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Mendelian randomisation analyses find pulmonary
factors mediate the effect of height on coronary
artery disease
Eirini Marouli1,2, M. Fabiola Del Greco3, Christina M. Astley4,5, Jian Yang 6,7, Shafqat Ahmad8,9,10,

Sonja I. Berndt11, Mark J. Caulfield 1,12, Evangelos Evangelou 13,14, Barbara McKnight15,

Carolina Medina-Gomez 16,17, Jana V. van Vliet-Ostaptchouk 18, Helen R. Warren1,12, Zhihong Zhu6,

Joel N. Hirschhorn4,5, Ruth J.F. Loos 19, Zoltan Kutalik 20,21 & Panos Deloukas 1,2,22

There is evidence that lower height is associated with a higher risk of coronary artery disease

(CAD) and increased risk of type 2 diabetes (T2D). It is not clear though whether these

associations are causal, direct or mediated by other factors. Here we show that one standard

deviation higher genetically determined height (~6.5 cm) is causally associated with a 16%

decrease in CAD risk (OR= 0.84, 95% CI 0.80–0.87). This causal association remains after

performing sensitivity analyses relaxing pleiotropy assumptions. The causal effect of height

on CAD risk is reduced by 1–3% after adjustment for potential mediators (lipids, blood

pressure, glycaemic traits, body mass index, socio-economic status). In contrast, our data

suggest that lung function (measured by forced expiratory volume [FEV1] and forced vital

capacity [FVC]) is a mediator of the effect of height on CAD. We observe no direct causal

effect of height on the risk of T2D.
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Evidence from observational studies suggests that height is
associated with different disease outcomes1–4. Other studies
have tried to elucidate this inverse association by using a

twin design5 or Mendelian randomisation approaches4,6,7. A
decrease of one standard deviation in genetically determined
height (~6.5 cm) has been associated with a 13% higher risk of
coronary artery disease (CAD)4. Health is sometimes compro-
mised in favour of immediate survival or reproduction8. Subtle
trade-offs are both predicted and observed in growth, health and
reproduction9. Another trade-off is between reproduction and
longevity, with many studies indicating that parental survival
declined in proportion to the number of children produced10.
There is also controversial evidence suggesting taller populations
are not always in lower risk of CAD11.

In situations where randomised trials are inappropriate or
impossible, Mendelian randomisation provides a good alternative
to study the causal relationship between a trait and a disease
outcome. Mendelian randomisation which is an instrumental
variable-based method to infer causality in observational stu-
dies12, can therefore be applied to investigate any causal effect
that adult height may have on cardiometabolic outcomes, and
provide some insight about potential mechanisms. Mendelian
randomisation offers major advantages; for example, germ-line
genetic variants are assorted during formation of gametes prior
to conception and are not confounded by lifestyle or environ-
mental factors in ethnically homogeneous samples of unrelated
individuals. Thus, it becomes possible to investigate how height
variants may affect cardiometabolic risk and whether this effect
is direct or mediated through other biological pathways.

Mendelian randomisation relies on the availability of genetic
variants robustly associated with height. So far, large-scale meta-
analyses of genome-wide association studies (GWAS) have identi-
fied circa 600 loci associated with adult height13,14 harbouring over
960 independent associations. In our latest study, height-increasing
alleles at all 606 height-associated variants (Exome Chip data) were
enriched for nominally significant protective effect on several car-
diometabolic traits: total cholesterol (TC; Pbinomial= 4.4 × 10−8),
triglyceride (TG; Pbinomial= 8.9 × 10−7) and coronary artery dis-
ease (CAD; Pbinomial= 6.0 × 10−10).

Besides CAD, greater adult stature has also been reported to
be associated with lower risk of type 2 diabetes (T2D)15. Adult
stature is the result of bone elongation. Bone serves as a scaffold
for other organs and is an endocrine organ involved in the reg-
ulation of glucose and energy metabolism. Consequently, hor-
mones implicated in bone remodelling may affect risk of
cardiometabolic disease16. Adult height has also been associated
with cardiorespiratory mortality17. Epidemiological studies have
reported that much of this association can be attributed to lung
function17 and there is evidence suggesting that measures of lung
development can serve as biomarkers for childhood exposures
that may modify an individual’s risk of developing CAD18. Pre-
vious efforts have reported that taller individuals have a lower
risk of CAD giving as potential explanations that taller people
have a better lung function7, but it is still unclear whether and
to which extent lung function mediates this effect.

In general, height has an important partial role in determining
several aspects of an individual’s socioeconomic status, including
education, income and job class19. Height has been also reported
to have a strong positive effect on educational attainment, with
2.5 additional centimetres in height yielding one additional
month of schooling20. There is also support for low education as
a causal risk factor in the development of CAD21. Previous
studies have tried to clarify the associations between height and
its association with CAD risk factors4,6,7, but it is still unclear
which risk factors, mediate the inverse association between
height and CAD.

Here, we test whether height is causally related to cardiome-
tabolic disease (CAD and T2D), including traditional risk factors
in the first instance. We undertake Mendelian randomisation
analyses in UK Biobank (UKBB)22 by using a comprehensive set
of height associated variants. We perform instrumental variable
analysis using individual data and 828 of the previously estab-
lished height-associated SNPs, which explain around 30% of
height variation13,14. In this context we investigate glycaemic
measures (glucose, insulin, glycated haemoglobin (HBA1c), 2 h
postprandial glucose-2hGlu); blood pressure measures (systolic
blood pressure (SBP), diastolic blood pressure (DBP), pulse
pressure); obesity traits (body mass index, BMI); lipid measures
(total cholesterol, low density lipoprotein (LDL), high density
lipoprotein (HDL), triglycerides); and lung function measures
(forced expiratory volume in 1 s (FEV1) and forced vital capacity
(FVC)). We also take into account socio-economic status vari-
ables including: age in years at completion of full time education,
education coded as college or University degree, income variable
representing annual household income before tax and downsend
deprivation index (a composite measure of deprivation based on
unemployment, non-car ownership, non-home ownership and
household overcrowding). Our results show that increased height
reduces the risk of CAD by 16% and traditional risk factors
attenuate this effect by only 1–3% suggesting different mediating
pathways. Adjustment for the genetic effect of lung function
(measured by FEV1 and FVC) completely abolishes the effect of
height on CAD. We do not observe any direct effect of height
on T2D risk.

Results
Study overview. To test whether genetically determined height
is related to cardiometabolic disease phenotypes, independently
of traditional risk factors, we undertook Mendelian randomisa-
tion analyses in UKBB including 449,094 unrelated British par-
ticipants with both phenotypic and genetic data (Supplementary
Data 1). Mean height was 168.53 cm (range 125–209 cm); 23,755
individuals had CAD and 29,427 had T2D (see Methods for
inclusion criteria). To perform Mendelian randomisation ana-
lyses, we constructed an unweighted and a weighted genetic score
using 828 SNPs associated with adult height. The two scores were
normally distributed in UKBB and robustly associated with
height, as expected, in this cohort (Supplementary Figs 1–2). A
flowchart of all analyses undertaken to investigate the effect of
height on cardiometabolic disease risk (CAD and T2D) and
possible mediators is presented in Fig. 1.

Measured and genetically determined height associations. We
initially tested for association between measured adult height and
cardiometabolic diseases (CAD and T2D) (Supplementary
Data 2a). A one standard deviation increase in height was asso-
ciated with an odds ratio (OR) of 0.82 (95% CI 0.81–0.83) and
0.89 (95% CI 0.87–0.90) for risk of CAD and T2D, respectively,
consistent with previously reported associations3,4. We also tested
the effect of height on cardiometabolic disease by taking into
account risk factors, but the observed effects were not affected
(Supplementary Data 2b). A higher genetic score was associated
with a protective effect on CAD risk (OR= 0.78, 95% CI 0.74,
0.82) and T2D risk (OR= 0.91, 95% CI 0.87–0.94) (Supple-
mentary Data 3).

Mendelian randomisation analyses. Having established obser-
vational and genetic associations between adult height and CAD
and T2D risk respectively, we set to perform Mendelian rando-
misation analyses to further investigate whether this relationship
is causal or not.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0361-2

2 COMMUNICATIONS BIOLOGY |           (2019) 2:119 | https://doi.org/10.1038/s42003-019-0361-2 | www.nature.com/commsbio

www.nature.com/commsbio


Instrumental variable analysis in the UKBB. Two-stage analyses
for CAD and T2D events in UKBB, using either the unweighted
or the weighted genetic score (Supplementary Data 4a), showed
in all instances an inverse association. For the genetic score, a
1 standard deviation higher height was associated with an OR
of 0.77 (95% CI 0.73–0.81) for CAD and an OR of 0.90 (95% CI
0.86–0.94) for T2D. A similar effect was observed when using
the weighted genetic score instrument (OR of 0.81 (95% CI
0.77–0.84) for CAD and an OR of 0.93 (95% CI 0.89–0.96) for
T2D) (Supplementary Data 4a, Fig. 2).

For both CAD and T2D, we performed two-stage analysis
adjusted for one risk factor at the time (BMI, SBP, DBP,
hypercholesterolaemia) in order to estimate the causal effect for
height that is independent of each cardiometabolic factor. Our
results suggest that the effect of height on CAD is independent of
each risk factor tested whereas its effect on T2D was completely
abolished after adjustment for BMI (for genetic score: OR= 0.98,
95% CI 0.94–1.04, p= 0.667) (Supplementary Data 4b). Sex
stratified analyses did not affect the results for CAD, but the
evidence of causality of height on T2D was attenuated in females
when using weighted genetic score as instrument. For CAD, the
magnitude of the effect and the significance level were lower in
females compared to males (females: OR= 0.82, 95% CI 0.73–0.92,
p= 3.16 × 10−4 and males: OR= 0.77, 95% CI 0.73–0.82, p=
1.22 × 10–19) (Supplementary Data 4c).

Sensitivity analyses. We undertook a series of sensitivity analyses
to investigate the causal effect between height and CAD by
instrumental variable analysis after sequentially excluding var-
iants nominally associated with BMI, blood pressure (BP) or
lipids (p < 0.05 were excluded). In each case the remaining var-
iants constitute valid instruments and their causal effect estimates
will therefore be immune to confounding. After excluding the
variants associated with BMI, a 1 standard deviation increase in
height, measured by the genetic score (weighted genetic score
gave very similar results), was associated with 22% lower risk of
CAD (OR= 0.77, 95% CI 0.73–0.81), the same as the observed
effect without instrument exclusions. Similar results were
obtained also after excluding variants associated with any lipid
trait, a 1 standard deviation higher height was associated with a
13% decrease in the odds of CAD (OR= 0.83, 95% CI= 95%
0.78–0.88), whereas exclusion of variants associated with BP
resulted in an 15% lower risk (OR= 0.85, 95% CI 0.76–0.94) of
CAD (Supplementary Data 5, Supplementary Fig. 3).

Sensitivity analyses to investigate the causal effect of height on
T2D (1 SD increase in height was associated with an OR of 0.90)
resulted in an attenuation of the height effect after removing BMI,

lipid or BP associated variants from the two-stage analysis
(Supplementary Data 5, Supplementary Fig. 3).

Two-sample Mendelian randomisation analyses. To further
investigate the causal relationships found using two-stage
analysis in UKBB and also test the validity of the genetic score
as an instrument, two-sample Mendelian randomisation
approaches were used to detect and accommodate violations of
the Mendelian randomisation assumptions, specifically horizontal
pleiotropy.

We accessed summary statistics from the largest genetic studies
publically available for height (up to 700,000 individuals), CAD
(up to 71,000 cases), and T2D (up to 27,000 individuals). Two-
sample Mendelian randomisation analyses were performed
using the inverse-variance weighted (IVW) method23, alongside
other methods to overcome the violations of specific instrumental
variable assumptions, as no single method controls for all statistical
properties that may impact Mendelian randomisation estimates,
including: Inverse-variance-weighted; MR-Egger (Egger); weighted
median, mode-based estimate (MBE)24, generalised summary-
data-based Mendelian randomisation (GSMR)25 and MR-
PRESSO26 approaches.

A. Observational association: Regression analyses

a b

B. Genetic association: Regression analyses

C. Causality: Instrumental variable analyses using height GS

D. Mediation: Multivariate stage least square approach

Mediation
Height–mediator–outcome

Height–outcome

i.  Crude MR

Two-sample MR methods:

Two-sample MR methods:

- Inverse variance weighted

- Inverse variance weighted

- MR-Egger regression

- Multivariate MR

- Weighted median
- Mode-base estimate
- Generalised summary-data-based MR

iii.  Bidirectional MR

ii.  MR excluding variants associated with
    the outcome

Causality
Height–outcome

Height GS/wGS–outcome

Height GS/wGS–mediator

Height–outcome adjusting for mediator

Height–outcome excluding variants associated with mediators

Height–outcome adjusting for mediators

Height–mediator

Height–outcome

Height–mediator

Height–mediator–outcome

Fig. 1 Flowchart of the study design. a Using individual level data from UK Biobank. b Using summary data
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Fig. 2 Observational and instrumental variables estimates of the effect of
height on cardiometabolic events. Effect estimates represent the OR (95%
CI) per 1 standard deviation increase in height, observational estimates
were adjusted for age and sex. Causal estimates were derived from
instrumental variable (IV) analysis
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Consistency in results across methods builds confidence in the
obtained estimates, as they rely in different assumptions and
models of horizontal pleiotropy. Funnel plots were also assessed
for any deviations which can be suggestive of pleiotropy. We note
that the plots appear generally symmetrical, suggesting no
evidence for horizontal pleiotropy (Supplementary Figs 4b, 5b).

IVW analysis indicated a causal effect of increased height
lowering CAD risk (Fig. 3) consistent in direction with the
instrumental variable analyses. There was little evidence of
heterogeneity in the analysis (p= 0.9). The slope from the Egger
regression was consistent with these findings (OR of 0.86 per
1 standard deviation higher height, 95% CI 0.79–0.94), and no
evidence of directional pleiotropy (Intercept=−0.0009, 95%
CI −0.0029 to 0.0012) (Fig. 3, Supplementary Figs 4, 5). We
measured a low dilution bias in the MR-Egger casual effect, 97.5%
through the I2 index of gene-exposure estimates, suggesting no
violation of the NO measurement error assumption (NOME)
assumption (see Methods) (Supplementary Data 6). The results
obtained using the weighted median approach further confirmed
the direction and magnitude of effect seen with the other methods
(OR= 0.83, 95% CI 0.81–0.85), providing no evidence for
pleiotropy (Supplementary Data 6, Fig. 3). The MBE method,
which relaxes the instrumental variable assumptions and presents
less bias and lower type-I error rates than the other methods, gave
similar results; one standard deviation higher height was
associated with 18% decrease in the odds of CAD with the
weighted method assuming the NOME assumption is valid (OR
= 0.82, 95% CI 0.73–0.92), setting the bandwidth tuning
parameter φ equal to 1 (Supplementary Data 7). Finally, the
GSMR method suggested that 1 standard deviation higher height
was associated with 16% decrease in the risk of CAD (OR= 0.84,
95% CI 0.82–0.88, p= 2.91 × 10−21) (Supplementary Data 8),
slightly higher than the estimate from a previous study25. MR-
PRESSO results were in accordance with the other methods
(Supplementary Data 8).

The results we obtained for CAD using two-sample Mendelian
randomisation analyses were largely concordant with the two-
stage analysis (Methods); 1 standard deviation increase in height

(6.4 cm) was associated with a 14% (OR= 0.86) lower risk of
CAD with no evidence for directional pleiotropy (Egger method)
(Supplementary Data 6).

Sensitivity analyses showed that exclusion of variants asso-
ciated with either BMI, BP, or lipid levels (i.e., one trait at a time)
slightly increased the signal, a 1 standard deviation higher height
(cm) was associated with a 19% (-BMI variants), 14% (-BP) or
19% (-lipids) lower risk of CAD (Supplementary Data 9–14,
Fig. 3a). After exclusion of any height variant nominally
associated with any of BMI, lipids or BP, the remaining 155
height associated variants yielded the strongest effect with
1 standard deviation increase in height associated with 21%
lower risk of CAD (OR= 0.79, 95% CI 0.64–0.97, p= 0.02;
Supplementary Data 15). Exclusion of variants nominally
associated with age completed full time education didn’t affect
initial estimates for CAD (OR= 0.87, 95% CI 0.83–0.90, p=
3.95 × 10−10; Supplementary Data 16). Removing variants
associated with lung function measure by FEV1 and FVC
completely abolished the effect (OR= 0.92, 95% CI 0.71–1.17,
p= 0.476; Supplementary Data 17). The IVW method indicated
a causal association between height and T2D (OR= 0.93, 95%
CI 0.89–0.98) and there was no evidence of directional pleiotropy
(Intercept=−0.00206, 95% CI −0.00529 to 0.0011) (Supple-
mentary Data 18, Fig. 3b, Supplementary Fig. 5). Exclusion of
variants associated with BMI resulted in a nominally significant
causal effect of height on T2D risk (p= 0.04), but not when
we excluded variants associated with lipids (p= 0.14) or BP
(p= 0.08) (Supplementary Data 19–22, Fig. 3b).Consistent with
our results from the two-stage analysis in UKBB, IVW analysis
when T2D was adjusted for BMI showed no causal effect of
height on T2D (p= 0.95) (Supplementary Data 23). The mode-
based, GSMR, MR PRESSO and IVW-MR assuming random
effects methods were in accordance with the other methods we
applied (Supplementary Data 6–8, 23, 24).

Mediation analyses. As described above, BMI adjustment in the
Mendelian randomisation analyses showed complete attenuation of
the causal effect of height on T2D and a modest decrease of the
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Fig. 3 Two sample Mendelian randomisation analyses. Estimates of the effect of height on a coronary artery disease after removing variants nominally
associated with BMI, lipids or blood pressure and b Type 2 diabetes adjusted for BMI. Effect estimates represent the ORs (95% CI)
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effect on CAD. Also, when we performed sensitivity analyses i.e., by
excluding all BMI associated variants the results were unchanged.
So, the Mendelian randomisation assumption of no correlation
with potential confounders (i.e., BMI) was fulfilled. Therefore, we
explored the role of BMI in the relation between height and CAD
or T2D. Valid instruments for height and BMI were included.
We applied a multiple-stage approach (see Methods) in UKBB to
assess the direct genetic effect of height on CAD and T2D (Sup-
plementary Data 25a). The causal effect of height on CAD after
adjustment for genetic BMI was still significant (OR= 0.75, 95% CI
0.70–0.81, p= 7.32 × 10−13). However, for T2D no causal effect
was observed in the multiple stage least square approach after
adjustment for BMI (OR= 0.99, 95% CI 0.93–1.06, p= 0.835)
(Supplementary Data 25a). In addition, we performed sensitivity
analyses in order to investigate the robustness of the estimation in
the above mediation analysis, by excluding any height associated
variants which had a nominal association with BMI. This exclusion
did not affect the previous observations (CAD: OR= 0.82, 95%
CI 0.77–0.87, p= 2.53 × 10−10, T2D: OR= 0.98, 95% CI 0.92–1.03,
p= 0.374) (Supplementary Data 25b).

To increase power, we further investigated all the above
mediation effects by multivariable Mendelian randomisation
analysis (see Methods) using summary statistics data, in order to
interrogate whether the exposure is causally associated with the
outcome given the risk factors. Using this approach, we estimated
the effect of height on CAD and T2D risk adjusting for the effect
of each instrument with genetic BMI27. Similar analyses were
performed for lipid levels, BP, glycaemic traits, lung function and
socio-economic status. None of these factors, was found to be a
strong mediator of the causal effect of height on the risk of CAD,
association signal was attenuated by 1–3% in terms of magnitude.
For example, the height-CAD effect reduced from 0.83 (95% CI
0.80–0.87) to 0.86 (95% CI 0.83–0.89) with adjustment for LDL
(Supplementary Data 26, and 27, Fig. 4). In contrast, adjustment
for FEV1 or FVC abolished the association suggesting that lung
function acts as a mediator in the effect between height and CAD
(Supplementary Data 27, Fig. 4). The causal effect of height on
T2D was abolished after adjusting for the genetic effect of BMI,
2hGlu, lung function and socio-economic status variables
(Supplementary Data 27b). For T2D adjusted for BMI, there
was no evidence of a direct effect of height (OR= 0.99, 95% CI
0.96, 1.02, p= 0.95) (Supplementary Data 28, 27c, d). This
finding did not change after taking into account the genetic effect
of glycaemic, BP, lipid traits in multivariable Mendelian
randomisation (Supplementary Data 27c, d). To further evaluate
the robustness of the estimation in the mediation analyses, we
performed the previous analyses by excluding variants nominally
associated with BMI. The causal effect of height on T2D adjusted
for BMI was also abolished, after excluding BMI associated
variants (Supplementary Data 27d).

Bidirectional Mendelian randomisation analysis. As a negative
control, we investigated the effect of the known CAD associated
variants28, T2D29 and lung function on adult height by two-
sample Mendelian randomisation using summary statistics data.

The analysis using genetic variants related to CAD as
instruments for height measurements, indicating no evidence
for a causal effect of CAD (p= 0.57) on height (Supplementary
Data 29).

When we performed the Mendelian randomisation analyses
using variants related to T2D as instruments for height, there was
no evidence of a causal effect of T2D on height (p= 0.39) and no
evidence or directional pleiotropy (p= 0.62) from the MR-Egger
regression (Supplementary Data 30). There was no evidence of a
causal effect of lung function on height with the crude analysis
(Supplementary Data 31).

Discussion
In this study we investigated not only the causal relationship
between adult height and cardiometabolic diseases (CAD and
T2D) but also the extent to which traditional risk factors (obesity,
glycaemic, lipid, and BP), lung function and socio-economic
status may mediate such effects.

Consistent with previous studies4,6,7,30, our Mendelian rando-
misation results provided strong evidence for a protective causal
effect of adult height on CAD risk, 1 standard deviation higher
height (~6.5 cm) was causally associated with a 16% lower risk of
CAD (OR= 0.84, 95% CI 0.80–0.87) using summary statistics
data.

Our results suggest that the effect of height on CAD is not
mediated via socio-economic status variables. Furthermore, this
effect is not completely mediated by traditional cardiometabolic
risk factors and may involve alternative biological pathways. For
example, it has been postulated that the inverse association
between height and CAD may be due to shorter individuals
having higher BP31. Shorter individuals have increased heart rate,
increased augmentation of the systolic pulse, which may increase
ventricular systolic work32. Furthermore, shorter individuals have
smaller vessel calibre, so their arteries can become more easily
occluded and subsequently increase CAD risk32–35. However,
exclusion of variants that are nominally associated with BP only
marginally attenuated the causal association between height and
CAD. Lipids appeared to have an even more modest effect in
comparison to BP as possible mediators of the causal effect of
adult height on CAD risk. There is also evidence suggesting that
increased height is associated with increased risk of cancer and
among mechanisms linking height with CAD and cancer are
insulin and insulin-like growth factor signalling pathways36.
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0.857 [0.821, 0.895]
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0.859 [0.831, 0.888]

0.861 [0.833, 0.890]
0.850 [0.822, 0.878]
0.856 [0.828, 0.885]
0.857 [0.829, 0.886]
0.858 [0.830, 0.887]
0.835 [0.809, 0.862]
0.869 [0.841, 0.899]
0.846 [0.820, 0.873]
0.868 [0.840, 0.898]
0.856 [0.829, 0.883]
0.955 [0.804, 1.135]
0.944 [0.888, 1.003]

0.859 [0.831, 0.888]

Fig. 4 Multivariable separate-sample Mendelian randomisation analysis
of the effect of height (per standard deviation) on CAD risk. MR-IVW:
Mendelian randomisation inverse variance weighted; FG, free glucose; FI,
free insulin; HbA1c, glycated haemoglobin; 2hGlu, Glucose 2 h tolerance
test; HDL, High Density Lipoprotein; LDL, Low Density Lipoprotein; TG,
triglycerides; TC, total cholesterol; DBP, diastolic blood pressure; PP, pulse
pressure; SBP, systolic blood pressure; BMI, body mass index; fat%, body
fat percentage; degree, College or University degree; TDI: Townsend
deprivation index (a composite measure of deprivation based on
unemployment, non-car ownership, non-home ownership and household
overcrowding); income, income variable representing annual household
income before tax; education, age in years at completion of full time
education; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity
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In contrast to the modest effects of BP and lipids as possible
mediators of the effect of height on CAD, we found that lung
function (as measured by FVC and FEV1) is a mediator. Med-
iation analyses accounting for the genetic effect of FEV1 or FVC
abolished the association between height and CAD.

We did not find any evidence supportive of a direct causal
effect of height on T2D, despite the modest association we
observed based on observational data. Our results suggest that
while there is an indirect effect on T2D, this effect is not direct
and may be mediated by multiple factors (BMI, socio-economic
status etc.).

A potential limitation of our study is that we have assumed
no interaction between height and the mediators. However, we
were unable to test for this as we used aggregated genome-wide
data for glycaemic and lipid traits (unavailable in UK Biobank
at the time of analyses). Also, selection bias is an issue when using
any general population cohort, including the UK Biobank37. Such
participants tend to be slightly healthier than the underlying
population participants selected from. While UK Biobank parti-
cipants are not representative of the general population (and
hence cannot be used to provide representative disease prevalence
and incidence rates), valid assessment of exposure-disease rela-
tionships are nonetheless widely generalisable and do not require
participants to be representative of the population at large. In
the two-sample Mendelian randomisation, where independent
samples were used, weak instrument bias may result in bias
towards the null. Similarly, in mediation analyses weak instru-
ment bias could result in underestimation of the mediating
effects. However, we assumed that estimates come from two
different homogenous population studies without overlapping
samples. The use of large sample sizes and instruments with
large F statistics in our analyses is likely to have minimised any
effect on the obtained results. Also, the IVW method has been
shown to lead to slightly biased estimates (10% in either direc-
tion) in the presence of binary outcome and to a natural corre-
lation between causal estimates and standard errors that could
contribute to the presence of heterogeneity misinterpretable as
pleiotropy38.

Adult height is known to be associated to different socio-
economic factors19,30. Although we considered several socio-
economic factors, it remains possible that we are not fully
accounting for all confounding by other socio-economic status
parameters in our Mendelian randomisation analyses20.

In summary, we show that the main mediator of causal effect
of height on CAD is lung function whereas traditional CAD risk
factors have only marginal effects. We also show that there is
no evidence of a direct causal effect between height and T2D.

Methods
Analyses using individual level data. The UKBB recruited more than 500,000
individuals aged 37–73 between 2006 and 2010 across Great Britain. All partici-
pants provided information with questionnaires and interviews regarding health
status, anthropometric characteristics as well as blood, urine and saliva samples22.
Data underwent central quality control (see (http://biobank.ctsu.ox.ac.uk). UKBB
samples were excluded due to sample relatedness determined as kinship coefficient
greater than 0.0884.

Continuous traits. Height (cm) was measured using a Seca 202 device in all
participants of UKBB. We excluded individuals who exceeded a ± 5 standard
deviation away from the mean of the sampled population.

BMI was constructed from height and weight measured during the initial
Assessment Centre visit. Value is not present if either of these readings were
omitted. Continuous traits were adjusted for demographics, genetic structure and
converted to a normal distribution to limit the influence of any population
stratification and provide standard deviation effect sizes. Residuals of the exposure
from standard linear regression were taken by using as covariates: age, sex, five
principal components and batch. The residuals were then inverse normalised in
order to improve comparability with summary data Mendelian randomisation
analysis.

Disease definitions. CAD definitions: UKBB self-reported data: ‘Vascular/heart
problems diagnosed by doctor' or ‘Non-cancer illnesses that self-reported as angina
or heart attack’. Self-reported surgery defined as either PTCA, CABG or triple heart
bypass. HESIN hospital episodes data and death registry data using diagnosis and
operation—primary and secondary cause: MI defined as hospital admission or
cause of death due to ICD9 410–412, ICD10 I21-I24, I25.2; PTCA is defined as
hospital admission for PTCA (OPCS-4 K49, K50.1, K75); CABG is defined as
hospital admission for CABG (OPCS-4 K40–K46); Angina or chronic IHD defined
as hospital admission or death due to ICD9 413, 414.0, 414.8, 414.9, ICD10 I20,
I25.1, I25.5–I25.9.

Type 2 diabetes definitions: UKBB self-reported data: ‘Diabetes by Doctor’ or
“Non-cancer illnesses that self-reported as T2D’. HESIN hospital episodes data and
death registry data using diagnosis and operation—primary and secondary cause:
T2D defined as hospital admission or cause of death due to ICD10 E11.

Hypercholesterolaemia definitions: UKBB self-reported data: ‘Non-cancer
illnesses that self-reported as Hypercholesterolaemia. HESIN hospital episodes data
and death registry data using diagnosis and operation—primary and secondary
cause: Hypercholesterolaemia defined as hospital admission or cause of death due
to ICD10 E780, E7800, E7801.

Observational associations. Whether observational associations between height
and cardiometabolic disease have been documented, for consistency purposes we
performed conventional regression analysis of each cardiometabolic disease (CAD
and T2D) against height by using logistic regression. Height was the independent
variable for each trait of interest by using linear and logistic regression for con-
tinuous and binary traits, respectively. These associations were adjusted for age,
sex, first 40 PCs and batch. This information was compared with the estimates
derived from instrumental variable analyses.

Genetic analyses. Genotypes were extracted from UKBB imputation dataset
(Supplementary Data 35: Summary of the height variants previously identified as
associated with height at genome wide significance). Individual genotypes were
excluded if the imputation quality was less than 0.4. We confirmed that the variants
were imputed with high quality by comparing them with the directly genotyped
data, where available. Eight hundred and twenty eight independent (r2 ≤ 0.05) and
GWA significant (p < 5 × 10−8) SNPs were selected from the large GWA studies
for height13,14.

Genetic scores. Two genetic scores, weighted and unweighted, were created. The
first incorporated 828 independent height associated variants. We pruned variants
which were in linkage disequilibrium (LD) r2 of 0.05 Variants with low imputation
quality or unavailable were excluded. Individual variants were recoded as 0, 1 and
2, depending on the number of height increasing alleles. These variants were used
to create genetic scores.

The unweighted genetic scores for each individual were created by summing the
number of height increasing alleles for the 828 SNPs they are carrying. Weighted
genetic scores were also modelled. The weighted genetic score was calculated as the
sum of the number of height-associated alleles, weighted by the relative effect
size (β-coefficient) reported from the discovery meta-analysis13,14. In the derived
weighted genetic score, β represents the association between an additional weighted
height-associated allele at each single nucleotide polymorphisms (SNP) and height
from large GWA meta-analyses13,14: weighted score= β1 × SNP1+ β2 × SNP2+…
βn × SNPn. We present the range of the possible number of weighted height-
increasing alleles, by dividing the score by the average effect size of the variants for
each individual39. This is a transformation of the wGRS so that the range equalled
that of the unweighted score. Linear regression for each score with height and
logistic regression for each score with disease status were performed.

Mendelian randomisation. SNPs from large GWAS study of height to date were
identified by the 2015 and 2017 summary statistics files from the GIANT (Genetic
Investigation of Anthropometric Traits) consortium. Data on effect and other
alleles for each of the 828 LD pruned variants in up to 700,000 individuals of
European descent, along with allele frequencies, beta coefficients for allele dose, and
a 6.4 cm change in height, p-value and standard errors were extracted. In order to
test the statistical significance of the association of the instrument with height,
an F statistic was calculated using the formula: (β exposure × β exposure)/
(se exposure × se exposure)40.

One condition of Mendelian randomisation is that exposure-related SNPs
(the instrumental variables) must not be in LD with each other, as that can result in
confounding3. For this purpose LD between all variants was estimated in European
samples from 1000 Genomes using Plink software version 1.941. When two or
more SNPs were in LD (r2 > 0.05) only the most strongly associated variant with
height, based on p-value, was kept.

Mendelian randomisation relies on certain assumptions (Supplementary Fig. 6).
The instrumental variable is robustly associated with the exposure of interest. This
can be evaluated by estimating the F statistic and the R2 value. It is substantial to
have large studies, especially in instances where the instrumental variable explains a
small amount of the variance in the exposure (R2). Genome wide association studies
for height have yielded a large number of genetic variants that account for around
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30% of height heritability. That allows the use of strong instruments to be developed.
The instrumental variable has to be independent of any confounder42–45. When
using individual level data, known confounders can be checked. In two-sample
Mendelian randomisation, confounders can obstruct testing of this assumption due
to lack of summary data results on the association between the candidate genetic
instruments and the confounders. The instrumental variable is independent of the
outcome, given the exposure and any possible confounders. The instrumental
variable should not influence the outcome on an alternative path, other than through
the exposure. This assumption is violated by horizontal pleiotropy, in which there
are alternative pathways that the instrumental variable can affect the outcome.

We first performed an instrumental variable analysis (two-stage analysis) in
UKBB, where we had access to individual level data, and then expanded this analysis
to the largest summary statistics data sets currently available, assuming homogeneity
among the studies. We used summary data from genetic studies of the associations of
height associated variants with height from GIANT meta-analyses13,14. The
associations of the height variants with the other traits were extracted from the
following sets: CAD (CARDIoGRAMplusC4D-http://www.cardiogramplusc4d.org/
data-downloads/), T2D (DIAGRAM)29 using two-sample Mendelian randomisation
methods. To investigate potential mediators, genetic associations with fasting insulin,
fasting glucose, 2hGlu and HbA1c were obtained from MAGIC, http://www.
magicinvestigators.org/); HDL-cholesterol, LDL-cholesterol, total cholesterol and
triglycerides were obtained from GLGC (http://csg.sph.umich.edu/abecasis/public/
lipids2013/); anthropometric traits for GIANT (https://portals.broadinstitute.org/
collaboration/giant/index.php/GIANT_consortium_data_files); and BP from ICBP46.
Associations for lung function (FEV1 and FVC), socio-economic status variables and
body fat percentage summary data were extracted from http://www.nealelab.is/uk-
biobank. Summary statistics are provided in Supplementary Data 32–37.

Instrumental variable analysis (two-stage analysis). The Mendelian randomi-
sation approach used in this study was based on the following assumptions: the
height genetic scores had a strong association with measured height; the height
genetic scores were not associated with confounding factors that could bias the
observational association between height and cardiometabolic disease; the height
score was related to the outcome only through its effect on the exposure, assuming
a linear relationship between height and the logit-transformed outcome.

In order to estimate the causal effect of height on disease status we performed
instrumental variable analysis by using height genetic score as instrument. For the
binary traits, we used the two-stage estimator (logistic control function estimator)47–49.
The analysis was performed in two stages. First, the association between height genetic
score and height was assessed. These predicted values were then used as the
independent variable and disease status as the dependent variable in a logistic
regression model. Analyses were adjusted for age, sex, 40 principal components and
batch effect.

Two-sample Mendelian randomisation. Two-sample Mendelian randomisation
was undertaken using genome-wide association summary data from separate
samples, where data of the genotypes and the exposure of interest are available in
one sample, and data on genotype and the outcome of interest are available in the
other. For this part no ethical approval was sought as all data were derived from
summary statistics of published GWAS studies, with no individual-level data used.

Association of height variants with cardiometabolic traits. Coronary artery
disease genotyping data were derived from the most recent meta-analysis of Car-
diogram+C4D, which investigated the association of 7M variants after imputation
in up to 30,000 cases. The per-allele log-OR of CAD was extracted together with
its standard error for each of the independent genome-wide significant height
variants. Effect sizes were aligned to the height increasing allele.

The two-sample Mendelian randomisation was undertaken using previously
described methods50. Wald ratios were estimated for each SNP by dividing the per
allele log-OR for CAD (beta_gy) by the per-allele effect on height for each SNP
(beta_gx). Standard error for each Wald ratio was derived from the standard error
of the variant-outcome association divided by the variant-exposure association for
each instrument. We calculated the Wald ratio estimate where outcome ~ genetic
score and exposure ~ genetic score estimates were obtained using the previous
regression models with the genetic score.

Inverse-variance weighted (IVW) method. Conventional linear regression ana-
lysis of the variant-exposure association and variant-outcome association for each
instrument was undertaken and weighted by inverse variance. The point estimate is
equal to that derived from fixed-effect meta-analysis. The IVW method assumes
that all variants are valid instrumental variables. An IVW corrected for the stan-
dard errors of each instrument method was also applied. In this approach we
corrected for the correlation between the associations of the instrument with the
exposure and the association of the instrument with the outcome. When the IVW
method shows substantial heterogeneity, this means that there may exist alternative
pathways through which the SNPs affect the outcome (horizontal pleiotropy).
Heterogeneity for the Wald ratios was tested with the Cochran’s Q and quantified
with the I2 index51. We also used the Mendelian Randomization package to per-
form IVW analysis assuming random effects52.

MR-Egger method. MR-Egger method is more robust to potential violations of the
standard instrumental variable assumptions. This method was used to address the
issue of the aggregate unbalanced horizontal pleiotropy, which could violate the
third assumption of instrumental variable analysis. MR-Egger is similar to the IVW
method except that the intercept is not constrained to pass through the origin50.

MR-Egger method uses a weighted regression with an unconstrained intercept
to regress the effect sizes of the variant-outcome associations against effect sizes
of variant-exposure associations. The unconstrained intercept removes the
assumption that all genetic variants are valid instruments. This method is less
prone to confounding from possibly pleiotropic variants which could have stronger
effects on outcomes compared to the effect on the exposure.

When a non-zero intercept from the MR-Egger is observed, that would suggest
that there are pleiotropic effects; this could result in bias of the IVW estimates,
which are in the direction indicated by the intercept term. The estimate for the
effect of the exposure on the outcome, is provided by the slope of the MR-Egger.
It is important to mention that this estimate is correct, taking into account an
additional assumption, the InSIDE (instrument strength independent of direct
effect) assumption, which means that the associations between the genetic variants
and the exposure are independent of the effect that he variants have directly on the
outcome. Funnel plots can be used to demonstrate the individual variant effects on
the exposure and the outcome against the inverse of their standard error. When
no pleiotropy is present, the instrumental variable estimates for each variant are
symmetrically distributed around the point estimate. However, it is possible to
understand the contribution of each instrumental variable on the overall Q statistic
graphically.

IVW and Egger methods use weights that consider the SNP-exposure
associations to be known rather than estimated. This is called as the NO
measurement error assumption (NOME). We use an adaptation of the I2 statistic
in order to quantify the strength of NOME violation for MR-Egger. This measure is
called IGX2 and lies between 0 and 1. A high value of IGX2 and close to 1, indicates
that dilution does not affect the standard MR-Egger analyses performed51,53. For
the main analyses we used the first order weights, which correspond to the first
term of the Taylor series expansion, which approximate the standard error of the
Wald ratio estimate53. The IVW and the MR-Egger regression analyses were
repeated using the second order weights, which correspond to the first two terms
of the Taylor series expansion51,54.

Weighted median method. The weighted median method was used to investigate
pleiotropy55. In this method, the Mendelian randomisation estimates are ordered
and weighted by the inverse of their variance. When more than 50% of the total
weight comes from SNPs without pleiotropic effects, the median Mendelian
randomisation estimate should remain unbiased. This method improves precision
and is more robust to violations of the InSIDE assumption. If InSIDE holds, then
MR-Egger is consistent, while the weighted median will be only if 50% of the total
weight comes from SNPs without pleiotropic effects.

Mode-based estimate (MBE). The MBE method has presented less bias and type-
I error rates in simulations than other methods under the null in many situations.
The MBE relaxes the instrumental variable assumptions and is less prone to bias
due to violations of the InSIDE assumption24.

GSMR method. Given that the correlations between the SNP instruments could
lead to biased (smaller) Mendelian randomisation standard errors23, we also
applied the method Generalised Summary-data-based Mendelian randomisation
(GSMR) that performs a multi-SNP Mendelian randomisation analysis using
GWAS summary-level data accounting for the sampling variance in the estimated
SNP effects and remaining LD between SNPs. The GSMR R-package implements
the GSMR method to test for putative causal association between a risk factor
and a disease. We used 1000 Genomes (European population) imputed data to
create the LD correlation matrix25.

MR-PRESSO. MR-PRESSO (Mendelian randomisation pleiotropy residual sum
and outlier) is a method that allows for the evaluation for horizontal pleiotropy in
multi-instrument Mendelian randomisation analyses using genome-wide summary
association data26.

Power calculations. Calculations were performed using a non-centrality para-
meter-based approach56 implemented in the publically available tool mRnd (http://
cnsgenomics.com/). Power calculations are provided in Supplementary Fig. 7.

Sensitivity analyses. To further investigate the presence of pleiotropy and narrow
down the set of height variants which may have a causal effect on the risk of CAD
and T2D, we performed sensitivity analyses.

First, we assessed which variants may contribute to the total heterogeneity,
by estimating the Q statistic for each instrument. We then used some different
thresholds (5th (L1), 1st (L2), 0.19th (L3) percentile of a chi-squared with 1 degree
of freedom) and excluded variants which had a Q > L3, Q > L2 and Q > L1.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0361-2 ARTICLE

COMMUNICATIONS BIOLOGY |           (2019) 2:119 | https://doi.org/10.1038/s42003-019-0361-2 |www.nature.com/commsbio 7

http://www.cardiogramplusc4d.org/data-downloads/
http://www.cardiogramplusc4d.org/data-downloads/
http://www.magicinvestigators.org/
http://www.magicinvestigators.org/
http://csg.sph.umich.edu/abecasis/public/lipids2013/
http://csg.sph.umich.edu/abecasis/public/lipids2013/
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
http://cnsgenomics.com/
http://cnsgenomics.com/
www.nature.com/commsbio
www.nature.com/commsbio


Second, we assessed which variants are associated with any potential mediators
including BMI, BP (SBP, DBP, pulse pressure) and lipids (LDL, HDL, TG, TC). We
excluded any height associated variant which showed evidence for association with
these traits.

Mediation analyses. To estimate the effect of height on T2D and CAD taking into
account the role of potential mediators, we performed multivariable Mendelian
randomisation analyses, by using the IVW Mendelian randomisation method
with summary statistics data, after adjusting for the effect of each instrument
with the potential mediator57. We evaluated the proportion of the effect that is
mediated by any of the potential mediators by the changes in the total effect
of the genetically determined height and on the outcomes, assuming that the
mediators are continuously measured variables (multivariable Mendelian rando-
misation). We estimated the total, direct and indirect effects of the risk factor on
the outcome by using summary data27. It is recommended to provide estimates
of the total and direct effects, but not the indirect effect, as calculation of the
indirect effect relies on the linearity of the relationship that cannot occur with a
binary outcome27.

Using individual level data we also applied a three stage approach where we first
estimated the fitted values of the height genetic risk score with height, second the
fitted values of a BMI genetic risk score with BMI and finally we used these fitted
values to estimate the direct effect of height on the outcomes49,58. The weighted
regression method for calculating the direct effect is also equivalent to a two-stage
regression method, except that the first stage also regresses the mediator on the
genetic variants, and the second stage regresses the outcome on fitted values of
the exposure and fitted values of the mediator. This two-stage approach can be
undertaken to estimate the direct effect when individual-level data are
available27,49.

Bidirectional Mendelian randomisation analyses. We performed bidirectional
Mendelian randomisation analyses of the association of Coronary artery disease
and height. To construct a genetic instrument for CAD, we used variants which
reached genome-wide significance in the CARDIOGRAM+C4D consortium. For
the SNP-exposure we used the effect estimates and standard error of the associa-
tions of each variant with CAD derived from the meta-analysis28. We used a
similar approach for the bidirectional Mendelian randomisation analyses with
T2D. We used genome-wide associated with T2D in the DIAGRAM consortium29.
We also performed bidirectional Mendelian randomisation analysis by using 268
lung function associated variants (FVC, FEV1, FEV1/FVC) as exposure to inter-
rogate the effect of lung function on height. Our results suggest that there is no
evidence of a causal effect between lung function and height with the Egger
regression. Two-sample Mendelian randomisation analyses were conducted as
described above for height and coronary artery disease.

Statistical analysis was performed using R (version 3.4.3, the R Foundation for
Statistical Computing, Vienna, Austria) software.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Individual level genetic and phenotypic data of UK Biobank participants are available at
http://biobank.ctsu.ox.ac.uk. GWAS meta-analyses data for GIANT, CARDIOGRAM
+C4D, DIAGRAM, GLGC, MAGIC, and ICBP were publically available and
downloaded from the corresponding consortium sites. The authors declare that summary
statistics data supporting the findings of this study are available within the paper and its
supplementary information files.
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