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Abstract. We study bimodule quantum Riemannian geometries over the field

F2 of two elements as the extreme case of a finite-field adaptation of geometric
methods for physics. We classify all parallelisable such geometries for coordinate

algebras up to vector space dimension n ≤ 3, finding a rich moduli of examples

for n = 3 and top form degree 2, including 9 that are Ricci flat but not flat.
Their coordinate algebras are commutative but their differentials are not. We

also study the quantum Laplacian ∆ = ( , )∇d on our models and characterise
when it has a massive mode.

1. Introduction

Quantum or noncommutative geometry has been extensively developed since the
1980s and from several different motivations. One is the widely accepted view that
momentum space could be curved and conversely that spacetime could be noncommu-
tative or ‘quantum’ due to Planck scale corrections [1] and that this could in principle
be measurable by secondary effects such as in [2, 3]. There is also evidence for such
a quantum spacetime hypothesis in 3D quantum gravity [4, 5], where the theory is
better understood albeit topological, while in 4D the hypothesis gives a route into
elements of effective quantum gravity without knowing the full theory. There are also
plenty of other potential applications of quantum geometry, such to the geometry of
other quantum integrable systems where quantum groups play a central role, and in
principle to actual quantum systems where there can be phase spaces that also have
a metric structure (as in the Kahler manifold case [6]) which we can now follow into
the quantum algebra of observables. So far, this last possibility has been little studied
but there are instances, such as the quantum Hall effect [7] and more recently the
fractional quantum Hall effect [8] where noncommutative geometry is thought to be
relevant. Mathematically speaking, the most well-known approaches are the one of
Connes, coming out of operator algebras and a ‘spectral triple’ generalisation of the
Dirac operator [9], and a more algebraic ‘quantum groups’ approach coming out of
experience with quantum groups but not limited to them, see e.g. [10, 11, 12, 13, 14].
The starting point here is a bimodule Ω1 of quantum differential forms over an alge-
bra A, a quantum metric in Ω1 ⊗A Ω1 and a ‘bimodule connection’ [15, 16] for the
formulation of a quantum Levi-Civita connection.

In this paper we the explore a natural ‘spin-off’ direction initiated in [17, 18] in which
we use this second approach to noncommutative geometry to replace the field C of
complex numbers that we work over by the field F2 = {0,1} of two elements. Note
that algebraic geometers have long formulated the geometry of commutative algebras
over general fields, but such methods become very involved over the field Fpd of prime
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power pd elements, arguably due to incompatibility of the positive characteristic with
usual commutative differentials as explained in [17]. By contrast, we offer a very
different and more calculable approach to geometry over Fpd of interest even when
the coordinate algebra is commutative, made possible because in our case differentials
need not commute with functions. Indeed, in this paper we only look at ‘coordinate
algebras’ A of vector space dimension ≤ 3, which limits us mostly to commutative A,
but with noncommuting differentials. Restricting to finite dimensional A corresponds
in classical geometry to functions on a finite set, so in physics this would be like
making a finite model of space or spacetime. Also note that being commutative over
Fpd does not mean that an algebra is actually that of functions on some space. In
short, much of the character and richness of noncommutative geometry carries over
to this apparently simple setting over a finite field like Fpd . Making discrete geometry
models in physics is of course an established way to tame infinities that might be
encountered, and this too is included in quantum geometry [13, 20], but now we go
further and in an orthogonal direction of making the field finite. For example, if
‘path integrals’ are done with function values in a finite field then integration of the
function value at each point becomes a finite sum (such possible applications remain
to be explored as one should first formulate path integrals in way that does not need
A to be an actual algebra of functions).

The first step is to have a sense of what this moduli space of Fpd -geometries looks like,
which is the aim of present paper for A of small dimension and in the ‘digital case’
of F2-geometries. Remarkably, the answer turns out to be quite rich and to include 9
Ricci-flat but not flat ones (all with commutative A). Another immediate application
of having a repertoire of digital quantum geometries is that they can be used to test
ideas and conjectures in the general theory if we expect them to hold for any field,
even if we are mainly interested in the theory over C. Indeed, the nonlinear nature
of the quantum Levi-Civita condition in quantum Riemannian geometry makes it
very hard to solve by analytic means for a general quantum metric, with the result
that to date only the square graph and the integer lattice Z were fully solved for
general metrics [20, 21]. It also means that the quantum Levi-Civita may not exist,
and even if it does, it may not be unique. This is a phenomenon that deserves more
study and we will see it in our models. Having so few general examples to work with
also makes it hard to further develop the theory in a convincing way (notably the
correct notion of stress energy and conservation laws are poorly understood). It is
also possible, geometry being ubiquitous in science and engineering, that there could
be applications of Fpd and F2 quantum geometries in their own right. One of these
could be to transfer geometric ideas into digital electronics as explained in [18]. Why
exactly one would want to do this remains to be seen, but one area of application
could be to build digital quantum computing gates as analogues of what we may wish
to build in an actual quantum computer and with potentially some of the benefits
and as ‘training wheels’ for the real thing.

The paper begins in Section 2 with some preliminary definitions from the constructive
‘bimodule’ approach to noncommutative Riemannian geometry but written entirely
in tensor terms, which is needed for computer implementation. The paper is a sequel
to [18] where we classified digital geometries on A = F2[x1,⋯, xn] with differential
calculus defined by commutative n -dimensional algebras (V, ○) and we already know
all possible such algebras over F2 up to n ≤ 4 from that work. The difference now is
that A = (V, ○) itself is our coordinate algebra on which we do the noncommutative
differential geometry. We also do not need A to be commutative, but there are no
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noncommutative unital algebras as n = 2 and only one over F2 at n = 3 and this
does not appear to admit an interesting quantum geometry, so in practice A will
mainly be commutative. The classification is then done by computer methods using
Mathematica to try all possible values for the Christoffel symbols, with some work by
hand as a check of the implementation. Results for n = 2 are at the start of Section 3
and the more interesting results for n = 3 are in Sections 3.3 – 3.5. After this, Section 4
computes the Laplacian for the main examples and Section 5 studies the Ricci tensor
and scalar. A summary of the results is provided in the concluding Section 6.

2. Preliminaries

This is a short account of the bimodule approach in [10, 11, 12] but in an explicit form
with structure constants and over a general field k. We will then look for solutions
over F2 in later sections. Compared to [18], we denote the finite-dimensional algebra
by A, its product by omission and the identity element by 1 (in the previous work
they were denoted ○, e).

(i) Let {xµ} be a basis of our algebra A with e = x0 = 1 and µ = 0,⋯, n − 1, where
n = dimA. We write structure constants by

(2.1) xµxν = V µνρx
ρ, V µνρ ∈ k.

For a unital commutative associative algebra we of course need

(2.2) V 0µ
ν = δ

µ
ν , V µνρ = V

νµ
ρ, V ρνλV

λµ
γ = V

νµ
λV

ρλ
γ .

Next we define the differential structure by specifying a space of 1-forms Ω1 which
we assume has a basis {ωi}, i = 1,⋯,m over A , where necessarily m ≤ n − 1 is the
dimension of the calculus over A. The case m = n − 1 is the ‘universal calculus’ and
any other is a quotient of this. Our assumption is that Ω1 = A.{ωi} as a free left
module by the product in A and we also require a right action of A which we specify
by structure constants, along with structure constants for the exterior differential
d ∶ A→ Ω1, by

(2.3) ωi.xµ = aiµνjx
ν .ωj , dxµ = dµνix

ν .ωi, aiµνj , d
µ
νi ∈ k.

Such a calculus is called ‘left parallelisable’. In the nicest case, the commutation
rules for moving algebra generators to the left can be inverted, so we can equally
take Ω1 = {ωi}.A. The two actions are required to obey the axioms of a bimodule
a((db)c) = (adb)c (the left and right actions commute with each other) and d is
required to obey the Leibniz rule d(ab) = (da)b + adb, which become

(2.4) aiµσja
jν
τkV

στ
η = a

iρ
ηkV

µν
ρ, V µνρd

ρ
σj = d

µ
λia

iν
γjV

λγ
σ + d

ν
δjV

µδ
σ.

We also want Ω1 to be spanned by things of the form adb (the so-called surjectivity
axiom) and optionally we ask for the calculus to be connected in the sense that only
the constant function is killed by d. These translate respectively as

(2.5) Bµνηi ∶= V
µρ
ηd
ν
ρi, rank nm

(2.6) dµνi, 1 − dimensional null space.

Note that for any unital algebra, we have d1 = 0 and ωi.1 = ωi = 1.ωi which also
implies that dxµ.1 = 1.dxµ = dxµ and fixes some of the structure constants. Also note

that there is a standard notion of isomorphism (Ω1,d) ≅ (Ω1′ ,d′) between differential
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structures in their classification over a fixed algebra, namely invertible bimodule maps

φ ∶ Ω1 → Ω1′ such that φ(da) = d′φ(a) for all a ∈ A. All calculi of maximal dimension
m = n − 1 are isomorphic (to the universal calculus) so in this case there is one
distinct calculus. But for n = 3,m = 1 we will point out the one case where there are
nontrivial isomorphisms among our solutions. A weaker equivalence is if there is an
algebra automorphism A → A compatible with a map between potentially different
differential calculi before and after, which we will again see some examples of but
which we do not study systematically.

(ii) Next we define a metric as an invertible element g ∈ Ω1 ⊗A Ω1 in the sense
that there exists a bimodule ‘inner product’ map ( , ) ∶ Ω1 ⊗A Ω1 → A such that
((η, ) ⊗ id)g = η = (id ⊗ ( , η))g for all η ∈ Ω1. Note that invertibility in this sense
forces g to be central (to commute with functions)[12]. To explain these ideas in terms
of structure constants, it is useful to use two different expansions of the metric,

(2.7) g = gµijx
µ.ωi ⊗ ωj = ωi.g̃µijx

µ
⊗ ωj ; gµij = a

kν
µig̃νkj ; gµij , g̃µij ∈ k.

Then invertibility of the metric amounts to existence of an algebra-valued matrix
gij = (ωi, ωj) ∈ A which is inverse to g̃ij = g̃µijx

µ ∈ A in the sense gij g̃jk = δik = g̃ijg
jk.

Meanwhile, centrality of the metric implied by invertibility appears as

(2.8) gµija
jν
λka

iλ
γmV

µγ
σ = gρmkV

νρ
σ.

In practice it is easier to impose centrality first and then check for invertibility amongst
the results. Also, given a quantum metric, one has a natural ‘metric quantum dimen-
sion’

(2.9) dim = ( , )(g) ∈ k.

Next, by a ‘left connection’ on Ω1 we mean ∇ ∶ Ω1 → Ω1 ⊗A Ω1 such that

∇(aω) = a(∇ω) + da⊗ ω, ∀a ∈ A, ω ∈ Ω1.

The reader can think of a covariant derivative ∇v ∶ Ω
1 → Ω1 along all vector fields v but

we specify all of these together by an extra left-most copy of Ω1 waiting to be evaluated
against any vector field. This is a normal approach in noncommutative geometry and
allows us to dispense with vector fields entirely. By ‘bimodule connection’ we mean a
left connection such that in addition there is a bimodule map σ ∶ Ω1⊗AΩ1 → Ω1⊗AΩ1

such that

∇(ωa) = (∇ω)a + σ(ω ⊗ da), ∀a ∈ A, ω ∈ Ω1.

If a left connection admits such a σ then the latter is unique, hence this is a property
of ∇ and not further data. For this reason, we will not list the σ explicitly in the
tables (they are not particularly illuminating) but they should always be understood
for a quantum Levi-Civita connection, and can be computed from

(2.10) σ(ωi ⊗ dxµ) = dxµ ⊗ ωi +∇[ωi, xµ] − [∇ωi, xµ].

Indeed, any bimodule connection canonically extends to ∇g = (∇⊗ id)g+(σ⊗ id)(id⊗
∇)g and we say in this case that ∇ is metric-compatible if ∇g = 0. We write structure
constants for the connection as

(2.11) ∇ωi = Γiνkmx
νωk ⊗ ωm, σ (ωi ⊗ ωj) = σijµkmx

µωk ⊗ ωm.

Lemma 2.1. In terms of our structure constants, the full left connection is

∇(xµ.ωj) = (V µρνΓjρkm + dµνkδ
j
m)xν .ωk ⊗ ωm.
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A bimodule connection has σ obeying

Γiνsta
tµ
λma

sλ
γkV

νγ
ρ + d

µ
λja

iλ
γrσ

rj
βkmV

γβ
ρ = a

iµ
νj (V

να
ρΓ

j
αkm + dνρkδ

j
m)

(ajµνka
iν
ρmσ

mk
σst − σ

ij
ρkma

mµ
νta

kν
σs)V

ρσ
τ = 0.

for the connection to obey the right Leibniz rule and for σ to be a bimodule map,
respectively. Such a connection is metric compatible if

gµmnd
µ
νk + gµinΓiρkmV

µρ
ν + gµijΓ

j
βsna

iβ
αtσ

ts
σkmV

µα
ρV

ρσ
ν = 0.

Proof. Here by the connection derivation rule, ∇(xµ.ωj) = xµ(∇ωj) + dxµ ⊗ ωj =

xµ(Γjρkmx
ρωk ⊗ωm) + dµνkx

ν .ωk ⊗ωj = V µρνx
νΓjρkmω

k ⊗ωm + dµνkx
ν .ωk ⊗ δjmω

m,
giving the expression stated. For a bimodule connection, we additionally require

∇(ωixµ) = (∇ωi)xµ + σ(ωi ⊗ dxµ) = (Γiνstx
νωs ⊗ ωt).xµ + dµλjσ(ω

i.xλ ⊗ ωj)

= Γiνsta
tµ
λrx

νωs.xλ ⊗ ωr + dµλjσ(a
iλ
γrx

γωr ⊗ ωj)

= Γiνsta
tµ
λra

sλ
γjx

νxγωj ⊗ ωr + dµλja
iλ
γrx

γσ(ωr ⊗ ωj)

= Γistνa
tµ
λma

sλ
γkV

νγ
ρx
ρωk ⊗ ωm + dµλja

iλ
γrσ

rj
βkmV

γβ
ρx
ρωk ⊗ ωm

= (Γiνsta
tµ
λma

sλ
γkV

νγ
ρ + dµλja

iλ
γrσ

rj
βkmV

γβ
ρ)x

ρωk ⊗ ωm

= ∇(aiµνjx
νωj) = aiµνj (V

να
ρΓ

j
αkm + dνρkδ

j
m)xρ.ωk ⊗ ωm

where the last line uses the calculus commutation relations and our previous formula
for the connection. Comparing gives the first condition stated which, if σ exists,
characterises it. We also need σ to be well-defined as a bimodule map. This comes
down to equality of the expressions

σ(ωi ⊗ ωjxµ) = ajµνkσ(ω
ixν ⊗ ωk)

= ajµνka
iν
ρmx

ρσ(ωm ⊗ ωk) = ajµνka
iν
ρmx

ρσmkσstx
σωs ⊗ ωt

= ajµνka
iν
ρmσ

mk
σstV

ρσ
τx

τωs ⊗ ωt

σ(ωi ⊗ ωj)xµ = σijρkmx
ρωk ⊗ ωmxµ

= σijρkmx
ρωk ⊗ amµνtx

νωt = σijρkmx
ρamµνta

kν
σsx

σωs ⊗ ωt

= σijρkma
mµ

νta
kν
σsV

ρσ
τx

τωs ⊗ ωt

which is the second condition stated. Once we have a bimodule connection, the metric
compatibility makes sense and reads

∇g = ∇(gµijx
µωi ⊗ ωj)

= gµijd
µ
νkx

νωk ⊗ ωi ⊗ ωj + gµijx
µΓiρkmx

ρωk ⊗ ωm ⊗ ωj + gµijx
µσ(ωi ⊗ Γjβsnx

βωs) ⊗ ωn

and the last term here computes further to

gµijx
µΓjβsna

iβ
αtx

ασ(ωt ⊗ ωs) ⊗ ωn = gµijx
µΓjβsna

iβ
αtx

ασtsσkmx
σωk ⊗ ωm ⊗ ωn.

We then replace products giving application of V and relabel so that all terms are
multiples of xνωk ⊗ ωm ⊗ ωn. This then gives the condition stated for ∇g = 0. �

Note that σ in principle depends on the connection via (2.10), making the metric
compatibility condition quadratic in Γ. In general, however, it is more realistic to
find the possible σ first as an auxiliary variable. For m = 1 we drop the form indices
so that

∇ω = Γνx
νω ⊗ ω, σ (ω ⊗ ω) = σβx

βω ⊗ ω, g = gγx
γω ⊗ ω
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and the first stated bimodule connection condition and the metric condition become
respectively

Γνa
µ
λa
λ
γV

νγ
ρ + d

µ
λa
λ
γσβV

γβ
ρ = a

µ
ν (V

να
ρΓα + d

ν
ρ)

gµd
µ
ν + gµΓρV

µρ
ν + gµΓβa

β
ασσV

µα
ρV

ρσ
ν = 0,

while the second stated bimodule connection condition drops out provided the algebra
is commutative (which we have not assumed in proving the lemma but which in
practice will be our case of interest).

(iii) Next we suppose that A = Ω0 and Ω1 are part of a differential graded or ‘exterior
algebra’ Ω = ⊕iΩ

i with a wedge product ∧ with d extending so as to obey d2 = 0 and
the graded-Leibniz rule. This requires a little more data to specify at least Ω2. We
will limit attention to the case where Ω2 = A.Vol is a 1-dimensional free module over
A, with basis Vol say (and we assume that this is also true from the right). For m = 1
it is natural to take Vol = ω∧ω but we could take any invertible function of this, while
more generally it depends on the calculus if Vol exists and how it looks. If it does,
we define

ωi ∧ ωj = εijµx
µVol = εijVol, εijµ ∈ k, ε

ij
∈ A.

We want an associative wedge product including the action by elements of A, in
which case centrality of the volume form comes down to certain commutation relations
between ωi ∧ ωj , namely

(2.12) εijxµ = ajµνka
iν
ρmx

ρεmk.

This property holds for some examples for m = 1 presented in Sec. 3.2, while for m = 2
in Sec. 3.3–3.5 it is imposed as a desirable condition as we focus on better behaved
calculi. In general, one can suppose that εij is invertible with εijε

jk = δik = εijεjk.
Finally, we want d to extend with d2 = 0, which we write as

(2.13) dωi = τ iµx
µVol = τ iVol; dµνix

ντ i + dµνid
ν
ρjx

ρεji = 0.

The extension of d to general 1-forms is by the Leibniz rule and this has to be
consistent with the bimodule commutation relations, which is

(2.14) τ iaj0µνka
i0ν

ρmx
ρεmk − dµνja

iν
ρkx

ρεkj = aiµνjd
ν
ρkx

ρεjk + aiµνjx
ντ i.

Note that τ i, εij are elements of A so there are V products if we wish to write equations
involving these more explicitly. If ωi = dxi then τ i = 0 and in this case if εij is a
solution then so is any invertible function times it, which corresponds to the same Ω2

with a different volume form. One could have other choices e.g. Ω2 = 0 for which such
restrictions and our further conditions below involving ∧ would be empty.

For m = 1 we drop the indices so that ω ∧ ω = εVol where ε ∈ A is invertible. Then
(2.12)–(2.14) become

(2.15) εxµ = aµνa
ν
ρx
ρε

(2.16) dµνx
ντ + dµνd

ν
ρx
ρε = 0

(2.17) τaµνa
ν
ρx
ρε − dµνa

ν
ρx
ρε = aµνd

ν
ρx
ρε + aµνx

ντ

with ε = 1 the canonical choice.

(iv) Once we have specified at least Ω2, we normally ask for our metric to be ‘quantum
symmetric’ in the sense

(2.18) ∧(g) = 0; gµijV
µν
ρε
ij
ν = 0
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or in A-valued notation gijε
ij = 0. Also, for any left connection, we define its torsion

by T∇ ∶= ∧∇−d. This commutes with left multiplication by A, so for it to vanish it is
enough to look on basis elements. A quantum Levi-Civita connection (QLC) is then
defined as one where ∇g = T∇ = 0, where the latter torsion freeness in our terms is

(2.19) Γiµjkx
µV µνρε

jk
ν = τ

i
ρ.

There is also a weaker notion of weak quantum Levi-Civita connection (WQLC) where
we have a left connection which is torsion free and also cotorsion free in the sense
coT∇ ∶= (d⊗ id − id ∧∇)g = 0, which in our terms is

(2.20) gγimd
γ
λkε

ki
σV

λσ
θ + gγimτ

i
λV

γλ
θ = gγijV

γσ
αa

iλ
σrΓ

j
λkmε

rk
βV

αβ
θ.

This can be useful when ∇ is not a bimodule connection, e.g. when one does not exist,
or when it is computationally too hard to search at first for all bimodule connections.
In this case one can first try to classify all WQLCs and then see which of them are
QLCs.

For m = 1 with Ω2 one-dimensional as above, (2.18) cannot hold and (2.19)–(2.20)
become

(2.21) ΓµενV
µν
ρ = τρ ⇔ Γε = τ

(2.22) gγd
γ
λεσV

λσ
θ + gγτλV

γλ
θ = gγV

γσ
αa

λ
σΓλεβV

αβ
θ ⇔ g′ε + gτ = gΓ̄ε

where if τ = 0 then (2.21) cannot hold unless Γ = 0, while (2.22) becomes g′ = gΓ̄.
Here we adopted a shorthand f ′ = fµd

µ
νx

ν and f̄ = fµa
µ
νx

ν for any f = fµx
µ ∈ A, so

that df = f ′ω and ωf = f̄ω.

(v) Once we have constructed our geometries, we will be interested in the geometric
Laplacian and the curvature. These are given respectively by

∆ = ( , )∇d ∶ A→ A, R∇ = (d⊗ id − id ∧∇)∇ ∶ Ω1
→ Ω2

⊗A Ω1.

In terms of components, these are

(2.23) ∆xµ = gτ
kmdµαi(V

αρ
σΓiρkm + dασkδ

i
m)V τσν x

ν

R∇ω
i
= ρijµx

µVol⊗ ωj = ρijVol⊗ ωj ;

(2.24)

ρijβ = Γiµkjd
µ
νnV

να
βε
nk
α + Γiµkjτ

k
αV

µα
β − ΓiµkmΓmλpja

kλ
αsV

µα
σε
sp
θV

σθ
β .

When m = 1, these become

∆xµ = ḡ−1
τ d

µ
α(V

αρ
σΓρ + d

α
σ)V

τσ
ν x

ν ; ∆f = ḡ−1
(f ′′ + f ′Γ)

for all f ∈ A, where (ω,ω) = ḡ−1 is the inverse metric and R∇ω = ρVol⊗ ω with

ρβ = Γµd
µ
νεαV

να
β + ΓµταV

µα
β − ΓµΓλa

λ
αV

µα
σεθV

σθ
β ; ρ = Γ′ε + Γτ − ΓΓ̄ε.

It should be stressed that these definitions are not ad-hoc; they are part of a general
noncommutative or ‘quantum’ Riemannian geometry that applies to a large range of
examples, including q-deformation ones and graph geometries.

(vi) The Ricci tensor is less well understood but the proposal in [12] is to define it with
respect to a ‘lifting’ bimodule map i ∶ Ω2 → Ω1⊗AΩ1 such that ∧○ i = id. If we assume
that Ω2 is one-dimensional with central basis Vol then we write i(Vol) = Iijω

i ⊗ ωj

for some central element of Ω1 ⊗A Ω1 such that ∧(I) = Vol. The latter is explicitly,

(2.25) Iijε
ij
= 1; Iijµε

ij
νV

µν
α = δα,0.
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Note that such I is generally not unique, namely we can add any functional multiple
γg for γ ∈ A if g is central and quantum symmetric (which may not always be the
case). Then

Ricci = gij((ω
i, ) ⊗ id)(i⊗ id)R∇ω

j
= gij(ω

i, ρjkImnω
m
)ωn ⊗ ωk;

(2.26) Ricciij = gαmnρ
n
jβIµliV

βµ
νa
mν

γkgη
klV αγδV

δη
ζx
ζ

where we used the bimodule commutation relations and gij = (ωi, ωj) as inverse to g̃ij
according to the general analysis above, and ρnjβ is as in (2.24). The main idea then
is to use the freedom in I to adjust Ricci to have the same quantum symmetry and
centrality as g. This may or may not be possible, and if it is it may not be uniquely
so. The Ricci scalar is defined as

(2.27) S = ( , )Ricci = Ricciij g̃
ij .

If m = 1 and Ω2 is 1-dimensional then we have i(Vol) = ε−1ω⊗ω as the unique choice
and

Ricci = gρ̄ε̄−1ḡ−1ω ⊗ ω.

This has the same (not quantum symmetric) form as the metric in this case.

3. Geometries with n ≤ 3

Here we look at the noncommutative Riemannian geometry of commutative unital
algebras up to dimension n ≤ 3. For n = 1, there is just k.1 for any field k, d1 = 0
and no metric. For n = 2 we do the calculation by hand as a check of some computer
methods and for n = 3 we then proceed entirely by computer (using Mathematica and
R) for m = 1 and partly by hand and computer in nontrivial cases with m = 2.

3.1. Classification of geometries for n = 2. For n = 2 over any field k and up to
normalisation of the element x ≠ 1, we have (i) x2 = λ for λ ∈ k (some of these could
be the same up to normalisation) or (ii) x2 = λ + x where λ ∈ k. Note that if λ = 0 in
case (i) then (1 + x)2 = 1 + 2x = −1 + 2(1 + x) which is in case (ii) after normalisation
if 2 is invertible in the field and in case (i) with λ = 1 if 2 is not invertible in the field.
Similarly if λ = 1 over F2 then this is equivalent to λ = 0 by a change in variable.
Over F2 this means three possibilities, but for future reference we work with general
k for as long as we can. In each case there is a unique non-zero differential calculus
Ω1, namely the universal calculus with dimension m = 1 (any other is a quotient).

In each case we first describe this universal calculus to degree 2 under the assumption
that ω = dx is our basis of Ω1 from the left or right. The universal calculus for n = 2
must have m = 1 (so no indices related to that) and we must have the form

dµν = (
0 0
1 0

) , τ = 0.

The universal calculus is given by applying d to the relations and is always connected,
so f ′ = 0 implies that f is a multiple of 1, where we recall our notation df = f ′ω.

(i) (This includes algebra A in the table). We have dx.x + x.dx = 0 so {ω,x} = 0.
Applying d again we have −ω ∧ ω + ω ∧ ω = 0 hence there are no relations in degree 2
for the universal calculus. In terms of structure constants, this is

aµν = (
1 0
0 −1

) , τ = 0
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which one can check is the most general solution for our structure constants V 11
0 = λ

and V 11
1 = 0 given that we fixed the form of d.

We take Ω2 = A.Vol where Vol = ω∧ω is central. In this case a general central non-zero
metric is g = gω⊗ω for any invertible g ∈ A, and can never be quantum symmetric. A
general connection is ∇ω = Γω⊗ω for Γ ∈ A and can never be torsion free unless Γ = 0,
in which case ∇(xω) = ω ⊗ ω. This is a bimodule connection if ∇(ωx) = σ(ω ⊗ ω)
which given the commutation relations means σ(ω ⊗ ω) = −ω ⊗ ω. One can see this
also from the bimodule conditions in Lemma 2.1. Then metric compatibility

0 = ∇g = g′ω ⊗ ω ⊗ ω

needs g to be a multiple of 1. Hence up to normalisation only g = ω ⊗ ω admits a
QLC. If we look only for a WQLC then we have

(d⊗ id − id ∧∇)(gω ⊗ ω) = g′ω ∧ ω ⊗ ω = 0

giving the same conclusion of g = ω ⊗ ω for a WQLC. If we relaxed T∇ = 0 then
coT∇ = 0 alone is g′ = gΓ̄ where ¯ ∶ A → A is the automorphism x̄ = −x. Over F2 this
admits g = 1,Γ = 0 again and also g = 1 + x = Γ.

Alternatively, we can quotient to Ω2 = 0. In this case any connection is (trivially)
a WQLC for any metric and any metric is quantum symmetric. In this case we do
not need to set Γ = 0 and in this case the condition for σ by the same steps as
above is ∇(xω) = ω ⊗ ω + xΓω ⊗ ω = −∇(ωx) = −Γω ⊗ ωx − σ(ω ⊗ ω) which now gives
σ(ω ⊗ ω) = −(1 + 2xΓ)ω ⊗ ω. This time the metric compatibility condition is

0 = ∇g = g′ω ⊗ ω ⊗ ω + gΓω ⊗ ω ⊗ ω + σ(gω ⊗ Γω) ⊗ ω

which simplifies to

g′ + gΓ − gΓ̄(1 + 2xΓ) = 0

in the algebra. Over F2, this simplifies further to g′2 = 0 which for λ = 0 has only
g = 1 and Γ = 0, x as solutions. This is also in the row for algebra A in Table 1 and
applies for any Ω2.

(ii) (This includes algebras B,C in the table.) Now we have dx.x + x.dx = dx so
{ω,x} = ω. Applying d, we again have −ω ∧ω +ω ∧ω = 0 hence there are no relations
in degree 2 for the universal calculus. In terms of structure constants, this is

aµν = (
1 0
1 −1

) , τ = 0

which one can check is the most general solution for our structure constants V 11
0 = λ

and V 11
1 = 1 given that we fixed the form of d.

We again can take Ω2 = A.Vol where Vol = ω ∧ ω now obeys Volx = −ω ∧ xω + Vol =
xω∧ω−Vol+Vol = xVol, so this is again central. Similarly, a general central non-zero
metric is again of the form g = gω ⊗ ω for any invertible g ∈ A and can never be
quantum symmetric. As before, a general connection is ∇ω = Γω ⊗ ω for Γ ∈ A and
can never be torsion free unless Γ = 0, in which case a bimodule connection requires
∇(xω) = ω ⊗ ω = −∇(ωx) + ∇ω = −σ(ω ⊗ ω) which gives σ(ω ⊗ ω) = −ω ⊗ ω as before.
Then metric compatibility needs g constant hence up to normalisation only g = ω⊗ω
admits a QLC just as before. Also as before, only g = ω ⊗ ω to have a WQLC (these
steps are identical the the previous case). If we drop T∇ = 0 and ask only for coT∇ = 0
then we need g′ = gΓ̄ again, where now ¯ ∶ A→ A is the automorphism x̄ = 1−x. Over
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Relations
d1 = 0

dx = ω
metrics Connections (only T∇ = 0: ∇ω = 0)

A.

F2Z2

x2
= 0 ω.x = x.ω gA.1 = ω ⊗ ω

gA.1 compatible (no other coT∇ = 0):

∇A.1.1ω = 0
∇A.1.2ω = xω ⊗ ω

gA.2 = (1 + x)ω ⊗ ω
no gA.2 compatible but coT∇ = 0 ∶

∇A.2ω = (1 + x)ω ⊗ ω

B.

F2(Z2)
x2

= x, ω.x = ω + x.ω gB = ω ⊗ ω
metric compatible (no other coT∇ = 0):

∇Bω = 0

C.

F4

x2
= 1 + x ω.x = ω + x.ω

gC.1 = ω ⊗ ω

gC.2 = xω ⊗ ω

gC.3 = (1 + x)ω ⊗ ω

gC.1 compatible (no other coT∇ = 0):
∇C.1.1ω = 0

∇C.1.2ω = xω ⊗ ω

∇C.1.3ω = (1 + x)ω ⊗ ω
no gC.2 compatible but coT∇ = 0:

∇C.2ω = xω ⊗ ω

no gC.3 compatible but coT∇ = 0:
∇C.3ω = (1 + x)ω ⊗ ω

Table 1. Classification for n = 2,m = 1 and Ω2 one dimensional.
The central metrics are never quantum symmetric and only g = ω⊗ω
admits a QLC and it is ∇ω = 0. (For Ω2 = 0 all metrics are quantum
symmetric, all connections are WQLC and the metric compatible
ones in the table are the QLCs.)

F2 with λ = 0, this has only g = 1 and Γ = 0 again as solutions. With λ = 1 we have
this and also Γ = g for g = x,1 + x as shown in the table for algebras B,C.

Alternatively, we can quotient to Ω2 = 0. As before, in this case any connection
is (trivially) a WQLC for any metric and any metric is quantum symmetric. The
condition for σ by the same steps as above is ∇(xω) = ω⊗ω+xΓω⊗ω = −∇(ωx)+∇ω =

−Γω⊗ωx−σ(ω⊗ω)+Γω⊗ω which now gives σ(ω⊗ω) = −(1+(2x−1)Γ)ω⊗ω. This
time the metric compatibility condition is

0 = ∇g = g′ω ⊗ ω ⊗ ω + gΓω ⊗ ω ⊗ ω + σ(gω ⊗ Γω) ⊗ ω

which simplifies to

g′ + gΓ − gΓ̄(1 + (2x − 1)Γ) = 0

in the algebra. Over F2, this simplifies to

g′ = g(Γ + Γ̄ + ΓΓ̄)

with only g = 1 and Γ = 0 as solutions. This is shown also in the table for rows
B,C as it applies for any Ω2. In geometric terms, the algebra A is the group algebra
F2Z2 with z = 1 + x obeying z2 = 1 and the algebra B is the function algebra F2(Z2)

with x,1 + x the delta-functions at the two points (and the calculi are covariant with
respect to the Hopf algebra structure). The algebra C is F2[x]/(x

2 + x + 1) which is
isomorphic to the field F4 as an extension of F2.

Remark 3.1. Over F2, one can check for all the algebras A,B,C that the only so-
lutions to (2.15)-(2.17) have τ = 0, so ω = dx as we assumed in our analysis, and
that ε is unique up to multiplication by an invertible functions so that without loss
of generality we can take ε = 1, or Vol = ω ∧ ω, as we also assumed.



DIGITAL FINITE QUANTUM RIEMANNIAN GEOMETRIES 11

3.2. Classification geometries for n = 3 and m = 1. In this case there are many
more algebras and we restrict to F2 . Then by the results in [18] there are 6 unital
commutative algebras A – F up to isomorphism and we consider each in turn followed
by a further noncommutative one G which turns up by the same method when we
drop commutativity. For differential structures, we first list the universal one with
m = 2 (the geometry of which we consider later) and then use a computer to find
all possible 1-dimensional quotients. The algebra relations and the universal calculus
relations by applying d to them are

A) x2 = 0 = y2, xy = 0,

dx.y = xdy, dy.x = ydx, [dx,x] = [dy, y] = 0;

B) (this is F2(Z3) or functions on a triangle) x2 = x, y2 = y, xy = 0

dx.y = xdy, dy.x = ydx, [dx,x] = dx, [dy, y] = dy

C) x2 = x, y2 = xy = 0

dx.y = xdy, dy.x = ydx, [dx,x] = dx, [dy, y] = 0

D) (this is F2Z3) x2 = y, y2 = x, xy = x + y

dx.y = xdy + dx + dy, dy.x = ydx + dx + dy, [dx,x] = dy, [dy, y] = dx

E) (this is an anyonic line F2[x]/(x
2)) x2 = y, y2 = xy = 0

dx.y = xdy, dy.x = ydx, [dx,x] = dy, [dy, y] = 0

F) (this is the field extension F8 = F2[y]/(y
3 + y2 + 1)) y2 = x, xy = 1 + x (and

x2 = 1 + x + y implied)

dx.y = xdy + dx, dy.x = ydx + dx, [dx,x] = dx + dy, [dy, y] = dx

G) (this is noncommutative) F2⟨x, y⟩ modulo the ideal generated by the relations
x2 = x, y2 = 0, xy = y, yx = 0

dx.x = (1 + x)dx, dx.y = (1 + x)dy, dy.x = ydx, dy.y = ydy

For m = 1, we have in each case to add a relation to the ones coming from the universal
calculus. The results are as follows.

(i) For algebras A, D, and E there are no solutions for 1-dimensional differential calculi
Ω1 of the left-parallelizable form assumed in our general analysis.
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(ii) Algebra F has potentially 14 differential calculi Ω1 by solving our equations:

F.1 dx = ω, dy = y.ω, ω.x = ω + x.ω + y.ω, ω.y = x.ω,
F.2 dx = y.ω, dy = x.ω, bimodule relations as in[F1]
F.3 dx = x.ω, dy = ω + x.ω, bimodule relations as in[F1]
F.4 dx = x.ω + y.ω, dy = ω, bimodule relations as in[F1]
F.5 dx = ω + x.ω + y.ω, dy = ω + y.ω, bimodule relations as in[F1]
F.6 dx = ω + y.ω, dy = x.ω + y.ω, bimodule relations as in[F1]
F.7 dx = ω + x.ω, dy = ω + x.ω + y.ω, bimodule relations as in[F1]
F.8 dx = ω + x.ω, dy = ω, ω.x = y.ω, ω.y = ω + x.ω + y.ω,
F.9 dx = ω + y.ω, dy = x.ω, bimodule relations as in[F8]
F.10 dx = x.ω + y.ω, dy = ω + x.ω, bimodule relations as in[F8]
F.11 dx = ω + x.ω + y.ω, dy = y.ω, bimodule relations as in[F8]
F.12 dx = y.ω, dy = ω + y.ω, bimodule relations as in[F8]
F.13 dx = x.ω, dy = x.ω + y.ω, bimodule relations as in[F8]
F.14 dx = ω, dy = ω + x.ω + y.ω, bimodule relations as in[F8]

However, the first 7 are all isomorphic under a change of basis φ(ω) = yiω for some
power i and likewise for the last 7, so there are only two non-isomorphic calculi. Since
F8 is a field, multiplication by any nonzero element is an isomorphism and there are
exactly 7 in each isomorphism class. One the other hand, all the calculi have invertible
aµν matrices and none of them admits a central non-zero metric. One is also forced
to Ω2 = 0.

(iii) Algebra B has 8 left-parallelisable differential calculi by solving our equations,
and they are all distinct since the algebra has only 1 as invertible. Of them, only
B.4 and B.8 have invertible aµν needed for ω to be both a left and a right basis
(our preferred case). However, it is exactly these more geometrical ones which admit
no non-zero central metric even when we relax invertibility. This is summarised in
Table 2. None of the non-invertible metrics admit a metric compatible connection
either. Also for these calculi, Ω2 is forced to have vector space dimension less than
that of the algebra so we either have to take Ω2 = 0 or it is not a free module with a
single basis element Vol, which is an added complication as the analysis in Section 2
won’t apply. For example, for calculus B.1 one can apply d to the first order relations
to conclude that for any exterior algebra dx ∧ dy = dy ∧ dx = dy ∧ dy = 0 giving only
ω ∧ ω,xω ∧ ω as the 2-forms with Vol = ω ∧ ω as a generator but not a basis over the
algebra (some products with it are zero). In some cases this generator is also not
central.

(iv) The similar computer results for the algebra C at m = 1 are summarised in Table 3
and again they are all distinct as only 1 is invertible in the algebra. Again we see that
there are some non-invertible central metrics. Also, in all cases aµν is not invertible
so these are not fully parallelisable in our sense and we have similar issues that we
should take Ω2 = 0 or it is not a free module over the algebra even though we can
take Vol = ω∧ω as the generator, in some cases not central. On the other hand, some
of the metrics do admit compatible connections. They all have torsion in the case of
Ω2 ≠ 0 with T∇ω = ΓVol for any connection Γ = n0 +n1x+n2y, say. Note that because
the torsion is not zero, being metric compatible does not imply cotorsion free and in
fact for gC.1.2 the cotorsion free connections are a subset of the metric compatible
ones as shown in the table. The same for the C.2 calculus. The curvatures for the
four calculi are:
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Family B Differential calculi relations Central metrics (non-invertible)

B.1
dx = ω, dy = y.ω

ω.x = ω + x.ω, ω.y = 0

gB.1 = (1 + y)ω ⊗ ω
gB.1.1 = xgB.1 = xω ⊗ ω

gB.1.2 = (1 + x)gB.1 = (1 + x + y)ω ⊗ ω

B.2
dx = ω + y.ω, dy = y.ω

ω.x = ω + x.ω + y.ω, ω.y = 0
metrics the same as in B.1

B.3
dx = ω, dy = x.ω + y.ω,
ω.x = ω + x.ω, ω.y = x.ω

gB.3 = (x + y)ω ⊗ ω
gB.3.1 = xgB.3 = xω ⊗ ω
gB.3.2 = ygB.3 = yω ⊗ ω

B.4
dx = ω + y.ω, dy = x.ω + y.ω,
ω.x = ω + x.ω + y.ω, ω.y = x.ω

no central metrics

B.5 equivalent to B.1 under x↔ y
B.6 equivalent to B.3 under x↔ y
B.7 equivalent to B.2 under x↔ y
B.8 equivalent to B.4 under x↔ y

Table 2. 1-dimensional differential calculi for the algebra B with
the corresponding central metrics, but none invertible. None of them
admit a metric compatible connection (or a cotorsion free or torsion
free one unless Ω2 = 0).

C.1.: R∇ω = (n0 +n1 +n0n1 + (1+n0 +n1)n2y)Vol⊗ω. For the six metric compatible
ones in the table the curvature is always R∇ω = Vol⊗ω except for Γ = 1+x+ y which
has a factor 1 + y out front.

C.2.: R∇(ω) = (n0 + n1 + n0n1 + (n1 + (1 + n0 + n1)n2)y)Vol ⊗ ω. For the 6 metric
compatible ones we have the same options for the curvature, with the 1 + y factor
when Γ = x,x + y,1 + x.

C.3.: R∇ω = (n0 + n2 + (n1 + n0n1 + n2)x)Vol⊗ ω

C.4.: R∇ω = (n0 + n2 + (n1 + n0n1 + n2)x + n2y)Vol⊗ ω.

(v) For the noncommutative algebra G there are 48 parallelisable calculi with m = 1
and only 1 is invertible in the algebra so they are distinct in the sense of a change of
ω. But none of them have a central metric, so we do not discuss them individually.

Summarising, for the n = 3,m = 1 case there are 6 possible commutative algebras and
one noncommutative one. None of them admits a calculus Ω1 of dimension m = 1
satisfying all our requirements. Some algebras (B and C) admit a central candidate
for a metric but none of these are invertible. These algebras also have issues with
Ω2 ≠ 0. The noncommutative algebra G, for m = 1, does not admit a suitable calculus
having a central metric.

3.3. Classification of n = 3,m = 2 geometries on the algebra D. We will now
consider each of the 6 algebras above but with the m = 2 case of the universal calculus
Ω1. To keep things simple we consider geometries with basis ω1 = dx,ω2 = dy for
Ω1, so that τ i ∶= dωi = 0. The universal calculus at Ω2 is normally too large to be
reasonable for a geometry – we will need to quotient it to obtain something more
‘reasonable’ such as Ω2 1-dimensional. This has to be searched for on a case-by-case
basis for each algebra. In this section we illustrate the method in detail on the algebra
D and then for the other algebras we just list the results.
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Family C
Differential

calculi relations
Central metrics (non-invertible) Connections (with torsion)

C.1

dx = ω,

dy = y.ω,
ω.x = ω + x.ω,

ω.y = 0

gC.1 = (x + y)ω ⊗ ω

gC.1.1 = xgC.1 = xω ⊗ ω

gC.1.2 = (1 + x + y) gC.1 = yω ⊗ ω

only gC.1.2 metric compatible

∇C.1.2.1 −∇C.1.2.6 ∶ Γ ≠ 0, y

(coT∇ = 0 if also Γ ≠ 1 + x,1 + x + y)

C.2

dx = ω + y.ω,

dy = y.ω,

ω.x = ω + x.ω,
ω.y = 0

metrics the same as for C.1 connections the same as for C.1

C.3

dx = x.ω,

dy = ω + x.ω,

ω.x = 0,
ω.y = y.ω

gC.3 = (1 + x)ω ⊗ ω

gC.3.1 = (1 + y) gC.3
= (1 + x + y)ω ⊗ ω

gC.3.1 = (x + y) gC.3 = yω ⊗ ω

none metric comp. or coT∇ = 0

C.4

dx = x.ω,

dy = ω + x.ω + y.ω,

ω.x = 0,
ω.y = y.ω

metrics the same as for C.3 none metric comp. or coT∇ = 0

Table 3. 1-dimensional differential calculi for the algebra C with
the corresponding central but non-invertible metrics. None of the
metrics are quantum symmetric and none of the metric compatible
connections have T∇ = 0 for Ω2 ≠ 0. (For Ω2 = 0 all metrics are
quantum symmetric, all connections are WQLC and the metric com-
patible ones in the table are the QLCs.)

In fact the algebra D is isomorphic to the group algebra of the group Z3 since z = 1+x
obeys z2 = 1 + y and z3 = 1 in the algebra. The bimodule commutation relations in
terms of these are

ω1.z = ω1
(x + 1) = (x + 1)ω1

+ ω2
= zω1

+ ω2

ω2.z = ω2
(x + 1) = (y + 1)ω1

+ ω2
+ ω2

= z2ω1.

From these it is easy to see that

g = αzω1
⊗ ω1

+ αω1
⊗ ω2

+ βzω2
⊗ ω1

+ βω2
⊗ ω2(3.1)

= α (1 + x)ω1
⊗ ω1

+ αω1
⊗ ω2

+ β (1 + x)ω2
⊗ ω1

+ βω2
⊗ ω2

is the general form of a central element in the tensor square, for any two functions
α,β in the algebra.

Next, applying d to these gives no relations with the result that Ω2 for the universal
calculus is 4-dimensional. For a natural 1-dimensional Ω2, we appeal to the group
theory where we have left-invariant 1-forms e± forming a Grassmann algebra. Making
the isomorphism formally (which one can do by making a field extension to adjoin a
cube root of 1) and transferring back, we are led to define

ω1ω2
= ω2ω1

= 0, (ω1
)
2
+ z(ω2

)
2
= 0

giving a 1-dimensional Ω2, which we take with basis Vol = (ω1)2 = z(ω2)2 say. This
is central and has

ωiωj = εijVol, ε11
= 1, ε22

= z2, ε12
= ε21

= 0.

One can check that one has a DGA with dωi = 0 (so τ i = 0 ).
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Then ∧(g) = 0 requires α = zβ so we have just a 1-functional parameter of non-zero
central quantum symmetric metrics,

g = β (z(zω1
+ ω2

) ⊗ ω1
+ (zω1

+ ω2
) ⊗ ω2) = β ((ω1z2

+ ω2z) ⊗ ω1
+ ω1z ⊗ ω2)

= β (1 + y)ω1
⊗ ω1

+ β (1 + x)ω2
⊗ ω1

+ β (1 + x)ω1
⊗ ω2

+ βω2
⊗ ω2

where the latter expression makes it clear that this is invertible at least when β = 1
because the ‘internal’ coefficient matrix g̃ is invertible (and for typical β according to
how the coefficients look when β is commuted to the middle).

We now use a computer to solve for QLCs with torsion depending on the choice of
Ω2, which in the 1-dimensional case comes down to the choice of volume element Vol.
Fixing one of these, we find four QLCs for each choice of β = 1, z, z2 of invertible β,
all with curvature except for one flat one of the twelve.

1) (β = 1) gD.1 = z(zω
1 + ω2) ⊗ ω1 + (zω1 + ω2) ⊗ ω2:

∇D.1.1ω
1
= z2ω1

⊗ ω1
+ (1 + z)(ω1

⊗ ω2
+ ω2

⊗ ω1
) + ω2

⊗ ω2

∇D.1.1ω
2
= z2ω1

⊗ ω1
+ zω1

⊗ ω2
+ z2ω2

⊗ ω1
+ ω2

⊗ ω2

R∇D.1.1
ω1

= Vol⊗ ω1
+ z2Vol⊗ ω2, R∇D.1.1

ω2
= z2Vol⊗ ω1;

∇D.1.2ω
1
= z2ω1

⊗ ω1
+ z(ω1

⊗ ω2
+ ω2

⊗ ω1
) + ω2

⊗ ω2

∇D.1.2ω
2
= z2ω2

⊗ ω1

R∇D.1.2
ω1

= R∇D.1.2
ω2

= (1 + z2)Vol⊗ (ω1
+ ω2

);

∇D.1.3ω
1
= (z + z2

)ω1
⊗ ω1

+ (1 + z)ω1
⊗ ω2

+ zω2
⊗ ω1

+ (1 + z2)ω2
⊗ ω2

∇D.1.3ω
2
= z2ω1

⊗ ω1
+ (z + z2)ω2

⊗ ω1
+ ω2

⊗ ω2

R∇D.1.3
ω1

= Vol⊗ ω1
+ z2Vol⊗ ω2, R∇D.1.3

ω2
= z2Vol⊗ ω1;

∇D.1.4ω
1
= (z + z2

)ω1
⊗ ω1

+ zω1
⊗ ω2

+ (1 + z)ω2
⊗ ω1

+ (1 + z2)ω2
⊗ ω2

∇D.1.4ω
2
= zω1

⊗ ω2
+ (z + z2)ω2

⊗ ω1

R∇D.1.4
ω1

= Vol⊗ ω1
+ z2Vol⊗ ω2, R∇D.1.4

ω2
= z2Vol⊗ ω1.

2) (β = z) gD.2 = z
2(zω1 + ω2) ⊗ ω1 + z(zω1 + ω2) ⊗ ω2:

∇D.2.1ω
1
= ω1

⊗ ω1
+ zω1

⊗ ω2
+ z2ω2

⊗ ω1
+ zω2

⊗ ω2

∇D.2.1ω
2
= ω1

⊗ ω1
+ (1 + z2

) (ω1
⊗ ω2

+ ω2
⊗ ω1) + zω2

⊗ ω2

R∇D.2.1
ω1

= Vol⊗ ω2, R∇D.2.1
ω2

= Vol⊗ ω1
+ z2Vol⊗ ω2;

∇D.2.2ω
1
= ω1

⊗ ω1
+ (z + z2

)ω1
⊗ ω2

+ zω2
⊗ ω2

∇D.2.2ω
2
= (1 + z)ω1

⊗ ω1
+ z2ω1

⊗ ω2
+ (1 + z2)ω2

⊗ ω1
+ (z + z2

)ω2
⊗ ω2

R∇D.2.2
ω1

= Vol⊗ ω2, R∇D.2.2
ω2

= Vol⊗ ω1
+ z2Vol⊗ ω2;

∇D.2.3ω
1
= (z + z2

)ω1
⊗ ω2

+ z2ω2
⊗ ω1

∇D.2.3ω
2
= (1 + z)ω1

⊗ ω1
+ (1 + z2

)ω1
⊗ ω2

+ z2ω2
⊗ ω1

+ (z + z2
)ω2

⊗ ω2

R∇D.2.3
ω1

= Vol⊗ ω2, R∇D.2.3
ω2

= Vol⊗ ω1
+ z2Vol⊗ ω2;
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∇D.2.4ω
1
= zω1

⊗ ω2

∇D.2.4ω
2
= ω1

⊗ ω1
+ z2

(ω1
⊗ ω2

+ ω2
⊗ ω1

) + zω2
⊗ ω2

R∇D.2.4
ω1

= R∇D.2.4
ω2

= (1 + z2
)Vol⊗ (ω1

+ ω2
).

3) (β = z2) gD.3 = (zω1 + ω2) ⊗ ω1 + z2(zω1 + ω2) ⊗ ω2:

∇D.3.1ω
1
= zω2

⊗ ω1, ∇D.3.1ω
2
= z2ω1

⊗ ω2, R∇D.3.1
ω1

= R∇D.3.1
ω2

= 0;

∇D.3.2ω
1
= z2ω1

⊗ ω1
+ ω2

⊗ ω2, ∇D.3.2ω
2
= z2ω2

⊗ ω1

R∇D.3.2
ω1

= z2Vol⊗ ω1, R∇D.3.2
ω2

= (1 + z2)Vol⊗ ω1
+ z2Vol⊗ ω2;

∇D.3.3ω
1
= zω1

⊗ ω2, ∇D.3.3ω
2
= ω1

⊗ ω1
+ zω2

⊗ ω2

R∇D.3.3
ω1

= Vol⊗ ω1
+ (1 + z2)Vol⊗ ω2, R∇D.3.3

ω2
= Vol⊗ ω2;

∇D.3.4ω
1
= z2ω1

⊗ ω1
+ z (ω1

⊗ ω2
+ ω2

⊗ ω1) + ω2
⊗ ω2

∇D.3.4ω
2
= ω1

⊗ ω1
+ z2 (ω1

⊗ ω2
+ ω2

⊗ ω1) + zω2
⊗ ω2

R∇D.3.4
ω1

= z2Vol⊗ ω1, R∇D.3.4
ω2

= Vol⊗ ω2.

For this family there are in fact 3 possible (but equivalent) solutions for ε (that are
invertible and satisfy (2.12), (2.13),(2.14), (2.18) for a central volume form with metric
quantum symmetric). They are multiples by the invertible functions of

ε = (
1 0
0 z2) , ε−1

= (
1 0
0 z

)

which is the one used above and corresponds to Vol = (ω1)2. The other solutions
are z, z2 times this which one can view as z2, z times the volume form for the same
calculus.

3.4. Classification of n = 3,m = 2 geometries on the algebra B. In this section
we keep the m = 2 or universal calculus with ω1 = dx and ω2 = dy and Ω2 again
one-dimensional so that we can use the same general set-up as above, but we consider
the other possible algebras from our list. First we find by computer that:

Lemma 3.2. For algebras A,C,E,G there are no invertible central metrics for the
m = 2 calculus.

For example, for the noncommutative algebra G, one finds from the commutation
relations that there is a unique central element

gG = (1 + x)dy ⊗ dy + ydy ⊗ dx = dx.y ⊗ dy + dy.y ⊗ dx

so that g̃G = yσ1 (a Pauli matrix), which is not invertible since y is not.

That leaves algebras B,F and we consider B in this section. There is one invertible
quantum symmetric central metric

gB = (1 + y)ω1
⊗ ω1

+ (1 + x + y)(ω1
⊗ ω2

+ ω2
⊗ ω1

) + (1 + x)ω2
⊗ ω2.



DIGITAL FINITE QUANTUM RIEMANNIAN GEOMETRIES 17

There is only one solution for ε (which is invertible and satisfies (2.12),(2.13),(2.14),(2.18)
for a central volume form with metric quantum symmetric), namely

ε = (
1 + x x + y
x + y 1 + y

) , ε−1
= (

1 + y x + y
x + y 1 + x

) .

There are 4 QLCs for this family and the metric above, of which only one is flat:

∇B.1ω
1
= (1 + x + y)ω1

⊗ ω1
+ (1 + y)ω1

⊗ ω2
+ ω2

⊗ ω2

∇B.1ω
2
= ω1

⊗ ω1
+ ω1

⊗ ω2
+ (1 + x + y)ω2

⊗ ω1
+ (1 + y)ω2

⊗ ω2

R∇B.1
ω1

= 0, R∇B.1
ω2

= (x + y)Vol⊗ (ω1
+ ω2

);

∇B.2ω
1
= (1 + x)ω1

⊗ ω1
+ (1 + x + y)ω1

⊗ ω2
+ ω2

⊗ ω1
+ ω2

⊗ ω2

∇B.2ω
2
= ω1

⊗ ω1
+ (1 + x)ω2

⊗ ω1
+ (1 + x + y)ω2

⊗ ω2

R∇B.2
ω1

= (x + y)Vol⊗ (ω1
+ ω2

), R∇B.2
ω2

= 0;

∇B.3ω
1
= (1 + x)ω1

⊗ ω1
+ (1 + y)ω1

⊗ ω2
+ (x + y)ω2

⊗ ω1
+ (1 + x)ω2

⊗ ω2

∇B.3ω
2
= (1 + y)ω1

⊗ ω1
+ (x + y)ω1

⊗ ω2
+ (1 + x)ω2

⊗ ω1
+ (1 + y)ω2

⊗ ω2

R∇B.3
ω1

= R∇B.3
ω2

= 0;

∇B.4ω
1
= (1 + x + y) (ω1

⊗ ω1
+ ω1

⊗ ω2
+ ω2

⊗ ω1) + (1 + x)ω2
⊗ ω2

∇B.4ω
2
= (1 + y)ω1

⊗ ω1
+ (1 + x + y) (ω1

⊗ ω2
+ ω2

⊗ ω1
+ ω2

⊗ ω2)

R∇B.4
ω1

= (1 + y)Vol⊗ ω1
+ (x + y)Vol⊗ ω2

R∇B.4
ω2

= (x + y)Vol⊗ ω1
+ (1 + x)Vol⊗ ω2.

In fact the algebra here is F2(Z3) with x = δ1, y = δ2 and 1 + x + y = δ0 for the three
delta-functions. We can identify left-invariant 1-forms with respect to the group
structure,

e1
= (x + 1)ω1

+ (x + y)ω2, e2
= (x + y)ω1

+ (y + 1)ω2

which provide a manageable route to solving these equations by hand, with the same
results as above and simple commutation relations e1δ2 = δ1e

1, e2δ1 = δ2e
2 etc (the

standard triangle graph calculus) and Grassmann algebra (ei)2 = 0, e1e2 = e2e1 = Vol.
From this point of view the metric is the Euclidean metric gB = e1⊗e2 +e2⊗e1 which
over F2 is unique as 1 is the only invertible function.

3.5. Classification of n = 3,m = 2 geometries on the algebra F. For the algebra
F with its m = 2 universal Ω1, there are 7 invertible quantum symmetric central
metrics namely any nonzero multiple of any one of them, e.g.

g = β (y2ω1
⊗ ω1

+ ω1
⊗ ω2

+ ω2
⊗ ω1

+ (1 + y)ω2
⊗ ω2)

for any nonzero β (necessarily invertible since the algebra here is a field). However,
only four of them admit QLCs:

1) (β = y2) gF.1 = (1 + y + y2)ω1 ⊗ ω1 + y2(ω1 ⊗ ω2 + ω2 ⊗ ω1) + ω2 ⊗ ω2

with 12 QLCs, four of which are flat:

∇F.1.1ω
1
= (1 + y2

) (ω2
⊗ ω1

+ ω1
⊗ ω1

+ ω2
⊗ ω2) ,

∇F.1.1ω
2
= 0, R∇F.1.1

ω1
= R∇F.1.1

ω2
= 0;
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∇F.1.2ω
1
= (1 + y) (ω1

⊗ ω1
+ ω1

⊗ ω2
+ ω2

⊗ ω2) ,

∇F.1.2ω
2
= 0, R∇F.1.2

ω1
= R∇F.1.2

ω2
= 0;

∇F.1.3ω
1
= (1 + y + y2

)ω1
⊗ ω1

+ y2
(ω1

⊗ ω2
+ ω2

⊗ ω1
) + ω2

⊗ ω2,

∇F.1.3ω
2
= y2

(ω1
⊗ ω1

+ ω1
⊗ ω2

) + yω2
⊗ ω1

+ ω2
⊗ ω2,

R∇F.1.3
ω1

= yVol⊗ ω1
+ (1 + y)Vol⊗ ω2, R∇F.1.3

ω2
= Vol⊗ ω1

+ yVol⊗ ω2;

∇F.1.4ω
1
= (1 + y2

)ω1
⊗ ω1

+ (1 + y)ω1
⊗ ω2

+ (1 + y2)ω2
⊗ ω1

+ y2ω2
⊗ ω2,

∇F.1.4ω
2
= (1 + y + y2

)ω1
⊗ ω2

+ (y2
+ y)ω2

⊗ ω2,

R∇F.1.4
ω1

=R∇F.1.4
ω2

= 0;

∇F.1.5ω
1
= ω1

⊗ ω1
+ yω1

⊗ ω2
+ (1 + y + y2)ω2

⊗ ω1
+ (y2

+ y)ω2
⊗ ω2,

∇F.1.5ω
2
= (1 + y)ω1

⊗ ω1
+ (1 + y + y2)ω1

⊗ ω2
+ yω2

⊗ ω1
+ ω2

⊗ ω2,

R∇F.1.5
ω1

=Vol⊗ ω1
+ yVol⊗ ω2, R∇F.1.5

ω2
= yVol⊗ ω2;

∇F.1.6ω
1
= (1 + y)ω1

⊗ ω1
+ yω2

⊗ ω1
+ (1 + y + y2

)ω2
⊗ ω2,

∇F.1.6ω
2
= (y + y2) (ω1

⊗ ω2
+ ω2

⊗ ω1) ,

R∇F.1.6
ω1

=Vol⊗ ω2, R∇F.1.6
ω2

= (1 + y)Vol⊗ ω1
+ yVol⊗ ω2;

∇F.1.7ω
1
= yω1

⊗ ω1
+ (1 + y + y2

)ω2
⊗ ω2,

∇F.1.7ω
2
= (1 + y2

)ω1
⊗ ω1

+ (1 + y)ω1
⊗ ω2

+ ω2
⊗ ω1

+ (1 + y)ω2
⊗ ω2,

R∇F.1.7
ω1

= yVol⊗ ω1, R∇F.1.7
ω2

= (1 + y)Vol⊗ ω1
+Vol⊗ ω2;

∇F.1.8ω
1
= yω1

⊗ ω2
+ (1 + y + y2

)ω2
⊗ ω1

+ yω2
⊗ ω2,

∇F.1.8ω
2
= (y + y2

)ω1
⊗ ω1

+ y2ω1
⊗ ω2

+ (1 + y)ω2
⊗ ω1

+ yω2
⊗ ω2,

R∇F.1.8
ω1

= (1 + y)Vol⊗ ω1
+ yVol⊗ ω2, R∇F.1.8

ω2
= (1 + y)Vol⊗ ω2;

∇F.1.9ω
1
= y2ω1

⊗ ω1
+ (1 + y2)ω1

⊗ ω2
+ (1 + y)ω2

⊗ ω1
+ ω2

⊗ ω2,

∇F.1.9ω
2
= yω1

⊗ ω1
+ (1 + y + y2)ω1

⊗ ω2
+ ω2

⊗ ω1
+ (1 + y2)ω2

⊗ ω2,

R∇F.1.9
ω1

= (1 + y)Vol⊗ ω1
+Vol⊗ ω2, R∇F.1.9

ω2
= (1 + y)Vol⊗ ω2;

∇F.1.10ω
1
= (1 + y + y2

)ω1
⊗ ω2

+ (1 + y)ω2
⊗ ω1

+ (1 + y + y2)ω2
⊗ ω2,

∇F.1.10ω
2
= ω1

⊗ ω1
+ ω1

⊗ ω2
+ (1 + y2)ω2

⊗ ω1
+ yω2

⊗ ω2,

R∇F.1.10
ω1

=Vol⊗ ω1
+ (1 + y)Vol⊗ ω2, R∇F.1.10

ω2
= (1 + y)Vol⊗ ω1

+Vol⊗ ω2;

∇F.1.11ω
1
= y (ω1

⊗ ω1
+ ω2

⊗ ω1
+ ω2

⊗ ω2) ,

∇F.1.11ω
2
= (1 + y2)ω1

⊗ ω1
+ yω1

⊗ ω2
+ (1 + y + y2)ω2

⊗ ω1
+ (1 + y2)ω2

⊗ ω2,

R∇F.1.11
ω1

=R∇F.1.11
ω2

= 0;

∇F.1.12ω
1
= yω1

⊗ ω1
+ (1 + y2)ω1

⊗ ω2
+ y2ω2

⊗ ω1
+ (1 + y)ω2

⊗ ω2,

∇F.1.12ω
2
= yω1

⊗ ω1
+ ω1

⊗ ω2
+ (1 + y + y2)ω2

⊗ ω1
+ (1 + y2)ω2

⊗ ω2,

R∇F.1.12
ω1

=Vol⊗ ω1
+ yVol⊗ ω2, R∇F.1.12

ω2
= Vol⊗ ω2.

2) (β = 1 + y2) gF.2 = (1 + y)ω1 ⊗ ω1 + (1 + y2) (ω1 ⊗ ω2 + ω2 ⊗ ω1) + yω2 ⊗ ω2



DIGITAL FINITE QUANTUM RIEMANNIAN GEOMETRIES 19

with 12 QLCs, four of which are flat:

∇F.2.1ω
1
= 0, ∇F.2.1ω

2
= (1 + y2) (ω1

⊗ ω1
+ ω1

⊗ ω2
+ ω2

⊗ ω2
),

R∇F.2.1
ω1

=R∇F.2.1
ω2

= 0;

∇F.2.2ω
1
= yω1

⊗ ω1
+ ω1

⊗ ω2
+ (1 + y + y2)ω2

⊗ ω1
+ (1 + y2)ω2

⊗ ω2,

∇F.2.2ω
2
= (y + y2

)ω1
⊗ ω1

+ y(ω1
⊗ ω2

+ ω2
⊗ ω1

) + y2ω2
⊗ ω2,

R∇F.2.2
ω1

= (1 + y)Vol⊗ ω1
+ yVol⊗ ω2, R∇F.2.2

ω2
= Vol⊗ ω2;

∇F.2.3ω
1
= yω1

⊗ ω1
+ (1 + y + y2)ω1

⊗ ω2
+ ω2

⊗ ω2,

∇F.2.3ω
2
= (1 + y + y2)ω1

⊗ ω1
+ y(ω1

⊗ ω2
+ ω2

⊗ ω1
) + ω2

⊗ ω2,

R∇F.2.3
ω1

= (1 + y)Vol⊗ ω2, R∇F.2.3
ω2

= (1 + y)Vol⊗ ω1;

∇F.2.4ω
1
= 0, ∇F.2.4ω

2
= (y + y2) (ω1

⊗ ω1
+ ω2

⊗ ω1
+ ω2

⊗ ω2
),

R∇F.2.4
ω1

=R∇F.2.4
ω2

= 0;

∇F.2.5ω
1
= (y + y2

)ω1
⊗ ω1

+ y2ω1
⊗ ω2

+ yω2
⊗ ω1

+ (y + y2)ω2
⊗ ω2,

∇F.2.5ω
2
= yω1

⊗ ω1
+ y2ω1

⊗ ω2
+ (y + y2)ω2

⊗ ω1
+ yω2

⊗ ω2,

R∇F.2.5
ω1

=R∇F.2.5
ω2

= 0;

∇F.2.6ω
1
= (1 + y)ω1

⊗ ω2
+ (1 + y)ω2

⊗ ω1,

∇F.2.6ω
2
= (1 + y)ω1

⊗ ω1
+ yω1

⊗ ω2
+ (y + y2)ω2

⊗ ω1
+ (1 + y2)ω2

⊗ ω2,

R∇F.2.6
ω1

=Vol⊗ ω1, R∇F.2.6
ω2

= yVol⊗ ω1;

∇F.2.7ω
1
= ω1

⊗ ω1
+ yω2

⊗ ω1,

∇F.2.7ω
2
= (1 + y)ω1

⊗ ω1
+ ω2

⊗ ω1
+ (y + y2)ω2

⊗ ω2,

R∇F.2.7
ω1

=R∇F.2.7
ω2

= 0;

∇F.2.8ω
1
= ω1

⊗ ω1
+ (y + y2

)ω1
⊗ ω2

+ (1 + y2
)ω2

⊗ ω1
+ y2ω2

⊗ ω2,

∇F.2.8ω
2
= ω1

⊗ ω1
+ (1 + y2)ω1

⊗ ω2
+ (1 + y + y2)ω2

⊗ ω1,

R∇F.2.8
ω1

=Vol⊗ ω1
+Vol⊗ ω2, R∇F.2.8

ω2
= Vol⊗ ω1

+ yVol⊗ ω2;

∇F.2.9ω
1
= ω1

⊗ ω1
+ (1 + y2

)ω1
⊗ ω2

+ (y + y2
)ω2

⊗ ω1
+ y2ω2

⊗ ω2,

∇F.2.9ω
2
= y2ω1

⊗ ω1
+ (1 + y + y2) (ω1

⊗ ω2
+ ω2

⊗ ω1) + (1 + y)ω2
⊗ ω2,

R∇F.2.9
ω1

= (1 + y)Vol⊗ ω1
+ yVol⊗ ω2, R∇F.2.9

ω2
= yVol⊗ ω1;

∇F.2.10ω
1
= (1 + y + y2) (ω1

⊗ ω1
+ ω1

⊗ ω2) + (1 + y)ω2
⊗ ω1

+ (y + y2)ω2
⊗ ω2,

∇F.2.10ω
2
= ω1

⊗ ω1
+ (1 + y)ω1

⊗ ω2
+ (1 + y + y2)ω2

⊗ ω1
+ yω2

⊗ ω2,

R∇F.2.10
ω1

= (1 + y)Vol⊗ ω2, R∇F.2.10
ω2

= Vol⊗ ω1;

∇F.2.11ω
1
= (1 + y2)ω1

⊗ ω1
+ (y + y2)ω1

⊗ ω2
+ y2ω2

⊗ ω1
+ (1 + y)ω2

⊗ ω2,

∇F.2.11ω
2
= yω1

⊗ ω1
+ y2ω1

⊗ ω2
+ (1 + y2)ω2

⊗ ω1
+ (1 + y)ω2

⊗ ω2,

R∇F.2.11
ω1

= yVol⊗ ω2, R∇F.2.11
ω2

= (1 + y)Vol⊗ ω2;
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∇F.2.12ω
1
= (1 + y2)ω1

⊗ ω1
+ (1 + y)ω1

⊗ ω2
+ (1 + y + y2)ω2

⊗ ω2,

∇F.2.12ω
2
= (y + y2

) (ω1
⊗ ω1

+ ω1
⊗ ω2) + (1 + y2) (ω2

⊗ ω1
+ ω2

⊗ ω2) ,

R∇F.2.12
ω1

= (1 + y) (Vol⊗ ω1
+Vol⊗ ω2) , R∇F.2.12

ω2
= yVol⊗ ω1

+ (1 + y)Vol⊗ ω2.

3) (β = 1 + y) gF.3 = ω
1 ⊗ ω1 + (1 + y) (ω1 ⊗ ω2 + ω2 ⊗ ω1) + (1 + y2)ω2 ⊗ ω2

with 12 QLCs, four of which are flat:

∇F.3.1ω
1
= y2ω1

⊗ ω1
+ (1 + y + y2) (ω1

⊗ ω2
+ ω2

⊗ ω1
) + (1 + y)ω2

⊗ ω2,

∇F.3.1ω
2
= (1 + y2)ω1

⊗ ω1
+ ω1

⊗ ω2
+ yω2

⊗ ω1
+ (1 + y + y2)ω2

⊗ ω2,

R∇F.3.1
ω1

= 0, R∇F.3.1
ω2

= (1 + y)Vol⊗ ω1;

∇F.3.2ω
1
= (1 + y)ω1

⊗ ω1
+ (y + y2) (ω1

⊗ ω2
+ ω2

⊗ ω1
) + yω2

⊗ ω2,

∇F.3.2ω
2
= y2ω1

⊗ ω1
+ yω1

⊗ ω2
+ (y + y2)ω2

⊗ ω2,

R∇F.3.2
ω1

=Vol⊗ ω1
+ (1 + y)Vol⊗ ω2, R∇F.3.2

ω2
= (1 + y)Vol⊗ ω1;

∇F.3.3ω
1
= yω1

⊗ ω1
+ (1 + y2) (ω1

⊗ ω2
+ ω2

⊗ ω1
) + (1 + y + y2

)ω2
⊗ ω2,

∇F.3.3ω
2
= ω1

⊗ ω1
+ (1 + y + y2

)ω1
⊗ ω2

+ yω2
⊗ ω1

+ (y + y2)ω2
⊗ ω2,

R∇F.3.3
ω1

= (1 + y)Vol⊗ ω2, R∇F.3.3
ω2

= yVol⊗ ω1
+ (1 + y)Vol⊗ ω2;

∇F.3.4ω
1
= (y + y2) (ω1

⊗ ω1
+ ω1

⊗ ω2
+ ω2

⊗ ω2) = ∇F.3.4ω
2,

R∇F.3.4
ω1

=R∇F.3.4
ω2

= 0;

∇F.3.5ω
1
= yω1

⊗ ω1
+ (1 + y)ω1

⊗ ω2
+ y2ω2

⊗ ω1
+ ω2

⊗ ω2,

∇F.3.5ω
2
= y2 (ω1

⊗ ω1
+ ω1

⊗ ω2
+ ω2

⊗ ω1) + (1 + y)ω2
⊗ ω2,

R∇F.3.5
ω1

=Vol⊗ ω1, R∇F.3.5
ω2

= yVol⊗ ω1
+ (1 + y)Vol⊗ ω2;

∇F.3.6ω
1
= y2ω1

⊗ ω1
+ (y + y2)ω1

⊗ ω2
+ ω2

⊗ ω1
+ (1 + y2)ω2

⊗ ω2,

∇F.3.6ω
2
= y2ω1

⊗ ω1
+ (1 + y)ω1

⊗ ω2
+ y2ω2

⊗ ω1
+ (1 + y2)ω2

⊗ ω2,

R∇F.3.6
ω1

= yVol⊗ ω2, R∇F.3.6
ω2

= (1 + y) (Vol⊗ ω1
+Vol⊗ ω2) ;

∇F.3.7ω
1
= (1 + y + y2)ω1

⊗ ω1
+ y2ω1

⊗ ω2
+ (1 + y2) (ω2

⊗ ω1
+ ω2

⊗ ω2) ,

∇F.3.7ω
2
= yω1

⊗ ω1
+ ω1

⊗ ω2
+ y2 (ω2

⊗ ω1
+ ω2

⊗ ω2) ,

R∇F.3.7
ω1

=R∇F.3.7
ω2

= 0;

∇F.3.8ω
1
= yω1

⊗ ω2
+ (1 + y)ω2

⊗ ω1
+ y2ω2

⊗ ω2,

∇F.3.8ω
2
= (1 + y + y2

)ω1
⊗ ω1

+ (1 + y)ω1
⊗ ω2

+ (y + y2)ω2
⊗ ω1

+ yω2
⊗ ω2,

R∇F.3.8
ω1

= yVol⊗ ω1
+ (1 + y)Vol⊗ ω2, R∇F.3.8

ω2
= (1 + y)Vol⊗ ω1

+Vol⊗ ω2;

∇F.3.9ω
1
= (1 + y2)ω1

⊗ ω2
+ (1 + y)ω2

⊗ ω2,

∇F.3.9ω
2
= ω1

⊗ ω1
+ (1 + y) (ω1

⊗ ω2
+ ω2

⊗ ω1) + (1 + y2)ω2
⊗ ω2,

R∇F.3.9
ω1

=Vol⊗ ω1, R∇F.3.9
ω2

= (1 + y)Vol⊗ ω1
+Vol⊗ ω2;

∇F.3.10ω
1
= (1 + y) (ω1

⊗ ω1
+ ω2

⊗ ω1
+ ω2

⊗ ω2) = ∇F.3.10ω
2,

R∇F.3.10
ω1

=R∇F.3.10
ω2

= 0;
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∇F.3.11ω
1
= (1 + y2)ω1

⊗ ω1
+ (1 + y)ω1

⊗ ω2
+ (1 + y + y2)ω2

⊗ ω1
+ ω2

⊗ ω2,

∇F.3.11ω
2
= (y + y2)ω1

⊗ ω1
+ y2ω1

⊗ ω2
+ (1 + y2)ω2

⊗ ω1,

R∇F.3.11
ω1

=R∇F.3.11
ω2

= (1 + y)Vol⊗ ω1
+ yVol⊗ ω2;

∇F.3.12ω
1
= y2ω1

⊗ ω1
+ (1 + y + y2)ω1

⊗ ω2
+ (1 + y)ω2

⊗ ω1
+ y2ω2

⊗ ω2,

∇F.3.12ω
2
= (1 + y + y2) (ω1

⊗ ω1
+ ω2

⊗ ω1
+ ω2

⊗ ω2) ,

R∇F.3.12
ω1

=R∇F.3.12
ω2

= 0.

4) (β = y) gF.4 = (1 + y2)ω1 ⊗ ω1 + y(ω1 ⊗ ω2 + ω2 ⊗ ω1) + (y + y2)ω2 ⊗ ω2

with 4 QLCs, one of which is flat:

∇F.4.1ω
1
= y2ω1

⊗ ω1
+ (y + y2

)ω1
⊗ ω2

+ ω2
⊗ ω2,

∇F.4.1ω
2
= ω1

⊗ ω1
+ ω1

⊗ ω2
+ y2ω2

⊗ ω1
+ (y + y2)ω2

⊗ ω2,

R∇F.4.1
ω1

= yVol⊗ ω1
+Vol⊗ ω2, R∇F.4.1

ω2
= (1 + y) (Vol⊗ ω1

+Vol⊗ ω2) ;

∇F.4.2ω
1
= (y + y2)ω1

⊗ ω1
+ (1 + y + y2

) (ω1
⊗ ω2

+ ω2
⊗ ω1) + y2ω2

⊗ ω2,

∇F.4.2ω
2
= yω1

⊗ ω1
+ (y + y2) (ω1

⊗ ω2
+ ω2

⊗ ω1) + (1 + y + y2)ω2
⊗ ω2,

R∇F.4.2
ω1

=Vol⊗ ω1
+Vol⊗ ω2, R∇F.4.2

ω2
= Vol⊗ ω1;

∇F.4.3ω
1
= (1 + y + y2)ω1

⊗ ω1
+ yω1

⊗ ω2
+ ω2

⊗ ω1,

∇F.4.3ω
2
= ω1

⊗ ω2
+ (1 + y + y2)ω2

⊗ ω1
+ yω2

⊗ ω2,

R∇F.4.3
ω1

= (1 + y) (Vol⊗ ω1
+Vol⊗ ω2) , R∇F.4.3

ω2
= Vol⊗ ω1

+ yVol⊗ ω2;

∇F.4.4ω
1
= (1 + y2)ω1

⊗ ω1
+ (1 + y)ω1

⊗ ω2
+ (y + y2)ω2

⊗ ω1
+ (1 + y2)ω2

⊗ ω2,

∇F.4.4ω
2
= (1 + y)ω1

⊗ ω1
+ (y + y2)ω1

⊗ ω2
+ (1 + y2)ω2

⊗ ω1
+ (1 + y)ω2

⊗ ω2,

R∇F.4.4
ω1

=R∇F.4.4
ω2

= 0.

For this family there are 7 possible equivalent solutions for ε (that are invertible
and satisfy (2.12),(2.13),(2.14),(2.18) to provide a central volume form with metric
quantum symmetric). These are all nonzero, hence invertible, functions times

ε = (
y 1
1 1 + y

) , ε−1
=

1

1 + y + y2
(

1 + y 1
1 y

)

which is the one is used above. This has Vol = (ω1)2, while the others correspond to
a volume form which is the inverse of the corresponding nonzero function times this.

4. Laplacians

The Laplacian is defined by ∆ = ( , )∇d and the quantum dimension by dim = ( , )(g)
as in Section 2.

The m = 1 case. Using the analysis in Section 2 with commutative coordinate
algebra, we write g = gω ⊗ ω and ∇ω = Γω ⊗ ω, then

∆f =
f ′′ + f ′Γ

ḡ
, dim =

g

ḡ
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where ωf = f̄ω and df = f ′ω in our basis, which one can compute for the m = 1
examples above. For n = 3 our central metrics were not invertible and the theory
does not apply. For the n = 2 algebras in Table 1 we have f ′′ = 0 for all f and we
always have ∆1 = 0 so we only need to give the value on the basis element x , namely
∆x = Γ/ḡ. Hence

A ∶ g = 1,Γ = 0 ∶ ∆ = 0

A ∶ g = 1,Γ = x ∶ ∆x = x

A ∶ g = 1 + x = Γ ∶ ∆x = 1

B ∶ g = 1,Γ = 0 ∶ ∆ = 0

C ∶ g = 1,Γ = 0 ∶ ∆ = 0

C ∶ g = 1,Γ = x ∶ ∆x = x

C ∶ g = 1,Γ = 1 + x ∶ ∆x = 1 + x

C ∶ g = x = Γ ∶ ∆x = 1 + x

C ∶ g = 1 + x = Γ ∶ ∆x = x

remembering that x̄ = 1 + x = x−1 in algebra C. Among the nonzero ∆, we have
Tr(∆) = 1 except for the third case of algebra A, and these are precisely the ones which
have an eigenvector with eigenvalue 1 (the other eigenvector is 1 with eigenvalue 0).
The exception where the trace is zero has only the eigenvector 1 with zero eigenvalue
and is not fully diagonalisable. Here Tr denotes the usual trace of a linear map A � A.
All the quantum dimensions are nonzero elements of the algebra (and all except the
last two are 1).

The m = 2 case. We use the tensor formula (2.23) and we will list the resulting
operators in Mn on our basis {xµ} of A. When listing the Laplacians, the main
invariant is the dimension of the null-space which is between 1 and n and whether ∆
can be diagonalised to a basis of eigenvectors with the two eigenvalues 0,1.

Algebra D or F2Z3 with its three metrics gD.1 − gD.3. In each case we compute the
inverse metric and the quantum dimension dim = ( , )(g), as

gijD.1 = (ωi, ωj) = (
0 z2

z2 1
) , dimD.1 = 1 + 1 + 1 = 1

gijD.2 = (ωi, ωj) = (
1 z
z 0

) , dimD.2 = 1 + 1 + 1 = 1

gijD.3 = (ωi, ωj) = (
z2 0
0 z

) , dimD.3 = 1 + 1 = 0.

We then combine with the QLC’s from Section 3.3 to find the following Laplacians
and their traces:

gD.1: ∆1 = 0,∆z = 1,∆z2 = z, Tr(∆) = 0;
gD.2: ∆1 = 0,∆z = z2,∆z2 = 1, Tr(∆) = 0;
gD.3: ∆ = 0

independently of the four QLCs in each case. We check the first of these computations
for ∆ (for ∇D.1.1) by hand as a check of the implementation:

∆D.1.1x = ( , )D.1∇D.1.1dx = ( , )D.1∇D.1.1ω
1 = ( , )D.1(z

2ω1 ⊗ω1 + (1+ z)(ω1 ⊗ω2 +

ω2 ⊗ ω1) + ω2 ⊗ ω2) = z2 ⋅ 0 + (1 + z)z2 + (1 + z)z2 + 1 ⋅ 1 = 1,
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∆D.1.1y = ( , )D.1∇D.1.1dy = ( , )D.1∇D.1.1ω
2 = ( , )D.1(z

2ω1⊗ω1 + zω1⊗ω2 + z2ω2⊗

ω1 + ω2 ⊗ ω2) = z2 ⋅ 0 + z ⋅ z2 + z2 ⋅ z2 + 1 ⋅ 1 = z.

Algebra B or F2(Z3) with its only metric gB. The inverse metric, quantum dimension
and Laplacian are

gijB = (ωi, ωj) = (
1 + x x + y
x + y 1 + y

) , dimB = 0, ∆ = 0

for all four QLC’s.

Algebra F or F8 = F2[y]/(y
3 + y2 + 1) with its four metrics gF.1 − gF.4 which admit

QLCs. The corresponding inverse metrics and quantum dimensions are:

gijF.1 = (ωi, ωj) = (
0 1 + y + y2

1 + y + y2 1
) , dimF.1 = 1

gijF.2 = (ωi, ωj) = (
1 1 + y

1 + y 1
) , dimF.2 = 1

gijF.3 = (ωi, ωj) = (
1 y2

y2 0
) , dimF.3 = 1

gijF.4 = (ωi, ωj) = (
y + y2 1 + y
1 + y 1 + y2) , dimF.4 = 0.

For each metric the Laplacians can be grouped into 3 cases depending on the connec-
tion:

Metric gF.1
∇F.1.1,∇F.1.6,∇F.1.9,∇F.1.12: ∆1 = 0,∆y = 0,∆y2 = y2, Tr(∆) = 1

∇F.1.2,∇F.1.5,∇F.1.7,∇F.1.8: ∆1 = 0,∆y = 0,∆y2 = 1 + y + y2, Tr(∆) = 1

∇F.1.3,∇F.1.4,∇F.1.10,∇F.1.11: ∆1 = 0,∆y = y2,∆y2 = 1, Tr(∆) = 0.

Metric gF.2
∇F.2.1,∇F.2.2,∇F.2.10,∇F.2.11: ∆1 = 0,∆y = y,∆y2 = 0, Tr(∆) = 1

∇F.2.4,∇F.2.6,∇F.2.8,∇F.2.9: ∆1 = 0,∆y = 1 + y + y2,∆y2 = 0, Tr(∆) = 1

∇F.2.3,∇F.2.5,∇F.2.7,∇F.2.12: ∆1 = 0,∆y = y + y2,∆y2 = 1 + y + y2, Tr(∆) = 0.

Metric gF.3
∇F.3.1,∇F.3.4,∇F.3.5,∇F.3.8: ∆1 = 0,∆y = ∆y2 = y2, Tr(∆) = 1

∇F.3.3,∇F.3.6,∇F.3.10,∇F.3.11: ∆1 = 0,∆y = ∆y2 = y, Tr(∆) = 1

∇F.3.2,∇F.3.7,∇F.3.9,∇F.3.12: ∆1 = 0,∆y = 1,∆y2 = 1 + y, Tr(∆) = 0.

Metric gF.4 (for all ∇F.4.1−F.4.4): ∆ = 0.

We now look at eigenvalues of ∆. Of course, 1 is always an eigenvector with eigenvalue
0.

Proposition 4.1. For the n = 3,m = 2 examples above where metrics and QLCs exist
(namely, algebras B,D,F) we have

(i) ∆ = 0 if and only if dim = 0.
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(ii) If ∆ ≠ 0 and Tr(∆) = 1 then ∆ has one eigenvector with eigenvalue 1 and two
with eigenvalue 0

(iii) If ∆ ≠ 0 and Tr(∆) = 0 then ∆ has one eigenvector (namely 1) with eigenvalue
0 and no other eigenvectors.

Hence the reasonable case for physics seems to be when Tr(∆) = 1 which for n =

3,m = 2 also entails that dim = 1. Specifically, the massive eigenvectors here v are

gF.1 ∶ y2, 1 + y + y2; gF.2 ∶ y, 1 + y + y2; gF.3 ∶ y2, y

for the 6 relevant Laplacians in the above list for the algebra F, in order. These solve
the massive Klein-Gordon equation ∆v + v = 0 and in each case there are also two
massless eigenvectors in the kernel of ∆.

5. Ricci and Einstein tensors

As explained in Section 2, the Ricci tensor for a general algebra A with calculus Ω
in the approach [12] requires the additional data of a ‘lift’ bimodule map i ∶ Ω2 →

Ω1 ⊗A Ω1. In our examples where Ω2 is one-dimensional with a chosen central basis
element Vol, this means i(Vol) = Iijω

i ⊗ ωj for some central element I ∈ Ω1 ⊗A Ω1

such that ∧(I) = Vol. We can then contract as explained in Section 2 to obtain
Ricci ∈ Ω1 ⊗A Ω1 as in (2.26) and adjust I so that Ricci has the same quantum
symmetry as g if possible. We will also be interested in when ∇ ⋅ Ricci = 0, where
∇⋅ means to apply ∇ in the element of Ω1 ⊗A Ω1 (same as for the metric) and then
contract the first two factors with ( , ).

In this section, we use this method to construct Ricci and its scalar S = ( , )(Ricci)
for our models and also explore possible Einstein tensors. For the latter, the usual
definition Eins = Ricci − 1

2
Sg makes no sense over F2 but in our case where the

geometry is 2D we could take Eins = Ricci − 1
dim

Sg as proposed in [12] for a 2D

quantum geometry. Classically the quantum dimension would be 2 as per the usual
Einstein tensor but for a quantum model it may have a different value. For the purpose
of our exploration in F2 we actually have only two choices, 0, 1, for the coefficient of
Sg and we will focus on the latter, which is consistent with dim = 1 found to be of
interest in Section 4. Thus we set

(5.1) Eins ∶= Ricci + Sg = (Ricciµij + SνgρijV
νρ
µ)x

µωi ⊗ ωj

as the provisional definition of Eins in this section, whilst leaving open the possibility
that in some models we might want Ricci alone or at the other extreme Sg alone as
the Einstein tensor. We will be interested in the values of Eins and if this is not zero
(as it would be classically for a 2D manifold) then ∇ ⋅Eins = 0. Here

∇ ⋅Eins = ∇ ⋅Ricci + (( , ) ⊗ id)(dS ⊗ g) = ∇ ⋅Ricci + dS

given the properties of a connection, the inverse metric and ∇g = 0 for a QLC. In
tensor component terms, this translates to

∇ ⋅Eins = (Ricciµmnd
µ
νk +RicciµinΓiρkmV

µρ
ν

+RicciµijΓ
j
βsna

iβ
αtV

µα
λV

λσ
νσ

ts
σkm)V νζγgζ

kmxγωn + Sµd
µ
νix

νωi.

The m = 1 case. We have a unique i(Vol) = ω⊗ω as there is no quantum symmetric
metric freedom that could be added to this. We also have R∇(ω) = ρVol ⊗ ω where
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Metric QLC Ricci (central for all γi) S = ( , )(Ricci) qua. symmetric ∇ ⋅Ricci = 0
gD.1 ∇D.1.2 Ricci = 0 S = 0 — —

∇D.1.1
∇D.1.3
∇D.1.4

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Ricci = (γ3 + γ2z2)ω1 ⊗ω1

+(γ2z + γ3z2)ω1 ⊗ω2

+(γ1 + z + γ3z2)ω2 ⊗ω1

+(1 + γ3z + γ1z2)ω2 ⊗ω2

S = γ2 + γ3z

γ1 = 0, γ2 = 1 ∶
Ricci =
(1 + γ3z)z2ω1 ⊗ω1

+(1 + γ3z)zω1 ⊗ω2

+(1 + γ3z)zω2 ⊗ω1

+(1 + γ3z)ω2 ⊗ω2

γ1 = 0 = γ3 ∶
Ricci

= γ2z2ω1 ⊗ω1

+γ2zω1 ⊗ω2

+zω2 ⊗ω1 +ω2 ⊗ω2

gD.2 ∇D.2.4 Ricci = 0 S = 0 — —

∇D.2.1
∇D.2.2
∇D.2.3

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Ricci = (1 + γ3z + γ1z2)ω1 ⊗ω1

+(γ3 + γ1z + z2)ω1 ⊗ω2

+(γ1z + (1 + γ2)z2)ω2 ⊗ω1

+(γ1 + (1 + γ2)z)ω2 ⊗ω2

S = 1 + γ2 + γ1z2

γ2 = 0 = γ3 ∶
Ricci =
(γ1 + z)z2ω1 ⊗ω1

+(γ1 + z)zω1 ⊗ω2

+(γ1 + z)zω2 ⊗ω1

+(γ1 + z)ω2 ⊗ω2

γ1 = 0 = γ3 ∶
Ricci

= ω1 ⊗ω1 + z2ω1 ⊗ω2

+(1 + γ2)z2ω2 ⊗ω1

+(1 + γ2)zω2 ⊗ω2

gD.3 ∇D.3.1 Ricci = 0 (flat connection) S = 0 — —

∇D.3.2
∇D.3.3
∇D.3.4

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Ricci = (γ1 + (1 + γ2)z)ω1 ⊗ω1

+(1 + γ2 + γ1z2)ω1 ⊗ω2

+(γ2 + γ3z)ω2 ⊗ω1

+(γ3 + γ2z2)ω2 ⊗ω2

S = 1 + γ3z + γ1z2 never qsymm

γ1 = 0 = γ3 ∶
Ricci

= (1 + γ2)zω1 ⊗ω1

+(1 + γ2)ω1 ⊗ω2

+γ2ω2 ⊗ω1

+γ2z2ω2 ⊗ω2

Table 4. Ricci tensor and scalar for the algebra D. For each metric
one connection is Ricci flat. For metrics with dim = 1, the other
connections have two lifts making Ricci quantum symmetric.

ρ = Γ′ + ΓΓ̄ so that

Ricci =
gρ

ḡ
ω ⊗ ω, S =

gρ

ḡ2
, Eins = 0

so the Ricci tensor and scalar contain the same information as the one component ρ
of the Riemann curvature, as classically in 2 dimensions. The only case of interest is
n = 2 (to have g invertible) and the algebra A with g = 1 and Γ = x as the only case
with curvature, where ρ = 1. Then Ricci = ω ⊗ ω = g and S = 1 so that both parts of
Eins are separately conserved. We also have dim = 1.

The n = 3, m = 2 case. We generally resort to computer calculations, starting with
the model where we have also done computations by hand as a check.

For the D model in Section 3.3 we already saw in (3.1) what the moduli of central
elements in Ω1 ⊗A Ω1 looks like, from which one finds by hand that the most general
form of I = i(Vol) is

i(Vol) = z2ω2
⊗ ω1

+ zω2
⊗ ω2

+ γg

for any function γ = γ1 + γ2z + γ3z
2 is any element of the algebra (so there are 8 lifts

as we vary γi ∈ F2), where we can take g = gD.1 without loss of generality.

The resulting Ricci for the first metric gD.1 and the first connection ∇D.1.1 is

Ricci = zω2
⊗ ω1

+ ω2
⊗ ω2

+ gij(ω
iρjkγgrs, ω

r
) ⊗ ωs ⊗ ωk.

The value of this and the results for all twelve connections are shown in Table 4. The
Einstein tensors are listed in Table 5. Interestingly, for each metric, one connection is
Ricci flat for all lifts (and only actually flat for gD.3) and the other three connections all
have the same Ricci curvature. This is quantum symmetrizable via two lifts whenever
dim = 1, in which case Einstein=0, and never symmetrizable when dim = 0. In all
cases we can more generally chose the lift so that ∇ ⋅Eins = 0. In particular, we have
the following natural lifts for each metric and the group of 3 connections.

gD.1 ∶ γ1 = γ3 = 0, γ2 = 1, Ricci = gD.1, S = 1, ∇ ⋅Ricci = 0, Eins = 0

gD.2 ∶ γ1 = γ2 = γ3 = 0, Ricci = gD.2, S = 1, ∇ ⋅Ricci = 0, Eins = 0



26 SHAHN MAJID & ANNA PACHO L

Metric QLC Eins = Ricci + Sg Ricci qsymm ∇ ⋅Eins = 0
gD.1 ∇D.1.2 Eins = 0 — —

∇D.1.1
∇D.1.3
∇D.1.4

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Eins = (γ1 + z(1 + γ2))ω2 ⊗ω1

+(1 + γ2 + γ1z2)ω2 ⊗ω2 Eins = 0

γ1 = 0 ∶
Eins = (1 + γ2)zω2 ⊗ω1

+(1 + γ2)ω2 ⊗ω2

gD.2 ∇D.2.4 Eins = 0 — —

∇D.2.1
∇D.2.2
∇D.2.3

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Eins = (γ2 + γ3z))ω1 ⊗ω1

+(γ3 + γ2z2)ω1 ⊗ω2 Eins = 0

γ3 = 0 ∶
Eins = γ2ω1 ⊗ω1

+γ2z2ω1 ⊗ω2

gD.3 ∇D.3.1 Eins = 0 (flat connection) — —

∇D.3.2
∇D.3.3
∇D.3.4

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Eins = (γ2z + γ3z2)ω1 ⊗ω1

+(γ2 + γ3z)ω1 ⊗ω2

+(1 + γ2 + γ1z2)ω2 ⊗ω1

+(γ1z + (1 + γ2)z2)ω2 ⊗ω2

never qsymm

γ1 = 0 = γ3 ∶
Eins = γ2zω1 ⊗ω1

+γ2ω1 ⊗ω2

+(1 + γ2)ω2 ⊗ω1

+(1 + γ2)z2ω2 ⊗ω2

Table 5. Einstein tensor for the algebra D. Metrics where dim = 1
have zero Einstein tensor when Ricci is lifted to be quantum sym-
metric. The metric gD.3 where dim = 0 has two lifts for the non-flat
connections with ∇ ⋅Eins = 0 and S = 1.

QLC Ricci (central for all γi) S = ( , )(Ricci) ∇ ⋅Ricci = 0

∇B.1
∇B.2
∇B.3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Ricci = 0 (only ∇B.3 is flat) S = 0 —

∇B.4

Ricci = (γ2x + (γ1 + γ2)(1 + y))ω1 ⊗ω1

+((γ1 + γ2)(1 + x) + γ1y)ω1 ⊗ω2

+((1 + γ1)x + (1 + γ1 + γ3)(1 + y))ω2 ⊗ω1

+(γ3y + (1 + γ1 + γ3)(1 + x))ω2 ⊗ω2

S = γ2 + (1 + γ2)x
+(1 + γ3) (1 + y)

γ2 = 1 = γ3 ∶
Ricci

= (γ2x + (1 + γ1)(1 + y))ω1 ⊗ω1

+((1 + γ1)(1 + x) + γ1y)ω1 ⊗ω2

+((1 + γ1)x + γ1(1 + y))ω2 ⊗ω1

+(y + γ1(1 + x))ω2 ⊗ω2

Table 6. Ricci tensor and scalar for the algebra B for its unique
metric gB . Three connections are Ricci flat and ∇B.4 never has Ricci
quantum symmetric, so that column is omitted.

QLC Eins = Ricci + Sg ∇ ⋅Eins = 0

∇B.1
∇B.2
∇B.3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Eins = 0 (only ∇B.3 is flat) —

∇B.4

Eins = (x + (1 + γ1 + γ3)(1 + y))ω1 ⊗ω1

+((1 + γ1 + γ3)(1 + x) + (1 + γ1 + γ3 + γ2)y)ω1 ⊗ω2

+((γ1 + γ2 + γ3)x + (γ1 + γ2)(1 + y))ω2 ⊗ω1

+((γ1 + γ2)(1 + x) + y)ω2 ⊗ω2

γ2 = 1 = γ3 ∶
Eins = (x + γ1(1 + y))ω1 ⊗ω1

+(γ1(1 + x) + (1 + γ1)y)ω1 ⊗ω2

+(γ1x + (1 + γ1)(1 + y))ω2 ⊗ω1

+((1 + γ1)(1 + x) + y)ω2 ⊗ω2

Table 7. Einstein tensor for the algebra B for its unique metric gB
showing two lifts with for ∇B.4 with ∇ ⋅Eins = 0 and S = 1.

gD.3 ∶ γ1 = γ3 = 0, S = 1, ∇ ⋅Ricci = ∇ ⋅Eins = 0, Eins ≠ 0

where the last case is unusual in that classically the Einstein tensor in 2D would
vanish, but this is also the ‘unphysical’ case where dim = 0 and ∆ = 0.

For the algebra B model in Section 3.4 the most general lifting map has the form

i(Vol) = yω1
⊗ ω2

+ (1 + y)ω2
⊗ ω1

+ (1 + x)ω2
⊗ ω2

+ γ gB

where γ = γ1 + γ2x + γ3y is any element of the algebra (so there are 8 lifts). The
Ricci and Einstein tensors as functions of γ are shown in the first columns of Tables 6
and 7. Connections ∇B.1,∇B.2,∇B.3 are Ricci flat for all lifts (with only the last
of these actually flat). For ∇B.4 we can never make Ricci quantum symmetric nor
Eins=0, but we do have the two lifts (the free choices of γ1) for which ∇ ⋅Eins = 0.

∇B.4 ∶ γ2 = γ3 = 1, S = 1, ∇ ⋅Ricci = ∇ ⋅Eins = 0, Eins ≠ 0
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similar to the group of 3 connections for gD.3. Indeed, this is another case where
dim = 0 and ∆ = 0.

For the algebra F model in Section 3.5 the most general form of the lifting map is

i(Vol) = (1 + y2
)ω1

⊗ ω1
+ yω1

⊗ ω2
+ ω2

⊗ ω1
+ (1 + y)ω2

⊗ ω2
+ γg

where γ = γ1 + γ2y + γ3y
2 is any element of the algebra (so there are 8 lifts) and

g = gF.1, say, without loss of generality. The Ricci and Einstein tensors are shown in
Tables 8 – 15 below.

QLC Ricci S = ( , )(Ricci) qua. symmetric ∇.Ricci = 0
∇F.1.1
∇F.1.2
∇F.1.3
∇F.1.4
∇F.1.11

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

Ricci = 0 (all except ∇F.1.3 are flat) S = 0 — —

∇F.1.5

Ricci =
(1 + (1 + γ2)y + (γ1 + γ3)y2)ω1 ⊗ω1

+(γ2 + γ3 + (γ1 + γ2)y + (1 + γ2 + γ3)y2)ω1 ⊗ω2

+((γ1 + γ2)y + (γ1 + γ2 + γ3)y2)ω2 ⊗ω1

+((γ2 + γ3)y + (1 + γ1) (1 + y2))ω2 ⊗ω2

central for γ1 = 0, γ2 = 1, γ3 = 0

S = (1 + γ1) (1 + y)
+ (γ2 + γ3) (1 + y2)

γ1 = γ2, γ3 = 0 ∶
Ricci =
(1 + (1 + γ1)y + γ1y2)ω1 ⊗ω1

+(γ1 + (1 + γ1)y2)ω1 ⊗ω2

+(γ1y + (1 + γ1) (1 + y2))ω2 ⊗ω2

no sol.

∇F.1.6

Ricci =
(1 + γ2y + (γ1 + γ2) (1 + y2))ω1 ⊗ω1

+(γ1 + γ3 + y + (1 + γ1 + γ2 + γ3)y2)ω1 ⊗ω2

+(γ2 + γ3 + (γ1 + γ2)y + (1 + γ2 + γ3)y2)ω2 ⊗ω1

+(γ1 + γ2 + γ3(1 + y2))ω2 ⊗ω2

*not central

S as for ∇F.1.5

γ1 = γ2, γ3 = 0 ∶
Ricci =
(1 + γ1y)ω1 ⊗ω1

+(γ1 + y + y2)ω1 ⊗ω2

+(γ1 + (1 + γ1)y2)ω2 ⊗ω1

no sol.

∇F.1.7

Ricci =
(γ1 + (1 + γ1 + γ2 + γ3)y + (1 + γ1 + γ2)y2)ω1 ⊗ω1

+(γ3 + y + γ2y2)ω1 ⊗ω2

+(γ1 + γ3(1 + y) + (1 + γ2 + γ3)y2)ω2 ⊗ω1

+(γ2 + y + (1 + γ1 + γ2)y2)ω2 ⊗ω2

*not central

S as for ∇F.1.5

γ1 = γ2, γ3 = 0 ∶
Ricci =
(γ1 + y + y2)ω1 ⊗ω1

+(y + γ1y2)ω1 ⊗ω2

+(γ1 + (1 + γ1)y2)ω2 ⊗ω1

+(γ1 + y + y2)ω2 ⊗ω2

no sol.

∇F.1.8

Ricci =
(1 + γ2 + γ1(1 + y) + γ3y2)ω1 ⊗ω1

+(1 + γ2 + (1 + γ1 + γ3)y + y2)ω1 ⊗ω2

+(1 + γ2 + γ3 + (γ1 + γ3)y + (1 + γ2)y2)ω2 ⊗ω1

+(γ1 + γ2 + (γ1 + γ2 + γ3)y)ω2 ⊗ω2

central for γ1 = 1, γ2 = 0, γ3 = 1

S as for ∇F.1.5

γ1 = γ2, γ3 = 0 ∶
Ricci =
(1 + γ1y)ω1 ⊗ω1

+((1 + γ1) (1 + y) + y2)ω1 ⊗ω2

+(γ1y + (1 + γ1) (1 + y2))ω2 ⊗ω1

no sol.

∇F.1.9

Ricci =
(1 + (γ2 + γ3) (1 + y) + (1 + γ1 + γ3)y2)ω1 ⊗ω1

+(γ1 + (γ1 + γ2)y + (1 + γ2)y2)ω1 ⊗ω2

+((1 + γ1)(1 + y) + (1 + γ1 + γ2 + γ3)y2)ω2 ⊗ω1

+(1 + γ1 + γ3 + (1 + γ2 + γ3)y
+(1 + γ1 + γ2)y2)ω2 ⊗ω2

central for γ1 = 1, γ2 = 0, γ3 = 1

S as for ∇F.1.5

γ1 = γ2, γ3 = 0 ∶
Ricci =
(γ1y + (1 + γ1)(1 + y2))ω1 ⊗ω1

+(γ1 + (1 + γ1)y2)ω1 ⊗ω2

+(1 + γ1) (1 + y + y2)ω2 ⊗ω1

+((1 + γ1) (1 + y) + y2)ω2 ⊗ω2

no sol.

∇F.1.10

Ricci =
(γ3 + (1 + γ2) (1 + y) + (1 + γ3)y2)ω1 ⊗ω1

+(γ2 + γ3y + (1 + γ2)y2)ω1 ⊗ω2

+(γ1 + (γ1 + γ2)y + (1 + γ2)y2)ω2 ⊗ω1

+(1 + γ2y + (γ1 + γ2) (1 + y2))ω2 ⊗ω2

central for any γi

S = 1 + γ1
+(γ2 + γ3) (1 + y)

γ1 = γ2, γ3 = 0 ∶
Ricci =
((1 + γ1) (1 + y) + y2)ω1 ⊗ω1

+(γ1 + (1 + γ1)y2)ω1 ⊗ω2

+(γ1 + (1 + γ1)y2)ω2 ⊗ω1

+(1 + γ1y)ω2 ⊗ω2

γ1 = 0 = γ2

∇F.1.12

Ricci =
(γ1 + γ2 + γ3(1 + y2))ω1 ⊗ω1

+((1 + γ1 + γ3) (1 + y) + γ1(1 + y2))ω1 ⊗ω2

+(γ3 + y + γ2y2)ω2 ⊗ω1

+(γ2 + (γ1 + γ2 + γ3)y + (1 + γ1 + γ3)y2)ω2 ⊗ω2

central for γ1 = 0, γ2 = 1, γ3 = 0

S as for ∇F.1.5

γ1 = γ2, γ3 = 0 ∶
Ricci =
(1 + (1 + γ1)y + γ1y2)ω1 ⊗ω2

+(1 + γ1y)yω2 ⊗ω1

+(γ1 + (1 + γ1)y2)ω2 ⊗ω2

no sol.

Table 8. Ricci tensor and scalar for the algebra F, metric gF.1.
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QLC Eins = Ricci + Sg Ricci qsymm ∇.Eins = 0
∇F.1.1
∇F.1.2
∇F.1.3
∇F.1.4
∇F.1.11

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

Eins = 0 (all except ∇F.1.3 are flat) — —

∇F.1.5

Eins = (γ3 + (1 + γ2)(1 + y) + (1 + γ3)y2)ω1 ⊗ω1

+(1 + γ1 + (γ1 + γ3)y + (1 + γ2 + γ3)y2)ω1 ⊗ω2

+(1 + (γ1 + γ3)y + (γ1 + γ2 + γ3)(1 + y2))ω2 ⊗ω1

+(γ2 + γ3 + (1 + γ1 + γ2 + γ3) (y + y2))ω2 ⊗ω2

Eins = ((1 + γ1)(1 + y) + y2)ω1 ⊗ω1

+(γ1y + (1 + γ1)(1 + y2))ω1 ⊗ω2

+(1 + γ1y)ω2 ⊗ω1

+(γ1 + y + y2)ω2 ⊗ω2

no sol.

∇F.1.6

Eins = (1 + γ1 + γ3 + γ2y + (1 + γ2)y2)ω1 ⊗ω1

+(1 + γ2 + (1 + γ2 + γ3)y + (1 + γ1 + γ2 + γ3)y2)ω1 ⊗ω2

+(1 + γ1 + (γ1 + γ3)y + (1 + γ2 + γ3)y2)ω2 ⊗ω1

+(1 + (1 + γ1)y + γ2y2)ω2 ⊗ω2

Eins = (γ1y + (1 + γ1)(1 + y2))ω1 ⊗ω1

+((1 + γ1) (1 + y) + y2)ω1 ⊗ω2

+(γ1y + (1 + γ1)(1 + y2))ω2 ⊗ω1

+(1 + (1 + γ1)y + γ1y2)ω2 ⊗ω2

no sol.

∇F.1.7

Eins = (1 + (1 + γ1 + γ2 + γ3) (1 + y) + γ2y2)ω1 ⊗ω1

+(1 + γ1 + (1 + γ2 + γ3)y + γ2(1 + y2))ω1 ⊗ω2

+(1 + γ2(1 + y) + (1 + γ2 + γ3)y2)ω2 ⊗ω1

+(γ1y + (1 + γ1 + γ3)(1 + y2))ω2 ⊗ω2

Eins = (1 + γ1y)yω1 ⊗ω1

+(1 + (1 + γ1)y + γ2y2)ω1 ⊗ω2

+(γ1y + (1 + γ1)(1 + y2))ω2 ⊗ω1

+(γ1y + (1 + γ1)(1 + y2))ω2 ⊗ω2

no sol.

∇F.1.8

Eins = (γ1y + (1 + γ1 + γ3) (1 + y2))ω1 ⊗ω1

+(γ1 + γ3 + (1 + γ1 + γ2)y + y2)ω1 ⊗ω2

+(γ1 + (γ1 + γ2)y + (1 + γ2)y2)ω2 ⊗ω1

+(1 + γ3 + (1 + γ2 + γ3)y + (γ2 + γ3)y2)ω2 ⊗ω2

Eins = (γ1y + (1 + γ1) (1 + y2))ω1 ⊗ω1

+(γ1 + y + y2)ω1 ⊗ω2

+(γ1 + (1 + γ1)y2)ω2 ⊗ω1

+(1 + (1 + γ1)y + γ1y2)ω2 ⊗ω2

no sol.

∇F.1.9

Eins = (1 + (γ2 + γ3)y + γ3y2)ω1 ⊗ω1

+(γ3 + (γ1 + γ3)y + (1 + γ2)(1 + y2))ω1 ⊗ω2

+(γ2 + γ3 + (1 + γ1 + γ2 + γ3)(y + y2))ω2 ⊗ω1

+(γ2 + (γ1 + γ2 + γ3)y + (1 + γ1 + γ3)y2)ω2 ⊗ω2

Eins = (1 + γ1y)ω1 ⊗ω1

+(γ1y + (1 + γ1)(1 + y2))ω1 ⊗ω2

+(γ1 + y + y2)ω2 ⊗ω1

+(γ1 + (1 + γ1)y2)ω2 ⊗ω2

no sol.

∇F.1.10

Eins = (γ3 + (γ1 + γ2) (1 + y + y2))ω1 ⊗ω1

+(γ3(1 + y) + (γ1 + γ2)y2)ω1 ⊗ω2

+(γ3 + (γ1 + γ2)(1 + y + y2))ω2 ⊗ω1

+(γ3(1 + y) + (γ1 + γ2)y2)ω2 ⊗ω2

Eins = 0 γ1 = γ2, γ3 = 0

∇F.1.12

Eins = (γ1 + (1 + γ1 + γ3)y2)ω1 ⊗ω1

+(γ2 + (1 + γ1 + γ2)y + γ1(1 + y2))ω1 ⊗ω2

+(1 + γ1 + γ2 + (1 + γ2 + γ3)y + γ2y2)ω2 ⊗ω1

+(1 + γ1 + γ3 + (1 + γ2 + γ3)y + (1 + γ1 + γ2)y2)ω2 ⊗ω2

Eins = (γ1 + (1 + γ1)y2)ω1 ⊗ω1

+(1 + γ1y)yω1 ⊗ω2

+(1 + (1 + γ1)y + γ2y2)ω2 ⊗ω1

+((1 + γ1) (1 + y) + y2)ω2 ⊗ω2

no sol.

Table 9. Einstein tensor for the algebra F, metric gF.1 showing a
unique connection ∇F.1.10 which is not Ricci flat but has Eins = 0.
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QLC Ricci S = ( , )(Ricci) qua. symmetric ∇.Ricci = 0
∇F.2.1
∇F.2.4
∇F.2.5
∇F.2.7
∇F.2.12

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

Ricci = 0 (all except ∇F.2.12 are flat) S = 0 — —

∇F.2.2

Ricci =
(γ2 + (1 + γ1 + γ2)y + (1 + γ3)y2)ω1 ⊗ω1

+(1 + γ2 + γ2y + (1 + γ2 + γ3)y2)ω1 ⊗ω2

+(1 + γ1 + (1 + γ2 + γ3)y + γ2(1 + y2))ω2 ⊗ω1

+(γ2 + (1 + γ1 + γ2)y + γ1(1 + y2))ω2 ⊗ω2

central for γ1 = 0, γ2 = 1, γ3 = 0

S =
1 + γ3 + γ1y2
+(1 + γ1 + γ3)y

γ1 = 1, γ2 = γ3 ∶
Ricci =
(γ2(1 + y) + (1 + γ2)y2)ω1 ⊗ω1

+(1 + γ2(1 + y) + y2)ω1 ⊗ω2

+(y + γ2(1 + y2))ω2 ⊗ω1

+(1 + γ2(1 + y) + y2)ω2 ⊗ω2

no sol.

∇F.2.3

Ricci =
(1 + γ3 + γ1y)ω1 ⊗ω1

+(1 + γ3 + (1 + γ1 + γ3)y + γ1y2)ω1 ⊗ω2

+(1 + γ2 + (1 + γ1 + γ3)y + y2)ω2 ⊗ω1

+(γ2 + (γ1 + γ2 + γ3)y + (1 + γ1 + γ3)y2)ω2 ⊗ω2

central for any γi

S = γ1
+(1 + γ1 + γ3)y2

γ1 = 1, γ2 = γ3 ∶
Ricci =
(1 + γ2 + y)ω1 ⊗ω1

+(1 + γ2(1 + y) + y2)ω1 ⊗ω2

+(1 + γ2(1 + y) + y2)ω2 ⊗ω1

+(γ2 + y + (1 + γ1 + γ2)y2)ω2 ⊗ω2

γ3 = 0,
γ2 = 0

∇F.2.6

Ricci =
(1 + γ3 + (1 + γ1 + γ3)y + γ1y2)ω1 ⊗ω1

+((γ1 + γ2)y + (γ1 + γ2 + γ3)y2)ω1 ⊗ω2

+(γ2 + (γ1 + γ2 + γ3)y + (1 + γ1 + γ3)y2)ω2 ⊗ω1

+(1 + (γ2 + γ3)y + γ3y2)ω2 ⊗ω2

*not central

S as for ∇F.2.2

γ1 = 1, γ2 = γ3 ∶
Ricci =
(1 + γ2(1 + y) + γ1y2)ω1 ⊗ω1

+((1 + γ2)y + y2)ω1 ⊗ω2

+(y + γ2(1 + y2))ω2 ⊗ω1

+(1 + y + γ2y2)ω2 ⊗ω2

no sol.

∇F.2.8

Ricci =
(1 + γ1 + (1 + γ2)y + y2)ω1 ⊗ω1

+(1 + γ1 + γ2 + y + (γ1 + γ3) (y + y2))ω1 ⊗ω2

+(γ1 + γ3 + (1 + γ1 + γ2)y + y2)ω2 ⊗ω1

+(γ2 + γ3 + (1 + γ1 + γ2 + γ3) (y + y2))ω2 ⊗ω2

central for γ1 = 0, γ2 = 1, γ3 = 0

S as for ∇F.2.2

γ1 = 1, γ2 = γ3 ∶
Ricci =
((1 + γ2)y + y2)ω1 ⊗ω1

+(γ2 + y + (γ1 + γ2) (y + y2))ω1 ⊗ω2

+(1 + γ2(1 + y) + y2)ω2 ⊗ω1

no sol.

∇F.2.9

Ricci =
(1 + (γ2 + γ3)y + γ3y2)ω1 ⊗ω1

+(1 + γ2y + (γ1 + γ2)(1 + y2))ω1 ⊗ω2

+(1 + (1 + γ1)y + γ2y2)ω2 ⊗ω1

+(1 + (γ1 + γ2)y + (1 + γ2 + γ3) (1 + y2))ω2 ⊗ω2

central for γ1 = 1, γ2 = 0, γ3 = 1

S as for ∇F.2.2

γ1 = 1, γ2 = γ3 ∶
Ricci =
(1 + (γ2 + γ3)y + γ3y2)ω1 ⊗ω1

+(1 + γ2y + (γ1 + γ2)(1 + y2))ω1 ⊗ω2

+(1 + (1 + γ1)y + γ2y2)ω2 ⊗ω1

+(1 + (γ1 + γ2)y
+(1 + γ2 + γ3) (1 + y2))ω2 ⊗ω2

no sol.

∇F.2.10

Ricci =
(γ1 + γ3 + (γ1 + γ2 + γ3)y + (1 + γ1)y2)ω1 ⊗ω1

+(γ3 + (1 + γ1 + γ2)y + (γ1 + γ3)y2)ω1 ⊗ω2

+(γ2 + (1 + γ3)y + (γ1 + γ3) (1 + y2))ω2 ⊗ω1

+(1 + γ2 + (1 + γ2 + γ3) (y + y2) + γ1y2)ω2 ⊗ω2

not central

S as for ∇F.2.2

γ1 = 1, γ2 = γ3 ∶
Ricci =
(1 + γ2 + y)ω1 ⊗ω1

+(γ2(1 + y) + (1 + γ2)y2)ω1 ⊗ω2

+(1 + (1 + γ2)(y + y2))ω2 ⊗ω1

+(1 + γ2 + y)ω2 ⊗ω2

no sol.

∇F.2.11

Ricci =
(1 + γ2 + (1 + γ1 + γ3)y + y2)ω1 ⊗ω1

+(1 + γ2 + γ3 + (γ1 + γ3)y + (1 + γ2)y2)ω1 ⊗ω2

+(γ1 + γ2 + (γ1 + γ2 + γ3)y)ω2 ⊗ω1

+(γ1 + γ3y + (1 + γ1 + γ2) (y + y2))ω2 ⊗ω2

central for γ1 = 1, γ2 = 0, γ3 = 1

S as for ∇F.2.2

γ1 = 1, γ2 = γ3 ∶
Ricci =
(1 + γ2(1 + y) + y2)ω1 ⊗ω1

+(1 + (1 + γ2) (y + y2))ω1 ⊗ω2

+(1 + γ2 + y)ω2 ⊗ω1

+(1 + γ2y2)ω2 ⊗ω2

no sol.

Table 10. Ricci tensor and scalar for the algebra F , metric gF.2.
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QLC Eins = Ricci + Sg Ricci qsymm ∇.Eins = 0
∇F.2.1
∇F.2.4
∇F.2.5
∇F.2.7
∇F.2.12

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

Eins = 0 (all except ∇F.2.12 are flat) — —

∇F.2.2

Eins =
(γ3 + (1 + γ2)(1 + y) + γ1(1 + y2))ω1 ⊗ω1

+(1 + γ2 + γ1y + (1 + γ1 + γ2 + γ3)(y + y2))ω1 ⊗ω2

+(1 + γ2y + (γ1 + γ2)(1 + y2))ω2 ⊗ω1

+(γ2 + (γ1 + γ2 + γ3)y + (1 + γ1 + γ3)y2)ω2 ⊗ω2

Eins =
((1 + γ2)y + y2)ω1 ⊗ω1

+(1 + γ2 + y)ω1 ⊗ω2

+(γ2(1 + y) + (1 + γ2)y2)ω2 ⊗ω1

+(γ2 + γ1y + (1 + γ1 + γ2)y2)ω2 ⊗ω2

no sol.

∇F.2.3

Eins =
(γ2 + γ3 + (1 + γ1)y2)ω2 ⊗ω1

+(1 + γ1 + (γ2 + γ3) (1 + y))ω2 ⊗ω2
EinsF.2.3 = 0 γ1 = 1, γ2 = γ3

∇F.2.6

Eins =
(γ1 + (1 + γ3) (y + y2))ω1 ⊗ω1

+((1 + γ1)y + (γ2 + γ3)(y + y2))ω1 ⊗ω2

+(γ2 + (1 + γ1 + γ2)y + (1 + γ3)y2)ω2 ⊗ω1

+(1 + γ1 + (1 + γ2)y + y2)ω2 ⊗ω2

Eins

= (1 + (1 + γ2) (y + y2))ω1 ⊗ω1

+(y2 + γ2(1 + y + y2))ω2 ⊗ω1

+((1 + γ2)y + y2)ω2 ⊗ω2

no sol.

∇F.2.8

Eins =
(γ3 + (1 + γ1 + γ2)y + (γ1 + γ3)y2)ω1 ⊗ω1

+(1 + γ1 + γ2 + γ1y + γ3y2)ω1 ⊗ω2

+(γ1 + γ3 + (γ1 + γ2 + γ3)y + (1 + γ1)y2)ω2 ⊗ω1

+(γ3 + (γ1 + γ2) (1 + y + y2))ω2 ⊗ω2

Eins =
(y2 + γ2(1 + y + y2))ω1 ⊗ω1

+(y + γ2(1 + y2))ω1 ⊗ω2

+(1 + γ2 + y)ω2 ⊗ω1

+(1 + (1 + γ2) (y + y2))ω2 ⊗ω2

no sol.

∇F.2.9

Eins =
(γ1 + γ3 + (γ1 + γ2 + γ3)y + (1 + γ1)y2)ω1 ⊗ω1

+(1 + γ1 + (1 + γ2 + γ3)y + γ2(1 + y2))ω1 ⊗ω2

+(1 + (γ1 + γ3)y + (γ1 + γ2)y2)ω2 ⊗ω1

+(1 + (1 + γ1 + γ2 + γ3)(1 + y) + γ2y2)ω2 ⊗ω2

Eins =
(1 + γ2 + y)ω1 ⊗ω1

+(y + γ2(1 + y2))ω1 ⊗ω2

+(1 + (1 + γ2) (y + y2))ω2 ⊗ω1

+(1 + γ2y2)ω2 ⊗ω2

no sol.

∇F.2.10

Eins =
(1 + (γ2 + γ3)y + γ3y2)ω1 ⊗ω1

+((γ1 + γ2 + γ3)y + γ3(1 + y2))ω1 ⊗ω2

+(γ1 + γ2 + γ3(1 + y2))ω2 ⊗ω1

+(1 + γ2y + (γ1 + γ2)(1 + y2))ω2 ⊗ω2

Eins =
(1 + γ2y2)ω1 ⊗ω1

+(y + γ2(1 + y2))ω1 ⊗ω2

+(1 + γ2y2)ω2 ⊗ω1

+(y2 + γ2(1 + y + y2))ω2 ⊗ω2

no sol.

∇F.2.11

Eins =
(γ2 + (1 + γ3)y + (γ1 + γ3)(1 + y2))ω1 ⊗ω1

+(1 + γ2 + γ3 + (1 + γ1)y + (1 + γ1 + γ2)y2)ω1 ⊗ω2

+(1 + (1 + γ1 + γ2)(1 + y) + γ1y2))ω2 ⊗ω1

+((γ1 + γ2)y + (γ1 + γ2 + γ3)y2)ω2 ⊗ω2

Eins =
(1 + (1 + γ2) (y + y2))ω1 ⊗ω1

+(1 + γ2y2)ω1 ⊗ω2

+(1 + γ2(1 + y) + y2))ω2 ⊗ω1

+((1 + γ2)y + y2)ω2 ⊗ω2

no sol.

Table 11. Einstein tensor for the algebra F , metric gF.2 showing a
unique connection ∇F.2.3 which is not Ricci flat but has Eins = 0.
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QLC Ricci S = ( , )(Ricci) qua. symmetric ∇.Ricci = 0
∇F.3.4
∇F.3.7
∇F.3.9
∇F.3.10
∇F.3.12

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

Ricci = 0 (all except ∇F.3.9 are flat) S = 0 — —

∇F.3.1

Ricci =
(γ3(1 + y) + (γ1 + γ2)y2)ω1 ⊗ω1

+(1 + γ1 + (γ1 + γ3)y + (1 + γ2 + γ3)y2)ω1 ⊗ω2

+(1 + γ2(1 + y) + (1 + γ2 + γ3)y2)ω2 ⊗ω1

+(γ1 + γ3 + (γ1 + γ2 + γ3)y + (1 + γ1)y2)ω2 ⊗ω2

central for γ1 = 0, γ2 = 1, γ3 = 0

S =
γ1 + γ2 + γ3y
+(γ1 + γ2 + γ3)y2

γ1 = 0, γ3 = 1 ∶
Ricci =
(1 + y + γ2y2)ω1 ⊗ω1

+(1 + y + γ2y2)ω1 ⊗ω2

+(1 + γ2(1 + y + y2))ω2 ⊗ω1

+(1 + γ1 + (1 + γ2)y + y2)ω2 ⊗ω2

no sol.

∇F.3.2

Ricci =
(1 + (1 + γ1 + γ2 + γ3) (1 + y) + γ2y2)ω1 ⊗ω1

+(γ1 + γ3 + y + (1 + γ1 + γ2 + γ3)y2)ω1 ⊗ω2

+(γ3(1 + y) + (γ1 + γ2)y2)ω2 ⊗ω1

+(γ1 + γ2 + γ3(1 + y2))ω2 ⊗ω2

central for any γi

S = γ3 + (γ1 + γ2)
(1 + y + y2)

γ1 = 0, γ3 = 1 ∶
Ricci =
(1 + γ2 + γ2y + γ2y2)ω1 ⊗ω1

+(1 + y + γ2y2)ω1 ⊗ω2

+(1 + y + γ2y2)ω2 ⊗ω1

+(1 + γ2 + y2)ω2 ⊗ω2

γ2 = 0,
γ1 + γ3 = 1

∇F.3.3

Ricci = (1 + γ1 + γ3
+(1 + γ2 + γ3)y + (1 + γ1 + γ2)y2)ω1 ⊗ω1

+((1 + γ1 + γ3) (1 + y) + (1 + γ3)y2)ω1 ⊗ω2

+((1 + γ1) (1 + y) + (γ2 + γ3) (1 + y2))ω2 ⊗ω1

+(1 + (1 + γ1 + γ2 + γ3) (1 + y) + γ2y2)ω2 ⊗ω2

central for γ1 = 1, γ2 = 0, γ3 = 1

S as for ∇F.3.1

γ1 = 0, γ3 = 1 ∶
Ricci =
(γ2y + (1 + γ2)y2)ω1 ⊗ω1

+(γ2 + y + (1 + γ2)y2)ω2 ⊗ω1

+(1 + γ2 (1 + y + y2))ω2 ⊗ω2

no sol.

∇F.3.5

Ricci =
(1 + γ2 + (1 + γ1 + γ3)y + y2)ω1 ⊗ω1

+(γ1 + γ3 + (γ1 + γ2 + γ3)y + (1 + γ1)y2)ω1 ⊗ω2

+(γ1 + γ2 + (γ1 + γ2 + γ3)y)ω2 ⊗ω1

+(γ2 + (1 + γ3)y + (γ1 + γ3) (1 + y2))ω2 ⊗ω2

not central

S as for ∇F.3.1

γ1 = 0, γ3 = 1 ∶
Ricci =
(1 + γ2 + y2)ω1 ⊗ω1

+(1 + (1 + γ2)y + y2)ω1 ⊗ω2

+(γ2 + (1 + γ2)y)ω2 ⊗ω1

+(1 + γ2 + y2)ω2 ⊗ω2

not central

no sol.

∇F.3.6

Ricci =
(1 + γ3 + γ1y)ω1 ⊗ω1

+(γ2 + (γ1 + γ2 + γ3)y + (1 + γ1 + γ3)y2)ω1 ⊗ω2

+(1 + γ2 + (1 + γ1 + γ3)y + y2)ω2 ⊗ω1

+(γ3(1 + y) + (γ1 + γ2 + γ3) (1 + y2))ω2 ⊗ω2

not central

S as for ∇F.3.1

γ1 = 0, γ3 = 1 ∶
Ricci =
+(γ2 + (1 + γ2)y)ω1 ⊗ω2

+(1 + γ2 + y2)ω2 ⊗ω1

+(γ2 + y + (1 + γ2)y2)ω2 ⊗ω2

no sol.

∇F.3.8

Ricci =
(γ1 + (1 + γ3) (y + y2))ω1 ⊗ω1

+(γ3 + y + γ2y2)ω1 ⊗ω2

+(1 + γ1 + γ3 + y + (1 + γ2) (y + y2))ω2 ⊗ω1

+(γ2 + y + (1 + γ1 + γ2)y2)ω2 ⊗ω2

central for γ1 = 1, γ2 = 0, γ3 = 1

S as for ∇F.1.5

γ1 = 0, γ3 = 1 ∶
Ricci =
(1 + y + γ2y2)ω1 ⊗ω2

+(γ2y + (1 + γ2)y2)ω2 ⊗ω1

+(γ2 + y + (1 + γ2)y2)ω2 ⊗ω2

no sol.

∇F.3.11

Ricci =
(1 + (1 + γ2) (1 + y) + (1 + γ3) (1 + y2))ω1 ⊗ω1

+(γ1 + γ2 + γ3(1 + y2))ω1 ⊗ω2

+(γ1 + (γ1 + γ2)y + (1 + γ2)y2)ω2 ⊗ω1

+(γ3 + y + γ2y2)ω2 ⊗ω2

central for γ1 = 0, γ2 = 1, γ3 = 0

S as for ∇F.3.1

γ1 = 0, γ3 = 1 ∶
Ricci =
(γ2 + (1 + γ2)y)ω1 ⊗ω1

+(1 + γ2 + y2)ω1 ⊗ω2

+(γ2y + (1 + γ2)y2)ω2 ⊗ω1

+(1 + y + γ2y2)ω2 ⊗ω2

no sol.

Table 12. Ricci tensor and scalar for the algebra F , metric gF.3.
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QLC Eins = Ricci + Sg Ricci qsymm ∇.Eins = 0
∇F.3.4
∇F.3.7
∇F.3.9
∇F.3.10
∇F.3.12

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

Eins = 0 (all except ∇F.3.9 are flat) — —

∇F.3.1

Eins = (γ1 + γ2 + γ3(1 + y2))ω1 ⊗ω1

+(1 + γ1 + γ3 + γ2y + (1 + γ2)y2)ω1 ⊗ω2

+(γ3 + (γ1 + γ3)y + (1 + γ2) (1 + y2))ω2 ⊗ω1

+(γ1 + γ3 + γ3y + (1 + γ2 + γ3)y2)ω2 ⊗ω2

Eins =
(1 + γ2 + γ3y2)ω1 ⊗ω1

+(γ2y + (1 + γ2)y2)ω1 ⊗ω2

+(γ2 + y + (1 + γ2)y2)ω2 ⊗ω1

+(1 + y + (1 + γ2)y2)ω2 ⊗ω2

no sol.

∇F.3.2

Eins = ((1 + γ3)y + γ1y2)ω1 ⊗ω1

+(γ1 + (1 + γ3)(y + y2))ω1 ⊗ω2 Eins = 0 γ1 = 0, γ3 = 1

∇F.3.3

Eins =
(γ3 + (1 + γ2) (1 + y) + (1 + γ3)y2)ω1 ⊗ω1

+(1 + γ1 + (1 + γ2)y + y2)ω1 ⊗ω2

+(1 + γ1 + (1 + γ2 + γ3)y + γ2(1 + y2))ω2 ⊗ω1

+(γ2 + (1 + γ3)y + (γ1 + γ3)(1 + y2))ω2 ⊗ω2

Eins =
(γ2 + (1 + γ2)y)ω1 ⊗ω1

+(1 + (1 + γ2)y + y2)ω1 ⊗ω2

+(1 + γ2 (1 + y + y2))ω2 ⊗ω1

+(1 + γ2 + y2)ω2 ⊗ω2

no sol.

∇F.3.5

Eins =
((1 + γ1) (1 + y) + (1 + γ1 + γ2 + γ3)y2)ω1 ⊗ω1

+(γ1 + (1 + γ1 + γ3)y2)ω1 ⊗ω2

+(γ1 + γ2 + γ3(1 + y2))ω2 ⊗ω1

+(1 + (1 + γ1 + γ2 + γ3)(1 + y) + γ2y2)ω2 ⊗ω2

Eins =
(1 + y + γ2y2)ω1 ⊗ω1

+(1 + γ2 + y2)ω2 ⊗ω1

+(1 + γ2 (1 + y + y2))ω2 ⊗ω2

no sol.

∇F.3.6

Eins =
(1 + (γ1 + γ3)y + (γ1 + γ2 + γ3)(1 + y2))ω1 ⊗ω1

+(γ2 + γ3 + (1 + γ1)y2)ω1 ⊗ω2

+(γ3 + (1 + γ2) (1 + y) + (1 + γ3)y2)ω2 ⊗ω1

+(γ1 + γ2 + (γ1 + γ2 + γ3)y)ω2 ⊗ω2

Eins =
(γ2 + y + (1 + γ2)y2)ω1 ⊗ω1

+(1 + γ2 + y2)ω1 ⊗ω2

+(γ2 + (1 + γ2)y)ω2 ⊗ω1

+(γ2 + (1 + γ2)y)ω2 ⊗ω2

no sol.

∇F.3.8

Eins =
(γ2 + y + (1 + γ1 + γ2)y2)ω1 ⊗ω1

+((1 + γ1 + γ2 + γ3)y + (γ2 + γ3)y2)ω1 ⊗ω2

+(1 + γ1 + (γ1 + γ3)y + (1 + γ2 + γ3)y2)ω2 ⊗ω1

+(γ2 + (1 + γ1 + γ2)y + (1 + γ3)y2)ω2 ⊗ω2

Eins =
(γ2 + y + (1 + γ2)y2)ω1 ⊗ω1

+(γ2(y + y2) + y2)ω1 ⊗ω2

+(1 + y + γ2y2)ω2 ⊗ω1

+(γ2 + (1 + γ2)y)ω2 ⊗ω2

no sol.

∇F.3.11

Eins =
(1 + γ1 + γ3 + (1 + γ2 + γ3)y + (1 + γ1 + γ2)y2)ω1 ⊗ω1

+(γ1 + γ2 + (γ1 + γ2 + γ3)y)ω1 ⊗ω2

+(γ1 + γ3(1 + y) + (1 + γ2 + γ3)y2)ω2 ⊗ω1

+(γ3 + (1 + γ1 + γ2)y + (1 + γ3)y2)ω2 ⊗ω2

Eins =
(γ2y + (1 + γ2)y2)ω1 ⊗ω1

+(γ2 + (1 + γ2)y)ω1 ⊗ω2

+(1 + y + γ2y2)ω2 ⊗ω1

+(1 + (1 + γ2)y)ω2 ⊗ω2

no sol.

Table 13. Einstein tensor for the algebra F , metric gF.3 showing a
unique connection ∇F.3.2 which is not Ricci flat but has Eins = 0.

QLC Ricci (central for all γi) S = ( , )(Ricci) ∇.Ricci = 0

∇F.4.1
∇F.4.3
∇F.4.4

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Ricci = 0 (only ∇F.4.4 is flat) S = 0 —

∇F.4.2

Ricci =
(1 + γ1 + (γ2 + γ3)y + (1 + γ1)y2)ω1 ⊗ω1

+((1 + γ1 + γ2 + γ1)y + (γ2 + γ3)y2)ω1 ⊗ω2

+(1 + γ1 + γ3 + γ1y + (1 + γ1 + γ3)y2)ω2 ⊗ω1

+((1 + γ3)y + γ1y2)ω2 ⊗ω2

S =
1 + γ1 + γ3
+(1 + γ2 + γ3)y
+(1 + γ1 + γ2)y2

γ2 = γ1 + 1, γ3 = γ1 ∶
Ricci =
(y + (1 + γ1) (1 + y2))ω1 ⊗ω1

+(γ1y + y2)ω1 ⊗ω2

+(1 + γ1y + y2)ω2 ⊗ω1

+((1 + γ1)y + γ1y2)ω2 ⊗ω2

Table 14. Ricci tensor and scalar for the algebra F, metric gF.4.
Three connections are Ricci flat and ∇F.4.2 never has Ricci quantum
symmetric, so that column is omitted.
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QLC Eins = Ricci + Sg ∇.Eins = 0

∇F.4.1
∇F.4.3
∇F.4.4

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Eins = 0 (only ∇F.4.4 is flat) —

∇F.4.2

Eins =
(γ1 + (γ1 + γ2)y + (1 + γ2)y2)ω1 ⊗ω1

+(1 + γ1 + γ2 + γ2y + (γ1 + γ2)y2)ω1 ⊗ω2

+(γ2 + γ3 + (1 + γ3)y + y2)ω2 ⊗ω1

+(1 + γ2 + γ3 + (1 + γ2)y + (1 + γ3)y2)ω2 ⊗ω2

γ2 = 1 + γ1, γ3 = γ1 ∶
Eins = (y + γ1(1 + y2))ω1 ⊗ω1

+((1 + γ1)y + y2)ω1 ⊗ω2

+(1 + (1 + γ1)y + y2)ω2 ⊗ω1

+(γ1y + (1 + γ1)y2)ω2 ⊗ω2

Table 15. Einstein tensor for the algebra F, metric gF.4 showing
two lifts for ∇F.4.2 with ∇ ⋅Eins = 0 and S = 1.

We see for gF.1 – gF.3 with dim = 1 that for each metric there is a unique Ricci-
flat connection that is not flat (and four that we already knew were flat), namely
∇F.1.3,∇F.2.12,∇F.3.9 respectively. Of the other connections, we see that for each
metric there are two liftings which render all Ricci quantum symmetric (e.g. for the
first metric the lift is γ1 = γ2 ∈ {0,1}, γ3 = 0) and resulting in a unique connection
which is not Ricci flat but has Einstein=0, namely ∇F.1.10,∇F.2.3,∇F.3.2 respectively.
This is also the only case for each metric where ∇ ⋅ Eins = 0. Indeed, the other
cases have Ricci not central, which implies that it could not be any multiple of the
metric. It is also striking that all the other connections in this group have the same
value of S. By contrast, the metric gF.4 has dim = 0 and behaves more like gD.3
and gB above. It has three Ricci flat connections of which one is actually flat, and
the remaining connection never has Ricci quantum symmetric but has two lifts that
render ∇ ⋅Eins = 0.

6. Conclusions

In this paper we have mapped out the landscape of all reasonable up to 2D quantum
geometries over the field F2 on unital algebras of vector space dimension n ≤ 3. The
interesting ones up to this dimension have commutative coordinate algebras, which
would mean the algebra of functions on up to 3 ‘points’ if we were working over C,
but over a finite field such as F2 we have more possibilities. We used the constructive
‘bimodule connection’ approach [10, 15, 16, 11, 12, 13, 14] in which the layers of
geometry are added one at a time starting with a calculus Ω1 free and of dimension
m ≤ 2 over the algebra. For the exterior algebra we focussed on the case of Ω2 free
and 1-dimensional with a central basis element Vol, so like a 2-manifold. For n = 2
we also covered the case of Ω2 = 0 as for a 1-manifold.

The first striking conclusion is that even under this restricted set of assumptions there
are a lot of such ‘digital’ finite quantum geometries at least by the time we get to n = 3.
For n = 2 there are only a few geometries. First, the calculus for n = 2 has to have
m = 1 and there are no calculi with Ω2 top that admit a strictly quantum-symmetric
metric. If we relax that then each of the three algebras F2Z2,F2(Z2),F4 admit only
the flat metric g = ω ⊗ ω with the zero connection ∇ω = 0 if we want a QLC, see
Table 1. If we insist on quantum symmetry of the metric, as we do elsewhere in the
classification, then n = 2 forces us to Ω2 = 0 (so a 1D geometry from the top form point
of view), the same flat metric and now respectively 2, 1, 3 QLCs (the table also shows
more options if we allow the weaker requirement of a WQLC). Many more quantum
geometries emerge for n = 3. First off, there are 6 possible commutative algebras as
already known from another context [18] and we find one further noncommutative one.
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But none of them meet our requirements for a well-behaved calculus Ω1 of dimension
m = 1 while still admitting a quantum metric that meets the invertibility axiom (there
are some examples if we drop this, see Tables 2 and 3). These also have issues with
Ω2 if we take this to be non-zero. There is also a noncommutative algebra G which
for m = 1 again does not admit a suitable calculus having a central metric. Therefore
the landscape at n = 3 properly needs m = 2. In this case we find that only three of
the six algebras, namely B= F2(Z3), D= F2Z3, F= F8, meet our full requirements on
the calculus including Ω2 as top form and existence of a quantum symmetric metric.
For each algebra we find an essentially unique calculus and a unique quantum metric
up to an invertible functional factor, giving respectively 1, 3, 4 quantum metrics
that admit QLCs. Between them there are respectively 4, 12, 40 metric and QLC
pairs (or ‘quantum Riemannian geometries’) of which 1, 1, 13 are flat in the sense of
zero Riemann curvature R∇, see Sections 3.4, 3.3 and 3.5 respectively. These results
suggest an even richer moduli of quantum geometries when n ≥ 4 but beyond reach
of our current method of trying all possible 224 Christoffel symbol values to find the
QLCs.

We also used our landscape of quantum Riemannian geometries to study the canonical
geometric Laplacian ∆ and Ricci tensor. For the former in Section 4, a striking
observation that holds across all the viable n = 3,m = 2 quantum geometries is that
∆ = 0 if and only if the quantum dimension dim = 0. In the dim = 1 case we found
that the trace of ∆ determines if there is a massive eigenmode (i.e. eigenvalue 1)
or not, see Proposition 4.1, resulting in 6 Laplacians on F8 that have this massive
mode, none for the other geometries. Another feature is that ∆ always depends on
the connection with a four-fold degeneracy (four connections give the same ∆) with
the result that it does not depend on the connections for F2(Z3) and F2Z3 but only
on the metric, while for F8 this is also true for one of the metrics gF.4 but for each of
the other three metrics the 12 connections are divided into groups of four. It will be
interesting to see if any of these features extend as we increase the dimension.

For the Ricci tensor and scalar S in Section 5 we used an approach [12] that depends on
a lifting map i. A corollary of our analysis of quantum metrics on the B,D,F algebras
is that the possible lifts form an affine space taking the form i(Vol) = I0 +γg where g
is any fixed quantum metric, I0 is any fixed central 1-1 tensor with ∧I0 = Vol and the
parameter γ is an element of the algebra (so there are 8 possible lifts) as featuring in
Tables 4 - 15. The most striking result was that we found 3, 3, 18 respectively Ricci
flat quantum geometries independently of the choice of lift. Hence there are 2, 2, 5
respectively or a total of 9 interesting Ricci flat but not flat quantum geometries over
F2 with n = 3 and m = 2. These deserve more study in view of the important role
of Ricci flat metrics in classical GR (as vacuum solutions of Einstein’s equations).
We also tentatively proposed over F2 to take the Einstein tensor as Ricci+Sg (given
that the usual factor -1/2 makes no sense). This worked as expected for F2Z3 with
its gD.1, gD.2 metrics in the sense that there exist liftings such that Ricci is quantum
symmetric and then Einstein=0 independently of which lift and which connection
(just as in classical geometry in dimension 2). It also worked for F8 with each of its
gF.1, gF.2, gF.3 metrics in the limited sense that Ricci could always be made quantum
symmetric independently of the connection and among the QLCs there was a unique
one with Einstein=0. These are all quantum metrics with dim = 1. By contrast the
gD.3, gB and gF.4 metrics with dim = 0 followed a non-classical pattern with Ricci
never quantum-symmetric for any lift, but instead we found a lift existing such that
∇⋅Einstein = 0 holds. It should be recalled that in quantum Riemannian geometry the
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Figure 1. Wiring diagrams for the nonzero Laplacians found in Sec-
tion 4 labelled for the F algebra by a representative connection and
for the D algebra by the metric. A live wire in the input at left or
output at right means that the indicated algebra basis element is
included. The gate shown is XOR.

QLC condition is linear plus quadratic in the Christoffel symbols and quite typically
has classical-like solutions (sometimes unique) and non-classical ones[12].

Looking forward, interesting quantum geometries over F2 for n = 4 and higher cer-
tainly exist, for example as special cases of results known over C adapted with care
over any field (this is possible in at least a few cases) and then specialised to F2. In-
trinsically Fp-geometries for any prime p were introduced in [17] as the Hopf algebras

Ad = Fp[x] with the relation xp
d

= x and a natural translation-invariant differential
calculus. The n = 4 case A2 over F2 was solved for its three translation-invariant quan-
tum metrics to find in each case two translation-invariant QLCs (as natural examples,
rather than a moduli of all quantum geometries on the algebra). Aside from the land-
scape in higher dimensions of algebra and calculus, it would also be interesting to see
which of our solutions extend to higher F2d and to other Fpd and C. As mentioned in
the introduction, the finite field setting also allows one to test definitions and conjec-
tures that are expected to hold over any field, even if the main interest is over C. The
n = 4,m ≤ 2 case should also reveal more interesting examples of ‘diffeomorphisms’
alluded to in the preliminaries (algebra automorphisms compatible with potentially
different differential structures before and after). These are visible in Table 2 where
calculi B.5-B.8 are equivalent to B.1-B.4 in this way, but have not explored the topic
systematically since the n = 3,m = 1 case is not sufficiently interesting, while for the
other cases there was only the universal calculus in the first place.

As also discussed in the introduction, once we have a good handle on the moduli of
classes of small Fpd quantum Riemannian geometries, we can then consider quantum
gravity, for example as a weighted sum over the moduli space of them much as in
lattice approximations[19], but now finite. One may also consider how quantum
geometries could develop by transitions much as in the dynamical poset approach
[22, 23], as well as finite versions of other established approaches. This is another
direction for further work.
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Finally, just as geometry has many applications, we envisage many applications of
‘finite’ quantum geometry both over F2 and more generally over Fpd (as well as over
C). It is not clear to what extent physics entirely over Fpd makes sense but this
could be interesting to explore in terms of quantum mechanics. For quantum field
theory the second quantisation can be done over C working with functions on the
discrete moduli of finite solutions of the Klein-Gordon equation over F2 defined by
∆. Quantum mechanics fully over F2 is unlikely to have a physical meaning but as
an analogous formalism it may lead to ‘quantum geometric’ constructions for gates
in a ‘digital quantum computer’ (as well as actual geometric gates over C). Discrete
geometric ideas with real or complex coefficients are also used in network theory [24]
and finite versions might be useful. Although these ideas are currently speculative,
a first step could be the Laplacian for the quantum geometry. As a map ∆ ∶ A → A,
this can be realised digitally by choosing a basis of A. Each basis element then
corresponds to an input wire with an element of A specified by those basis elements
where the wire is active. Similarly for the output copy of A. In this notation the non-
zero Laplacians in Section 4 are shown in Figure 1 as labelled by the metric or by a
representative connection. Only two input wires are effective as 1 is in the kernel, and
clearly Laplacians of practical interest would need to be somewhat more complicated.
It is explained in [18] how to handle tensor products and the wiring diagrams for
the algebra products of F2Z2, F2(Z2), F4 are given there. Such operations and their
possible applications to engineering constitute another direction for further work.
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