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Abstract. We establish new Carleman estimates for the wave equation, which we then apply
to derive novel observability inequalities for a general class of linear wave equations. The main
features of these inequalities are that (a) they apply to a fully general class of time-dependent
domains, with timelike moving boundaries, (b) they apply to linear wave equations in any spatial
dimension and with general time-dependent lower-order coefficients, and (c) they allow for smaller
time-dependent regions of observations than allowed from existing Carleman estimate methods.
As a standard application, we establish exact controllability for general linear waves, again in the
setting of time-dependent domains and regions of control.

1. Introduction

In this article, we establish new Carleman estimates for the wave equation using a geometric
approach. The main objective is to apply these estimates in order to derive novel observability
inequalities for general linear wave equations, with the following features:

(I) The estimates apply to a general class of time-dependent domains, with moving boundaries.
(II) The estimates apply to wave equations in any spatial dimension.

(III) The estimates apply to general linear waves with time-dependent lower-order coefficients.
(IV) The estimates apply for a wide variety of time-dependent observation regions that are smaller

than those in standard Carleman-based observability inequalities.
As a standard application of these observability estimates, we establish the exact controllability of
linear waves on the same general class of time-dependent domains. Again, the region of control is
allowed to be time-dependent proper subsets of regions found in classical results.

While the present paper deals only with wave equations on R1+n (that is, on Minkowski space-
time), the main Carleman estimates are proved using ideas and intuitions from Lorentzian geometry.
As a result, the techniques presented here will also form the foundations for studying analogous
questions for geometric wave equations on Lorentzian manifolds.

1.1. Background. In the context of evolutionary differential equations, the question of exact con-
trollability is concerned with whether one can drive its solutions from any prescribed initial state to
any desired final state at a later time, under the constraint that only some limited parameters in
the system—the controls—can be set. If solutions of the differential equation represents a physical
system, then the above asks whether one can completely govern the system through its controls.

1.1.1. Controllability of Waves. To be more specific, let us consider a general linear wave equation
(1.1) −∂2ttϕ+∆xϕ+ X t∂tϕ+ X x · ∇xϕ+ V ϕ = 0,
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on a bounded (spatial) domain Ω ⊆ Rn. In this setting, the initial state and the final state each
correspond to a pair of functions, representing the values of ϕ and ∂tϕ at given times. There are
many possible choices for the control, with some common examples being the following:

• Interior controllability: An additional forcing term F on the right-hand side of (1.1).
• Dirichlet boundary controllability: Part of the Dirichlet boundary data for (1.1).
• Neumann boundary controllability: Part of the Neumann boundary data for (1.1).

In general, the methods for attacking all of the above cases are fairly similar. Thus, for conciseness,
we focus our attention in this paper solely on Dirichlet boundary controllability:

Problem 1.1. Let Ω be a bounded open subset of Rn. Fix an initial time τ− and a final time τ+, as
well as a subset Γ ⊆ [τ−, τ+]×∂Ω. Given any initial and final data (ϕ±0 , ϕ

±
1 ) ∈ L2(Ω)×H−1(Ω), can

one find some Dirichlet boundary control ϕb ∈ L2(R × ∂Ω), supported in Γ, such that the solution
ϕ of (1.1), with initial and Dirichlet boundary data

(ϕ, ∂tϕ)|t=τ− = (ϕ−0 , ϕ
−
1 ), ϕ|R×∂Ω = ϕb,

also achieves the final state
(ϕ, ∂tϕ)|t=τ+ = (ϕ+0 , ϕ

+
1 )?

Controllability of wave equations, and Problem 1.1 in particular, has been a topic of research
for several decades. Here, we give a brief, and by no means exhaustive, survey of some existing
research. For more complete discussions, see, for example, [45] and the references within.

Examples of early results include the works of Russell [52, 53]. Modern treatments of controlla-
bility are derived from the Hilbert Uniqueness Method (HUM) of Lions [41, 42]. (This is also closely
related to the more abstract functional analytic framework developed in [19].)

The main point is that by duality, controllability is equivalent to uniqueness properties of the
adjoint differential equation. More specifically, for the present setting, in order to establish an
affirmative answer to Problem 1.1, the main hurdle is to prove the observability inequality
(1.2) ∥ψ(τ±)∥H1(Ω) + ∥∂tψ(τ±)∥L2(Ω) ≲ ∥∂νψ∥L2(Γ),
for solutions ψ of the wave equation adjoint to (1.1). Here, ∂νψ denotes the Neumann boundary
data for ψ, and Γ is as described in Problem 1.1. When the inequality (1.2) holds, the HUM
machinery then yields exact controllability, with Dirichlet boundary controls supported in Γ.

For wave equations, there is a fundamental obstruction preventing exact controllability that is due
to finite speed of propagation. Indeed, some minimum amount of time is required for information
from the boundary controls to travel to all of Ω. In particular, this implies a lower bound on
the timespan τ+ − τ− (which depends on the region where the control is placed) required for any
boundary controllability, and hence observability, result to hold.1

Many methods have been developed for proving the crucial observability estimate (1.2). For
simplicity, let us first restrict our attention to the free wave equation,
(1.3) □ψ := −∂ttψ +∆xψ = 0.

For wave equations in one spatial dimension, observability estimates have been proved for many
PDEs using Fourier methods. In the context of (1.3), these results are often based on applications
of Ingham’s inequality [29] and its generalizations to the Fourier series expansions of ψ. Moreover,
such methods are capable of retrieving the optimal timespan for control, as dictated by finite speed

1This is in direct contrast to the heat and Schrödinger equations, which propagate at infinite speed. In these settings,
controllability generally holds for arbitrarily small times (given correspondingly large controls).
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of propagation. For detailed discussions of Fourier methods, the reader is referred to [6]. We also
remark that similar methods were recently used to prove (1.2) in higher dimensions [24].

Other proofs of (1.2) used multiplier methods, in which one integrates by parts an expression∫
[τ−,τ+]×Ω

□ψXψ,

where X represents an appropriately chosen first-order operator. Using this technique, Ho [25]
showed that for a sufficiently large timespan τ+ − τ−, the observability estimate (1.2) indeed holds
for solutions ψ of (1.3), for a control region Γ of the form
(1.4) Γ := (τ−, τ+)× {y ∈ ∂Ω | (y − x0) · ν > 0},
where x0 ∈ Rn is fixed, and where ν is the outward-pointing unit normal for Ω.2 Note that (1.4)
contains all points x ∈ ∂Ω such that the ray in Rn emanating from x0 and passing through x is
exiting Ω at x. In particular, one needs not apply the control on all of [τ−, τ+]× ∂Ω.

A modification of the above argument (see [42]) resulted in a lower bound on the timespan,
(1.5) τ+ − τ− > 2 max

y∈∂Ω
|y − x0|,

required for the inequality (1.2) to hold, with Γ again given by (1.4). Furthermore, using “rotated”
multipliers, Osses [48] obtained analogues of (1.2) with different boundary regions Γ.

Multiplier techniques can also be used to treat some wave equations of the form (1.1), as well as
some more general hyperbolic equations; see [46], for instance. However, these results generally fail
to recover lower bounds of the form (1.5) for the required timespan. For more detailed discussions
on multiplier methods and its roles in observability estimates, see [37].

(1.2) has also been established using microlocal methods, yielding optimal results with regards
to the requisite timespan and control region. Of particular note is the seminal result of Bardos,
Lebeau, and Rauch [8]. Consider now the boundary region
(1.6) Γ := [τ−, τ+]× Λ, Λ ⊆ ∂Ω.
Then, (1.2) holds for Γ as in (1.6) if and only if the geometric control condition (GCC) is satisfied:
roughly, every null geodesic in (τ−, τ+)×Ω—with the condition that it is reflected whenever it hits
the boundary (τ−, τ+)× ∂Ω—intersects some point of Γ; see [8, 13]. Note that the necessity of the
GCC follows from Gaussian beam constructions that propagate along these geodesics; see [49].

The result was generalized by Burq in [12], which reduced the regularity required. A more
modern and constructive proof of (1.2) along similar directions was given in [39]. Furthermore, [51]
extended the above results to time-dependent subsets Γ of the boundary that satisfy the GCC; this
further optimized the control regions required for (1.2) to hold.

Microlocal methods can also be adapted to some wave equations (1.1) with lower-order terms,
with the caveat that the coefficients (X t, X x, V ) are time-independent, or at most analytic in the
time variable.3 Moreover, these methods also apply to (time-independent) geometric wave operators
−∂tt+∆h on product manifolds of the form [−τ−, τ+]×M , where (M,h) is a Riemannian manifold
with or without boundary, and where ∆h is the h-Laplace-Beltrami operator on M .

Carleman estimates represent yet another family of tools that has been useful for deriving observ-
ability. These are, roughly, weighted (spacetime) integral inequalities which contain an additional
free parameter λ > 0. Historically, Carleman estimates have been used extensively for establishing

2Here, the timespan τ+ − τ− depends on the choice of x0.
3This requirement of time-analyticity is a consequence of the unique continuation results of [27, 50, 60].
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unique continuation properties of various PDEs, in particular with coefficients that fail to be ana-
lytic. This theory, pioneered by Carleman [15], Calderón [14], and Hörmander [26], among others,
has been developed over several decades; we refer the reader to [59] for a general survey.

In the context of Problem 1.1, Carleman estimates are advantageous due to their robustness, in
that they are applicable to a wide range of settings. For instance, in contrast to multiplier methods,
they allow one to treat wave equations (1.1) with arbitrary lower-order coefficients (with sufficient
regularity), while still achieving the some control regions of the form (1.4) as well as the lower
bound (1.5). In particular, by taking the free parameter λ in these estimates to be as large as
necessary, one can “absorb” away any potentially dangerous contributions from lower-order terms.

For example, Carleman estimates were applied toward proving observability and controllability
of wave equations (with lower-order terms) in [38, 64, 65]. Additional adaptions of the Carleman
estimate method can be found in [9, 22], among many others. For further discussions, see [23].

On one hand, methods based on Carleman estimates lack the precision of microlocal methods and
do not achieve the GCC in general. However, Carleman methods apply to a wider class of settings,
including wave equations with time-dependent lower-order coefficients, without any assumption of
analyticity in time. Moreover, Carleman estimates have been extended to geometric wave equations,
given additional assumptions on the (time-independent) geometry; see, e.g., [20, 22, 61].

For this article, we are particularly concerned with lower-order coefficients X t, X x, V that vary
in both space and time, without any presumption of analyticity. As we wish for our results to be
as widely applicable as possible, we resort to Carleman estimates methods here.

Finally, we remark that the Carleman methods applied in [9, 22, 38, 64, 65] dealt only with the
case in which x0 ̸∈ Ω̄. (This was in contrast to multiplier methods, which allows for all x0 ∈ Rn.)
In this article, we will also remove this restriction and consider cases with x0 ∈ Ω.

1.1.2. Non-Static Domains. All the works described thus far have dealt with wave equations on a
time-independent cylindrical domain, [τ−, τ+]×Ω, with time-independent boundary [τ−, τ+]× ∂Ω.
However, one can also pose the analogue of Problem 1.1 in settings in which the domain, and hence
the boundary, are moving in time. To be more specific, we consider a spacetime domain of the form

(1.7) U :=
∪
τ∈R

({τ} × Ωτ ),

where the Ωτ ’s are bounded open subsets of Rn that vary smoothly with respect to τ . For example,
this could represent a physical system that is itself accelerating.

In comparison to static settings, there has been a relatively small amount of research on time-
dependent, non-cylindrical domains. Below, we briefly survey of the some existing literature.

An early study that predated the HUM is that of Bardos and Chen [7], which established interior
controllability for free waves on domains U that are expanding in time. In particular, the result
was proved by deriving energy decay bounds and adopting stabilization techniques. Furthermore,
using geometric methods, the above result was extended to geometric (free) wave equations in [44],
under additional assumptions on the background geometry.

Using the HUM, Miranda [47] established Dirichlet boundary controllability for free waves on a
class of time-dependent domains with the following features:

• The domains are self-similar (i.e., each Ωτ is of the form k(τ) · Ω0 for some k(τ) > 0).
• The domain becomes “asymptotically cylindrical” (roughly, k′(τ) decays for large times).
• On the other hand, U needs not be expanding nor contracting at all times.

The result is established by applying a change of variables to convert the problem into that of
boundary controllability for a more general hyperbolic equation on a time-independent, cylindrical
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domain. The transformed problem is treated in [46] using multiplier methods and the observation
that the PDE asymptotes to the standard wave equation at large times.

The problem in one spatial dimension has been further studied by several authors in recent
years. For example, [17, 57] (see references within for earlier works) used multiplier methods to
study the case in which the boundary is given by two timelike lines ℓ0 and ℓ (with ℓ0 generally
taken to be vertical). More recently, [54, 55] considered these problems using Fourier methods.
In these particular cases, the optimal timespan required for control was obtained in some of the
above articles. Analogous problems with more general boundaries (that are not lines) have been
considered; one example is [63], which does not achieve the optimal timespan.

One of the primary goals of the present article is to tackle this problem of Dirichlet boundary
controllability of wave equations (with lower-order coefficients varying non-analytically in both space
and time) on time-dependent domains in full generality. In particular, we make no assumptions
on the shape of our domain U , aside from its boundary being timelike; in particular, U needs not
be expanding, contracting, or self-similar in time. To the author’s knowledge, the present paper
provides the first results regarding controllability of waves in moving domains in this generality.

These results will be established using a novel global Carleman estimate that is entirely supported
in the exterior of a null cone. Furthermore, we obtain the best required timespan for controllability
that have been achieved via multiplier and Carleman estimate methods.

1.2. The Main Results. In this section, we state, at least roughly, the main results of this paper.
More specifically, we begin by describing the main observability inequalities, as well as how they
improve upon existing results. We then discuss the new Carleman estimate that is used to derive
these observability estimates, as well as the main ideas involved in its derivation.

Our results will apply to spatially bounded but time-dependent domains of the form (1.7) which
also have a smooth timelike boundary. We will refer to these domains throughout the paper as
generalized timelike cylinders; see Definition 2.11 for a precise definition of these domains.

1.2.1. A Preliminary Estimate for Free Waves. We begin by first presenting a “warm-up” estimate
that applies only to the free wave equation on generalized timelike cylinders. While this estimate is,
in multiple ways, strictly weaker than our main results, it does allow us to first discuss the effects
of time-dependent domains on observability apart from the other details of the main results.

The “warm up” estimate can be roughly stated as follows:
Theorem 1.2. Let U be a generalized timelike cylinder of the form (1.7), fix a point x0 ∈ Rn, and
fix “initial” and “final” times τ± ∈ R, with τ− < τ+. Moreover, we assume that
(1.8) τ+ − τ− > R+ +R−, R± := sup

y∈∂Ωτ±

|y − x0|,

and we let t0 ∈ (τ−, τ+) be such that4

(1.9) τ+ − t0 > R+, t0 − τ− > R−.
Then, for any smooth solution ϕ of
(1.10) (−∂2ttϕ+∆xϕ)|U = 0, ϕ|∂U = 0,
we have the observability estimate

(1.11)
∫
U∩{t=τ±}

[(∂tϕ)
2 + |∇xϕ|2 + ϕ2] ≲

∫
Γ∗

|Nϕ|2,

4Note that (1.8) implies that such a t0 ∈ (τ−, τ+) satisfying (1.9) exists.
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where N denotes the Minkowski outer-pointing unit normal of U , and where

(1.12) Γ∗ := {(τ, y) ∈ ∂U | τ− < τ < τ+, N f∗|(τ,y) > 0}, f∗ :=
1

4
[|x− x0|2 − (t− t0)

2].

Theorem 1.2 implies, via the standard HUM, a corresponding exact controllability result for free
waves. A rough statement of this can be expressed as follows:

Corollary 1.3. Assume the definitions and hyptheses of Theorem 1.2. Then, the free wave equation
(1.3) is exactly controllable, with initial and final data on U∩{t = τ−} and U∩{t = τ+}, respectively,
and with Dirichlet boundary control supported in Γ∗ (all in the appropriate spaces).

Remark 1.4. See Theorem 5.17 for a precise statement of exact controllability in this context.

A precise version of Theorem 1.2, using notations developed in the article, is found in Theorem
2.23. In particular, despite its preliminary nature, Theorem 1.2 already achieves the properties (I)
and (II) listed in the beginning of the introduction, at least in the setting of free waves.

The proof of Theorem 1.2 is based on Lorentzian geometric adaptations of the classical multiplier
estimate found in [42]. The key points of this proof are as follows:

• The multiplier (x− x0) · ∇x in [42] is now replaced by the (Minkowski) gradient of f∗.
• The proof uses the divergence theorem for Lorentzian manifolds; see [62, Appendix B.2].

For further details, the reader is referred to the proof of Theorem 2.23.
We now discuss some of the main features of Theorem 1.2 and its relations to previous literature.

First, observe that when U is time-independent, so thatR+ = R−, then (1.8) reduces to the standard
bound (1.5) on the timespan. Moreover, (1.8) can be argued in terms of finite speed of propagation:
information placed on the boundary at time t = τ− needs time at most R− to travel to x0, and this
then needs time at most R+ to travel back to the boundary at t = τ+.

Next, since the domain U may be changing in time, the outer unit normal N may have a nonzero
t-component. Here, we use N to denote the Minkowski, rather than Euclidean, normal to N . More
specifically, if N̄ := (ν̄t, ν) denotes the Euclidean normal vector field to U , then
(1.13) N := (νt, ν) = (−ν̄t, ν).

Note that the control region Γ∗ from (1.12) is simply the classical region (1.4), except that the
condition (y − x0) · ν > 0 from (1.4) is now replaced by N f∗|(τ,y) > 0. In particular, observe that
when U is time-independent, (1.12) reduces precisely to the standard region (1.4), since

(1.14) N f∗ =
1

4
N (|x− x0|2) =

1

2

n∑
i,j=1

(xi − xi0)ν
j∂xj (x

i − xi0) =
1

2
(x− x0) · ν.

Remark 1.5. Whereas the standard observability estimates obtained from multipliers or Carleman
estimates can be thought to be centered about the point x0 in space, in Theorem 1.2, one would view
the estimate as being centered about the event (t0, x0) in the spacetime. In fact, the function f∗ in
(1.4) precisely measures the squared Minkowski distance to (t0, x0). However, as was seen in (1.14),
the contribution of “t0” is not seen unless the domain U is changing in time.

More generally, one can compute that

(1.15) N f∗ =
1

2
(x− x0) · ν −

1

2
(t− t0) · νt.

By the definition of N and νt in (1.13), we can observe the following:
• If νt > 0 at a point of ∂U , then U is expanding in time at that point.
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• If νt < 0 at a point of ∂U , then U is shrinking in time at that point.
Therefore, (1.15) implies the following general principle when t > t0:

• Where U is expanding, N f∗ is less positive than (x − x0) · ν. Thus, the region Γ∗ of
observation is smaller than the standard region (1.4) near points where U is expanding.

• Where U is shrinking, N f∗ is more positive than (x − x0) · ν. Thus, the region Γ∗ of
observation is larger than the standard region (1.4) near points where U is shrinking.

On the other hand, for times t < t0, the above relations are reversed: Γ∗ becomes larger wherever
U is expanding, while Γ∗ becomes smaller wherever U is shrinking.

1.2.2. Observability Estimates. From the “warm-up” observability estimate, Theorem 1.2, one can
already see (from (1.12)) the effect of the moving boundary on the region of observation. However,
Theorem 1.2 fails to achieve the features (III) and (IV) at the beginning of the introduction:

• Theorem 1.2 only applies to the free wave equation (1.3), and not to general linear wave
equations of the form (1.1), that is, with lower-order terms.

• The region of observation can be even significantly improved from (1.12).
As mentioned before, Carleman estimate methods have been successful in handling the first

point above, without any additional assumption of independence or analyticity in time for the
lower-order coefficients. Here, we will similarly extend Theorem 1.2 to linear wave equations of the
form (1.1)—hence achieving property (III)—using our upcoming Carleman estimates.

With regards to the second point above, recall that the preliminary estimate of Theorem 1.2 is in
principle centered about an event (t0, x0) of the spacetime. Another particularly novel consequence
of the main Carleman estimates of this article is that the region of observation can be further
restricted to the exterior D∗ of the null cone about (t0, x0). In fact, the main Carleman estimate
of this paper (see Theorem 3.1) is itself supported entirely on this exterior D∗.

With the above in mind, we now give a rough statement of our main observability estimates.
For simplicity of exposition, we avoid stating the most general cases here.

Theorem 1.6. Let U be a generalized timelike cylinder of the form (1.7), fix a point x0 ∈ Rn, and
fix “initial” and “final” times τ± ∈ R, with τ− < τ+. In addition:

• Assume the bound (1.8) holds, and let t0 ∈ (τ−, τ+) such that (1.9) holds.
• Fix V,X t ∈ C∞(Ū), and let X x ∈ C∞(Ū ;Rn).
• Let N denote the Minkowski outer-pointing unit normal of U , let f∗ be defined as in (1.12),

and let Γ† denote the following subset of ∂U :
(1.16) Γ† := {(τ, y) ∈ ∂U | f∗|(τ,y) > 0, N f∗|(τ,y) > 0}.

Moreover, let Y† be any neighborhood of Γ̄† in ∂U .
Then, for any smooth solution ϕ of
(1.17) (−∂2ttϕ+∆xϕ+ X t∂tϕ+ X x · ∇xϕ+ V ϕ)|U = 0, ϕ|∂U = 0,
we have the observability estimate

(1.18)
∫
U∩{t=τ±}

[(∂tϕ)
2 + |∇xϕ|2 + ϕ2] ≲

∫
Y†

|Nϕ|2.

The most general observability results can be found in Theorems 4.1 and 4.5, handling the cases
in which (t0, x0) lies outside and inside Ū , respectively. A precise version of Theorem 1.6, which
is a corollary of Theorems 4.1 and 4.5, can be found in Theorem 4.14. Note in particular that in
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contrast to previous results in the literature using Carleman estimate methods [9, 22, 38, 64, 65],
we do not require that the point (t0, x0) lies outside of Ū in Theorem 1.6.

Observe that the assumptions of Theorem 1.6, captured in (1.7), (1.8), and (1.9), are essentially
the same as in the “warm-up” Theorem 1.2. The first point of departure is that Theorem 1.6 applies
to the Dirichlet boundary problem for general linear wave equations of the form (1.1).
Remark 1.7. Theorem 1.6, as stated, applies only to smooth solutions ϕ of (1.17), with smooth
coefficients X x, X t, V . However, as is standard, the regularities of both the solutions and the coeffi-
cients can be significantly lowered by examining more precisely the integrability and differentiability
conditions required in the proofs throughout the article. Since regularity is not presently a concern,
we avoid discussing these points in this article for simplicity.

The second difference between Theorems 1.2 and 1.6 is in the observation region, in particular,
between Γ∗ in (1.12) and Γ† in (1.16). In particular, the condition τ− < t < τ+ within Γ∗ (specifying
that Γ∗ lies within the initial and final times) is replaced by the condition f∗ > 0 in Γ† (specifying
that Γ† lies in the exterior of the null cone about (t0, x0)). In Lorentzian geometric terms, Theorem
1.6 improves upon existing results by further restricting the observation region to events that are
not causally related to (t0, x0). See Figure 1.1 for examples of graphical depictions of Γ†.
Remark 1.8. In Minkowski geometry, the null cone about an event (t0, x0) is the set of all points
in R1+n satisfying f∗ = 0, or equivalently, the condition |t− t0| = |x− x0|.
Remark 1.9. The assumptions (1.8) and (1.9) imply the region Γ† in (1.16) is a proper subset of
Γ∗ in (1.12), so Theorem 1.6 represents an improvement in terms of the observation region. Note,
however, that the observation region in Theorem 1.2 is exactly Γ∗, whereas the observation region
Y† in Theorem 1.6 must be strictly larger than Γ† (i.e., any neighborhood of Γ̄†).

Compared to other results using multiplier and Carleman methods, Theorem 1.6 yields a strict
improvement of the region of observation to time-independent subsets of ∂U . However, the regions
Γ† are in general weaker than the geometric control condition obtained from microlocal methods
(under additional assumptions of time-independence or time-analyticity). Thus, as far as the author
is aware, the regions considered in Theorem 1.6 represent the best-known for non-analytic wave
equations, as well as for wave equations on time-dependent domains.
Remark 1.10. In addition, for general time-dependent U , the observation region Γ† in (1.16) can
be interpreted as a relativistic modification of the standard condition (x − x0) · ν > 0. To explore
this further, let us consider a point (τ, y) ∈ Γ†. We can then perform a Lorentz boost centered about
the event (t0, x0) to obtain a new inertial coordinate system (t′, x′) on R1+n such that

t′(τ, y) = t′(t0, x0) = t(t0, x0) = t0.
In other words, (τ, y) and (t0, x0) are simultaneous with respect to (t′, x′).

Since the function f∗ is invariant with respect to such Lorentz boosts, then

N f∗|(τ,y) =
1

4
N [|x′ − x0|2]|(τ,y) =

1

2
[(x′ − x0) · ν′]|(τ,y),

where ν′ denotes the spatial component of N in the boosted (t′, x′)-coordinates. In other words, the
condition N f∗|(τ,y) > 0 is simply the standard condition (x− x0) · ν > 0, but now with respect to a
boosted inertial coordinate system in which (t0, x0) and (τ, y) are simultaneous.

We also note the discrepancy between Γ†, which has the relativistic interpretation from Remark
1.10, and the actual observation region Y† from (1.18). In particular, Y† is strictly larger than Γ†,
though by an arbitrarily small amount. This difference arises from two technical points:
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Figure 1.1. The diagrams give examples of regions considered in Theorem 1.6.
The first image shows the boundary ∂U (in orange) of a generalized timelike cylin-
der U . The second image shows one case in which the point (t0, x0) (in red) lies
within U ; here, Γ† (drawn in green) is the full intersection of ∂U with the exterior
D∗ of the null cone about (t0, x0). The last two images demonstrate another case
with (t0, x0) outside of Ū : in the third image, the shaded piece (in light purple) is
the full intersection of ∂U with the null cone exterior D∗, while in the fourth image,
the highlighted piece (in green) is the strictly smaller region Γ†, where N f∗ > 0.
All of the images were generated using Mathematica.

• First, in the main Carleman estimates, we work not with f∗, but rather with a perturbation
f̄ ; see Theorem 3.1 and (3.5) for details.5 The reason is that the level sets of f∗ are only zero
pseudoconvex with respect to the wave operator, and hence a Carleman estimate obtained
using f∗ fails to control the full H1-norm of the solution.6

• Furthermore, for the “interior” observability estimates, where (t0, x0) ∈ U , the result is
obtained by adding together two Carleman estimates centered about two nearby points.
This is needed since the weights in the Carleman estimate degenerate at the center point,
hence the H1-norm is not controlled near there. For details, see Theorem 4.5.

Remark 1.11. In fact, when U is time-independent and (t0, x0) ̸∈ Ū (that is, the situation treated
by existing Carleman estimate methods in the literature), the observation region Y† in (1.18) can
be further improved to Γ†, which by (1.14) now has the form

Γ† := {(τ, y) ∈ ∂U | f∗|(τ,y) > 0, (y − x0) · ν > 0}, N := (νt, ν).

This is precisely the portion of the standard observation region (1.4) that lies outside the null cone
centered at (t0, x0). See Theorem 4.1 and Corollary 4.12 for details and precise computations.

On the other hand, when (t0, x0) ∈ U , one does not expect that Y† can be replaced with Γ†, since
in this case, Γ† violates the geometric control condition.

Remark 1.12. In the case n = 1, Theorem 1.6 recovers all the results in the existing literature,
including the articles [17, 54, 55, 57, 63] mentioned previously, up to the optimal observation time.7

5Note, however, that f̄ can be made arbitrarily close to f∗ by adjusting the parameter ε within.
6Earlier linear and nonlinear Carleman estimates obtained from f∗ were derived in [4, 5].
7However, Theorem 1.6 does not treat the case in which τ+ − τ− is exactly equal to the optimal time.
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In addition, Theorem 1.6 further extends previous results to general cases in which ∂U is given by
two timelike curves, and to wave equations with arbitrary lower-order coefficients.

Finally, we note that Theorem 1.6 again implies exact controllability:
Corollary 1.13. Assume the definitions and hyptheses of Theorem 1.6. Then, the linear wave (1.1)
is exactly controllable, with initial and final data on U ∩ {t = τ−} and U ∩ {t = τ+}, respectively,
and with Dirichlet boundary control supported in Y† (all in the appropriate spaces).
Remark 1.14. The initial and final data for the wave equation need not be placed on level sets of
t. In fact, with regards to Corollary 1.13, any pair of spacelike cross-sections of U lying in the past
and future of the null cone about (t0, x0) would suffice; see the discussion in Section 5.2. This is
an immediate consequence of (geometric) energy estimates for linear wave equations.
1.2.3. Carleman Estimates. As mentioned before, our main observability results, in particular The-
orem 1.6, are obtained using a new Carleman estimate (derived in Section 3), which is the foundation
of this article. Roughly speaking, this Carleman estimate has the following features:

• The estimate is supported in the exterior of a null cone about a point (t0, x0) ∈ R1+n. In
fact, this property implies, through the standard arguments, that the resulting observability
inequalities, such as Theorem 1.6, inherit this exterior support property.

• The estimate is established through Lorentzian geometric techniques. By taking advantage
of methods that exploit the full spacetime geometry, we obtain results that are equally
applicable to domains with either fixed or moving boundaries.8

The precise Carleman estimate of this paper is stated in Theorem 3.1 and proved throughout Section
3. Below, we give a brief summary of some of the ideas behind its derivation.

The Lorentzian geometric perspective toward Carleman estimates for wave equations had its
roots in other applications. For example, in mathematical relativity, such estimates were used to
establish rigidity properties for stationary black hole spacetimes; see, e.g., [1, 2, 16, 30, 31].

Regarding the main Carleman estimates of this article, its ideas arose from the study of unique
continuation properties of waves “from infinity”. In [3], the following result was shown using geo-
metric Carleman estimates: if a linear wave vanished to infinite order at a “large enough” portion
of both future and past “null infinity” (formally, where the radiation field is manifested), then the
wave must vanish locally near that portion of infinity.9 Furthermore, this infinite-order vanishing
is necessary, as one can construct solutions of (1.3) that decay like r−k for any k ∈ N.

Next, [4] showed that in R1+n, the infinite-order vanishing assumption can be removed provided
the wave is globally regular.10 Technically speaking, the infinite-order vanishing condition arose from
the use of cutoff functions in the standard argument proving unique continuation from Carleman
estimates. This was overcome in [4] using new global Carleman estimates for which the associated
weight itself vanishes on the null cone about the origin. In particular, this vanishing weight removed
the need to use a cutoff function in the unique continuation argument. In fact, a similar weight is
also responsible for the exterior support property in the estimates of this paper.

Despite the global nature of the Carleman estimate in [4], it is equally applicable to finite
spacetime regions U ⊆ R1+n. While this yields additional boundary terms on ∂U , the vanishing
Carleman weight again ensures that no boundary terms are found on the null cone itself. A nonlinear
variant of this estimate was applied in [5] to study singularity formation for focusing subconformal

8In fact, most features of the Lorentzian approach can already be seen in the proof of the preliminary Theorem 1.2.
9See [3] for precise statements.
10In particular, the counterexamples all blow up at some point in space.
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nonlinear wave equations. The key step with the Carleman estimate was to control the wave in the
interior of a past time cone, based at a singular point, by its values on the cone itself.

Although this is closely related to boundary observability estimates, which also aim to control
a wave in the interior of a cylindrical region U by its values on the boundary, the results of [4, 5]
unfortunately fail to imply such observability. The main reason is that these Carleman estimates
make heavy use of the hyperbolic function f∗ from (1.12), whose level sets fail to be strictly pseu-
doconvex.11 As a result, these estimates only control the L2-norm in the bulk, rather than the full
H1-norm that is required for observability and exact controllability.

In the existing literature on observability via Carleman estimates, this lack of pseudoconvexity
was overcome by altering f∗. More specifically, one instead considers the level sets of

fc = |x− x0|2 − c2(t− t0)
2, 0 < c < 1,

which are now strictly pseudoconvex. This property indeed allows for the recovery of theH1-norm in
the bulk. However, this fc is now poorly adapted to the geometry, in particular the characteristics,
of the wave operator. In particular, one cannot recover, using this fc, the aforementioned exterior
support property of the Carleman estimates from [4, 5].

In this paper, we instead consider different alterations f̄ of f∗, with the following properties:
• f̄ is well-adapted to the characteristics of the wave operator. In particular, like for f∗, the

level set {f̄ = 0} corresponds to the null cone about (t0, x0).
• The level sets of f̄ are strictly pseudoconvex in the exterior of the null cone about (t0, x0).

In particular, by making use of the above f̄ , one can both recover the H1-norm in the bulk and
preserve the exterior support property in our Carleman estimates.

While these properties of f̄ can be viewed as the consequences of extensive computations, they
can also explained through the perspective of conformal geometry. In this respect, the main idea
in this paper is to consider instead a “warped” metric ḡ that slightly inflates the volumes of spatial
spheres about the origin; see Definition 3.4. Moreover, this warped metric ḡ can be shown to be
conformally isometric to the usual Minkowski metric on R1+n; see Proposition 3.18.

A fairly direct computation (see Proposition 3.14) shows that the positive level sets of the function
f∗, with (t0, x0) = (0, 0), are strictly pseudoconvex with respect to ḡ. Then:

• Since pseudoconvexity (with respect to geometric wave operators) is a conformally invariant
property, the pullback f̄ of f∗ through the aforementioned conformal isometry is pseudo-
convex as well; this allows for the bulk H1-bounds in our Carleman estimates.

• Since the characteristics of geometric wave operators are also conformally invariant, this f̄
is also as well-adapted to the characteristics of the (flat) wave operator as f∗ is. As a result
of this, we can still derive the external support property using this f̄ in the place of f∗.

The above points provide the main ideas behind why the Carleman estimates in this paper work.

Remark 1.15. In fact, by conformal invariance, we can derive Carleman and observability es-
timates for wave equations with respect to other geometries that are conformally related to the
Minkowski metric. However, we will not pursue details of this in the present paper.

Now, regarding the proof of the main Carleman estimate, the strategy proceeds as follows:
(1) Prove a Carleman estimate for wave equations with respect to the “warped” metric ḡ.
(2) Use the above-mentioned conformal isometry and invariance in order to extract a corre-

sponding Carleman estimate for the usual (flat) wave operator on R1+n.

11Indeed, these level sets are only zero, or degenerately, pseudoconvex.
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Steps (1) and (2) are proved in Sections 3.2 and 3.1, respectively. We remark that although this
process still involves extensive computations, the benefit is that the main steps are relatively simple.
Remark 1.16. As previously mentioned, the existing literature on Carleman-based observability
[9, 22, 38, 64, 65] only considered settings with (t0, x0) ̸∈ Ū (in the context of time-independent U).
At a technical level, this was because one required uniform positivity of |x − x0| in order to obtain
a positive zero-order bulk term in the corresponding Carleman estimate. An interesting feature of
the exterior support property in our main Carleman estimate is that one no longer requires uniform
positivity for |x− x0| for a positive zero-order bulk. As a result, our main Carleman estimate also
holds when (t0, x0) ∈ U and hence is applicable toward “interior” observability estimates.

Finally, we remark that this warping of the metric, in particular the difference between the
Minkowski and warped metrics, is primarily responsible for the discrepancy between the Γ† and the
actual observed region Y† in Theorem 1.6. Moreover, since this warping can be made arbitrarily
small, the discrepancy between Γ† and Y† can be made small as well.

1.2.4. Other Directions. A larger aim beyond the present paper is to study to similar controllability
properties for geometric wave equations, in particular to settings with time-dependent geometry.
As far as the author is aware, there is no literature directly addressing controllability for waves on
general Lorentzian manifolds. While we do not discuss this here, our broader intention is to develop
tools that can be robustly applied to geometric settings in future works.

Next, since the methods in this article do not require time-analyticity for its coefficients, they
could also be used for treating nonlinear wave equations. As already mentioned, earlier versions of
the main Carleman estimate have been used in [5], in the context of studying singularity formation.

Finally, Carleman estimates have been widely applied toward solving inverse problems for wave
equations, which themselves are closely connected to problems in tomography and seismology (see,
e.g., [56, 58]). In this respect, Carleman estimates have been applied both directly [11, 28] or as part
of an intermediate unique continuation argument [10, 34, 32, 33, 35, 36]. Another application of
the estimates in this article (and their future geometric generalizations) is toward inverse problems
for wave equations in settings with time-dependent domains and moving boundaries.

1.3. Outline of the Paper. The remainder of this paper will be organized as follows:
• In Section 2, we define the objects and notations that we will use throughout the paper. In

particular, we describe the domains—the generalized timelike cylinders—that we will con-
sider in our main results. We also give a precise statement of the preliminary observability
estimate given in Theorem 1.2, and we give a short, simple proof of this estimate.

• In Section 3, we state and prove our main Carleman estimate, Theorem 3.1. In particular,
within the proof, we introduce the “warped” metric and establish its basic properties.

• Section 4 is dedicated to the the precise statements of the main observability inequalities
of this paper, as well as to the proofs of these inequalities.

• In Section 5, we discuss some consequences of the main observability results. In particular,
Section 5.1 explores the special case of one spatial dimension, while Section 5.2 deals with
the exact controllability results that follow from our main inequalities.

1.4. Acknowledgments. The author wishes to thank Spyros Alexakis for numerous discussions,
in particular for previous work related to an earlier form of the Carleman estimates in this paper.
The author also extends thanks to Lauri Oksanen, Matti Lassas, and Matthieu Léautaud for some
helpful discussions, as well as to two anonymous referees for their comments and suggestions. In
addition, this work was partly supported by EPSRC grant EP/R011982/1.
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2. Preliminaries

In this section, we set the notations and definitions that we will use throughout the paper. Using
these definitions, we will then give a precise formulation and a proof of the preliminary observability
estimate for free waves that was stated in Theorem 1.2.

Definition 2.1. Throughout, we will adopt the following standard notations for inequalities:
• We write A ≲ B to mean that there is some universal constant C > 0 such that A ≤ CB.

Moreover, A ≲a1,...,am
B means that the above constant C depends on a1, . . . , am.

• We write A≪ B to mean that there is some sufficiently small and universal constant c > 0
such that A ≤ cB. Moreover, A≪a1,...,am

B means that this c depends on a1, . . . , am.

2.1. The Geometric Setting. Since the methods we use are Lorentz geometric in nature, we begin
our discussions by setting the basic notations relating to Minkowski geometry—the background
naturally associated to the wave operator. In addition, we give a precise definition of generalized
timelike cylinders, the time-dependent domains on which our wave equations are set.

2.1.1. Minkowski Geometry. We begin by recalling the Minkowski metric on R1+n:

Definition 2.2. We define the following on R1+n:
• Let t and x = (x1, . . . , xn) denote the usual Cartesian coordinates on R1+n, mapping to the

first and the remaining n components of R1+n, respectively.
• Let g denote the Minkowski metric on R1+n:

(2.1) g := −dt2 + d(x1)2 + · · ·+ d(xn)2.
In particular, we refer to the manifold (R1+n, g) as Minkowski spacetime.

Definition 2.3. We also define the following standard functions on R1+n:
• Let r := |x| denote the radial function.
• Let u and v denote the null coordinates:

(2.2) u :=
1

2
(t− r), v :=

1

2
(t+ r).

• Let f denote the hyperbolic function,

(2.3) f := −uv =
1

4
(r2 − t2).

Remark 2.4. The nonzero level sets of f are one-sheeted (f > 0) and two-sheeted (f < 0)
hyperboloids on R1+n, while {f = 0} is the null cone with vertex at the origin.

For our purposes, it would also be convenient to consider spacetime translations of the functions
from Definitions 2.3. Thus, we will also make use of the following notations:

Definition 2.5. Fix a point P ∈ R1+n.
• We define the shifted time and spatial coordinates by

(2.4) tP := t− t(P ), xP := x− x(P ).
• We define the shifted radial coordinate, null coordinates, and hyperbolic function by

(2.5) rP := |xP |, uP :=
1

2
(tP − rP ), vP :=

1

2
(tP + rP ), fP := −uP vP .

Definition 2.6. Recall the following standard coordinate systems on R1+n:
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• On {r ̸= 0}, we recall the standard polar coordinates (t, r, ω) and null coordinates (u, v, ω),
with ω being the angular coordinate taking values in Sn−1. In addition, we let ∂t, ∂r, ∂u, ∂v
denote the coordinate vector fields with respect to these coordinate systems.

• We can also shift the above coordinate systems by any P ∈ R1+n. More specifically, on
{rP ̸= 0}, we have the shifted polar coordinates (tP , rP , ω) and null coordinates (uP , vP , ω),
with ω ∈ Sn−1 now denoting the angular value about the axis {rP = 0}. Again, we let ∂tP ,
∂rP , ∂uP

, ∂vP denote the coordinate vector fields with respect to these coordinate systems.

Recall that the Minkowski metric can be written in terms of polar and null coordinates as

(2.6) g = −dt2P + dr2P + r2P γ̊ = −4duP dvP + r2P γ̊, P ∈ R1+n,

where γ̊ is the unit round metric on the level spheres of (uP , vP ).

Definition 2.7. For tensor fields on R1+n, we adopt the following index conventions:
• We use lowercase Greek letters (ranging from 0 to n) for spacetime components in R1+n.
• We use lowercase Latin letters (ranging from 1 to n − 1) to denote angular components,

corresponding to the ω ∈ Sn−1 in any of the coordinate systems in Definition 2.6.
• As is standard, we will adopt the Einstein summation notation—repeated indices in both

subscript and superscript refer to sums over all possible index values.
• Unless stated otherwise, indices will be raised and lowered using g and its metric dual.

Definition 2.8. We adopt the following notations for covariant derivatives:
• Let ∇ denote the Levi-Civita connection with respect to g. In particular, for an appropriately

defined function A, we write ∇A to mean the spacetime differential of A.
• Let ∇♯ denote the gradient with respect to g; more specifically, for an appropriate scalar

function h, we let ∇♯h be the g-metric dual of ∇h.12

• Let □ denote the wave operator with respect to g:

(2.7) □ := gαβ∇αβ.

• Let /∇ denote the angular connections on the level spheres σ of (u, v), i.e., the Levi-Civita
connections associated with the metrics /g induced by g on the spheres σ. Similarly, we use
/∇P to denote the angular connections on the level spheres of (uP , vP ).

Definition 2.9. Let P ∈ R1+n. We define the domains DP and D by

(2.8) DP := {fP > 0}, D := {f > 0},

i.e., the exteriors of the null cones about P and the origin, respectively.

Definition 2.10. Let P ∈ R1+n and A ⊆ R1+n.
• Let I+(P ) and I−(P ) denote the chronological future and past, respectively, of P :

(2.9) I+(P ) = {fP < 0} ∩ {tP > 0}, I−(P ) = {fP < 0} ∩ {tP < 0}.

• Let I+(A) and I−(A) denote the chronological future and past of A:

(2.10) I+(A) =
∪
P∈A

I+(P ), I−(A) =
∪
P∈A

I−(P ).

12In other words, ∇♯h is the vector field obtained by raising the index of ∇h.
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2.1.2. Geometric Timelike Cylinders. Next, we define precisely the domains (in general, time-
dependent and with moving boundaries) on which we will consider our wave equations.
Definition 2.11. U is called a generalized timelike cylinder (abbreviated GTC) in R1+n iff:

• U ⊆ R1+n, and ∂U is a smooth timelike hypersurface of R1+n.
• For any τ ∈ R, the set Ωτ := {y ∈ Rn | (τ, y) ∈ U} is nonempty, bounded, and open in Rn.
• There is a smooth future-directed timelike vector field Z on Ū , with Z|∂U tangent to ∂U .

In the above, we refer to Z as a generator of U .
Remark 2.12. Note that if U is a GTC, then we have the following:

• With Ωτ as in Definition 2.11, we can write

U =
∪
τ∈R

{τ} × Ωτ .

• Since each Ωτ is open, then U is open in R1+n.
• Any two Ω̄τ0 and Ω̄τ1 are diffeomorphic, as manifolds with boundaries. For instance, one

can identify Ω̄τ0 with Ω̄τ1 by flowing along the integral curves of any generator Z of U .
Remark 2.13. The regularity of ∂U and the generator Z in Definition 2.11 could be lowered
considerably without altering the main results of this paper. However, since regularity is not a main
focus here, we avoid exploring optimal regularities to avoid technical baggage.
Example 2.14. Suppose Ω is bounded and open subset of Rn, with a smooth boundary ∂Ω. Then,
the static cylinder R× Ω is a GTC, and ∂t is a generator of R× Ω.

Suppose U is a GTC. Given a coordinate system (y1, . . . , yn) on Ω0 (see Definition 2.11), we can
lift the yk’s to U by transporting them along the integral curves of a generator Z. With respect
to the coordinates (t, y1, . . . , yn), we have that U ≃ R × Ω0. Thus, we can characterize GTCs as
domains that can be reparametrized as static cylinders (in which the static direction is timelike).

Next, we describe geometrically the hypersurfaces on which one can impose Cauchy (i.e., initial
or final) data for a linear wave equation on a GTC:
Definition 2.15. Let U be a GTC. A subset V ⊆ U is called a cross-section of U iff:

• V is a smooth spacelike hypersurface of U , and ∂V ⊆ ∂U .13

• If Z is a generator of U , then every integral curve of Z hits V̄ exactly once.
Note that any two cross-sections V1 and V2 of a GTC must be diffeomorphic, since V1 can be

identified with V2 by flowing along the integral curves of any generator. Next, we develop some
basic terminology for comparing two cross-sections of a GTC.
Definition 2.16. Let U be a GTC, and let V−,V+ be two cross-sections of U .

• We write V− < V+ iff V+ ⊆ I+(V−) (or equivalently, V− ⊆ I−(V+)).
• When V− < V+, we let U(V−,V+) denote the region of U between V− and V+,

(2.11) U(V−,V+) := U ∩ I+(V−) ∩ I−(V+),
and we let ∂U(V−,V+) denote the region of ∂U between V− and V+,

(2.12) ∂U(V−,V+) := ∂U ∩ I+(V−) ∩ I−(V+).
The most basic examples of cross-sections are constructed from the level sets of t:

13Recall that V is called spacelike iff the metric on V induced by g is positive-definite.
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Definition 2.17. Let U be a GTC.
• Given τ ∈ R, we define the cross-section

(2.13) Uτ := U ∩ {t = τ}.
• Moreover, given τ−, τ+ ∈ R with τ− < τ+, we define

Uτ−,τ+ := U(Uτ− ,Uτ+) = U ∩ {τ− < t < τ+},(2.14)
∂Uτ−,τ+ := ∂U(Uτ− ,Uτ+) = ∂U ∩ {τ− < t < τ+}.

2.2. Linear Wave Equations. The next task is to give a precise description of the linear wave
equations that we will consider throughout this paper:

Problem 2.18. Let U be a GTC in R1+n, and fix
(2.15) X ∈ C∞(Ū ;R1+n), V ∈ C∞(Ū).
Solve the following linear wave equation on Ū :
(2.16) Pϕ|U := (□ϕ+∇Xϕ+ V ϕ)|U = 0.

Remark 2.19. The assumption (2.15) that the coefficients X and V in P are smooth is purely for
convenience. All the results in the paper still hold, as long as X and V are sufficiently regular. For
instance, our main observability results remain true when X and V are merely uniformly bounded.14

2.2.1. Energy Estimates. Next, we establish standard energy estimates, one global and one local,
for solutions of Problem 2.18 with vanishing Dirichlet data. Before stating and proving the energy
estimates, however, we first require some notations regarding the sizes of tensorial objects:

Definition 2.20. Let W be an open subset of R1+n.
• For a scalar h ∈ C∞(W), we define

(2.17) |∇t,xh|2 = (∂th)
2 + (∂x1h)2 + · · ·+ (∂xnh)2.

• For a vector field X ∈ C∞(W;R1+n), we define

(2.18) |Xt,x|2 = (Xt)2 + (Xx1

)2 + · · ·+ (Xxn

)2,

where Xt, Xx1

, . . . , Xxn represent the components of X in Cartesian coordinates.

The following global energy estimate can be viewed as a geometric extension of the modified
energy estimates of [20, 66]. As was the case in [20], these modified estimates allow us to optimize
our dependence on the potential in our main observability estimates.

Proposition 2.21. Let U be a GTC, and let V± be cross-sections of U with V− < V+. Moreover,
consider the linear wave equation of Problem 2.18, and let
(2.19) M0 := 1 + sup

U(V−,V+)

|V |, M1 := 1 + sup
U(V−,V+)

|X t,x|, T := sup
V+

t− inf
V−

t.

Then, there exist constants C,C ′ > 0, depending on U and V±, such that∫
V+

(|∇t,xϕ|2 +M0 · ϕ2) ≤ CeC
′(M

1
2
0 +M1)T

∫
V−

(|∇t,xϕ|2 +M0 · ϕ2),(2.20)

14The assumptions for V could be further weakened (for instance, to Lp-integrability) with more refinements to the
proofs in this article. However, we avoid doing this here in order to avoid additional technical details.
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V−

(|∇t,xϕ|2 +M0 · ϕ2) ≤ CeC
′(M

1
2
0 +M1)T

∫
V+

(|∇t,xϕ|2 +M0 · ϕ2).

for any solution ϕ ∈ C2(U) ∩ C1(Ū) of (2.16) that also satisfies ϕ|∂U(V−,V+) = 0.

Proof sketch. First, we fix some t ∈ C∞(Ū) satisfying the following:
• ∇♯t is everywhere timelike and past-directed (i.e., t is a “time coordinate”).
• There exist τ± ∈ R such that

(2.21) V± = U ∩ {t = τ±}, τ+ − τ− ≃ T .
Note U ∩ {t = τ} is a cross-section of U for any τ ∈ R. We also define the modified energy

(2.22) E(τ) =
∫
U∩{t=τ}

(|∇t,xϕ|2 +M0 · ϕ2), τ ∈ R,

as well as the modified stress-energy tensor:

(2.23) Qαβ := ∇αϕ∇βϕ− 1

2
gαβ(g

µν∇µϕ∇νϕ+M0 · ϕ2).

Let Z be a generator of U ; we then apply the usual multiplier method to ϕ, with multiplier Z.
First, an application of the (Lorentzian) divergence theorem on U(V−,V+) yields

(2.24)
∫
U(V−,V+)

∇α(QαβZ
β) =

∫
V+

Q(N ′, Z) +

∫
V−

Q(N ′, Z) +

∫
∂U(V−,V+)

Q(N , Z),

where N and N ′ denote the outward and inward pointing unit normals to U(V−,V+), respectively.
Since Z is future timelike, then standard computations yield that

(2.25) ∓
∫
V±

Q(N ′, Z) ≃U,V± E(τ±).

Moreover, since Z and N are orthogonal on ∂U , and since ϕ vanishes on ∂U(V−,V+), then

(2.26)
∫
∂U(V−,V+)

Q(N , Z) =

∫
∂U(V−,V+)

NϕZϕ = 0.

For the bulk term in (2.24), we expand and apply (2.16) to estimate∣∣∣∣∣
∫
U(V−,V+)

∇α(QαβZ
β)

∣∣∣∣∣ ≤
∫
U(V−,V+)

(|□ϕ||Zϕ|+M0|ϕ||Zϕ|+ |Qαβ∇αZβ |)(2.27)

≲U,V±

∫
U(V−,V+)

(M1|∇t,xϕ||Zϕ|+M0|ϕ||Zϕ|+ |∇t,xϕ|2).

By (2.22), (2.27), Hölder’s inequality, and Fubini’s theorem, we conclude that

(2.28)
∣∣∣∣∣
∫
U(V−,V+)

∇α(QαβZ
β)

∣∣∣∣∣ ≲U,V± (M
1
2
0 +M1)

∫ τ+

τ−

E(τ)dτ .

Combining (2.24)–(2.26) and (2.28), we obtain the inequalities

(2.29) E(τ±) ≲U,V± E(τ∓) + (M
1
2
0 +M1)

∫ τ+

τ−

E(τ)dτ .

By varying V± to be other level sets of t, we see that (2.29) holds for arbitrary τ± ∈ R. The
desired estimate (2.20) now follows from (2.29) and from Gronwall’s inequality. □
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We will also need a variant of Proposition 2.21 that is localized to a null cone exterior.

Proposition 2.22. Fix P ∈ R1+n, let U be a GTC, and let V be a cross-section of U satisfying
either Ut(P ) < V or V < Ut(P ). Moreover, we consider Problem 2.18, and we let

(2.30) M0 := 1 + sup
U∩DP

|V |, M1 := 1 + sup
U∩DP

|X t,x|, T := sup
V

|t− t(P )|.

Then, there exist C,C ′ > 0, depending on U and V, such that

(2.31)
∫
V∩DP

(|∇t,xϕ|2 +M0 · ϕ2) ≤ CeC
′(M

1
2
0 +M1)T

∫
Ut(P )∩DP

(|∇t,xϕ|2 +M0 · ϕ2),

for any solution ϕ ∈ C∞(U) ∩ C1(Ū) of (2.16) that also satisfies ϕ|∂U∩DP
= 0.

Proof sketch. Again, we fix a “time coordinate” t ∈ C∞(Ū) such that:
• ∇♯t is everywhere timelike and past-directed.
• There exist τ0, τ1 ∈ R such that

(2.32) V = U ∩ {t = τ1}, U ∩ {t = τ0}, |τ1 − τ0| ≃ T .
Moreover, let Q be defined as in (2.23), and define the localized energy,

(2.33) H(τ) =

∫
U∩{t=τ}∩DP

(|∇t,xϕ|2 +M0 · ϕ2), τ ∈ R.

We only prove the case Ut(P ) < V (that is, τ0 < τ1), as the remaining case V < Ut(P ) can be derived
analogously. We also assume V ∩ DP ̸= ∅, since the result is trivial otherwise.

Again, we let Z be a generator of U . The argument proceeds like the proof of Proposition 2.21,
except we integrate ∇α(QαβZ

β) over U(Ut(P ),V) ∩ DP . Applying the divergence theorem yields∫
U(Ut(P ),V)∩DP

∇α(QαβZ
β) =

∫
V∩DP

Q(N ′, Z) +

∫
Ut(P )∩DP

Q(N ′, Z)(2.34)

+

∫
∂U(Ut(P ),V)∩DP

Q(N , Z) + I,

where N and N ′ denotes the outward and inward pointing unit normals to U(V−,V+), respectively,
and where the last term I denotes an integral over the null boundary U(Ut(P ),V) ∩ ∂DP .

By computations similar to those in the proof of Proposition 2.21, we obtain

(2.35) −
∫
V∩DP

Q(N ′, Z) ≃U,V H(τ1),
∫
Ut(P )∩DP

Q(N ′, Z) ≃U,V H(τ0),

as well as

(2.36)
∫
∂U(Ut(P ),V)∩DP

Q(N , Z) = 0,

For the remaining null boundary integral, standard computations using Q imply that I ≥ 0.15

Next, using (2.16), we can bound∣∣∣∣∣
∫
U(Ut(P ),V)∩DP

∇α(QαβZ
β)

∣∣∣∣∣ ≤
∫
U(Ut(P ),V)∩DP

(|□ϕ||Zϕ|+M0|ϕ||Zϕ|+ |Qαβ∇αZβ |)(2.37)

15In particular, we use that Q satisfies the so-called positive energy condition.
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≲U,V (M
1
2
0 +M1)

∫ τ1

τ0

H(τ)dτ .

Combining (2.34)–(2.37) yields

(2.38) H(τ1) ≲U,V H(τ0) + (M
1
2
0 +M1)

∫ τ1

τ0

H(τ)dτ .

Varying V yields that (2.38) holds for any τ1 > 0, and (2.31) follows from Gronwall’s inequality. □

2.2.2. The Preliminary Result. We conclude this section by proving the preliminary observability
estimate for free waves described in Section 1.2.1. More specifically, we establish the following:

Theorem 2.23. Let (U , Z) be a GTC, and fix x0 ∈ Rn and τ± ∈ R, with τ− < τ+. Also, assume
(2.39) τ+ − τ− > R+ +R−, R± := sup

(τ±,y)∈∂U
|y − x0|,

and fix t0 ∈ (τ−, τ+) such that
(2.40) τ+ − t0 > R+, t0 − τ− > R−.
Then, for any smooth solution ϕ of
(2.41) □ϕ|U = 0, ϕ|∂U = 0,
we have the observability estimate

(2.42)
∫
Uτ±

(|∇t,xϕ|2 + ϕ2) ≲U,(t0,x0),τ+−τ−

∫
Γ∗

|Nϕ|2,

where N denotes the Minkowski outer-pointing unit normal of U , and where
(2.43) Γ∗ := {(τ, y) ∈ ∂Uτ−,τ+ | N fP > 0}, P := (t0, x0).

Proof. By the translation symmetry of Minkowski spacetime, we can assume without loss of gen-
erality that P = (t0, x0) := 0 (and hence fP = f). For convenience, we also define

(2.44) S := ∇♯f , S∗ := S +
n− 1

4
.

Note that direct computations yield

(2.45) ∇2f =
1

2
g, □f =

n+ 1

2
.

The proof of (2.42) proceeds in a manner analogous to the multiplier proof in [42], except that
here we use S∗ϕ as our multiplier. First, recalling (2.41) and (2.44), we see that

(2.46) 0 =

∫
Uτ−,τ+

□ϕS∗ϕ =

∫
Uτ−,τ+

□ϕSϕ+
n− 1

4

∫
Uτ−,τ+

□ϕ · ϕ := I1 + I2.

For I2, we integrate by parts (using the Lorentzian divergence theorem [62]) to obtain

(2.47) I2 = −n− 1

4

∫
Uτ

∂tϕ · ϕ
∣∣∣∣τ=τ+

τ=τ−

− n− 1

4

∫
Uτ−,τ+

∇αϕ∇αϕ.

Similarly, for I1, we integrate by parts twice and recall (2.3), (2.41), (2.44), and (2.45):

I1 = −
∫
Uτ

∂tϕSϕ

∣∣∣∣τ=τ+

τ=τ−

+

∫
∂Uτ−,τ+

NϕSϕ−
∫
Uτ−,τ+

∇αϕ∇α(∇βf∇βϕ)(2.48)
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= −
∫
Uτ

∂tϕSϕ

∣∣∣∣τ=τ+

τ=τ−

+

∫
∂Uτ−,τ+

N f(Nϕ)2 −
∫
Uτ−,τ+

∇αϕ∇αβf∇βϕ

− 1

2

∫
Uτ−,τ+

∇βf∇β(∇αϕ∇αϕ)

= −
∫
Uτ

∂tϕSϕ

∣∣∣∣τ=τ+

τ=τ−

+
1

2

∫
Uτ

∂tf∇αϕ∇αϕ

∣∣∣∣τ=τ+

τ=τ−

+
1

2

∫
∂Uτ−,τ+

N f(Nϕ)2

−
∫
Uτ−,τ+

∇αβf∇αϕ∇βϕ+
1

2

∫
Uτ−,τ+

□f∇αϕ∇αϕ

= −
∫
Uτ

∂tϕSϕ

∣∣∣∣τ=τ+

τ=τ−

+
1

2

∫
Uτ

∂tf∇αϕ∇αϕ

∣∣∣∣τ=τ+

τ=τ−

+
1

2

∫
∂Uτ−,τ+

N f(Nϕ)2

+
n− 1

4

∫
Uτ−,τ+

∇αϕ∇αϕ.

In particular, for the boundary terms along ∂Uτ−,τ+ in (2.48), we observed that the only nonzero
components of ∇ϕ lie in the N -direction. Combining (2.46)–(2.48), we then obtain

(2.49)
∫
Uτ

(
∂tϕS∗ϕ− 1

2
∂tf∇αϕ∇αϕ

)∣∣∣∣τ=τ+

τ=τ−

=
1

2

∫
∂Uτ−,τ+

N f(Nϕ)2.

Using (2.3) and (2.44), we expand

∂tϕS∗ϕ− 1

2
∂tf∇αϕ∇αϕ =

1

2
t(∂tϕ)

2 +
1

4
∂tϕ∇α(|x|2)∇αϕ− n− 1

4
ϕ∂tϕ+

1

4
t∇αϕ∇αϕ(2.50)

=
1

4
t|∇t,xϕ|2 +

1

2
∂tϕΣ∗ϕ,

where

(2.51) Σ∗ϕ :=
1

2
[∇α(r2)∇αϕ− (n− 1)ϕ].

Combinining (2.49) and (2.50) then yields

(2.52) τ+
2

∫
Uτ+

|∇t,xϕ|2 −
τ−
2

∫
Uτ−

|∇t,xϕ|2 = −
∫
Uτ

∂tϕΣ∗ϕ

∣∣∣∣τ=τ+

τ=τ−

+

∫
∂Uτ−,τ+

N f(Nϕ)2.

Now, at t = τ±, we recall (2.51) and bound∣∣∣∣∣
∫
Uτ±

∂tϕΣ∗ϕ

∣∣∣∣∣ ≤ R±

2

∫
Uτ±

(∂tϕ)
2 +

1

2R±

∫
Uτ±

(Σ∗ϕ)
2(2.53)

=
R±

2

∫
Uτ±

(∂tϕ)
2 +

1

2Rτ±

∫
Uτ±

1

4
[∇α(r2)∇αϕ]

2

+
1

2R±

∫
Uτ±

[(
n− 1

2

)2

ϕ2 +
n− 1

4
∇α(r2)∇α(ϕ

2)

]
.

By (2.39), the first two integrands in the right-hand side of (2.53) can be bounded by

(2.54)
{
R±

2
(∂tϕ)

2 +
1

2R±
· 1
4
[∇α(r2)∇αϕ]

2

}∣∣∣∣
U±

≤ R±

2
|∇t,xϕ|2

∣∣∣∣
U±

.
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Furthermore, the last term in (2.53) can be simplified via integrating by parts (using the classical
divergence theorem on a domain in Rn) and recalling from (2.41) that ϕ vanishes on ∂U :

(2.55)
∫
U±

∇α(r2)∇α(ϕ
2) = −2n

∫
U±

ϕ2.

From (2.53)–(2.55), we then estimate∣∣∣∣∣
∫
Uτ±

∂tϕΣ∗ϕ

∣∣∣∣∣ ≤ R±

2

∫
Uτ±

|∇t,xϕ|2 +
1

2R±

∫
Uτ±

[
(n− 1)2

4
− n(n− 1)

2

]
ϕ2(2.56)

=
R±

2

∫
Uτ±

|∇t,xϕ|2 −
n2 − 1

8R±

∫
Uτ±

ϕ2.

Finally, combining (2.52) and (2.56), we conclude that

τ+
2

∫
Uτ+

|∇t,xϕ|2 −
τ−
2

∫
Uτ−

|∇t,xϕ|2 +
n2 − 1

8

(
1

R−

∫
Uτ−

ϕ2 +
1

R+

∫
Uτ+

ϕ2

)
(2.57)

≤ R+

2

∫
Uτ+

|∇t,xϕ|2 +
R−

2

∫
Uτ−

|∇t,xϕ|2 +
∫
∂Uτ−,τ+

N f(Nϕ)2

≤ R+

2

∫
Uτ+

|∇t,xϕ|2 +
R−

2

∫
Uτ−

|∇t,xϕ|2 +
∫
Γ∗

N f(Nϕ)2,

In the last step of (2.57), we observed that the sign of N f(Nϕ)2 in the boundary integral is simply
the sign of N f , hence the part of ∂Uτ−,τ+ where N f < 0 can be discarded. The desired estimate
(2.42) now follows by applying the assumption (2.40) (with t0 = 0) to (2.57).16 □

3. Carleman Estimates

The objective of this section is to establish the main Carleman estimate of this paper:

Theorem 3.1. Let U be a GTC, and fix P ∈ R1+n. Moreover, assume there exists R > 0 with
(3.1) Ū ∩ DP ⊆ {rP < R}.
Fix also ε, a, b > 0, and suppose the following conditions hold:
(3.2) a ≥ n2, ε≪n b≪ R−1.
Then, there exist constants C,C ′ > 0—which are independent of ε, a, b, R—such that given any
(3.3) ϕ ∈ C2(U) ∩ C1(Ū), ϕ|∂U∩DP

= 0,
we have the Carleman estimate

1

a

∫
U∩DP

ζPa,b;εfP |□ϕ|2 + C ′
∫
∂U∩DP

ζPa,b;ε[(1− εrP )N fP + εfPN rP ] · |Nϕ|2(3.4)

≥ Cε

∫
U∩DP

ζPa,b;εr
−1
P (|uP · ∂uP

ϕ|2 + |vP · ∂vP ϕ|2 + fP · gab /∇P
a ϕ /∇P

b ϕ)

+ Cba2
∫
U∩DP

ζPa,b;εf
− 1

2

P · ϕ2,

where:
16Although (2.57) does not control the L2-norm of ϕ when n = 1, this can be recovered using the Poincaré inequality.
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• ζPa,b;ε is the associated Carleman weight

(3.5) ζPa,b;ε :=

{
fP

(1 + εuP )(1− εvP )
· exp

[
2bf

1
2

P

(1− εuP )
1
2 (1 + εvP )

1
2

]}2a

.

• N is the outer-pointing unit normal of U (with respect to g).
Remark 3.2. We note that by (3.2), neither 1 + εuP or 1 − εvP can vanish on Ū ∩ DP ; see
Proposition 3.10. As a result, the Carleman weight ζPa,b;ε in (3.5) is always well-defined.

The proof of Theorem 3.1 consists of two main steps:
• First, by a conformal transformation, we reduce the desired estimate (3.4) to a correspond-

ing Carleman estimate in the exterior D of a null cone, but with respect to a “warped”
Minkowski metric. This step is carried out in Section 3.1, where we discuss this warped
metric in detail and then perform this conformal reduction.

• In Section 3.2, we prove the Carleman estimate in the warped Minkowski spacetime.

3.1. The Warped Geometry. This section is devoted to discussing the warped geometries that
form the backbone of the proof of Theorem 3.1. We first establish some basic properties of these
geometries, and we then demonstrate how they are conformally related to the Minkowski metric.
Finally, at the end of this section, we reduce the proof of Theorem 3.1 to that of establishing a
corresponding Carleman estimate on the warped spacetime; see Theorem 3.22.

3.1.1. The Warped Metric. The warped metric can be formally defined as follows:
Definition 3.3. Fix a constant ε ∈ R, which we refer to as the warping factor.
Definition 3.4. We define the ε-warped Minkowski metric on R1+n \ {r = 0} by
(3.6) ḡ := −4dudv + ρ̄2γ̊.
where γ̊ is the unit round metric on the level spheres of (u, v), and where ρ is the warped radius:
(3.7) ρ̄ := r + 2εf ,
Remark 3.5. Note that ḡ and its associated objects depend on the warping factor ε.

We will adopt the following notational conventions regarding objects associated with ḡ.
Definition 3.6. In general, objects defined with respect to the warped metric ḡ are denoted with the
same symbols as the corresponding objects defined with respect to the Minkowski metric g, except
that these symbols will have a “bar” over them. For example:

• Let ∇̄ denote the Levi-Civita connection with respect to ḡ.
• Let □̄ := ḡαβ∇̄αβ denote the wave operator with respect to ḡ.
• Let /̄∇ denote the connections induced by ḡ on the level spheres of (u, v).

Remark 3.7. Note that ḡ is simply the Minkowsi metric g when ε = 0. In particular, all of the
general properties that we establish for ḡ will also apply to g.

We now list the results of some basic computations involving ḡ:
Proposition 3.8. The following properties hold:

• The ḡ-gradient ∇̄♯f of f satisfies

(3.8) ∇̄♯f =
1

2
(u∂u + v∂v), ∇̄αf∇̄αf = f .
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• The nonzero components of ∇̄2f , in null coordinates, are given by

(3.9) ∇̄uvf ≡ −1, ∇̄abf =

(
1

2
+
εf

ρ̄

)
ḡab,

• f also satisfies the following identities:

(3.10) □̄f =
n+ 1

2
+

(n− 1)εf

ρ̄
, ∇̄αf∇̄βf∇̄αβf =

1

2
f .

In the above, all indices are raised and lowered using ḡ.

Proposition 3.9. The quantity ρ̄−1f satisfies

(3.11) ∂u

(
f

ρ̄

)
= −v

2

ρ̄2
, ∂v

(
f

ρ̄

)
=
u2

ρ̄2
,

as well as the following wave equation:

(3.12) □̄
(
f

ρ̄

)
=
n− 1

2ρ̄

(
1− 2εf

ρ̄

)
− (n− 3)f

ρ̄3
.

Next, we recall the region D from Definition 2.9, representing the exterior of the (Minkowski)
null cone about the origin. We can then establish the following basic inequalities on D:

Proposition 3.10. The following inequalities hold on D:
(3.13) 0 < −u < r, 0 < v < r, 0 < f < r2.
Furthermore, if ε ≥ 0, then the following inequality holds on D:

(3.14) f
1
2 < ρ̄.

Proof. First, (3.13) follows immediately from (2.2), (2.3), and (2.8). Then, by (3.7), we have
f < r2 = (ρ̄− 2εf)2.

Since f > 0 on D and ε ≥ 0, taking square roots of the above yields (3.14). □

Next, we derive the null convexity properties of level sets of f (with respect to ḡ) whenever ε is
positive.17 This is most straightforwardly shown using a frame that is adapted to f .

Definition 3.11. We define the following vector fields on D,

(3.15) T :=
1

2
f−

1
2 (−u∂u + v∂v), N :=

1

2
f−

1
2 (u∂u + v∂v),

both of which are normal to the level spheres of (u, v).

Proposition 3.12. T is everywhere tangent to the level sets of f , while N is everywhere normal
to the level sets of f . Moreover, ∇̄2f satisfies the following:

(3.16) ∇̄Taf = ∇̄Naf = ∇̄TNf ≡ 0, ∇̄TT f = −1

2
, ∇̄NNf =

1

2
.

For our purposes, the null convexity is most conveniently captured in the quantity π defined
below. This will be exploited in the proof of the “warped” Carleman estimate, Theorem 3.22.

17Null convexity (or pseudoconvexity, in more general contexts) of these level sets can be characterized as follows:
∇̄XXf > 0 for all null vector fields X that are tangent to the level sets of f . In particular, observe that the preceding
property is a consequence of the results for π̄ in Proposition 3.12.
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Definition 3.13. We define the following modified deformation tensor:

(3.17) π̄ := ∇̄2f − h̄ · ḡ, h̄ :=
1

2
+
εf

2ρ̄
.

In future computations, we will also make use of the following quantity:

(3.18) w̄ :=
1

2
□̄f − h̄ =

n− 1

4
+

(n− 2)εf

2ρ̄
.

Proposition 3.14. The nonvanishing components of π̄ are given by

(3.19) π̄TT =
εf

2ρ̄
, π̄ab =

εf

2ρ̄
· ḡab, π̄NN = −εf

2ρ̄
.

Furthermore, w̄ satisfies the following wave equation:

(3.20) □̄w̄ = − (n− 2)ε

2ρ̄

[
(n− 3)f

ρ̄2
− n− 1

2

(
1− 2εf

ρ̄

)]
.

Remark 3.15. In particular, one can show from the first two identities in (3.19) that
∇̄XXf = π̄XX > 0,

for any null vector field X tangent to the level sets of f . In other words, these level sets are (ḡ)-null
convex in the direction of increasing f . This null convexity is also connected to the more general
notion of pseudoconvexity (with respect to □̄) in unique continuation theory; see [26, 40].
3.1.2. The Conformal Isometry. The next step is to describe how this warped geometry, as described
in Definitions 3.3 and 3.4, is conformally related to Minkowski geometry.
Definition 3.16. Let R > 0 and ε ∈ R, and assume |ε| ≪n R

−1. We then define the map
Φ̄ : D ∩ {r < R} → D,

in terms of null coordinates (about the origin) by
Φ̄(u, v, ω) := (ū(u, v, ω), v̄(u, v, ω), ω̄(u, v, ω))(3.21)

:= (u(1 + εu)−1, v(1− εv)−1, ω).
In addition, for future convenience, we define the function
(3.22) ξ := (1 + εu)(1− εv).
Remark 3.17. Note that by (3.13), the right-hand side of (3.21) is well-defined.
Proposition 3.18. Assume the setting of Definition 3.16. Then:

• The following identities hold:
(3.23) f ◦ Φ̄ = ξ−1f , ρ̄ ◦ Φ̄ = ξ−1r.

• Φ̄ defines a conformal isometry between D∩{r < R} and an open subset of D. In particular,
(3.24) Φ̄∗ḡ = ξ−2g|D∩{r<R},

where Φ̄∗ denotes the pullback of ḡ through Φ̄.
Proposition 3.19. Assume the setting of Definition 3.16. Also, let Ω be an open subset of D, let
ϕ̄ ∈ C2(Ω), and let ϕ = ϕ̄ ◦ Φ̄. Then, the following identity holds:

(3.25)
[
□̄+

(n− 1)2ε

2(ρ̄ ◦ Φ̄)

]
(ξ

n−1
2 ϕ̄) = ξ

n+3
2 □ϕ.
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We now establish a number of elementary comparisons showing that objects with respect to ḡ
differ little from corresponding objects with respect to g:

Proposition 3.20. Assume the setting of Definition 3.16. Then:
• The following comparisons hold on D ∩ {r < R}:

(3.26) (1 + εu)n ≃ 1, (1− εv)n ≃ 1, ξn ≃ 1.
• The following comparisons hold on D ∩ {r < R}:

(3.27) −(u ◦ Φ̄) ≃ −u, v ◦ Φ̄ ≃ v, f ◦ Φ̄ ≃ f .
• The following comparisons hold on D ∩ {r < R}:

(3.28) |∂uξ| ≃ ε, |∂vξ| ≃ ε.
• For any open subset Ω ⊆ D and ϕ̄ ∈ C1(Ω), we have

(3.29) |∂uϕ̄| ≃ |∂uϕ|, |∂vϕ̄| ≃ |∂vϕ|, ḡab /̄∇aϕ̄ /̄∇bϕ̄ ≃ gab /∇aϕ /∇bϕ.

Proof. Since 0 < −u, v < R by (3.13), the smallness assumption on ε implies the first two compar-
isons in (3.26); the remaining part of (3.26) now follows from (3.22). Using (3.26), then:

• (3.27) follows from (3.21) and (3.23).
• (3.28) follows from direct computations along with (3.26).
• (3.29) follows from (3.21) and (3.26). □

Proposition 3.21. Assume the setting of Definition 3.16, and suppose U is a GTC satisfying
Ū ∩ D ⊆ {r < R}.

Then, Φ̄(U ∩ D) is an open subset of D, and its boundary in D is the hypersurface Φ̄(∂U ∩ D).

Proof. This is an immediate consequence of Φ̄ being a conformal isometry (see Proposition 3.18)
and of the fact that conformal isometries preserve the causal geometry. □

3.1.3. The Warped Carleman Estimate. We now reduce the proof of Theorem 3.1 to establishing
an intermediate Carleman estimate on the warped exterior (D, ḡ). The precise statement of this
intermediate estimate is given in the subsequent theorem:

Theorem 3.22. Fix R > 0, and let U be a GTC satisfying
(3.30) Ū ∩ D ⊆ {r < R}.
Fix also ε, a, b > 0 such that the following conditions hold:
(3.31) a ≥ n2, ε≪n b≪ R−1.
Then, for any ϕ ∈ C2(Φ̄(U ∩ D)) ∩ C1(Φ̄(Ū ∩ D)) that is uniformly C1-bounded and satisfies
(3.32) ϕ|Φ̄(∂U∩D) = 0,
we have the Carleman estimate

1

2a

∫
Φ̄(U∩D)

ζa,bf |□̄ϕ|2 +
∫
Φ̄(∂U∩D)

ζa,bN̄ f |N̄ϕ|2(3.33)

≥ ε

8

∫
Φ̄(U∩D)

ζa,bρ̄
−1(|u · ∂uϕ|2 + |v · ∂vϕ|2 + fḡab /̄∇aϕ /̄∇bϕ) +

ba2

4

∫
Φ̄(U∩D)

ζa,bf
− 1

2ϕ2,

where all integrals are with respect to volume forms induced by ḡ, and where:
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• Φ̄ is as given in Definition 3.16.
• ζa,b is the (warped) Carleman weight

(3.34) ζa,b := f2ae4abf
1
2 .

• N̄ is the outer-pointing unit normal of Φ̄(U ∩ D) (with respect to ḡ).

Remark 3.23. Note that by the conclusions of Proposition 3.21, both the integral along Φ̄(∂U ∩D)
and the outer unit normal N̄ to Φ̄(U ∩ D) are well-defined objects.

Remark 3.24. The factors f1/2 present in the last term of (3.33) and in (3.34) could be replaced
by fp, for some p > 0, provided the constants of the inequality (3.33) are also adjusted; see, for
instance, a similar estimate in [4]. However, we will not need this flexibility here.

Below, we show that by assuming Theorem 3.22, we can recover our main Carleman estimate,
Theorem 3.1. This effectively reduces the proof of Theorem 3.1 to that of Theorem 3.22.

Proof (Theorem 3.22 ⇒ Theorem 3.1). Assume the hypotheses of Theorem 3.1; in particular, we
let R, U , a, b, ε, ϕ be as in its statement. Throughout the proof, we will use “dḡ” and “dg” to denote
integrals with respect to volume forms induced by ḡ and g, respectively. Also, by the translation
symmetry of Minkowski spacetime, we can assume without loss of generality that P = 0.

Consider the (uniformly C1-bounded) function
(3.35) ϕ̄ := ϕ ◦ Φ̄−1 ∈ C2(Φ̄(U ∩ D)) ∩ C1(Φ̄(Ū ∩ D)),
which we note satisfies the Dirichlet boundary condition (3.32). Applying Theorem 3.22 to the
above R, U , a, b, ε, and with ξ

n−1
2 ϕ̄ in the place of ϕ, we obtain

1

2a

∫
Φ̄(U∩D)

ζa,bf |□̄(ξ
n−1
2 ϕ̄)|2 · dḡ +

∫
Φ̄(∂U∩D)

ζa,bN̄ f |N̄ (ξ
n−1
2 ϕ̄)|2 · dḡ(3.36)

≥ ε

8

∫
Φ̄(U∩D)

ζa,bρ̄
−1[|u · ∂u(ξ

n−1
2 ϕ̄)|2 + |v · ∂v(ξ

n−1
2 ϕ̄)|2 + fḡabξn−1 /̄∇aϕ̄ /̄∇bϕ̄] · dḡ

+
ba2

4

∫
Φ̄(U∩D)

ζa,bf
− 1

2 ξn−1ϕ̄2 · dḡ.

We now pull each integral in (3.36) back through the diffeomorphism Φ̄ and bound some extra-
neous factors. First, for the last term on the right-hand side of (3.36), we have that∫

Φ̄(U∩D)

ζa,bf
− 1

2 ξn−1ϕ̄2 · dḡ =

∫
U∩D

ζ0a,b;ε(ξ
−1f)−

1
2 ξn−1ϕ2 · ξ−n−1dg(3.37)

≳
∫
U∩D

ζ0a,b;εf
− 1

2ϕ2 · dg.

where we in particular note the following:
• The extra factor ξ−n−1 arises from the change of volume forms from ḡ to g.
• By (3.23), all instances of f in the left-hand side of (3.37) are replaced by ξ−1f . Note that

in particular, this results in the weight ζa,b being replaced by ζ0a,b;ε; see (3.5).
• The last inequality in (3.37) is a consequence of (3.26).

By similar reasoning, we also obtain

(3.38)
∫
Φ̄(U∩D)

ζa,bρ̄
−1fḡabξn−1 /̄∇aϕ̄ /̄∇bϕ̄ · dḡ ≳

∫
U∩D

ζ0a,b;εr
−1fgab /∇aϕ /∇bϕ · dg,
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where the factor ρ̄−1 is also handled using (3.23). Next, writing

□̄(ξ
n−1
2 ϕ̄) =

[
□̄+

(n− 1)2ε

2ρ̄

]
(ξ

n−1
2 ϕ̄)− (n− 1)2ε

2ρ̄
(ξ

n−1
2 ϕ̄),

and recalling (3.25), we see (using the same reasoning as before) that∫
Φ̄(U∩D)

ζa,bf |□̄(ξ
n−1
2 ϕ̄)|2 · dḡ ≲

∫
U∩D

ζ0a,b;εf |□ϕ|2 · dg + n4ε2
∫
U∩D

ζ0a,b;εr
−2fϕ2 · dg.(3.39)

For the boundary term, we observe from Proposition 3.21 that Φ̄(∂U ∩D) is mapped via Φ̄−1 to
∂U ∩ D. Moreover, Proposition 3.21 implies that the push-forward of N̄ through Φ̄−1 is precisely
ξN , where N is as in the statement of Theorem 3.1. As a result, we have∫

Φ̄(∂U∩D)

ζa,bN̄ f |N̄ (ξ
n−1
2 ϕ̄)|2 · dḡ =

∫
∂U∩D

ζ0a,b;ε(ξN )(ξ−1f)|(ξN )(ξ
n−1
2 ϕ)|2 · ξ−ndg(3.40)

=

∫
∂U∩D

ζ0a,b;εξ
2N (ξ−1f)|Nϕ|2 · dg,

where in the last step, we also used (3.3).
For the remaining first-order bulk terms, we apply (3.21), (3.26), (3.28), and (3.29) to obtain∫

Φ̄(U∩D)

ζa,bρ̄
−1|u · ∂u(ξ

n−1
2 ϕ̄)|2 · dḡ ≥ C

∫
U∩D

ζ0a,b;εr
−1|u · ∂u(ξ

n−1
2 ϕ̄)|2 · dg(3.41)

≥ C1

∫
U∩D

ζ0a,b;εr
−1|u · ∂uϕ|2 · dg

− C2ε
2n2

∫
U∩D

ζ0a,b;εr
−1u2ϕ2 · dg,

for some universal constants C,C1, C2 > 0. A similar computation yields∫
Φ̄(U∩D)

ζa,bρ̄
−1|v · ∂v(ξ

n−1
2 ϕ̄)|2 · dḡ ≥ C1

∫
U∩D

ζ0a,b;εr
−1|v · ∂vϕ|2 · dg(3.42)

− C2ε
2n2

∫
U∩D

ζ0a,b;εr
−1v2ϕ2 · dg.

Finally, combining (3.36) with (3.37)–(3.42) yields
1

a

∫
U∩D

ζ0a,b;εf |□ϕ|2 · dg + C ′
∫
∂U∩D

ζ0a,b;εξ
2N (ξ−1f)|Nϕ|2 · dg(3.43)

≥ Cε

∫
U∩D

ζ0a,b;εr
−1[|u · ∂uϕ|2 + |v · ∂vϕ|2 + fgab /∇aϕ /∇bϕ] · dg

+ Cba2
∫
U∩D

ζ0a,b;εf
− 1

2ϕ2 · dg − C ′′n4ε2

a

∫
U∩D

ζ0a,b;εr
−2fϕ2 · dg

− C ′′ε3n2
∫
U∩D

ζ0a,b;εr
−1(u2 + v2)ϕ2 · dḡ,

for some constants C,C ′, C ′′ > 0. By (3.1), (3.2), and (3.13), we have
ε2n4

a
· f
r2

≤ ε2a ≤ ε · εa2 · f 1
2 f−

1
2 ≪ b ·R−1a2 ·Rf− 1

2 = ba2f−
1
2 ,(3.44)

ε3n2(u2 + v2)

r
≤ 2ε3n2R2 · r−1f

1
2 · f− 1

2 ≤ 2ε3n2R2 · f− 1
2 ≪ ba2f−

1
2 .
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In particular, (3.44) implies that the last two (negative) terms in the right-hand side of (3.43) can
be absorbed into the third last (positive) term. This results in the inequality

1

a

∫
U∩D

ζ0a,b;ε · f |□ϕ|2 · dg + C ′
∫
∂U∩D

ζ0a,b;ε · ξ2N (ξ−1f)|Nϕ|2 · dg(3.45)

≥ Cε

∫
U∩D

ζ0a,b;ε · r−1[|u · ∂uϕ|2 + |v · ∂vϕ|2 + fgab /∇aϕ /∇bϕ] · dg

+ Cba2
∫
U∩D

ζ0a,b;ε · f−
1
2ϕ2 · dg,

for some constants C,C ′ > 0. Theorem 3.1 now follows from (3.45) and the identity

ξ2N (ξ−1f) = ξN f − fN ξ = (1− εr)N f + εfN r. □

3.2. Proof of Theorem 3.22. It remains only to prove the warped Carleman estimate, Theorem
3.22, in order to complete the proof of Theorem 3.1. This is the topic of the present subsection.

Throughout (only) this subsection, we will assume that all indices are raised and lowered using
ḡ. We begin by defining some auxiliary quantities to aid with the proof:

Definition 3.25. Assume the hypotheses of Theorem 3.22, and define

(3.46) F := F (f) := −a(log f + 2bf
1
2 ).

Furthermore, for brevity, we will let ′ denote differentiation with respect to f .

Definition 3.26. Assume the hypotheses of Theorem 3.22, and define the operators

(3.47) L̄ := e−F □̄eF , S̄ := ∇̄♯f , S̄w := S̄ + w̄.

Lemma 3.27. Assuming the hypotheses of Theorem 3.22, we have that

(3.48) e−2F = ζa,b, F ′ = −a(f−1 + bf−
1
2 ).

Proof. These are direct computations. □

3.2.1. The Pointwise Identity. The first step in proving Theorem 3.22 is to establish a pointwise
identity for the conjugated wave operator L̄ defined in (3.47):

Lemma 3.28. Assume the hypotheses of Theorem 3.22, and suppose also that ψ ∈ C2(Φ̄(U ∩ D)).
Then, at every point of Φ̄(U ∩ D), we have the identity

−L̄ψS̄wψ + ∇̄βP̄β = −2F ′ · |S̄wψ|2 +
εf

2ρ̄
(|Tψ|2 + | /̄∇ψ|2 − |Nψ|2)(3.49)

− εf

ρ̄
F ′ · ψS̄wψ +

1

2

[
(fA)′ +

εf

ρ̄
A− □̄w̄

]
· ψ2,

where the reparametrization A := A(f) of f is given by

(3.50) A := f(F ′)2 + (fF ′)′ = a2f−1 + ba

(
2a− 1

2

)
f−

1
2 + b2a2.

and where the current P̄ := P̄ [ψ] is given by

(3.51) P̄β := S̄ψ∇̄βψ − 1

2
∇̄βf · ∇̄µψ∇̄µψ + w̄ · ψ∇̄βψ +

1

2
(A∇̄βf − ∇̄βw̄) · ψ2.
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Proof. First, we expand L̄ψ by applying Proposition 3.8, Definition 3.13, and Definition 3.25:
L̄ψ = □̄ψ + 2F ′ · S̄ψ + (F ′)2∇̄αf∇̄αf · ψ + F ′′∇̄αf∇̄αf · ψ + F ′□̄f · ψ

= □̄ψ + 2F ′ · S̄wψ + f(F ′)2 · ψ + (fF ′′ + 2h̄F ′) · ψ
= □̄ψ + 2F ′ · S̄wψ + (A+ εfρ̄−1F ′) · ψ,

where A is as in (3.50). Multiplying the above by S̄wψ yields
(3.52) L̄ψS̄wψ = □̄ψS̄wψ + 2F ′ · |S̄wψ|2 + (A+ εfρ̄−1F ′) · ψS̄wψ.

We can now use Proposition 3.8 and Definition 3.13 to obtain

A · ψS̄wψ =
1

2
A · ∇̄αf∇̄α(ψ

2) +Aw̄ · ψ2

=
1

2
∇̄α(A∇̄αf · ψ2)−

(
1

2
fA′ +

1

2
A□̄f −Aw̄

)
· ψ2

=
1

2
∇̄α(A∇̄αf · ψ2)−

(
1

2
fA′ + h̄A

)
· ψ2

=
1

2
∇̄α(A∇̄αf · ψ2)− 1

2
(fA)′ · ψ2 − ε

2

f

ρ̄
A · ψ2.

Thus, letting

(3.53) P̄A
β :=

1

2
A∇̄βf · ψ2,

we see from (3.52) and the above that

(3.54) L̄ψS̄wψ = ∇̄αP̄A
α + □̄ψS̄wψ + 2F ′ · |S̄wψ|2 −

εf

ρ̄
F ′ · ψS̄wψ − 1

2

[
(fA)′ +

εf

ρ̄
A
]
· ψ2.

Consider next the stress-energy tensor for □̄ applied to ψ,

(3.55) Q̄αβ := ∇̄αψ∇̄βψ − 1

2
ḡαβ∇̄µψ∇̄µψ,

and recall that

∇̄β(Q̄αβS̄
α) = □̄ψS̄ψ + ∇̄αβf · ∇̄αψ∇̄βψ − 1

2
□̄f · ∇̄µψ∇̄µψ.

In addition, we note that

∇̄β

(
w̄ · ψ∇̄βψ − 1

2
∇̄βw̄ · ψ2

)
= w̄ · ψ□̄ψ + w̄ · ∇̄βψ∇̄βψ − 1

2
□̄w̄ · ψ2.

Consequently, defining the modified current

(3.56) P̄Q
β := Q̄αβS̄

α + w̄ · ψ∇̄βψ − 1

2
∇̄βw̄ · ψ2,

and recalling (3.17) and (3.19), we see that

∇̄βP̄Q
β = □̄ψS̄wψ + π̄αβ∇̄αψ∇̄βψ − 1

2
□̄w̄ · ψ2(3.57)

= □̄ψS̄wψ +
εf

2ρ̄
(|Tψ|2 + ḡab /̄∇aψ /̄∇bψ − |Nψ|2)− 1

2
□̄w̄ · ψ2.

The desired identities (3.49)–(3.51) now follow from (3.53), (3.54), (3.56), and (3.57). □
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3.2.2. A Pointwise Inequality. The next step is to derive from Lemma 3.28 a pointwise inequality,
in which all the non-divergence terms have a definite sign.

Lemma 3.29. Assume the hypotheses of Theorem 3.22, and suppose also that ψ ∈ C2(Φ̄(U ∩ D)).
Then, at every point of Φ̄(U ∩ D), we have the inequality

1

4a
f |L̄ψ|2 + ∇̄βP̄β ≥ εf

2ρ̄
(|Tψ|2 + ḡab /̄∇aψ /̄∇bψ) +

1

4
a|Ñψ|2 + 1

4
ba2f−

1
2 · ψ2,(3.58)

where Ñ denotes the operator

(3.59) Ñ := f
n−1
4 Nf−

n−1
4 .

Proof. Throughout the proof, we let C denote positive universal constants that may change between
lines. Note that from (3.13), (3.30), (3.31), and (3.48), we have

(3.60) −F ′ > 0, 1 + bf
1
2 ≃ 1.

We begin by applying the inequality

|L̄ψ||S̄wψ| ≤ − 1

4F ′ |L̄ψ|
2 − F ′|S̄wψ|2

to ψ and the identity (3.49) to obtain

− 1

4F ′ |L̄ψ|
2 + ∇̄βP̄β ≥ −F ′ · |S̄wψ|2 +

εf

2ρ̄
(|Tψ|2 + ḡab /̄∇aψ /̄∇bψ − |Nψ|2)(3.61)

− εf

ρ̄
F ′ · ψS̄wψ +

1

2

[
(fA)′ +

εf

ρ̄
A− □̄w̄

]
· ψ2.

Moreover, by (3.8), (3.14), (3.15), and (3.59), we have that

S̄wψ = f
1
2 Ñψ +

(n− 2)εf

2ρ̄
· ψ ≥ f

1
2 Ñψ − εnCf

1
2 · |ψ|.

Combining the above with (3.13), (3.14), (3.20), (3.31), and (3.48), we see that

−εf
ρ̄
F ′ · ψS̄wψ ≥ −εa(1 + bf

1
2 )(|ψ||Ñψ|+ εnC · ψ2)

≥ −a(1 + bf
1
2 )

(
1

4
|Ñψ|2 + ε2nC · ψ2

)
,

−F ′ · |S̄wψ|2 ≥ a(1 + bf
1
2 )(|Ñψ|2 − εnC · |ψ||Ñψ| − ε2n2C · ψ2),

≥ a(1 + bf
1
2 )

(
3

4
|Ñψ|2 − ε2n2C · ψ2

)
,

−εf
2ρ̄

|Nψ|2 ≥ −εCf 1
2 (|Ñψ|2 + nf−

1
2 · |ψ||Ñψ|+ n2f−1 · ψ2)

≥ −εC(f 1
2 · |Ñψ|2 + n2f−

1
2 · ψ2),

−1

2
□̄w̄ · ψ2 ≥ −εn2Cf− 1

2 · ψ2.

Note that the combined right-hand sides consist of one positive term and several error terms.
Now, abbreviating

(3.62) B := −F ′ · |S̄wψ|2 −
εf

2ρ̄
|Nψ|2 − εf

ρ̄
F ′ · ψS̄wψ − 1

2
□̄w̄ · ψ2,
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we see from summing the above that

B ≥ a(1 + bf
1
2 )

(
1

2
|Ñψ|2 − ε2n2C · ψ2

)
− εCf

1
2 · |Ñψ|2 − εCn2f−

1
2 · ψ2.

Noting from (3.13) and (3.31) that
1

2
a(1 + bf

1
2 )− εCf

1
2 ≥ 1

4
a,

aε2n2C · ψ2 = εf
1
2 · aεn2C · f− 1

2ψ2 ≪ a2εC · f− 1
2ψ2,

we conclude that

(3.63) B ≥ 1

4
a · |Ñψ|2 − a2εC · f− 1

2ψ2.

In addition, recalling (3.50), we see that

(fA)′ =
1

2
ba

(
2a− 1

2

)
f−

1
2 + b2a2.

Using (3.31) and (3.50), we then obtain

(fA)′ +
εf

ρ
A ≥ 1

2
ba

(
2a− 1

2

)
f−

1
2 + b2a2 − εf

1
2

[
a2f−1 + ba

(
2a− 1

2

)
f−

1
2 + b2a2

]
(3.64)

≥ 1

2
ba2f−

1
2 − a2εC · f− 1

2 .

Finally, combining (3.61), (3.63), and (3.64) yields

− 1

4F ′ |L̄ψ|
2 + ∇̄βP̄β ≥ 1

4
a · |Ñψ|2 + εf

2ρ̄
(|Tψ|2 + ḡab /̄∇aψ /̄∇bψ − |Nψ|2)(3.65)

+

(
1

2
b− εC

)
a2f−

1
2 · ψ2.

The desired estimate (3.58) now follows from (3.65), the observation

− 1

4F ′ ≤
f

4a(1 + bf
1
2 )

≤ f

4a
,

and the assumption ε≪ b from (3.31). □
3.2.3. Reversal of Conjugation. We now establish a pointwise inequality for the original wave op-
erator by undoing the conjugation process from Definition 3.26.

Lemma 3.30. Assume the hypotheses of Theorem 3.22, and let ϕ ∈ C2(Φ̄(U ∩D))∩C1(Φ̄(Ū ∩D)).
Then, there exists C > 0 such that on any point of Φ̄(U ∩ D), we have the pointwise inequality

1

4a
fe−2F |□̄ϕ|2 + ∇̄βP̄ ⋆

β ≥ ε

16ρ̄
e−2F (|u · ∂uϕ|2 + |v · ∂vϕ|2 + f · ḡab /̄∇aϕ /̄∇bϕ)(3.66)

+
1

8
ba2f−

1
2 e−2F · ϕ2,

where P̄ ⋆ := P̄ ⋆[ϕ] is the 1-form on Φ̄(Ū ∩ D) given by

P̄ ∗
β := S̄(e−Fϕ)∇̄β(e

−Fϕ)− 1

2
∇̄βf · ∇̄µ(e−Fϕ)∇̄µ(e

−Fϕ) + w̄ · e−Fϕ∇̄β(e
−Fϕ)(3.67)

+
1

2
(A∇̄βf − ∇̄βw̄) · e−2Fϕ2.
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Furthermore, P̄ ⋆ satisfies the following:
• If (3.32) also holds for ϕ, then we have on Φ̄(∂U ∩ D) that

(3.68) P̄ ∗(N̄ )|Φ̄(∂U∩D) =
1

2
ζa,b · N̄ f |N̄ϕ|2|Φ̄(∂U∩D).

• P̄ ⋆ satisfies the following estimate on Φ̄(Ū ∩ D):

(3.69) |P̄ ⋆(S̄)| ≲ R2eaf2a(|∂uϕ|2 + |∂vϕ|2 + ḡab /̄∇aϕ /̄∇bϕ+ a2f−1ϕ2).

Proof. We begin with the properties for P̄ ⋆. If (3.32) holds, then (3.67) simplifies to

P̄ ⋆(N̄ )|Φ̄(∂U∩D) = e−2F

(
S̄ϕN̄ϕ− 1

2
N̄ f · |N̄ϕ|2

)∣∣∣∣
Φ̄(∂U∩D)

.

Since S̄ − N̄ f · N̄ is precisely the ḡ-orthogonal projection of S̄ onto Φ̄(∂U ∩ D), we have
S̄ϕ|Φ̄(∂U∩D) = N̄ f · N̄ϕ|Φ̄(∂U∩D).

Combining the above and (3.48) results in (3.68).
Next, we observe from (2.3), (3.31), and (3.48) that

|∂u(e−Fϕ)| ≲ e−F (|∂uϕ|+ af−1|v||ϕ|), |∂v(e−Fϕ)| ≲ e−F (|∂uϕ|+ af−1|u||ϕ|).
Using this, along with (3.8), (3.13), (3.30), and (3.47), we estimate

|S̄(e−Fϕ)S̄(e−Fϕ)| ≲ e−2F (|u||∂uϕ|+ |v||∂vϕ|+ af−1|uv||ϕ|)2

≲ R2e−2F (|∂uϕ|2 + |∂vϕ|2 + a2f−1ϕ2),

|S̄f · ∇̄µ(e−Fϕ)∇̄µ(e
−Fϕ)| ≲ e−2F f [|∂uϕ|2 + |∂vϕ|2 + ḡab /̄∇aϕ /̄∇bϕ+ a2f−2(|u|2 + |v|2)ϕ2]

≲ R2e−2F (|∂uϕ|2 + |∂vϕ|2 + ḡab /̄∇aϕ /̄∇bϕ+ a2f−1ϕ2),
|w̄ · e−Fϕ · S̄(e−Fϕ)| ≲ e−F |ϕ|(|u||∂uϕ|+ |v||∂vϕ|+ af−1|uv||ϕ|)

≲ R2e−2F (|∂uϕ|2 + |∂vϕ|2 + a2f−1ϕ2).
Recalling in addition (3.11), (3.18), (3.31), and (3.50) yields

|A · S̄f | ≲ a2 + ba2f
1
2 + b2a2f ≲ a2,

|S̄w̄| ≲ εnf(|u|+ |v|)
ρ̄2

≲ εnR ≲ a2,

from which we then conclude
|(A∇̄βf + ∇̄βw̄) · e−2Fϕ2| ≲ a2e−2Fϕ2 ≲ R2e−2F · a2f−1ϕ2.

Combining all the above and recalling (3.67) yields

|P̄ ⋆(S̄)| ≲ R2e−2F (|∂uϕ|2 + |∂vϕ|2 + ḡab /̄∇aϕ /̄∇bϕ+ a2f−1ϕ2).
Estimating e−2F using (3.31) and (3.46) now results in (3.69).

Finally, for (3.66), we set ψ := e−Fϕ and apply (3.47) and (3.58) to this ψ, which yields
1

4a
fe−2F |□̄ϕ|2 + ∇̄βP̄ ⋆

β ≥ εf

2ρ̄
e−2F (|Tϕ|2 + ḡab /̄∇aϕ /̄∇bϕ) +

1

4
a|Ñ(e−Fϕ)|2(3.70)

+
1

4
ba2f−

1
2 e−2F · ϕ2,
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Applying (3.8), (3.15), (3.31), (3.48), and (3.59), we see that

e−2F |Nϕ|2 ≲ |Ñ(e−Fϕ)|2 + a2e−2F f−1 · ϕ2,

εe−2F f
1
2 |Nϕ|2 ≪ a|Ñ(e−Fϕ)|2 + ba2e−2F f−

1
2 · ϕ2,

From the above, we conclude
1

4a
fe−2F |□̄ϕ|2 + ∇̄βP̄ ⋆

β ≥ εf

2ρ̄
e−2F (|Tϕ|2 + ḡab /̄∇aϕ /̄∇bϕ) + εf

1
2 e−2F |Nϕ|2(3.71)

+
1

8
ba2f−

1
2 e−2F · ϕ2.

We also note from (2.3) and (3.15) that

|u∂uϕ|2 + |v∂vϕ|2 ≤ 4f(|Tϕ|+ |Nϕ|)2 + 4f(|Tϕ|+ |Nϕ|)2

≤ 8f(|Tϕ|2 + |Nϕ|2),

hence (3.14) implies
εf

2ρ̄
(|Tϕ|2 + ḡab /̄∇aϕ /̄∇bϕ) + εf

1
2 |Nϕ|2 ≥ εf

2ρ̄
(|Tϕ|2 + ḡab /̄∇aϕ /̄∇bϕ+ |Nϕ|2)

≥ ε

16ρ̄
(|u · ∂uϕ|2 + |v · ∂vϕ|2 + fḡab /̄∇aϕ /̄∇bϕ).

Combining the above with (3.71) now results in (3.66). □

3.2.4. The Integral Estimate. In order to complete the proof of Theorem 3.22, we integrate (3.66)
over Φ̄(U ∩ D). However, here we must be especially careful with boundary terms.

Let ϕ be as in the statement of Theorem 3.22. For sufficiently small δ > 0, we define the sets

Gδ := Φ̄(U ∩ D) ∩ {f > δ}, Hδ := Φ̄(U ∩ D) ∩ {f = δ},

on which r, ρ̄, f are all bounded from above and below by positive constants; see (3.13), (3.14), and
(3.30). Integrating (3.66), with the above ϕ, over Gδ and recalling (3.48), we obtain

1

4a

∫
Gδ

ζa,bf |□̄ϕ|2 +
∫
Gδ

∇̄αP̄ ⋆
α

≥ ε

16

∫
Gδ

ζa,bρ̄
−1(|u · ∂uϕ|2 + |v · ∂vϕ|2 + fḡab /̄∇aϕ /̄∇bϕ) +

ba2

8

∫
Gδ

ζa,bf
− 1

2 · ϕ2.

Taking a limit as δ ↘ 0 and applying the monotone covergence theorem yields
1

4a

∫
Φ̄(U∩D)

ζa,bf |□̄ϕ|2 + lim
δ↘0

∫
Gδ

∇̄αP̄ ⋆
α(3.72)

≥ ε

16

∫
Φ̄(U∩D)

ζa,bρ̄
−1(|u∂uϕ|2 + |v∂vϕ|2 + fḡab /̄∇aϕ /̄∇bϕ) +

ba2

8

∫
Φ̄(U∩D)

ζa,bf
− 1

2ϕ2.

provided the limit on the left-hand side exists.
Next, we apply the divergence theorem to the term with the limit. Noting that {f = δ} is a

timelike hypersurface of (D, ḡ), with outward (from {f > δ}) unit normal −f− 1
2 S̄, we obtain

lim
δ↘0

∫
Gδ

∇̄αP̄ ⋆
α = lim

δ↘0

∫
Φ̄(∂U∩D)∩{f>δ}

P̄ ⋆(N̄ )− lim
δ↘0

∫
Hδ

f−
1
2 P̄ ⋆(S̄)(3.73)
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=
1

2

∫
Φ̄(∂U∩D)

ζa,bN̄ f · |N̄ϕ|2 − lim
δ↘0

δ−
1
2

∫
Hδ

P̄ ⋆(S̄),

where in the last step, we applied (3.68) and the fact that ϕ is uniformly C1-bounded. Moreover,
applying the estimate (3.69), the remaining limit can be bounded as∣∣∣∣ limδ↘0

δ−
1
2

∫
Hδ

P̄ ⋆(S̄)

∣∣∣∣ ≲ R2ea lim
δ↘0

δ2a−
1
2

∫
Hδ

(|∂uϕ|2 + |∂vϕ|2 + ḡab /̄∇aϕ /̄∇bϕ)(3.74)

+R2ea lim
δ↘0

δ2a−
1
2

∫
Hδ

a2f−1ϕ2

≲ C lim
δ↘0

δ2a−
3
2

∫
Hδ

1,

where C > 0 is some constant depending on both ϕ and R.
To control this limit, we foliate Hδ using level sets of t and apply the coarea formula. Let D̄t

denote the ḡ-gradient of t on Hδ, with respect to the induced metric. Note that D̄t and T must
point in the same direction, since both vector fields are tangent to Hδ and are normal to the level
sets of (u, v). As a result, by (2.2) and (3.15), we see that

|ḡ(D̄t, D̄t)| 12 = |g(D̄t, T )| = 1

2
f−

1
2 (−u∂ut+ v∂vt) =

1

2
f−

1
2 r.

Moreover, noting from (2.3) that

r−1|Hδ
= (t2 + 4δ)−

1
2 |Hδ

≲ δ−
1
2 ,

then the coarea formula, along with (3.13) and (3.30), yields

lim
δ↘0

δ2a−
3
2

∫
Hδ

1 ≲ lim
δ↘0

δ2a−
3
2

∫ R

−R

∫
Sn−1

|ḡ(D̄t, D̄t)|− 1
2 ρ̄n−1|(t,r=√

t2+4δ,ω)d̊γωdt(3.75)

≲ Rn−1 lim
δ↘0

δ2a−1

∫ R

−R

r−1|(t,r=√
t2+4δ,ω)dt

≲ Rn lim
δ↘0

δ2a−
3
2

= 0,

where we recalled in the last step that 2a > 3
2 by (3.31).

Finally, combining (3.72)–(3.75) yields (3.33) and completes the proof of Theorem 3.22.

4. Observability Estimates

In this section, we apply the Carleman estimates of Theorem 3.1 to prove our two most general
observability estimates for solutions of linear wave equations on GTCs:

(1) The exterior estimate (stated in Theorem 4.1), where the reference point of the correspond-
ing Carleman estimate (represented as P in Theorem 3.1) lies outside the GTC.

(2) The interior estimate (stated in Theorem 4.5), where the reference point of the correspond-
ing Carleman estimate lies within the GTC.18

The exterior and interior estimates are discussed in Sections 4.1 and 4.2, respectively. Some corol-
laries of these estimates, such as Theorem 1.6, are discussed in Section 4.3.

18Interior observability bounds have previously been obtained from multiplier, but not Carleman, methods.
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4.1. Exterior Observability. We now discuss the first of our general observability inequalities,
based on Carleman estimates centered outside the given GTC.

Theorem 4.1. Let U be a GTC in R1+n, and fix P ∈ R1+n \ Ū and 0 < δ ≪ 1. In addition,
assume U ∩ DP is bounded, and consider the setting of Problem 2.18. Moreover:

• Let X , V be as in (2.15), and define the constants
M0 := sup

U∩DP

|V |, M1 := sup
U∩DP

|X t,x|,(4.1)

R+ := sup
U∩DP

rP , R− := inf
Ut(P )

rP .

• Let N be the outward-pointing (g-)unit normal to U , and let

(4.2) S :=

(
1− δ2rP

R+

)
N fP +

δ2fP
R+

N rP Γ+ := ∂U ∩ DP ∩ {S > 0}.

Then, there exist C,N > 0, depending on U , such that the observability estimate,

(4.3)
∫
Ut(P )

(|∇t,xϕ|2 + ϕ2) ≤ C

δ2R−

(
16R+

R−

)N

n+R++
R

4
3
+

M

2
3
0

δ
1
3

+
R4

+M2
1

δ2R2
−

 ∫
Γ+

|S||Nϕ|2,

holds for any solution ϕ ∈ C2(U) ∩ C1(Ū) of (2.16) that also satisfies ϕ|∂U∩DP
= 0.

Remark 4.2. Note that the assumption that U ∩ DP is bounded in the statement of Theorem 4.1
implies that all of the constants M0,M1, R± in (4.1) are finite.

Remark 4.3. Note that the dependence of (4.3) on M0 and M1 matches those found in [20]. In
particular, the dependence on M0 is known to be sharp; see the discussions in [20].

Remark 4.4. Since rP ̸= 0 on DP , the quantity S in (4.2) is well-defined and smooth.

In principle, the proof of Theorem 4.1 is similar to the standard process of obtaining observability
from Carleman estimates. The primary new technical difficulty is that the pseudoconvexity and
the Carleman weight in (3.4) degenerate toward the null cone centered about the point P . As a
result, one must be considerably more careful when absorbing terms (mainly, those involving ∇ϕ)
in the Carleman estimate. In particular, various constants must be tracked more carefully.

The remainder of this section is dedicated to the proof of Theorem 4.1.

4.1.1. Application of the Carleman Estimate. Since U ∩ DP is bounded, it follows from (4.1) that
(3.1) holds, with R := R+. In addition, choose a ≥ n large enough so it also satisfies

(4.4) a≫U R+, a≫U δ
− 1

3R
4
3
+M

2
3
0 , a≫U δ

−2R−2
− R4

+M
2
1 ,

and choose ε and b as follows (note in particular that (3.2) holds, with R+ in place of R):
(4.5) ε := δ2R−1

+ , b := δR−1
+ .

The key step is to apply the Carleman estimate (3.4), with the above values of a, b, ε, to our given
U and P . From (3.4), as well as (2.16), (3.13), (4.2), and (4.5), we see that

2

a

∫
U∩DP

ζPa,b;εfP |∇Xϕ|2 +
2

a

∫
U∩DP

ζPa,b;εfPV
2 · ϕ2 +

∫
∂U∩DP

ζPa,b;εS · |Nϕ|2(4.6)

≥ Cδ2

R2
+

∫
U∩DP

ζPa,b;ε(|uP∂uP
ϕ|2 + |vP∂vP ϕ|2 + fP g

ab /∇P
a ϕ /∇

P
b ) +

Cδa2

R2
+

∫
U∩DP

ζPa,b;εϕ
2.
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Here, all notations are as in the statement of Theorem 3.1.
Let I1, I0, IΓ denote the first, second, and third terms in the left-hand side of (4.6), respectively.

Recalling (3.13) and our conditions (4.4) for a, we see that
1

a

∫
U∩DP

ζPa,b;εfPV
2 · ϕ2 ≤

R2
+M

2
0

a

∫
U∩DP

ζPa,b;ε · ϕ2 ≪U
δa2

R2
+

∫
U∩DP

ζPa,b;ε · ϕ2.

As a result, I0 can be absorbed into the right-hand side of (4.6):

(4.7) I1 + IΓ ≥ C

∫
U∩DP

ζPa,b;ε

[
δ2

R2
+

(|uP∂uP
ϕ|2 + |vP∂vP ϕ|2 + fP g

ab /∇P
a ϕ /∇

P
b ϕ) +

δa2

R2
+

ϕ2
]

.

We now partition U ∩ DP into

U≤ := U ∩ DP ∩
{

fP
(1 + εuP )(1− εvP )

≤
R2

−
64

}
,(4.8)

U> := U ∩ DP ∩
{

fP
(1 + εuP )(1− εvP )

>
R2

−
64

}
,

Note that on U>, we have from (3.13), (3.26), and (4.8) that

vP =
fP
−uP

≳ R2
−

R+
, − uP =

fP
vP

≳ R2
−

R+
.

Thus, shrinking domains from U ∩ DP to U>, we see from (4.7) that

(4.9) I1 + IΓ ≥ C

∫
U>

ζPa,b;ε

[
δ2R2

−
R3

+

(−uP |∂uP
ϕ|2 + vP |∂vP ϕ|2 + vP g

ab /∇P
a ϕ /∇

P
b ϕ) +

δa2

R2
+

ϕ2
]

.

We now decompose I1 as

(4.10) I1 =
2

a

∫
U≤

ζPa,b;εfP |∇Xϕ|2 +
2

a

∫
U>

ζPa,b;εfP |∇Xϕ|2 := I1,≤ + I1,>.

From (3.13), (4.1), and (4.4), we obtain

I1,> ≤ R+M
2
1

a

∫
U>

ζPa,b;ε(−uP |∂uP
ϕ|2 + vP |∂vP ϕ|2 + vP g

ab /∇P
a ϕ /∇

P
b ϕ)

≪U
δ2R2

−
R3

+

∫
U>

ζPa,b;ε(−uP |∂uP
ϕ|2 + vP |∂vP ϕ|2 + vP g

ab /∇P
a ϕ /∇

P
b ϕ).

Thus, I1,> can be absorbed into the right-hand side of (4.9), and we have

(4.11) I1,≤ + IΓ ≥ C

∫
U>

ζPa,b;ε

[
δ2R2

−
R3

+

(−uP |∂uP
ϕ|2 + vP |∂vP

ϕ|2 + vP g
ab /∇P

a ϕ /∇
P
b ϕ) +

δa2

R2
+

ϕ2
]

.

4.1.2. Applications of Energy Estimates. Since ∂U is timelike, then by (2.2) and (4.1), we have

(4.12) rP |Uτ
≥ 3R−

4
, − uP |Uτ

≥ R−

4
, vP |Uτ

≥ R−

4
,

for any τ ∈ R with |τ − t(P )| ≤ 1
4R−. As a result, by (2.3), (3.5), and (4.12), we have that

fP
(1 + εuP )(1− εvP )

∣∣∣∣
Uτ

≥
R2

−
16

, ζa,b;ε|Uτ ≥
(
R−

4
e

bR−
4

)4a

,
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for the same τ as above. In particular, we see that

U ∩
{
−R−

4
< tP <

R−

4

}
⊆ U>,

so that by shrinking domains, applying Fubini’s theorem, and recalling (4.12) again, we obtain

(4.13) I1,≤ + IΓ ≥ C

(
R−

4
e

bR−
4

)4a ∫ t(P )+
R−
4

t(P )−R−
4

∫
Uτ

[
δ2R3

−
R3

+

· |∇t,xϕ|2 +
δa2

R2
+

· ϕ2
]
dτ .

Since (4.1) and (4.4) imply that a≫ R+ ≥ R−, we see that

δa2

R2
+

≥
δ2R2

−
R2

+

≥
δ2R3

−
R3

+

, δa2

R2
+

≥
δa

1
2 (δ−

1
3R

4
3
+M

2
3
0 )

3
2

R2
+

= δ
1
2 a

1
2M0 ≥

δ2R3
−M0

R3
+

,

and hence we conclude

(4.14) I1,≤ + IΓ ≥
Cδ2R3

−
R3

+

(
R−

4
e

bR−
4

)4a ∫ t(P )+
R−
4

t(P )−R−
4

∫
Uτ

[|∇t,xϕ|2 + (1 +M0)ϕ
2]dτ .

Applying the energy estimate (2.20) to each Uτ in (4.14) yields∫
Ut(P )

[|∇t,xϕ|2 + (1 +M0)ϕ
2] ≤ CeKR−(1+M

1
2
0 +M1)

∫
Uτ

[|∇t,xϕ|2 + (1 +M0)ϕ
2],

where the constants C,K > 0 also depend on U . Hence, it follows that

(4.15) I1,≤ + IΓ ≥
Cδ2R4

−
R3

+

(
R−

4
e

bR−
4

)4a

e−KR−(1+M
1
2
0 +M1)

∫
Ut(P )

[|∇t,xϕ|2 + (1 +M0)ϕ
2].

For I1,≤, we use (3.5), (3.13), (3.26), (4.5), and (4.8) to bound

ζPa,b;ε|U≤ ≤
(
R−

8
e

bR−
8

)4a

, fP |U≤ ≤ R2
−.

We then recall (4.1), (4.4), and (4.10) to obtain

I1,≤ ≤
C ′R2

−M
2
1

a

(
R−

8
e

bR−
8

)4a ∫
U∩DP

|∇t,xϕ|2 ≤
C ′δ2R4

−
R4

+

(
R−

8
e

bR−
8

)4a ∫
U∩DP

|∇t,xϕ|2.

Note that since ∂U is timelike, then (4.1) implies that tP |U∩DP
must be bounded by R+. Conse-

quently, applying (2.31) and Fubini’s theorem to the above yields

(4.16) I1,≤ ≤
C ′δ2R4

−
R3

+

(
R−

8
e

bR−
8

)4a

eK
′R+(1+M

1
2
0 +M1)

∫
Ut(P )

[|∇t,xϕ|2 + (1 +M0)ϕ
2],

where C ′,K ′ > 0 also depend on U . Combining (4.15) and (4.16) then yields

IΓ ≥
δ2R4

−
R3

+

[
C

(
R−

4
e

bR−
4

)4a

e−KR−(1+M
1
2
0 +M1) − C ′

(
R−

8
e

bR−
8

)4a

eK
′R+(1+M

1
2
0 +M1)

]
(4.17)

·
∫
Ut(P )

[|∇t,xϕ|2 + (1 +M0)ϕ
2].
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We now claim that

(4.18) C ′
(
R−

8
e

bR−
8

)4a

eK
′R+(1+M

1
2
0 +M1) ≪ C

(
R−

4
e

bR−
4

)4a

e−KR−(1+M
1
2
0 +M1).

To prove (4.18), it suffices to show, for known c, k > 0 depending on U , that

c

(
1

2

)4a

ekR+(1+M
1
2
0 +M1) ≪ 1.

For this, we need only show that

(4.19) a≫U R+(1 +M
1
2
0 +M1),

which is a consequence of (4.4), since

R+M
1
2
0 ≲ δ + δ−

1
3R

4
3
+M

2
3
0 ≪U a, R+M1 ≲ δ2 + δ−2R−2

− R4
+M

2
1 ≪U a.

Having proved (4.18), we combine this with (4.17) and obtain

(4.20) IΓ ≥
Cδ2R4

−
R3

+

(
R−

4
e

bR−
4

)4a

e−KR−(1+M
1
2
0 +M1)

∫
Ut(P )

(|∇t,xϕ|2 + ϕ2).

4.1.3. The Boundary Term. Since the integrand in IΓ is negative when S is, then (4.20) becomes

(4.21)
∫
Γ+

ζPa,b;ε|S| · |Nϕ|2 ≥
Cδ2R4

−
R3

+

(
R−

4

)4a

e−KR−(1+M
1
2
0 +M1)

∫
Ut(P )

(|∇t,xϕ|2 + ϕ2).

Moreover, (3.5), (3.13), (3.26), (4.1), and (4.5) imply
ζPa,b;ε ≤ (4fP )

2a ≤ (2R+)
4a,

hence (4.21) becomes∫
Ut(P )

(|∇t,xϕ|2 + ϕ2) ≤ C

δ2R−

(
8R+

R−

)4a+3

eKR−(1+M
1
2
0 +M1)

∫
Γ+

|S| · |Nϕ|2.

Combining the above with (4.19) then yields

(4.22)
∫
Ut(P )

(|∇t,xϕ|2 + ϕ2) ≤ C

δ2R−

(
16R+

R−

)4a+3 ∫
Γ+

|S| · |Nϕ|2.

Choosing a ≥ n in (4.22) so that it also satisfies the assumptions (4.4) results in (4.3).

4.2. Interior Observability. In this subsection, we prove the second of our general observability
inequalities, based on applying Carleman estimates that are centered within U .

Theorem 4.5. Let U be a GTC in R1+n, let 0 < δ ≪ 1, and fix P1, P2 ∈ U with
(4.23) P1 ̸= P2, t(P1) = t(P2) := t0.
Also, assume U ∩ (DP1

∪ DP2
) is bounded, and consider the setting of Problem 2.18. Moreover:

• Let X , V be as in (2.15), and define the constants
M0 := max

i=1,2
sup

U∩DPi

|V |, M1 := max
i=1,2

sup
U∩DPi

|X t,x|,(4.24)

R+ := max
i=1,2

sup
U∩DPi

rPi
, R− :=

1

2
|x(P2)− x(P1)|.
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• Let N be the outward-pointing (g-)unit normal to U , and define, for i ∈ {1, 2},

(4.25) Si :=

(
1− δ2rPi

R+

)
N fPi

+
δ2fPi

R+
N rPi

, Γi
+ := ∂U ∩ DPi

∩ {Si > 0}.

Then, there exist C,N > 0, depending on U , such that the observability estimate,

(4.26)
∫
Ut0

(|∇t,xϕ|2 + ϕ2) ≤ C

δ2R−

(
16R+

R−

)N

n+R++
R

4
3
+

M

2
3
0

δ
1
3

+
R4

+M2
1

δ2R2
−

 2∑
i=1

∫
Γi
+

|Si||Nϕ|2.

holds for any solution ϕ ∈ C2(U) ∩ C1(Ū) of (2.16) that also satisfies ϕ|∂U∩(DP1
∪DP2

) = 0.

Remark 4.6. Again, the assumption that U ∩ (DP1 ∪ DP2) is bounded implies that the constants
M0,M1, R± in (4.24) are finite. Note also the Si’s in (4.25) are again well-defined and smooth.

The main difference between the exterior and interior estimates (Theorems 4.1 and 4.5, respec-
tively) is that the latter requires the application of two Carleman estimates, about two distinct
reference points (P1, P2 in Theorem 4.5). The technical reason is that the weights in the right-hand
side of the Carleman estimate (3.4) vanish at the center point P , which now lies in the domain.

Remark 4.7. Moreover, for any P ∈ U , the boundary region ∂U ∩ DP fails the geometric control
condition. Indeed, null geodesics traveling through P (i.e., along ∂DP ) fail to touch ∂U ∩ DP .

We prove Theorem 4.5 in the remainder of this subsection. Much of this proof is analogous to
that of Theorem 4.1; for those parts, we omit some details and refer the reader to Section 4.1.

4.2.1. Applications of the Carleman Estimate. Fix i ∈ {1, 2}. Note from (4.24) that
(4.27) U i := U ∩ DPi ⊆ DPi ∩ {rPi < R+}.
Let a ≥ n be large enough to also satisfy

(4.28) a≫U R+, a≫U δ
− 1

3R
4
3
+M

2
3
0 , a≫U δ

−2R−2
− R4

+M
2
1 ,

and choose ε and b as follows:
(4.29) ε := δ2R−1

+ , b := δR−1
+ .

Applying (3.4), with a, b, ε as above, to U and Pi yields
2

a

∫
Ui

ζPi

a,b;εfPi
|∇Xϕ|2 +

2

a

∫
Ui

ζPi

a,b;εfPi
V 2 · ϕ2 +

∫
∂U∩DPi

ζPi

a,b;εSi · |Nϕ|2(4.30)

≥ Cδ2

R2
+

∫
Ui

ζPi

a,b;ε(|uPi
∂uPi

ϕ|2 + |vPi
∂vPi

ϕ|2 + fPi
gab /∇Pi

a ϕ /∇
Pi

b ϕ) +
Cδa2

R2
+

∫
Ui

ζPi

a,b;εϕ
2,

where we also recalled (2.16), (3.13), (4.25), and (4.29).
Let Ii1, Ii0, IiΓ be the terms in the left-hand side of (4.30). Like in the proof of Theorem 4.1, we

apply (3.13) and (4.28) to show that Ii0 can be absorbed into the right-hand side of (4.30):

(4.31) Ii1 + IiΓ ≥ C

∫
Ui

ζPi

a,b;ε

δ2

R2
+

[
(|uPi

∂uPi
ϕ|2 + |vPi

∂vPi
ϕ|2 + fPi

gab /∇Pi

a ϕ /∇
Pi

b ϕ) +
δa2

R2
+

ϕ2
]

.

We now partition Ui into

U i
≤ := U i ∩

{
fPi

(1 + εuPi)(1− εvPi)
≤
R2

−
64

}
,(4.32)
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U i
> := U i ∩

{
fPi

(1 + εuPi
)(1− εvPi

)
>
R2

−
64

}
,

and we decompose Ii1 as

Ii1 =
2

a

∫
Ui

≤

ζPi

a,b;εfPi |∇Xϕ|2 +
2

a

∫
Ui

>

ζPi

a,b;εfPi |∇Xϕ|2 := Ii1,≤ + Ii1,>.

Since (3.13) and (3.26) imply that on U i
>,

vPi ≳
R2

−
R+

, − uPi ≳
R2

−
R+

,

a similar argument as in the proof of Theorem 4.1, using (3.13), (4.24), and (4.28), imply that Ii1,>
can be absorbed into the right-hand side of (4.31). As a result, (4.31) now becomes

(4.33) Ii1,≤ + IiΓ ≥ C

∫
Ui

>

ζPi

a,b;ε

[
δ2R2

−
R3

+

(−uPi |∂uPi
ϕ|2 + vPi |∂vPi

ϕ|2 + vPig
ab /∇Pi

a ϕ /∇
Pi

b ϕ) +
δa2

R2
+

ϕ2
]

.

4.2.2. Applications of the Energy Estimates. Since ∂U is timelike, then on any

Vi
τ := U i

τ ∩
{
rPi

>
3R−

4

}
, |τ − t0| ≤

R−

4
,

we have from (2.2) and (3.5) that

−uPi
|Vi

τ
≥ R−

4
, vPi

|Vi
τ
≥ R−

4
,(4.34)

fPi

(1 + εuPi
)(1− εvPi

)
|Vi

τ
≥
R2

−
16

, ζPi

a,b;ε|Vi
τ
≥
(
R−

4
e

bR−
4

)4a

.

In particular, we see that
Vi
τ ⊆ U i

>, |τ − t0| ≤
R−

4
,

and, similar to the proof of Theorem 4.1, it follows from (4.28) that

Ii1,≤ + IiΓ ≥ C

(
R−

4
e

bR−
4

)4a ∫ t0+
R−
4

t0−
R−
4

∫
Vi

τ

[
δ2R3

−
R3

+

· |∇t,xϕ|2 +
δa2

R2
+

· ϕ2
]
dτ(4.35)

≥
Cδ2R3

−
R3

+

(
R−

4
e

bR−
4

)4a ∫ t0+
R−
4

t0−
R−
4

∫
Vi

τ

[|∇t,xϕ|2 + (1 +M0)ϕ
2]dτ .

Next, we observe that by (4.24) and the triangle inequality,

V1
τ ∪ V2

τ = Uτ , |τ − t0| ≤
R−

4
,

Thus, summing (4.35) over i ∈ {1, 2} and applying (2.20) yields
2∑

i=1

(Ii1,≤ + IiΓ) ≥
Cδ2R3

−
R3

+

(
R−

4
e

bR−
4

)4a ∫ t0+
R−
4

t0−
R−
4

∫
Uτ

[|∇t,xϕ|2 + (1 +M0)ϕ
2]dτ(4.36)

≥
Cδ2R4

−
R3

+

(
R−

4
e

bR−
4

)4a

e−KR−(1+M
1
2
0 +M1)

∫
Ut0

[|∇t,xϕ|2 + (1 +M0)ϕ
2],
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where C,K > 0 depend on U . Moreover, analogous to the proof of Theorem 4.1, we apply (2.31),
(3.5), (3.13), (4.24), (4.28), and (4.32) to estimate, for some C ′,K ′ depending on U ,

Ii1,≤ ≤
C ′δ2R4

−
R4

+

(
R−

8
e

bR−
8

)4a ∫
Ui

|∇t,xϕ|2(4.37)

≤
C ′δ2R4

−
R3

+

(
R−

8
e

bR−
8

)4a

eK
′R+(1+M

1
2
0 +M1)

∫
Ut0

[|∇t,xϕ|2 + (1 +M0)ϕ
2].

By the same reasoning as in the proof of Theorem 4.1 (see (4.18)), we have that

C ′
(
R−

8
e

bR−
8

)4a

eK
′R+(1+M

1
2
0 +M1) ≪ C

(
R−

4
e

bR−
4

)4a

e−KR−(1+M
1
2
0 +M1),

so that combining all the above with (4.36) and (4.37) yields

(4.38)
2∑

i=1

IiΓ ≥
Cδ2R4

−
R3

+

(
R−

4
e

bR−
4

)4a

e−KR−(1+M
1
2
0 +M1)

∫
Ut0

(|∇t,xϕ|2 + ϕ2).

4.2.3. The Boundary Terms. Noting the signs of Si in IiΓ, we see from (4.25) and (4.38) that

(4.39)
2∑

i=1

∫
Γi
+

ζPi

a,b;ε|Si| · |Nϕ|2 ≥
Cδ2R4

−
R3

+

(
R−

4

)4a

e−KR−(1+M
1
2
0 +M1)

∫
Ut0

(|∇t,xϕ|2 + ϕ2).

The remainder of the proof again proceeds similarly to the corresponding argument in Theorem
4.1. First, we can use (3.5), (3.13), (3.26), (4.24), and (4.29) to bound

ζPi

a,b;ε ≤ (2R+)
4a,

so that (4.39) becomes∫
Ut0

(|∇t,xϕ|2 + ϕ2) ≤ C

δ2R−

(
8R+

R−

)4a+3

eKR−(1+M
1
2
0 +M1)

2∑
i=1

∫
Γi
+

|Si| · |Nϕ|2(4.40)

≤ C

δ2R−

(
16R+

R−

)4a+3 2∑
i=1

∫
Γi
+

|Si| · |Nϕ|2.

(In the last step, we used the direct analogue of (4.19) in the current setting.) Making a suitable
choice for a ≥ n in accordance with (4.28) results in (4.26).

4.3. Some Corollaries. Finally, we discuss various consequences of Theorems 4.1 and 4.5.

4.3.1. The Observation Region. Our first corollary compares the observation regions from Theorems
4.1 and 4.5 with corresponding regions in existing Carleman method results. For this, we examine
the quantities S and Si in (4.2) and (4.25), whose signs determine the observation region.

Proposition 4.8. Let U be a GTC, and let P ∈ R1+n \ ∂U . Moreover:
• Let N denote the outer-pointing (Minkowski) unit normal of U , and let νt : ∂U → R and
ν : ∂U → Rn denote the Cartesian components of N :

(4.41) N := νt∂t +

n∑
i=1

νi∂xi , ν := (ν1, . . . , νn).

• Let θν,P : ∂U → (−π, π] represent the angle between the vectors ν and xP |∂U .
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Then:
• The following identity holds on ∂U ∩ DP :

(4.42) N rP = ν · xP
rP

=
√
1 + (νt)2 · cos θν,P ,

• Furthermore, for any ε > 0, we have on ∂U ∩ DP that

(1− εrP )N fP + εfPN rP =
1

2

[
1− ε(r2P + t2P )

2rP

]
(ν · xP )−

1

2
(1− εrP )tP ν

t.(4.43)

Proof. First, by Definition 2.5 and (4.41), we have that

N (r2P ) = 2

n∑
i=1

νi∂xi |xP |2 = 2ν · xP , N rP =
1

2rP
N (r2P ) = ν · xP

rP
= |ν| · cos θν,xP

.

Since g(N ,N ) = 1, it follows that
|ν| =

√
1 + (νt)2,

which completes the proof of (4.42).
Next, using (2.5), we expand

(1− εrP )N fP + εfPN rP =
1

2
(1− εrP )(rPN rP − tPN tP ) +

1

4
ε(r2P − t2P )N rP

=
1

2

[
rP − 1

2
ε(r2P + t2P )

]
N rP − 1

2
(1− εrP )tPN tP .

Since N tP = νt by (4.41), then (4.42) and the above identity imply (4.43). □

Remark 4.9. Note that by (4.42), the condition N rP > 0 is equivalent to both
xP · ν = [x− x(P )] · ν > 0, cos θν,P > 0,

that is, the criterion for the observation region obtained from standard Carleman estimate methods
for linear wave equations on a time-independent domain; see, for instance, (1.4) and [38, 42, 64].

Using Proposition 4.8, we can now reformulate Theorems 4.1 and 4.5 so that the regions of
observation are characterized in terms of the aforementioned angle θν,P :

Theorem 4.10. Let U be a GTC, and fix P ∈ R1+n \ ∂U and 0 < δ ≪ 1. In addition:
• Let N be the outward-pointing (g-)unit normal to U , let νt and ν be defined as in (4.41),

and let θν,P : ∂U → (−π, π] denote the angle between ν and xP .
• Consider the setting of Problem 2.18, and let X , V be as in (2.15).
• Assume U ∩ DP is a bounded subset of R1+n, and let M0, M1 be as in (4.1).
• Let ΓP,δ denote the following boundary region:

(4.44) ΓP,δ := ∂U ∩ DP ∩

{
cos θν,P > (1− δ2)sgn(tP νt) · tP ν

t

rP
√

1 + (νt)2

}
.

Then, for any solution ϕ ∈ C2(U) ∩ C1(Ū) of (2.16) that also satisfies ϕ|∂U∩DP
= 0:

• If P ̸∈ Ū , then we have the observability inequality

(4.45)
∫
Ut(P )

(|∇t,xϕ|2 + ϕ2) ≲U,P,δ,M0,M1

∫
ΓP,δ

|Nϕ|2.
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• If P ∈ U , then for any open subset YP,δ of ∂U containing Γ̄P,δ, we have that

(4.46)
∫
Ut(P )

(|∇t,xϕ|2 + ϕ2) ≲U,P,δ,M0,M1,YP,δ

∫
YP,δ

|Nϕ|2.

Remark 4.11. In particular, recalling Remark 4.9, we can make, modulo restrictions to DP , the
following comparison between the region ΓP,δ in Theorem 4.10 and the classical region θP,δ > 0:

• At points where tP νt > 0 (that is, where U expands away from P ), the observation region
ΓP,δ is smaller than the corresponding region cos θν,P > 0 in classical results.

• At points where tP νt < 0 (that is, where U shrinks away from P ), the observation region
ΓP,δ is larger than the corresponding region cos θν,P > 0 in classical results.

• At points where tP νt = 0, the observation region ΓP,δ matches the classical results.

Proof. First, we consider the case P ̸∈ Ū . Applying Theorem 4.1 to U , P , and δ yields∫
Ut(P )

(|∇t,xϕ|2 + ϕ2) ≲U,P,δ,M0,M1

∫
Γ+

|Nϕ|2

for ϕ as in the assumptions of the theorem, and with Γ+ as defined in (4.2). Thus, to complete the
proof in the case, it suffices to show that this Γ+ is contained in ΓP,δ.

Let R+ be as in (4.1). Applying (4.42) and (4.43), with ε := δ2R−1
+ , we see that on Γ+,

0 < (1− εrP )N fP + εfPN rP

=
1

2

[
1− δ2(r2P + t2P )

2R+rP

]
rP
√

1 + (νt)2 · cos θν,P − 1

2

(
1− δ2rP

R+

)
· tP νt,

or equivalently,

(4.47) cos θν,xP
>

1− δ2(r2P+t2P )
2rPR+

1− δ2rP
R+

 · tP νt

rP
√

1 + (νt)2
.

Using that |tP | ≤ rP ≤ R+ on ∂U ∩ DP , we observe that:
• If tP νt = 0, then (4.47) implies cos θν,xP

> 0.
• If tP νt > 0, then (4.47) implies

cos θν,xP
>

(
1− 2δ2r2P

2rPR+

)
· tP νt

rP
√

1 + (νt)2
≥ (1− δ2) · tP νt

rP
√
1 + (νt)2

.

• If tP νt < 0, then (4.47) implies

cos θν,xP
>

1

1− δ2rP
R+

· tP νt

rP
√

1 + (νt)2
≥ 1

1− δ2
· tP νt

rP
√

1 + (νt)2
.

Thus, comparing the above with (4.44), we conclude that Γ+ ⊆ ΓP,δ, as desired.
Next, consider the case P ∈ U , and let YP,δ be as assumed. Since U ∩ DP is bounded, Γ̄P,δ is

compact. Thus, by continuity, we can find nearby P1, P2 ∈ U , with t(P1) = t(P2) = t(P ), with
(4.48) ΓP1,δ ∪ ΓP2,δ ⊆ YP,δ,
where ΓPi,δ is defined as in (4.44), but with P replaced by Pi.

Applying Theorem 4.5 to U , (P1, P2), and δ yields∫
Ut(P )

(|∇t,xϕ|2 + ϕ2) ≲U,P,δ,M0,M1,YP,δ

∫
Γ1
+∪Γ2

+

|Nϕ|2,
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for ϕ as in the assumptions of the theorem, and with Γ1
+, Γ2

+ as defined in (4.25).19 Consequently,
to complete the proof, it suffices to show that Γ1

+ ∪ Γ2
+ is contained in YP,δ.

For this, we apply (4.42) and (4.43) as before in order to obtain
Γ1
+ ⊆ ΓP1,δ, Γ2

+ ⊆ ΓP2,δ.
Combining this with (4.48) yields, as desired,

Γ1
+ ∪ Γ2

+ ⊆ ΓP1,δ ∪ ΓP2,δ ⊆ YP,δ. □
4.3.2. Static Domains. Next, we consider the special case of time-independent domains mentioned
in Example 2.14. Applying Theorem 4.10 to this setting results in the following:
Corollary 4.12. Let Ω ⊆ Rn be open, and consider the time-independent GTC
(4.49) U := R× Ω.
In addition:

• Fix x0 ∈ Rn, as well as τ± ∈ R satisfying
(4.50) τ+ − τ− > 2R, R := sup

y∈∂Ω
|y − x0|.

• Consider the setting of Problem 2.18, and let X , V be as in (2.15).
• Let ν : ∂Ω → Rn represent the outer unit normal to Ω in Rn, and define

(4.51) Γx0;τ± := DP ∩ {(τ, y) ∈ ∂Uτ−,τ+ | (y − x0) · ν(y) > 0}, P :=

(
τ+ + τ−

2
, x0

)
.

Then, for any solution ϕ ∈ C2(U) ∩ C1(Ū) of (2.16) that also satisfies ϕ|∂Uτ−,τ+
= 0:

• If x0 ̸∈ Ω̄, then we have the observability inequality

(4.52)
∫
Uτ±

(|∇t,xϕ|2 + ϕ2) ≲Ω,x0,τ±,V,X

∫
Γx0;τ±

∣∣∣∣∣
n∑

i=1

νi∂xi
ϕ

∣∣∣∣∣
2

.

• If x0 ∈ Ω̄, then for any open subset Yx0;τ± of ∂U containing Γ̄x0;τ± ,

(4.53)
∫
Uτ±

(|∇t,xϕ|2 + ϕ2) ≲Ω,x0,τ±,V,X ,Yx0;τ±

∫
Yx0;τ±

∣∣∣∣∣
n∑

i=1

νi∂xiϕ

∣∣∣∣∣
2

.

Remark 4.13. In particular, we can directly compare the results in Corollary 4.12 with those from
classical Carleman-based methods. Recalling Remark 4.9, we see that:

• When x0 ̸∈ Ω̄, the observation region Γx0,τ± is simply the observation region from classical
results, but further restricted to the null cone exterior DP .

• When x0 ∈ Ω̄, the observation region Yx0,τ± is strictly larger than the standard observation
region restricted to DP , though by an arbitrarily small amount. This arises from the fact
that the interior estimate (4.26) must be applied at two different points.

Proof. First, we observe that ν in the theorem statement coincides with the ν defined in Theorem
4.10. In addition, here ν also represents the Minkowski outer normal to U .

Let us first assume that x0 ̸∈ ∂Ω, and hence P ̸∈ ∂U . We now apply Theorem 4.10 to the above
U and P , along with any fixed 0 < δ ≪ 1. We claim that Γx0;τ± coincides with ΓP,δ, as defined in
(4.44); this is a consequence of the following observations:

19Note that the constant R− in (4.26) depends on P and our choice of YP,δ .
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• Since νt ≡ 0 for our U , we have from (4.42) and (4.44) that
ΓP,δ = ∂U ∩ DP ∩ {cos θν,P > 0} = DP ∩ {(y, τ) ∈ ∂U | xP (τ, y) · ν(y) > 0}.

• The assumption τ+ − τ− > 2R in (4.50) implies that DP ∩ ∂U ⊆ ∂Uτ−,τ+ .
The application of Theorem 4.10 now splits into two cases:

• If x0 ̸∈ Ω̄, then P ̸∈ Ū , and (2.20) and (4.45) yield∫
Uτ±

(|∇t,xϕ|2 + ϕ2) ≲Ω,τ±,V,X

∫
Ut(P )

(|∇t,xϕ|2 + ϕ2) ≲Ω,x0,τ±,V,X

∫
Γx0;τ±

∣∣∣∣∣
n∑

i=1

νi∂xiϕ

∣∣∣∣∣
2

.

• Similarly, if x0 ∈ Ω, then P ∈ U , and (2.20) and (4.46) yield∫
Uτ±

(|∇t,xϕ|2 + ϕ2) ≲Ω,x0,τ±,M0,M1,Yx0,τ±

∫
Yx0;τ±

∣∣∣∣∣
n∑

i=1

νi∂xi
ϕ

∣∣∣∣∣
2

.

Finally, the remaining case x0 ∈ ∂Ω can be obtained by applying Theorem 4.10 to a nearby point

P ′ =

(
τ+ + τ−

2
, x′0

)
, x′0 ̸∈ Ω,

with |x′0 − x0| small enough so that ΓP ′,δ ⊆ Yx0;τ± .20 □

4.3.3. A Unified Estimate. We conclude with a precise version of the result roughly stated in The-
orem 1.6. While this is slightly weaker (in terms of the observation region) than Theorems 4.1 and
4.5, it unifies the interior and exterior estimates and provides a cleaner statement.

Theorem 4.14. Let U ⊆ R1+n be a GTC, and fix x0 ∈ Rn and τ± ∈ R such that
(4.54) τ+ − τ− > R+ +R−, R± := sup

(τ±,y)∈∂U
|y − x0|.

• In addition, choose t0 ∈ (τ−, τ+) so that
(4.55) t0 − τ− > R−, τ+ − t0 > R+.

• Consider the setting of Problem 2.18, and let X , V be as in (2.15).
• Let N denote the outer-pointing (g-)unit normal of U , let

(4.56) Γ† := ∂Uτ−,τ+ ∩ DP ∩ {N fP > 0}, P := (t0, x0),
and let Y† be a neighborhood of Γ̄† in ∂U .

Then, for any solution ϕ ∈ C2(U) ∩ C1(Ū) of (2.16) that also satisfies ϕ|∂Uτ−,τ+
∩DP

= 0,

(4.57)
∫
Uτ±

(|∇t,xϕ|2 + ϕ2) ≲U,P,τ±,V,X ,Y†

∫
Y†

|Nϕ|2.

Remark 4.15. See Figure 1.1 for visual depictions of the observation region in Theorem 4.14.

Proof. We divide the proof into cases depending on whether P , as defined in (4.56), lies in Ū . First,
if P ̸∈ Ū , we apply Theorem 4.1 to U , P , and some 0 < δ ≪ 1 to be fixed later; this yields

(4.58)
∫
Ut(P )

(|∇t,xϕ|2 + ϕ2) ≲U,P,τ±,V,X ,δ

∫
Γ+

|Nϕ|2,

20Here, ΓP ′,δ is defined as in (4.44), but with P replaced by P ′.
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with Γ+ as in (4.2). By continuity and (4.1), taking δ arbitrarily small makes S (as defined in (4.2))
arbitrarily close to N fP . Thus, by taking 0 < δ ≪ 1 sufficiently small (depending on Y†), we have
that Γ+ ⊆ Y†. Recalling (2.20) and (4.58) then yields, as desired,∫

Uτ±

(|∇t,xϕ|2 + ϕ2) ≲U,τ±,V,X

∫
Ut(P )

(|∇t,xϕ|2 + ϕ2) ≲U,P,τ±,V,X ,Y†

∫
Y†

|Nϕ|2.

Next, if P ∈ ∂U , then we apply Theorem 4.1 to a point P ′ near P that is not in Ū . Again, by
continuity, if P ′ is sufficiently near P and δ is sufficiently small, then the resulting control region
Γ+ (now associated with P ′) lies inside Y†, and (2.20) yields the desired bound:∫

Uτ±

(|∇t,xϕ|2 + ϕ2) ≲U,τ±,V,X

∫
Ut(P ′)

(|∇t,xϕ|2 + ϕ2) ≲U,P,τ±,V,X ,Y†

∫
Y†

|Nϕ|2.

Finally, when P ∈ U , we apply Theorem 4.5, with respect to some 0 < δ ≪ 1 and distinct points
P1, P2 ∈ U with t(P ) = t(P1) = t(P2). By continuity, if δ is sufficiently small, and if P1, P2 are
sufficiently close to P , then Γ1

+ ∪ Γ2
+ (as defined in (4.25)) lies in Y†, and the result follows from

(2.20) and (4.26) in a manner analogous to the preceding two cases. □

5. Consequences and Applicatons

In this section, we provide further discussions relating to the observability results in Section 4.

5.1. The Case n = 1. The first objective is to take a closer look at GTCs in one spatial dimension.
Here, we extend known results in the literature; we show, in full generality, that one can recover
observability for linear waves on time-dependent domains up to the optimal required timespan.

More specifically, throughout this subsection, we will study the following setting:
Definition 5.1. Fix two curves ℓ1 and ℓ2 in R1+1, parametrized as
(5.1) ℓ1(τ) := (τ, λ1(τ)), ℓ2(τ) := (τ, λ2(τ)),
where λ1, λ2 : R → R are smooth and satisfy, for all τ ∈ R,
(5.2) λ1(τ) < λ2(τ), |λ′1(τ)| < 1, |λ′2(τ)| < 1.
We now let Uℓ be the region bounded by ℓ1 and ℓ2, that is,
(5.3) Uℓ := {(τ, y) ∈ R1+1 | λ1(τ) < y < λ2(τ)}, ∂Uℓ = ℓ1 ∪ ℓ2.

In particular, the second and third conditions in (5.2) imply that ℓ1 and ℓ2 are timelike, and
hence ∂Uℓ is timelike as well. We also observe the following basic facts:
Proposition 5.2. Let the region Uℓ ⊆ R1+1 be as in Definition 5.1. Then, Uℓ is a GTC, and the
outward-pointing (g-)unit normal N to Uℓ satisfies

(5.4)
[
1− |λ′1(τ)|2

] 1
2 N|ℓ1(τ) = −(λ′1(τ), 1),

[
1− |λ′2(τ)|2

] 1
2 N|ℓ2(τ, λ2(τ)) = (λ′2(τ), 1).

5.1.1. One-Sided Observation. We first consider the case in which we observe only on ℓ2. (In terms
of controllability, this corresponds to the problem of imposing a control only on ℓ2.)
Theorem 5.3. Let Uℓ be as in Definition 5.1, and fix τ± ∈ R. Consider the setting of Problem
2.18, in the case n = 1, and let X , V be as in (2.15). In addition, assume:

• There exists T− > 0 such that the forward, leftward null ray emanating from the point
(τ−, λ2(τ−)) ∈ ℓ2 intersects ℓ1 at time τ− + T−, that is,

(5.5) λ2(τ−)− T− = λ1(τ− + T−).



OBSERVABILITY ON TIME-DEPENDENT DOMAINS 47

• There exists T+ > 0 such that the forward, rightward null ray emanating from the point
(τ− + T−, λ1(τ− + T−)) ∈ ℓ1 hits ℓ2 at time τ− + T− + T+, that is,

(5.6) λ1(τ− + T−) + T+ = λ2(τ− + T− + T+).
• The following relation holds:

(5.7) τ+ > τ− + T− + T+.
Then, for any solution ϕ ∈ C2(Uℓ) ∩ C1(Ūℓ) of (2.16) that also satisfies ϕ|ℓ1∪ℓ2 = 0, we have

(5.8)
∫
Uℓ

τ±

(|∇t,xϕ|2 + ϕ2) ≲ℓ1,ℓ2,τ±,V,X

∫
ℓ2∩{τ−<t<τ+}

|∂xϕ|2.

Remark 5.4. Note that the only possibility of the assumptions (5.5), (5.6) failing is if either ℓ1 or
ℓ2 very quickly becomes asymptotically null in the future of {t = τ−}.

Remark 5.5. Theorem 5.3 states that, with initial data at t = τ−, we have observability from ℓ2 if
the timespan is strictly greater than T+ + T−. Moreover, this timespan T+ + T− is precisely what
is required by the geometric control condition and hence is optimal.

Proof. We begin by fixing P = (t0, x0) ∈ R1+1 satisfying
(5.9) 0 < t0 − (τ− + T−) ≪τ+ 1, x0 := λ2(τ−)− (t0 − τ−).
Note that P lies on the forward, leftward null line from (τ−, λ2(τ−)) ∈ ℓ2 and is slightly to the left
of ℓ1. By continuity, along with (5.5) and (5.6), we see that as long as t0 − (τ− + T−) is sufficiently
small, the forward, rightward null line from P intersects ℓ2 before time t = τ+.

We now apply Theorem 4.10, with U = Uℓ and P ∈ R1+1 \ Ūℓ as above, and with 0 < δ ≪ 1
sufficiently small. In particular, we let ν, νt, and θν,P be as in the statement of Theorem 4.10 (see
also Proposition 4.8), again with the above Uℓ and P . Observe, from (5.4), the following:

• On each (τ, y) ∈ DP ∩ ℓ1, we have ν(τ, y) < 0 and xP (τ, y) > 0.
• On each (τ, y) ∈ DP ∩ ℓ2, we have ν(τ, y) > 0 and xP (τ, y) > 0.

In particular, this implies:

(5.10) cos θν,P |DP∩ℓ1 ≡ −1 < − |tP νt|
rP
√
1 + (νt)2

, cos θν,P |DP∩ℓ2 ≡ 1 >
|tP νt|

rP
√
1 + (νt)2

.

With ΓP,δ as in (4.44), we see from (5.5)–(5.7), (5.10), and our choices of δ and P that
(5.11) ΓP,δ = DP ∩ ℓ2 ⊆ ℓ2 ∩ {τ− < t < τ+}.

Finally, since the Dirichlet boundary condition ϕ|ℓ1∪ℓ2 ≡ 0 implies
|Nϕ| ≲ |∂xϕ|,

the observability estimate (4.45) along with (5.11) imply (5.8), as desired. □
5.1.2. Two-Sided Observation. Next, we consider the case in which both ℓ1 and ℓ2 are observed.
(In particular, this corresponds to the problem of imposing controls on both ℓ1 and ℓ2.)

Theorem 5.6. Let Uℓ be as in Definition 5.1, and fix τ−, τ+,1, τ+,2 ∈ R. Consider the setting of
Problem 2.18, in the case n = 1, and let X , V be as in (2.15). In addition, assume:

• There exists T1 > 0 such that the forward, leftward null ray emanating from the point
(τ−, λ2(τ−)) ∈ ℓ2 intersects ℓ1 at time τ− + T1, that is,

(5.12) λ2(τ−)− T1 = λ1(τ− + T1).
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• There exists T2 > 0 such that the forward, rightward null ray emanating from the point
(τ−, λ1(τ−)) ∈ ℓ1 hits ℓ2 at the time τ− + T2, i.e.,

(5.13) λ1(τ−) + T2 = λ2(τ− + T2),
• The following relations hold:

(5.14) τ+,1 > τ− + T1, τ+,2 > τ− + T2.
Then, for any solution ϕ ∈ C2(Uℓ) ∩ C1(Ūℓ) of (2.16) that also satisfies ϕ|ℓ1∪ℓ2 = 0, we have

(5.15)
∫
Uℓ

τ±

(|∇t,xϕ|2 + ϕ2) ≲ℓ1,ℓ2,τ±,V,X

2∑
i=1

∫
ℓi∩{τ−<t<τ+,i}

|∂xϕ|2.

Remark 5.7. Again, like in the preceding one-sided setting, the timespan max(T1, T2) implied by
Theorem 5.6 exactly matches the sharp value dictated by the geometric control condition.
Proof. Let t′0 ∈ R be such that

λ2(τ−)− (t′0 − τ−) = λ1(τ−) + (t′0 − τ−),
In other words, t′0 is the time at which the forward, leftward null ray from (τ−, λ2(τ−)) ∈ ℓ2 and the
forward, rightward null ray from (τ−, λ1(τ−)) ∈ ℓ1 intersect. We now set the point P to be slightly
above this intersection point of the two null rays described above:
(5.16) P := (t0, x0) := (t′0 + d, λ2(τ−)− (t′0 − τ−)), 0 < d≪ 1.
By continuity, choosing d sufficiently small, we have P ∈ Uℓ, and:

• The forward, leftward null ray from P hits ℓ1 before time τ+,1.
• The forward, rightward null ray from P hits ℓ2 before time τ+,2.

We now apply Theorem 4.10, with U = Uℓ and P as above, and with 0 < δ ≪ 1. Similar to the
proof of Theorem 5.3, letting θν,P be as in the statement of Theorem 4.10, we see that
(5.17) cos θν,P |DP∩ℓ1 ≡ 1, cos θν,P |DP∩ℓ2 ≡ 1,
Therefore, we obtain from (5.12)–(5.14), (5.17), and our choices of δ and P that

(5.18) ΓP,δ = DP ∩ (ℓ1 ∪ ℓ2) ⊆
2∪

i=1

(ℓi ∩ {τ− + ε < t < τ+,i − ε}),

for some ε > 0, with ΓP,δ as in (4.44). Finally, note that the desired observation region
(ℓ1 ∩ {τ− < t < τ+,1}) ∪ (ℓ2 ∩ {τ− < t < τ+,2})

is an open subset of ∂U containing Γ̄P,δ. Thus, (5.15) follows from (4.46) and the above. □
5.1.3. Linear ℓ1 and ℓ2. We now look at special cases of Theorems 5.3 and 5.6, in which ℓ1 and ℓ2 are
straight lines. This directly extends results in [17, 54, 55, 57] to general linear waves. In particular,
we explicitly recover the optimal timespans for both the one-sided and two-sided problems.

We begin with the case in which ℓ1 and ℓ2 are moving apart from each other:
Corollary 5.8. Let Uℓ be as in Definition 5.1, and fix τ− > 0. Consider the setting of Problem
2.18, in the case n = 1, and let X , V be as in (2.15). In addition:

• Fix −1 < h1 < h2 < 1, and assume ℓ1 and ℓ2 satisfy21

(5.19) λ1(τ) = h1τ , λ2(τ) = h2τ .
21Recall λ1 and λ2 are related to ℓ1 and ℓ2, respectively, via (5.2).
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• Define the “optimal timespans”

(5.20) T :=
2(h2 − h1)τ−

(1 + h1)(1− h2)
, T1 :=

(h2 − h1)τ−
1 + h1

, T2 :=
(h2 − h1)τ−

1− h2
.

Then, for any solution ϕ ∈ C2(Uℓ) ∩ C1(Ūℓ) of (2.16) that also satisfies ϕ|ℓ1∪ℓ2 = 0:
• For any τ+ > τ− + T , the observability inequality (5.8) holds for the above ϕ and τ±.
• For any τ+,1 > τ− + T1 and τ+,2 > τ− + T2, the observability estimate (5.15) holds.

Proof. This is a consequence of Theorems 5.3 and 5.6, along with the following observations:
• The assumptions (5.5) and (5.6) hold, with

T− =
(h2 − h1)τ−

1 + h1
, T+ =

(h2 − h1)(1 + h2)τ−
(1 + h1)(1− h2)

, T = T− + T+.

• The assumptions (5.12) and (5.13) hold, with

T1 =
(h2 − h1)τ−

1 + h1
, T2 =

(h2 − h1)τ−
1− h2

. □

Remark 5.9. Suppose, in addition to the setting of Corollary 5.8, that ℓ1 is a vertical line:
0 = h1 < h2 < 1.

Then, the optimal times for one-sided and two-sided observability, respectively, reduce to

T =
2h2τ−
1− h2

, max(T1, T2) =
h2τ−
1− h2

.

For completeness, we also consider the case when ℓ1 and ℓ2 are moving toward each other:

Corollary 5.10. Let Uℓ be as in Definition 5.1, and fix τ− < 0. Consider the setting of Problem
2.18, in the case n = 1, and let X , V be as in (2.15). In addition:

• Fix −1 < h2 < h1 < 1, and assume ℓ1 and ℓ2 satisfy (5.19).
• Define the “optimal timespans”

(5.21) T :=
2(h1 − h2)|τ−|
(1 + h1)(1− h2)

, T1 :=
(h1 − h2)|τ−|

1 + h1
, T2 :=

(h1 − h2)|τ−|
1− h2

.

Then, for any solution ϕ ∈ C2(Uℓ) ∩ C1(Ūℓ) of (2.16) that also satisfies ϕ|ℓ1∪ℓ2 = 0:
• For any τ+ > τ− + T , the observability inequality (5.8) holds for the above ϕ and τ±.
• For any τ+,1 > τ− + T1 and τ+,2 > τ− + T2, the observability estimate (5.15) holds.

Proof. This is completely analogous to the proof of Corollary 5.8. □

Remark 5.11. Again, let us assume, on top of Corollary 5.10, that ℓ1 is a vertical line:
−1 < h2 < h1 = 0.

Then, the optimal times for one-sided and two-sided observability, respectively, reduce to

T =
2|h2||τ−|
1− h2

, max(T1, T2) = |h2|τ−.

5.2. Exact Controllability. It is well known that observability inequalities are necessary for es-
tablishing exact controllability properties; see the discussion in Section 1.1. Here, we briefly describe
this connection in the context of time-dependent domains with moving boundaries.
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5.2.1. Well-Posedness. The first step in this discussion is to precisely define the relevant spaces and
norms. In the subsequent definitions, we accomplish this in the context of GTCs:

Definition 5.12. Let M be a submanifold of (R1+n, g), and suppose its induced metric is either
Riemannian or Lorentzian. We then define the following norms and spaces:

• Let C∞
0 (M) be the space of compactly supported smooth functions on M.

• For any ϕ ∈ C∞
0 (M), we define

(5.22) ∥ϕ∥2L2(M) :=

∫
M

|ϕ|2,

where the integral is defined with respect to the metric induced by g.
• Let L2(M) denote the (Hilbert space) completion of C∞

0 (M) with respect to (5.22).

In order to state the usual well-posedness theorems for wave equations, we will need to define
additional functional spaces on cross-sections of GTCs.

Definition 5.13. Let U be a GTC, and let V be a cross-section of U .
• For any ϕ ∈ C∞

0 (V), we define

(5.23) ∥ϕ∥2H1(V) :=

∫
V
γ(Dϕ,Dϕ) +

∫
V
ϕ2,

where γ is the (Riemannian) metric on V induced by g, where the integrals on the right-hand
side are with respect to γ, and where Dϕ denotes γ-gradient of ϕ.

• Let H1
0 (V) denote the (Hilbert space) completion of C∞

0 (V) with respect to (5.23).
• Let H−1(V) denote the (Hilbert) dual space of H1

0 (V).

We now state the standard existence and uniqueness results for the linear wave equations of
Problem 2.18 that will be relevant to Dirichlet boundary controllability (see also [21, 43]).

Theorem 5.14. Let U be a GTC in R1+n, let Z be a generator of U , let N be the outer (g-)unit
normal of U , and let V be a cross-section of U . Also, consider the setting of Problem 2.18. Then:

• Given any initial data (ϕ0, ϕ1) ∈ H1
0 (V) × L2(V), there exists a unique ϕ ∈ L2

loc(U) that
solves the wave equation (2.16) and satisfies, in a trace sense,

(5.24) (ϕ,Zϕ)|V = (ϕ0, ϕ1), ϕ|∂U = 0.
Furthermore, for any cross-sections V± such that V− < V < V+,

∥ϕ∥2H1(V+) + ∥Zϕ∥2L2(V+) + ∥Nϕ∥2L2(∂U(V,V+)) ≲Z,V,V+
∥ϕ0∥2H1(V) + ∥ϕ1∥2L2(V),(5.25)

∥ϕ∥2H1(V−) + ∥Zϕ∥2L2(V−) + ∥Nϕ∥2L2(∂U(V−,V)) ≲Z,V,V− ∥ϕ0∥2H1(V) + ∥ϕ1∥2L2(V).

• Given any initial data (ϕ0, ϕ1) ∈ L2(V) ×H−1(V) and boundary data ϕb ∈ L2(∂U), there
is a unique solution ϕ ∈ L2

loc(U) of (2.16) that satisfies, in a trace sense,
(5.26) (ϕ,Zϕ)|V = (ϕ0, ϕ1), ϕ|∂U = ϕb.

Furthermore, for any cross-sections V± such that V− < V < V+,
∥ϕ∥2L2(V+) + ∥Zϕ∥2H−1(V+) ≲Z,V,V+ ∥ϕ0∥2L2(V) + ∥ϕ1∥2H−1(V) + ∥ϕb∥2L2(∂U(V,V+)),(5.27)
∥ϕ∥2L2(V−) + ∥Zϕ∥2H−1(V−) ≲Z,V,V− ∥ϕ0∥2L2(V) + ∥ϕ1∥2H−1(V) + ∥ϕb∥2L2(∂U(V−,V)).

Remark 5.15. A technical issue inherent to Theorem 5.14 (and more generally to the theory of
hyperbolic PDEs) is establishing the precise sense that ϕ is a solution of Problem 2.18.
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• When (ϕ0, ϕ1) ∈ H1
0 (V) × L2(V), the solution ϕ can be interpreted as a weak solution of

(2.16), via integrations by parts and the Hilbert space structures of the spaces H1
0(V±). This

is described, for a slightly simpler class of hyperbolic PDEs, in [21].
• When (ϕ0, ϕ1) ∈ L2(V)×H−1(V), one can make sense of the “transposition” solution ϕ via

the above theory of weak solutions and a duality argument; see, for instance, [43].
• More generally, as long as we assume X and V are smooth, then ϕ, in all the above, can

also be interpreted as a distributional solution of (2.16).

5.2.2. Controllability and Observability. Using the well-posedness results of Theorem 5.14, we can
now give a precise statement of the exact controllability problem we will consider:

Definition 5.16. Let U be a GTC in R1+n, let Z be a generator of U , and fix cross-sections V± of
U with V− < V+. Moreover, we consider the setting of Problem 2.18 on U .

• The wave equation (2.16) is exactly (Dirichlet boundary) controllable on U(V−,V+), with
control on some open Γ ⊆ ∂U(V−,V+), iff given any initial and final data,

(5.28) (ϕ±0 , ϕ
±
1 ) ∈ L2(V±)×H−1(V±),

there exists ϕb ∈ L2(∂U), supported in Γ, such that the solution of (2.16) satisfying22

(5.29) (ϕ,Zϕ)|V− = (ϕ−0 , ϕ
−
1 ), ϕ|∂U = ϕb,

also attains the final data
(5.30) (ϕ,Zϕ)|V+

= (ϕ+0 , ϕ
+
1 ).

• When (5.29) and (5.30) hold, we say that ϕb drives (2.16) from (ϕ−0 , ϕ
−
1 ) to (ϕ+0 , ϕ

+
1 ).

The following theorem summarizes, again in the context of GTCs and Problem 2.18, the con-
nection, via the HUM (see [42]), between observability and exact controllability.

Theorem 5.17. Assume the setting of Definition 5.16 and Problem 2.18, let N denote the outer
(g-)unit normal to U , and let Γ be an open subset of ∂U(V−,V+). In addition, assume that for any
(ψ−

0 , ψ
−
1 ) ∈ H1

0 (V−)× L2(V−), we have the observability inequality
(5.31) ∥ψ−

0 ∥2H1(V−) + ∥ψ−
1 ∥2L2(V−) ≲Z,V± ∥Nψ∥2L2(Γ),

where ψ denotes the solution of the adjoint problem23

[□ψ −∇Xψ + (V −∇αXα)ψ]|U = 0,(5.32)
(ψ,Zψ)|V− = (ψ−

0 , ψ
−
1 ),

ψ|∂U ≡ 0.
Then, the equation (2.16) is exactly controllable on U(V−,V+), with control on Γ.

Furthermore, for each (ϕ−0 , ϕ
−
1 ) ∈ L2(V−)×H−1(V−), there exists a functional

(5.33) J [ϕ−0 , ϕ
−
1 ] : H

1
0 (V−)× L2(V−) → R

such that the following hold:
• J [ϕ−0 , ϕ

−
1 ] has a unique minimizer (ψ−

0 , ψ
−
1 ); moreover, the zero extension of Nψ|Γ to ∂U ,

where ψ solves (5.32) with the above (ψ−
0 , ψ

−
1 ), drives (2.16) from (ϕ−0 , ϕ

−
1 ) to (0, 0).

22This solution exists and is unique due to the second part of Theorem 5.14.
23This solution exists and is unique due to the first part of Theorem 5.14.
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• If ϕb ∈ L2(∂U) is also supported in Γ and drives (2.16) from (ϕ−0 , ϕ
−
1 ) to (0, 0), then

(5.34) ∥Nψ∥L2(Γ) ≤ ∥ϕb∥L2(Γ).

As is standard, we can now combine Theorem 5.17 with our main observability results in order
to establish exact Dirichlet boundary controllability for Problem 2.18 on time-dependent domains.
Below, we demonstrate this for the unified observability estimate of Theorem 4.14.

Corollary 5.18. Assume the setting of Theorem 4.14, that is, let U ⊆ R1+n be a GTC, and:
• Fix x0 ∈ Rn and τ± ∈ R satisfying (4.54). Also, choose t0 ∈ (τ−, τ+) so that (4.55) holds.
• Consider the setting of Problem 2.18, and let X , V be as in (2.15).
• Let N denote the outer (g-)unit normal of U , let Γ† ⊆ ∂Uτ−,τ+ be defined as in (4.56), and

let Y† ⊆ ∂Uτ−,τ+ be a neighborhood of Γ̄† in ∂U .
Then, the equation (2.16) is exactly controllable on Uτ−,τ+ , with control on Y†.

More generally, under the above assumptions, given any cross sections V± of U that satisfy
(5.35) V− ⊆ I−(Y†), V+ ⊆ I+(Y†),
we have that (2.16) is exactly controllable on U(V−,V+), with control on Y†.

Proof. Consider a solution ψ of the adjoint problem (5.32), with V− := Uτ− and Z being any
generator of U . Note the wave equation in (5.32) is of the same form as those in Problem 2.18.
Thus, whenever ψ is smooth, we can apply Theorem 4.14 to obtain the observability estimate

(5.36) ∥ψ−
0 ∥2H1(Uτ− ) + ∥ψ−

1 ∥2L2(Uτ− ) ≲U,(x0,t0),τ±,V,X ,Y†

∫
Y†

|Nψ|2.

Moreover, a standard approximation argument combined with (5.36) yields the inequality
(5.37) ∥ψ−

0 ∥2H1(Uτ− ) + ∥ψ−
1 ∥2L2(Uτ− ) ≲U,x0,τ±,V,X ,Y† ∥Nψ∥2L2(Y†)

,

for all solutions ψ generated from initial data (ψ−
0 , ψ

−
1 ) ∈ H1

0 (Uτ−) × L2(Uτ−), that is, solutions
generated from the first part of Theorem 5.14. Applying Theorem 5.17 along with (5.37) yields
that (2.16) is indeed exactly controllable on Uτ−,τ+ , with control on Y†.

Finally, for general cross-sections V±, we combine the observability inequality (5.36) with the
energy estimate (2.20) and an approximate argument to obtain (5.31) for all solutions ψ arising
from initial data (ψ−

0 , ψ
−
1 ) ∈ H1

0 (V−) × L2(V−). By Theorem 5.17, we again conclude that (2.16)
is exactly controllable on U(V−,V+), with control on Y†. □
Remark 5.19. Note that Theorem 5.17 and Corollary 5.18 allow for geometric extensions of
controllability results, where the initial and final data can be placed on cross-sections of U that are
not level sets of t. As before, one still needs to impose the Dirichlet boundary data on a sufficiently
large portion of ∂U in order to achieve exact controllability.

Finally, we note that all the previous results in one spatial dimension—Theorems 5.3 and 5.6,
Corollaries 5.8 and 5.10—also lead to corresponding exact controllability results.
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Appendix A. Details and Computations

In this appendix, we provide—for interested readers’ convenience—additional proofs, computa-
tions, and details that were omitted in the main sections of this article.

A.1. Preliminary Computations. First, a number of computations throughout this appendix
will make use of the following null coordinate computations for the warped metric:

Lemma A.1. Let ε ∈ R and ḡ be defined as in Definition 3.3 and 3.4. Then:
• The nonzero components of ḡ and ḡ−1 in the null coordinates (u, v, ω) are given by

(A.1) ḡuv ≡ −2, ḡab = ρ̄2γ̊ab, ḡuv ≡ −1

2
, ḡab = ρ̄−2γ̊ab.

• The nonzero Christoffel symbols of ḡ in the null coordinates (u, v, ω) are given by

Γ̄u
ab =

1

2ρ̄
(1− 2εu)ḡab, Γ̄v

ab = − 1

2ρ̄
(1 + 2εv)ḡab,(A.2)

Γ̄a
ub = −1

ρ̄
(1 + 2εv)δab , Γ̄a

vb =
1

ρ̄
(1− 2εu)δab .

A.2. Proof of Proposition 3.8. To derive (3.8), we use (A.1) to obtain that

∇̄♯f = ḡαβ∂αf∂β = ḡvu∂vf∂u + ḡuv∂uf∂v =
1

2
(u∂u + v∂v),

and that
∇̄αf∇̄βf = 2ḡuv∂uf∂vf = −(−v)(−u) = f .

Next, using (A.2), we obtain
∇̄uuf = ∂u∂uf = 0, ∇̄vvf = ∂v∂vf = 0, ∇̄uvf = ∂u∂vf = −1,

as well as
∇̄uaf = −Γ̄b

ua∂bf = 0, ∇̄vaf = −Γ̄b
va∂bf = 0.

For the purely spherical components, (A.2) also implies
∇̄abf = −Γ̄u

ab∂uf − Γ̄v
ab∂vf

=
1

2ρ̄
[(−1 + 2εu)(−v) + (1 + 2εv)(−u)]ḡab

=
1

2ρ̄
(r + 4εf)ḡab

=

(
1

2
+
εf

ρ̄

)
ḡab,

which completes the proof of (3.9).
Contracting ∇̄2f and recalling (3.9), we then obtain

□̄f = 2ḡuv∇̄uvf + ḡab∇̄abf = 1 + (n− 1)

(
1

2
+
εf

ρ

)
=
n+ 1

2
+

(n− 1)εf

ρ̄
,

Furthermore, recalling the second equation in (3.8),

∇̄αf∇̄βf∇̄αβf =
1

2
∇̄αf∇̄α(∇̄βf∇̄βf) =

1

2
∇̄αf∇̄αf =

1

2
f .

Combining the above results in (3.10).
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A.3. Proof of Proposition 3.9. First, (3.11) follows from a direct computation:

∂u

(
f

ρ̄

)
= −v

ρ̄
− f

ρ̄2
∂uρ̄ = −v(v − u+ 2εf)

ρ̄2
+

f

ρ̄2
(1 + 2εv) = −v

2

ρ̄2
,

∂v

(
f

ρ̄

)
= −u

ρ̄
− f

ρ̄2
∂vρ̄ = −u(v − u+ 2εf)

ρ̄2
− f

ρ̄2
(1− 2εu) =

u2

ρ̄2
.

Taking a second derivative, we then see that

∂u∂v

(
f

ρ̄

)
=

2u

ρ̄2
− 2u2

ρ̄3
∂uρ̄ =

2u(v − u+ 2εf)

ρ̄3
+

2u2(1 + 2εv)

ρ̄3
=

2uv

ρ̄3
= −2f

ρ̄3
.

Next, for spherical derivatives, we recall (3.7), (A.2), and the above to obtain

ḡab∇̄ab

(
f

ρ̄

)
= −ḡab

[
Γ̄u
ab∂u

(
f

ρ̄

)
+ Γ̄v

ab∂v

(
f

ρ̄

)]
= −n− 1

2ρ̄

[
(1− 2εu)

(
−v

2

ρ̄2

)
− (1 + 2εv)

u2

ρ̄2

]
=
n− 1

2ρ̄3
(v2 + u2 + 2εrf)

=
n− 1

2ρ̄3
(ρ̄2 − 2f − 2εfρ̄).

The identity (3.12) follows, since

□̄
(
f

ρ̄

)
= −∂u∂v

(
f

ρ̄

)
+ ḡab∇̄ab

(
f

ρ̄

)
=

2f

ρ̄3
+
n− 1

2ρ̄3
(ρ̄2 − 2f − 2εfρ̄)

=
n− 1

2ρ̄

(
1− 2εf

ρ̄

)
− (n− 3)f

ρ̄3
.

A.4. Proof of Proposition 3.12. First, N is normal to the level sets of f , since by (3.8),

N = f−
1
2 ∇̄♯f .

That T is tangent to the level sets of f follows from the fact that

Tf =
1

2
f−

1
2 [(−u)(−v) + v(−u)] = 0.

Observe that since ∇̄uaf = ∇̄vaf = 0 by (3.9), then
∇̄Taf = ∇̄Naf = 0.

For the remaining components of ∇̄2f , we apply (3.9) and (3.15) to obtain

∇̄TT f =
1

4
f−1[2(−u)v∇̄uvf ] = −1

2
,

∇̄NNf =
1

4
f−1[2uv∇̄uvf ] =

1

2
,

∇̄TNf =
1

4
f−1[(−u)v∇̄uvf + uv∇̄uvf ] = 0,

which is precisely (3.16).
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A.5. Proof of Proposition 3.14. The components of π̄ can be directly computed using its defi-
nition (3.17) along with the identities (3.9) and (3.16). First, note that

π̄TN = ∇̄TNf = 0, π̄Ta = ∇̄Taf = 0, π̄Na = ∇̄Naf = 0.

Similarly, for the nontrivial components, we compute

π̄TT = ∇̄TT f + h̄ = −1

2
+

1

2
+
εf

2ρ̄
=
εf

2ρ̄
,

π̄NN = ∇̄NNf − h̄ =
1

2
− 1

2
− εf

2ρ̄
= −εf

2ρ̄
,

π̄ab = ∇̄abf − h̄ · ḡab =
(
1

2
+
εf

ρ̄
− 1

2
− εf

2ρ̄

)
ḡab =

εf

2ρ̄
· ḡab.

This completes the proof of (3.19).
Finally, for (3.20), we simply apply (3.12):

□̄w̄ =
(n− 2)ε

2
· □̄
(
f

ρ̄

)
= − (n− 2)ε

2

[
(n− 3)f

ρ̄3
− n− 1

2ρ̄

(
1− 2εf

ρ̄

)]
.

A.6. Proof of Proposition 3.18. The identities in (3.23) follow from direct computations. First,

f ◦ Φ̄ = −(u ◦ Φ̄)(v ◦ Φ̄) = −uv
(1 + εu)(1− εv)

= ξ−1f .

For the remaining identity, we combine (2.2) and (3.21) with the above to obtain

ρ ◦ Φ̄ =
v

(1− εv)
− u

(1 + εu)
− 2εuv

(1 + εu)(1− εv)
= ξ−1(v − u) = ξ−1r.

Next, we compute the derivative of u ◦ Φ̄ of v ◦ Φ̄:

∂u(u ◦ Φ̄) = 1

1 + εu
− εu

(1 + εu)2
=

1

(1 + εu)2
,

∂v(v ◦ Φ̄) =
1

1− εv
+

εv

(1− εv)2
=

1

(1− εv)2
.

In particular, by (3.13), both derivatives are positive and uniformly bounded from below. This
implies u ◦ Φ̄ and v ◦ Φ̄ define invertible functions of u and v, respectively, with smooth inverses.

It remains to show the conformal identity (3.24). For this, we first note that the above derivatives
imply that the push-forwards of the null coordinate vector fields satisfy

dΦ̄(∂u) = (1 + εu)−2∂u, dΦ̄(∂v) = (1− εv)−2∂v,

and hence the corresponding pullbacks satisfy

Φ̄∗(du) = (1 + εu)−2du, Φ̄∗(dv) = (1− εv)−2dv.

(Moreover, Φ̄ by definition leaves the angular components unchanged.) As a result, by (3.23),

Φ̄∗ḡ = Φ̄∗(−4dudv + ρ̄2γ̊) = − 4dudv

(1 + εu)(1− εv)
+ (ρ̄ ◦ Φ̄)2γ̊ = ξ−2(−4dudv + r2γ̊),

and (3.24) now follows from (2.6).
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A.7. Proof of Proposition 3.19. The main step is to compute the scalar curvature R̄ with respect
to ḡ. Since Minkowski spacetime is flat, the standard formula for the change of scalar curvature
under conformal transformations (see, for instance, [62, Appendix D]) yields that24

R̄ ◦ Φ̄ = ξ2[2n ·□(log ξ)− n(n− 1) · gαβ∇α(log ξ)∇β(log ξ)]

= 2nξ ·□ξ − n(n+ 1) · gαβ∇αξ∇βξ.
Recalling Lemma A.1 (with ε = 0), we compute

gαβ∇αξ∇βξ = −∂uξ∂vξ = ε2(1− εv)(1 + εu) = ε2ξ,
as well as

□ξ = gαβ∂αβξ − gαβΓµ
αβ∂µξ

= −∂uvξ − gabΓu
ab∂uξ − gabΓv

ab∂vξ

= ε2 − n− 1

2r
· ε(1− εv)− n− 1

2r
· ε(1 + εu)

=
(n+ 1)ε2

2
− (n− 1)ε

r
.

Thus, combining all the above with (3.23) yields

R̄ ◦ Φ̄ = 2nξ

[
(n+ 1)ε2

2
− (n− 1)ε

r

]
− n(n+ 1)ε2ξ

= −2n(n− 1)ε · ξ
r

= −2n(n− 1)ε

ρ̄ ◦ Φ̄
.

Finally, recall that the standard formula for how the wave operator changes under conformal
transformations (again, see [62, Appendix D], for instance) is given by[

□̄− n− 1

4n
(R̄ ◦ Φ̄)

]
ξ

n+1
2 −1 = ξ

n+1
2 +1□.

Substituting our identity for R̄ into the above results in (3.25).

A.8. Proof of Proposition 5.2. Clearly, ∂Uℓ, a disjoint union of two smooth timelike curves ℓ1
and ℓ2, is a smooth timelike hypersurface of R1+1. By (5.2), we have, for any τ ∈ R, that

{y ∈ R | (τ, y) ∈ U} = (λ1(τ), λ2(τ))

is a nonempty bounded open interval in R. Finally, for the generator, one can choose any smooth
vector field Z in R1+1 such that Z|ℓ1(τ) = ℓ′1(τ) and Z|ℓ2(τ) = ℓ′2(τ).

Finally, for (5.4), we simply note that:
• On the left curve ℓ1, the vector −(λ′1(τ), 1) is pointing away from Uℓ.
• On the right curve ℓ2, the vector (λ′2(τ), 1) is pointing away from Uℓ.
• The above two vectors are normal to ℓ1 and ℓ2—for any τ ∈ R,[

−λ′1(τ) −1
] [−1 0

0 1

] [
1

λ′1(τ)

]
= 0,

[
λ′2(τ) 1

] [−1 0
0 1

] [
1

λ′2(τ)

]
= 0.

24The formula found in [62] only takes into account the conformal factor ω, and not the presence of the diffeomorphism
Φ̄. However, the formula with Φ̄ is similar, as one only has to appropriately map points through Φ̄.



OBSERVABILITY ON TIME-DEPENDENT DOMAINS 57

• The above two vectors are (g-)unit—for any τ ∈ R,[
−λ′1(τ) −1

] [−1 0
0 1

] [
−λ′1(τ)
−1

]
= 1− |λ′1(τ)|2,

[
λ′2(τ) 1

] [−1 0
0 1

] [
λ′2(τ)
1

]
= 1− |λ′2(τ)|2.

A.9. Proof of Theorem 5.14. Fix a coordinate system (t, y1, . . . , yn) on Ū such that:
• y1, . . . , yn are constant along the integral curves of Z.
• The g-gradient ∇♯t is everywhere timelike and past-directed; in particular, Zt > 0.
• V is precisely the level set U ∩ {t = 0}.

In these new coordinates, (2.16) takes the form of a second-order hyperbolic PDE,

−∂ttu+

n∑
i,j=1

∂yj (Aij∂yiu) +

n∑
i=1

∂yi(Bi∂tu) +

n∑
i=1

Xi∂yiu+ Y ∂tu+ V u = 0,

for some smooth coefficients Aij , Bi, Xi, Y , V , on a static cylinder of the form R× Σ.
Treating (ϕ0, ϕ1) as initial data on Σ and ϕb (or zero in the first statement of Theorem 5.14) as

boundary data on R× ∂Σ, we can now apply the standard well-posedness theory for linear second-
order hyperbolic equations; see [21, 43]. More specifically, invoking this well-posedness theory in
H1

0 × L2 and L2 ×H−1 yields existence in both cases of Theorem 5.14.
The above also yields the energy estimates (5.25) and (5.27), in the case that V± are also level

sets of t. (The H1
0 × L2 case also furnishes a “hidden regularity”, in the form an L2-bound on the

Neumann data Nϕ.) Moreover, (5.25) and (5.27) imply that ϕ ∈ L2
loc(U).

Suppose now that ϕ1 and ϕ2 are two solutions of (2.16) (in either statement of Theorem 5.14),
and consider the difference ϕ := ϕ2 − ϕ1, which also solves (2.16), lies in L2

loc(U), and has zero
traces on V and ∂U . Applying a standard unique continuation argument with respect to any
“time” coordinate t, as described above, yields that ϕ vanishes on U , establishing uniqueness.

Finally, to establish (5.25) and (5.27) in general, we repeat the above argument for another
system of coordinates (̃t, ỹ1, . . . , ỹn) such that V and V± are level sets of t̃. The above uniqueness
argument ensures that the solutions obtained in the two coordinate systems coincide.

A.10. Proof of Theorem 5.17. The proof is largely an adaptation of standard methods to the
GTC setting; for references, see, e.g., [45]. The first step is to reduce the full problem of exact
controllability to the slightly simpler question of null controllability.
Lemma A.2. Suppose that given any (α−

0 , α
−
1 ) ∈ L2(V−)×H−1(V−), there exists an αb ∈ L2(∂U)

that is supported in Γ and drives the wave equation (2.16) from (α−
0 , α

−
0 ) to (0, 0). Then, (2.16) is

exactly controllable on U(V−,V+), with control on Γ.
Proof. Fix (ϕ±0 , ϕ

±
1 ) ∈ L2(V±)×H−1(V±). Let α be the solution of (2.16) satisfying
(α,Zα)|V+ = (ϕ+0 , ϕ

+
1 ) ∈ L2(V+)×H−1(V+), α|∂U ≡ 0,

which can be obtained from Theorem 5.14. Moreover, we set
(α−

0 , α
−
1 ) := (α,Zα)|V− .

By our assumption, there exists ϕb ∈ L2(∂U), supported in Γ, and a solution β of (2.16) satisfying
(β, Zβ)|V− = (ϕ−0 − α−

0 , ϕ
−
1 − α−

1 ), (β, Zβ)|V+ = (0, 0), β|∂U(V−,V+) = ϕb.
Then, the solution α+ β to (2.16) shows that ϕb drives (2.16) from (ϕ−0 , ϕ

−
1 ) to (ϕ+0 , ϕ

+
1 ). □
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As a result, it remains only to prove Theorem 5.17 in the case (ϕ+0 , ϕ
+
1 ) = (0, 0). Toward this

end, the following lemma provides the main identity characterizing null controllability:

Lemma A.3. Let N− denote the future-pointing unit normal to V−. Also, we set
(A.3) X− := g(X , N−), N− := a−Z +B−, b− := divV− B−,
where a− ∈ C∞(V−), where the vector field B− is everywhere tangent to V−, and where divV−

denotes the divergence on V− with respect to the metric induced by g. In addition, fix
(A.4) (ϕ−0 , ϕ

−
1 ) ∈ L2(V−)×H−1(V−), ϕb ∈ L2(∂U),

and assume ϕb is supported in Γ. Then, ϕb drives (2.16) from (ϕ−0 , ϕ
−
1 ) to (0, 0) if and only if for

any (ψ−
0 , ψ

−
1 ) ∈ H1

0 (V−)× L2(V−), we have the identity

(A.5)
∫
Γ

ϕbNψ =

∫
V−

(a−ϕ
−
1 + 2B−ϕ

−
0 + b−ϕ

−
0 + X−ϕ

−
0 )ψ

−
0 −

∫
V−

a−ϕ
−
0 · ψ−

1 ,

where ψ denotes the corresponding solution (see Theorem 5.14) of (5.32).

Proof. For convenience, we also let N+ denote the future-pointing unit normal to V+, and we set
(A.6) X+ := g(X , N+), N+ := a+Z +B+, b+ := divV+

B+,
with a+ ∈ C∞(V+), B+ a vector field tangent to V+, and b+ the induced divergence of B+ on V+.
Furthermore, we let ϕ be the solution (see again Theorem 5.14) to (2.16) which also satisfies
(A.7) (ϕ,Zϕ)|V− = (ϕ−0 , ϕ

−
1 ), ϕ|∂U = ϕb.

By standard approximation arguments, it suffices to only consider the case in which ϕ and ψ are
both everywhere smooth. Recalling (2.16) and integrating by parts, we see that

0 =

∫
U(V−,V+)

(□ϕ+∇Xϕ+ V ϕ)ψ

=

∫
U(V−,V+)

[(−∇αϕ∇αψ +∇α(Xαϕ) · ψ + (V −∇αXα) · ϕψ] +
∫
V−

N−ϕ · ψ −
∫
V+

N+ϕ · ψ

=

∫
U(V−,V+)

ϕ[□ψ −∇Xψ + (V −∇αXα)ψ] +

∫
V−

[N−ϕ · ψ − ϕ ·N−ψ + g(X , N−) · ϕψ]

−
∫
V+

[N+ϕ · ψ − ϕ ·N+ψ + g(X , N+) · ϕψ]−
∫
∂U(V−,V+)

ϕNψ.

In the above, we also used that ψ vanishes on ∂U(V−,V+).
Recalling (5.32) and expanding using (A.3), (A.6), and (A.7) results in the identity∫

Γ

ϕbNψ =

∫
V−

[(a−Zϕ+B−ϕ)ψ − ϕ(a−Zψ +B−ψ) + X−ϕψ]

−
∫
V+

[(a+Zϕ+B+ϕ)ψ − ϕ(a+Zψ +B+ψ) + X+ϕψ]

=

∫
V−

[(a−ϕ
−
1 +B−ϕ

−
0 + X−ϕ

−
0 )ψ

−
0 − ϕ−0 (a−ψ

−
1 +B−ψ

−
0 )]

−
∫
V+

[(a+Zϕ+B+ϕ+ X+ϕ)ψ − ϕ(a+Zψ +B+ψ)].
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We can now integrate the quantities ϕ ·B−ψ on V± by parts. Recalling that ψ has vanishing trace
on ∂V±, we then see that the above identity becomes∫

Γ

ϕbNψ =

∫
V−

(a−ϕ
−
1 + 2B−ϕ

−
0 + b−ϕ

−
0 + X−ϕ

−
0 )ψ

−
0 −

∫
V−

a−ϕ
−
0 · ψ−

1(A.8)

−
∫
V+

(a+Zϕ+ 2B+ϕ+ b+ϕ+ X+ϕ)ψ +

∫
V+

a+ϕZψ.

Consider now the last term on the right-hand side of (A.8):

(A.9) I+ := −
∫
V+

(a+Zϕ+ 2B+ϕ+ b+ϕ+ X+ϕ)ψ +

∫
V+

a+ϕZψ.

Observe that because of the time reversibility of linear wave equations, both ψ and Zψ can be freely
prescribed on V+ by setting appropriate values for (ψ−

0 , ψ
−
1 ). Thus, it follows that I+ = 0 for all

such (ψ−
0 , ψ

−
1 , ψ) if and only if a+Zϕ+B+ϕ−X+ϕ and ϕ vanish on V+.

Since a+ ̸= 0, it follows that I+ = 0 vanishes if and only if (ϕ,Zϕ)|V+
vanishes. This completes

the proof of the lemma, since by (A.8), the condition I+ = 0 is equivalent to (A.5), whereas
(ϕ,Zϕ)|V+

≡ (0, 0) if and only if ϕb drives (2.16) from (ϕ−0 , ϕ
−
1 ) to (0, 0). □

Now, given (ϕ−0 , ϕ
−
1 ) ∈ L2(V−)×H−1(V−), we define the functional J [ϕ−0 , ϕ

−
1 ] from (5.33) by

J [ϕ−0 , ϕ
−
1 ](ψ

−
0 , ψ

−
1 ) :=

1

2

∫
Γ

|Nψ|2 −
∫
V−

(a−ϕ
−
1 + 2B−ϕ

−
0 + b−ϕ

−
0 + X−ϕ

−
0 )ψ

−
0(A.10)

+

∫
V−

a−ϕ
−
0 · ψ−

1 ,

where ψ is defined from (ψ−
0 , ψ

−
1 ) via (5.32). We now connect J [ϕ−0 , ϕ

−
1 ] to null controllability:

Lemma A.4. Suppose (ψ−
0 , ψ

−
1 ) ∈ H1

0 (V−)×L2(V−) is a minimizer of J [ϕ−0 , ϕ
−
1 ], and let ψ denote

the solution of (5.32), with initial data given by (ψ−
0 , ψ

−
1 ). Then, Nψ|Γ lies in L2(Γ), and its zero

extension to ∂U drives (2.16) from (ϕ−0 , ϕ
−
1 ) to (0, 0).

Proof. That Nψ|Γ ∈ L2(Γ) is an immediate consequence of (5.25), thus we need only show the null
control property. Let (α−

0 , α
−
1 ) ∈ H1

0 (V−) × L2(V−), and let α be the corresponding solution to
(5.32) from initial data (α−

0 , α
−
1 ). Since (ψ−

0 , ψ
−
1 ) minimizes J [ϕ−0 , ϕ

−
1 ], then for any h ∈ R,

0 = lim
h→0

1

h
{J [ϕ−0 , ϕ

−
1 ](ψ

−
0 + hα−

0 , ψ
−
1 + hα−

0 )− J [ϕ−0 , ϕ
−
1 ](ψ

−
0 , ψ

−
1 )}

= lim
h→0

1

2h

∫
Γ

[|N (ψ + hα)|2 − |Nψ|2]−
∫
V−

(a−ϕ
−
1 + 2B−ϕ

−
0 + b−ϕ

−
0 + X−ϕ

−
0 )α

−
0

+

∫
V−

a−ϕ
−
0 · α−

1

=

∫
Γ

NψNα−
∫
V−

(a−ϕ
−
1 + 2B−ϕ

−
0 + b−ϕ

−
0 + X−ϕ

−
0 )α

−
0 +

∫
V−

a−ϕ
−
0 · α−

1 .

Since the above holds for any (α−
0 , α

−
1 ), then Lemma A.3 completes the proof. □

Therefore, we have reduced the problem of controllability to finding a minimizer of J [ϕ−0 , ϕ
−
1 ]:

Lemma A.5. J [ϕ−0 , ϕ
−
1 ] has a unique minimizer (ψ−

0 , ψ
−
1 ) ∈ H1

0 (V−)× L2(V−).
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Proof. By the estimates (5.25) and the linearity of (2.16), we obtain that J [ϕ−0 , ϕ
−
1 ] is continuous.

Furthermore, the observability estimate (5.31) yields constants c, C > 0 such that
J [ϕ−0 , ϕ

−
1 ](α

−
0 , α

−
1 ) ≥ c[∥α−

0 ∥2H1(V−) + ∥α−
1 ∥2L2(V−)]

− C[∥ϕ−0 ∥L2(V−) + ∥ϕ−1 ∥H−1(V−)][∥α−
0 ∥H1(V−) + ∥α−

1 ∥L2(V−)],

for all (α−
0 , α

−
1 ) ∈ H1

0 (V−)× L2(V−), which establishes that J [ϕ−0 , ϕ
−
1 ] is coercive.

We next claim that J [ϕ−0 , ϕ
−
1 ] is strictly convex. Indeed, given any

λ ∈ (0, 1), (α−
0 , α

−
1 ), (β

−
0 , β

−
1 ) ∈ H1

0 (V−)× L2(V−), (α−
0 , α

−
1 ) ̸= (β−

0 , β
−
1 ),

and letting α, β be the solutions of (5.32), with data (α−
0 , α

−
1 ) and (β−

0 , β
−
1 ), respectively, we have

λJ [ϕ−0 , ϕ
−
1 ](α

−
0 , α

−
1 ) + (1− λ)J [ϕ−0 , ϕ

−
1 ](β

−
0 , β

−
1 )

− J [ϕ−0 , ϕ
−
1 ](λα

−
0 + (1− λ)β−

0 , λα
−
1 + (1− λ)β−

1 )

=
1

2

∫
Γ

{λ|Nα|2 + (1− λ)|Nβ|2 − |N [λα+ (1− λ)β]|2}

=
λ(1− λ)

2

∫
Γ

|N (α− β)|2.

Applying the observability inequality (5.31) to α − β and (α−
0 − β−

0 , α
−
1 − β−

1 ), we see that the
right-hand side of the above is strictly positive, hence J [ϕ−0 , ϕ

−
1 ] is strictly convex.

Via the direct method in the calculus of variations (see, for instance, [18]), the above considera-
tions then imply that J [ϕ−0 , ϕ

−
1 ] indeed has a unique minimizer. □

Let (ψ−
0 , ψ

−
1 ) now denote the minimizer from Lemma A.5, and let ψ denote the corresponding

solution to (5.32). By Lemma A.4, the zero extension of Nψ|Γ drives (2.16) from (ϕ−0 , ϕ
−
1 ) to (0, 0),

and hence Lemma A.2 implies exact controllability for (2.16) on U(V−,V+), with control on Γ.
Finally, suppose ϕb ∈ L2(∂U) also is supported in Γ and drives (2.16) from (ϕ−0 , ϕ

−
1 ) to (0, 0).

Applying Lemma A.3 twice, first to the control Nψ|Γ and then to ϕb, we obtain that∫
Γ

|Nψ|2 =

∫
V−

(a−ϕ
−
1 + 2B−ϕ

−
0 + b−ϕ

−
0 + X−ϕ

−
0 )ψ

−
0 −

∫
V−

a−ϕ
−
0 · ψ−

1

=

∫
Γ

ϕbNψ

≤ ∥ϕb∥L2(Γ)∥Nψ∥L2(Γ),
and the inequality (5.34) follows immediately.
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