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Abstract 

 

Viscoelastic attributes of the aortic valve (AV) tissue are, in part, reflected in stress-

relaxation and creep behaviours observed in vitro. While the extent of AV time-dependent 

behaviour under physiological conditions is not yet fully understood, in vitro the tissue 

exhibits clear stress-relaxation but minimal creep under equi-biaxial loading, in contrast to 

uniaxial loading where creep is evidently exhibited. Tissue-level stress-relaxation 

behaviour follows the form of (single and double) Maxwell-type exponential decay 

relaxation modes, and creep occurs in the form of exponential primary followed by linear 

secondary creep modes. This paper aims to provide an explanation for these behaviours 

based on the AV microstructural (i.e. fibre-level) mechanics. The kinematics of AV 

microstructural reorganisation is investigated experimentally using confocal microscopy to 

track the interstitial cell nuclei as markers of AV microstructural reorganisation under 

uniaxial loading. A theoretical framework is then applied to describe the experimentally 

observed kinematics in mathematical terms. Using this framework it is shown that at the 

microstructural level, AV stress-relaxation and creep behaviours both stem from the same 

dissipative kinematics of fibre-fibre and fibre-matrix interactions, that occur as a 

consequence of microstructural reorganisation due to the applied tissue-level loads. It is 

additionally shown that the proposed dissipative kinematics correctly predict the nature of 

relaxation and creep behaviours, i.e. the type and the number of modes involved. Further 

analysis is presented to demonstrate that the origin of the minimal creep behaviour under 

equi-biaxial loading can be explained to stem from tissue-level loading boundary 

conditions. These key findings help to better understand the underlying causes of AV 

stress-relaxation and creep behaviours in vivo, and why these may differ from the 

behaviours observed under non-physiological in vitro loading. 

 

 

Keywords: Aortic valve, microstructure, viscoelasticity, stress-relaxation, creep, collagen 

fibre kinematics.      
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Insights into the micromechanics of stress-relaxation and creep behaviours in the 

aortic valve 

 

1. Introduction 

 

The time-dependent nature of the mechanical behaviour of valvular tissues including the 

aortic valve (AV) has been documented in the form of stress-relaxation and creep (Anssari-

Benam et al. 2011a; Sauren et al. 1983; Stella et al. 2007), as well as the rate-dependency 

of the stress-strain curves (Anssari-Benam et al. 2011a; 2017; 2018). The contribution of 

structural components of the valve to its tensile deformation behaviour has been well-

developed and incorporated into various computational and continuum-based models of the 

AV including the role of collagen fibres (Billiar and Sacks 2000), their angular distribution 

(Billiar and Sacks 2000, Sacks 2003), elastin network (Anssari-Benam and Bucchi 2018) 

and the rate-dependent behaviour of the glycosaminoglycans or GAGs (Anssari-Benam et 

al. 2017; 2018). However, how these structural components contribute to and facilitate AV 

stress-relaxation and creep behaviours is considerably less well-known.   

 

Stress-relaxation behaviour is postulated to be a particularly important mechanical 

attribute of the native valve, as the structural durability of the AV is thought to be linked 

with its ability to dampen the transient stresses created by sudden changes in pressure 

gradient at the systolic phase of each cardiac cycle (Sacks 2001; Robinson and Tranquillo 

2009). Indeed, calcification and structural failure of substitute valves may be a 

consequence of the poor capacity of the substitute structures to mimic the stress-relaxation 

properties of the native valve (Sacks 2001; Robinson and Tranquillo 2009). By contrast, 

the native AV is known not to exhibit creep under physiological loading conditions in vivo, 

which may too be a contributing factor to the long-term structural integrity and functional 

longevity of the native valve. These seemingly uncoupled, and perhaps even contradictory, 

attributes of the AV motivate studying and understanding the contributory structural 

mechanism(s) that regulate those behaviours.    

 

Tissue level in vitro stress-relaxation and creep behaviours of heart valves have been 

characterised within the criteria of linear (Anssari-Benam et al. 2011a; 2015; Liao et al. 

2007) and quasi-linear viscoelasticity (Sauren et al. 1983; Anssari-Benam 2014), amongst 

other frameworks, with varying success. The general consensus, however, from an 
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experimental point of view is that the AV tissue appears to exhibit Maxwell-type 

exponential decay of stress during the relaxation process, both under uniaxial (Anssari-

Benam et al. 2011a) and biaxial (Stella et al. 2007; Huang and Shadow Huang, 2015) 

loading. In particular, under uniaxial loading conditions, relaxation of the AV tissue at 

lower strains was observed to follow a single Maxwell decay mode in both the radial and 

circumferential directions, whereas at higher strains it switched to double Maxwell decay 

modes (Anssari-Benam et al. 2011a). The consensus surrounding the AV creep behaviour 

is more scarce, as there are not many studies in the literature concerning AV creep 

characteristics. We have previously shown the expression of two creep modes, namely 

primary and secondary creep, under uniaxial loading in vitro (Anssari-Benam et al. 2011a). 

However, studies investigating the creep behaviour of valvular tissues under equi-biaxial 

loading have reported negligible levels of creep (Stella et al. 2007; Liao et al. 2007). 

 

Not much attempt has been made to date to explain these complex and seemingly 

contradictory behaviours based on the underlying AV microstructural mechanism(s). Of 

the few existing studies, Liao et al. (2007) noted a reduction in collagen fibril D-spacing 

during relaxation in valvular tissues, and a hypothesis is presented that a “fibril-level 

locking mechanism” exists within the tissue that would allow for stress-relaxation under 

constant strain, but would inhibit creep under constant stress (Stella et al. 2007; Liao et al. 

2007). This hypothesis appears to indicate that relaxation and creep mechanisms are 

uncoupled, and have distinct structural causes. Differently from this hypothesis, we 

postulate that the two phenomena are coupled and originate from the same structural 

mechanism, which can be explained at the microstructure (i.e. fibre) level, and the 

determining factor for manifestation of relaxation or creep at the tissue level is only the 

applied boundary condition.  

 

In this paper, we investigate our presented hypothesis above and demonstrate that the 

dissipative kinematics arising as a result of the reorganisation of the AV microstructure, in 

the form of fibre rotation and sliding under the application of tissue-level loads, is the 

underlying mechanism that results in both the observed tissue-level stress-relaxation and 

creep behaviours. In order to demonstrate this premise, we first experimentally verify the 

existence of these kinematics under a wide-range of uniaxial tissue level 

loads/deformations, and then underline a theoretical mathematical criterion to link the 

observed kinematics to the origins of stress-relaxation and creep behaviours at the tissue 
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level. We mathematically demonstrate how the applied boundary conditions determine the 

form of tissue-level response, i.e. stress relaxation or creep, and further show that the 

minimal levels of AV creep under biaxial loading is a direct result of the tissue-level 

biaxial loading boundary condition, which may also explain why the tissue does not creep 

in vivo.  

 

2. Experimental procedure  

 

In order to characterise the reorganisation of the AV microstructure and quantify fibre 

kinematics, we utilised the aortic valve interstitial cell (AVIC) nuclei as fiducial micro-

markers for tracking fibre movements during stress-relaxation and creep tests. AVICs are 

known to be bonded to the fibrous structure of the valve (Shadow Huang et al. 2007; Meng 

et al. 2008) and tracking their movement may be used as a measure of the reorganisation of 

the AV microstructure (Lewinsohn et al. 2011; Anssari-Benam et al. 2012). For the 

purpose of this study, AV specimens were prepared from porcine hearts obtained from 

animals aged between 18 and 24 months, from a local abattoir within two hours of 

slaughter.   

 

The technique for tracking the movement of the AVIC nuclei was developed and 

presented in detail in a series of our previous studies (e.g. see Lewinsohn et al. 2011 and 

Anssari-Benam et al. 2012). In brief, the three AV leaflets were dissected from the aortic 

root (Figure 1a) and maintained in Dulbecco’s Modified Eagle’s Medium (DMEM, Sigma, 

Poole, UK), at 25˚ C. From each leaflet, a 5 mm wide circumferential or radial strip was 

excised from the central (belly) region, as shown in Figure 1a. After excision, the strip 

specimens were incubated in Acridine Orange (5 mM in DMEM, Invitrogen, Oregon, 

USA) for 1 hour at 25˚ C, to stain the cell nuclei. Each specimen was then briefly rinsed in 

DMEM prior to testing. The prepared specimens were secured within a custom-made 

uniaxial loading rig, placed on the stage of a confocal laser scanning microscope 

(UltraView, Perkin Elmer, Cambridge, UK) which utilises an argon laser as the 

illumination beam (488nm). A schematic of the integrated setup is shown in Figure 1. This 

setup enabled in-plane tracking of the AVIC nuclei during the stress-relaxation and creep 

tests.  
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As the fibres in AV tissue are primarily localised in the outer ventricularis and fibrosa 

layers of the AV, the kinematics of microstructural reorganisation was investigated within 

both layers during both stress-relaxation and creep tests. For doing so, specimens were 

secured in the rig in a manner that either the fibrosa or ventricularis side was faced down, 

depending on the layer under investigation. The initial grip to grip length was set at 10 

mm, after which the grip length was adjusted until the specimens straightened and were 

observed to subtly lift off the cover slip, corresponding to a tare load in the order of 

magnitude 0.01N, at which point a consistent zero position was defined. The applied 

strains were calculated based on this adjusted sample length. Hydration of the samples 

during testing was maintained by immersion in a DMEM bath within the rig. Imaging was 

carried out in the central region of the specimens (see Figure 1b for a schematic 

representation), at a depth 50 µm to 80 µm into the designated layer, using a ×20 objective 

lens (Plan Apo; Nikon, Kingston-Upon-Thames, UK), providing a 670 µm × 500 µm field 

of view. A typical confocal image of the field of view is shown in Figure 1b. To give an 

idea of the length-scale at which confocal imaging has been carried out, images of the 

fibrous microstructure, i.e. collagen fibres and elastin, is also shown in Figure 1b in the 

same length-scale at which the cell nuclei images are obtained. What we refer to as ‘fibres’ 

in this paper are the shown entities at this length-scale.  

 

The movement of the cell nuclei during each hold period of a stress-relaxation or creep 

test was tracked, obtaining a sequence of confocal microscopy images at a rate of 1 frame 

per second. Particle tracking software (IMARIS
®
, Bitplane AG) was utilised to determine 

the ),( yx  coordinates of the centroid of each nuclei in each frame, from which the 

trajectory of movement of each nucleus over the whole stress-relaxation or creep test 

period was reconstructed, as described in §3. No other data, e.g. force vs time during 

relaxation or strain vs time during creep tests was recorded.  

 

2.1. Stress-relaxation tests 

 

A total of 120 samples were used for the stress-relaxation tests, half of which were 

viewed from the ventricularis side and the other half from the fibrosa side. For any test, a 

sample was taken to a single predefined strain value (ε) at a rate of 60%/min and held for 

300s whilst the cell nuclei were imaged, ensuring a loading protocol consistent with our 

previous tissue-level relaxation study (Anssari-Benam et al. 2011a) and enabling us to 
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compare the results at both tissue and micro levels. Ten predefined strain levels were used 

for the course of stress-relaxation tests, ranging from ε = 0% to ε = 20% in increments of 

2%, with 3 repeats carried out at each increment.  

 

2.2. Creep tests 

 

For creep tests, a total of 84 samples were utilised. Similar to the stress-relaxation 

experiments, the samples were divided into two groups, to be viewed from either the 

ventricularis or the fibrosa sides, each group containing 42 specimens. 7 pre-defined load 

levels were used, from f  = 0 N to f  = 3.5 N in increments of 0.5 N. Each sample was 

loaded to a single force increment at 60%/min and held for 300s, ensuring consistency with 

our previous tissue-level creep study (Anssari-Benam et al. 2011a), and enabling data 

comparisons at tissue and microstructure levels. Three samples were tested at each force 

increment.   

 

3. The kinematics of AV microstructure reorganisation during stress-relaxation and 

creep tests 

 

From the reconstructed trajectories of movement, it was evident that nuclei moved in 

either a curvilinear or straight-line manner during both stress-relaxation and creep tests. A 

method of quantifying the curvilinear and/or straight-line trajectory of each nucleus was 

therefore established, in order to characterise the relevant kinematics of each nuclei at each 

strain/force increment.  

 

The radius of curvature r of the curvilinear trajectory pertinent to the curvilinear motion 

of the cell nuclei was determined for each nucleus by taking the coordinate points ),( yx  of 

the entire reconstructed trajectory of that nucleus, from t = 0s to t = 300s, and fitting these 

to the equation of a circle (i.e. 222 )()( rbyax  ) in MATLAB
®
. A schematic 

representation of this procedure is illustrated in Figure 2a. A mean value of r over the hold 

period was calculated for each sample at each strain/loading increment, by averaging the 

established r values of all tracked nuclei in the field of view.   

 

It was experimentally observed that as the applied load/strain on the specimens 

increased, the curvilinear motion of the nuclei gradually gave way to a more straight-line 
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motion kinematics. This switch between the two kinematics was also reflected in the 

calculated mean and standard deviation values of the radii of curvature, where a noticeable 

increase in both values was observed to occur as the strain/load increased. In stress-

relaxation tests, the strain increment that appeared to differentiate the curvilinear motion of 

the nuclei from a straight-line motion was %12 , while in creep tests this transition was 

observed to occur at f = 1.5 N (see sections 3.1 and 3.2). To document the straight-line 

motion kinematics, the reconstructed trajectory of each nucleus over the hold period, i.e. at 

t = 0s and t = 300s, was fitted to the equation of a line (i.e. baxy  ). Trajectories that 

resulted in 98.02 R  were taken as a straight-line path and the associated motion was 

assumed to be commensurate with straight-line motion kinematics. The displacement of 

each nucleus was then calculated along its direction of movement. A schematic of this 

procedure is shown in Figure 2b. A mean value of nuclei displacement over the hold period 

was then calculated for each sample at each strain/loading increment, by averaging the 

displacement values of all tracked nuclei in the field of view.  

 

3.1. Stress-relaxation 

 

Typical reconstructed trajectories of nuclei over the 300s stress-relaxation tests are 

shown in Figure 3, incorporating the fitted circles and straight lines which best described 

the coordinates of the typical trajectories.  

 

For all applied strain increments in the radial direction, and strains %6  in the 

circumferential direction, the microscopy images showed no detectable movement of the 

nuclei during relaxation, indicating no detectable microstructural reorganisation. However, 

for %6  in the circumferential direction, an evident movement was documented. The 

nuclei movement at strains %12%6    appeared curvilinear (Figure 3a), across both 

the ventricularis and fibrosa layers. For %12 , the nuclei movement became 

increasingly linear in nature across both layers and the reconstructed trajectories 

predominantly resembled a straight-line motion. Typical straight-line trajectories are 

presented in Figure 3b along with the best line of fit. The average radii of curvature of the 

trajectories, and the linear displacements at each respective increment are presented in 

Figure 3c. The presented values are mean ± SD.  
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3.2. Creep 

 

Under creep loading, nuclei movement was evident at all loading levels in both the 

circumferential and radial directions. However, it was not possible to ascertain whether 

nucleus movement was a direct result of reorganisation of the AV tissue microstructure, or 

simply due to the fact that the tissue is constantly strained, as a result of which movement 

of the tissue matrix is to be expected. As stress relaxation tests showed no detectable 

structural reorganisation in the radial direction, we adopt caution in our analysis and focus 

the creep kinematics analysis only on the datasets obtained from the circumferential 

direction. While some of the observed kinematics in circumferential creep tests will also 

likely relate to the continuous straining of the tissue, results should also reflect, at least in 

part, the kinematics occurring as a result of the AV microstructural reorganisation.  

 

During the circumferential creep tests, AVIC nuclei demonstrated curvilinear and 

straight-line patterns of motion in both the ventricularis and fibrosa layers, similar to the 

kinematic modes observed during stress-relaxation tests. Typical reconstructed trajectories 

are presented in Figure 4. Results indicate that at lower levels of load (  1.5N), the 

dominant kinematics is curvilinear movement (Figure 4a). With increased applied load, the 

curvilinear motion gradually switches to linear displacement kinematics (Figure 4b). The 

average radii of curvature and the linear displacements of the nuclei in their trajectories are 

presented in Figure 4c (mean ± SD).   

 

3.3. Summary of the experimental observations  

 

If perfect attachment of the AVICs to the fibres is assumed, from these results one may 

characterise the kinematics of the fibre reorganisation within the AV tissue during the 

stress-relaxation and creep phenomena as follows: 

 

(i) At lower strains and loads, pronounced curvilinear kinematics of the fibres are 

evident, suggesting that when the fibres are likely wavy, fibre rotation is the dominant 

mode; and 

 

(ii) At higher strains and loads, where the fibres are likely straight and recruited, linear 

motion is the dominant mode of kinematics.   

 

The above kinematics were consistent in both the ventricularis and fibrosa layers.  
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 4. How these kinematics result in stress-relaxation and creep modes     

 

We will now show analytically how this microstructural reorganisation during stress-

relaxation or creep may lead to the respective well-known exponential decay of stress, or 

primary and secondary creep strains, at the tissue level. We will seek to mathematically 

formulate the observed fibre kinematics and derive the ensuing relaxation and creep 

behaviours accordingly. The theoretical criterion and the notations used here are based on 

those postulated by Mijailovich et al. (1993) and Kojic et al (1998), adapted here to be 

more readily applicable to a collagenous tissue such as the AV with the following idealised 

description of its structure.  

 

4.1. An idealised structural description of the AV microstructure  

 

The three main structural constituents of the AV may be considered as the collagen 

fibres, elastin network and the hydrophilic GAGs. Collagen fibres are packed into bundles 

which principally align along the circumferential direction (see, e.g., Rock et al. 2014), 

visible at the macro-level. These bundles are embedded within a ground matrix 

predominantly composed of the elastin network and GAGs. The elastin network is thought 

to be principally responsible for the elastic recoil of the AV, and not associated with 

viscoelastic attributes. The dissipative kinematics of fibre-fibre and fibre-matrix 

interactions are therefore attributed to the microstructural reorganisation of the collagen 

fibres within the GAG-rich matrix, upon the application of tissue-level deformations (see, 

e.g., Anssari-Benam et al. 2016). The fibres are primarily crimped in the unstrained state. 

As the tissue is strained, the fibres gradually straighten and re-orientate towards the loading 

direction; a process known as fibre recruitment. When fully straight and recruited, the 

fibres will then become strained. With these considerations, in the following we first 

establish the relationships governing the kinematics of straight fibres, followed by those 

governing the curvilinear kinematics pertaining to wavy fibres.   

 

4.2. Fibre kinematics framework for straight fibres 

 

We begin our analysis of fibre kinematics under time-dependent deformation by 

considering two recruited (i.e. straight and aligned) adjacent fibres of length l, as shown     

schematically in Figure 5.  
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Upon the application of an external load on the tissue, Fexternal, let us assume that the 

arbitrary pair of adjacent straight fibres 1 & 2 in Figure 5 will be subjected to tensile forces 

F1 and F2, respectively, at opposite ends to each other. Note that Fexternal is a generic load, 

arising from either uniaxial or biaxial tissue-level loading. Irrespective of loading 

modality, F1 and F2 will always be axial, i.e. along the axis of the fibres.  

 

In general, the contact force between the two fibres may possess two components: (i) a 

normal component to the surface of each fibre denoted here as N; and (ii) a tangential 

component to the surface of each fibre denoted here as T. Physically, N may represent the 

transverse mechanical loads (e.g. Poisson ratio effects), as well as any other 

microenviroment originated loading; and T may be interpreted as the frictional force 

between the two fibres. The exact nature of contact between two adjacent fibres in the AV 

tissue remains poorly understood, as with most collagenous soft tissues (Mijailovich et al. 

1993). However, it may be assumed that there are regions along the fibres where there is 

direct contact between the two fibres, interspersed with regions where fibres are separated 

from each other by a thin layer of ground substance, wherein the fibres are embedded 

(Kojic et al. 1998).  

 

Therefore, over a length dx of the fibres, shown in Figure 5, the tangential traction force 

T between the fibres may be presented as:  

 

                                               ),()(),( txVCxNtxT reld                                               (1) 

 

Here, the term )(xN  represents the classic Coulomb friction force, and ),( txVC reld  is 

the Newtonian viscous force (analogous to viscous force in a damper). dC  would therefore 

assume the role of the viscous damping coefficient of the ground substance, and ),( txVrel  

is the relative velocity of the fibres sliding against each other. Assuming that fibres behave 

linearly elastic when fully straight (e.g. Sacks 2003), the traction force T(x,t) may be 

derived as (see appendix A for the details of the derivation and the incorporated 

assumptions):  

                                               ),(),(),( 21 txutxu
t

CtxT d 



                                         (2) 

Note that we have replaced the relative velocity ),( txVrel  with its partial differential form 

 ),(),( 21 txutxu
t





, i.e. the partial differential of the relative displacement of the material 
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points in two fibres  ),(),( 21 txutxu   with respect to time t. Substituting equation (2) into 

(A.6):  

                               ),(),(2),(),( 21212

2

txutxu
t

Ctxutxu
x

AE d 








                          (3) 

 

By summing equations (A.5)1 and (A.5)2:  

 

                                                   
 

0
),(),(

2

21

2






x

txutxu
                                                  (4) 

Therefore: 

             
   

)(
),(),(

0
),(),(

11
2121 tfC

x

txutxu

x

txutxu

x






















                        (5) 

 

where C1 is a constant and )(1 tf  is a function of time. However, in light of equations (A.2) 

and (A.3), and the assumption of the geometrical and mechanical uniformity of the fibres, 

one may establish that C1 = 0, and 
AE

tF
tf

)(
)(1  . Note that A and E are the cross-sectional 

area and the elastic modulus of the fibre, respectively. Substituting for these two terms into 

equation (5) and performing integration over x yields:   

 

                                      2221 )(
)(

),(),( Ctfx
AE

tF
txutxu                                            (6) 

where C2 is a constant and )(2 tf  is a function of time. We note, however, since at x = 0 we 

must have ),0(),0( 21 tutu  , C2 and )(2 tf  must both assume 0. Therefore, the following 

relationship may be obtained:  

                                                    ),(
)(

),( 12 txux
AE

tF
txu                                                 (7) 

Substituting equation (7) into (3) one gets:  

 

                                     

















x

AE

tF
txu

t
Ctxu

x
AE d

2

)(
),(2),( 112

2

                                  (8) 

 

Equation (8) represents the fibre kinematics based on fibre-fibre and fibre-matrix 

interactions. In order to achieve an exact analytical solution for the particular time-

dependent behaviour of interest, i.e. stress-relaxation or creep, appropriate boundary 

conditions supported by the kinematics of fibres must be sought and implemented. In this 

regard, by assuming that the adjacent fibres strain such that there is no relative movement 
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between the fibres at their centres (where x = 0), i.e. 0
),0(






x

turel , it follows that: 

x

tu

x

tu








 ),0(),0( 21 . In light of equations (A.2) and (A.3), it may be deduced that 

 ),(),(),(),()( 2121 txutxu
x

AEtxFtxFtF 



 , and therefore:  

 

                                                          
AE

tF

x

tu

2

)(),0(1 



                                                        (9) 

 

The expression in equation (9) provides one boundary condition for equation (8). We shall 

introduce additional boundary conditions as appropriate when solving for stress-relaxation 

or creep behaviours in the following sections, in accordance with the mechanics of each 

phenomenon and the relevant fibre kinematics. 

 

4.3. Fibre kinematics framework for wavy fibres  

 

At lower strains/loads (e.g. %12%6    or 5.1f N), where fibres are still likely 

wavy and not likely yet fully recruited, the dominant kinematics of AV microstructural 

reorganisation during stress-relaxation and creep was observed to be curvilinear, 

suggesting fibre rotation, as demonstrated in §3. To this end, consider two adjacent wavy 

fibres at t = 0s, embedded within the surrounding matrix as schematised in Figure 6. As a 

result of the structural reorganisation during stress-relaxation or creep, the fibres may 

rotate by an arbitrary amount and change their length, to arrive at their final configuration 

at t = 300s as shown in the figure. From the theory of 2D elasticity for uniaxial plane stress 

in this composite mixture: 

                                         




















y

u

x

uE
c

c

c

x 



21

                                                      (10) 

where x  is the principal stress along direction x,  and cE  and c  are the overall elastic 

and Poisson ratio moduli of the composite, respectively. Using this criteria and under the 

assumption of incompressibility for the matrix, the governing fibre kinematics equation for 

a wavy fibre as the counterpart to equation (8) can be derived as (see Appendix B for the 

details):  

 

                            






 












x

AE

tF
txu

t
Ctxu

x

AE
d

 2 

)()1(
),(2),( 

)1(

 2

112

2

2 






                     (11) 



 14 

 

where   is a parameter between 1 0  , 0.5c   , and A and E are the cross-

sectional area and the elastic modulus of the fibre, respectively, as per the previous case. 

Accordingly, adopting the similar boundary condition of no relative movement of fibres at 

their centres given in equation (9):  

 

                                               
AE

tF

x

tu

 

)()1(),0( 2

1









                                                    (12) 

 

Additional appropriate boundary conditions will again be introduced in the following 

sections in order to obtain specific solutions for stress-relaxation and creep functions, 

accordingly.  

 

4.4. Exponential-decay stress-relaxation 

 

Using the derived governing fibre kinematics equations, we now aim to show how the 

experimentally observed fibre reorganisation can give rise to exponential stress-relaxation 

as seen in tissue level experiments. Let us again start with the case of straight fibres. For 

this case, in addition to the boundary condition ascribed by equation (9), another boundary 

condition for stress relaxation is established by noting that:  
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where within the context of stress-relaxation, F(0) is the initial force acting on the fibre at  

t = 0, i.e. at the start of the relaxation process. This condition ensures that the displacement 

of the fibre, at the loaded end, remains constant over time, as required in stress relaxation.  

With boundary conditions (9) and (13), we can now solve the fibre-kinematics equation (8) 

for straight fibres. Using the change of variables: x
AE
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The new boundary conditions will therefore be described by: 
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This change of variable renders equation (14) and the boundary conditions in (15) 

reminiscent of a specialised case of the heat transfer equation in a slab heated by radiation 

with a constant initial temperature, as advocated by Mijailovic et al. (1993). An analytical 

solution for this equation is presented by Carslaw and Jaeger (1959), and by substituting 

),( txu  for ),( txv , the solution to equation (8) may be obtained as:  
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where n  are positive roots of 1tan nn   (Carslaw and Jaeger 1959).  

 

Substituting equation (16) into (A.3), for the fibre loaded end at 2/lx  , gives the 

relaxation force as: 
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Similarly for the case of wavy fibre, in order to solve equation (11) for stress relaxation, 

another boundary condition in addition to (12) is required and may be established by:   
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where again F(0) is the initial force at t = 0, i.e. at the start of the relaxation process, acting 

on the fibre. We shall also use the following change of variables: 
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with the new boundary conditions as: 
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Therefore, the solution to equation (11) can now be obtained as: 



 16 


















































 


1
22

2

2

22

1 )
)1(2

  
(exp

2

sec
2

cos2

1  
2

 )0()-1( 

2

)()1(
),(

n d

n

n

n

n

t
lC

AEl

x

AE

Fl
x

AE

tF
txu


















                                                                                                                                           (21) 

where again n  are positive roots of 1tan nn   (Carslaw and Jaeger 1959). Substituting 

equation (21) into (B.2), for the loaded end at 2/lx  , gives the relaxation force as: 
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Therefore, the relaxation force due to the kinematics of the reorganisation of the fibre 

population within the tissue during stress relaxation can be summarised as: 
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Alternatively, dividing both sides of the above equations by fibre area A, one gets the 

equivalent following terms as functions of stress:  
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where )(t  is the stress at time t, and 0  is the initial stress at t = 0, i.e. at the start of the 

relaxation process, acting on the fibre.   

 

These equations underline that fibre-fibre and fibre-matrix interactions, which occur as a 

result of the structural reorganisation of the collagen fibre population during the relaxation 
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process, will result in an exponential decay of stress. This result is consistent with the 

observation in stress-relaxation experiments. These analyses strongly suggest that 

exponential relaxation of stress in planar collagenous tissues such as the AV may be 

explained at the tissue micro-structure level, based on the kinematics of collagen fibre 

rotation and sliding.  

 

4.5. Primary and secondary creep 

 

Equation (8) describes the governing equation of fibre kinematics for a straight fibre. To 

solve this equation for creep, a boundary condition is established by noting that:  
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This boundary condition ensures that the force at the loaded end of the fibre remains 

constant over time t, as required during creep behaviour. Note that F(0) is the initial force 

at t = 0, i.e. at the start of the creep process, acting on the fibre. 

 

Using the prescribed change of variable in §4.3, equation (8) may be solved for creep to 

obtain the following function (Carslaw and Jaeger 1959):  
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It follows that displacement at the fibre loaded end 2/lx  , denoted henceforth by )(tU , 

will be:  
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Similarly, for the case of wavy fibre, equation (11) may be solved for creep by utilising 

the change of variable described in §4.3, and noting that )0( 
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and therefore the displacement at the fibre loaded end will be: 
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Equations (27) and (29) describe the displacement of the fibre at the loaded end during 

creep. Alternatively, by dividing both sides of the two equations by fibre length l, one may 

obtain the following terms as functions of strain: 
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These equations highlight that the creep behaviour of collagenous soft tissues such as the 

AV may stem from the same dissipative kinematics that give rise to stress-relaxation, only 

with different boundary conditions pertinent to each behaviour. In other words, AV stress-

relaxation and creep phenomena at the microstructural level appear to be coupled, 

stemming from the same mechanism(s) and mathematically interrelated.  

  

5. Correlation with the tissue-level behaviour  

 

Our previous study documented the stress-relaxation and creep behaviours of AV 

specimens under uniaxial loading (Anssari-Benam et al. 2011a). It was established that AV 

relaxation behaviour exhibited a single exponential decay mode at all tested strain levels in 

the radial direction, as well as at lower strain levels  ( %6 ) in the circumferential 

direction. At higher circumferential strains ( %6 ), relaxation was characterised by 

double exponential decay modes (Anssari-Benam et al. 2011a). For the case of creep, an 

exponential primary creep followed by a linear secondary creep behaviour was observed at 
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almost all loading levels in both directions (Anssari-Benam et al. 2011a). The current 

experimental results highlighted no detectable fibre reorganisation/movement during 

stress-relaxation in the radial direction at any strain levels, nor in the circumferential 

direction at strains %6 . However, at strain levels %12%6   , curvilinear motion 

was the dominant kinematics, and at higher strains ( %12 ) the dominant kinematics 

switches to linear sliding. In creep, curvilinear motion was dominant at loading levels 

5.1f N, and linear displacement at 5.1f N. Table 1 summarises these results for a 

quick comparison. 

 

In the following sections we aim to show how stress-relaxation and creep functions in 

equations (24) and (30), derived from the observed fibre kinematics in §3, is correlated 

with the tissue-level behaviour summarised in Table 1. 

 

5.1. Stress-relaxation modes 

 

For strains %6 , a single exponential decay mode was observed at the tissue level 

(Anssari-Benam et al. 2011a), while no notable fibre kinematics was detected. Therefore, 

this dissipation of stress is not likely to have been caused by the dissipative effects of fibre 

rotation/sliding. It is thus strongly likely that this dissipation stems from the non-fibrous 

GAGs and water content of the tissue. The viscous fluid-like behaviour of proteoglycans 

and proteoglycan/water mixtures have been well established and documented through the 

celebrated works of Van C. Mow (e.g. see Mow et al. 1984 and Zhu et al. 1996) amongst 

others, and shear-thinning behaviour of the AV tissue has been attributed to the viscous 

characteristics of the GAGs (Anssari-Benam et al. 2011b; 2016; 2017). We therefore 

postulate that the exponential decay of stress at low strains is facilitated by the viscous 

flow-like behaviour of the GAGs/water mixture within the AV tissue as a result of the 

tissue-level deformation, similar to a Maxwell viscous flow.  

 

For strains %6 , AV tissue exhibits two relaxation modes (Anssari-Benam et al. 

2011a). As described above, one relaxation mode likely stems from the viscous flow-like 

behaviour of the GAGs/water content. However, we note that for %12%6    and 

%12 , where the fibre kinematics are predominantly curvilinear and linear movement 

respectively, stress )(t  decays with time t according to equation (24). If one inspects the 
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
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n

i 1

terms in that equation more closely, it is evident that the numerical values of those 

terms would be much smaller for 2n  compared to that for 1n  (by orders of magnitude 

depending on the values of the parameters inside the argument of the exponential 

function), rendering those terms numerically insignificant. Thus, the stress-relaxation 

relationships in equation (24) can be simplified with a good degree of accuracy to:  
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 Thus, the dissipative effects of fibre kinematics during stress-relaxation, in the form of 

either fibre reorientation or fibre sliding, facilitate another mode of stress decay through 

the exponential terms presented in equation (31). We note that these decay modes 

correspond to the ‘slow’ relaxation mode of the tissue level AV stress-relaxation, while the 

viscous flow-like behaviour of the GAGs/water content would account for the ‘fast’ 

relaxation mode.  

 

5.2. Creep modes 

 

In §5.1 we postulated that GAGs/water mixture behaved as a Maxwell viscous fluid, and  

thus give rise to one of the exponential relaxation modes. A Maxwell fluid is not capable of 

exhibiting (primary) creep, therefore one may conclude that the observed exponential 

primary and linear secondary creep at the tissue level stem from the kinematics shown in 

§3.2, and formulated by equation (30).  

 

Similar to the stress-relaxation equations, by inspecting equation (30) for creep more 

closely, the 


n

i 1

terms are negligible for 2n  compared to that for 1n , consequently 

rendering those terms numerically insignificant. In light of this analysis, one may re-write 

the relationships given in equation (30) with a good level of accuracy as:  
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       (32)  

 

Equation (32)1 describes the creep behaviour in lower strains (e.g. corresponding to 

5.1f N) where the fibre reorientation may be the dominant kinematics, and equation 

(32)2 describes the creep behaviour at higher strains where fibre sliding is more dominant.  

 

The set of equations in (32) highlights the origin of AV primary and secondary creep 

modes. At shorter time periods, the exponential term in (32) dominates the trend of 

variation in )(t , resulting in tissue-level primary creep. At longer time periods, the 

exponential effect abates, because the numerical value of the exponential function 

decreases as time elapses. The )(t  creep function is then influenced by the linear term in 

t, resulting in tissue-level secondary creep.  

 

5.3. Creep behaviour in uniaxial versus biaxial loading 

 

The mathematical framework presented in §4 clearly demonstrates that the governing 

fibre-kinematic equation for both stress-relaxation and creep behaviours is the same, but 

only the loading boundary conditions is different, which mathematically results in either 

the stress-relaxation (equation (24)) or creep function (equation (30)), depending on the 

applied loading boundary condition. The predicted stress-relaxation and creep functions 

were shown to correlate well with the tissue-level experimental data in §§5.1 and 5.2. One 

conclusion from this analysis is that the loading boundary condition clearly plays an 

important role in tissue-level response. This notion can be extended to explain why creep 

behaviour in uniaxial loading is different to that under equi-biaxial loading when tested on 

the AV tissue. Under equi-biaxial loading conditions, Stella et al. 2007 have reported 

minimal creep response, much lower than that observed under uniaxial loading.  

 

Exhibiting lower levels of creep under equi-biaxial loading is not specific to the AV 

tissue. Indeed, it is a common and established feature of many materials, having been also 

shown in tissues such as the ligament (Tan et al. 2016) as well as polymeric materials (see, 

, in rotation  

, in linear sliding  
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e.g., Nielsen and Landel 1994). Equi-biaxial loading condition is such that it tends to 

preserve the microstructural arrangement of the subject sample more so than other in-plane 

loading conditions (e.g. see Alavi et al. 2013 for a comparative study on bovine pericardial 

leaflets). Thus, equi-biaxial loading boundary condition facilitates much less 

microstructural reorganisation, and therefore less dissipative kinematics will ensue. In 

addition to this experimental observation, it is also possible to mathematically show why 

creep under equi-biaxial loading would be lower than uniaxial creep a priori.  

  

In order to make the analysis relevant to the AV, let us consider a transversely isotopic 

Kelvin-Voigt viscoelastic material. We choose a Kelvin-Voigt material as it is the simplest 

viscoelastic unit capable of exhibiting creep, and we choose ‘transverse isotropy’ to reflect 

the material symmetry characteristics of the AV tissue. The generalised 3D constitutive 

relationships between stress, strain and time for such a material with fibres primarily 

aligned along the x direction in x-y plane has been derived and presented in Appendix C as:  
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which for a planar thin membrane tissue such as the AV may be simplified to: 
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Under equi-biaxial creep loading conditions, we note that the stress is kept constant at an 

equal level in both directions from time t = 0. Using equation (34)1:  
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Noting that for a transversely isotropic material: 
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rewritten as: 
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Solving equation (36) under the boundary condition that the strain at 0t  is  )0(x  gives 

the creep strain function in the x direction, namely the circumferential direction of the AV 

tissue, under equi-biaxial loading as: 
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and similarly for the radial direction:  
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Comparatively, under only uniaxial creep testing, the governing differential equation will 

be )0(
1
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E
tt

E
 , which is solved for creep strain as:  
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Plots in Figure 7 compare the typical equi-biaxial versus the uniaxial creep behaviours 

using functions in equations (37) to (39). For producing the plots, the numerical data on the 

initial stress and the corresponding strains were collated from Stella et al. (2007), reporting 

values of approximately  )0()0( yx  240 kPa, %15)0( x  and %70)0( y . To 

enforce the condition of incompressibility, xy  was assumed to be xy = 0.5, while xE  and 

yE were chosen to be 0.7 MPa and 0.3 MPa, respectively, for a reasonable representation 

of the tissue moduli in circumferential and radial directions. A direct comparison between 

uniaxial and equi-biaxial creep behaviours using those values is shown in Figure 7.    

 

These plots graphically illustrate two important points, that may also be inferred 

mathamtically from equations (37) to (39): (i) inherently, viscoelastic materials under equi-

biaixal loading exhibit lower creep than when loaded uniaxially; and (ii) uniaxial creep 
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occurs much faster than biaxial creep. Indeed, for a material with low 
xy

yx




 and 

 

 



xE
 ratios, 

mathematically the biaxial creep may be deemed negligible compared to the uniaxial 

creep. We note that collagenous soft tissues such as the AV have non-linear mechanical 

behaviours, where the Poisson ratios may also be a function of time, and therefore a linear 

Kelvin-Voigt model may introduce approximations and simplifications to the analysis. 

Notwithstanding those approximations, for a transversely isotropic material such as the AV 

tissue with typically low 
 

 



xE
 and 

xy

yx




 ratios, the above analysis may suffice to show that 

the reduced levels of creep under equi-biaxial loading is simply a direct consequence of the 

loading boundary conditions under biaxial deformation, physically inhibiting the capacity 

of the samples to exhibit notable levels of creep.  

 

6. Concluding remarks  

  

This study aimed to investigate the microstructural mechanisms that facilitate AV tissue 

level stress-relaxation and creep behaviours. We investigated the reorganisation of the AV 

microstructure during both phenomena experimentally, and then underpinned the 

experimental results by a kinematics framework to account for the dissipative effects of 

fibre sliding that arise from fibre rotation and linear displacement within the tissue matrix. 

Our analysis strongly suggests that: (i) the dissipative fibre-fibre and fibre-matrix 

kinematics due to fibre rotation and linear displacement (i.e. microstructural 

reorganisation) govern both the relaxation and creep phenomena; (ii) the underlying 

mechanisms that facilitate both stress-relaxation and creep behaviours are therefore 

essentially coupled and uniform; and (iii) these mechanisms may be explained at tissue 

fibre (micro-) level. Further, the mathematical framework presented in this study offers an 

analytical explanation as to why AV relaxation modes are exponential, and why the tissue 

exhibits exponential primary creep followed by linear secondary creep. The presented 

framework therefore provides a mathematical underpinning of the micromechanics of 

stress-relaxation and creep in the aortic valve. This framework facilitates future 

development of microstructurally-based models that can predict tissue-level relaxation or 

creep behaviours based on the microstructural attributes and kinematics.  
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6.1. Study boundaries and limitations  

 

The experimental methodology utilised in this study has inherent limitations. First, the 

field of view only covers an area of 670µm × 500µm, compared with the dimensions of 

strip specimens (5mm × 10mm). However, we also note that it is a common practice in the 

field of continuum-mechanics to consider a representative volume element (RVE) of the 

material, and to assume that the entire material possess the same characterist ics. Therefore, 

assuming that fibre kinematics observed within the field of view is a representative of the 

type and trend of fibre kinematics across the whole sample may be deemed an inevitable 

approximation.  

 

The loading modality employed in this study was uniaxial; while biaxial loading may 

represent the physiological loading condition of the AV tissue more closely. Additionally,  

implicit to our conferred analysis regarding the kinematics of fibres is the assumption of 

perfect cell attachment to the fibres and that each cell is only attached to one fibre. All 

these factors undoubtedly raise the prospect that the reported values of fibre kinematics, 

i.e. the radius/angle of rotation and the extent of linear displacement, in this study may not 

be the absolute values experienced by the fibres in situ. Nevertheless, it was not the 

intention of this study to calculate the absolute numerical values of fibre rotation or 

displacement during the stress-relaxation and creep behaviours. Rather, the primary 

objective was to show that such kinematics exist. The presented theoretical criterion in this 

study that links the observed kinematics to stress-relaxation and creep behaviours is 

independent of the amount of fibre rotation/sliding.  

 

We further note that the analysis presented in this study was devised based on the 

assumption that the observed kinematics relate only to collagen fibres and not the elastin. 

Whilst likely a simplification, by its nature the elastin network is unlikely to contribute 

significantly to viscoelastic behaviour of the AV tissue. Further, Huang and Shadow 

Huang (2015) have demonstrated that AV samples with decreased collagen content 

reported significantly altered relaxation behaviour, particularly in terms of trend and modes 

of relaxation. Therefore, collagen fibres are perhaps the most important fibrous component 

contributing to the time-dependent behaviour of the AV. A positive improvement in the 

experimental setup which will be incorporated by the host lab in future studies is to 

directly visualise the residing collagen fibres within the tissue samples, instead of using the 
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AVICs as markers of fibre movement. Directly tracking the movement of fibres will 

obviate many assumptions used in this study, including the nature of attachment of the 

cells to the fibres.  

 

The utilised theoretical framework for describing the observed kinematics also contained  

some simplifications such as neglecting the normal component of the traction force, as well 

as specific assumptions on the interactions of two adjacent fibres. However, the validity of 

those assumptions and simplifications is corroborated by the affinity of the experimental 

results and the outcomes of the theoretical analysis, as well as by matching with the tissue-

level relaxation and creep behaviours.  

 

6.2. Relevance to the physiological function  

 

The loading/deformation range employed in this study extends beyond the physiological 

range for AV function in vivo. This range was chosen for a more comprehensive 

biomechanical investigation and characterisation of the micromechanics of AV stress-

relaxation and creep. Physiological AV strains reach approximately 10% and 30% in the 

circumferential and radial directions, respectively, at a stress level of approximately 240 

kPa (Sacks and Yoganathan, 2007). From a stress-relaxation perspective, our analysis 

suggests that if the tissue is to experience relaxation in vivo, it will experience two 

relaxation modes where the rotation of the wavy fibres likely dominates the second 

relaxation mode (equations (23)1 and (24)1).  From the creep mechanics point of view, our 

analysis offers a clear theoretical explanation as to why under physiological loading 

boundary condition, the tissue exhibits no creep. These analyses provide new insight into 

the underlying structural mechanisms that govern the time-dependent behaviour of the AV.  

 

6.3. Possible co-existence of other mechanisms   

 

We note that while we have shown the tissue relaxation and creep behaviours can be 

described based on the kinematics of the AV microstructure, it may well be the case that 

other mechanisms at different levels (e.g. fibrillar or molecular hierarchical levels) also co-

exist. For example, Gupta et al. (2010) have demonstrated that tendon collagen exhibits 

stress-relaxation behaviour at fibril level, and Liao et al. (2007) have shown a reduction in 

collagen fibril D-spacing during relaxation in valvular tissues. While such mechanisms 
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may co-exist with the microstructural mechanisms established in this study, it is not yet 

known to what extent they may contribute to tissue-level stress-relaxation and creep 

behaviours. In addition, these mechanisms have not been analytically linked to the type 

and number of relaxation modes in soft tissues. Our study, to the knowledge of the authors, 

is the first to provide a link between the kinematics of the AV microstructure and the 

observed tissue level relaxation and creep modes.   

 

6.4. Application in modelling the tissue-level behaviour  

 

The mathematical criterion presented in this study was aimed at providing an analytical 

link between the experimentally observed microstructural reorganisation and the 

mechanics of AV stress-relaxation and creep. It was not intended to model the tissue-level 

behaviour, and therefore no tissue-level characteristics such as anisotropy, fibre dispersion, 

distribution of fibre recruitment or other continuum-based attributes were considered in the 

presented work. Developing a microstructural model to describe the tissue level stress-

relaxation and creep behaviours using the mathematical framework presented here will be 

a future development. It is noteworthy that while our analysis in this work centred on the 

AV tissue, the kinematics framework utilised here is generic to planar collagenous soft 

tissues and may offer insights into modelling the stress-relaxation and creep behaviours of 

other such tissues. 
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Appendix A - Deriving the relationship for the traction force T(x,t) 

 

Equation (1) reads: ),()(),( txVCxNtxT reld  , where )(xN  represents the classic 

Coulomb friction force, and ),( txVC reld  is the Newtonian viscous force, whereby dC  

becomes the viscous damping coefficient of the ground substance and ),( txVrel  the relative 

velocity of the fibres sliding against each other.  

 

While in a series of previous studies we have demonstrated that the viscous damping 

coefficient in AV tissue may be rate dependant itself, indicating that the ground substance 

may be non-Newtonian (Anssari-Benam et al. 2011b; 2016; 2017), we assume a 

Newtonian behaviour here for simplicity of the proceeding analysis. The normal force N is 

a function of x along the fibre, as the fibres are assumed to have direct contact only at 

specific regions along their lengths. The same goes for the relative velocity Vrel, with an 

additional caveat that under time-dependent loading, Vrel would also generally be a 

function of time t, as the relative movement of two adjacent fibres may not remain uniform 

in time. The resultant traction force T would therefore be a function of both x and t, ),( txT

, a priori. We note that if the two adjacent fibres are in direct dry frictional contact, i.e. 

slide on each other, then the first term in equation (1) will be the dominant force term. If, 

however, the fibres slip over each other, then the second term in equation (1), i.e. 

),( txVC reld , will be the dominant contribution to the resultant traction force T, as the fibres 

will still be in contact with the surrounding ‘ground substance’ matrix.  

 

For fibres to displace along a straight line, as was documented in §3, there needs to exist 

a force differential between the two ends, acting along the axes of the fibres. For our two 

adjacent fibres in Figure 5, we assume that a force differential ΔF acts on the opposite ends 

of the two fibres, in opposing directions. We note that the considered configuration is 

analogous to a case where the fibres are free at one end, i.e. at 2/ lx   and 2/ lx   for 

fibres 1 and 2, respectively, and loaded at the other end.  

 

For the considered differential elements of the fibres in Figure 5, if the inertial effects are 

ignored, the condition of equilibrium enforces that ΔF must be counterbalanced by the 

traction force T(x,t) acting over the length dx of the elements. Therefore, the overall force 

acting on the whole of the fibre may be calculated as: 
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We note that force F is only a function of time t, as it already accounts for the whole length 

of the fibre. Moreover, during relaxation, the force acting on each fibre would vary as a 

function of time. We further note that the global equilibrium of fibres 1 and 2 requires that: 

),(),()( 21 txFtxFtF  , and therefore in light of equation (A.1):  
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Note that F1 and F2 are both functions of x and t, as the magnitude of both forces depends 

on the position (x) along the fibre, as well as the time point (t) during the loading.  

 

When straight, collagen fibres in the AV tissue are assumed to behave as a linear elastic 

material (e.g. Sacks 2003). Therefore:  

                                                        
x

u
E

A

F




                                                                 (A.3) 

where u is the displacement of the material points in the fibre, E is the elastic modulus of 

the fibre, and A is its cross-sectional area. From equation (A.2), it is evident that 
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Applying the above equation to fibres 1 and 2:  
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where 1A  and 2A  are the cross-sectional area, 1E  and 2E  are the elastic moduli, and 1u  

and 2u  are the displacements for fibre 1 and fibre 2, respectively. Equation (A.5) describes 

the displacement fields for the interfacing fibres. Subtracting equation (A.5)2 from (A.5)1, 

one obtains:  
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In the above equation, we have assumed that the two fibres are geometrically and 

mechanically uniform, i.e. A1 = A2 = A and E1 = E2 = E.  

 

The accurate nature of contact between neighbouring fibres in the AV tissue is perhaps a 

topic of debate. It would appear unlikely, however, for adjacent fibres to be in full contact 

with each other over their entire lateral surface areas. The more two adjacent fibres deviate 

from full lateral contact over their surface areas, the more the effect of the Coulomb 

friction term )(xN in equation (1) reduces. Moreover, it would be also unlikely for two 

adjacent fibres to be in ‘dry’ contact with each other, as fibres are embedded in a matrix 

which consists of water and the viscous-like glycosaminoglycans (GAGs) (Anssari-Benam 

et al. 2011b; 2016; 2017). In a simple description, this matrix mixture ‘wets’ the surface 

area of the fibres, which in turn would diminish the effect of   and thereby the term 

)(xN . Therefore, considering these premises, the contribution of the first term in 

equation (1) may be considered minimal compared with the second term, and with a degree 

of tolerance may be discarded from the traction force T(x,t). Therefore, equation (1) may 

be simplified to:  
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Appendix B - Deriving the governing fibre kinematics equation for a wavy fibre 

 

In the considered composite mixture of the ground matrix and wavy fibres shown in 

Figure 6, the contribution of wavy fibres to the mechanical behaviour when the fibres 

crimp or uncripm is clearly not to the extent of a fully straight fibre. Thus, the value of the 

elastic modulus of the composite cE  in equation (10) theoretically falls somewhere 

between the elastic modulus of the matrix mE  when the fibres do not provide 

reinforcement at all, and the fraction volume of the fibres fV  multiplied by the elastic 

modulus of the fibres E  when the fibres are fully straight; i.e. EVEE fcm  . It may 

therefore be reasonable to analytically approximate cE  as a function of E such that: 

EEc   , where   is a parameter between 1 0  . We further note that the AV tissue 

matrix is composed of water and GAGs, and therefore is considered incompressible, where 

0.5c   . Equation (10) may now be re-written as:  
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where it is assumed that the two fibres have uniform mechanical and geometrical 

properties. In addition, for small uniaxial deformations along x, where the change in the 

angle between the two adjacent fibres is also small, 
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equation (B.1) may be simplified to:  
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Taking a differential with respect to x  from both sides of the above equation, one obtains: 

                                                    
2

2

2 )1(

 

x

uAE

x

F















                                                       (B.3) 

  

Equation (B.3) is the counterpart to equation (A.3). Repeating the same steps here as for 

those from equation (A.3) onward, the governing fibre kinematics equation for wavy fibres 

may be obtained as: 
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Appendix C - Constitutive relationships between stress, strain and time for a 

generalised 3D transversely isotropic linear viscoelastic Kelvin-Voigt solid 

 

For a Kelvin-Voigt solid under tensile deformation along x direction, the relationship 

between stress, strain and time reads: )()()( ttEt axial

x

axial

xxx   . In the case of a 

transversely isotropic material, the following relationships also hold: 
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Assuming that Poisson ratios are independent of time, the above relationships may be 

differentiated with respect to time to yield:  
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Similarly, for deformation along y direction one gets )()()( ttEt axial

y
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yyy   , with: 
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And, finally, for deformation along z direction: )()()( ttEt axial

z
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Applying the principle of superposition to x direction to compute the total strain )(tx  

along x direction, one may obtain:  
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For )(tx  terms in the above equation, we not that: 
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For a transversely isotropic material where the characteristic direction is along x axis, one 

may note that zy EE  , and therefore the above reads:  
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We further note that: 
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which may be rewritten as: 
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It may be observed that the term in the bracket may mathematically be considered as a 

multiple of )(tx , say )( tA x , and hence equation (C.9) may also be rewritten as: 
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Therefore, the total strain )(tx  along x direction in equation (C.5) may now be rewritten 

as: 
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By applying the same procedure to y and z directions, one may obtain the following 

relationships )(ty  and )(tz  as:  

 

 )( 
 )()()(

)()()( __ tB
EE

t

E

t

E

t
ttt y

yz

z
zy

x

x

xy

y

yztransverse

y

xtransverse

y

axial

yy 








   

 (C.12) 

and: 
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In view of equations (C.11), (C.12) and (C.13), the constitutive relationships between 

stress, strain and time for a generalised 3D transversely isotropic linear viscoelastic 

Kelvin-Voigt solid may be given by: 
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Table legends 

 

Table 1 - Modes of stress-relaxation and creep phenomena and the dominant kinematics of 

the microstructure at each strain/load level. Data reported from Anssari-Benam et al. 

2011a. 
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Table 1  

 

Stress-relaxation 

 Circumferential direction Radial direction 

Strain level No. of decay mode(s) Dominant kinematics No. of decay mode(s)  Dominant kinematics 

%6  1 No kinematics  1 No kinematics  

%12%6    2 Curvilinear 1 No kinematics  

%12  2 Linear displacement 1 No kinematics  

Creep 

 Circumferential direction Radial direction 

Load level Creep mode(s) Dominant kinematics Creep mode(s)  Dominant kinematics 

5.1f N P & S Curvilinear P & S Not established 

5.1f N P & S Linear displacement P & S Not established 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 40 

Figure legends  

 

Figure 1 - (a) AV leaflets were excised from the aortic root, from which 5mm wide strips 

were cut from the belly region, in either the circumferential or radial direction (adapted 

from Anssari-Benam et al. 2016); (b) A typical confocal microscopy image of AVIC nuclei 

stained with Acridine Orange. For structural comparison, images of AV fibrous structure 

(collagen fibres and the elastin network) have also been presented at the same length-scale 

within the same size field of view. AVICs are known to be bonded to the fibres; (c) A 

schematic of the integrated setup used to quantify the kinematics of AV microstructural 

reorganisation, including a photograph of the loading rig on the stage of the microscope. 

 

Figure 2 - Schematics depicting methods for describing the movement of the nuclei. The 

trajectory of movement of each nucleus is reconstructed from each captured frame: (a) A 

typical trajectory of movement of a nucleus during a 300s test at lower force/strain levels 

where the dominant kinematic is a curvilinear motion. The equation of a circle is curve-

fitted to the trajectory curve, from which the radius of curvature of the trajectory is 

determined. Note that the top right panel is a magnification of the real trajectory for better 

presentation and the axes are not to the same scale; (b) A typical trajectory of movement of 

a nucleus during a 300s test at higher force/strain levels where the dominant kinematic is a 

straight-line motion. The trajectory is described by a line of best fit (R
2  0.98). The 

displacement of the nucleus along its direction of movement is then calculated. Note that 

the scale bars represents 100 µm and the loading direction is along the y axis.  

 

Figure 3 - Typical movement of cell nuclei during stress-relaxation in the circumferential 

direction: (a) dominant curvilinear motion at strain levels 12%6   ; and (b) dominant 

straight-line motion for %14 . No detectable movement in lower strain levels (ε  6%) 

was observed. Dotted lines represent the best line of fit (R
2

98.0 ) to the recorded 

trajectory; (c) The mean values of radius of curvature and the linear displacement of the 

cell nuclei motion at each strain increment. The values are presented as mean ± SD. 

  

Figure 4 - Typical movement of the cell nuclei during creep in the circumferential 

direction: (a) at load levels f < 1.5N, the motion of the nuclei conforms with a curvilinear 

motion and the trajectory of movement is characterised as a segment of the circumference 

of a circle. At f  = 1.5N, the transition of the cell nuclei motion from curvilinear to straight-
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line kinematics is documented; (b) at load levels f  > 1.5N, the dominant kinematics is the 

straight-line motion. Dotted lines represent the best line of fit; (c) The mean values of 

radius of curvature and the linear displacement of the cell nuclei motion at each load 

increment. The values are presented as mean ± SD. 

 

Figure 5 - Schematic of the fibre kinematics of two arbitrary adjacent straight collagen 

fibres (adapted from Kojic et al. 1998). 

 

Figure 6 - Schematic of two adjacent wavy fibres embedded in the matrix, at the beginning 

(t = 0s) and the end (t = 300s) of a test. The fibres may rotate and change their lengths as 

part of the microstructural reorganization occurring within the tissue during stress-

relaxation/creep phenomena. 

 

Figure 7 - Comparison of uniaxial versus equi-biaxial creep in circumferential and radial 

directions using the AV mechanical properties as reported by Stella et al. 2007. Continuous 

and dashed lines represent the equi-biaxial and uniaxial creep behaviours, respectively.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


