands for a constant and Re ∈ SO(2) is defined
as an error matrix Re = RT

g R. R ∈ SO(2) and Rg ∈ SO(2)
represent the homogeneous transformation matrices of the
current heading angle θ and the desired goal angle θg =
atan2(y− yg,x− xg). The operator log(g) for any g ∈ SO(2)
is defined as log(g)= α

2sinα
(g−gT ), where α = arccos( tr(g)

2 ).
The total angular speed can be expressed as ω = ωg +ωo.

The artificial current in (5) works under the assumption
that the robot has a 360◦ laser sensor. Suppose we have a
robot whose sensor field of view is characterized by angle φ

as illustrated in Fig. 4a. To estimate the obstacle’s surface,
we chose n number of closest points on the obstacle sensed
by the robot. For practical purpose, these points are chosen
such that they are separated from each other by a minimum
distance d to make sure that all n points are distinct. These
points are then used to estimate the unit vector so describing
the obstacle’s surface direction as follows

b =
∑

n
i=0 xiyi−nx̄iȳi

∑
n
i=0 x2

i −n∑
n
i=0 x̄i

2 ,

so =
[

1√
1+b2

b√
1+b2

]T
,

(26)

where xi and yi denote the component of vector ri =[
xi yi

]T ∈Rs, Rs =
[
r1 r2 ... rn

]
represents the set of

positions of n closest sensed points, while x̄i and ȳi denote
their average position, all expressed in global frame. The
artificial current and closest distance to the obstacle can be
expressed as

lo = (lTa so)so,

r = min
∀ri∈Rs

|ri−p|. (27)

(a) (b)

y

x

so

ro

φ

y

x

rgro
la γo

γg

Fig. 4. (a) The diagram showing the way to estimate the obstacle surface
so, used as artificial current, for the case of limited sensor’s field of view.
(b) The angle γg and γo between the robot’s direction la to a robot-to-goal
vector rg and robot-to-obstacle vector ro respectively.

Another modification is made to take into account the
special case when the robot’s direction of motion is almost
perpendicular to the obstacle surface. The artificial current
in (27) denoted by lo,i is modified as follows

lo =


lo,i if |lo,i|> ε

lo,i
|lo,i|

if |lo,i| ≤ ε
, (28)

in which ε denotes a positive constant.
The last modification relates to the case in which the

robot’s boundary-following movement is disturbed by the
goal attraction caused by high difference in the robot’s
heading angle θ and the desired angle θg. This could cause
an unwanted oscillation, force the robot body to be too close
to an obstacle, and potentially lead to a collision. To solve
this problem, we employ an angular speed relaxation to
decrease the constant Kω in (25) such that the attractive field
contribution to the angular speed will decrease as the robot
gets closer to the obstacle while the goal is still occluded by
the obstacle. This is realized using the following equation

Kω = K0(1− e−
ro
rc )(

1
1+ eυw ), (29)

w = sinγg sinγo = (
la× rg

|rg|
)T (

la× ro

|ro|
), (30)

where K0 > 0, rc > 0, υ > 0 stand for positive constants,
rg = pg−p is a goal position with respect to the robot, and
w denotes the weight relating to whether the goal is occluded
by obstacle. γg and γo denote the angle between the robot’s
direction of motion la to vector rg and ro respectively as
depicted in Fig. 4b. The sign of the angles are determined
from the cross product operation in (30). It is noted that eq.
(29)-(30) are only used when the distance to the obstacle is
smaller than a limit rl .

V. RESULTS AND ANALYSIS

The proposed algorithm is implemented on a model of a
planar mobile robot, specifically a TurtleBot robot platform
equipped with a gyroscope sensor, odometry and a 3D sensor
camera; the robot with all its sensors and actuators has been
modelled in the Gazebo simulator. The experimental setup
places the robot in the corridor environment with convex
obstacle as shown in Fig. 5. The performance of the proposed
algorithm are compared to the APF [3], circular field (CF)



Fig. 5. The robot configuration is shown on the left and the experimental
setup is shown on the right.

(a) (b)

Fig. 6. The robot’s trajectory towards the goal (red dot) for (a) rectangular
and (b) an N-shaped obstacle (black). The blue, magenta, red, yellow denote
the proposed algorithm, APF, CF, and GF respectively.

[12], and gyroscopic force (GF) method [15]. All simulation
and experimental scenarios are implemented in the Robot
Operating System (ROS) framework [22]. The parameters
are chosen to be KP = 0.1, c = 2, ε = 0.01, rc = 1.5 m,
υ = 10, m = 1 kg,δ = 3 m, and K0 = 1. For simulation:
rl = 2 m and d = 0.0001 m; for experiment: rl = 0.8 m
and d = 0.01 m. A video attachment is also available in
http://ieeexplore.ieee.org.

Fig. 6 shows the robot’s path for a rectangular (Fig. 6a)
and an N-shaped obstacle (Fig. 6b). In Fig. 6a, we can see
that the proposed algorithm (blue line), the CF method (red
line), and the GF method (yellow line) successfully navigate
the robot towards the goal, while the APF method (magenta
line) is unable to overcome the local minimum in the saddle
point of the potential function. The shape of the obstacle
and the position of the goal for scenario shown in Fig. 6b
enable us to better observe whether the robot could move
out from the boundary following movement once the goal
is not occluded by a nearby obstacle. We can see that the
proposed algorithm (blue line), the CF method (red line), and
the GF method (yellow line) successfully navigate the robot
towards the goal (red dot), while the APF (magenta line) is
unable to overcome the local minimum. This also indicates
that the proposed angular speed relaxation described in eq.
(29)-(30) enables the robot to quickly move out from the
boundary-following motion due to the bigger contribution of
the go-to-goal angular speed once the goal is not occluded
by obstacle.

In Fig. 7, the plot of the covered path (Fig. 7a) and the
distance to the goal (Fig. 7b) are shown for the rectangular
obstacle. We can observe that the algorithms with the shortest
trajectory and the shortest time to reach the goal are the
proposed algorithm (blue line) and the CF method (red line).

(a) (b)

Fig. 7. The plot shows (a) the covered path l(t) and (b) the distance to the
goal e(t) for rectangular obstacle. The blue, magenta, red, yellow denote
the proposed algorithm, APF, CF, and GF respectively.

(a) (b)

Fig. 8. The plot shows (a) the covered path l(t) and (b) the distance to the
goal e(t) for an N-shaped obstacle. The blue, magenta, red, yellow denote
the proposed algorithm, APF, CF, and GF respectively.

For an N-shaped obstacle, in Fig. 8, we also see that in
terms of the covered path (Fig. 8a) and the time to reach the
goal (Fig. 8b), the proposed algorithm and CF have a better
performance when compared to the other methods. While the
CF method still relies on a priori information of the position
of the obstacle’s center point, the proposed algorithm works
without any prior knowledge about the environment and
performs as well as the CF method.

In Fig. 9a, we introduce a corridor-like environment con-
sisting of two long walls. The APF method (magenta line)
fails to even circulate the first wall due to the local minimum
problem. We can see that the CF (red line) and GF (yellow
line) methods also fail to reach the goal. The CF method
fails to avoid part of the robot’s body from collision as the
robot travels too far from the goal in following the obstacle’s
boundary. For the GF method, the long trajectory could bring
the robot too close to the obstacle, causing the robot to
sharply change its course away from the obstacle surface
and reverse its direction altogether. This could lead to the
condition where the robot travels back and forth along the
wall without being able to reach the goal. Hence, in this
type of environment, the proposed algorithm becomes the
only one which can navigate the robot towards the goal.

In Fig. 9b, we show the trajectory of the real TurtleBot in
the experimental setup shown in Fig. 5 where the environ-
ment consists of walls in the left and right side of the robot
and a bin as an arbitrary-shaped obstacle. We can see that
the proposed algorithm is able to navigate the robot without
colliding with surrounding environment towards the goal.

We present the summary of results in Table I. The com-
parison is made in terms of the ability of the algorithm to
successfully navigate the robot towards the goal, the length
of the traveled path and the time to reach a goal. The robot
is assumed to reach the goal once its distance to the goal
equals 5% of the initial distance to the goal. From the table,
we can conclude that the proposed magnetic-field-inspired



(a) (b)

Fig. 9. (a) The robot’s path for corridor-like simulated environment. The
blue, magenta, red, yellow denote the proposed algorithm, APF, CF, and GF
respectively. (b) The trajectory of real TurtleBot (dashed blue line) moving
towards the goal (red dot) with simplified representation of an arbitrary-
shaped obstacle bin and walls.

TABLE I
RESULTS COMPARISON

Obstacle Algorithm Success Covered
Path (m)

Time
(s)

Rectangle APF 5 - -
CF X 13.21 52.15
GF X 14.40 55.83

MFI X 13.22 52.14

N-shaped APF 5 - -
CF X 16.17 61.93
GF X 18.91 71.02

MFI X 16.23 61.81

Corridor
APF 5 - -
CF 5 - -
GF 5 - -

MFI X 34.82 121.93

(MFI) algorithm outperforms the APF since the latter always
fail to navigate the robot towards the goal in the selected
environments. The proposed algorithm also betters the GF
in terms of the faster speed to reach the goal and shorter
trajectory. Compared to the CF algorithm, the proposed
algorithm produces similar performance in terms of time to
the goal and length of trajectory. However, our algorithm
does so without any priori knowledge of the environment.
Our algorithm also becomes the only successful method
for corridor-like environment. For the scenario of unknown
arbitrary-shaped convex obstacle, our algorithm is also able
to guide the real TurtleBot platform towards the goal.

VI. CONCLUSION

The paper presents a magnetic-field-inspired reactive nav-
igation method for non-holonomic mobile robot navigating
unknown arbitrary-shaped convex environment. The superi-
ority of our method compared to the standard APF method
is represented by the characteristics of the vector field
which does create only one global minimum, the goal,
and otherwise does not create local minima. The proposed
algorithm has outperformed the previous magnetic-field-
inspired algorithm in terms of its reactive property and
ability to work in the absence of a priori information. The
simulation and experimental results confirm the performance
of the algorithm for the case of TurtleBot platform with its
limited sensor’s field of view. Future works will focus on the

extension for the case of non-convex obstacle and to take into
account the saturation in the the robot’s actuators.
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