
Teaching computer programming with PRIMM: a sociocultural

perspective

Sue Sentancea, Jane Waiteb and Maria Kalliaa

aKing’s College London, London, UK; bQueen Mary University of London, London, UK

ARTICLE HISTORY

Compiled April 16, 2019

ABSTRACT
Background and Context: With computing now becoming a mandatory subject
in school in many countries, there is a need for clearly defined pedagogical strate-
gies to support all learners; this is particularly pertinent when teaching computer
programming, which novice adults have struggled with for decades. Vygotsky’s socio-
cultural theory emphasises the importance of language, mediation, and the transfer
of skills and knowledge from the social into the cognitive plane. This perspective has
influenced the development of PRIMM (Predict, Run, Investigate, Modify, Make),
a structured approach to teaching programming.
Objective: The objective of the study was to find out if using PRIMM to teach
programming had an impact on learner attainment in secondary school, and the
extent to which it was a valuable method for teachers.
Method: We evaluated the use of PRIMM in 13 schools with 493 students aged
11-14 alongside a control group, using a mixed-methods approach. Teachers deliv-
ered programming lessons using the PRIMM approach for 8-12 weeks. Data were
collected via a combination of a baseline test, a post-test to compare control and
experimental groups, and teacher interviews.
Findings: Learners who participated in the PRIMM lessons performed better in the
post test than the control group. Teachers reported several benefits of the PRIMM
approach, including that PRIMM helped them to teach effectively in mixed-ability
classes, enabling all learners to make progress.
Implications: We hope that PRIMM makes a contribution to programming edu-
cation research, as it builds on previous work in effective pedagogy for teachers, and
encourages the use of language and dialogue to facilitate understanding. Through
our evaluation of PRIMM and engagement with classroom teachers, we propose a
framework for understanding the learning of programming in the classroom, and
present this as an avenue for further research.

KEYWORDS
computer programming, computer science education, K-12 education, pedagogy,
sociocultural theory, Vygotsky

1. Introduction

With mandatory computing being introduced more widely, the prospect of every child
in school studying computing throughout their school years is exciting. However this
change brings a challenge, particularly where computer programming is part of every
school’s core curriculum. To truly champion computing literacy, we need to understand
how the learning of programming can be truly accessible to all (The Royal Society,
2017).

Contact email: sue.sentance@kcl.ac.uk

Looking at this existing body of programming education research, it can be seen that
it has primarily been informed by cognitive rather than sociocultural approaches to
learning (Tenenberg and Knobelsdorf, 2014). Cognitive approaches to learning do not
account for all the phenomena observed in teaching and learning (Machanick, 2007),
whereas a sociocultural perspective enables us to consider how learning is impacted by
society, its agents, the environment and social factors. Therefore we wish to investigate
how looking at the learning of programming through this lens can help us to develop
an enhanced understanding.

Our particular focus is teachers, and how they can understand students’ learning,
and apply practicable and effective strategies in the computing classroom. This is
particularly pertinent for new computing teachers who have yet to develop their ped-
agogical content knowledge (PCK) (Shulman, 1986) in the teaching of programming.
Even experienced teachers faced with teaching programming for the first time will not
have a toolkit of strategies applicable to this domain. Thus by looking at the learning
of programming through a sociocultural lens we have developed a strategy for teaching
programming that acknowledges the role of mediating factors, including language and
tools, and aligns to a Vygotskian perspective. We believe highlighting classroom inter-
action, use of language, and the tools and techniques used, as well as cognitive factors,
can support teachers in developing their PCK for the teaching of programming.

Drawing on both existing research into the learning of computer programming, and
with our Vygotskian lens, we have developed and trialled a framework for teaching
programming called PRIMM (Predict-Run-Investigate-Modify-Make) (Sentance and
Waite, 2017; Sentance, Waite, and Kallia, 2019). PRIMM is a method of teaching
programming that counters the known problem of novices writing programs before
they are yet able to read them, and focuses on students talking about how and why
programs work before they tackle editing and writing their own programs. We have
conducted a mixed-methods study researching the impact of the PRIMM method
for teaching programming. Through this study, we can see an impact of PRIMM on
learners and teachers. Positive quantitative results of learner outcomes are supported
by the teachers’ explanations about why this method works for them. Through this
research, we are formulating a model that suggests that developing a structured ap-
proach to teaching and learning programming draws on teachers, peers and carefully
selected content. Our model is informed by and aligns with the Vygotskian concept
of mediation and the zone of proximal development (ZPD). The results of the study
point to the way that language is used in the learning of programming. Key to our
research is not simply what works but why it works and how teachers’ understanding
of programming learning can support better outcomes.

This paper is structured as follows. Firstly we consider previous research around the
teaching and learning of programming, focusing primarily on pedagogical strategies
teachers can use. Secondly we describe how a sociocultural perspective, particularly
using the work of Vygotsky, can inform both an overarching framework and also the
specific PRIMM model that we are describing in this paper. Thirdly, we describe a
mixed-methods study of the use of PRIMM in the classroom and the results. Finally, we
outline where future research can be directed to gain more understanding of effective
teaching strategies for programming, particularly in the school classroom.

2

2. Teaching and learning programming

2.1. The challenges

For many students, computer programming is among the most challenging aspects of
computer science (Jenkins, 2002). Many computing education researchers have endeav-
ored to identify the sources of students’ difficulties in programming, some focusing on
categorising problematic areas. For example, going back to the 1980s, Perkins and Mar-
tin (1986) identified four types of fragile knowledge: partial knowledge, inert knowl-
edge, misplaced knowledge, and conglomerated knowledge. Du Boulay (1986) also
explored and categorised curriculum areas that students experience difficulties: orien-
tation, notional machine, notation, structures and pragmatics, and made a step further
suggesting specific types of errors students make: misapplication of analogy, overgen-
eralisations and interactions. Other researchers have focused on bugs and misconcep-
tions. As examples, Pea (1986) identified conceptual bugs that students often make in
their attempt to communicate with the computer, and Spohrer and Soloway (1986)
categorised students’ errors into two categories: construct-based problems, which are
problems that refer to the semantics of programming constructs, and plan composition
problems, which refer to difficulties in putting plans together. Sorva, Karavirta, and
Malmi (2013) describe a range of challenges facing novice programmers including static
perceptions of programming, misconceptions, difficulties understanding the computer
and tracing and program state. Actual concepts novice programmers struggle with
include variables, loops, and parameter passing (Wiegand, Bucci, Kumar, Albert, and
Gaspar, 2016), and recent work has identified a range of (41) specific programming
misconceptions relating to these concepts (Sorva, 2018).

Generally, research agrees that novices’ problems do not only centre around syntax
or semantics but mostly on how to associate these to construct a program (Robins,
Rountree, and Rountree, 2003); additionally, students have a surface knowledge of
programming which is context specific and, thus, it is difficult to be applied in dif-
ferent contexts (Lahtinen, Ala-Mutka, and Järvinen, 2005). It has been argued that
programming is a hierarchical skill, and that students who do not understand a topic
cannot advance to the next one (Rahmat, Shahrani, Latih, Yatim, Zainal, and Ab Rah-
man, 2012). For example, Linn and Dalbey (1985) suggested three chained cognitive
accomplishments that students should exhibit: single language features, design skills,
and problem-solving skills. This complex hierarchy of dependent knowledge and skills
compounds the difficulties faced by students when learning to program.

Actually writing code (as opposed to reading) is particularly hard for novice pro-
grammers (Denny, Luxton-Reilly, and Simon, 2008; Qian and Lehman, 2017), and
it is commonly believed that code tracing is easier than code writing (Denny et al.,
2008), with some research showing a correlation (Lopez, Whalley, Robbins, and Lister,
2008; Sheard, Carbone, Lister, Simon, Thompson, and Whalley, 2008), with others less
conclusive (Simon, Lopez, Sutton, and Clear, 2009). Many students find code tracing
challenging (Vainio and Sajaniemi, 2007) with particular difficulties being around sin-
gle value tracing, confusion of function and structure, external representations and
levels of abstraction.

The mental effort needed by learners as they embark on this complex journey of
learning to program can be viewed through cognitive load theory (Van Merrinboer
and Sweller, 2005). Cognitive load theory is a theory of instructional design that
suggests that some instructional techniques assume a processing capacity greater than
our limits and so are likely to be defective, and that students should instead engage

3

in activities that are directed at schema acquisition and automation (Sweller, 1994).
Working independently on programming has been suggested to have higher cognitive
load than working collaboratively through pair programming (Tsai, Yang, and Chang,
2015). Similarly, some programming languages have been indicated to have a greater
toll on cognitive load than others. Alexandron, Armoni, Gordon, and Harel (2014)
point to object-oriented programming as requiring programmers to think about solving
the parts of a problem and the integration of these at the same time whereas declarative
scenario-based languages allow learners to have an initial simpler mental model as they
attend to the parts first before being required to incorporate these into the whole.

With so many challenges we can appreciate what is described as the “long and
torturous cognitive development of the novice programmer”(Corney, Teague, Ahadi,
and Lister, 2012, p.86). However to be able to teach programming effectively in school,
we need to look beyond challenges to effective teaching strategies that take into account
those diculties, which can be used with all ages of learners.

2.2. Modelling learning

Over time, learning models have been developed to explain how novices learn pro-
gramming. The two most influential to the development of PRIMM, the Block Model
and Levels of Abstraction (LOA), are discussed here.

2.2.1. Levels of Abstraction

The Levels of Abstraction (LOA) framework has been suggested to support novices
in their learning to program (Perrenet, Groote, and Kaasenbrood, 2005; Perrenet and
Kaasenbrood, 2006). Perrenet et al suggested four levels, namely: execution; program;
object and problem. Armoni (2013) renamed the object level as algorithm; using this
Statter and Armoni (2016) evidenced impact on programming progress from high
school students who understood the level at which they were working at. Another
study using this framework reported teachers of K-6 students supporting learners to
move between the LOA levels in teaching programming in similar ways to how they
supported young students in learning how to write in English lessons (Waite, Curzon,
Marsh, and Sentance, 2018). Related to this work is the Abstraction Transition Tax-
onomy (ATT) (Cutts, Esper, Fecho, Foster, and Simon, 2012). Cutts et al. reviewed
university students use of vocabulary when solving peer instruction multiple choice
questions and suggested ATT as a discourse intensive teaching model of student un-
derstanding of programs, including three levels of language in programming: English,
CS Speak and Code. A clear recommendation of this research, which drew on situated
cognition, was to support learners to be able to transition across all levels.

2.2.2. The Block Model

Schulte (2008) suggests a holistic model of learner understanding of programming
called the Block Model. The Block Model has a horizontal dimension of Function
(split into text surface and program execution) and Structure. Its vertical dimension
has levels of atoms, blocks, relations and macro structure. Function is described as the
goals of the program. Using the Block Model, Schulte, Clear, Taherkhani, Busjahn,
and Paterson (2010) suggest teaching and learning sequences: micro sequences that
focus on one example, such as a single activity to implement an algorithm; and macro
sequences that focus on a course of many activities. They argue that there are lots

4

of possible learning tasks for reading and comprehending programs, such as tracing
examples of code or explaining the purpose of a piece of code in plain English. An
analogy cited by the authors is that the process of learning to program is like sewing
a patchwork quilt, with each cell in the model being one of the squares, and each
knowledge layer like the stuffing. As knowledge is acquired the quilt becomes more
robust and coherent, with novice programmers having a ’holey knowledge’ (Schulte
et al., 2010) or a ’holey quilt’ (Clear, 2012). The Block Model’s distinction between
a novice programmer’s understanding of the structural atomic detail of a program,
the code, the functional goals of the program, and the problem (Schulte et al., 2010)
resonates with the development of the LOA model described above, and has influenced
the development of the PRIMM model.

2.3. Teaching strategies

There have been many strategies for teaching programming developed over the years.
Work on teaching strategies has influenced the development of the PRIMM approach,
particularly the work on code reading and tracing and Use-Modify-Create.

2.3.1. Structured and less structured approaches

With much research associated with the teaching of programming focused on pedagogy
and instructional approaches to teaching, Papert has been very influential (Papert,
1980); from his work from the 1980s onwards we see instructional approaches based
around open-ended activities, through which students can develop a personal under-
standing of newly introduced concepts or devices. This approach is still very popular
with its emphasis on creativity and play (Resnick, 2007, 2017), and underlies much of
the block-based programming environment design.

However, other research has highlighted the need for guided instruction to ensure
that learners circumnavigate a carefully constructed progression to develop a com-
plete mental model (Garneli, Giannakos, and Chorianopoulos, 2015; Grover, Pea, and
Cooper, 2015; Lye and Koh, 2014; Meerbaum-Salant, Armoni, and Ben-Ari, 2013;
Schulte, 2008). Grover et al. suggest that to foster deep learning a combination of
guided discovery and instruction rather than pure discovery and ‘tinkering’ would
be more successful(Grover et al., 2015). The authors suggested that constructionist
activities should be combined with targeted conceptual learning for foundational con-
structs (Grover and Basu, 2017). This sentiment is echoed by a number of studies
with emerging evidence that some of the more difficult concepts such as initialisa-
tion, variables and loops need to be explicitly taught (Hubwieser, Armoni, Giannakos,
and Mittermeir, 2014; Kirschner, Sweller, and Clark, 2006; Meerbaum-Salant et al.,
2013). In addition, researchers claim that learners’ cognitive load can be managed by
more closely controlling learning opportunities and learning experiences (Alexandron
et al., 2014; Tsai et al., 2015; Van Merrinboer and Sweller, 2005). The PRIMM ap-
proach recognises the need for structured approaches to the teaching of programming,
particularly in a school setting.

2.3.2. Code reading vs code writing

Many authors have investigated the difference between code reading and code writ-
ing as instructional strategies. Back in 1987, Van Merrienboer and Krammer (1987)
found that an approach to teaching programming based on code reading was more

5

effective than the so-called Expert and Spiral approaches, which focused on top-down
code-writing and incremental program design respectively. Work by Lister and col-
leagues over many years has highlighted the importance of reading code and being
able to trace what it does before writing new code(Lister, Adams, Fitzgerald, Fone,
Hamer, Lindholm, McCartney, Moström, Sanders, Seppälä et al., 2004; Lister, Fidge,
and Teague, 2009). Comparing tracing skills to code writing, they demonstrated that
novices require a 50% tracing code accuracy before they can independently write code
with confidence (Lister et al., 2009; Venables, Tan, and Lister, 2009). Learning to
program is sequential and cumulative, and tracing requires students to draw on accu-
mulated knowledge to conceive a big picture; consequently novice learners should be
focused on very small tasks with single elements (Teague and Lister, 2014). Busjahn
and Schulte (2013) highlighted the importance of using the structure of code to infer
meaning and that the first step should be to make inferences about the execution
of the program (Busjahn and Schulte, 2013). Path diagrams, consisting of paths of
related tasks (Lopez et al., 2008), and visualisation and tracing combined (Hertz and
Jump, 2013), are related approaches. Parsons problems can offer a a valid alternative
activity to code writing and develop useful skills (Denny et al., 2008). Code-tracing
activities can help students learn to write both syntactic and semantic components of
code (Kumar, 2015).

2.3.3. Worked Examples

Studies related to code comprehension have also highlighted the use of worked ex-
amples to understand how variables change over time (Sudol-DeLyser, Stehlik, and
Carver, 2012). Gujberova and Kalas (2013) recommended a sequence of carefully
graded learning activities for primary students to improve programming and com-
putational thinking, including activities where learners read and interpreted each line
of code, as well as a stage for reading the entire program and predicting the outcome
(Gujberova and Kalas, 2013).

Another way of using worked examples is subgoal modelling, where meaningful la-
bels are added to worked examples to visually group steps into subgoals - thereby
highlighting the structure of code. Two higher education studies (Margulieux and
Catrambone, 2016; Morrison, Margulieux, Ericson, and Guzdial, 2016) used this strat-
egy with exemplar text, worked examples and problems. Both reports concluded that
those students given subgoals performed significantly better than those who had no
subgoals or who added their own subgoals, suggesting that providing more support is
more effective for novice learners.

2.3.4. Use-Modify-Create

Another approach used in the teaching of programming is Use-Modify-Create (UMC),
a teaching framework for supporting progression in learning to program (Lee, Martin,
Denner, Coulter, Allan, Erickson, Malyn-Smith, and Werner, 2011). Learners move
along a continuum from where they first use programs made by someone else to finally
create their own programs. Between these points they modify work made by someone
else so that the modified material becomes ‘theirs’. This work has some history, as it
builds on a range of related work (Caspersen, 2018), including the ‘call before write’
suggestion by Pattis (Pattis, 1990) and ‘use-extend-create’ (Caspersen and Bennedsen,
2007).

6

2.3.5. Differentiation

Differentiation means the adaptation of teaching strategies so that learning is accessible
by all learners in a class. There are several approaches to differentiating instruction:
differentiation by task, by outcome and by time allowed, differentiating by accom-
modating different learning styles and support needs, and differentiation by setting
individual tasks and targets (Petty, 2004). Knowing how to differentiate lessons for
students with different levels of ability was one of the five most commonly-mentioned
challenges described by Computing teachers in a recent study (Sentance and Csiz-
madia, 2017), particularly for teachers teaching Computing in secondary schools. In
establishing the PRIMM methodology, we were aware of the need of teachers teach-
ing mandatory computing to mixed-ability classes to be able to find approaches that
would both stretch the most able learners and support those who needed additional
help.

This review gives an indication of the wealth of suggestions for teaching program-
ming that have been suggested. Still other approaches include annotation (Su, Yang,
Hwang, Huang, and Tern, 2014) and live coding (Rubin, 2013). In this paper we add
to this body of research by suggesting PRIMM as a practical strategy that teachers
can use to structure lessons and effectively teach programming. It builds primarily on
the Use-Modify-Create research but is influenced by the need for language and talk to
aid understanding.

3. Vygotsky and socio-cultural theory

Social constructivism, in particular the work of the Soviet psychologist Vygotsky, can
frame our understanding of novice programmers and their learning, and help us to
develop effective pedagogical strategies, drawing on this interpretation of the learning
process. Vygotsky reoriented learning theory from an individualistic to a sociocultural
perspective with his sociocultural theory (SCT) (Kozulin, 2003).

3.1. Mediation

A key element of Vygotsky’s work concerns mediation (Wertsch and Tulviste, 1992),
which includes both the different kinds of mediational tools adopted and valued by
society as well as the appropriation of mediational tools and how they are integrated
into cognitive activity during the processes of an individual’s development (Shabani,
2016). Such ‘tools’ are appropriated to provide mediation within the learning process.

Vygotsky proposed that higher mental processes were functions of mediated activity
and that there were three major classes of mediators: material tools, psychological tools
(sometimes called signs and symbols), and other human beings (Kozulin and Pres-
seisen, 1995). Psychological tools can include language, different forms of numeration
and counting, mnemotechnic techniques, algebraic symbolism, works of art, writing,
schemes, diagrams, maps, blueprints, and all sorts of conventional signs (Vygotsky,
1981, p.140). Mediation enables a process of apprenticeship followed by internalisa-
tion, and SCT suggests that movement from the ‘social plane’ to the ‘cognitive plane’
supports the learning of skills and knowledge (Walqui, 2006, p.160). This is pertinent
to computer programming, where an existing program shared and discussed by learn-
ers can be seen to be on the social plane: only when understood and internalised can
we describe the program as being on the cognitive plane. With the PRIMM approach,

7

the ‘starter programs’ that are shared and discussed can be seen as being on the social
plane.

3.2. The Zone of Proximal Development

In the context of school learning, Vygotsky states that a child’s development within a
zone of proximal development (ZPD) involves social interaction, dialogue, and medi-
ated activity between learners and with their teachers (Vygotsky, 1978). According to
Vygotsky, the zone of proximal development is the distance between what a learner can
do (problem solve) independently and what they can do adult guidance or in collab-
oration with more capable peers (Vygotsky, 1978, p.86). The term proximal (nearby)
indicates that the assistance provided goes just slightly beyond the learner’s current
competence complementing and building on their existing abilities. The ZPD has be-
come synonymous in the literature with the term scaffolding. However Vygotsky did
not use the term in his writing – it was introduced later by Wood, Bruner, and Ross
(1976), who describes the scaffolding process as that which enables a child to solve a
problem which otherwise would be not possible unassisted.

The concept of ZPD implies that some agency is needed to bridge the gap. This can
take many forms, including teachers or peers, but also artefacts such as books, wall dis-
plays and online learning environments (Brown, Ash, Rutherford, Nakagawa, Gordon,
and Campione, 1993). In programming education there are many tools which provide
scaffolding, for example block-based environments which prevent students from mak-
ing syntax errors. In the development of PRIMM, we considered that the computing
teacher is essential in supporting the student and enabling them to do what they
could not do alone, or by exploration, and that structured lessons containing a range
of targeted tasks were tools which also formed mediating activity and would support
learning.

3.3. Language

A key aspect of Vygotsky’s sociocultural theory is that language is a central form of
mediation that enables thinking and internalisation of concepts to take place; there are
different types of talk including inner speech as well as talk that forms part of social
interaction. For Vygotsky, social interaction is the basis of learning and development
(Walqui, 2006). Through artefacts existing in the social plane that are shared by learn-
ers, we are able to use language to understand them and thus internalise that under-
standing over time. In programming education, the programming language, including
the language environment, is the cultural tool for understanding the programming
concepts (Kasto, 2016). As a sign system, we can consider the programming language
to be a mediator in the same way as natural language.

Vygotsky also discussed the difference between writing in a language and oral ex-
pression through language (Vygotsky, 2004). He discusses several reasons for the differ-
ence in difficulty associated with written language, with its formal rules, in comparison
to oral language, and also explains how when children face challenging tasks the dif-
ference between their written and oral language becomes more marked. This suggests
that, if we can consider understanding what a program does as being a challenging
task, being able to explain verbally what a program does will be easier than expressing
that in writing. Some recent research is considering how children verbalise and vocalise
program code (Hermans, Swidan, and Aivaloglou, 2018).

8

3.4. Vygotsky and pedagogy

Vygotsky’s work is highly relevant to our work with classroom teachers as it was
directly concerned with whole-class teaching in public schools (Guk and Kellogg, 2007),
and relates to the social transformation that takes place through schooling (Daniels,
2016). Although referring to science teaching, Giest and Lompscher (2003) describe
three progressive stages for teaching that apply equally to programming: creating
conditions for learning within the zone of actual performance, so identifying what the
students can and cannot do, through tasks, then facilitating learning through tasks
carefully situated within the zone of proximal development (Vygotsky, 1978) which
enable the student to carry out more complex cognitive tasks than they would be
able to do on their own, with the support of a ‘more knowledgeable other’ (MKO) and
finally moving into the stage where the student is able to work independently and reach
their own learning goals. However, according to Giest and Lompschrer, this approach
can put high demands on the teachers’ ‘educational and psychological competence’.

In their review of the theories of mind underpinning computer science education re-
search, Tenenberg and Knobelsdorf (2014) noted the historical focus on individualistic
cognitive theory with a trend over the last 20 years towards incorporating a socio-
cultural framing. Sociocultural approaches have strongly influenced a range of recent
computer science education work (Bennedsen and Eriksen, 2006; Cajander, Daniels,
and McDermott, 2012; Ryoo, 2013), and other research has specifically referenced
or used Vygotsky’s ZPD (Basawapatna, Repenning, Koh, and Nickerson, 2013; Kot-
sopoulos, Floyd, Khan, Namukasa, Somanath, Weber, and Yiu, 2017), so the influence
of SCT is gradually increasing in computer science education. Recently Nadia Kasto’s
doctoral thesis drew on Vygotskian theory in a study of novice programmers (Kasto,
2016). Kasto describes Robin’s learning edge momentum (Robins, 2010) as showing
the closest influence of Vygotsky in computer science education research.

3.5. A framework for teaching programming

There have been calls to take a more sociocultural approach within computer science
education and programming (Machanick, 2007; Tenenberg and Knobelsdorf, 2014)
and particularly with regards to the role of language in teaching computer science
(Diethelm and Goschler). Just as in science teaching, different ways of talking in class
about concepts lead to internalisation of the necessary concepts (Leach and Scott,
2003), in computer science education we need to use talk to help students to internalise
the difficult concepts they face in programming. In addition, by understanding the
process of appropriation better we will be more able to support novice programmers
to acquire both a better understanding of programming and confidence in their ability
to carry out programming tasks.

From sociocultural theory we can draw on three key principles that can guide the
teaching of programming:

(1) Mediation through language. When learning to understand how programs
work, students should be encouraged to discuss with each other through a social
construction of knowledge. This can be through pair programming, or through
collaborative tasks such as talking about segments of program code to identify
their function. Teaching should facilitate focused discussion around programming
constructs and concepts.

(2) Learning moves from the social plane to the cognitive plane. Using

9

starter programs and teaching the reading of code means that the program code
exists on the social plane first, before being understood internally by the student.
Programming tasks should be carefully scaffolded so they are within the zone
of proximal development of the student. Gradually more complex programming
tasks involving independent problem solving and creativity will be possible by
students as the understanding becomes internalised.

(3) The role of the ’more knowledgeable other’(MKO) in ZPD. Students
need teachers, as More Knowledgeable Others, to show them (model) how to
solve a problem. Students working together can be paired so that one peer is the
More Knowledgeable Other. The materials and the structure are both mediating
activity in Vygotsky’s terms, but should be designed to be within the ZPD of
the learners. This requires a detailed understanding of progression and which
concepts are easier or harder for students (Wiegand et al., 2016).

This framework can be seen in Figure 1 with suggestions for implementation in
Table 1. Drawing on this framework we have developed PRIMM, outlined in the next
section.

Figure 1. Framework for design of programming lesson

4. PRIMM

PRIMM is a method of teaching programming that counters the known problem of
novices writing programs before they are yet able to read them, and incorporates
discussion and investigation of sample code through scaffolded tasks. The PRIMM
approach is a process that teachers can use to structure a lesson with five elements:
Predict, Run, Investigate, Modify and Make:

• Predict Students discuss a program and predict what it might do, drawing or
writing out what they think will be the output. At this level, the focus is on the
function of the code.

10

Table 1. Implementation of key principles

• Run Students run the program so that they can test their prediction and discuss
in class

• Investigate The teacher provides a range of activities to explore the structure
of the code; this involves activities such as tracing, explaining, annotating, de-
bugging, but with the scaffolding provided by an existing solution

• Modify Students edit the program to change its functionality via a sequence
of increasingly more challenging exercises; the transfer of ownership moves from
the code being not mine to partly mine as students gain confidence by extending
the function of the code

• Make Students design a new program that uses the same structures but that
solves a new problem (i.e. has a new function)

PRIMM draws on existing research in computer science education, particularly four
areas of programming research: Use-Modify-Create (Lee et al., 2011), tracing and read-
ing code before writing (Lister et al., 2004), the Abstraction Transition Taxonomy
(Cutts et al., 2012) and the Block Model (Schulte, 2008). In PRIMM, students tran-
sition from the program or code level to the execution level and may also summarise
in English to the problem or with CS speak to the algorithm. During the run stage
they check to see if their prediction was correct using English, CS speak and code as
they accommodate or assimilate their understanding with language and vocabulary
becoming the oil to facilitate the transitions.

4.1. A PRIMM lesson

In this section, we briefly describe a PRIMM lesson or sequence of lessons, and the
materials that exemplify this. The intention is that teachers can develop their own
PRIMM-like materials at an appropriate level for their students.

4.2. Predict and Run

At the beginning of a PRIMM lesson, students are given a short program on the board,
or on paper, to look at in pairs. The task is for them to write down the output of the
program. Most of our examples use Python; an example is shown in Figure 2.

The teacher discusses the students’ answers with the class, and students then down-

11

Figure 2. A predict activity from one of the first lessons

Figure 3. Sample question in the investigate phase

load code and run to check their prediction. It is important that they do not copy the
code as this is a completely different process. Access to a shared area where starter
programs are stored is important, and multiple predict activities can be used.

4.3. Investigate

In this phase of the lesson or sequence of lessons, students are asked code comprehen-
sion questions about the same program or snippet of code. These questions pick out
certain aspects of the program to develop understanding. Developing good questions
in this section requires a good understanding of programming and student miscon-
ceptions, and the Block Model (Schulte, 2008) can help to structure questions. For
example, students may be asked a question about the execution of the whole program,
which requires an understanding of the underlying algorithm and program execution.
Questions can be asked which enable the students to discuss individual snippets of
codes, such as that shown in Figure 3. Discussion of the question should ideally take
place in pairs or groups to enable students to develop the vocabulary they need to talk
about the program (Cutts et al., 2012).

4.4. Modify and Make

In this phase of the lesson the learners are able to build on the existing program
to modify and create new programs. Carefully structured activities allow progression
from simple changes to more substantial functional changes to the program. Having
an existing program in place gives the student confidence and something to build
on. Sometimes the modify task is to remove obvious glitches with the program. For
example, one of the programming examples includes a programme to allow toppings to
be added to a pizza. On running the program, students discover the output always ends
with the word ‘and’ so following this a modify task may to be to improve the program
so that the output does not end with “and”. Subsequently, in the make phase, the
students will be asked to create a new program from a problem description, drawing
on what they have learned about loops and string manipulation from the previous
program (Cutts et al., 2012).

12

Figure 4. The Block Model (Schulte, 2008)

PRIMM could take one lesson for a simple concept, or there could be iteration
around parts of PRIMM, or a number of lessons might be needed. It offers the teacher
a structure to support students in gaining an understanding of core programming
concepts.

We developed resources to exemplify how PRIMM might work in the classroom. The
resources are not themselves PRIMM, but are the content that illustrates to teachers
how the PRIMM elements work. The resources were developed by the first author and
used by teachers. In summary, PRIMM is a way of structuring programming lessons
that focuses on:

• Reading code before writing code starting from code that is ‘out there’ (social
plane)

• Working collaboratively with learners to talk about programs – focused discourse
and interaction

• Reducing cognitive load by unpacking and understanding what program code is
doing – small, scaffolded steps within learners’ ZPD

• Gradually allowing learners to take ownership of programs when ready by moving
the learner on to what they can do on their own

In order to evaluate PRIMM we carried out a study with the following two research
questions:

• RQ1: To what extent does being taught using the PRIMM approach impact on
learners’ programming attainment?

• RQ2: To what extent do teachers find the PRIMM approach an effective method
to use in school?

The study is described in the next section.

5. The study

5.1. Research design

The aim of the study was both to consider the effectiveness of PRIMM in the teaching
of programming and to increase our understanding of its impact on learning. To answer

13

the first research question the plan was as follows:

• Carry out a quasi-experimental study in a number of schools, assessing pro-
gramming knowledge after several months’ of PRIMM lessons (via a post-test).
A baseline test was used to establish a starting point for both control and ex-
perimental groups.

• To gather data from teachers (qualitative) about their experience of the approach
and its impact on student learning

To answer our second research question our plan was:

• To gather data from teachers (qualitative) about the impact of PRIMM on their
confidence as teachers, and their use of the PRIMM resources

We employed a type of quasi-experimental design known as the non-equivalent con-
trol group post-test design (Campbell and Stanley, 1963). The specific research design
is a post-test design but it lacks the random assignment. Following Campbell and Stan-
ley (1963), the treatment was administered by the school system and the untreated
classroom was the control group. In accordance with this design, the control group
consisted of students who were to take the same number of programming lessons, cov-
ering the same topics, but using the teaching method normally used in the school.
The experimental group included students who learned computer programming from
teachers who adapted their teaching methods according to the PRIMM approach. To
ensure that students did not differ significantly in their computer programming ability,
both groups were baseline tested before the start of the intervention. Control groups
were not available in all of the schools in the study for practical reasons.

Table 2. Teaching phases, highlighting the students in our study.

England & Wales USA Student Age
Phase Key Stage Year Group Pupil Grades (Years Old)

Early Years Early Years 4-5
Primary Key Stage 1 Year 1 Kindergarten (K) 5-6

Year 2 Grade 1 (K1) 6-7
Key Stage 2 Years 3 to 6 Grades 2 to 5 (K2-K5) 7- 11

Secondary Key Stage 3 Years 7 to 9 Grades 6 to 8 (K6-K8) 12-14
(middle school)

Key Stage 4 Years 10 to 11 Grades 9 to 10 (K9-K10) 15-16
Key Stage 5 Years 12 to 13 Grades 11 to 12 (K11-K12) 17-18

5.2. Teacher participants

Teachers were recruited through an open invitation on social media and through com-
puter science forums. Potential participants were informed that they would be required
to be involved in a school-based study of a new approach to teaching programming.
Teachers who responded were asked if they had colleagues who could be control classes.
This approach to finding control classes enabled us to reduce some of the differences
between pupils as the students attended the same school and would have had similar
prior learning experiences to the test group.

A requirement was made for teachers to attend a full day’s training, and they had
to identify in advance groups of students to be used for the study. Ethical processes
were adhered to and teachers consented to our use of data for all aspects of the study.

14

Teachers had to ensure that they had the school principal’s permission to work with
the students, and they were formally released from school for the training. During the
training day, teachers worked with the PRIMM resources and their involvement as
participants was clearly explained. 14 teachers were recruited, of which 13 continued
to participate.

Teachers were given full sets of materials, including starter tasks, presentations,
worksheets, starter programs and answers, for 10 lessons (including extension mate-
rial) covering the basic programming constructs of sequence, selection and iteration in
Python.

5.3. Student participants

The participants in the study were students at key stage 3, in years 7-9 (see Table 2 for
age). The number of students per teacher varied: some classes were very small with only
15 pupils others were large with over 30 pupils. Some teachers had multiple classes, for
example in School 2. In total, 493 students were included in the experimental group
and 180 students were part of the control group.

As shown in Table 3, the control groups were in four state schools. In these schools,
more than one teacher taught computing in the year group and the second teacher, who
had not been trained to use PRIMM, delivered programming lessons using the school’s
pre-existing lesson plan materials to the control class pupils. When asking teachers to
organise control groups we requested that they find similar classes in their school to be
engaged. Pupils in years 7, 8 and 9 have not elected to specially take computing; at this
stage computing is a mandatory subject for all and is therefore taught through general
mixed ability classes. Therefore there is no reason to assume that the demographics of
pupils, such as their spread of ages, abilities and backgrounds would be significantly
different between the PRIMM and control classes. To confirm homogeneity we designed
and ran a baseline test that compared the control and intervention groups.

5.4. Study materials

We had previously designed and implemented a short pilot study to trial the PRIMM
materials. This involved 6 teachers and approximately 80 students over 4-7 lessons, and
was followed by individual interviews with all the teachers to consider their views of
PRIMM and the materials. Our analysis of the interviews enabled us to further develop
a set of materials, and to devise appropriate research instruments for the subsequent
main study. The pilot demonstrated that we needed to provide more comprehensive
materials, and that teachers had limited confidence and time to develop their own
resources in the PRIMM style. Thus for this study, we produced a set of ten complete
lessons, with starter exercises, presentations, starter programs and worksheets (all
editable by the teachers) covering the topics of sequence, selection and iteration for
beginner programmers1. These were shared with the teachers on the first training day.

1Now available at https://primming.wordpress.com/2018/08/23/primm-materials-2018/

15

Table 3. Participating teachers and classes (those with * were not included in analysis)

ID School Teacher Year Students Students Interviewed
gender group in PRIMM in control

trial group
1 * Mixed State M 8
2 Mixed State F 8 114 103
3 Girls State F 9 45 36 Y
4 Boys State M 9 43 Y
6 Mixed State M 8 36 Y
7 Mixed State F 7 25 Y
8 Mixed State M 9 38 Y
9 Mixed State M 8 and 9 23
10 Mixed State F 8 and 9 21 15 Y
11 Girls Independent M 8 46 Y
12 Mixed State M 8 and 9 45 Y
13 Mixed State M 9 23 26
14 Girls Independent M 9 34 Y

TOTAL 493 180 9

5.5. Research instruments

5.5.1. Baseline and post test

The baseline test was designed by one of the researchers and tested students’ basic
understanding of programming since they had limited experience. The post-test was
designed by the same researcher and included 7 programming tasks covering the topics
in the PRIMM resources (selection, loops etc.). In terms of the test characteristics
listed in Margulieux, Ketenci, and Decker (2019), the baseline test included seven
multiple choice questions, one code explaining question, one code tracing question and
one code testing question. The post-test included one Parson’s puzzle-style problem
question (1 point), one code explaining question (2 points), two code writing questions
(2 points), two multiple choice questions (1 point each), and one fill in the gaps question
(2 points). Examples of a baseline test question and a post-test question are shown
in Figures 5 and 6, respectively. Content validity was ensured by the researchers and
other experts reviewing the tests and agreeing that the items of the test measured the
intended concepts (Effendi, Matore, and Khairani, 2015).

5.5.2. Interview design

Interview questions were trialled during the pilot study which enabled us to select
questions that informed our research questions effectively. A semi-structured interview
design was used, and questions were grouped into four sections:

• Section A General information about sessions with PRIMM
• Section B Impact of PRIMM on students programming skills
• Section C Impact of PRIMM on teachers confidence
• Section D Use of PRIMM resources and the future

5.6. Method

The baseline test was sent by email to all the computing teachers who administered
the test on paper with their students. The teachers were responsible for marking their

16

Figure 5. A baseline test question

Figure 6. A post-test question including answer and marking criteria for the teacher

students’ responses to the test. Specific marking guidelines were sent to the teachers
along with the baseline test. We should note here that it was quite easy to mark these
tests as all the questions were multiple choice and each correct answer contributed one
mark to the final score. Both control groups and experimental groups completed the
baseline test, in order to establish that they were equivalent groups.

At the end of the course and after almost six months of programming instruction, we
administered the post-test to both groups. The post-test was administered in an online
form and the link to the test was emailed to the teachers. Some of the teachers marked
their students post-tests but others preferred to let the researchers mark the tests. We
created specific marking guidelines for the test which were sent to all teachers to ease
the assessment procedure ensuring a valid and reliable way of marking; we moderated
a sample of the teachers’ marking. In total 12 of the teachers provided data for use in
the quantitative part of the study. At the end of the study and when the post-tests
had been completed, teachers submitted their journals, were invited for interview and
invited to an online focus group.

5.7. Threats to Validity

Quasi-experimental designs have some validity concerns that researchers must take
into consideration. Threats to internal validity include history, maturation, testing,
instrumentation, statistical regression, selection, attrition, and diffusion. Although we
cannot say much about history and therefore the extraneous variables that may have
influenced the results, maturation was controlled by having students of the same age
and class in both groups. To control for the selection bias we included a baseline test
at the start of the study which tested students’ ability in programming before the
intervention took place. Testing and instrumentation were controlled by not having
the same questions in the baseline test and in the post-test. The baseline test was used
to ensure that the two groups did not differ significantly before the intervention and
thus the statistical regression is not a problem in this design. Concerns about diffusion
were controlled as we did not have any evidence of communication between the control

17

& experimental group, and attrition was minimal.

6. Data analysis

6.1. Quantitative

To examine if PRIMM had any effect on students’ learning, we compared the post-test
score of the experimental group with that of the control group. The data comprised
the students’ baseline test and post-test scores as well as their identifying class and
teacher. SPSS2 was used for the data analysis. Students’ data were grouped depending
on whether they belong to the experimental or the control group. Before employing
any statistical test, we checked if the dependent variable was normally distributed. The
test that we employed for this was the Shapiro-Wilk test for normality. The results
indicated that our dependent variable (baseline test and post-test scores per group) was
not normally distributed in any case. Therefore, the test we employed for comparing
differences between our two independent groups was the nonparametric Mann-Whitney
U test. We first used this test to examine if our two groups had significant differences
in the baseline test score. As soon as this pre-condition was tested and assured we
then moved on to compare the two groups’ post-test scores. The results of this test
are described in Section 7.1.

6.2. Qualitative

Nine of the thirteen teachers were interviewed as shown in Table 3. The selection of
those interviewed was based on a spread of male/female, ages taught and mixed and
single sex schools. 3 of the 4 female teachers (75%) & 6 out of 9 male teachers(66%)
were interviewed. The boys only school teacher was interviewed, all 3 girls schools’
teachers and 5 of the mixed schools’ teachers were interviewed. The only year 7 teacher,
4 of the year 8 (50%) and 5 of the year 9 (55%) teachers were interviewed. All interviews
were conducted online, were audio recorded and transcribed. The length of time of the
interviews varied from 26 minutes to 68 minutes. Four took between 26 and 36 minutes,
three between 46 and 56 minutes and one took 68 minutes.

Two of the authors worked on the coding process. A thematic qualitative data
analysis (QDA) approach was used to analyse the transcribed interviews and outcomes
of tasks based on the methodology detailed by Kuckartz (2014). NVivo3 was used to
support the process of coding text segments.

In the second study we started by coding inductively from the interviews (Mayring,
2000). The overall objective at this point was to create main themes which would
lead to a structure for reporting which would not be pre-determined by any initial
constraints. One author coded two of the interviews adding and amending categories
and sub-categories inductively. After this first pass of coding, we reviewed and revised
the resultant categories to confirm they matched the data coded. Two interviews
provided approximately 1/5th of the overall transcripts in line with recommendations
from Kuckartz (2014) of 10 to 20% for the first pass. Following this, all interviews were
coded. Emergent patterns were recognized and new codes created to hierarchically
group codes. This process was repeated across the categories creating, merging and
splitting codes inductively (Kuckartz, 2014; Mayring, 2000). Once the more elaborate

2https://www.ibm.com/analytics/spss-statistics-software
3https://www.qsrinternational.com/nvivo

18

category system had been created, we checked that all data adhered to the new coding
structure and recoded as necessary (Kuckartz, 2014). A second researcher then coded
three of the nine interviews (33% of the text) a second time, with a Cohen’s Kappa
reliability score of 0.75, which is considered as good agreement between researchers.

Throughout the coding process, a consensual coding approach was used (Kuckartz,
2014). As categories and sub-categories were developed detailed definitions were main-
tained to support the category review and second coding. There was minimal dis-
agreement in category review and coding but where this occurred the two researchers
discussed the differences and resolved through changes to definitions or coding as
necessary.

All teachers were offered the opportunity to take part in an online focus group
to discuss general experiences. The focus group was audio recorded, transcribed and
coded. Teachers 3,8 and 14 took part. Teachers 2,4,6,7,8,10, 12 and 14 also provided
written notes of evaluation of their delivery of PRIMM lessons. These have also been
coded. All interviews and focus groups were completed in the spring of 2018.

7. Results

7.1. Results - Quantitative

All classes as shown in Table 3, except those of Teacher 1, were included in the
quantitative analysis. Teacher 1’s classes were not included as he had used a local
school test rather than the study post-test. Table 4 depicts the descriptive information
for the control and the experimental group for the baseline test and the post-test.

Table 4. Descriptive statistics

Control Baseline test Posttest Experimental Baseline test Posttest

Mean 4.58 2.575 Mean 4.89 3.284
Median 4.0 2.0 Median 5.0 3.0
Std. Deviation 1.911 2.1916 Std. Deviation 2.115 2.510
Skewness .548 (se=.181) 1.237 (se=.181) Skewness 0.88(se=.110) .873(se=.110)
Kurtosis .301 (se=.360) 1.314 (se=.336) Kurtosis -.389(se=.220) .301(se=.220)

7.1.1. Differences before the intervention

Differences before the intervention were designed to show parity of the control and
experimentatl groups. As Table 4 shows, in the baseline test the mean and the median
scores for the control group are 4.58 and 4.0 respectively while for the experimental
group the scores are 4.89 and 5.0. To test if there are significant differences between
our two groups at the beginning of the intervention, the Mann - Whitney test was
employed since the data were not normally distributed. The null hypothesis that was
tested was the following:

H01: there is no significant difference between the scores of the experimental and the
control group in the baseline test

The results in Table 5 indicate that the students’ performance on the baseline test
and post test for all students did not differ significantly (p>.05) and, thus, we could
not reject the null hypothesis (Z=-1.891, p>.05).

19

Table 5. Mann-Whitney - Comparing Control & Intervention Groups - baseline test & Posttest

baseline test Posttest

Mann-Whitney U 40195.0 36822.5
Wilcoxon W 56485.0 53112.5
Z -1.891 -3.392
Asymp. Sig.(2-tailed) .59 .001

7.1.2. Differences after the intervention

Differences between the control and experimental groups after the programming
lessons were examined to see if the PRIMM lessons had had an impact on programming
attainment. Table 4 indicates that in the post-test, the experimental group (M=3.284,
MD=3.0) scored higher than the control group (M=2.57, MD=2.0). To investigate if
these differences are statistically significant, we test the following null hypothesis:

H02: There is no significant difference between the score of the experimental and the
control group in the post-test.

The Mann and Whitney test (Table 5) employed showed that there is a statistically
significant difference in the score between the control and experimental groups for all
students in favour of the experimental group. This suggests that the experimental
group scored statistically significant higher than the control group in the post-test
tasks (Z=-3.392, p<.05, r=.13) (r=effect size). The r value is the effect size and means
that mean that 13% of the variance between groups was due to the intervention. From
these results we are able to reject the null hypothesis.

In summary, these results indicate that the control and experimental groups were
comparable before the study, and that after the intervention, the experimental group
scored higher on the post-test than the control group. This indicates that the PRIMM
lessons had a favourable impact on learner outcomes. We draw on the qualitative
results to further support this conclusion.

7.2. Results: qualitative

Through an iterative coding process seven key themes emerged from the data, as
shown in Table 6, which shows the themes and the percentage of coded segments for
each theme. Here we summarise and illustrate the themes and highlight the teachers’
perspectives in so far as they enable us to understand the impact of the PRIMM
method.

Table 6. Summary of codes

Theme % segments coded to this theme

1 Implementation of PRIMM in class 10%
2 Skills needed by learners 4%
3 Stages of PRIMM lessons 21%
4 The impact and particular aspects of PRIMM 26%
5 Differentiation and groups of learners 12%
6 Adaption and future use of PRIMM 13%
7 Feelings of motivation of teachers & learners 14%

20

7.2.1. Implementation of PRIMM in class

The comments coded in this theme related to how the study was implemented in
class by teachers and included the number and age of learners in the study and any
control groups, number of lessons taught, PRIMM topics taught, length of PRIMM
topic (lesson), test information, teachers involved in the study and how programming
is taught.

7.2.2. Stages of PRIMM lessons

In their interviews, all 9 teachers talked about every stage of the PRIMM lesson, with
the most frequently mentioned stage being Predict with 28% of the coded segments.
Followed by, Modify with 22%, Investigate with 21%, Make 12% & Run with 11%.

There were many comments about the advantages of having a structure to the
lessons by following different stages of PRIMM, for example:

“The PRIMM, the reading and then the running and then the investigation was a really
nice structure for them to follow. And because they’re the same every week, they could
see what was going to be coming.” (Teacher 6)

Teacher 11 highlighted the impact of predict on all his students (all girls):

“Predict was really successful with all students at all levels, because . . . during the sharing
stage of the process, those that haven’t really picked it up, because they didn’t quite get the
logic or they werent such good readers, would feed off other peoples ideas and develop their
own thoughts, and you could see the impact of it really clearly as a teacher” (Teacher 11)

Six teachers alluded to a ‘modify ceiling’, indicating for a variety of reasons that
some learners did not get beyond the modify part of the lesson:

“I think a lot of kids didnt get on to make and thats why I made the sessions two lessons
long to make sure that enough students got on to make. But even then, many students
didn’t get on to make.” (Teacher 4)

Here we can see the distinction between the structure of the PRIMM lessons which
teachers liked, and some of the content of the materials, which for some classes were
rather advanced and lengthy. Amongst our schools there was a wide range of types of
schools and students’ prior experience, despite our attempts to control for this in study
design. In addition, some schools have more hours of computing each week which was
another factor affecting the way that the content within the materials was received.

7.2.3. The impact of aspects of PRIMM

Six sub-themes emerged in the coding: progress made, speaking and listening, concepts
and key skills, task design, expectations of students and starter programs. These are
exemplified in Table 7.

Several teachers described how previously students had been taught to write code
straight away whereas reading code first had really assisted the middle and lower ability
students. Other teachers described the routine nature of the PRIMM lessons giving
students confidence and familiarity with a process. Teachers were generally positive
about the progress made by students, and were aware that the material used within
the PRIMM structure generated high expectations:

“I mean we’re expecting a lot from the kids in those 14 hours, those 14 sessions. And for
some of the kids, they coded functions, if statements, nested if statements, while loops,
concatenation, casting. To get that in 14 hours in Year 9 is remarkable.”(Teacher 4)

21

Table 7. Examples of the sub-themes emerging around the impact of PRIMM

Sub-theme Example
Progress made I think it’s the whole PRIMM approach. I think it was the predict
by learners and the run and not just the modify, it just allowed them to get

that concept a lot faster. (Teacher 10)
Speaking and There was certainly more active talking and planned talking
Listening about the programming because of the way that the questions

are worded in the worksheets and the resources (Teacher 6)
Concepts and When I taught functions prior to using PRIMM, I’d have to
Key Skills break each and every single part down. But with the PRIMM lessons

the way it was structured, it was very easy to follow, and I
think the kids understood it quite quickly as well. (Teacher 12)

Task Design ‘Modify’ was reinforcing the understanding that they’d reached
to get to that point ... the student is armed with much more

knowledge when they attempt a task - it’s all in the immediate
confines of that lesson (Teacher 14)

Expectations of We’ve always got the learners to explain and to comment their
students code, but here it was done first. Right from the beginning it

was, no, you need to be able to read this, and the expectation
was far, far higher. (Teacher 6)

Starter programs ...having some code they could just run, and it gets it basically
working, encourages them a little bit more than having to type
it all in from scratch ... They’ve got a starting point from
which they then could develop. (Teacher 8)

All teachers mentioned a speaking and listening aspect of PRIMM which was coded
into different sub-themes around pupil-pupil communication, teacher-pupil communi-
cation, vocabulary, social aspects and the quality of the talk. Language was a very
frequent topic in the interviews.

All teachers mentioned some form of paired and group talk. This talk was sometimes
an implicit aspect of the structure of PRIMM stages or resulted from the specific
questions in the content of the PRIMM resources. Talk was often linked to collaborative
work:

“I noticed a big difference in terms of the girls collaborating with each other and trying
to sort of out each other’s problems. Usually that’s been confined to one or two girls who
feel quite confident, but with PRIMM with the tasks that they were doing, they always felt
that they were closer to a solution that they might necessarily have felt in the past when
I’ve taught them.... So they were actively engaging in helping each other and looking at
each other’s code and making suggestions” (Teacher 14)

One teacher mentioned how content repeated across lessons supported learning,
another that the pace of lessons was maintained by the repetition of content across a
sequence of lessons. Jigsaw puzzle pieces was suggested as an analogy by another:

“So sometimes the third lesson would be the make section and during that section, I was
teaching them how to magpie bits of code. So to see where the solution had worked in a
similar domain and then copy and paste parts of it to almost use it like a jigsaw puzzle
to put together a solution to a problem, and encourage them that that was okay. They
could go and find bits of different problems, borrow it and put it together.” (Teacher 7)

Five of the teachers liked the gradual addition of complexity and chunking up the
learning. Teacher 14 explained:

“PRIMM gave them the opportunity to edit code and enjoy success very quickly, and that
fed onto the next bit when you’re looking at the next bit of code and how you add some

22

more complexity to it... It starts off as a small snippet, which they understand, they get,
and then they develop it.” (Teacher 14)

He went on to compare PRIMM with the way he used to teach programming:

“I’d give them the whole code with conditions in there straightaway, and that might work
for one or two of them, but be a sea of confusion for a lot of others. PRIMM introduced
them to programming in a much more systematic and measured way.”(Teacher 14)

7.2.4. Differentiation and groups of learners

As discussed in Section 2.3.5, differentiation refers to the way that teachers adapt
their teaching to support different groups of students particularly those who are lower
ability or higher ability. Within this theme, there were a variety of approaches to
differentiation mentioned. Some examples are given below to summarise this theme,
but the striking element of data coded here is how much the teachers reflected on their
teaching of programming and the adaptations needed to reach students of a range of
abilities.

Teachers mentioned the use of a wide range of different methods to differentiate:

“I think this (PRIMM) has helped me to think more creatively about being more inclusive
and adapting, for those lower ability students.” (Teacher 7)

The open-ended nature of the content was highlighted as being very important,
particularly for higher ability students. This was mentioned by teachers 3, 8 and 12.
Teacher 12 explained:

“the differentiation is already there. So, not all kids have to complete every single task.
They can be doing the first couple of tasks. And if their ability allows them to move
forward, that’s great. But if that’s where they get to, that’s also great.” (Teacher 12)

Eight teachers mentioned they supported learners with explanations through re-
sponses to questions or small group coaching and through modelling what they re-
quired students to do. Here teachers were explicitly using their own expertise, as a
‘more knowledgeable other’ (MKO) (Vygotsky, 1978).

The role of the learning support assistant (LSA) to also help individuals and working
with small groups was highlighted:

“it was differentiation through outcome and support, so I spent more time, and the LSA
spent more time with those people, explaining. I’d also have small groups together towards
the end, and we were getting a bit more meaty programming. And with those small groups,
I would run through the program with them.” (Teacher 7)

This teacher also explained how modelling, motivation and linking to prior learning
were required to differentiate the make stage:

“I think it (differentiation at the make) was probably through modelling and through
encouragement. How would I characterise that? Using what they’d already done and could
understand and applying it to a new problem, I guess. Trying to make it transparent that,
just because you solved this problem this way, there were elements of that solution that
could fit this new solution, and trying to make that really transparent and clear.” (Teacher
7)

Reading and writing skills were both mentioned by teachers. One teacher reflected
on the relationship between reading and programming:

“If they can’t read, then they’re not going to be able to access what they need to do or
realise that this word means something and it needs to obviously go into the computer in

23

a particular way.” (Teacher 6)

Teacher 4 linked the answering of investigate questions to familiarity with compre-
hension activities in other subject:

“And also, I found some kids were very happy going along through the Word document
and filling in the gaps and getting all the right answers because they kind of felt it was
similar to comprehension that they might do in say, Geography, or another subject where
you do comprehension.” (Teacher 4)

7.2.5. Adapting & Future use of PRIMM

All teachers talked about how they adapted and used PRIMM in their classroom, with
over 147 coded segments including the practical aspects of classroom management,
differentiation, impact and aspects of PRIMM, and 42 coded segments focusing on the
future use of PRIMM.

Changes and future uses included changing wording of tasks, PRIMMing other con-
cepts and constructs, adding new questions for the investigate stage, using PRIMM
with other year groups, adapting resources for exercise books and other formats,
PRIMM being used by more teachers in their school, adding a hook or overarch-
ing context, increasing the design aspects of activities, simplifying tasks for younger
and lower ability students.

Teacher 7 was very keen to have a Pre-PRIMM vocabulary stage, explaining:

“ So I think an introduction section with vocabulary and the basics and then starting
PRIMM would be good.”. (Teacher 7)

Teacher 10 wanted to change the frequency of teaching programming in general,
having PRIMM embedded in more frequent but less long blocks of teaching, more
time for make and a closer meshing of investigate and modify. She planned to do more
discrete teaching on structure, particularly using the investigate stage, saying:

“I’m going to adapt this for the future, I will have discrete lessons on structure and make
sure the investigate focus is on that structure.” (Teacher 10)

One teacher explained that he was going to use PRIMM to increase pupil’s take-up
of computer science in later years

“I’m going to argue with my colleague that there should be a term of PRIMM in each of
years 7,8 and 9, because I think that will really crack it. I really do. It will really crack it
in terms of our recruitment.” (Teacher 14)

7.2.6. Feelings & emotions of teachers & learners

All teachers implied or directly mentioned both their own emotional response to
PRIMM and that of their learners, with 70 coded segments for teacher feelings and
over 120 segments for pupil emotions. Teachers overall were very positive about their
experiences with PRIMM, with some mentioning an increase in confidence and all but
one clearly saying they were going to implement PRIMM as a pedagogical approach
in their ongoing practice. One teacher explained:

“We’d never done reading before writing, we didn’t think about that. Reading before writ-
ing was a really, really good revelation for us, and we thought it was really positive”
(Teacher10)

One teacher mentioned that encouraging his colleagues to use PRIMM had built up

24

the confidence of less experienced colleagues and another teacher said:

“I loved it because I just felt it made sense . . . one of the challenges we’ve had previously
is we’ve had booklets that they work through but because youve got these strugglers, racers,
they would be working at such different speeds . . . So having that structure of each lesson
[with PRIMM] I never felt that I was struggling to deal with the different abilities in the
same way that I have done previously.” (Teacher 3)

In terms of pupil emotional reactions, Teacher 3 explained how over time students
become more confident with predicting, saying:

“There wasn’t this big drama if they didn’t get it (predict) right, because then we could
run it and talk about it - ‘this is why it’s not what you thought it was’. It didn’t knock
their confidence.” (Teacher 3)

Another teacher highlighted students being confident to share work which they
hadn’t been previously:

“Now a lot of those girls wouldn’t have wanted to share their quiz in the past, because
they might be convinced it wasn’t going to work . . . but everybody, in both sets, everybody
did that task.” (Teacher 14)

Other teachers described students being more confident to have a go. Having sample
code to work with which enabled quick success was mentioned by Teacher 8 as he said:

“I knew that everyone would get some code running because they’d be given some code.
And that would run and it would work. And I didn’t have to spend half the lesson getting
the typical problems out of the way. All the syntax and those other things, which get in
the way of actually getting some success from learners to start with” (Teacher 8)

Teacher 11 explained how his students“were really satisfied - lots of cheering when
they managed to get one of the modify activities done, and they would share it with
their friends.” (Teacher 11). However the same teacher described how students did
still get frustrated if the material was too hard.

Speed of understanding was linked to enjoyment of the tasks, with a teacher com-
menting that the students had learned more quickly using this approach:

“I think it’s the whole PRIMM approach. I think it was the predict and the run and not
just the modify, it just allowed them to get that concept a lot faster.” (Teacher 6)

Another teacher talked about a reduction in anxiety about getting things wrong,
explaining that it “didn’t actually matter, because it actually gave us more to talk about
and about why they thought it was wrong, and mistakes were completely acceptable and
a normal part of computer science. Then, it was much more successful.” (Teacher
7). This is very encouraging as students are often very reluctant to make mistakes
in computer programming (Sentance and Csizmadia, 2017). Finally, the elements of
collaborative work built into the PRIMM structure where possible was associated with
enjoyment of lessons, according to one of the teachers:

“That [paired and group talk] was different [from normal computing lessons], yes. It was
the fact that they were talking and bouncing ideas off each other made it enjoyable and
made it different.” (Teacher 10)

Overall PRIMM was associated by the teachers with many positive emotions, par-
ticularly relating to the structure and style of activities. Students and teachers were
more frustrated at times by some of the content within the materials, where it was
too hard or lengthy, as will be discussed in the next section.

25

8. Discussion

We began this paper by asserting that a sociocultural perspective on learning would
deepen our understanding of programming. We have now described in some detail our
evaluation of the PRIMM strategies with teachers in mandatory computing classes for
11-14 year olds. We now return to the two research questions:

• RQ1: To what extent does being taught using the PRIMM approach impact on
learners’ programming attainment?

• RQ2: To what extent do teachers find the PRIMM approach an effective method
to use in school?

8.1. Research Question 1: Impact on programming attainment

Our data shows a difference in the control and experimental groups and indicates
that those using the PRIMM lessons did better in the final test questions. This gives
support to the structure of PRIMM as the results were positive despite some reports
about some of the content being too advanced or too lengthy. With more appropri-
ately pitched content we might expect that the quantitative results would have shown
stronger significance levels.

So how can this improvement in learner outcomes be explained? Teachers certainly
reported that the familiarity of a routine with lessons starting with students discussing
code was an advantage of the PRIMM method. Several teachers also specifically felt
that reading code before having to write their own programs, as previously advocated
(Lister et al., 2009), helped students’ understanding as well as their confidence:

“I think they made more progress using this approach than the previous approach. My
anecdotal evidence is individuals who struggled the first time back in September when
we did it the old-fashioned way versus this time around using this approach. It really
helped the people who like a structure and get comfortable once they know what’s going
to happen.... the kids, the guinea pigs, have all got something out of this process. I’m
actually convinced of that. And a few kids have got a lot. The ones at the top end have
also got something out of it, but maybe not as much as some of the others.” (Teacher 8)

Students with high ability may have previously had no problems learning to program
in school, but the fact that teachers find that lower ability students find this approach
beneficial implies that this is worth pursuing.

In terms of the content, teachers’ feedback indicated that there were some issues with
the content that we devised to go within the structure of PRIMM, which accelerated
too quickly for some of the learners. In the training of the teachers we had encouraged
them to edit the content to meet the need of their learners, as long as they maintained
the structure of PRIMM, but some teachers were very reluctant to do that, feeling
that they would compromise the research. Two main difficulties emerged with the
materials: firstly that there was too much material per lesson, and secondly that the
difficulty of the investigate questions was too great for the learners.

In summary, teachers found that PRIMM was effective for a range of learners and
we conclude that if the content is pitched correctly within learners’ ZPD, PRIMM will
impact learner outcomes.

26

8.2. Research Question 2: Do teachers find PRIMM effective?

Teachers used PRIMM in different ways. Although it was explained that their partic-
ipation in the research meant they could adapt the content for their students several
did not do this at all and pushed through material that was too advanced for their stu-
dents. Others adapted the materials for their own students so that it included more
scaffolding. Thus some teachers were more aware of the need to work within their
learners’ ZPD than others.

The use of carefully constructed questions to guide student’s developing understand-
ing and relating to prior learning shows teachers being used as the MKO:

“So, I sort of scaffolded it for the lower ones. But I’d often be having a chat, asking them
some questions to coax out maybe an answer from them. Or if they were struggling with
getting the code extended, I’d refer them back to a previous lesson. So, remember the code
from the last lesson, go and have a look at that, that’s got some ideas on how to do this.”
(Teacher 8)

Some teachers adapted the material – as intended. Others didn’t and we felt that
more time spent on co-construction would have been better for some teachers. With
more funding, holding workshops with time for teachers to write their own PRIMM
materials including adapting appropriate content may be an effective solution.

A key finding from the study was around vocabulary in the PRIMM resources.
Many of the teachers discussed the use of vocabulary and the way that the investigate
questions ensured their students used technical terms. This not only highlights the
use of language to explain what the program is doing functionally, but consistent use
of technical words for programming constructs starts to give the students tools to
talk accurately about their programs. The emphasis on the importance of the right
vocabulary and use of language was very evident from our data.

Some teachers found the investigate part the hardest for their students to do, while
others found the predict part the most difficult. Teachers generally found it helpful
where the resource included content that revisited topics. The formative assessment
opportunities of the predict stage led Teacher 3 to be able to target different stu-
dent needs across classes and focus on discussion in the lesson. This highlights the
importance of language as mediation:

“I found that I then had a different discussion, depending on what they came up with. So
for example, one class might have got the predict part completely right whereas another
class might have gone off on a bit of a tangent and come up with different responses. So
it varied how I then taught that section or how much detail I went into with the starter,
depending on what they’ve said in response to the predict.” (Teacher 3)

Implementation issues exist in school that affect how methods can be effectively
used. One of the teachers worked in a school where policy was that the starter exercise
was done in silence, so this made it impossible to do the PRIMM predict task in pairs
at the beginning of the lesson. Other factors that affected the implementation were
the level of the content we provided, an issue we have raised earlier.

We found that teachers were enthusiastic about the extent to which PRIMM helped
them teach programming. They were able to describe what they were doing using the
language of PRIMM, using terms like investigate, modify and predict that they would
not have used before. Being part of the PRIMM trial had enabled them to reflect on
how they were teaching programming, and we would suggest that any teacher using
PRIMM would necessarily start to reflect on how they were teaching programming
and start using a vocabulary for strategies they were using.

27

The data revealed that teachers had found PRIMM gave them more confidence in
teaching programming, as well as giving them strategies for use in the future:

“I think I’m quite confident anyway, but I do think that it helped me in terms of un-
derstanding how they learn how to code, if that makes sense. How to adapt, to be more
inclusive”. (Teacher7)

During the research study we were fortunate to be working with a dedicated and
reflective group of teachers who made valuable contributions to our research. The
implications for this in terms of future implementation are that PRIMM may need
additional structuring to be accessible to teachers who have other priorities or less
time to reflect in such depth.

Overall we believe that the PRIMM method has given teachers in the study some
strategies to use in their classroom to teach programming and increased their PCK.
Teachers need a range of strategies in a toolkit of approaches to use and this may be
a useful one for many teachers in the future. In particular we felt the PRIMM method
gave teachers a language to talk about the way that they were teaching programming,
and this increased their ability to reflect on how their students were learning.

A surprising outcome of the study was that several of the teachers went on to deliver
professional development sessions to other teachers in their networks about PRIMM,
and wrote about its use on social media. Subsequently many other teachers that we
have come across on an ad hoc basis have started to develop their own resources
using PRIMM and this gives us additional, although informal, evidence that it is an
approach that teachers like to use.

8.3. Limitations of the study

We were fortunate to be able to trial the PRIMM lessons on a large group of nearly 500
students across England, but there are some improvements that could have been made
to the research design that would have made the results more reliable and conclusive.
Firstly, although they had been partially piloted, the resources still contained too much
content per lesson. Secondly, the teachers were not representative of all computing
teachers in England – having responded to a call to participate. We would like to repeat
the study with a more representative sample of teachers. Thirdly, we did not have
access to programming assignments which could be classed as validated instruments,
as recommended by Margulieux et al. (2019), so we had to rely on expert guidance
to ensure the appropriateness of these instruments. Fourthly, we did not capture any
metadata on the demographics of either test or control classes other than numbers and
gender. There were no differences found with respect to gender so we have not reported
that data here. Finally, we were not able to control the lessons received by the control
group, as teachers use different schemes of work for teaching the programming concepts
in Python, although we know that these will be from a small subset of options.

8.4. Further work

In attempting to answer the research questions, we are aware that there is more work
to be done. We would next like to consider how to improve the investigative stage,
perhaps with a stronger focus on the Block model. In order to develop learning within
the ZPD, a more informed and detailed understanding of easy/hard concepts is needed
(Wiegand et al., 2016), so understanding progression in programming education is an
area where much more research is needed.

28

For future trials, we hope to develop more co-construction of materials with teachers,
with more differentiation built in, with the same PRIMM structure. Materials must
continue to be editable as students in the same stage of their education may vary, as
might be expected, in their ZPD (Vygotsky, 1978). Resource development requires an
in-depth understanding of programming and can be structured around the different
levels of the block model (Schulte, 2008) (as our materials were) with varied questions
being asked that referred to atoms of code, blocks of code and then whole sections
of code and questions that referred to both structure and function. A further piece
of work might be to support teachers in writing material around the block model
structure, and then teaching it with a PRIMM structure, thus enabling teachers to
distinguish between content and structure more clearly.

In our work we have focused on programming only, without considering algorithm
planning and design, and this is an area that we could develop further. The research
focused on text-based programming using Python, but we have anecdotal evidence
that some teachers are using this approach with block-based programming, which is
an avenue for investigation. Finally, alongside this work, there is a need to embed
the theoretical framework surrounding our approach more specifically, clarifying the
different roles of different types of language as mediating activity in PRIMM lessons.

9. Conclusion

We have presented the PRIMM model for teaching programming, which seeks to recog-
nise the need for mediation in the learning process, following the Vygotskian concept of
mediation as tools, psychological tools including language, and human beings (Kozulin
and Presseisen, 1995). PRIMM draws on existing work in computer science education
relating to the teaching of programming, while rooted in sociocultural theory. Key to
our approach is having the program available in the social plane for students to work
with and understand, which reduces some of the initial obstacles in learning to pro-
gram. As the difficulties of novices learning to program are well documented (Sorva,
2013), within our PRIMM model we have built upon the rich seam of work on sup-
porting development of code comprehension skills and moving learners from the use
of others programs to independent creation of their own. Drawing on some excellent
work from other researchers (Lee et al., 2011; Lister et al., 2004; Schulte, 2008) we
have developed an approach which we believe is directly usable and effective in the
classroom.

As well as presenting PRIMM, we have evaluated it through a mixed-methods study.
Our research has shown that classes using PRIMM for 10 or more lessons do signif-
icantly better in a post-test than those in a control group. It has also demonstrated
that teachers are able to use the approach in secondary school and that classroom
implementation of our approach is viable. We have demonstrated that teachers have
welcomed the PRIMM approach in their classes because they feel it offers routine,
accessibility for lower ability students, and an enriched understanding of core pro-
gramming constructs.

It is important that all children leave school with the digital skills they will need to
contribute to our technology-driven world; of these, computer programming skills are
becoming increasingly important. Until the inclusion of computer science as a manda-
tory subject, students, in informal and formal settings, were required to choose, at
some level, to be involved with learning to program. These students had some degree
of motivation or aptitude as they elected to take the subject. In the context of the

29

mandatory teaching of programming, this situation has changed, and we should be fo-
cused on making computing accessible as well as available. We will not be able to bring
programming to all students with any level of integrity unless we explore how to do
this effectively from an educational point of view. The PRIMM method demonstrates
the relevance of socio-culturally-inspired approaches to the teaching of programming.
PRIMM supports the development of teacher’s pedagogical content knowledge (Shul-
man, 1986) in which the mediating role of the teacher as the ’more knowledeable
other’ is seen as key. Teachers are crucial to whether students will learn programming
in school or not, so teachers need both confidence and resources that embed research-
led ways of teaching programming. We very much hope that researchers will continue
with similar research endeavours to support children and teachers in the learning of
programming.

References

Alexandron, G., Armoni, M., Gordon, M., and Harel, D., 2014. Scenario-based Programming:
Reducing the Cognitive Load, Fostering Abstract Thinking, in: Companion Proceedings of
the 36th International Conference on Software Engineering, New York, NY, USA: ACM,
ICSE Companion 2014, 311–320, 00023.

Armoni, M., 2013. On teaching abstraction in computer science to novices., Journal of Com-
puters in Mathematics and Science Teaching, 32 (3), 265–284.

Basawapatna, A.R., Repenning, A., Koh, K.H., and Nickerson, H., 2013. The zones of proximal
flow: guiding students through a space of computational thinking skills and challenges, in:
Proceedings of the ninth annual international ACM conference on International computing
education research, ACM, 67–74.

Bennedsen, J. and Eriksen, O., 2006. Categorizing pedagogical patterns by teaching activities
and pedagogical values, Computer Science Education, 16 (2), 157–172.

Brown, A.L., Ash, D., Rutherford, M., Nakagawa, K., Gordon, A., and Campione, J.C., 1993.
Distributed expertise in the classroom, Distributed cognitions: Psychological and educational
considerations, 188–228.

Busjahn, T. and Schulte, C., 2013. The use of code reading in teaching programming, in:
Proceedings of the 13th Koli Calling International Conference on Computing Education
Research, New York, NY, USA: ACM, Koli Calling ’13, 3–11.

Cajander, Å., Daniels, M., and McDermott, R., 2012. On valuing peers: theories of learning
and intercultural competence, Computer Science Education, 22 (4), 319–342.

Campbell, D.T. and Stanley, J.C., 1963. Experimental and quasi-experimental designs for
research, Handbook of research on teaching, 171–246.

Caspersen, E., Michael, 2018. Teaching programming, in: S. Sentance, E. Barendsen, and
C. Schulte, eds., Computer Science Education: Perspectives on Teaching and Learning in
School, Bloomsbury Academic, London, 109–130.

Caspersen, M.E. and Bennedsen, J., 2007. Instructional design of a programming course: A
learning theoretic approach, in: Proceedings of the Third International Workshop on Com-
puting Education Research, New York, NY, USA: ACM, ICER ’07, 111–122.

Clear, T., 2012. The hermeneutics of program comprehension: A ’Holey Quilt’ theory, ACM
Inroads, 3 (2), 6–7.

Corney, M., Teague, D., Ahadi, A., and Lister, R., 2012. Some empirical results for neo-
piagetian reasoning in novice programmers and the relationship to code explanation ques-
tions, in: Proceedings of the Fourteenth Australasian Computing Education Conference -
Volume 123, Darlinghurst, Australia, Australia: Australian Computer Society, Inc., ACE
’12, 77–86.

Cutts, Q., Esper, S., Fecho, M., Foster, S.R., and Simon, B., 2012. The abstraction transition
taxonomy: Developing desired learning outcomes through the lens of situated cognition,

30

in: Proceedings of the Ninth Annual International Conference on International Computing
Education Research, New York, NY, USA: ACM, ICER ’12, 63–70.

Daniels, H., 2016. Vygotsky and pedagogy, Routledge.
Denny, P., Luxton-Reilly, A., and Simon, B., 2008. Evaluating a New Exam Question: Parsons

Problems, in: Proceedings of the Fourth International Workshop on Computing Education
Research, New York, NY, USA: ACM, ICER ’08, 113–124, 00090.

Diethelm, I. and Goschler, J., . Questions on spoken language and terminology for teaching
computer science, in: Proceedings of the 2015 ACM conference on innovation and technology
in computer science education, ITICSE ’15.

Du Boulay, B., 1986. Some difficulties of learning to program, Journal of Educational Com-
puting Research, 2 (1), 57–73.

Effendi, M., Matore, E.M., and Khairani, A., 2015. Assessing content validity of IKBAR among
field experts in Polytechnics, Aust J Basic App Sci, 7, 255–257.

Garneli, V., Giannakos, M.N., and Chorianopoulos, K., 2015. Computing education in K-
12 schools: A review of the literature, in: Global Engineering Education Conference
(EDUCON), 2015 IEEE, IEEE, 543–551, 00017.

Giest, H. and Lompscher, J., 2003. Formation of learning activity and theoretical thinking in
science teaching, Vygotskys educational theory in cultural context, 267–288.

Grover, S. and Basu, S., 2017. Measuring Student Learning in Introductory Block-Based Pro-
gramming: Examining Misconceptions of Loops, Variables, and Boolean Logic, in: Proceed-
ings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, New
York, NY, USA: ACM, SIGCSE ’17, 267–272, 00040.

Grover, S., Pea, R., and Cooper, S., 2015. Designing for deeper learning in a blended computer
science course for middle school students, Computer Science Education, 25 (2), 199–237.

Gujberova, M. and Kalas, I., 2013. Designing Productive Gradations of Tasks in Primary
Programming Education, in: Proceedings of the 8th Workshop in Primary and Secondary
Computing Education, New York, NY, USA: ACM, WiPSE ’13, 108–117, 00012.

Guk, I. and Kellogg, D., 2007. The ZPD and whole class teaching: Teacher-led and student-led
interactional mediation of tasks, Language Teaching Research, 11 (3), 281–299.

Hermans, F., Swidan, A., and Aivaloglou, E., 2018. Code phonology: an exploration into the
vocalization of code, in: Proceedings of the 26th Conference on Program Comprehension,
acm, 308–311.

Hertz, M. and Jump, M., 2013. Trace-based Teaching in Early Programming Courses, in:
Proceeding of the 44th ACM Technical Symposium on Computer Science Education, New
York, NY, USA: ACM, SIGCSE ’13, 561–566, 00023.

Hubwieser, P., Armoni, M., Giannakos, M.N., and Mittermeir, R.T., 2014. Perspectives and
Visions of Computer Science Education in Primary and Secondary (K-12) Schools, Trans.
Comput. Educ., 14 (2), 7:1–7:9, 00041.

Jenkins, T., 2002. On the difficulty of learning to program, in: Proceedings of the 3rd Annual
Conference of the LTSN Centre for Information and Computer Sciences, Citeseer, vol. 4,
53–58.

Kasto, N., 2016. Learning to Program: The development of knowledge in Novice Programmers,
Ph.D. thesis, Auckland University of Technology.

Kirschner, P.A., Sweller, J., and Clark, R.E., 2006. Why Minimal Guidance During Instruction
Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based,
Experiential, and Inquiry-Based Teaching, Educational Psychologist, 41 (2), 75–86.

Kotsopoulos, D., Floyd, L., Khan, S., Namukasa, I.K., Somanath, S., Weber, J., and Yiu, C.,
2017. A pedagogical framework for computational thinking, Digital Experiences in Mathe-
matics Education, 3 (2), 154–171.

Kozulin, A., 2003. Psychological tools and mediated learning, in: A. Kozulin, B. Gindis,
S. Ageyev, Vladimir, and M. Miller, Suzanne, eds., Vygotsky’s educational theory in cul-
tural context, Cambridge University Press, 15–38.

Kozulin, A. and Presseisen, B.Z., 1995. Mediated learning experience and psychological tools:
Vygotsky’s and feuerstein’s perspectives in a study of student learning, Educational psy-

31

chologist, 30 (2), 67–75.
Kuckartz, U., 2014. Qualitative text analysis: A guide to methods, practice and using software,

Sage.
Kumar, A.N., 2015. Solving Code-tracing Problems and Its Effect on Code-writing Skills Per-

taining to Program Semantics, in: Proceedings of the 2015 ACM Conference on Innovation
and Technology in Computer Science Education, New York, NY, USA: ACM, ITiCSE ’15,
314–319, 00005.

Lahtinen, E., Ala-Mutka, K., and Järvinen, H.M., 2005. A study of the difficulties of novice
programmers, Acm Sigcse Bulletin, 37 (3), 14–18.

Leach, J. and Scott, P., 2003. Individual and sociocultural views of learning in science educa-
tion, Science & Education, 12 (1), 91–113.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., and
Werner, L., 2011. Computational thinking for youth in practice, ACM Inroads, 2 (1), 32.

Linn, M.C. and Dalbey, J., 1985. Cognitive consequences of programming instruction: Instruc-
tion, access, and ability, Educational Psychologist, 20 (4), 191–206.

Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R.,
Moström, J.E., Sanders, K., Seppälä, O., et al., 2004. A multi-national study of reading and
tracing skills in novice programmers, in: ACM SIGCSE Bulletin, ACM, vol. 36, 119–150.

Lister, R., Fidge, C., and Teague, D., 2009. Further evidence of a relationship between ex-
plaining, tracing and writing skills in introductory programming, in: Proceedings of the
14th Annual ACM SIGCSE Conference on Innovation and Technology in Computer Sci-
ence Education, New York, NY, USA: ACM, ITiCSE ’09, 161–165.

Lopez, M., Whalley, J., Robbins, P., and Lister, R., 2008. Relationships between reading,
tracing and writing skills in introductory programming, in: Proceedings of the Fourth Inter-
national Workshop on Computing Education Research, New York, NY, USA: ACM, ICER
’08, 101–112.

Lye, S.Y. and Koh, J.H.L., 2014. Review on teaching and learning of computational thinking
through programming: What is next for K-12?, Computers in Human Behavior, 41, 51–61,
00303.

Machanick, P., 2007. A social construction approach to computer science education, Computer
Science Education, 17 (1), 1–20.

Margulieux, L., Ketenci, T.A., and Decker, A., 2019. Review of measurements used in com-
puting education research and suggestions for increasing standardization, Computer Science
Education, 1–30.

Margulieux, L.E. and Catrambone, R., 2016. Improving problem solving with subgoal labels
in expository text and worked examples, Learning and Instruction, 42, 58–71, 00015.

Mayring, P., 2000. Qualitative content analysis, Forum of Qualitative Social Research, 1 (2).
Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M.M., 2013. Learning computer science con-

cepts with Scratch, Computer Science Education, 23 (3), 239–264.
Morrison, B.B., Margulieux, L.E., Ericson, B., and Guzdial, M., 2016. Subgoals Help Stu-

dents Solve Parsons Problems, in: Proceedings of the 47th ACM Technical Symposium on
Computing Science Education, New York, NY, USA: ACM, SIGCSE ’16, 42–47, 00025.

Papert, S., 1980. Mindstorms: Children, computers, and powerful ideas, Basic Books, Inc.
Pattis, R.E., 1990. A Philosophy and Example of CS-1 Programming Projects, in: Proceedings

of the Twenty-first SIGCSE Technical Symposium on Computer Science Education, New
York, NY, USA: ACM, SIGCSE ’90, 34–39.

Pea, R.D., 1986. Language-independent conceptual bugs in novice programming, Journal of
educational computing research, 2 (1), 25–36.

Perkins, D. and Martin, F., 1986. Fragile knowledge and neglected strategies in novice pro-
grammers, in: First workshop on Empirical studies of programmers, 213–229.

Perrenet, J., Groote, J.F., and Kaasenbrood, E., 2005. Exploring students’ understanding of
the concept of algorithm: levels of abstraction, ACM SIGCSE Bulletin, 37 (3), 64–68.

Perrenet, J. and Kaasenbrood, E., 2006. Levels of abstraction in students’ understanding of
the concept of algorithm: the qualitative perspective, 38 (3), 270–274.

32

Petty, G., 2004. Teaching today: A practical guide, Nelson Thornes.
Qian, Y. and Lehman, J., 2017. Students misconceptions and other difficulties in introductory

programming: a literature review, ACM Transactions on Computing Education (TOCE),
18 (1), 1.

Rahmat, M., Shahrani, S., Latih, R., Yatim, N.F.M., Zainal, N.F.A., and Ab Rahman, R., 2012.
Major problems in basic programming that influence student performance, Procedia-Social
and Behavioral Sciences, 59, 287–296.

Resnick, M., 2007. All I Really Need to Know (About Creative Thinking) I Learned (by
Studying How Children Learn) in Kindergarten, in: Proceedings of the 6th ACM SIGCHI
Conference on Creativity &Amp; Cognition, New York, NY, USA: ACM, C&C ’07, 1–6.

Resnick, M., 2017. Lifelong Kindergarten: Cultivating Creativity Through Projects, Passion,
Peers, and Play, MIT Press.

Robins, A., 2010. Learning edge momentum: A new account of outcomes in CS1, Computer
Science Education, 20 (1), 37–71.

Robins, A., Rountree, J., and Rountree, N., 2003. Learning and teaching programming: A
review and discussion, Computer science education, 13 (2), 137–172.

Rubin, M.J., 2013. The Effectiveness of Live-coding to Teach Introductory Programming, in:
Proceeding of the 44th ACM Technical Symposium on Computer Science Education, New
York, NY, USA: ACM, SIGCSE ’13, 651–656, 00041.

Ryoo, J.J., 2013. Pedagogy Matters: Engaging Diverse Students as Community Researchers in
Three Computer Science Classrooms, Ph.D. thesis, UCLA.

Schulte, C., 2008. Block model: An educational model of program comprehension as a tool for
a scholarly approach to teaching, in: Proceedings of the Fourth International Workshop on
Computing Education Research, New York, NY, USA: ACM, ICER ’08, 149–160.

Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., and Paterson, J.H., 2010. An introduction
to program comprehension for computer science educators, in: Proceedings of the 2010
ITiCSE Working Group Reports, New York, NY, USA: ACM, ITiCSE-WGR ’10, 65–86.

Sentance, S. and Csizmadia, A., 2017. Computing in the curriculum: Challenges and strategies
from a teachers perspective, Education and Information Technologies, 22 (2), 469–495.

Sentance, S. and Waite, J., 2017. PRIMM: Exploring pedagogical approaches for teaching
text-based programming in school, in: Proceedings of the 12th Workshop on Primary and
Secondary Computing Education, ACM, 113–114.

Sentance, S., Waite, J., and Kallia, M., 2019. Teachers’ Experiences of using PRIMM to Teach
Programming in School, in: Proceedings of the 50th ACM Technical Symposium on Com-
puter Science Education, ACM, 476–482.

Shabani, K., 2016. Applications of Vygotsky’s sociocultural approach for teachers professional
development, Cogent Education, 3 (1).

Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson, E., and Whalley, J.L., 2008. Going
SOLO to Assess Novice Programmers, in: Proceedings of the 13th Annual Conference on
Innovation and Technology in Computer Science Education, New York, NY, USA: ACM,
ITiCSE ’08, 209–213, 00087.

Shulman, L., 1986. Those who understand: knowledge growth in teaching, American Educa-
tional Review, 15 (2).

Simon, Lopez, M., Sutton, K., and Clear, T., 2009. Surely We Must Learn to Read Before
We Learn to Write!, in: Proceedings of the Eleventh Australasian Conference on Computing
Education - Volume 95, Darlinghurst, Australia, Australia: Australian Computer Society,
Inc., ACE ’09, 165–170, 00000.

Sorva, J., 2013. Notional Machines and Introductory Programming Education, ACM Trans-
actions of Computing Education, 13 (2).

Sorva, J., 2018. Misconceptions and the beginner programmer, in: S. Sentance, E. Barendsen,
and C. Schulte, eds., Computer Science Education: Perspectives on Teaching and Learning
in School, Bloomsbury Academic, London, 171–186.

Sorva, J., Karavirta, V., and Malmi, L., 2013. A Review of Generic Program Visualization
Systems for Introductory Programming Education, Trans. Comput. Educ., 13 (4), 15:1–

33

15:64.
Spohrer, J.C. and Soloway, E., 1986. Novice mistakes: Are the folk wisdoms correct?, Commu-

nications of the ACM, 29 (7), 624–632.
Statter, D. and Armoni, M., 2016. Teaching abstract thinking in introduction to computer

science for 7th graders, in: Proceedings of the 11th Workshop in Primary and Secondary
Computing Education, New York, NY, USA: ACM, WiPSCE ’16, 80–83.

Su, A.Y.S., Yang, S.J.H., Hwang, W.Y., Huang, C.S.J., and Tern, M.Y., 2014. Investigating
the role of computer-supported annotation in problem-solving-based teaching: An empiri-
cal study of a Scratch programming pedagogy, British Journal of Educational Technology,
45 (4), 647–665, 00000.

Sudol-DeLyser, L.A., Stehlik, M., and Carver, S., 2012. Code comprehension problems as
learning events, in: Proceedings of the 17th ACM annual conference on Innovation and
technology in computer science education, ACM, 81–86.

Sweller, J., 1994. Cognitive load theory, learning difficulty, and instructional design, Learning
and instruction, 4 (4), 295–312.

Teague, D. and Lister, R., 2014. Programming: Reading, writing and reversing, in: Proceedings
of the 2014 Conference on Innovation and Technology in Computer Science Education, New
York, NY, USA: ACM, ITiCSE ’14, 285–290.

Tenenberg, J. and Knobelsdorf, M., 2014. Out of our minds: a review of sociocultural cognition
theory, Computer Science Education, 24 (1), 1–24.

The Royal Society, 2017. After the Reboot: Computing Education in UK Schools. Policy
Report, https://royalsociety.org/topics-policy/projects/computing-education/.

Tsai, C.Y., Yang, Y.F., and Chang, C.K., 2015. Cognitive Load Comparison of Traditional
and Distributed Pair Programming on Visual Programming Language, in: Educational In-
novation through Technology (EITT), 2015 International Conference of, IEEE, 143–146,
00001.

Vainio, V. and Sajaniemi, J., 2007. Factors in Novice Programmers’ Poor Tracing Skills, in:
Proceedings of the 12th Annual SIGCSE Conference on Innovation and Technology in Com-
puter Science Education, New York, NY, USA: ACM, ITiCSE ’07, 236–240, 00036.

Van Merrienboer, J.J.G. and Krammer, H.P.M., 1987. Instructional strategies and tactics
for the design of introductory computer programming courses in high school, Instructional
Science, 16 (3), 251–285, 00082.

Van Merrinboer, J.J.G. and Sweller, J., 2005. Cognitive Load Theory and Complex Learning:
Recent Developments and Future Directions, Educational Psychology Review, 17 (2), 147–
177, 00000.

Venables, A., Tan, G., and Lister, R., 2009. A closer look at tracing, explaining and code
writing skills in the novice programmer, in: Proceedings of the Fifth International Workshop
on Computing Education Research Workshop, New York, NY, USA: ACM, ICER ’09, 117–
128.

Vygotsky, L.S., 1978. Mind in society, Cambridge, MA: Harvard University Press.
Vygotsky, L.S., 1981. The instrumental method in psychology, in: J.V. Wertsch, ed., The

concept of activity in Soviet psychology, Armonk, NY, Sharpe.
Vygotsky, L.S., 2004. Imagination and creativity in childhood, Journal of Russian & East

European Psychology, 42 (1), 7–97.
Waite, J., Curzon, P., Marsh, D., and Sentance, S., 2018. Comparing K-5 teachers’ reported

use of design in teaching programming and planning in teaching writing, in: Proceedings of
the 13th Workshop in Primary and Secondary Computing Education, WiPSCE ’18.

Walqui, A., 2006. Scaffolding instruction for english language learners: A conceptual frame-
work, International Journal of Bilingual Education and Bilingualism, 9 (2), 159–180.

Wertsch, J.V. and Tulviste, P., 1992. LS Vygotsky and contemporary developmental psychol-
ogy., Developmental psychology, 28 (4), 548, 00552.

Wiegand, R.P., Bucci, A., Kumar, A.N., Albert, J.L., and Gaspar, A., 2016. A data-driven
analysis of informatively hard concepts in introductory programming, in: Proceedings of the
47th ACM Technical Symposium on Computing Science Education, ACM, 370–375.

34

Wood, D., Bruner, J.S., and Ross, G., 1976. The role of tutoring in problem solving, Journal
of child psychology and psychiatry, 17 (2), 89–100.

35

