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Thermoelectric effect is a physical phenomenon which intricately relates the 

thermal energy of charge carriers to their charge transport. Understanding the mechanism 

of this interaction in different systems lies at the heart of inventing novel materials which 

can revolutionize thermoelectric power generation technology. Despite a recent surge of 

interest in organic thermoelectric materials, the community has had difficulties in 

formulating the charge transport mechanism in the presence of a significant degree of 

disorder. Here, we analyze the thermoelectric properties of various conducting polymers 

doped by solid-state diffusion of dopant molecules based on a transport model with a 

power-law energy-dependence of transport function. A fine control of the degree of doping 

via post-doping annealing provides an accurate empirical evidence of a strong energy 

dependence of the carrier mobility in the conducting polymers. A superior thermoelectric 

power factor of conducting polymers doped by solid-state diffusion to that of other doping 

methods can be attributed to a resulting higher intrinsic mobility and higher free carrier 

concentration.  
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1  Introduction 

 
  Over the past 40 years, technologies developed for thermoelectric power generation 

has successfully met the power demands required for low-power applications in extraterrestrial 

space probes [1] and automotive thermoelectric generators used to harness waste heat from car 

engines which improves the fuel efficiency of the vehicle by up to around 5 % [2]. The main 

limitation for thermoelectric technology is a relatively low power conversion efficiency which 

can be quantified by the ‘thermoelectric figure of merit’, �� = ���
� �, where � is the Seebeck 

coefficient, 	 is the thermal conductivity and 
 is the electrical conductivity of the material. 

Organic materials have a potential advantage due to their comparatively low thermal 

conductivity [3] and the community has put a concerted effort in achieving a high power-factor 

(��
) to improve ��. Especially, creative molecular designs [4, 5, 6] and various treatment 

methods [7, 8, 9] have been developed to control the charge transport properties and degree of 

doping to further improve the power factor. A record power factor for organic materials was 

measured for a conducting polymer, poly(3,4-ethylenedioxythio-phene), doped with Tosylate 

(PEDOT:Tos [10]) reaching 460�Wm��K��which is around half of the power factor for a SnSe 

single-crystal. 

However, there is still a lack of a clear understanding of charge transport mechanism in 

the organic systems which govern their thermoelectric properties. The Seebeck coefficient has 

been employed for elucidating the nature of charge transport in organic semiconductors (OSCs) 

and has been measured for both conjugated polymers [11, 12] and small-molecules [13, 14, 15] 

in field-effect transistor (FET) devices, at various charge densities in the accumulation layer 

induced by varying the gate voltage. The advantage of investigating thermoelectric properties 

with FET devices is that the field effect is less prone to dopant-induced-disorder which is 

generally present for chemically doped OSCs [16, 17]. However, the range of the charge density 

that can be induced in organic FETs is limited typically between 10��  and 10��cm�� . 

Therefore the conductivity range in which the charge transport physics can be investigated is 

limited. 

Venkateshvaran et al. [11] successfully explained the measured field-effect gated 

Seebeck coefficient of conjugated polymers with low energetic disorder over the range of charge 
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density 10��-10��cm�� based on a narrow-band model which is applicable for polarons in a 

low disorder limit [18]. There is an open question as to whether such a model remains valid in a 

wider conductivity range where one might expect different charge transport regimes to appear. 

Recently, Glaudell et al. [16] showed an interesting phenomenological analysis that could 

describe the dependence of the Seebeck coefficient on conductivity of a wide range of polymers 

and dopant combinations that have been reported in literature, so far. An empirical relationship 

of � = (��/�)(
/
 )��/! , where 
  is an unknown constant with the dimension of 

conductivity, gives a surprisingly good fit over a wide range of conductivities whereas 

conventional mobility edge and variable-range-hopping (VRH) model fail to explain the data 

over the wide range. However, the physical origin of such empirical model remains yet unclear. 

Kang et al. [19] recently proposed a model that accounts for an energy-dependent charge 

transport from which one can even derive the above empirical relationship as a limiting case for 

the model at a heavy-doping limit. The model relates � and 
 to a transport function, 
", 

which is the contribution of states at energy # towards the total conductivity. By predicting 
" 

to have a power-law dependence on # with the power, $, above a transport edge below which 

the states do not contribute to the transport, they found that most of the reported data in literature 

fitted well with $ = 3. 

 

In this work, we investigated the thermoelectric properties of high-mobility conjugated 

polymers, poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT),poly[2,6- 

(4,4-bis-alkyl-4H-cyclopenta-[2,1-b 3,4-b0 ]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] 

(cyclopentadithiophene-benzothiadiazole) (CDT-BTZ) and poly(3-hexyl- thiophene) (P3HT) 

doped by solid-state diffusion of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane 

(F4-TCNQ) [20]. We controlled the degree of doping by post-process annealing which allowed a 

systematic study of the Seebeck coefficient over a wide range of conductivities achieved by only 

a single combination of polymer and dopant. We have recently demonstrated that the solid-state 

diffusion doping is an efficient doping method which allows incorporation of the dopant with 

minimal structural and energetic disorder and perturbation of the conjugated polymer with high 

carrier mobilities. This results in favorable charge transport properties from which superior 

thermoelectric properties may be expected. In light of the recently proposed energy-dependent 
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charge transport model [19], we analyze the charge transport mechanism in these various 

conducting polymers to reveal crucial elements in determining thermoelectric power factors in 

these systems and potential limiting factors in conducting polymers in achieving high power 

factors. 

 

2  Results & Discussion 

 
  Our previous work showed that solid-state diffusion doping with F4-TCNQ achieved a 

high conductivity of 200 Scm-1 in PBTTT when fully doped. The doping method was not only 

found to be efficient but also controllable via annealing the films after doping. The Fig. 1a shows 

a general concept of the method. A fully doped sample was consecutively annealed at different 

temperatures for 20 minutes on a hotplate in a controlled N	� atmosphere to achieve de-doping. 

The de-doping cycle was limited to the temperature of 150	∘C  to minimize structural 

reorganization during annealing since it is the onset temperature for a thermotropic mesophase 

transition of PBTTT and side-chains melt completely above 160	∘C [21]. The conductivity of 

these sequentially annealed films was measured by the 4-point probe method in a Hall-bar 

structure as we reported previously [20]. The range of conductivities that can be achieved with 

this de-doping method is significantly wider than the solution co-deposition technique (denoted 

as ‘solution-doping’ from here) employed by Cochran et al. [22]. The resulting conductivity drop 

via the annealing is confirmed to be a de-doping process rather than a degradation of the polymer 

from UV-Vis absorption data shown in Fig. 1b and c. The degree of bleaching of the neutral 

)-)∗ transition of PBTTT at 555 nm (2.2 eV) is decreasing (i.e. the neutral absorption recovers 

as the film gets de-doped). The charge-transfer doping creates polarons in PBTTT which show 

up optically as a broad polaron-induced absorption around 830 nm [23] which generally 

diminishes as we progress with de-doping. In addition to spectroscopic signatures of PBTTT, 

two peaks that correspond to F4-TCNQ- at 767 and 869 nm on top of the P2 absorption [24] 

become less pronounced after annealing at 135	∘C. At the same time, the neutral absorption of 

F4-TCNQ at 400 nm (≈ 3.0eV) decreases throughout the de-doping process which indicates both 

F4-TCNQ molecules which diffuse out from PBTTT and F4-TCNQ molecules in the neutral layer 

(on top of the PBTTT film created during doping [20]) evaporate out of the film. Therefore, the 
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de-doping occurs via a reduction of the number of F4-TCNQ available for charge-transfer in the 

PBTTT matrix.  

 

There are other details of the doping/de-doping process that we can deduce from the 

spectra. The initial increase in the P2 absorption indicates that the degree of doping is higher for 

the 90	∘C sample than the as-doped sample. This indicates that the solid-state diffusion of 

F4-TCNQ molecules in PBTTT at room temperature is not sufficient to achieve a high degree of 

doping throughout the polymer film but that a thermal energy is required to re-distribute the 

dopant molecules within the film to achieve a homogeneous doping in the film. Therefore, the 

sample annealed at 80	∘C (shown as the first data point in Fig. 1a) has a higher conductivity than 

the ‘as-doped’ sample. Furthermore, the neutral absorption of PBTTT does not recover to the full 

peak height of the pristine sample after the de-doping. The reduced absorption cross-section after 

a full cycle of de-doping could be due to either a finite degree of sample degradation or structural 

transformation or bleaching due to remaining charges. The de-doped sample could be re-doped 

as shown in Fig. 1c. The de-doping of re-doped sample shows qualitatively the same trend as in 

the first cycle (Fig. 1b) with a further reduced peak height for P2 absorption (near 830 nm) and a 

slightly smaller peak height for the neutral absorption of PBTTT (at 555 nm) after de-doping 

completely (150	∘C annealing). The reason for this is not entirely clear and we have to 

investigate structural changes induced during the de-doping process which will be the topic of 

the next part.  

 

As demonstrated in our previous work [20], the solid-state diffusion doping of PBTTT 

with F4-TCNQ results in the dopant molecules intercalating in the alkyl side-chain regions, and 

therefore expanding the out-of-plane lamellar spacing. In this work, specular scans for XRD 

measurement were used to determine the out-of-plane lamellar spacing (see Fig. 2a) and grazing 

incidence X-ray diffraction (GID) measurement was performed with an area detector to measure 

in-plane diffraction peaks (see Fig. 2b) at different doping levels achieved with de-doping by 

annealing. As expected, the out-of-plane lamellar spacing measured by X-ray diffraction 

measurements (XRD) for a doped-film determined by (ℎ00) diffraction peaks along 01 is 

23.4Å (see Fig. 2c) which is bigger than that of a pristine sample (21.5Å) due to F4-TCNQ 
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molecules intercalating in the side-chain region. The de-doping via annealing leads to 

contraction of the lamellar spacing with a significant reduction occurring after 135	∘C. The 

annealing at 150	∘C reduces the d-spacing further to 21.7Å which is nearly identical to that of 

the pristine film. This indicates that F4-TCNQ molecules diffuse out of the alkyl side-chain 

region to recover the lamellar stacking for a pristine PBTTT which is consistent with the UV-Vis 

measurement in Fig. 1b. The XRD measurements for a pristine PBTTT sample and after the 

de-doping step at 120	∘C were measured separately from the data shown in Fig. 2a and are 

shown in Fig. S4 in the Supplementary Information Section C.  

 

The measured in-plane diffraction peaks along 067  (Fig. 2b) are at 067 = 1.41Å�� 
which corresponds to (003) reflections [21, 25, 22] that represents periodicity along 8-direction 

(i.e. the polymer backbone), and a peak around 067 = 1.70Å�� which corresponds to )-) 

stacking (periodicity along 9-direction [25]). The peak at 067 = 1.41Å�� is unaffected through 

doping and de-doping. The change in the )-) stacking distance was found to be very small 

(below 0.15Å) compared to the change in the (ℎ00) d-spacing of over 2Å and this could be a 

result of F4-TCNQ molecules in the side-chain region causing steric perturbation to side-chains. 

This perturbation would cause tilting of the conjugated backbones to result in a closer )-) 

stacking. The overall structural change in PBTTT doped by solid-state diffusion resembles that 

of poly(3-alkylthiophene) doped by iodine [26, 27] and electrochemical doping with various 

dopants [28]. Both the expansion of the out-of-plane lamellar spacing and the contraction of the 

)-) stacking distance were associated with the incorporation of the dopant ions into a vacant 

space between alkyl side-chains [28], which is similar to our proposed structural model for 

PBTTT/ F4-TCNQ. As the film gets de-doped, the )-spacing stays nearly the same (3.47Å ) 

before the 120	∘C step from which the )-spacing gradually increases to 3.61Å after the 150	∘C 

step, very nearly recovering the )-spacing of 3.60Å for a pristine film (see Fig. 2d).  

 

Both the out-of-plane and in-plane X-ray scattering peaks show no splitting or a 

significant broadening which indicates no phase-separation or creation with doping, e.g. pristine 

and doped phases co-existing in the film. Therefore, the doped PBTTT film maintains 

one-phase-structure without a complex phase behavior at every de-doping level. Interestingly, 
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the de-doping method was also found to preserve the structural order of PBTTT along the alkyl 

side-chain direction which can be indicated by similar crystallite sizes calculated with 

Williamson-Hall analysis of the measured (ℎ00) Bragg-peaks (see Supplementary Information 

Section D for more details). 

 

In summary, the de-doping technique employed recovers the crystalline structure of the 

pristine PBTTT without disrupting the structural order along the side-chain direction via 

counteracting structural changes that occur upon doping due to the incorporation of F4-TCNQ 

molecules. We are now in a position to qualitatively describe the de-doping mechanism. During 

the de-doping process, both the in-plane and out-of-plane structures remain fairly constant until 

the 120	∘C annealing step. From the annealing step at 120	∘C to 150	∘C, there is a continuous 

transition of both the ) spacing and out-of-plane d-spacing. The gradual change represents a 

gradual reduction of the number of F4-TCNQ molecules in the side-chain regions which diffuse 

out to the surrounding atmosphere, which is similar to the picture prosed by Li et al.. [29] The 

reason for a significantly more pronounced de-doping effect above 120	∘C may be due to a 

significant thermal expansion of the lamellar spacing of PBTTT above 120	∘C . 

Temperature-dependent XRD measurements of PBTTT [21] showed that the lamellar spacing 

expands by 0.5Å when heated from 90	∘C to 120	∘C which would allow more space for the 

F4-TCNQ diffusion and accelerate de-doping. In addition, the diffusion is more rapid due to a 

higher thermal energy of F4-TCNQ molecules. After the annealing, the film is cooled down to 

room temperature, and therefore the lattice contracts until the side-chains start to cause steric 

hinderance to the remaining F4-TCNQ molecules in the region. 

 

The de-doping method demonstrated above allows us to study the Seebeck coefficient 

versus conductivity over a wide range of conductivities for a single system of PBTTT doped by 

solid-state diffusion of F4-TCNQ (denoted as ‘PBTTT/ F4-TCNQ’ from here). The 4-point probe 

conductivity and the Seebeck coefficient could be simultaneously and accurately measured with 

on-chip micro-fabricated devices by employing a structure shown in Fig. 3a and three of these 

devices were measured in total (the measurement configuration is given in Supplementary 

Information Section A). The Seebeck coefficient and conductivity values of the three devices 
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agreed well with each other within the measurement error when fully doped. We could measure 

the change in the conductivity of the as-doped sample after each of the sequence of annealing 

steps (described in the Supplementary Information Section B). 

 

The measured Seebeck coefficient at each de-doping level could be well described with a 

model proposed by Kang et al. [19] which assumes that the transport function has a power-law 

energy dependence with the power, $, above a transport edge, #: below which carriers are 

completely localized and do not contribute to the transport. One can express the conductivity, 
, 

and the Seebeck coefficient, �, of a system as a sum of contribution of states at each # as [30] 

 

 
 = ; 	
" <− >?
>@A B# (1) 

 � = CD
E ; 	

(@�@F)
CDG

�H
� <−

>?
>@A B#, (2) 

where J(#) is the Fermi-Dirac distribution function and 
"(#) is the transport function. The 

model by Kang et al. assumes 
" = 
"K(�) × <@�@MCDG A
N
 for # > #P, where 
"K is an effective 

transport coefficient which depends on temperature but not on energy. � and 
 can then be 

calculated in terms of $ and Q, where Q is a reduced chemical potential defined as Q = (#R −
#P)/���  and represents the relative position of the Fermi level with respect to #P  (see 

Supplementary Information Section F for more details).  

 

The above model enables a fit for the � versus 
 plot with two parameters: $ and 
"K. 
For PBTTT/F4-TCNQ, $ = 3 and 
"K = (3 ± 1) × 10�� Scm-1 gave an excellent agreement 

with the data over the entire range as shown in Fig. 3b. For comparison, the mobility-edge model 

($ = 0) has a completely different curvature and could only fit the higher 
 range of the data 

(1-200 Scm-1) (see Fig. 3b) but failed to describe the lower 
 range which is not self-consistent 

with an assumption of non-degenerate transport limit (i.e. #T − #R << −���, where #T is the 

mobility-edge). This means that the mobility-edge model which predicts no # dependence in 


" is not suitable for describing the charge transport in PBTTT/F4-TCNQ. On the other hand, 

the good agreement with the $ = 3 model suggests that the charge transport above the transport 

edge has a strong energy dependence. In addition, a narrow-band transport model which has been 
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employed for strongly-disordered systems [11, 14] yields a distinctly different �-
 relationship 

to the $ = 3 model. [31]  

 

Here, we compare the PBTTT/ F4-TCNQ results with other conducting polymers, 

CDT-BTZ and P3HT doped by solid-state diffusion of F4-TCNQ (denoted as 

‘CDT-BTZ/F4-TCNQ’ and ‘P3HT/F4-TCNQ’, respectively, from here). These polymers show 

orders of magnitude increase in conductivity with maximum conductivities of 63 Scm-1 and 5.3 

Scm-1 upon solid-state doping with F4-TCNQ [20], respectively. Our structural analysis based on 

XRD measurements (from our previous study [20]) and GID measurements (see Supplementary 

Information Section E) indicate that similar structural changes occur during the doping as 

PBTTT, except for slight differences in P3HT. In order to investigate their dependence of � on 


, the same de-doping method was employed as described for PBTTT/F4-TCNQ above. The 

changes in UV-Vis spectra during de-doping for both of the polymers are similar to those of 

PBTTT/F4-TCNQ (see Supplementary Information Section E). The fit with the $ = 3 model 

was found to be universal among these polymers, but with different 
"K . The 
"K  of 

CDT-BTZ/F4-TCNQ and P3HT/F4-TCNQ are determined to be 1.5 × 10��  Scm-1 and 

1.0 × 10�� Scm-1, respectively; i.e. are smaller than 
"K  of PBTTT/F4-TCNQ. 
"K  can be 

related to the intrinsic mobility of a system via the following general relation that can be derived 

for independent-electron systems by Kubo-formalism [32] 

 

 
>�H(@,G)

>@ = 0V(#, �)�"(#, �), (3) 

where 0 is the elementary charge, V(#, �) is the density of states (DOS) and �"(#, �) is the 

microscopic mobility of the states at # at temperature �. The latter is an energy-dependent 

parameter that gives the average drift velocity of charges occupying the states at #, under an 

applied electric field. Note that we have assumed that the energy dependence of the terms in Eqn. 

3 can be separated to their temperature dependence similarly to the definition of 
"K. In this 

study, only the energy dependence of the terms (i.e. 
"(#), V(#) and �"(#)) will be discussed. 

According to Eqn. 3, 
"K is proportional to the #-independent prefactor of the product of �" 

and V(#). Therefore, the higher 
"K of PBTTT/F4-TCNQ can be correlated with a significantly 
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higher intrinsic mobility of PBTTT/F4-TCNQ compared to P3HT/F4-TCNQ which also agrees 

with an order of magnitude higher FET mobility of PBTTT (maximum 1 cm2/Vs) [33, 34] 

compared to P3HT (< 0.1 cm2/Vs) [35] reported in the literature. The same order of magnitude 

of 
"K value of CDT-BTZ/F4-TCNQ is consistent with the FET-mobility of CDT-BTZ reported 

in literature having similar to that of PBTTT (maximum 3-4 cm2/Vs [36, 37]). The difference in 

the maximum conductivity between PBTTT/F4-TCNQ and CDT-BTZ/F4-TCNQ can be due to 

the lower free carrier concentration generated by doping in CDT-BTZ/F4-TCNQ (Q = 11 at 


 = 21 Scm-1) than PBTTT/F4-TCNQ (Q = 18 at 
 = 163 Scm-1) since #R lies closer to #P 
for CDT-BTZ/F4-TCNQ than PBTTT/F4-TCNQ.  

 

We can infer from Eqn. 3 that V(#) and �" give a crucial information towards the 

origin of the strong energy dependence of 
" observed in a wide range of conducting polymers. 

However, �" can not be directly measured (unlike the macroscopic mobility, �, given by 


 = X��) but can only be determined from knowing 
" and V(#). Therefore, we can first 

make an attempt to determine V(#) of PBTTT/F4-TCNQ by correlating it with the charge 

concentration, N, at different doping levels (i.e. at different #R) determined by electron spin 

resonance (ESR) measurements. The mathematical procedures for relating V(#) to N is shown 

in details in Section G of Supplementary Information. In short, the Curie susceptibility 

determined from the ESR measurements gave an estimate of number of localized spins from 

F4-TCNQ anions generated upon doping, N	YZ[\, which can be approximated as the number of 

holes generated in PBTTT as demonstrated in previous studies [20, 38]. Figure 4a shows N 

versus Q data for the first four levels of de-doping measured for a PBTTT/F4-TCNQ film 

following the same recipe as shown in Fig. 1a. Q for each N	YZ[\ was determined from the 

$ = 3 fit in Fig. 3b by inputting the conductivity values that were obtained after the same 

de-doping steps taken in Fig. 1a. The good agreement with the $ = 3 model of 
" indicates 

that its components, V(#) and �"(#) also exhibit power-law behavior in #. The DOS of 

PBTTT/F4-TCNQ was formulated in the following form 

 

V(#) = ]	V^ × (# − #P	_)^ 																										for	# ≥ #P
		Vd × exp(−(#P − #)/g)				for	# < #P,  
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where the first case represents the DOS of mobile states that follow a power-law with an 

exponent, h, at energy above #P (i.e. Q > 0), the second case is the DOS of localized states at 

energy below #P (i.e. Q < 0), assuming that the DOS has a an exponential tail with a breadth of 

g. V^ and Vd are the prefactors to be determined when fitted to N versus Q data. Note that #P	_ 
is a modified #P according to the boundary conditions at Q = 0, (see Section G, Supplementary 

Information for more details). The local component of the DOS was assumed to have a width of 

g = 100	meV which is an estimate based on previous studies in electrochemically doped 

polythiophenes at high doping levels [39]. Only the h = 0 and h = 1/2 models are shown 

since they gave good fits to the N	YZ[\ versus Q data (see Fig. S8). The h = 0 model (i.e., a 

constant DOS at # ≥ #P) gave the best fit over the whole range of the data (black dashed line in 

Fig. 4a) with a fixed value of Vi = 5.6 × 10�i	eV��cm�� whereas the h = 1/2 model gave 

good fits within a finite window of V�/�  from 1.3 × 10��	eV��.jcm��  to 

1.9 × 10��	eV��.jcm�� (a light pink region). The corresponding DOS profiles for h = 0 and 

h = 1/2 models are shown in Fig. 4b along with the marked values of the DOS at Q of each 

N	YZ[\ (shown as orange and black solid circles for h = 0 and h = 1/2, respectively). 

Two scenarios can be postulated from the two models. Firstly, the h = 1/2 model could 

account for the dynamic nature of the DOS profile upon doping; the varying best fit with 

V�/� = 1.9 × 10��	eV��.jcm�� for N	YZ[\ at Q = 4.1 and V�/� = 1.3 × 10��	eV��.jcm�� for 

N	YZ[\ at Q = 18.9 may indicate a continuous transition of the DOS profile upon doping 

(indicated by the red block arrow in Fig. 4b). The decrease in V�/� could reflect the increase in 

the energetic disorder since the slope of the DOS at #R becomes shallower. A similar argument 

has been recently presented by Thomas et al. [40] who investigated a h = 2 power-law DOS 

model for an ionic-liquid gated PBTTT transistor. A continuous increase in the dopant anion 

concentration is expected to create additional energetic disorder via attractive Coulomb potential 

that would broaden the DOS profile [41, 42]. On the other hand, a good agreement with the 

h = 0 model over the entire range of the data implies a nearly static DOS profile upon doping. 

Although the static DOS profile over a wide range of doping levels may be an oversimplification, 

one could expect that the broadening effect of the DOS due to the additional dopants could play 

a little role at the heavily-doped limit [43, 41], especially in the range of N	YZ[\ that we are 
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considering (between ≈ 1  and 3 × 10�i	cm�� ). In the heavily-doped limit, the Coulomb 

potential wells created by F4-TCNQ anions could have already significantly overlapped such that 

further addition of ionized dopants may not create new deep traps [41]. Arkihipov et al. showed 

for electrochemically doped P3HT that the width of the DOS stayed relatively constant above the 

doping level of 3% [43]. The doping level in PBTTT/F4-TCNQ nearly reaches 20% at the 

maximum [20] (i.e. N ≈ 3 × 10�i	cm��). Moreover, the physical significance of a constant 

DOS above #P is that the model agrees well with the verified two-dimensional nature of the 

charge transport originating from a two-dimensional ordered lamella structure in 

PBTTT/F4-TCNQ [20], as well as in other polythiophenes [35, 44].  

 

Although the argument for the h = 0  model above remains qualitative, the good 

agreement of the model for N versus Q provides a useful insight for the # dependence of �" 

via Eqn. 3. Since 
" behaves as $ = 3, �" is expected to follow �" ∝ (# − #P)� at # ≥ #P, 
assuming a constant V(#) at # ≥ #P . Therefore, we expect that the intrinsic mobility of 

PBTTT/F4-TCNQ is strongly energy-dependent at the heavily-doped limit and is expected to 

increase further with additional doping, as shown in Fig. 4c. The quadratic behavior of �" is 

non-trivial and the origin of the enhancement of mobility at high doping levels needs further 

investigation but the shrinkage of the )-) stacking distance in PBTTT upon the solid-state 

doping, albeit small, could result in a greater interchain overlap integral, and therefore 

contributing to a sufficiently large charge delocalization which allows the observation of Hall 

effect and weak-localization [20]. A similar effect has been observed in poly(3-alkylthiophene) 

[28] and the larger charge delocalization in PBTTT/F4-TCNQ is further supported by a recent 

observation of a longer phase-coherence length at higher doping levels [38]. The strong energy 

dependence of mobility is consistent with our experimental observation of the measured Hall 

mobility of ≈ 2	cm�/Vs in PBTTT/F4-TCNQ [20] which is roughly a factor of 2 higher than 

the maximum FET mobility of PBTTT reported in literature [33, 34]. This could be due to a 

larger contribution of carriers occupying states up to higher #  with higher �"  when 

heavily-doped. In addition, Fujimoto et al. [38] recently showed that the mobility of 

PBTTT/F4-TCNQ decreased after de-doping via annealing which is consistent with our analysis. 

Moreover, the energy dependence of mobility has been observed in various other conducting 
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polymers - polyacetylene [45], polyaniline [46], polythiophenes [47, 48, 49, 50], 

poly-p-phenylene sulfide [51, 52] and recently in PEDOT [53]. Normally, the mobility 

enhancement at higher energy has been associated with insulator-metal transition via the 

generation of metallic bands by polarons and bipolarons [54]. In heavily doped PEDOT, the 

polaron band formation was found to be driven by a strong interchain interaction [53]. There is a 

question as to whether such phase transition can be incorporated into the current model. 

However, note that the formation of bipolarons would not be significant in PBTTT/F4-TCNQ 

since the ESR signal intensity only increased upon doping which contradicts the spin-less nature 

of bipolarons, as measured previously. [55, 56]  

 

Although the presented models provide a good fit to the data, some aspects of the fits 

may urge caution in the interpretation. According to the model, the conductivity range measured 

for PBTTT/F4-TCNQ represents sweeping the #R from 6��� below #P (pristine PBTTT of 


 = 10�!  Scm-1) to 19���  above #P  (fully doped PBTTT of 
 = 200  Scm-1) which 

represents a transition from the non-degenerate semiconductor limit (Q << −1) to degenerate 

semiconductor limit (Q >> 1). This wide energy range of conduction is in contrast with a 

conventional narrow-band transport in OSCs (typically below 500 meV [57]). The bandwidth of 

over 0.64 eV is not completely unreasonable considering theoretical values(over 0.7 eV in )-) 

stacking direction of PBTTT [58, 59] and approximately 0.6 eV in P3HT [44]), although the 

calculations assume no backbone-tilting which would reduce the bandwidth significantly. In 

addition, the width of the localized tail states is not a parameter that can not be determined 

exactly from the model, given the range of the data available. Despite a relatively good fit that 

can be achieved with g of 100 meV, the value of g is roughly the same as what is expected 

from a paracrystalline disorder in PBTTT [60] and only slightly higher than the dipolar disorder 

due to charge-dipole interaction near the gate dielectric in FETs [23]. Although we can argue that 

the extra energetic disorder caused by the dopants plays a small role at very high doping levels, 

the effect of doping on the bandwidth and the degree of energetic disorder caused by the 

structural changes accompanied by the incorporation of the ionized dopants should be 

quantitatively analyzed from further works. 
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The thermoelectric properties of PBTTT/F4-TCNQ and P3HT/F4-TCNQ from the current 

work can be compared to other doping methods reported in literature to investigate the doping 

method dependence on the thermoelectric properties. As shown from Fig. 5a the dataset for 

solution-doped PBTTT by Glaudell et al. [16] lies along the 
"K = 1.0 × 10�� Scm-1 fit. This is 

an order of magnitude lower than that of PBTTT/F4-TCNQ. This is in agreement with our results 

from the previous work [20] which demonstrated that the solid-state doping method perturbs the 

structural order of PBTTT less than the solution-doping method, which results in a higher 

mobility of ≈ 2 cm2/Vs. The presented work also shows a superior 
"K to immersion-doping 

of PBTTT in a solution of ferric salt of triflimide anions TFSI	�[61] and 4-ethylbenzenesulfonic 

acid (EBSA) [62]. Recently, Patel et al. [62] showed that vapor-phase doping of PBTTT with 

(tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (FTS) could achieve the maximum 

conductivity of 1300 Scm-1 and the Seebeck coefficient of 14�V/K. The vapor-phase doping 

is technically similar to our solid-state doping in that the doping involves depositing FTS 

molecules in vapor phase on top of the polymer under low vacuum conditions [16, 62]. Although 

the dataset was limited, the data points for FTS-doped PBTTT agreed with fitting lines for 
"K 
between 1.0 × 10�� Scm-1 (for low 
) and 5.0 × 10�� Scm-1 at high 
 (see Fig. 5a). This 

suggests that FTS-doped PBTTT may have a similar energy dependence of mobility as our 

PBTTT/F4-TCNQ but exhibit a higher maximum conductivity due to a higher free carrier 

concentration generated (Q = 33 for 
 = 1100 Scm-1) since FTS has a higher electron affinity 

of than F	!-TCNQ. A similar conclusion can be drawn for P3HT which shows a significantly 

higher maximum conductivity with FTS-doped P3HT (27.7 Scm-1) [63] than our 

P3HT/F4-TCNQ (3.51 Scm-1) and solution-doped P3HT (0.18 Scm-1) [16], although they could 

all be fitted reasonably with 
"K = 1.0 × 10�� Scm-1 (Fig. 5a). The similar values of 
"K in 

P3HT upon doping may be due to similar structural changes induced by the two doping methods 

(Supplementary information Section E). 

 

It is interesting to discuss how the thermoelectric properties discussed above can set 

guidelines for their thermoelectric power factors, ��
, which directly relates to their potential 

power conversion efficiencies. Two conclusions can be drawn from the plot of the power factor 

dependence on 
 shown in Fig. 5b. Firstly, the higher the 
"K, the higher the power factor for a 
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given conductivity. As discussed above, we therefore expect PBTTT/F4-TCNQ to have the 

highest power (the maximum of 61.9 ± 4.6�Wm��K��) out of the measured polymers due to a 

higher intrinsic mobility; maximum values of 10 ± 2�Wm��K�� and 1.5 ± 0.4�Wm��K�� 
for CDT-BTZ/F4-TCNQ and P3HT/F4-TCNQ, respectively. The maximum power factor of 

PBTTT/F4-TCNQ is also 60 times higher than the value of 1.3�Wm��K�� for solution-doped 

PBTTT, as a result of the higher 
"K. However, the maximum power factor of P3HT/F4-TCNQ 

is still 5 times higher than that of solution-doped P3HT and even higher than solution-doped 

PBTTT [16] despite a similar 
"K. This leads to the second conclusion that can be drawn within 

the framework of the $ = 3 model, which predicts that the higher the Q, the higher the power 

factor. Therefore, there is a gain in the power factor by generating a higher free carrier 

concentration. This is possibly related to the larger contribution of charges occupying states with 

higher �"  as Q  increases, which would increase 
  significantly to compensate for the 

decrease in ��, according to Eqn. 1. The trend is in contrast with a conventional parabolic band, 

energy-independent scattering model for metals and degenerate semiconductors [64] which 

predicts that the power factor decreases if the carrier concentration is greater than an optimum 

value.  

 

The trend from the compiled results clearly shows that there is a room for optimization 

by employing a doping method which preserves the structural order of the polymer (to result in a 

high 
"K) and generates a high free carrier concentration (i.e. a high Q). This is supported by the 

high power factors achieved in PBTTT doped by the solid-state doping with F4-TCNQ. The fit 

for 
"K = 3.0 × 10�� Scm-1 also predicts a potential gain in the power factor if we can further 

increase the free carrier concentration, assuming the model holds the same at higher doping 

levels. If the conductivity could reach, for example, 2000 Scm-1 by filling states up to Q = 40, 

the expected power factor is 88	�Wm��K��. To improve beyond this, we should achieve higher 

Q by using stronger dopants than F4-TCNQ, since when fully doped, not all the F4-TCNQ 

molecules incorporated in PBTTT undergo charge-transfer [20]. In this respect, FTS may be a 

suitable candidate as a dopant. As shown in Fig. 5b, the maximum power factor reported for 

FTS-doped PBTTT is 110 ± 34	�Wm��K��  [62] and 10 ± 3�Wm��K��  for P3HT [16]. 

These high values can be attributed to a higher free carrier concentration than, and as high 
"K 
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as that can be achieved with our solid-state doping with F4-TCNQ. Assuming that the h = 0 

model holds for the DOS at Q = 33, the predicted carrier concentration is approximately 

5 × 10��cm-3, with the predicted � ≈ 13 cm2/Vs. There is a question as to how far we can 

increase the charge concentration before reaching the maximum limit. The charge density of 

10��cm-3 reflects the same order as the PBTTT repeat unit density using the measured ) 

spacing, out-of-plane d-spacing and unit-cell parameters for PBTTT [25]. However, the 

predicted power factor at this charge concentration (Q = 66, assuming the h = 0 model) is 

approximately 140	�Wm��K�� which is still relatively low compared to the record value of 

460	�Wm��K�� for PEDOT:Tos [10]. Therefore, to realistically improve the power factor of 

PBTTT, rather than merely increasing carrier concentration, we need to develop a doping 

method (and dopants) which enhances 
"K by reducing further the amount of structural and 

energetic disorder associated with the dopant incorporation. The importance of polymer film 

morphology on the thermoelectric properties has not been discussed extensively in the literature. 

Recent works have shown the importance of the orientational correlation length of polymer 

backbones on thermoelectric power factor [63] and improved thermoelectric power factor upon 

chain alignment by a high-temperature mechanical rubbing process [65]. The degree of chain 

orientation is a parameter that can be potentially incorporated in 
"K of the model studied here 

(e.g. the data for � and 
 of the aligned P3HT doped by F4-TCNQ [65] can be placed near the 

$ = 3 and 
"K = 5.0 × 10�� Scm-1 line).  

 

Achieving the doping level near the maximum charge density of ≈ 10��cm-3 (as 

discussed above) would not be only challenging but would probably introduce formation of 

bipolarons which will drastically change the charge transport, as well as their thermoelectric 

properties. Indeed, the formation of a semi-metallic bipolaron band at high doping levels was 

discovered to be the origin of a unusually high thermoelectric power factor in PEDOT:Tos [10]. 

Kang et al. [19] hinted that the unique charge transport properties of PEDOT:Tos were reflected 

in the variation of � with 
 which could be fitted to $ = 1 curves unlike all other conducting 

polymers (well-fitted with $ = 3). Therefore, there is a scope for searching potential material 

systems which would show different power-law energy-dependence of 
@, while having a high 


"K (75 Scm-1 for PEDOT:Tos [19]). However, the big gap in the power factor values of the 
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polymers discussed in this work and PEDOT:Tos may not entirely come from superior intrinsic 

charge transport properties in PEDOT:Tos. There are also structural differences between the 

conducting polymers that we have presented and PEDOT:Tos in terms of packing density of 

polymer chains. Especially, in light of the two-dimensional nature of the transport in 

PBTTT/F4-TCNQ as demonstrated in our previous work [20], it may be helpful to consider an 

effective conductivity of each two-dimensional layer in which the actual charge transport occurs 

(i.e. it excludes the side-chains which are insulating). The interdigitated side-chains take up a 

significant volume (roughly 3/4 of the thickness, considering the effective thickness taken by the 

core polymer backbone of around 5Å). Therefore, the effective conductivity of each polymer 

backbone layer is estimated to be in the order of 1000 Scm-1, which would also mean these layers 

would contribute to the total effective thermoelectric power factor of around 250	�Wm��K��. 
This assumes that the Seebeck voltage which is generated by the individual conducting layers 

that are connected electrically in parallel would not change if it was possible to remove the 

insulating side chains from the film. Although this consideration is not practically relevant, this 

suggests that at least some of the inferior thermoelectric performance of the polymers used here 

compared to PEDOT:Tos can be attributed to the dilution of the conducting polymer by the 

solubilizing but insulating side-chains. Finally, our power factor discussion should be 

complemented with future studies on the effect of doping on the thermal conductivity of the 

conducting polymers in order to ultimately determine the optimal level of doping that maximizes 

the thermoelectric power efficiency, ��. It is possible that the level of doping that we achieved 

with solid-state diffusion is close to the optimum state for �� considering a potential increase in 

the electronic contribution of the thermal conductivity at high doping levels (
 above 200 Scm-1) 

as reported for PEDOT:Tos. [66] Therefore, the controllability of the thermoelectric response by 

the simple de-doping technique demonstrated here would be a crucial step towards optimizing 

�� for developing high-efficiency organic thermoelectric generators. 
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3  Conclusion 

  Our results show that conjugated polymers efficiently doped by solid-state diffusion of 

F4-TCNQ could be controllably de-doped via post-process thermal annealing to enable a 

systematic study of the thermoelectric properties of various materials in a wide range of doping 

levels. The optical measurements showed that the de-doping occurs via a continuous diffusion of 

F4-TCNQ molecules out of the film during annealing to reduce the number of dopants in the 

polymer film available for charge-transfer, inducing a structural change in the film in a 

continuous fashion with no sign of phase-segregation of the crystallites of the polymer until the 

structure recovers back to a pristine state (fully de-doped). The same power-law of energy 

dependence of the transport function could be used to predict the thermoelectric properties of 

PBTTT, CDT-BTZ and P3HT in the wide range of doing levels. The strong energy dependence 

of the transport function was shown to originate from the energy-dependence of the microscopic 

mobility. Two key parameters can be drawn from the comparison of thermoelectric properties of 

the polymers in achieving high thermoelectric power factors in conducting polymers: the system 

needs to have a high intrinsic mobility (reflected by a large effective transport coefficient) and 

the system needs to be doped efficiently to access higher energy states with a higher microscopic 

mobility which contribute towards a higher electrical conductivity. PBTTT doped via solid state 

diffusion of F4-TCNQ is a useful model system where both can be satisfied to achieve a 

relatively high thermoelectric power factor. 

 
  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Experimental Section  
 

Materials 

PBTTT-C14	was synthesized and purified via a standard Stille copolymerization [33] 

where number average molecular weight and polydispersity were measured to be 30 kDa and 1.4. 

The molecular weight was determined by Agilent Technologies 1200 series GPC running in 

chlorobenzene at 80 �, using two PL mixed B columns in series, and calibrated against narrow 

polydispersity polystyrene standards.  

 

Device fabrication 

For the fabrication of the devices, a glass substrate was cleaned via sonication with 

deionized water, acetone and isopropanol. After the cleaning with an oxygen plasma treatment, 

electrodes were defined by photolithography and deposited via thermal evaporation of Ti/Au (7 

nm/ 18 nm) at the base pressure of 9 × 10�p mbar. The details of the device architecture for the 

Hall-bar device (for 4-point probe conductivity measurement) is described in our previous work 

[20] and the multi-functional device architecture (shown in Fig. 3a) is described in the 

Supplementary Information Section A. PBTTT film was spin-coated on top of the electrodes 

from a solution with the concentration of 10 mg ml	�� dissolved in 1,2-dichlorobenzene in a 

nitrogen glovebox to form a 40 nm thick film (1500 rpm for 60 seconds), which was annealed at 

180 	∘C for 20 mins, then slowly cooled down to room temperature to form a terrace phase. The 

F4-TCNQ was thermally evaporated on the top of the PBTTT film (purchased from 

Sigma-Aldrich) at a pressure of 1 × 10�q mbar at the rate of 0.5 Å s	�� up to a nominal 

thickness of 20 nm. To complete the doping procedure, the doped film was annealed at 80 	∘C 

for 20 minutes. The doped film was then patterned by combination of photolithography with 

etching by oxygen plasma. More details are given in Supplementary information Section A and 

B. The samples for UV-Vis and X-ray measurements were also made in the same condition as 

for the PBTTT and F4-TCNQ deposition as described above. 
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 Figure  1:  Controllable de-doping of PBTTT/F4-TCNQ via post-process annealing.  

a, The measured conductivity as fully doped PBTTT/F4-TCNQ film gets annealed for 20 minutes 

at each temperature, consecutively. The grey data point represents the conductivity of the sample 

measured after the first 10 minutes of annealing at 150	∘C. The doping/de-doping method 

presented in this work can achieve a controllable doping over 6 orders of magnitude conductivity 

range nearly down to the conductivity of a pristine sample (dashed line). b, UV-Vis absorption 

of the film plotted at each stage of de-doping: before doping (black), straight after doping (blue) 

and after annealing at each indicated temperature for 20 minutes (different strengths of red). The 

bleached neutral absorption after doping recovers (up-dashed-arrow near 555nm) whereas the 

absorption of F4-TCNQ anions at 767 and 869 nm diminishes (down-dashed-arrow). c, The 

de-doped film (after 150	∘C shown in b, shown as a black line) could be re-doped (blue) and 

then de-doped again via annealing consecutively at each temperature (different strengths of red). 

Similar trends occur while de-doping like in b. The spectra measured for the film in a pristine 

(dashed black line) and as-doped (dashed blue line) state are drawn for comparison.  
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 Figure  2:  XRD and GID patterns in PBTTT/F4-TCNQ in the de-doping process.  

a, XRD patterns along the out-of-plane scattering direction, 01, for samples annealed through 

the same de-doping cycle as described in Fig. 1. b, GID patterns along the in-plane direction, 

067, which shows two peaks, at 1.41Å�� and around 1.70Å�� for a pristine sample (grey), 

as-doped sample (black), samples annealed at each different temperature (shown in the legend) 

for 20 minutes, consecutively. The dashed lines show the peak positions for the pristine PBTTT. 

c, The extracted lamellar d-spacings determined from the (300) peaks in a which suffer the 

least from the 1/0 background signal from reflection. The spacing for the ’as-doped’ sample is 

23.4Å which remains constant until the 120	∘C step after which the lamellar spacing decreases 

gradually to 21.7Å. d, )-) stacking distance determined from b decreases to 3.47Å upon 

doping and gradually recovers to that of the pristine sample.  
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 Figure  3:  Thermoelectric measurements of conducting polymers doped by solid-state 

doping. a, Optical micrograph of the multi-functional device which enables an accurate 

measurement of Seebeck coefficient, �, and conductivities, 
 in the same film. The scale bar 

represents 200�m. b, Comparison of � versus 
 variation for PBTTT (red solid circles), 

CDT-BTZ (blue hollow circles) and P3HT (brown solid circles) doped with F4-TCNQ with the 

solid-state doping method. For PBTTT, � and 
 for three devices (shown in a) were measured 

at each de-doping step with the same device. The variation of � vs 
 is best described by a 

energy-dependent mobility model by Kang et al. [19] with $ = 3 and 
"K = 3 × 10�� Scm-1  

(solid red line) with an error bound drawn as red-dashed lines for 
"K = 2 × 10�� Scm-1  and 


"K = 4 × 10�� Scm-1. The $ = 0 fit (black dotted line) is drawn for comparison. The $ = 3 

model also produces good fits for the two other polymers with different values of 
"K as 

1.5 × 10�� Scm-1  (blue solid line) and 1.0 × 10�� Scm-1  (brown solid line) for CDT-BTZ 

and P3HT, respectively. The error bars represent the measurement error due to the device 

variation which was only significant for CDT-BTZ. 
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 Figure  4:  Density of states calculation and mobility variation with doping.  

a, Charge concentration in PBTTT/F4-TCNQ variation with Q experimentally determined from 

the number of localized spins (red circles), N	YZ[\, counted by ESR measurements. Two different 

DOS models were used to fit the N versus Q data; h = 0 model (black-dashed line, a constant 

V(#) at # ≥ #P) and h = 1/2 model with a range of V�/� (light pink area bounded by a dark 

red and a light red lines, V(#)i.j at # ≥ #P). The concentration of mobile and localized carriers 

are shown as brown dotted lines and blue dotted lines, respectively, for h = 1/2 and V�/� =
1.3 × 10��	eV��.jcm��. b, The DOS profiles for the h = 0 and h = 1/2 models used in a. The 

blue shaded region represents the localized tail states which result in an exponential DOS profile 

at # < #P. The orange dots and black dots represent the values of the DOS at the positions of Q 

at each N	YZ[\ measured by ESR. The red block arrow (with a varying color strength) shows the 

evolution of the DOS profile predicted by the non-static h = 1/2 model as Q increases. c, The 

plot for carrier mobility, �, calculated by 
/s� for each N	YZ[\ (dark blue circles). The h = 0 

model gives the best fit for the data range which predicts �" ∝ (# − #P)�. 
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 Figure  5:  Comparison of Seebeck coefficient and thermoelectric power factor variation 

with different doping methods. a, Comparison of conductivity with Seebeck coefficient data 

reported in literature for PBTTT (solid circles and crosses) and P3HT (solid squares) with 

various doping methods: solution-doping with F4-TCNQ [16](green), PBTTT film doped by 

immersion in a solution containing TFSI	� [61] (black cross) and immersion in an EBSA 

solution [62] (red cross), FTS vapour doping (grey) [16, 62] The present work with solid-state 

doping of PBTTT produces the highest 
"K compared to other doping methods. The data were 

taken from a compiled plot by Glaudell et al. [16] and Patel et al. [62]. b, Calculated power 

factor (��
) of PBTTT (red solid circles), CDT-BTZ (blue hollow circles) and P3HT (brown 

solid squares) doped with F4-TCNQ with the solid-state doping method from the present work, 

plotted together with the data from literature in a. The same fits for different 
"K in a were 

translated to power factor versus conductivity plots. 
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Summary for Table of Conents 

The thermoelectric response of highly conducting polymers including poly(2,5-bis(3-
tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) doped by solid-state diffusion of tetrafluoro-
tetracyanoquinodimethane is investigated over a wide range of doping levels by a 
controllable de-doping. The Seebeck coefficient-conductivity relationship reveals the 
underpinning strong energy dependence of charge transport and sheds light upon crucial 
transport parameters   that enhance the thermoelectric power factor in conducting 
polymers. 
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