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We	report	on	dissipative	soliton	resonance	(DSR)	and	its	
transformation	 into	 a	 type	 of	 burst-like	 emission	 in	 a	
holmium-doped	 fiber	 (HDF)	 laser	 in	 the	 large	 normal	
dispersion	 regime.	 A	 nonlinear	 amplifying	 loop	 mirror	
incorporating	~118	m	large	normal	dispersion	fiber	acts	
as	an	artificial	saturable	absorber.	The	HDF	laser	has	the	
largest	net	normal	dispersion	so	far.	As	the	pump	power	
is	 increased	from	~1.72	to	~4.80	W,	the	produced	single	
pulse	linearly	broadens	from	~6.7	to	~68.0	ns,	whilst	the	
output	pulse	peak	power	is	clamped	around	~180.5	mW	
due	to	the	peak-power-clamping	effect	with	the	DSR.	The	
sharp	 spectral	 peak	 indicates	 that	 the	 DSR	 is	 realized	
with	 a	 large	 normal	 dispersion.	 	 With	 further	
manipulation	 of	 the	 polarization	 state,	 the	 DSR	 can	
evolve	 into	 a	 type	 of	 burst-like	 emission.	 It	 is	 further	
revealed	that	this	burst-like	emission	could	be	caused	by	
a	 type	 of	 peak-power-depressing	 effect,	 which	 results	
from	 the	 competition	 between	 the	 DSR	 and	 soliton	
formation.			©	2019	Optical	Society	of	America	
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Pulsed	 laser	 sources	 in	 2	 μm	 spectral	 region	 have	 attracted	
considerable	attention	in	recent	years	due	to	their	wide	range	of	
applications,	 such	 as	 mid-infrared	 coherent	 source,	 lidar,	
spectroscopy,	 and	 various	 materials	 processing.	 Thulium	 and	
holmium	doped	 fiber	 laser	 sources	 have	 also	 increasingly	 stood	
out	from	conventional	bulk	systems	due	to	their	merits	of	excellent	
beam	 quality,	 high	 average	 power	 availability,	 compactness,	
flexibility,	 etc.	 Typically,	 the	 most	 efficient	 emission	 of	 thulium	
doped	 fiber	 (TDF)	 laser	 sources	 is	within	 the	 1.9-2	 μm	 spectral	
region,	although	some	attempts	have	been	done	to	extend	it	(the	

lasing	efficiency	is	still	low	for	a	too	short	or	too	long	wavelength).	
Meanwhile,	 for	 longer-wavelength	 lasing	 holmium-doped	 fiber	
(HDF)	 provides	 an	 excellent	 choice,	 approaching	 the	 long	
wavelength	limit	of	silica	fibers	[1].		
To	obtain	a	pulsed	source	using	HDF,	however,	no	efficient	laser	

diodes	(LDs)	are	available	and,	thus,	a	resonant	pumping	around	
1.95	 μm	 is	 typically	 used.	 Besides	 the	 limited	 pump	 selection,	
several	other	factors	also	exert	challenges	on	the	development	of	
fiber	sources	beyond	2	μm.	 	These	 include	 the	 large	attenuation	
loss	as	approaching	the	wing	of	a	vibrational	absorption	band	of	
silica	[1],	the	unavailability	of	particular	fibers	or	components,	the	
high-cost	or	even	shortage	of	measurement	equipment,	etc.		
Restricted	by	these	factors,	only	several	limited	types	of	optical	

pulses	 have	 ever	 been	 demonstrated	 in	 passively	 mode-locked	
HDF	lasers	up	to	now,	including	typical	solitons	in	all	anomalous	
dispersion	 regime	 [2,	 3],	 dispersion-managed	 solitons	 with	 a	
dispersion	close	to	zero	[4,	5],	etc.	Nevertheless,	in	view	of	the	rich	
nonlinear	 dynamics	 of	 mode	 locked	 fiber	 lasers,	 other	 types	 of	
pulses	should	still	be	possible	to	be	formed	in	HDF	lasers.		
Among	the	various	mode-locked	laser	operations,	recent	years,	

particular	attention	has	been	paid	to	dissipative	soliton	resonance	
(DSR)	due	to	its	unparalleled	potential	in	pulse	energy	scaling	[6-9].	
A	DSR	pulse	is	mainly	shaped	by	an	effect	named	as	peak-power-
clamping	 (PPC),	 which	 maintains	 the	 pulse	 peak	 power	 at	 a	
constant	level	during	energy	scaling.	Although	the	DSR	operation	
of	many	fiber	 lasers	has	been	extensively	studied,	so	 far	there	 is	
only	one	report	on	the	DSR-like	mode-locking	in	HDF	lasers	[10].		
In	this	Letter,	we	demonstrate	the	first	DSR	operation	in	a	large	

normal	dispersion	HDF	laser	at	2.05	μm.	Furthermore,	for	the	very	
first	time,	we	observe	the	burst-like	emission,	as	well	as	its	related	
depression	effect	with	the	pulse	peak	power.	
The	configuration	of	the	HDF	laser	is	schematically	illustrated	in	

Fig.	 1.	 A	 cascaded-pumping	 scheme	 is	 adopted	 to	 simplify	 the	
overall	design.	As	shown,	the	pump	for	a	piece	of	~1.5	m	long	TDF	
is	provided	by	a	master	oscillator	power	amplifier	(MOPA)	 fiber	



source	seeded	by	a	distributed	feedback	LD	(DFB-LD)	at	~1570.4	
nm	and	power-boosted	by	a	cladding-pumped	erbium-ytterbium	
fiber	 amplifier	 (EYFA).	 The	 TDF	 has	 a	 small	 signal	 absorption	
coefficient	at	the	pump	wavelength	of	~60	dB/m.	The	pump	light	
is	 coupled	 into	 the	 TDF	 through	 a	 filter	 wavelength	 division	
multiplexer	(FWDM),	whose	insertion	losses	around	the	1570	nm	
pump	and	2050	nm	signal	wavelengths	are	specified	as	~0.39	and	
~0.48	dB,	respectively.	This	results	a	peak	emission	at	~1854	nm.	
It	 is	 subsequently	used	 to	 intra-cavity	 resonant-pump	a	piece	of	
HDF	with	length	of	~2.1	m	and	small	signal	absorption	at	~1854	
nm	of	~20	dB/m,	 respectively.	A	 three-paddle	 fiber	polarization	
controller	(FPC),	noted	as	FPC-1,	 is	 incorporated	for	polarization	
state	(PS)	adjustment.	The	fiber	wrapped	in	it	is	a	type	of	normal	
dispersion	 fiber	 (NDF,	UHNA7,	Nufern,	 Co.).	 The	NDF	 exhibits	 a	
high	numerical	aperture	of	0.41,	a	small	core	diameter	of	2.4	μm,	
and	a	group	velocity	dispersion	(GVD)	of	~49.4	ps2	/km	at	2.05	μm	
[11].	The	total	used	NDF	length	is	~118	m,	resulting	in	a	net	cavity	
dispersion	of	~4.9	ps2,	the	largest	normal	dispersion	so	far	for	fiber	
lasers	with	 emission	 beyond	 2	 μm.	 All	 other	 fibers	 as	 used	 are	
standard	SMF-28e.	Further	employing	a	3-dB	fiber	optical	coupler	
(FOC),	a	nonlinear	amplifying	loop	mirror	(NALM)	is	constructed.		
On	the	other	side	of	the	3-dB	FOC,	a	unidirectional	propagation	

loop	 is	 constructed	 by	 incorporating	 an	 isolator.	 Within	 it,	 the	
second	FPC,	i.e.,	FPC-2,	is	used	to	manipulate	the	intra-cavity	PS	in	
combination	with	the	FPC-1.	A	20/80	FOC	is	used	to	extract	~20%	
optical	power	as	the	output.	The	total	cavity	length	is	~128	m.	

Fig.	1.	Experimental	configuration.	

Continuous	wave	 lasing	 at	 ~2.05	 μm	 started	with	 ~1.22	 	W	
pump	power	at	~1570.4	nm.	Further	increasing	the	pump	power	
to	~1.72	W,	stable	single	DSR	pulse	was	produced	by	adjusting	the	
two	FPCs	to	appropriate	orientations.	Figure	2(a)	3D-plots	several	
single	pulse	envelops	as	the	pump	power	increased	from	~1.72	to	
~4.80	W.	Meanwhile,	 the	 pulse	 duration	 scaled	with	 the	 pump	
power	in	a	roughly	linear	manner,	from	~6.7	to	~68.0	ns,	with	a	
nearly	fixed	pulse	peak	power	of		~180.5	mW,	the	well-known	PPC	
effect,	 which	 is	 a	 signature	 characteristic	 of	 DSR	 pulse.	 The	
corresponding	radio	frequency	(RF)	traces	were	plotted	as	in	Fig.	
2(b),	 all	 with	 the	 same	 span	 of	 0-100	MHz	 and	 resolution	 BW	
(RBW)	of	1	kHz.	Despite	the	cavity-determined	sharp	RF	lines,	a	
damped	 modulating	 behavior	 could	 be	 clearly	 noticed	 on	 each	
trace.	 The	 modulation	 frequency	 and	 the	 native	 pulse	 duration	
always	satisfied	a	reciprocal	relationship.	All	 the	temporal	traces	
through	this	Letter	were	measured	by	using	an	extended	InGaAs	

photodetector	 (ET-5000,	 Electro-Optics	 Technology,	 Inc.)	 with	
specified	rise	time/fall	time	of	28	ps/28	ps	and	bandwidth	(BW)	
of	 >12.5	 GHz,	 in	 combination	 with	 a	 digital	 oscilloscope	
(DSO9104A,	Agilent	Technologies,	Inc.).	Similarly,	all	the	RF	traces	
were	detected	by	using	the	same	photodetector	and	recorded	with	
an	RF	spectrum	analyzer	(N9320B,	Agilent	Technologies,	Inc.).	

Fig.	2.	Evolutions	of	(a)	single	DSR	pulse	and	(b)	the	corresponding	RF	
train	with	respect	to	pump	power,	respectively;	(c)	detailed	RF	around	
the	PRF	and	(d)	optical	spectrum	with	pump	power	of	~4.80	W.	

Figure	2(c)	plotted	a	detailed	RF	spectrum	(10	Hz	RBW)	around	
the	pulse	repetition	frequency	(PRF)	with	~4.80	W	pump	power.	It	
peaked	at	~1.524	MHz	and	had	a	signal	to	noise	ratio	(SNR)	of	~49	
dB.	 The	 SNR	 rose	 from	 ~36	 to	 ~49	 dB	 as	 the	 pump	 power	
increasing	from	~1.72	to	~4.80	W.		
The	output	optical	spectra	were	measured	by	using	an	optical	

spectrum	analyzer	(AQ6375B,	Yokogawa	Test	&	Measurement	Co.,	
Japan)	with	0.05	nm	resolution.	Figure	2(d)	plots	a	typical	optical	
spectral	profile	pumped	at	~4.80	W.	it	peaked	at	~2050.373	nm	
with	 a	 3-dB	 BW	 of	 ~0.378	 nm.	 The	 narrow	 spectrum	 is	 a	
distinguished	characteristic	for	a	DSR	with	a	normal	dispersion.		
By	 adjusting	 the	 two	 FPCs,	 we	 observed	 a	 type	 of	 burst-like	

emission	 as	 shown	 in	 Fig.	 3,	where	 the	DSR	 pulse	 broke	 into	 a	
packet	 of	 many	 random	 pulses.	 Figure	 3(a)	 plots	 a	 DSR	 pulse	



envelop	when	 the	 pump	 power	was	~2.5	W.	 A	 burst-like	 state	
with	the	same	pump	power	but	a	different	PS	is	shown	in	Fig.	3(b).	
The	duration	of	the	packet	with	an	identical	condition	was	stable,	
but	the	internal	pulses	varied	randomly.		It	was	also	noted	that	as	
the	DSR	pulse	transferred	into	the	burst-like	emission,	the	packet	
widened	from	~17.1	to	~85.4	ns.	A	burst-like	emission	trace	with	
10	μs	 span	was	 captured	 in	 Fig.	 3(c).	 As	 seen,	 the	 overall	 pulse	
packet	 repeated	 at	 the	 cavity	 roundtrip,	 despite	 the	 internal	
randomness.	 Figure	 3(d)	 plots	 a	 detailed	 burst-like	 packet	 in	 a	
train.	In	the	same	train,	the	burst-like	packet	produced	in	the	next	
roundtrip	 was	 shown	 in	 Fig.	 3(e).	 Even	 with	 so	 short	 a	 time	
interval	it	could	be	seen	that	the	internal	pulses	exhibited	varied	
peak	intensities.	It	means	that	there	might	be	some	competitions	
among	the	internal	pulses,	resulting	in	the	random	characteristics	
within	each	pulse	packet.		

Fig.	3.	(a)	A	DSR	pulse	envelop	and	(b)	its	transformation	into	a	burst-
like	emission;	(c)	a	typical	trace	with	10	μs	span;	(d)	a	burst-like	packet	
in	a	train;	(e)	the	next	burst-like	packet	in	the	same	train.		

Further	detailed	observation	revealed	 that	 the	evolution	 from	
the	DSR	 to	burst-like	 emission	 could	be	 seen	as	 a	 type	of	peak-
power-depressing	(PPD)	process.	For	comparison,	Fig.	4(a)	plots	a	
typical	pulse	envelop	when	the	HDF	laser	was	operating	with	the	
DSR	at	~4.8	W	pump	power.	The	corresponding	 intra-cavity	PS	
was	noted	as	PS1.	Tuning	the	PS	to	a	noted	PS2,	we	observed	two	
sharp	depressions	on	the	pulse	envelop	[Fig.	4(b)].	Further	tuning	
to	a	noted	PS3,	more	and	stronger	depressions	appeared	[Fig	4(c)].	
Finally,	 a	burst-like	emission	 state	 containing	a	great	number	of	
internal	pulses	formed	at	a	noted	PS4,	seen	in	Fig.	4(d).		
As	displayed	in	Fig.	4,	as	more	depressions	appeared	along	the	

packet	profile,	the	packet	duration	became	longer.	The	initial	DSR	
pulse	 duration	 was	 ~68.0	 ns,	 and	 the	 final	 burst-like	 packet	
duration	increased	to	~139.0	ns.	We	believe	that	the	depressions	
were	caused	by	pulse	breaking	during	polarization	modulations.	
The	 existence	 of	 anomalous	 dispersion	 fiber	 segment	 facilitated	
the	pulse	breaking	.		
Figure	 4(e)	 plots	 a	 typical	 optical	 spectrum	 of	 the	 burst-like	

emission	when	the	pump	power	was	~4.80	W,	corresponding	to	
the	temporal	trace	in	Fig.	4(d).	Compared	to	the	optical	spectrum	
of	the	DSR	pulse	in	Fig.	2(d),	here	one	significant	difference	is	that	
several	 sharp	 spikes	 appeared	 on	 the	 spectral	 profile.	 Another	
difference	was	that	the	main	spectral	peak	broadened	and	shifted	

from	~2050.373	to	~2046.940	nm.	Adjustment	of	the	FPCs	varied	
the	local	fiber	birefringence,	which	then	altered	the	transmittance	
of	the	NALM	as	well	as	the	overall	effective	laser	gain,	including	the	
effective	gain	profile	and	gain	location.	This	consequently	resulted	
in	the	change	of	the	detailed	spectral	profile	and	even	the	shift	of	
the	spectral	peak.		Once	the	burst-like	pulses	were	obtained,	pump	
power	increasing	made	the	burst-like	packet	broadened,	together	
with	output	power	increasing.	Under	the	same	pump	power,	the	
output	power	of	burst-like	pulses	is	larger	than	that	of	DSR	pulses.	

Fig.	4.	(a)-(d)	Depressing	process	from	DSR	to	burst-like	emission;	(e)		
typical	output	optical	spectrum	of	the	burst-like	emission.		

The	 developing	 process	 from	 a	 DSR	 pulse	 to	 the	 burst-like	
emission	is	repeatable.	However,	it	is	a	one-way	process	and	the	
DSR	pulse	 should	be	 achieved	 first.	Generally,	 if	we	want	 to	 get	
back	to	the	same	DSR	pulse	profile,	we	have	to	achieve	it	first,	and	
then	we	can	further	get	a	similar	evolving	process	from	the	DSR	to	
the	 burst-like	 emission.	 However,	 the	 newly	 obtained	 burst-like	
emission	are	typically	different	from	the	one	obtained	last	time	due	
to	the	random	characteristics	within	the	pulse	package.	
The	 appearance	 of	 Kelly-sideband-similar	 structure	 [12]	

indicates	 that	 the	 internal	 pulses	 are	 evolving	 towards	 solitons.	
This	is	possible	considering	that	the	used	HDF,	TDF,	and	SMF-28e	
are	 all	 with	 anomalous	 dispersion	 around	 ~2.05	 μm,	 although	
their	total	dispersion	is	small	compared	with	that	of	the	used	NDF.		
Thus,	 there	 is	 still	 some	 possibility	 that	 the	 locally	 anomalous	
dispersion	effect	can	dominate	the	pulse	shaping	[13],	especially	
when	the	polarization	modulation	is	on-going.	The	formed	solitons	



would	 repel	 each	 other,	 resulting	 in	 a	 temporally	 stable	 multi-
pulse	 state	 if	 no	 other	 mechanisms	 packing	 them	 together.	
However,	due	to	the	strong	PPC	effect,	the	formed	solitons	could	
not	 completely	 split	 from	 each	 other,	 equivalent	 to	 an	 effective	
attraction	 that	 imposed	 a	 limitation	 on	 the	 achievable	 packet	
duration.	The	evolving	 towards	solitons	and	the	packet-duration	
limitation	resulted	in	the	burst-like	emission.	The	emission	states	
in	Figs.	4(a),	4(b),	and	4(c)	are	some	intermediate	cases	as	the	DSR	
pulse	evolving	into	a	burst	of	solitons.	The	PPC	effect	always	plays	
its	role	to	limit	pulse	peak	power	no	matter	it	is	a	DSR	pulse	or	a	
burst	of	solitons.		Consequently,	the	DSR	pulse	and	the	burst-like	
pulses	have	a	similar	amplitude.	
We	noted	that	the	DSR	pulse	and	burst-like	pulses	were	realized	

with	 different	 polarization	 settings.	 The	 optical	 spectrum	 of	 the	
DSR	pulse	[Fig.	2(d)]	was	clearly	different	from	that	of	burst-like	
pulses	[Fig.	4(e)].	Experimentally,	we	attempted	to	check	whether	
the	 generated	 DSR	 pulse	 is	 a	 perfect	 pulse	 without	 internal	
structure.	However,	due	to	the	nanosecond	pulse	duration	and	the	
narrow	spectrum,	the	traditional	pulse	compression	was	difficult	
to	 be	 carried	 out.	 Autocorrelation	 measurement	 showed	 no	
internal	structure	in	the	DSR	pulse.	No	matter	how	we	changed	the	
operation	conditions	while	maintaining	the	DSR	pulse	generation,	
neither	 spectral	 modulation/dip	 corresponding	 to	 stable	 tightly	
packaged	 solitons	 or	 blurred	 optical	 spectrum	 corresponding	 a	
bunch	with	moving	solitons	[14]	could	be	observed.	Therefore,	it	is	
sufficient	to	claim	that	it	is	a	DSR	pulse	rather	than	anything	else.	
Theoretically,	 DSR	 pulse	 could	 be	 generated	 in	 both	 normal	

dispersion	 regime	 and	 anomalous	 dispersion	 regime.	 However,	
experimentally	we	 found	 that	DSR	pulse	with	narrow	 spectrum	
could	be	generated	in	normal	dispersion	regime	(this	paper)	while	
the	 DSR-like	 pulse	 with	 broad	 spectrum	 could	 be	 generated	 in	
anomalous	 dispersion	 regime	 [10].	 This	 is	 one	 of	 the	 most	
significant	dispersion-induced	effects	on	DSR.	For	DSR	pulses	short	
down	 to	 picosecond	 range	 the	 dispersion	 could	 also	 exert	
considerable	effects	on	the	duration.	

Fig.	 5.	 Output	 power	 from	 the	 TDF	 pumped	 at	 1570.4	 nm.	 Inset:	
Average	output	power	with	the	DSR	and	burst-like	emission.	

We	have	also	measured	the	output	power	characteristics	from	
the	TDF	pumped	at	1570.4	nm,	as	depicted	in	Fig.	5.	As	seen	once	a	
threshold-like	value	of	~1.32	W	was	 reached,	 a	 linear	 evolution	
could	be	achieved,	giving	a	slope	efficiency	of	~21.2%.	The	inset	
further	plots	the	average	output	power	of	both	the	DSR	and	burst-
like	emission	characteristics	against	the	~1570.4	nm	pump	power.	
The	 average	 output	 power	 and	 slope	 efficiency	 were	 slightly	
higher	 when	 the	 laser	 is	 operated	 with	 the	 burst-like	 emission	

than	 that	with	 the	DSR,	probably	due	 to	 the	PS-related	different	
effective	gains.	The	low	slope	efficiencies	are	mainly	resulted	from	
the	 two-step	 conversions	 with	 the	 utilized	 cascaded-pumping	
scheme:	from	~1570	to	~1854	nm	then	from	~1854	to	~2050	nm.	
In	 conclusion,	 we	 have	 experimentally	 realized	 the	 DSR	

operation	in	an	HDF	laser	with	large	normal	cavity	dispersion	and	
observed	its	depression	into	a	burst-like	emission,	for	the	first	time.	
Our	results	show	new	features	of	the	DSR	mode-locked	pulses	in	
the	 HDF	 laser,	 which	 enrich	 the	 dynamics	 of	 passively	 mode-
locked	fiber	lasers.	
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