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Abstract

My thesis is divided in three chapters. In the first I extend the application of Bandi and Ta-

moni (2014)‘s time series decomposition to other asset classes, such as fixed income, credit

and credit derivatives, and other models, such as the Fama and French three factor model.

I document a significant increase in R squared from using the decomposition across all the

asset classes and models. I also exploit the time-domain properties of the decomposition to

compute time-varying betas and analyse the determinants of risk across time.

In the second chapter I present some stylized facts about political risk, as proxied by Baker,

Bloom and Davis’ (2016) Economic Policy Uncertainty index. The log differential is station-

ary and exhibits a leptokurtic distribution, with heavy tails on both sides. The index also

exhibits a time varying conditional variance, as highlighted by an ARMA(1,1)-GARCH(1,1)

model. I also investigate the persistent nature of the index with various Heterogeneous Au-

toregression (HAR) specifications: the basic version, augmented with factors, and taking

into consideration asymmetric effects. I finally investigate the out of sample conditional

predictive ability of these models.

In the third chapter, I introduce a model that allows separating political risk from other

risks, by extracting two uncorrelated factors in a two factor Heston setting. I employ the

Economic Policy Uncertainty index by Baker, Bloom and Davis (2016) as a noisy proxy of

political risk. The model allows to price options and recover the impact of political risk on

the whole P-distribution of asset returns. I find that political risk has a sizeable effect on

the distribution of the S&P 500 index returns and that it impacts all moments. I also find

that political risk has a positive and statistically significant impact on the S&P 500 index

Equity Risk Premium.
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Chapter 1

Business cycle risk in equities,

fixed income and credit markets.

1.1 Introduction.

An ongoing challenge for empirical asset pricing is to explain the cross section of expected

asset returns using the exposures to a parsimonious set of risk factors. The failures of the

Consumption CAPM has led researchers to search for new risk factors. Rather than adding

factors, recent research has showed that decomposing a risk factor in high and low fre-

quency components leads to better pricing ability and a richer structure in the prices of

risk.

In this chapter I extend the application of Bandi & Tamoni (2017)’s time series decomposi-

tion to other asset classes, such as fixed income, credit and credit derivatives, and to other

models, such as the Fama and French three factor model.

First, I document the well known poor pricing ability of the standard Consumption CAPM

for equity, fixed income and credit markets. I find results in line with the literature1. Sec-

ond, I show that, by decomposing consumption in frequency components, the adjusted R2

increases sizeably: from 19% to 63% for equities, from zero to 98% for US treasuries, from

87% to 93% for corporate credit and from 38% to 58% for credit derivatives. In a Fama and

French setting, I show that the decomposition increases the quarterly alpha along the size

1See for example Mankiw & Shapiro (1986)
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(HML) and value (SMB) dimensions, from 0.99% to 1.66%, and from 0.22% to 1.51% respec-

tively. I finally exploit the time-domain properties of Bandi an Tamoni’s decomposition to

estimate time-varying Betas. I find that the 8 quarter cycle is the most important driver of

risk exposure across time. This is consistent with Bandi & Tamoni (2017)’s result, where

they find a priced factor of 2-3 years. This result is at odds with Fourier-based methods

such as Dew-Becker & Giglio (2013) and Bansal & Yaron (2004), where the priced factor is

the very low frequency one (more than 10 years).

Bandi & Tamoni (2017) have showed that one of the causes for the failure of standard

CCAPM is that it restricts the price of risk to be the same for all frequencies of the con-

sumption growth process. Relaxing this assumption and estimating frequency dependent

risk prices leads to a sizeable improvement in the ability of consumption betas to explain

the cross section of asset returns. Moreover, some specific frequencies are more relevant

than others to explain cross sectional asset returns. For example, business cycles from 2 to

8 years seem to have a very strong explanatory power, whereas higher frequency shocks to

consumption do not seem particularly relevant for asset pricing purposes. I am also able

to document the strong pricing ability of the 2 years cycle. The technique used to compute

frequency specific betas - previously developed by Ortu et al. (2013) and Bandi et al. (2017) -

relies on a rich decomposition of consumption in components that exhibit heterogeneity in

persistence and pricing ability. The separation into J details provides more granularity in

the analysis of fluctuations with different cycles than in the case with traditional two com-

ponent filters, such as Beveridge & Nelson (1981). This technique conveniently delivers an

additive decomposition of the covariance between consumption and returns along a dis-

crete set of relevant scales. This additive decomposition is then key in estimating specific

betas for consumption fluctuations occurring at specific scales. Investors then weigh dif-

ferent layers of the consumption process differently for the purpose of asset pricing. This

reasoning resonates with a large literature on the use of consumption shocks to price asset

returns, for example Campbell & Cochrane (1999), Bansal & Yaron (2004) and Hansen et al.

(2008) among others. The economic reasoning behind the use of business cycle asset pricing

models is that economic activity evolves according to cycles, and therefore some frequen-

cies may have better pricing abilities than others. Intuitively, investors care more for what

happens over the business cycle than what happens at very short, or very long, frequencies.

Merton (1973) was the first to introduce dynamic asset pricing restrictions in a continu-

ous time setting. The main intuition behind Merton’s intertemporal capital asset pricing

11



model (ICAPM) was to understand that the investment opportunity set varies across time.

Returns are not only a function of their covariance with the market portfolio but also of

their covariance with the set of variables zt that can induce changes in the investment op-

portunity set. Breeden (1979) then showed that the set of variables zt can be reduced to

consumption growth alone, reconciling intertemporal portfolio choice with the classical

Consumption CAPM of Rubinstein (1976) and Breeden & Litzenberger (1978). The con-

sumption capital asset pricing model (CCAPM) then expresses expected returns as func-

tions of their covariance with consumption growth. The beauty of the CCAPM is that it

reconciles dynamic asset pricing with the basic economic intuition of investment decisions:

agents invest in securities to smooth consumption. Unfortunately, the classic CCAPM does

not provide an adequate fit to the cross section of asset returns2.

The work is organized as follows. In Section 2 I investigate dynamic asset allocation in an

environment driven by business cycle consumption and show how this is different from

Breeden (1978)’s CCAPM. In Section 3 I impose some equilibrium conditions and derive

some testable implications for equilibrium asset prices. To provide further evidence that

the approach pioneered by Ortu et al. (2013) is a successful one, in Section 4 I investigate

other asset pricing specifications, including the famous Fama and French three and five

factor models.

1.2 The Business Cycle CCAPM.

1.2.1 Expanding the state-space

In Merton’s ICAPM, the demand for financial assets depends on the covariance between

those asssets and a set of state variables Xt that drive the investment opportunity set. In

1979, Breeden showed that the collection of all the possible variables that may shift the

investment opportunity set can collapse to aggregate consumption only3. This new asset

2The aggregate consumption process is too smooth to generate enough co-variation with returns to suitably
account for several empirical puzzles, for example Mehra & Prescott (1985)’s equity risk premium puzzle or Weil
(1989)’s risk free interest rate puzzle. This has left researchers struggling to reconcile the appealing features of the
CCAPM with its empirical failure.

3The reasoning proceeds from observing that Merton’s first order condition evaluated at the optimal consump-
tion reads:

T(µS − r f ) = ΣSW cW + ΣSXcX

with T = −Uc/Ucc,JW = Uc, JWX = UcccX and JWW = UcccW . Breeden then showed that, since optimal consump-
tion c(W, X, t) is a function of wealth and state variables, by applying Ito one gets:

ΣSC = ΣSW cW + ΣSXcX

12



pricing relation was called Consumption CAPM (CCAPM).

Even if Merton’s ICAPM provides a good fit to the data, Breeden’s critique demolished the

theoretical justification for adding variables in Xt beyond aggregate consumption. In this

chapter, I show that we can still expand the state space to include time-scale decomposi-

tions of aggregate consumption.

The time-scale decomposition is the one proposed by Ortu et al. (2013) and Bandi et al.

(2017). Each component of the decomposition exhibits different levels of persistence and

enables to disentagle short run from long run consumption dynamics. This decomposi-

tion is also able to provide a more granular analysis that in the case with traditional two

component filters, such as Beveridge & Nelson (1981). For a complete description of the

decomposition used, see Appendix A.

Following the Wiener-Khinchin theorem, we can define the power spectral density of re-

turns r(t) as the Fourier transform of its autocorrelation function Rr(t, τ):

Sr(t, f ) = Ft f {Rr(t, τ)} =
∫ +∞

−∞
E
[
r
(

t +
τ

2

)
r
(

t− τ

2

)]
e−2π f τdτ

If the time series is stationary, the power spectral density depends only on the frequency:

Sr( f ). If the time series is not stationary, then the autocorrelation function will vary across

time and the power spectral density will be localized in time and frequency. This is called

a time varying spectrum or an evolutive spectrum. If we drop the dependence on time and

invert the formula, the full time series can be reconstructed from Sr(t, f ), net of a constant,

as:

r(t) =
∫ +∞

−∞
Sr(t, f )e2π f td f

As such, we can express the covariance between returns and consumption as:

E [r(t)c(t)] =
∫ +∞

−∞
E [Sr(t, f )Sc(t, f )] e2π f td f

The term E [Sr(t, f )Sc(t, f )] is the co-spectrum of the two time series. Therefore, the co-

variance is the Fourier transform of the co-spectrum, computed across a continuum of fre-

quencies. In this chapter, frequencies are discretized in scales so that the integral can be

computed numerically j{1,2,...,J} =
{
(−∞, f1], [ f1, f2], ..., [ f J−1, f J ], [ f J ,+∞)

}
.

and by direct substitution he finds that the covariance of securities with consumption alone is relevant for asset
pricing purposes.
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The four most important properties of this time-scale decomposition are the following. The

first is additivity. This means that the sum of the time-scale components yields the original

series. In other words, let ct be aggregate consumption and let cj
t be the j−th component of

the decomposition. The first J − 1 components are usually called details while the last J−th

components is usually called smooth. It always holds that ct = ∑J
j=0 cj

t. Also note that de-

tails have mean equal to zero while the smooth component has a mean equal to the mean

of the original data. The second property is orthogonality, which ensures that the set of

detail components is orthogonal. This means that E[cj1
t cj2

t ] = 0 ∀ j1 6= j2 6= J. The third

property is variance isometry, which ensures that the sum of the variances of each compo-

nent is equal to the variance of the original series: E[c2
t ] = ∑J

j=0 E[cj
t
2
]. The fourth property

is covariance isometry, which ensures that the sum of the covariances of each component

is equal to the covariance of the original series: E[ctxt] = ∑J
j=0 E[cj

txt].

The strategy is now to stack these J components in a vector Xt of state variables. Each ele-

ment of Xt will now be associated with fluctuations of consumption at a different time-scale

and thus convey different information on the time variation of the investment opportunity

set. For instance:

d


c1

t

c2
t
...

cJ
t


︸ ︷︷ ︸

dXt

=


0

0
...

µ(Xt, t)

 dt

︸ ︷︷ ︸
µ(Xt ,t)

+


σ1(Xt, t) 0 · · · 0

0 σ2(Xt, t) · · · 0
...

...
. . .

...

0 0 · · · σJ(Xt, t)




dW1

t

dW2
t

...

dW J
t


︸ ︷︷ ︸

σ(Xt ,t)dWX,t

where µ(Xt, t) is the drift of the state variable, σj(Xt, t) is the volatility of the j-th com-

ponent and W j
t is a standard Wiener process. The set of uncorrelated Wiener processes{

W1
t , ...,W J

t

}
is what drives the independent sources of risk at each scale. One can then

set up a dynamic optimization similar to Merton’s one and recover formula (1). Each com-

ponent of the intertemporal hedging demand will reflect the extent to which the optimal

investor is trying to hedge short and long run fluctuations in the investment opportunity

set. This approach then allows to disentangle the inter-temporal hedging effect of short run

from long run risks.
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1.2.2 Equilibrium

If we further assume – as in Merton (1979) – that financial assets are in zero net supply, we

can then equate asset demand and asset supply to recover some testable general equilib-

rium condition.

The Consumption CAPM

Following Breeden (1979), the only state variable that matters for asset pricing is aggregate

consumption. This can easily be relaxed by allowing other measures of consumption to

matter4. Here, I stick with a more traditional setting and use consumption growth on ser-

vices and non durable goods. Please see the data section for more details.

The main claim of the Consumption CAPM is that an asset’s excess return is higher the

higher its beta with respect to consumption. This restriction on asset returns can be tested

by estimating two linear regressions. This has been done before various times in the liter-

ature, see for example Breeden (1979). At a first stage, I estimate each security’s beta from

the following time series regression:

re
i,t = αi + βict + εi,t

where re
i,t are excess returns, ct is consumption growth and εi,t is the error term.

At a second stage, I estimate the price of risk from the following cross sectional regression:

r̄e
i = λ0 + λ1βi + εi

For the CCAPM to hold in the data, the following null hypothesis should fail to be rejected:

(1) αi = 0, (2) λ0 = 0 and (3) λ1 6= 0.

Business cycle Consumption CAPM

4For example Ait-Sahalia et al. (2004) find significant pricing ability for luxury goods consumption, Yogo (2006)
uses durable consumption only, Malloy et al. (2009) use stockholder consumption to price size and value portfo-
lios. Da and Yun (2010) , Savov (2011) and Chen and Lu (2012) employ various proxies of aggregate consumption
to price the cross section of US and international stock returns, respectively electricity consumption, municipal
solid waste growth and carbon dioxide emissions.
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Bandi & Tamoni (2017) propose a different specification for the expected return of each

security. In their model, each investor prices different layers of the consumption process

differently. This gives rise to a linear restriction with various betas, one for each layer of

the consumption process. To understand why this is the case, it is worth recalling the basic

features of their model. They work with scale-time decompositions for real consumption

growth. Write: ct = ∑J
j cj

t. The details
{

cj
t

}
may be thought as uncorrelated, linear au-

toregressive processes with a scale specific autoregressive parameter ρj and scale specific

shocks defined over the dilated time t− sj of each individual scale. Because j is measured

in terms of quarters, each detail is associated with periodic fluctuations between 2j−1 and

2j quarters. The chosen lowest frequency component J = 5 strikes a compromise between

identifiability and richness of the model. Figure 1.2 shows the adjusted R2 as I increase

the scales. After an initial drop at scales J = 2, the adjusted R2 keeps increasing up to

scales J = 5, after which it flat-lines, showing adding scales beyond the fifth brings little

improvement to the model, while adding estimation issues. I therefore fix the number of

scales to five. Bandi & Tamoni (2017) show that a large percentage of the pricing ability

is associated with real consumption cycle periodicities of 2 to 8 years. Through business

cycle fluctuations in the consumption components, the authors are able to generate directly

business cycle fluctuations in the stochastic discount factor, a feature which was previously

discussed by Alvarez & Jermann (2005) and Parker & Julliard (2005) as being empirically

warranted and theoretically meaningful. For a more detailed discussion of the decomposi-

tion, we address the interested reader to the Appendix.

This decomposition allows to interpret the excess return of a security as a linear combina-

tion of scale specific betas and specific lambdas. Each lambda quantifies the exposure to

a certain business cycle layer of the consumption process. Again, also this model can be

estimated by estimating two regressions. At a first stage, I estimate multiple betas.

re
i,t = αi + β1

i c1
t + β2

i c2
t + ... + βJ

i cJ
t + εi,t

where re
i,t are excess returns, cj

t is the j-th layer of the consumption process and εi,t is the

error term. At a second stage, I estimate the price of risk by running the following cross

sectional regression:

r̄e
i = λ0 + λ1β1

i + λ2β2
i + ... + λJ βJ

i + εi
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In this way, I obtain a number of prices of risk equal to the number of consumption layers

that matter for asset pricing. Also this version of the consumption CCAPM can be tested

on the data. In particular, for this model to hold, the following null hypothesis should fail

to be rejected: (1) αi = 0, (2) λ0 = 0 and (3) λ1 6= 0, λ2 6= 0, ..., λJ 6= 0.

1.3 Empirical Section

1.3.1 Data

The state variable of choice is consumption growth. United States consumption growth is

measured by taking log differences of National Income and Products Accounts (NIPA) ag-

gregate non durable and services consumption, divided by total US population. Consump-

tion data is taken from the Bureau of Economic Analysis whereas population data is taken

from the Bureau of Labor Statistics. The risk free rate of return is measured by taking the

current yield on 3-months US Treasury bills, as published by the Federal Reserve Economic

Data (FRED). The market portfolio is the total return on the CRSP US value weighted index,

as downloaded from the Wharton Research Data Services database. Inflation is computed

by taking the first difference in the log series of the US Consumer Price Index, as published

by FRED. Real excess returns are computed by subtracting the risk free rate and inflation

from each portfolio return. Real consumption growth is computed by subtracting inflation

from nominal consumption growth. The sample of macro variables runs from February

1959 to August 2014. All data are monthly observations, aggregated to a quarterly level by

direct multiplication of (1 + ri). The sample contains 222 quarterly observations.

US Equities are proxied by twenty-five Fama and French portfolios sorted by Size and

Book-to-Market ratios. Data on returns for these portfolios is obtained from Professor Ken

Franch’s website at Dartmouth College. For fixed income markets, I collected from FRED

quarterly total return data for nine Bank of America-Merrill Lynch US corporate bond port-

folios, spanning various maturities and credit ratings: 1-3 years, 10-15 years and 15+ years,

AAA, AA, A, BBB, High Yield and a ”Corporate Master” index that includes all data. The

data is available from Q1 1989 to Q4 2013. I also recovered quarterly total return data for

seventeen CRSP Fama Maturity portfolios. This dataset spans US Treasuries with maturi-

ties from zero to 120 months, at intervals of 6 and 12 months. For more details, please see

Fama (1984). This dataset is available from Q1 1952 to Q4 2013. I also recovered quarterly
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total return data for seventeen CRSP Fama Maturity portfolios. This dataset spans US Trea-

suries with maturities from zero to 120 months, at intervals of 6 and 12 months. For more

details, please see Fama (1984). This dataset is available from Q1 1952 to Q4 2013. I have

finally collected on-the-run spreads for twenty two credit default swap indices, of which

twelve can be classified as macro credit indices (eg. iTraxx Europe, Crossover, HiVol, etc.)

and ten as sector specific indices (eg. Auto, Industrial, etc.). This data is available only for

a short time period: macro credit indices data run from Q3 2004 until Q2 2014 while sector

specific indices data ends in Q4 2011, when Markit decided to terminate the coverage of

such indices. Due to several non-linearity effects, I first had to transform credit spreads

into total returns. The details are available in Appendix B.

1.3.2 Empirical performance of the Consumption CAPM

To provide further evidence that the approach pioneered by Bandi and Tamoni (2014) is

successful, I have estimated standard and business cycle versions of the Consumption

CAPM on US equities, fixed income and credit. The number of cycles chosen is J = 5,

corresponding to cycles of 2, 4, 8, 16 and 32 quarters. Since the data spans a time frame

of about 50 years, my chosen lowest frequency component (J = 5, in the notation used

above) strikes a compromise between identifiability (higher frequency details are easier to

identify) and richness of the overall decomposition (the larger the number of details, the

richer the decomposition). Figure 1.2 shows the adjusted R2 as I increase the scales. After

an initial drop at scales J = 2, the adjusted R2 keeps increasing up to scales J = 5, after

which it flat-lines, showing adding scales beyond the fifth brings little improvement to the

model, while adding estimation issues.

Equities

US Equities are proxied by twenty-five Fama and French portfolios sorted by Size and

Book-to-Market ratios. First, I test the standard Consumption CAPM by estimating time

series regressions of nominal excess returns on nominal consumption growth. The results

are in line with the literature and are reported in Table 1.1. I then decompose the consump-

tion process in five layers and estimated the Business Cycle Consumption CAPM. I again

ran time series regressions on nominal excess returns using the five layers of the consump-

tion process as explanatory variables. I then ran second stage regressions with all five λs.
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The time series regressions on consumption provide little support for the CCAPM. Ad-

justed R2 range from zero to 2.29%, betas are not statistically significant and alphas are

statistically not different from zero. Overall it seems that the consumption CAPM is not

able to capture the salient cross sectional features of size and book-to-market ratio. The

results with the business cycle CCAPM are more encouraging. Time series adjusted R2s

are sizeably higher, reaching almost 10%. Equity returns respond strongly to the two years

consumption risk component. Also the one year consumption process seems to hold some

explicative power now. Alphas are all statistically different from zero, showing that con-

sumption alone cannot fully account for average equity returns. This is confirmed in Ta-

ble 1.12 where a Gibbons-Ross-Shanken (GRS) test rejects the null of all alphas being jointly

equal to zero.

Table 1.11 and Figure 1.3 show the estimates of the second stage regression, showing the

prices of risk. The difference between aggregate consumption and the decomposed version

is very big. Aggregate consumption has a cross-sectional adjusted R2 of 19%, but by using

the betas from the decomposed process, this sends the cross sectional adjusted R2 to 63%.

Table 1.13 confirms these improvements, with a lower AIC for the business cycle CCAPM

and a statistically significant likelihood ratio test at the 5% level.

Fixed Income

The consumption CAPM applies in theory to any asset. In practice most tests have focused

on equities. There is a growing literature on consumption based models in the fixed income

space. Wachter (2006) proposes an equilibrium asset pricing model that depends on con-

sumption as the only state variable. Lettau & Ludvigson (2001) resurrect the consumption

CAPM showing that a special factor constructed from a cointegrating relationship involv-

ing consumption, wealth and income has very strong pricing abilities. In this chapter I

estimate a standard and business cycle Consumption CAPM for each of the two datasets.

The results are reported in Table 1.2 and Table 1.3.

We can first analyse the performance of the standard CCAPM on Bank of America-Merrill

Lynch bond portfolios. First, all alphas are significantly different from zero at the 10%

level, with the noticeable exception of the high yield portfolio. Adjusted R2 are all quite
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low and range from 0.13% to 3.71%. First, we can notice that betas are negative, mean-

ing that exposure to consumption risk reduces returns. I then estimate a Business Cycle

CCAPM with the same dataset. These time series regressions produce adjusted R2 of a

higher order of magnitude, ranging from 8.49% to 17.70%. The statistical significance of

alphas vanish for many portfolios, but remains significant for 1-3Y, 10-15Y, BBB and, no-

ticeably, the high yield porfolio. The significance in the alphas of BBB and high yield is

theoretically appealing, because I expect these portfolios to carry significant default risk

premia, not captured by simple consumption risk. The significance of alphas for 1-3Y and

10-15Y is harder to justify theoretically. The significance of alphas is confirmed by a GRS

test, reported in Table 1.13. By analysing now betas we can spot a number of interesting

facts. The only statistically significant cycles of consumption are between four and eight

quarters. The first and most striking difference is that the four quarter cycle carries nega-

tive coefficients while the eight quarters cycle carries a positive coefficient. This means that

exposure to one year consumption growth risk reduces the risk of fixed income securities.

In other words, one year consumption growth covaries negatively with returns, providing

high hedging capacity. On the contrary, fixed income securities provide little hedging ca-

pacity for two years consumption growth, and thus coefficients for this layer are high and

positive. Considering the cross section of betas, we further identify interesting patterns.

First, β̂2 runs in the opposite direction of β̂3, meaning that the stronger the positive im-

pact of one year consumption, the stronger the negative impact of two years consumption.

Moreover, the patterns in betas follow a monotonic pattern along the risk dimension. For

example, as credit quality deteriorates, the sensitivity of returns to one year consumption

becomes more negative and the sensitivity to two years consumption becomes more pos-

itive. The riskiest bond portfolios in the sample are the High Yield one, carrying a β̂2 of

-3.02 and a β̂3 of +11.18, and the 15+ years one, carrying a β̂2 of -4.18 and a β̂3 of +6.87.

Estimating a CCAPM on Fama bond porfolios provides more insight in the structure of risk

along the maturity dimension. These securities are all US Treasuries, so I expect betas to

be lower than in the previous dataset. The simple CCAPM yields significant alphas and an

interesting monotonic structure in the betas. All betas are negative again, showing that US

Treasuries provide a good hedge against consumption risk. In the Business cycle CCAPM,

alphas remain statistically significant, with the exception of short maturity securities. This

means that consumption risk alone fails to explain alphas beyond the 18-24 months period,

showing that other risk factors start to kick in after 24 months, most noticeably default,

interest rate and liquidity risks. If we analyse betas we can further conclude that only
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consumption cycles of two quarters drives treasury returns; all other scales lose statistical

significance. This shows that US treasuries provide a good hedge only against very short

term consumption shocks. A noteworthy exception is represented by the 48-120 months

maturity range risk which seems to be also driven by the 32 quarters - or eight years - con-

sumption cycles.

Table 1.11 reports the cross sectional regressions from the fixed income universe. The ag-

gregate CCAPM had almost no cross-sectional explanatory power for the BAML portfolios

(adjusted R2 = 0%) and a large one for US Treasuries. By using the decomposition, I can

improve on both, documenting an adjusted R2 of 97% for the first dataset, and 93% for the

second. Table 1.13 reports the AIC improvements for both datasets. Akaike Information

Criterion is lower for the business cycle CCAPM in both cases, showing a better model fit

than the regular CCAPM. In the case of Bank of America-Merrill Lynch bond portfolios, a

likelihood ratio test also confirms that the business cycle CCAPM is better than the regular

CCAPM with a 10% significance.

Credit

To confirm what the previous analysis seemed to suggest, default risk is harder to price

with consumption alone. A simple CCAPM captures some simple stylized facts of default

risk: large unexplained alphas and negative betas. A GRS test confirms alphas are jointly

different from zero. The business cycle CCAPM sheds further light on what seems to drive

credit risk. Alphas still remain largely unexplained, reaching as much as 5.18% per quarter

in the case of Crossover 10Y. The only statistically significant cycle is the the 32 quarters

or 8 years cycle consumption risk, which carries a beta of around -2.3. This means that

credit risk reacts significantly to long run changes in consumption risk or, equivalently,

that credit instruments provide a hedge to long run changes in consumption alone. The

pattern is consistent in the cross section and it fails to show a term structure between the

five and ten years contracts. Instead alphas exhibit an explicit term structure, showing once

again that what drives the term structure is not consumption risk. As previously hinted,

the Crossover index provides an interesting deviation from this pattern. Crossover collects

the 75 most liquid sub investment grade credit default swap contracts, making it the riski-

est credit index in the sample. The fact that it carries a so high default risk explains why

alphas are so high. By looking at betas, β̂5 is not significant while β̂2 and β̂3 are large and

significant. Default risk is therefore somehow positively correlated with one and two years
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consumption growth. Not surprisingly, high risk securities are pro-cyclical and do not pro-

vide a good hedge against one and two years consumption shocks.

Table 1.5 sheds light on how consumption risk affects various industries. The general pat-

tern of high unexplained alphas and large negative β̂6s is confirmed across all industries.

Ten years Industrial credit is the most negatively correlated with eight years consumption

risk. A small exception is represented by automotive credit, which is influenced by shorter

term consumption shocks as well. Automotive credit spreads are also the highest in the

sample, so again it seems like I am picking up a high default risk effect here.

Table 1.11 reports the cross sectional regressions for both credit derivatives samples us-

ing the betas from the standard CCAPM and the Business Cycle CCAPM. The aggregate

model produces adjusted R2s of 38% and 11%, while the business cycle CCAPM is able to

achieve a substantially better fit, with adjusted R2 of 57% and 94%. These improvements

are confirmed in Table 1.14 by noticing the lower Akaike Information Criterion, even if the

Likelihood ratio test is not significant at any meaningful level.

1.4 Arbitrage pricing across the business cycle

In this section I will explore further applications of the decomposition. The objective is

to explore which frequencies, or scales, drive the size and value strategies in equities, or

which scales matter in bond pricing. The main goal is to show the flexibility of the decom-

position in being applied to various linear models and managing to shed additional light.

Size and value effects

Here I analyse the business cycle implications of the standard Fama & French (1993) factor

regressions. I try to investigate further what drives the failure in the CAPM to explain these

effects and how Fama and French’s factors help solve the problem. It has been suggested

by Petkova (2006) that Fama and French factors proxy for innovations in state variables

that drive the business cycle. If so, then I would expect portfolios sorted by size or value to

covary strongly - i.e. to have significant betas - with certain scales in the decomposition of

consumption growth or the market index. This would mean that Fama and French factors
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indeed proxy for ”surprises” that are correlated with the business cycle.

I first regress ten portfolios sorted by value (HML) and ten portfolios sorted by size (SMB)

on aggregate consumption and, subsequently, on a five scales decomposition of aggregate

consumption. Estimates are reported in Table 1.14 and Table 1.15. At an aggregate level, my

results show aggregate consumption does not covary significantly with any of the two fac-

tors. Alphas are large and positive and the adjusted R2s are very low. When I decompose

the aggregate consumption process, I find that betas with the third scale are positive and

highly significant for both value and size. This suggests that these factors covary strongly

with the 8 quarters cyclical consumption component. This provides further evidence that

Fama and French factors are indeed connected to a business cycle risk explanation.

Adjusted R2s remain small when using consumption as the explanatory variable. To try

and address this issue, I have reported in Table 1.16 and Table 1.17 the results of the same

regression, but replacing consumption with the market factor. At an aggregate level, I con-

firm the results by Fama & French (1993): the market factor cannot price value and size

portfolios and generates large alphas. I then look at the regression for the business cycle

CAPM. The betas with respect to the 8 quarters component are again positive and highly

significant, confirming a business cycle story behing the Fama and French factors. Adjusted

R2s are higher than with consumption, but do not show an improvement with respect to

the aggregate level.

Bond returns

This subsection explores further applications of the pricing ability of the decomposition by

analysing additional factors. Litterman & Scheinkman (1991) and Litterman & Scheinkman

(1994) have suggested a number of factors in their seminal papers, such as inflation, and

the usual three yield curve factors: level, slope and curvature.

I also regress bond total returns on a number of factors: changes in inflation, consumption

growth, and interest rate curve level, slope and curvature. I find that inflation and slope do

in fact have a significant impact on bond total returns. I then decomposed these factors into

three layers and performed the regressions again. Bond factor returns respond positively

to short term changes in the level of interest rates and to the long term changes in the slope
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of the interest rate curve; they respond negatively to short and medium term changes in

inflation and to short run consumption shocks.

A Dynamic Business Cycle Consumption CAPM

To investigate further the properties of the consumption CAPM, I have proceeded to esti-

mate a Dynamic Conditional Correlation (DCC) model in aggregate and to each scale for

the S&P 500. This is possible because I am able to exploit a particular feature of the scale

decomposition: it preserves the time domain information. Contrary to a Fourier series rep-

resentation, I am able to recover the time domain information scale by scale and can exploit

the variation at each scale independently to estimate the DCC. The result is that most of the

dynamic evolution of the time varying correlation between aggregate consumption and the

stock index is driven by the third layer, that is a frequency of 8 quarters. This confirms and

reinforces the previous result of a significant 8 quarter component.

Having reconstructed a time series of time-varying betas, I then proceed to characterize

the risk exposure to common risk factor, to try to asses what is driving risk at each scale.

I therefore regress aggregate and scale specific betas against the spread between AAA and

BBB rated bond yields (DEF), US industrial production (INDP), US short term treasury

rates (SHORT), the difference between long and short term US treasury yields (TERM), the

VIX, inflation and Lettau and Ludvigson (2004) cay factor.

These factors have been chosen because they convey information about the future real eco-

nomic activity (Estrella & Hardouvelis (1991)) as well as about the future investment op-

portunity set (Petkova (2006)). The inflation rate and the short term rate can be considered

a proxy for monetary conditions, while industrial production and cay are both related to

the business cycle conditions in the country. The VIX and the credit spread proxy for the

aggregate level of risk.

I find that the 8 quarter beta has a high negative exposure to short term interest rates and a

high positive exposure to the cay factor. This is in line with the previous result of Bandi &

Tamoni (2017) where they also find an important 2 years cycle. In the aggregate regression,

both SHORT and cay loadings are very small, proving that decomposing risk exposures in

scales helps uncover previously hidden relationships. This result is consistent with Lettau
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and Ludvigson (2004)’s finding that scaling the Consumption CAPM with the cay factor

improves the model fit. This result suggests than the optimal scaling factors may be differ-

ent at various frequencies. For example, the VIX does not have a significant loading in the

aggregate regression, but it becomes significant for the low frequency components β4,t and

β5,t.

1.5 Conclusions

Separating factors into short and long run dynamics allows a richer decomposition of risk

exposures. Within a CCAPM framework, the two-year component of consumption has a

stronger pricing ability than aggregate consumption alone. This methodology also allows

to obtain a better fit from a wide range of asset pricing factor models, with sizeable im-

provements in adjusted R2s.
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Tables and Figures

Table 1.1: Equities: standard and business cycle CCAPM

No. α β R2 α β1 β2 β3 β4 β5 R2

1 -2.16 2.17** 2.28% 0.54 3.12** -2.52 15.27*** -0.17 0.36 8.79%

(1.78) (0.95) (2.80) (1.38) (2.33) (3.93) (4.83) (1.74)

2 -0.14 1.77** 2.13% 2.61 2.6** -2.22 13.79*** 0.29 -0.06 9.59%

(1.51) (0.81) (2.36) (1.17) (1.97) (3.32) (4.08) (1.46)

3 0.33 1.51** 1.94% 2.43 2.00* -2.03 11.52*** 2.08 0.11 8.38%

(1.35) (0.72) (2.13) (1.05) (1.77) (2.98) (3.67) (1.32)

4 1.34 1.23* 1.41% 2.81 1.42 -1.65 10.39*** 0.80 0.24 6.81%

(1.29) (0.69) (2.04) (1.01) (1.70) (2.86) (3.52) (1.26)

5 0.99 1.76** 2.29% 3.34 2.03* -1.41 11.73*** 3.35 0.19 7.49%

(1.44) (0.77) (2.29) (1.13) (1.9) (3.21) (3.95) (1.42)

6 -0.16 1.15 0.83% 2.40 2.30* -3.64* 12.59*** -0.91 -0.56 8.20%

(1.58) (0.85) (2.48) (1.22) (2.07) (3.48) (4.28) (1.54)

7 0.58 1.13 1.11% 2.56 1.78* -2.56 10.72*** 1.21 -0.19 7.71%

(1.33) (0.71) (2.10) (1.03) (1.75) (2.94) (3.62) (1.30)

8 1.57 0.85 0.78% 3.55* 1.07 -1.83 10.27*** 1.00 -0.48 7.47%

(1.20) (0.64) (1.89) (0.93) (1.57) (2.66) (3.27) (1.17)

9 1.37 1.05* 1.22% 2.52 0.89 -1.21 8.98*** 1.27 0.28 5.64%

(1.19) (0.63) (1.89) (0.93) (1.57) (2.65) (3.26) (1.17)

10 1.42 1.18* 1.25% 2.70 0.95 -0.87 8.8*** 3.07 0.32 4.64%

(1.32) (0.7) (2.11) (1.04) (1.75) (2.96) (3.64) (1.31)

11 0.52 0.74 0.42% 2.83 1.54 -3.39* 11.16*** 0.12 -0.81 7.54%

(1.43) (0.76) (2.24) (1.11) (1.87) (3.15) (3.87) (1.39)

12 1.29 0.77 0.65% 3.31* 1.25 -2.99* 10.25*** 1.97 -0.58 8.79%

(1.20) (0.64) (1.87) (0.92) (1.56) (2.63) (3.23) (1.16)

13 1.32 0.71 0.65% 3.33* 0.76 -1.04 8.73*** 0.99 -0.63 6.11%

(1.10) (0.59) (1.75) (0.86) (1.45) (2.45) (3.02) (1.08)

14 1.71 0.71 0.62% 3.41* 0.67 -1.36 9.41*** 1.32 -0.43 6.85%

(1.12) (0.60) (1.76) (0.87) (1.47) (2.48) (3.04) (1.09)

15 1.63 1.03 1.13% 3.62* 1.01 -0.33 8.46*** 2.11 -0.30 4.89%

(1.21) (0.65) (1.94) (0.96) (1.61) (2.72) (3.34) (1.20)

16 1.40 0.31 0.09% 3.87* 1.06 -3.11* 9.88*** 0.31 -1.33 7.26%

(1.30) (0.70) (2.05) (1.01) (1.7) (2.87) (3.53) (1.27)

17 1.14 0.48 0.28% 3.65** 1.08 -2.49* 9.23*** 1.15 -1.20 8.22%

(1.13) (0.60) (1.76) (0.87) (1.46) (2.47) (3.03) (1.09)

18 1.43 0.54 0.40% 2.67 0.45 -2.45* 8.52*** 2.97 -0.29 7.29%

(1.08) (0.58) (1.69) (0.83) (1.41) (2.37) (2.92) (1.05)

19 2.14** 0.33 0.15% 3.44** -0.13 -1.42 8.42*** 2.92 -0.55 6.38%

(1.07) (0.57) (1.69) (0.83) (1.40) (2.37) (2.91) (1.05)

20 0.69 1.28** 1.73% 2.65 1.33 -1.42 9.16*** 4.92 -0.02 7.04%

(1.21) (0.65) (1.92) (0.95) (1.59) (2.69) (3.31) (1.19)

21 1.81* -0.25 0.09% 3.72** 0.07 -3.40*** 8.64*** 0.95 -1.53 9.91%

(1.02) (0.55) (1.58) (0.78) (1.32) (2.22) (2.73) (0.98)

22 1.91** -0.23 0.10% 3.04** -0.19 -3.36*** 7.47*** 1.39 -0.99 9.36%

(0.93) (0.50) (1.45) (0.71) (1.21) (2.03) (2.50) (0.90)

23 1.49* 0.05 0.01% 3.03** 0.22 -2.73** 6.25*** 2.96 -0.97 8.12%

(0.87) (0.47) (1.36) (0.67) (1.13) (1.91) (2.35) (0.85)

24 1.25 0.28 0.15% 2.18 -0.11 -1.93 6.98*** 3.33 -0.35 7.26%

(0.90) (0.48) (1.41) (0.70) (1.17) (1.98) (2.44) (0.88)

25 1.36 0.39 0.23% 2.95* 0.32 -2.09 6.9*** 3.56 -0.66 5.92%

(1.03) (0.55) (1.62) (0.80) (1.35) (2.28) (2.8) (1.01)

26 -1.72*** -0.49*** 12.36% 0.49*** 0.00 0.02 0.71** 0.04 -1.97*** 57.33%

(0.16) (0.09) (0.19) (0.09) (0.16) (0.26) (0.32) (0.12)

Table 1.1 reports results from a regression analysis of 25 Fama and French portfolios sorted by Size and Book-to-

Market ratios. The 26th portfolio is the CRSP US value weighted return. The regressor is real aggregate consump-

tion growth. On the left, real aggregate consumption is used as a single regressor, while on the right it is separated

in five orthogonal scales and each scale is used as a regressor. The table reports coefficients and standard errors in

parenthesis. Significance is reported at the 10, 5 and 1% level with one, two and three asterisks respectively. The

sample size is equal to 222 quarters.
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Table 1.2: Fixed Income 1 (by portfolio type): standard and business cycle CCAPM.

Portfolio α β R2 α β1 β2 β3 β4 β5 R2

1-3 Y 1.03** -0.41* 3.71% 0.78* -0.10 -1.56*** 2.57*** -0.25 -0.16 17.30%

(0.25) (0.21) (0.43) (0.31) (0.44) (0.88) (0.56) (0.41)

10-15 Y 2.24** -1.00* 3.30% 2.37** -0.70 -3.33*** 6.06*** 0.11 -1.10 14.03%

(0.64) (0.54) (1.14) (0.81) (1.18) (2.33) (1.48) (1.08)

15+ Y 2.12** -0.87 1.45% 2.29 -0.38 -4.18*** 6.87** 0.51 -1.02 11.24%

(0.85) (0.71) (1.52) (1.08) (1.56) (3.09) (1.96) (1.43)

AAA 1.42** -0.60 2.38% 0.75 -0.78 -1.84** 2.84* 0.25 0.08 8.49%

(0.45) (0.38) (0.83) (0.59) (0.85) (1.69) (1.07) (0.78)

AA 1.56** -0.68* 2.93% 0.95 -0.69 -2.25*** 3.62** 0.05 -0.06 11.27%

(0.46) (0.39) (0.83) (0.59) (0.85) (1.69) (1.08) (0.78)

A 1.53** -0.60 1.60% 1.19 -0.44 -2.93*** 5.07** 0.51 -0.25 12.87%

(0.56) (0.47) (1.00) (0.71) (1.02) (2.03) (1.29) (0.94)

BBB 1.88** -0.80 2.46% 2.21** -0.22 -3.53*** 6.52*** 0.03 -1.11 17.70%

(0.60) (0.50) (1.04) (0.74) (1.06) (2.11) (1.34) (0.98)

High Yield 0.99 0.29 0.13% 3.28** 1.58 -3.02* 11.18*** -0.18 -1.95 15.41%

(0.93) (0.78) (1.61) (1.14) (1.66) (3.28) (2.09) (1.52)

Corporate 1.70** -0.71 2.30% 1.58 -0.42 -2.99*** 5.31*** 0.19 -0.57 14.53%

(0.55) (0.46) (0.96) (0.68) (0.99) (1.96) (1.25) (0.91)

Table 1.2 reports results from a regression analysis of 9 Bank of America Merrill Lynch bond total returns indices.

The regressor is real aggregate consumption growth. On the left, real aggregate consumption is used as a single

regressor, while on the right it is separated in five orthogonal scales and each scale is used as a regressor. The table

reports coefficients and standard errors in parenthesis. Significance is reported at the 10, 5 and 1% level with one,

two and three asterisks respectively. The sample size is equal to 102 quarters.
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Table 1.3: Fixed Income 2 (by maturity): standard and business cycle CCAPM.

From To α β R2 α β1 β2 β3 β4 β5 R2

0 6 0.12** -0.03 0.76% 0.06 -0.05 -0.01 -0.03 -0.06 0.02 1.44%

(0.04) (0.02) (0.06) (0.03) (0.05) (0.08) (0.1) (0.04)

6 12 0.29** -0.10** 1.99% 0.23 -0.15** -0.06 0.07 -0.11 -0.05 2.63%

(0.08) (0.05) (0.14) (0.07) (0.11) (0.19) (0.24) (0.09)

12 18 0.45** -0.15** 2.06% 0.32 -0.23** -0.12 0.12 -0.14 -0.06 2.81%

(0.13) (0.07) (0.21) (0.1) (0.17) (0.29) (0.36) (0.13)

18 24 0.57** -0.21** 2.70% 0.50* -0.28** -0.19 0.09 -0.19 -0.16 2.99%

(0.16) (0.09) (0.26) (0.13) (0.22) (0.37) (0.45) (0.16)

24 30 0.65** -0.24** 2.17% 0.65** -0.28* -0.27 0.22 -0.11 -0.24 2.52%

(0.2) (0.11) (0.33) (0.16) (0.27) (0.46) (0.56) (0.2)

30 36 0.78** -0.30** 2.63% 0.79** -0.34* -0.33 0.21 -0.06 -0.3 2.91%

(0.23) (0.12) (0.37) (0.18) (0.31) (0.52) (0.64) (0.23)

36 42 0.89** -0.35** 3.03% 0.96** -0.38* -0.4 0.15 -0.12 -0.4 3.30%

(0.25) (0.13) (0.41) (0.2) (0.34) (0.57) (0.7) (0.25)

42 48 0.95** -0.39** 3.16% 1.04** -0.41* -0.49 0.11 -0.09 -0.45 3.50%

(0.27) (0.15) (0.45) (0.22) (0.37) (0.62) (0.77) (0.28)

48 54 1.09** -0.46** 3.86% 1.19** -0.46** -0.54 -0.13 -0.07 -0.53* 3.95%

(0.29) (0.16) (0.48) (0.23) (0.39) (0.66) (0.81) (0.29)

54 60 1.07** -0.50** 3.55% 1.26** -0.54** -0.66 0.52 0.12 -0.63* 4.65%

(0.33) (0.17) (0.53) (0.26) (0.44) (0.74) (0.91) (0.33)

60 120 1.31** -0.55** 3.28% 1.48** -0.53* -0.88* 0 0.4 -0.67* 4.06%

(0.38) (0.20) (0.62) (0.3) (0.51) (0.86) (1.05) (0.38)

0 12 0.21** -0.06* 1.60% 0.15 -0.10** -0.04 0.03 -0.09 -0.02 2.15%

(0.06) (0.03) (0.10) (0.05) (0.08) (0.14) (0.17) (0.06)

12 24 0.51** -0.18** 2.45% 0.41* -0.26** -0.16 0.11 -0.15 -0.11 2.94%

(0.14) (0.08) (0.24) (0.11) (0.19) (0.33) (0.40) (0.15)

24 36 0.75** -0.28** 2.62% 0.71** -0.33* -0.32 0.15 -0.17 -0.25 2.84%

(0.21) (0.11) (0.35) (0.17) (0.29) (0.49) (0.60) (0.22)

36 48 0.96** -0.38** 3.16% 0.99** -0.39* -0.50 0.08 -0.13 -0.40 3.38%

(0.26) (0.14) (0.43) (0.21) (0.36) (0.60) (0.74) (0.27)

48 60 1.14** -0.49** 3.91% 1.21** -0.52** -0.63 0.07 0.00 -0.54* 4.28%

(0.31) (0.16) (0.5) (0.25) (0.41) (0.70) (0.86) (0.31)

60 120 1.31** -0.55** 3.28% 1.48** -0.53* -0.88* 0.00 0.40 -0.67* 4.06%

(0.38) (0.20) (0.62) (0.30) (0.51) (0.86) (1.05) (0.38)

Table 1.3 reports results from a regression analysis of 16 Fama bond portfolios total returns. The regressor is

real aggregate consumption growth. On the left, real aggregate consumption is used as a single regressor, while

on the right it is separated in five orthogonal scales and each scale is used as a regressor. The table reports

coefficients and standard errors in parenthesis. Significance is reported at the 10, 5 and 1% level with one, two

and three asterisks respectively. The sample size is equal to 220 quarters.
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Table 1.4: Credit Swaps (Macro): standard and business cycle CCAPM.

Index α β R2 α β1 β2 β3 β4 β5 R2

iTraxx Europe 0.19 -0.27** 9.98% 1.49*** 0.10 -0.14 -0.22 -0.21 -2.22*** 52.07%

(0.12) (0.12) (0.23) (0.21) (0.24) (0.35) (0.21) (0.34)

CDX (United States) 0.23** -0.31** 15.32% 1.45*** 0.10 -0.17 -0.23 -0.30 -2.16*** 56.12%

(0.11) (0.11) (0.21) (0.19) (0.22) (0.32) (0.19) (0.31)

Japan 0.48** -0.29* 8.74% 1.9*** 0.09 -0.07 0.25 -0.32 -2.42*** 48.22%

(0.14) (0.15) (0.28) (0.25) (0.29) (0.43) (0.26) (0.41)

Australia 0.39** -0.35** 14.50% 1.78*** 0.13 -0.26 -0.07 -0.40* -2.45*** 55.47%

(0.13) (0.13) (0.25) (0.22) (0.26) (0.38) (0.23) (0.36)

HiVol 5Y 0.56** -0.28* 7.78% 1.99*** 0.30 -0.20 0.04 -0.36 -2.43*** 48.10%

(0.14) (0.15) (0.29) (0.25) (0.30) (0.43) (0.26) (0.41)

HiVol 10Y 1.23** -0.24 5.57% 2.66*** 0.29 -0.14 0.04 -0.37 -2.39*** 43.21%

(0.15) (0.16) (0.31) (0.27) (0.32) (0.47) (0.28) (0.45)

Crossover 5Y 1.68** 0.95 5.25% 2.86* 0.27 2.65* 5.21** 0.25 -0.71 16.90%

(0.60) (0.63) (1.51) (1.33) (1.58) (2.29) (1.38) (2.19)

Crossover 10Y 4.60** 1.06 5.43% 5.18*** 0.06 2.96* 5.24** 0.11 0.32 14.64%

(0.66) (0.69) (1.68) (1.48) (1.77) (2.56) (1.54) (2.44)

Fin Senior 5Y 0.27* -0.23 6.16% 1.73*** 0.06 -0.09 -0.16 -0.13 -2.42*** 48.01%

(0.14) (0.14) (0.27) (0.24) (0.29) (0.41) (0.25) (0.4)

Fin Senior 10Y 0.69** -0.22 4.81% 2.16*** 0.02 -0.05 -0.12 -0.17 -2.42*** 42.82%

(0.15) (0.15) (0.30) (0.27) (0.32) (0.46) (0.28) (0.44)

Fin Subordinated 5Y 0.82** -0.20 2.07% 2.22*** -0.17 0.10 0.37 -0.35 -2.29*** 23.76%

(0.20) (0.21) (0.48) (0.42) (0.5) (0.72) (0.43) (0.69)

Fin Subordinated 10Y 2.26** -0.12 0.42% 3.32*** -0.44 0.31 0.92 -0.60 -1.70* 12.02%

(0.28) (0.29) (0.70) (0.61) (0.73) (1.06) (0.64) (1.01)

Table 1.4 reports results from a regression analysis of 12 Markit credit indices total returns. The regressor is real aggregate

consumption growth. On the left, real aggregate consumption is used as a single regressor, while on the right it is separated

in five orthogonal scales and each scale is used as a regressor. The table reports coefficients and standard errors in parenthesis.

Significance is reported at the 10, 5 and 1% level with one, two and three asterisks respectively. The sample size is equal to 40

quarters.
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Table 1.5: Credit Swaps (Industrial): standard and business cycle CCAPM.

Index α β R2 α β1 β2 β3 β4 β5 R2

AUTO 5Y 0.43 0.32 2.82% 1.85** 0.62 1.44* 2.66** 0.49 -1.76* 32.48%

(0.33) (0.34) (0.73) (0.67) (0.79) (1.10) (0.68) (1.04)

AUTO 10Y 2.08** 0.38 7.62% 3.22*** 0.34 1.88*** 1.17* 0.85* -1.36** 46.64%

(0.23) (0.24) (0.47) (0.43) (0.50) (0.70) (0.44) (0.67)

IND 5Y 0.31* -0.29* 9.38% 1.57*** 0.37 -0.16 0.46 -0.20 -2.12*** 44.23%

(0.16) (0.16) (0.33) (0.3) (0.35) (0.49) (0.31) (0.47)

IND 10Y 0.63** -0.36** 18.60% 1.95*** 0.27 -0.30 -0.14 -0.08 -2.30*** 58.43%

(0.13) (0.14) (0.26) (0.23) (0.27) (0.38) (0.24) (0.36)

CONS 5Y 0.13 -0.38** 24.60% 1.23*** 0.17 -0.27 -0.14 -0.30 -1.98*** 54.78%

(0.12) (0.12) (0.24) (0.22) (0.26) (0.36) (0.22) (0.34)

CONS 10Y 0.55** -0.34** 18.69% 1.75*** 0.18 -0.16 -0.32 -0.06 -2.11*** 55.71%

(0.12) (0.13) (0.24) (0.22) (0.26) (0.36) (0.23) (0.35)

ENRG 5Y 0.03 -0.33** 19.93% 1.17*** 0.17 -0.24 -0.16 -0.10 -2.00*** 56.01%

(0.12) (0.12) (0.23) (0.21) (0.25) (0.35) (0.22) (0.33)

ENRG 10Y 0.29** -0.31** 15.91% 1.54*** 0.18 -0.18 -0.35 0.11 -2.17*** 59.47%

(0.13) (0.13) (0.23) (0.21) (0.25) (0.35) (0.22) (0.33)

TMT 5Y 0.38** -0.27** 13.51% 1.57*** 0.16 -0.12 -0.20 0.15 -2.04*** 58.78%

(0.12) (0.12) (0.22) (0.20) (0.24) (0.33) (0.21) (0.31)

TMT 10Y 0.07 -0.30** 18.29% 1.14*** 0.17 -0.20 -0.22 -0.07 -1.89*** 54.33%

(0.11) (0.12) (0.23) (0.20) (0.24) (0.34) (0.21) (0.32)

Table 1.5 reports results from a regression analysis of 10 Markit credit indices total returns. The regressor is real

aggregate consumption growth. On the left, real aggregate consumption is used as a single regressor, while on the

right it is separated in five orthogonal scales and each scale is used as a regressor. The table reports coefficients and

standard errors in parenthesis. Significance is reported at the 10, 5 and 1% level with one, two and three asterisks

respectively. The sample size is equal to 40 quarters.
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Table 1.6: Fama and French regressions

MKT SMB HML

No α βMKT βSMB βHML R2 α β1 β2 β3 β4 β5 β1 β2 β3 β4 β5 β1 β2 β3 β4 β5 R2

1 -1.17** 1.06** 1.53** -0.32** 91.58% -0.84 0.97*** 1.04*** 1.31*** 0.79** 0.56 1.58*** 1.55*** 1.54*** 1.31*** 0.87** -0.31*** -0.38*** -0.28 -0.51** 0.42 89.32%

(0.33) (0.04) (0.06) (0.06) (1.38) (0.08) (0.09) (0.11) (0.33) (0.47) (0.11) (0.19) (0.2) (0.35) (0.37) (0.11) (0.13) (0.17) (0.21) (0.76)

2 0.08 0.98** 1.35** 0.07 94.21% 0.13 0.99*** 0.95*** 1.07*** 0.81*** 0.76** 1.37*** 1.26*** 1.43*** 1.7*** 0.43 0.11 -0.09 0.19 0.03 0.82 91.76%

(0.23) (0.03) (0.05) (0.04) (1.03) (0.06) (0.06) (0.08) (0.25) (0.35) (0.08) (0.14) (0.15) (0.26) (0.28) (0.08) (0.1) (0.13) (0.16) (0.56)

3 0.06 0.91** 1.21** 0.32** 94.58% -0.69 0.85*** 0.92*** 1*** 1.18*** 0.96*** 1.28*** 1.11*** 1.19*** 1.56*** 0.31 0.32*** 0.25*** 0.31*** 0.44*** 1.43*** 92.01%

(0.20) (0.03) (0.04) (0.04) (0.90) (0.06) (0.06) (0.07) (0.22) (0.31) (0.07) (0.12) (0.13) (0.23) (0.24) (0.07) (0.09) (0.11) (0.14) (0.50)

4 0.56** 0.88** 1.16** 0.46** 94.95% -0.06 0.8*** 0.93*** 0.94*** 1.07*** 0.84*** 1.24*** 1.09*** 1.06*** 1.66*** 0.05 0.47*** 0.38*** 0.44*** 0.46*** 1.68*** 92.69%

(0.18) (0.02) (0.04) (0.03) (0.82) (0.05) (0.05) (0.07) (0.2) (0.28) (0.06) (0.11) (0.12) (0.21) (0.22) (0.06) (0.08) (0.1) (0.13) (0.45)

5 0.37* 1.03** 1.24** 0.78** 95.31% 0.78 0.93*** 1.04*** 1.2*** 1.4*** 0.77** 1.36*** 1.21*** 1.10*** 1.41*** 0.46* 0.82*** 0.71*** 0.76*** 0.64*** 1.19** 92.91%

(0.2) (0.03) (0.04) (0.04) (0.91) (0.06) (0.06) (0.07) (0.22) (0.31) (0.07) (0.13) (0.13) (0.23) (0.25) (0.07) (0.09) (0.12) (0.14) (0.5)

6 -0.35 1.09** 1.08** -0.39** 95.29% 1.65* 1.09*** 1.09*** 1.16*** 1.07*** 0.33 1.14*** 1.02*** 0.95*** 1.31*** 0.78*** -0.47*** -0.30*** -0.26** -0.55*** -1.03** 93.64%

(0.22) (0.03) (0.04) (0.04) (0.94) (0.06) (0.06) (0.08) (0.23) (0.32) (0.07) (0.13) (0.14) (0.24) (0.25) (0.07) (0.09) (0.12) (0.14) (0.52)

7 0.01 0.99** 0.98** 0.11** 94.74% 0.50 1.01*** 0.95*** 1.02*** 1.07*** 0.70*** 1.06*** 0.91*** 0.80*** 1.14*** 0.37* 0.01 0.22*** 0.13 0.25** 0.39 93.78%

(0.19) (0.03) (0.04) (0.03) (0.78) (0.05) (0.05) (0.06) (0.19) (0.27) (0.06) (0.11) (0.11) (0.2) (0.21) (0.06) (0.07) (0.10) (0.12) (0.43)

8 0.44** 0.96** 0.81** 0.36** 94.87% 1.13 0.98*** 0.97*** 0.96*** 0.84*** 0.64** 0.78*** 0.85*** 0.72*** 1.23*** -0.04 0.28*** 0.41*** 0.28*** 0.55*** 0.64 93.30%

(0.17) (0.02) (0.03) (0.03) (0.73) (0.05) (0.05) (0.06) (0.18) (0.25) (0.06) (0.10) (0.11) (0.18) (0.20) (0.06) (0.07) (0.09) (0.11) (0.4)

9 0.29 0.98** 0.76** 0.59** 94.10% -0.16 1.04*** 0.94*** 0.94*** 1.15*** 0.97*** 0.74*** 0.84*** 0.57*** 1.15*** -0.03 0.60*** 0.59*** 0.47*** 0.72*** 1.45*** 91.69%

(0.18) (0.02) (0.04) (0.03) (0.81) (0.05) (0.05) (0.06) (0.2) (0.28) (0.06) (0.11) (0.12) (0.2) (0.22) (0.06) (0.08) (0.1) (0.12) (0.44)

10 0.01 1.07** 0.89** 0.85** 95.46% 0.93 1.08*** 1.08*** 1.06*** 1.13*** 0.67** 0.95*** 0.93*** 0.61*** 1.07*** 0.21 0.82*** 0.96*** 0.73*** 0.87*** 0.95** 93.94%

(0.18) (0.02) (0.03) (0.03) (0.76) (0.05) (0.05) (0.06) (0.19) (0.26) (0.06) (0.11) (0.11) (0.19) (0.21) (0.06) (0.07) (0.1) (0.12) (0.42)

11 0.05 1.06** 0.75** -0.46** 95.46% 0.71 1.02*** 1.05*** 1.1*** 1.29*** 0.78*** 0.82*** 0.81*** 0.62*** 0.83*** 0.31 -0.58*** -0.36*** -0.35*** -0.57*** -0.45 94.35%

(0.19) (0.02) (0.04) (0.03) (0.8) (0.05) (0.05) (0.06) (0.19) (0.27) (0.06) (0.11) (0.11) (0.2) (0.22) (0.06) (0.08) (0.1) (0.12) (0.44)

12 0.36* 1.01** 0.63** 0.13** 93.40% 1.12 0.98*** 1.06*** 1*** 1.41*** 0.69** 0.63*** 0.61*** 0.5*** 0.96*** 0.18 0.1 0.07 0.07 0.37*** 0.11 91.49%

(0.19) (0.03) (0.04) (0.04) (0.82) (0.05) (0.05) (0.07) (0.2) (0.28) (0.06) (0.11) (0.12) (0.21) (0.22) (0.06) (0.08) (0.1) (0.13) (0.45)

13 0.10 0.97** 0.54** 0.41** 91.80% 1.12 1.04*** 0.96*** 0.91*** 0.91*** 0.65** 0.48*** 0.58*** 0.39*** 0.81*** 0.35 0.36*** 0.5*** 0.29*** 0.6*** 0.04 90.37%

(0.20) (0.03) (0.04) (0.04) (0.81) (0.05) (0.05) (0.06) (0.2) (0.28) (0.06) (0.11) (0.12) (0.2) (0.22) (0.06) (0.08) (0.1) (0.12) (0.44)

14 0.18 1.03** 0.46** 0.65** 91.90% 1.79** 1.03*** 1.05*** 1.13*** 0.88*** 0.45* 0.39*** 0.48*** 0.24** 0.96*** -0.03 0.58*** 0.73*** 0.59*** 0.72*** 0.23 91.17%

(0.2) (0.03) (0.04) (0.04) (0.78) (0.05) (0.05) (0.06) (0.19) (0.27) (0.06) (0.11) (0.11) (0.2) (0.21) (0.06) (0.07) (0.1) (0.12) (0.43)

15 0.30 1.00** 0.69** 0.8** 90.03% 1.37 1.05*** 1.08*** 0.96*** 0.71*** 0.64** 0.66*** 0.46*** 0.78*** 0.79*** 0.12 0.74*** 0.92*** 0.81*** 0.84*** 0.65 88.78%

(0.24) (0.03) (0.05) (0.04) (0.96) (0.06) (0.06) (0.08) (0.23) (0.33) (0.07) (0.13) (0.14) (0.24) (0.26) (0.07) (0.09) (0.12) (0.15) (0.53)

16 0.53** 1.05** 0.42** -0.46** 94.15% 1.14 1.09*** 1.09*** 1.01*** 1.14*** 0.69** 0.34*** 0.50*** 0.38*** 0.51*** -0.13 -0.44*** -0.43*** -0.62*** -0.49*** -0.22 93.47%

(0.20) (0.03) (0.04) (0.04) (0.78) (0.05) (0.05) (0.06) (0.19) (0.27) (0.06) (0.11) (0.11) (0.20) (0.21) (0.06) (0.07) (0.10) (0.12) (0.43)

17 -0.15 1.03** 0.35** 0.18** 89.81% 0.08 1.05*** 1.03*** 1.05*** 1.22*** 0.93*** 0.34*** 0.33*** 0.16 0.65*** 0.1 0.09 0.23*** 0.15 0.37*** 0.26 89.04%

(0.23) (0.03) (0.04) (0.04) (0.87) (0.05) (0.05) (0.07) (0.21) (0.30) (0.07) (0.12) (0.13) (0.22) (0.24) (0.07) (0.08) (0.11) (0.13) (0.48)

18 -0.01 1.05** 0.25** 0.44** 90.48% 0.44 1.02*** 1.07*** 1.1*** 1.44*** 0.65** 0.22*** 0.26** 0.13 0.67*** -0.21 0.37*** 0.39*** 0.37*** 0.67*** 0.82* 88.88%

(0.21) (0.03) (0.04) (0.04) (0.84) (0.05) (0.05) (0.07) (0.20) (0.29) (0.07) (0.12) (0.12) (0.21) (0.23) (0.07) (0.08) (0.11) (0.13) (0.46)

19 0.23 1.03** 0.29** 0.57** 90.50% 1.46* 1.01*** 1.05*** 1.13*** 1.21*** 0.39 0.25*** 0.36*** 0.16 0.57*** -0.34 0.51*** 0.55*** 0.57*** 0.68*** 0.66 89.99%

(0.21) (0.03) (0.04) (0.04) (0.79) (0.05) (0.05) (0.06) (0.19) (0.27) (0.06) (0.11) (0.11) (0.20) (0.21) (0.06) (0.08) (0.10) (0.12) (0.44)

20 -0.25 1.13** 0.39** 0.78** 88.90% 0.57 1.15*** 1.03*** 1.3*** 1.27*** 0.68** 0.42*** 0.50*** 0.20 0.37 -0.59** 0.72*** 0.85*** 0.83*** 0.83*** 1.21** 88.18%

(0.26) (0.03) (0.05) (0.05) (0.98) (0.06) (0.06) (0.08) (0.24) (0.34) (0.08) (0.14) (0.14) (0.25) (0.26) (0.08) (0.09) (0.12) (0.15) (0.54)

21 0.46** 1.00** -0.23** -0.34** 94.98% 1.06 0.98*** 1.03*** 0.99*** 0.94*** 0.74*** -0.18*** -0.28*** -0.30*** -0.16 -0.83*** -0.37*** -0.28*** -0.34*** -0.33*** -0.19 92.58%

(0.14) (0.02) (0.03) (0.03) (0.65) (0.04) (0.04) (0.05) (0.16) (0.22) (0.05) (0.09) (0.09) (0.16) (0.18) (0.05) (0.06) (0.08) (0.10) (0.36)

22 0.07 0.98** -0.17** 0.10** 89.83% 0.04 0.99*** 0.95*** 1.08*** 0.94*** 0.92*** -0.15** -0.17 -0.42*** 0.01 -0.41** 0.07 0.06 0.01 0.23** 0.37 87.84%

(0.19) (0.02) (0.04) (0.03) (0.76) (0.05) (0.05) (0.06) (0.19) (0.26) (0.06) (0.1) (0.11) (0.19) (0.21) (0.06) (0.07) (0.10) (0.12) (0.42)

23 -0.02 0.93** -0.21** 0.28** 84.19% -0.18 0.91*** 0.93*** 0.98*** 1.16*** 0.96*** -0.23*** -0.29** -0.25** 0.03 -0.39 0.25*** 0.26*** 0.22* 0.49*** 0.50 81.44%

(0.22) (0.03) (0.04) (0.04) (0.88) (0.05) (0.05) (0.07) (0.21) (0.30) (0.07) (0.12) (0.13) (0.22) (0.24) (0.07) (0.08) (0.11) (0.13) (0.48)

24 -0.39** 0.98** -0.14** 0.58** 90.94% 0.07 0.95*** 0.97*** 1.05*** 1.08*** 0.76*** -0.08 -0.16 -0.33*** -0.02 -0.54*** 0.50*** 0.59*** 0.69*** 0.63*** 0.71* 88.30%

(0.17) (0.02) (0.03) (0.03) (0.72) (0.04) (0.04) (0.06) (0.18) (0.25) (0.06) (0.1) (0.1) (0.18) (0.19) (0.06) (0.07) (0.09) (0.11) (0.40)

25 -0.34 1.06** -0.13** 0.67** 82.72% 0.58 1.10*** 0.98*** 1.11*** 0.69*** 0.89** -0.13 -0.07 -0.15 -0.05 -0.54* 0.63*** 0.66*** 0.87*** 0.64*** 0.34 80.29%

(0.27) (0.03) (0.05) (0.05) (1.07) (0.07) (0.07) (0.09) (0.26) (0.36) (0.08) (0.15) (0.15) (0.27) (0.29) (0.08) (0.1) (0.13) (0.16) (0.59)

26 -2.48*** 0.02 0.01 -0.01 1.43% 0.27 0.01 0.01 0.03 0.21*** -0.63*** 0.00 0.03 0.02 0.06 0.20** 0.01 0.00 -0.04 0.04 -1.74*** 36.47%

(0.11) (0.014) (0.021) (0.02) (0.33) (0.02) (0.02) (0.03) (0.08) (0.11) (0.03) (0.04) (0.05) (0.08) (0.09) (0.03) (0.03) (0.04) (0.05) (0.18)

Table 1.6 reports results from a regression analysis of 25 Fama and French porfolios. The 26th portfolio is the CRSP US value weighted index. The regressors are the typical Fama and French (1993) factors downloaded by French’s online data

library. The table reports coefficients and standard errors in parenthesis. Significance is reported at the 10, 5 and 1% level with one, two and three asterisks respectively. The sample size is equal to 40 quarters.
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Table 1.7: Fixed income total returns unrestricted factor model.

Maturity (months) α βd(INFL) βCONS βLVL βSLP βCRV R2

0-6 -0.03 -0.13** -0.03 0.01 0.04 0.07 15.63%

(0.07) (0.03) (0.02) (0.01) (0.03) (0.06)

6-12 -0.03 -0.3** -0.05 0.01 0.13 0.11 15.41%

(0.17) (0.07) (0.04) (0.02) (0.08) (0.15)

12-18 -0.08 -0.46** -0.07 0.01 0.2 0.16 15.82%

(0.26) (0.1) (0.07) (0.03) (0.12) (0.23)

18-24 -0.04 -0.57** -0.1 0 0.27* 0.18 15.91%

(0.33) (0.13) (0.08) (0.04) (0.15) (0.29)

24-30 -0.04 -0.7** -0.09 0.00 0.34* 0.14 15.06%

(0.41) (0.16) (0.1) (0.05) (0.19) (0.36)

30-36 -0.06 -0.8** -0.11 0.00 0.43* 0.10 15.76%

(0.47) (0.18) (0.12) (0.06) (0.22) (0.41)

36-42 0 -0.89** -0.11 -0.01 0.47* 0.07 15.78%

(0.51) (0.2) (0.13) (0.06) (0.24) (0.45)

42-48 0.12 -1.04** -0.14 -0.03 0.48* 0.05 15.90%

(0.56) (0.22) (0.14) (0.07) (0.26) (0.49)

48-54 0.17 -1.13** -0.15 -0.04 0.55* -0.03 16.91%

(0.6) (0.24) (0.15) (0.07) (0.28) (0.52)

54-60 -0.15 -1.26** -0.15 -0.01 0.73** -0.31 16.33%

(0.67) (0.27) (0.17) (0.08) (0.31) (0.59)

60-120 0.52 -1.52** -0.16 -0.08 0.53 -0.01 15.47%

(0.78) (0.31) (0.19) (0.1) (0.36) (0.68)

0-12 -0.03 -0.22** -0.04 0.01 0.09 0.09 15.21%

(0.13) (0.05) (0.03) (0.02) (0.06) (0.11)

12-24 -0.05 -0.52** -0.08 0.01 0.23* 0.17 15.95%

(0.29) (0.12) (0.07) (0.04) (0.14) (0.26)

24-36 0.06 -0.77** -0.12 -0.01 0.34 0.2 15.45%

(0.44) (0.17) (0.11) (0.06) (0.2) (0.38)

36-48 0.16 -0.97** -0.14 -0.03 0.44* 0.13 15.83%

(0.54) (0.21) (0.14) (0.07) (0.25) (0.47)

48-60 0.26 -1.2** -0.18 -0.05 0.53* 0.03 16.28%

(0.63) (0.25) (0.16) (0.08) (0.29) (0.55)

Table 1.7 reports results from a regression analysis of 16 Fama bond portfolios total returns,

sorted by average maturity. The regressors are some common macro factors used for fixed

income returns, namely changes in inflation rates, aggregate real consumption growth, and

the level, slope and curvature of the US zero rates curve. The table reports coefficients and

standard errors in parenthesis. Significance is reported at the 10, 5 and 1% level with one, two

and three asterisks respectively. The sample size is equal to 220 quarters.
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Table 1.8: Fixed income total returns restricted factor model.

Maturity (months) α βd(INFL) βCONS βLVL βSLP βCRV R2

0-6 0.02 -0.12** 0.06** 12.81%

(0.03) (0.03) (0.02)

6-12 -0.01 -0.28** 0.16** 14.46%

(0.06) (0.07) (0.04)

12-18 -0.02 -0.43** 0.24** 14.79%

(0.10) (0.10) (0.06)

18-24 -0.09 -0.53** 0.33** 15.21%

(0.12) (0.12) (0.08)

24-30 -0.11 -0.66** 0.40** 14.73%

(0.15) (0.15) (0.1)

30-36 -0.15 -0.75** 0.47** 15.42%

(0.17) (0.18) (0.11)

36-42 -0.16 -0.84** 0.51** 15.49%

(0.19) (0.19) (0.12)

42-48 -0.17 -0.97** 0.53** 15.45%

(0.21) (0.21) (0.13)

48-54 -0.20 -1.05** 0.59** 16.30%

(0.22) (0.22) (0.14)

54-60 -0.32 -1.17** 0.63** 15.67%

(0.25) (0.25) (0.16)

60-120 -0.14 -1.43** 0.61** 14.78%

(0.28) (0.29) (0.18)

0-12 0.01 -0.20** 0.11** 13.91%

(0.05) (0.05) (0.03)

12-24 -0.05 -0.48** 0.29** 15.13%

(0.11) (0.11) (0.07)

24-36 -0.10 -0.72** 0.42** 14.94%

(0.16) (0.17) (0.10)

36-48 -0.14 -0.90** 0.52** 15.38%

(0.20) (0.20) (0.13)

48-60 -0.20 -1.10** 0.59** 15.56%

(0.23) (0.24) (0.15)

Table 1.8 reports results from a regression analysis of 16 Fama bond portfolios total returns,

sorted by average maturity. The regressors are some common macro factors used for fixed

income returns, namely changes in inflation rates, aggregate real consumption growth, and

the level, slope and curvature of the US zero rates curve, where the coefficients on the statis-

tically insignificant factors are restricted to zero. The table reports coefficients and standard

errors in parenthesis. Significance is reported at the 10, 5 and 1% level with one, two and

three asterisks respectively. The sample size is equal to 220 quarters.
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Table 1.9: Fixed income total returns unrestricted scale factor model.

Model α β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 β13 β14 β15 R2

0-6 -0.07 -0.12** -0.16* -0.09 -0.06** 0 0.02 0.29** -0.01 0.01 0.33** -0.15 0.04 -0.1 0.08 0.11 23.96%

(0.09) (0.03) (0.08) (0.24) (0.03) (0.05) (0.05) (0.08) (0.08) (0.01) (0.14) (0.15) (0.04) (0.18) (0.21) (0.08)

6-12 -0.16 -0.27** -0.47** 0.26 -0.18** -0.02 0.05 0.65** 0.02 0 0.78** -0.47 0.12 -0.51 0.26 0.34* 26.62%

(0.2) (0.07) (0.19) (0.56) (0.06) (0.11) (0.11) (0.18) (0.19) (0.03) (0.32) (0.35) (0.09) (0.41) (0.48) (0.19)

12-18 -0.34 -0.4** -0.78** 0.38 -0.29** -0.05 0.1 0.93** 0.06 0 0.98** -0.85 0.22 -0.63 0.55 0.49* 28.47%

(0.29) (0.10) (0.28) (0.83) (0.10) (0.16) (0.17) (0.27) (0.28) (0.04) (0.47) (0.51) (0.13) (0.62) (0.71) (0.28)

18-24 -0.42 -0.48** -1** 0.79 -0.36** -0.09 0.11 1.16** 0.06 0.00 1.24** -1.06 0.32* -0.79 0.84 0.56 28.13%

(0.37) (0.12) (0.36) (1.06) (0.12) (0.20) (0.21) (0.34) (0.35) (0.05) (0.6) (0.65) (0.17) (0.78) (0.91) (0.35)

24-30 -0.49 -0.61** -1.22** 1.49 -0.37** -0.15 0.08 1.33** 0.1 0.00 1.56** -1.28 0.41* -0.98 1.08 0.63 25.41%

(0.47) (0.16) (0.46) (1.34) (0.15) (0.26) (0.27) (0.43) (0.45) (0.06) (0.76) (0.83) (0.21) (1.00) (1.15) (0.45)

30-36 -0.63 -0.71** -1.29** 1.32 -0.45** -0.17 0.13 1.49** 0.01 0.00 1.71* -1.72* 0.53** -1.11 1.75 0.58 26.40%

(0.53) (0.18) (0.52) (1.52) (0.17) (0.29) (0.3) (0.48) (0.51) (0.07) (0.85) (0.94) (0.24) (1.12) (1.3) (0.51)

36-42 -0.65 -0.79** -1.50** 2.15 -0.50** -0.22 0.08 1.50** -0.02 0.01 1.50 -1.84* 0.60** -1.13 2.03 0.65 26.32%

(0.59) (0.20) (0.57) (1.67) (0.19) (0.32) (0.33) (0.53) (0.56) (0.08) (0.94) (1.03) (0.26) (1.24) (1.43) (0.56)

42-48 -0.74 -0.91** -1.6** 2.6 -0.56** -0.33 0.1 1.38** -0.07 0.01 1.28 -2.43** 0.68** -0.74 2.47 0.59 26.22%

(0.64) (0.22) (0.62) (1.83) (0.21) (0.35) (0.37) (0.58) (0.61) (0.08) (1.03) (1.13) (0.29) (1.36) (1.57) (0.61)

48-54 -0.68 -1.02** -1.55** 2.63 -0.57** -0.33 0.10 1.38** -0.2 0.00 1.45 -2.31* 0.72** -1.26 2.69 0.64 25.62%

(0.69) (0.23) (0.67) (1.96) (0.23) (0.37) (0.39) (0.62) (0.65) (0.09) (1.10) (1.21) (0.31) (1.45) (1.68) (0.66)

54-60 -0.92 -1.1** -1.81** 2.52 -0.71** -0.46 0.01 1.47** -0.03 0.04 1.41 -1.77 0.86** -0.92 1.81 0.38 23.54%

(0.78) (0.26) (0.76) (2.23) (0.26) (0.42) (0.45) (0.71) (0.75) (0.1) (1.26) (1.38) (0.35) (1.65) (1.91) (0.75)

60-120 -0.77 -1.32** -2.2** 3.28 -0.77** -0.64 0.22 1.44* -0.11 -0.03 0.66 -2.59 0.83** -0.14 2.64 0.71 23.83%

(0.90) (0.30) (0.87) (2.56) (0.29) (0.49) (0.51) (0.82) (0.86) (0.12) (1.44) (1.58) (0.40) (1.90) (2.19) (0.86)

0-12 -0.12 -0.19** -0.32** 0.10 -0.12** -0.01 0.03 0.49** 0.01 0.00 0.58** -0.3 0.08 -0.31 0.13 0.23* 25.63%

(0.14) (0.05) (0.14) (0.41) (0.05) (0.08) (0.08) (0.13) (0.14) (0.02) (0.23) (0.25) (0.06) (0.30) (0.35) (0.14)

12-24 -0.37 -0.44** -0.89** 0.59 -0.33** -0.07 0.10 1.04** 0.06 0.00 1.12** -0.97 0.26* -0.73 0.71 0.53* 28.45%

(0.33) (0.11) (0.32) (0.94) (0.11) (0.18) (0.19) (0.30) (0.31) (0.04) (0.53) (0.58) (0.15) (0.70) (0.80) (0.32)

24-36 -0.48 -0.66** -1.31** 1.24 -0.44** -0.18 0.12 1.37** 0.11 -0.01 1.45* -1.46 0.42* -0.85 1.32 0.67 26.25%

(0.50) (0.17) (0.49) (1.43) (0.16) (0.27) (0.29) (0.46) (0.48) (0.06) (0.81) (0.88) (0.23) (1.06) (1.22) (0.48)

36-48 -0.61 -0.85** -1.49** 2.05 -0.53** -0.32 0.14 1.36** 0.01 -0.01 1.15 -1.77 0.60** -0.61 1.80 0.68 25.24%

(0.62) (0.21) (0.6) (1.77) (0.2) (0.34) (0.35) (0.56) (0.59) (0.08) (1.00) (1.09) (0.28) (1.31) (1.51) (0.59)

48-60 -0.73 -1.03** -1.75** 2.35 -0.67** -0.41 0.16 1.29* -0.15 -0.01 0.89 -2.25* 0.76** -0.52 2.56 0.58 25.06%

(0.73) (0.25) (0.71) (2.08) (0.24) (0.4) (0.42) (0.66) (0.70) (0.09) (1.17) (1.28) (0.33) (1.54) (1.78) (0.70)

Table 1.9 reports results from a regression analysis of 16 Fama bond portfolios total returns. The regressors are some common macro factors used for fixed income returns,

namely changes in inflation rates, aggregate real consumption growth, and the level, slope and curvature of the US zero rates curve, but are decomposed in three relevant

scales. The table reports coefficients and standard errors in parenthesis. Significance is reported at the 10, 5 and 1% level with one, two and three asterisks respectively. The

sample size is equal to 220 quarters.
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Table 1.10: Fixed income total returns restricted scale factor model.

Model α β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 β13 β14 β15 R2

0-6 0.01 -0.11** -0.17* -0.06* 0.15** 0.07** 15.50%

(0.03) (0.03) (0.08) (0.03) (0.06) (0.02)

6-12 -0.05 -0.25** -0.49** -0.18** 0.32** 0.2** 20.20%

(0.06) (0.07) (0.19) (0.07) (0.13) (0.04)

12-18 -0.1 -0.38** -0.82** -0.29** 0.51** 0.32** 22.10%

(0.1) (0.1) (0.28) (0.1) (0.19) (0.07)

18-24 -0.18 -0.46** -1.06** -0.37** 0.63** 0.43** 22.80%

(0.12) (0.13) (0.36) (0.12) (0.25) (0.08)

24-30 -0.23 -0.58** -1.3** -0.38** 0.67** 0.51** 20.40%

(0.15) (0.16) (0.45) (0.16) (0.31) (0.1)

30-36 -0.29* -0.68** -1.4** -0.46** 0.76** 0.61** 21.60%

(0.17) (0.18) (0.51) (0.18) (0.35) (0.12)

36-42 -0.32* -0.76** -1.62** -0.51** 0.87** 0.67** 22.30%

(0.19) (0.2) (0.56) (0.19) (0.38) (0.13)

42-48 -0.35* -0.89** -1.8** -0.56** 0.83* 0.71** 21.90%

(0.21) (0.22) (0.62) (0.21) (0.42) (0.14)

48-54 -0.39* -0.99** -1.75** -0.59** 0.78* 0.79** 22.10%

(0.22) (0.24) (0.66) (0.23) (0.45) (0.15)

54-60 -0.51** -1.07** -2.03** -0.72** 0.87* 0.83** 21.10%

(0.25) (0.27) (0.74) (0.26) (0.51) (0.17)

60-120 -0.4 -1.31** -2.52** -0.76** 1.13* 0.88** 20.90%

(0.29) (0.31) (0.85) (0.3) (0.58) (0.2)

0-12 -0.02 -0.18** -0.34** -0.12** 0.24** 0.14** 18.70%

(0.05) (0.05) (0.14) (0.05) (0.1) (0.03)

12-24 -0.14 -0.42** -0.94** -0.33** 0.56** 0.37** 22.70%

(0.11) (0.11) (0.32) (0.11) (0.22) (0.07)

24-36 -0.23 -0.63** -1.41** -0.45** 0.74** 0.56** 21.50%

(0.16) (0.17) (0.48) (0.17) (0.33) (0.11)

36-48 -0.3 -0.83** -1.66** -0.53** 0.86** 0.69** 21.80%

(0.2) (0.21) (0.59) (0.2) (0.41) (0.14)

48-60 -0.41* -1.02** -1.97** -0.67** 0.91* 0.81** 22.20%

(0.23) (0.25) (0.69) (0.24) (0.47) (0.16)

Table 1.10 reports results from a regression analysis of 16 Fama bond portfolios total returns. The regressors are some common macro factors

used for fixed income returns, namely changes in inflation rates, aggregate real consumption growth, and the level, slope and curvature of

the US zero rates curve, where the coefficients on the statistically insignificant factors are restricted to zero. The table reports coefficients and

standard errors in parenthesis. Significance is reported at the 10, 5 and 1% level with one, two and three asterisks respectively. The sample size

is equal to 220 quarters.
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Table 1.11: Market prices of risk

Asset class λ0 λ1 R2 λ0 λ1 λ2 λ3 λ4 λ5 R2

Equity 1.88*** 0.48** 19.70% 2.98** 0.02 0.54*** 0.05 0.04 0.12 63.61%

(0.20) (0.19) (1.16) (0.33) (0.16) (0.15) (0.1) (0.32)

Fixed income 1 1.00*** -0.01 0.00% 0.46* -0.28*** 0.07 0.09* 0.14 -0.23 97.96%

(0.15) (0.22) (0.22) (0.09) (0.08) (0.05) (0.2) (0.19)

Fixed income 2 0.11*** -0.63*** 87.00% 0.06* -0.24** -0.79** -0.07 -0.34** 0.43 93.80%

(0.02) (0.06) (0.03) (0.32) (0.3) (0.08) (0.14) (0.27)

Credit Default Swap 1 -0.28*** 0.05** 38.00% -0.26** 0.02 0.03 -0.01 0.03 0.03 57.84%

(0.02) (0.018) (0.1) (0.02) (0.03) (0.01) (0.04) (0.05)

Credit Default Swap 2 -0.41*** -0.03 11.50% -1.07*** -0.05*** 0.04 0.01*** -0.10 -0.33** 94.59%

(0.06) (0.03) (0.22) (0.01) (0.03) (0.00) (0.07) (0.12)

Table 1.11 reports results from a cross sectional OLS regression of expected returns over betas. The table reports coefficients and

standard errors in parenthesis. Significance is reported at the 10, 5 and 1% level with one, two and three asterisks respectively.

The linear cross-sectional regression is: r̄e
i = λ0 + λ1βi + εi

Table 1.12: Gibbons Ross Shanken test

Asset class χ2 statistic P value

Standard CCAPM Business cycle CCAPM Standard CCAPM Business cycle CCAPM

Equity 3.10 12.20 3.14 x 10-6 0.00

Fixed Income 1 7.20 28.00 8.06 x 10-8 0.00

Fixed Income 2 1.70 11.50 0.04 0.00

Credit Default Swap 1 210.30 791.30 0.00 0.00

Credit Default Swap 2 134.70 1134.10 1.88 x 10-15 0.00

Table 1.12 reports results from a Gibbons Ross Shanken test on the alphas of each regression model. The GRS test rejects the null of

all alphas being jointly equal to zero for both models.
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Table 1.13: Akaike Information Criterion and Likelihood Ratio test

Asset class AIC LR test

Standard CCAPM Business cycle CCAPM

Equity 219.60 196.71 10.98**

Fixed Income 1 147.13 91.29 7.83*

Fixed Income 2 208.89 191.47 1.00

Credit Default Swap 1 106.20 80.51 2.22

Credit Default Swap 2 119.59 82.59 2.71

Table 1.13 reports the Akaike Information Criterion and the Likelihood Ratio test statistic

for both models. The lower AIC signals the better model. Significance at 10%, 5% and 1%

is reported with one, two and three stars respectively.
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Table 1.14: HML regressions versus real consumption growth

α β R2 α β1 β2 β3 β4 β5 R2

Low 2.15** 0.51 0.39% 2.40* 0.10 -2.15 6.63*** 0.46 0.06 7.81%

(0.73) (0.54) (1.39) (0.72) (1.3) (1.65) (1.68) (2.25)

2 2.40*** 0.61 0.70% 2.57* 0.39 -2.03* 5.36*** 0.51 0.31 6.80%

(0.65) (0.49) (1.26) (0.65) (1.17) (1.50) (1.52) (2.03)

3 2.45*** 0.64 0.83% 3.22** 0.54 -1.83 4.99*** 0.43 -0.76 6.50%

(0.63) (0.47) (1.21) (0.63) (1.13) (1.44) (1.47) (1.96)

4 2.60*** 0.42 0.33% 3.24** 0.27 -2.56** 5.29*** 0.07 -0.74 7.48%

(0.65) (0.48) (1.24) (0.64) (1.16) (1.48) (1.50) (2.00)

5 2.47*** 0.66 1.02% 2.85** 0.49 -1.70 4.30*** 0.50 -0.02 5.78%

(0.58) (0.43) (1.13) (0.59) (1.05) (1.34) (1.36) (1.82)

6 2.61*** 0.72 1.15% 2.57** 0.38 -2.19** 4.74*** 1.41 0.80 7.39%

(0.6) (0.45) (1.15) (0.6) (1.07) (1.37) (1.39) (1.86)

7 2.74*** 0.73 1.12% 2.8** 0.24 -1.38 5.05*** 0.68 0.61 6.25%

(0.61) (0.46) (1.19) (0.62) (1.1) (1.41) (1.43) (1.92)

8 2.87*** 0.80* 1.27% 2.71** 0.44 -1.93* 5.30*** 1.23 1.08 7.40%

(0.63) (0.47) (1.22) (0.63) (1.13) (1.45) (1.47) (1.96)

9 3.04*** 0.87* 1.39% 3.38** 0.78 -2.35* 5.05*** 1.22 0.27 7.12%

(0.66) (0.49) (1.27) (0.66) (1.19) (1.51) (1.54) (2.06)

High 3.14*** 1.42** 2.57% 4.06** 1.15 -2.02 6.31*** 2.58 -0.25 7.56%

(0.79) (0.59) (1.53) (0.79) (1.42) (1.81) (1.84) (2.46)

High - Low 0.99 0.91 1.66 1.05 0.13 -0.32 2.12 -0.31

Table 1.14 reports results from a regression analysis of 10 portfolios sorted by Value. The regressor is aggregate

consumption growth. The table reports coefficients and standard errors in parenthesis. Significance is reported

at the 10, 5 and 1% level with one, two and three asterisks respectively. The sample size is equal to 220 quarters.
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Table 1.15: SMB regressions versus real consumption growth

α β R2 α β1 β2 β3 β4 β5 R2

Small 2.46** 1.77** 2.82% 3.73** 1.66* -1.42 8.33*** 0.75 -0.53 7.86%

(0.93) (0.70) (1.81) (0.94) (1.68) (2.15) (2.18) (2.92)

2 2.38*** 1.68** 2.84% 3.54** 1.67* -1.74 7.76*** 0.84 -0.42 8.06%

(0.88) (0.66) (1.71) (0.89) (1.59) (2.03) (2.06) (2.76)

3 2.80*** 1.31** 1.91% 3.85** 1.33 -1.93 6.93*** 0.70 -0.61 7.11%

(0.84) (0.63) (1.63) (0.85) (1.52) (1.94) (1.97) (2.63)

4 2.62*** 1.24** 1.86% 3.64** 1.09 -1.59 7.01*** 0.54 -0.61 7.17%

(0.81) (0.61) (1.57) (0.81) (1.46) (1.86) (1.89) (2.53)

5 2.73**** 1.19** 1.84% 3.86** 1.11 -1.72 6.28*** 0.96 -0.86 6.71%

(0.78) (0.58) (1.52) (0.79) (1.41) (1.80) (1.83) (2.45)

6 2.66**** 1.09* 1.76% 3.89** 0.93 -1.45 6.43*** 0.78 -1.15 7.47%

(0.73) (0.55) (1.41) (0.73) (1.31) (1.68) (1.70) (2.28)

7 2.71*** 0.96* 1.38% 3.43** 0.76 -1.66 6.19*** 0.59 -0.34 6.82%

(0.73) (0.55) (1.42) (0.73) (1.32) (1.68) (1.71) (2.29)

8 2.66*** 0.82 1.09% 3.17** 0.66 -1.68 5.11*** 0.70 -0.11 5.41%

(0.70) (0.52) (1.36) (0.71) (1.27) (1.62) (1.64) (2.2)

9 2.68*** 0.48 0.45% 2.92** 0.25 -2.16* 4.97*** 0.24 0.04 6.28%

(0.64) (0.48) (1.24) (0.65) (1.16) (1.48) (1.50) (2.01)

Big 2.24*** 0.50 0.61% 2.21* 0.16 -2.23** 4.97*** 0.85 0.56 8.06%

(0.58) (0.43) (1.11) (0.57) (1.03) (1.31) (1.34) (1.79)

Small-Big 0.22 1.27 1.51 1.49 0.81 3.36 -0.10 -1.09

Table 1.15 reports results from a regression analysis of 10 portfolios sorted by Size. The regressor is aggregate

consumption growth. The table reports coefficients and standard errors in parenthesis. Significance is reported

at the 10, 5 and 1% level with one, two and three asterisks respectively. The sample size is equal to 220 quarters.
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Table 1.16: HML regressions versus MKT

α β R2 α β1 β2 β3 β4 β5 R2

Low 0.79** 1.09** 87% 0.8* 1.12** 1.08** 1.03** 1.21** 1.11** 85.00%

(0.24) (0.03) (0.44) (0.05) (0.05) (0.07) (0.23) (0.24)

2 1.22** 1.00** 92% 1.34** 1.09** 0.96** 0.97** 0.72** 0.95** 90.00%

(0.17) (0.02) (0.31) (0.03) (0.04) (0.05) (0.16) (0.17)

3 1.35** 0.96** 91% 1.59** 1.00** 0.96** 0.94** 0.83** 0.82** 89.00%

(0.18) (0.02) (0.32) (0.04) (0.04) (0.05) (0.17) (0.18)

4 1.37** 0.96** 86% 1.74** 0.99** 0.95** 1.02** 0.64** 0.74** 85.00%

(0.22) (0.03) (0.39) (0.04) (0.05) (0.06) (0.20) (0.21)

5 1.55** 0.85** 82% 1.82** 0.85** 0.84** 0.90** 0.72** 0.68** 80.00%

(0.23) (0.03) (0.40) (0.04) (0.05) (0.07) (0.21) (0.22)

6 1.67** 0.89** 85% 2.06** 0.83** 0.95** 0.91** 0.81** 0.64** 82.00%

(0.22) (0.03) (0.39) (0.04) (0.05) (0.06) (0.20) (0.22)

7 1.81** 0.88** 79% 2.34** 0.86** 0.89** 0.93** 0.76** 0.54** 76.00%

(0.26) (0.03) (0.46) (0.05) (0.06) (0.07) (0.24) (0.25)

8 1.98** 0.88** 74% 3.12** 0.85** 0.97** 0.92** 0.44* 0.12 75.00%

(0.30) (0.03) (0.49) (0.05) (0.06) (0.08) (0.25) (0.27)

9 2.12** 0.93** 76% 2.85** 0.97** 0.96** 0.90** 0.30 0.45 76.00%

(0.3) (0.03) (0.50) (0.05) (0.06) (0.08) (0.26) (0.28)

High 2.36** 1.03** 66% 3.07** 0.96** 1.08** 1.24** 0.42 0.57 65.00%

(0.43) (0.05) (0.72) (0.08) (0.09) (0.12) (0.37) (0.40)

High - Low 1.57 -0.05 2.27 -0.16 0.00 0.21 -0.79 -0.53

Table 1.16 reports results from a regression analysis of 10 portfolios sorted by Value. The regressor is S&P 500

total returns. The table reports coefficients and standard errors in parenthesis. Significance is reported at the

10, 5 and 1% level with one, two and three asterisks respectively. The sample size is equal to 220 quarters.

40



Table 1.17: SMB regression versus MKT

α β R2 α β1 β2 β3 β4 β5 R2

Small 1.57** 1.23** 68.00% 3.59** 1.24** 1.23** 1.46** 0.93** -0.12 66.00%

(0.51) (0.06) (0.83) (0.09) (0.10) (0.13) (0.43) (0.46)

2 1.41** 1.25** 77.00% 2.99** 1.35** 1.21** 1.34** 0.85** 0.21 76.00%

(0.40) (0.05) (0.66) (0.07) (0.08) (0.11) (0.34) (0.36)

3 1.65** 1.23** 82.00% 2.95** 1.34** 1.21** 1.23** 0.79** 0.38 82.00%

(0.33) (0.04) (0.55) (0.06) (0.07) (0.09) (0.28) (0.30)

4 1.50** 1.20** 84.00% 2.67** 1.32** 1.16** 1.16** 0.88** 0.43 83.00%

(0.31) (0.04) (0.51) (0.05) (0.06) (0.08) (0.26) (0.28)

5 1.60** 1.18** 87.00% 2.55** 1.26** 1.17** 1.17** 0.97** 0.56** 87.00%

(0.26) (0.03) (0.44) (0.05) (0.05) (0.07) (0.23) (0.24)

6 1.57** 1.11** 88.00% 2.17** 1.17** 1.12** 1.10** 0.96** 0.73** 89.00%

(0.23) (0.03) (0.39) (0.04) (0.05) (0.06) (0.20) (0.22)

7 1.53** 1.13** 90.00% 2.41** 1.16** 1.14** 1.15** 1.01** 0.56** 92.00%

(0.20) (0.02) (0.35) (0.04) (0.04) (0.06) (0.18) (0.19)

8 1.47** 1.08** 92.00% 2.23** 1.13** 1.10** 1.07** 1.06** 0.59** 93.00%

(0.18) (0.02) (0.30) (0.03) (0.04) (0.05) (0.16) (0.17)

9 1.42** 1.01** 93.00% 1.82** 1.00** 1.06** 0.98** 0.85** 0.76** 95.00%

(0.14) (0.02) (0.27) (0.03) (0.03) (0.04) (0.14) (0.15)

Big 1.15** 0.90** 91.00% 0.97** 0.89** 0.90** 0.90** 0.90** 1.05** 95.00%

(0.12) (0.01) (0.27) (0.03) (0.03) (0.04) (0.14) (0.15)

Small-Big 0.42 0.33 2.61 0.35 0.33 0.56 0.03 -1.17

Table 1.17 reports results from a regression analysis of 10 portfolios sorted by Size. The regressor is S&P 500

total returns. The table reports coefficients and standard errors in parenthesis. Significance is reported at the

10, 5 and 1% level with one, two and three asterisks respectively. The sample size is equal to 220 quarters.
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Table 1.18: Determinants of S&P 500 risk exposure

α DEF INDP SHORT TERM VIX cay INFL R2

βt 0.22* 0.48*** 0.09* -0.04 -0.05** -0.02 0.03* 0.17*** 44.94%

(0.12) (0.04) (0.04) (0.08) (0.03) (0.04) (0.02) (0.04)

β1,t -0.75** 0.19** 0.02 -0.16* 0.04 0.07 -0.01 0.18*** 19.42%

(0.13) (0.05) (0.05) (0.09) (0.03) (0.05) (0.02) (0.05)

β2,t -4.97*** 0.85** -0.22 -0.58* 0.30** -0.53** -0.08 0.36** 21.75%

(0.46) (0.16) (0.17) (0.32) (0.11) (0.17) (0.06) (0.18)

β3,t 14.32*** 0.61 0.03 -4.79** 0.88 -1.15 2.94*** 0.99 29.26%

(2.56) (0.92) (0.97) (1.81) (0.61) (0.94) (0.36) (0.98)

β4,t 0.11 0.03 -0.10* 0.11 -0.03 0.12** -0.04 0.01 9.39%

(0.15) (0.05) (0.06) (0.11) (0.04) (0.06) (0.02) (0.06)

β5,t 1.75** 0.25* 0.13 -0.87** 0.08 -0.94** -0.05 0.11 32.59%

(0.34) (0.12) (0.13) (0.24) (0.08) (0.13) (0.05) (0.13)

Table 1.18 reports the OLS regression coefficient estimates of the time varying Betas on a set of struc-

tural variables.
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Consumption growth decomposition.
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Figure 1.1: The figure shows the time series of the consumption growth process decom-
posed in the J = 5 scales. The decomposition is performed by using a Daubechies wavelet.
The data is quarterly observations from February 1959 to August 2014. The sample contains
222 quarterly observations.
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Adjusted R2 across scales.

Figure 1.2: The figure shows the behaviour of the cross-sectional adjusted R2 for various
scales. After scale J = 5, the adjusted R2 flat-lines for all asset classes. The adjusted R2

shows the explained cross sectional variation from the following regression:

r̄e
i = λ0 + λ1β1

i + λ2β2
i + ... + λJ βJ

i + εi

where J is recursively increased from J = 1, corresponding to the normal consumption
CAPM, up to J = 10, a business cycle consumption CAPM with ten frequency components.
The figure shows that after the fifth scale, there is not much additional explanatory power
gained from adding further scales.
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Second stage regression: 25 Fama and French porfolios.

Figure 1.3: The figure presents the results from the second stage cross sectional regression
for the 25 Fama and French portfolios. The top panel presents the result using aggregate
consumption only, while the lower panel presents the result using the decomposed
consumption. I report model implied expected returns vs realized excess returns. I also
report a 45 degree line and the Relative Mean Square Error.

The first regression is an OLS estimate of: r̄e
i = λ0 + λ1βi + εi

while the second regression is an OLS estimate of: r̄e
i = λ0 + λ1β1

i + λ2β2
i + ... + λJ βJ

i + εi
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Second stage regression: 9 BAML fixed income portfolios.

Figure 1.4: The figure presents the results from the second stage cross sectional regression
for the 9 BAML fixed income portfolios. The top panel presents the result using aggregate
consumption only, while the lower panel presents the result using the decomposed
consumption. I report model implied expected returns vs realized excess returns. I also
report a 45 degree line and the Root Mean Square Error.

The first regression is an OLS estimate of: r̄e
i = λ0 + λ1βi + εi

while the second regression is an OLS estimate of: r̄e
i = λ0 + λ1β1

i + λ2β2
i + ... + λJ βJ

i + εi
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Second stage regression: 17 CRSP Fama Maturity portfolios.

Figure 1.5: The figure presents the results from the second stage cross sectional regression
for the 17 CRSP Fama Maturity portfolios. The top panel presents the result using aggre-
gate consumption only, while the lower panel presents the result using the decomposed
consumption. I report model implied expected returns vs realized excess returns. I also
report a 45 degree line and the Root Mean Square Error.

The first regression is an OLS estimate of: r̄e
i = λ0 + λ1βi + εi

while the second regression is an OLS estimate of: r̄e
i = λ0 + λ1β1

i + λ2β2
i + ... + λJ βJ

i + εi
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Second stage regression: 12 macro credit indices.

Figure 1.6: The figure presents the results from the second stage cross sectional regression
for the 12 macro credit indices. The top panel presents the result using aggregate consump-
tion only, while the lower panel presents the result using the decomposed consumption. I
report model implied expected returns vs realized excess returns. I also report a 45 degree
line and the Root Mean Square Error.

The first regression is an OLS estimate of: r̄e
i = λ0 + λ1βi + εi

while the second regression is an OLS estimate of: r̄e
i = λ0 + λ1β1

i + λ2β2
i + ... + λJ βJ

i + εi
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Second stage regression: 10 industry specific credit indices.

Figure 1.7: The figure presents the results from the second stage cross sectional regression
for the 10 industry specific credit indices. The top panel presents the result using aggregate
consumption only, while the lower panel presents the result using the decomposed
consumption. I report model implied expected returns vs realized excess returns. I also
report a 45 degree line and the Root Mean Square Error.

The first regression is an OLS estimate of: r̄e
i = λ0 + λ1βi + εi

while the second regression is an OLS estimate of: r̄e
i = λ0 + λ1β1

i + λ2β2
i + ... + λJ βJ

i + εi
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Conditional volatilities and correlations.
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Figure 1.8: The figure shows the path of the conditional volatility of S&P 500 returns (top
panel), of consumption growth (middle panel) and the dynamic conditional correlation
(bottom panel) between S&P 500 returns and aggregate consumption growth (solid) and
between S&P 500 returns and the third scale of consumption growth (dashed). The bottom
panel shows that almost all the correlation between S&P 500 returns and consumption
growth occurs at scale 3, that is at a one year frequency.

50



Time-varying betas.
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Figure 1.9: The figure shows time varying betas from a Dynamic Conditional Correlation
(DCC) model. The top panel shows the beta with respect to aggregate consumption
growth from a DCC model (solid), and the estimated beta from a set of structural factors
(dashed). The lower panel shows the beta with respect to the third scale of consumption
growth from a DCC model (solid), and the estimated beta from a set of structural factors
(dashed).

The estimated betas are generated by fitting via OLS the following linear regression:

βi,t = φ0 + φ1DEFt + φ2 INDPt + φ3SHORTt + φ4TERMt + φ5VIXt + φ6cayt + φ7 INFLt +
ut

with i = 1, .., J or aggregate. The results of this regression are reported in Table 1.18.
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Chapter 2

The empirical properties of

political risk.

2.1 Introduction.

Since the European debt crisis of 2010, political risk has returned at the forefront of finance.

Part of the challenge is to understand what is meant by “political risk”. Baker et al. (2016)

introduce a measure of economic policy uncertainty risk, based on the news coverage of

certain keywords, historically associated with government crises. This has spawned a lit-

erature that tries to address the impacts of policy uncertainty risk on various economic

measures, such as GDP growth, credit spreads and stock market returns.

The goal of this chapter is to take one step back and describe the main statistical properties

of the Economic Policy Uncertainty index as well as the information it conveys. It is also

important to understand to what extent it conveys new information with respect to more

traditional measures of risk, such as the VIX index.

This is important because most of the literature that has used the EPU index until now

has not investigated its statistical properties thoroughly. For example, OLS estimates are

biased if the data exhibits heteroskedasticity. In general, the statistical properties unveiled

here must be taken into consideration when modelling policy uncertainty risk. These prop-

erties will be useful in the next Chapter, where I present a model of political risk that takes

the EPU index as an input.
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The main statistical properties of the Economic Policy Uncertainty (EPU) index uncovered

in this chapter are the following. First, the EPU index is not stationary, while the first dif-

ferentials of the logarithm are. Second, the index exhibits a leptokurtic behaviour, with

fat tails and a high peak around the mean. Third, the index has a time varying conditional

variance. Heteroskedasticity only partially explains the leptokurtic behaviour. Fourth, EPU

has a strong persistent nature, that can be exploited to produce forecasts of future political

risk levels. And finally, the EPU index Granger-causes other factors, most importantly the

S&P 500, oil, credit spreads, fed funds deviation and the VIX index.

Some of these properties may come from the way the index is constructed. The sum of

three separate indices at various frequencies has been shown to mechanically produce het-

eroskedasticity. Unfortunately the sub indices are not available so it is impossible to de-

compose this effect in its constituents.

The rest of the chapter is organised as follows. In Section 2 I review the literature on po-

litical risk, in Section 3 I conduct a preliminary investigation into the statistical properties

of the EPU index, in Section 4 I present a number of HAR models and their estimation. In

Sections 5 I draw some conclusions.

2.2 Literature review.

Baker et al.’s index is relatively new, but it has already been used in a number of studies on

political risk.

Manzo (2013) finds that a 10 percent increase in political uncertainty leads to a 3% increase

in both default risk and credit risk after a month. A European regional-level analysis re-

veals heterogeneity in the response of sovereign risk to variations in political uncertainty. I

am able to document a Granger causality between EPU and corporate credit spreads in the

US, even if my analysis clearly lacks the cross sectional dimension of Manzo.

Brogaard & Detzel (2015) find that EPU positively forecasts log excess market returns. A

one-standard deviation increase in EPU is associated with a 1.5% increase in the forecasted
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3-month abnormal returns (6.1% annualized). Furthermore, innovations in EPU earn a

significant negative risk premium in the Fama French 25 size and momentum portfolios.

Among the Fama French 25 portfolios formed on size and momentum returns, the port-

folio with the greatest EPU beta underperforms the portfolio with the lowest EPU beta by

5.53% per annum, controlling for exposure to the Carhart four factors as well as implied

and realized volatility. These findings suggest that EPU is an economically important risk

factor for equity markets.

Wisniewski & Lambe (2015) estimate a VAR on EPU and changes in CDS indices (iTraxx

and CDX). They find that policy uncertainty Granger-causes corporate credit spreads. Us-

ing a structural dynamic factor model, Scheffel (2015) finds that a shock to EPU has per-

vasive effects on the US economy and that more globally integrated markets exhibit sig-

nificantly more pronounced responses. Sum (2012) analyses the response of stock market

returns to a change in EPU: with a VAR methodology the response is positive while with

pooled OLS it is negative.

Baker et al.’s index is not the only proxy for political risk. There is a wider literature on pol-

icy uncertainty that goes beyond the use of the EPU index and that tries to quantify policy

uncertainty in different terms, such as taxation risk or uncertainty over the government’s

regulatory stance.

Manelaa & Moreira (2017) construct a news based measure of uncertainty by scraping Wall

Street Journal headlines and linking them to the VIX. They call their measure the ”News

VIX” or NVIX. This measure is able to forecast excess returns and is able to capture the

time variation of risk aversion. It performs exceptionally well in capturing the time varia-

tion in disaster risk, with a particular focus 20th Century war risk.

Sialm (2006) analyzes the effect of stochastic taxes on asset prices, and finds that investors

require a premium to compensate for the risk introduced by tax changes. Tax uncertainty

also features in Croce et al. (2012), who explore its asset pricing implications in a produc-

tion economy with recursive preferences. Croce et al. (2012) examines the effects of fiscal

uncertainty on long-term growth when agents facing model uncertainty care about the

worst-case scenario. Finally, Ulrich (2013) studies the policy problem of a government that

cares about welfare as well as public spending. He analyzes the bond market implications
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of Knightian uncertainty about the effectiveness of government policies.

Erb et al. (1996) find a weak relation between political risk, measured by the International

Country Risk Guide, and future stock returns. Pantzalis et al. (2000) and Li & Born (2006)

find abnormally high stock market returns in the weeks preceding major elections, espe-

cially for elections characterized by high degrees of uncertainty. This evidence is consistent

with a positive relation between the equity premium and political uncertainty. Brogaard

& Detzel (2015) find a positive relation between the equity risk premium and their search-

based measure of economic policy uncertainty in an international setting. Santa-Clara &

Valkanov (2003) relate the equity risk premium to political cycles. Pastor & Veronesi (2013)

set up an economy where agents learn in a bayesian fashion about future government poli-

cies and examines its effects on average implied volatilities. Policy heterogeneity plays a

large role in generating sufficient excess volatility. Belo et al. (2013) link the cross-section

of stock returns to firms’ exposures to the government sector. Bittlingmayer (1998) , Voth

(2002), and Boutchkova et al. (2011) find a positive relation between political uncertainty

and stock volatility in a variety of settings.

2.3 Preliminary data analysis.

My sample of Baker et al. (2016)’s daily index of Economic Policy Uncertainty in the United

States runs from the 2nd January 1986 to the 30th June 2014, totalling n = 7083 daily obser-

vations. Figure 2.1 shows the time series of the index. The index records the frequency

of articles in 10 leading US newspapers that contain the following triple: “economic”

or “economy”; “uncertain” or “uncertainty”; and one or more of “congress”, “deficit”,

“Federal Reserve”, “legislation”, “regulation” or “White House”. The aim of the index

is to measure “policy uncertainty”, as it might be an important part of total risk. For a

more complete account on how the index is built or on how the raw data is collected,

I redirect the reader to Baker, Bloom and Davis own work. The index is available at

http://www.policyuncertainty.com/.

In this chapter, I assume that political risk is a stochastic process and that I observe a real-

ization {EPU indext}{t=1,...,T} of this process. I will be mainly dealing with the following

two variables:

EPU levels: Xt = EPU indext
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EPU returns: xt = log(EPU indext)− log(EPU indext−1)

Table 2.1 reports some descriptive statistics. The time series of levels oscillates between a

minimum of 3.3 and a maximum of 720 and it is very noisy. The mean is around 100 and

the standard deviation around 70. The data shows a positive skew of 1.81, indicating a

positive tail to the right. The kurtosis is 8.62, which is higher than a normal distribution.

Table 2.2 reports the results of some stationarity tests, to see if there is a unit root in the

data. The Augmented Dickey Fuller (ADF) and the Philips Perron (PP) test on the levels

reject the null of a unit root with a p value of 0.1 %. The conclusion would therefore be

that EPU in levels is stationary. On the other hand, the Kwiatkowski, Phillips, Schmidt

and Shin (KPSS) and Leybourne-McCabe (LMC) reject the null of stationarity with p val-

ues of 1 %, leading to the conclusion that EPU in levels is not stationary. The LMC test

in particular suggests that EPU follows an ARIMA(p,1,1) model. Since EPU in levels is

non stationary, I will discard this dataset. I therefore proceed to test the stationarity of the

log difference, and all four tests confirm stationarity, with p-values of up to 10 % for the

KPSS and LMC tests. Figure 2.2 plots the autocorrelation and partial autocorrelation plots

for the log differential, along with the 95 % confidence interval. Some autocorrelations re-

main statistically different from zero, in particular the 7-day autocorrelation. From now

on, therefore, unless specified, I will be working with log differentials. Figure 2.3 shows

the empirical distribution of the log differential. The empirical distribution shows some

leptokurtosis, a phenomenon that could arise from time varying conditional variances.

I run a Cramer-von Mises goodness of fit test for a number of possible distribution on the

log differentials. The test fails to rejects the logistic distribution and the t-Student distribu-

tion. The best fit is provided by the logistic distribution with parameters µ = −0.002 and

σ = 0.382. Table 2.3 presents the results of the test and Figure 2.3 shows the fit.

2.3.1 Autocorrelation.

It is well known that the autocorrelation of asset returns tend to quickly decay to zero at

very small lags. The two main statistical features of volatility are positive short term au-

tocorrelation and long term mean reversion. The positive autocorrelation means that high

volatility tends to be followed by high volatility, leading to the well documented volatility

56



clustering phenomenon. Volatility, in other words, tends to experience long, prolonged pe-

riods at low values and then bursts upwards and remains high for considerable amounts of

time. This means asset managers may be tricked in thinking an asset is safer that it actually

is, only to discover its true riskiness during a crisis, when liquidity is thin and disinvesting

very expensive. The other feature of volatility is mean reversion, which is the tendency of

volatility to hover around a long term average.

Political risk shares many features of volatility. As can be seen from Figure 2.1 political

risk hovers within a bounded range. Figure 2.2 documents a negative autocorrelation of

around -0.4, meaning that increases in political risk tend to be followed by decreases. The

statistically significant negative autocorrelation in this case has little market implications,

as political risk is not a traded asset.

2.3.2 Non linear dependence

Another dimension worth investigating is to explore the possible non-linear dependencies

in the data. The autocorrelation of log differences is not the sole aspect to look at when

trying to characterize dependence. In fact, it is interesting to look at dependence between

non linear functions of returns as well. The first step is to model the conditional mean of

xt. Noticing that the time series exhibits some autocorrelation and partial autocorrelation,

I model the returns as a ARMA(1,1), where the orders p and q is estimated via the Akaike

Information Criterion. I then analyse some non-linearities in the residuals. The easiest

way to do this is to start by analysing autocorrelation among powers of the residuals. This

amounts at looking at the decay rates of the second, third and fourth power of residuals.

These plots are reported in Figure 2.4, along with the 95 % confidence bands. Looking at the

squared changes of the residuals, we can notice that the autocorrelation function is positive

and decaying very slowly, in other words, very persistent. This points to the presence of

volatility clustering in political risk. This means that not only political risk tends to cluster,

but its own volatility tends to cluster too. This justifies introducing econometric methods

of the “ARCH” class, to try to capture this volatility clustering of political risk. Note that

the use of ARCH or GARCH models simply tries to capture this clustering, which remains

a feature of the data and is model free. To this end, let me recall GARCH models and their

estimation.
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A GARCH(p,q) will look like this:
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√
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∑
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where νt is a white noise process. The model can be estimated by maximizing the log like-

lihood of observations:
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where θ =
{

ω, {γi}i=1,...,p , {αi}i=1,...,q

}
.

Conditional volatility models like the GARCH are tested on residuals. This means that I

must specify a model for the data that will generate these residuals. I keep the previous

ARMA(1,1) specification, adding GARCH(1,1) innovations. The order selection is again

done by maximizing the Akaike Information Criterion (AIC).

The result of this estimation point to a time-varying conditional variance of political risk.

Table 2.4 reports the results of the estimation. All coefficients are significant, except for the

constant. The overall model fit is R2 = 64%. Figure 2.5 depicts the extracted conditional

volatility. To check if conditional variances alone can explain the fat tail behaviour, I have

checked normality via a QQ plot. In Figure 2.6, the normalized residuals still show signif-

icant heavy tails. A Jarque-Brera test rejects the null of normality at any significance (JB

statistic = 766). I also perform Chen & Kuan (2003)’s normality test for GARCH innova-

tions. The modified JB statistic is 535, so I still reject the null at any significance level.

2.3.3 Extreme correlations

When building portfolios, an asset manager always tries to diversify. The extent to which

her portfolio is diversified depends on the degree of correlation between the assets in her

portfolio. Unfortunately, correlation is time varying and tends to spike during recessions.

This means that what used to be a well diversified portfolio might fail to deliver the bene-
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fits of diversification precisely when those are most needed, that is during market turmoil.

For this reason, asset managers also look at tail correlations, or the probability that two

assets will move together conditional on there being a big market movement.

For two assets, tail correlation is defined as the conditional probability of having a large

negative return in one asset given a large negative return in another asset. The thresholds

can be defined in terms of quantiles qi(α) (usually 95 or 99%).

P(ri < qi(α)|rj < qj(α)) =
P(ri < qi(α) ∩ rj < qj(α))

P(rj < qj(α))

or

P(rj < qj(α)|ri < qi(α)) =
P(ri < qi(α) ∩ rj < qj(α))

P(ri < qi(α))

These probabilities can be estimated from a sample {ri}i=1,...,Nof returns as:

P(ri < qi(α) ∩ rj < qj(α)) =
1
N ∑ I{ri<qi(α)∧rj<qj(α)}

P(ri < qi(α)) =
1
N ∑ I{ri<qi(α)}

P(rj < qj(α)) =
1
N ∑ I{rj<qj(α)}

where I is an indicator function that is one if the event is verified and zero otherwise.

To estimate tail correlations, I compute the sample equivalents of the above formulas. For

a pair of stationary time series ri and rj, and for a set of αs from 30 % to 1%, I first compute

the relevant quantiles as qi = µi ± t1−ασi and qj = µj ± t1−ασj. Then I compute the empiri-

cal frequencies pi(α) =
#ri<qi

N , pj(α) =
#rj<qj

N and pi,j(α) =
#ri<qi∧#rj<qj

N . The tail correlation

between ri and rj is then the conditional probability ρi,j(α) =
pi,j(α)

pi(α)
.

I compute the tail correlations for two scenarios: a positive return scenario, where qS&P500(α) =

µS&P500 + t1−ασS&P500, qVIX(α) = µVIX − t1−ασVIX , qEPU(α) = µEPU − t1−ασEPU , and a

negative return scenario, where qS&P500(α) = µS&P500 − t1−ασS&P500, qVIX(α) = µVIX +

t1−ασVIX , qEPU(α) = µEPU + t1−ασEPU . For the positive return scenario, I compute the
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probability that rS&P500 > qS&P500(α),rVIX < qVIX(α), rEPU > qEPU(α) while for the nega-

tive return scenario I compute rS&P500 < qS&P500(α),rVIX > qVIX(α), rEPU > qEPU(α). The

tail correlation is then the probability of observing an extreme co-movement, given a very

positive and negative S&P500 return.

Figure 2.8 depicts the tail correlation between thee pairs: S&P 500 and VIX (blue), EPU and

VIX (green) and EPU and S&P 500 index (red). They all tend to slope downwards, showing

that the probability that those pairs experience severe co-movements falls as I decrease α.

The EPU index exhibits lower tail correlations with both the VIX index and the S&P 500

index, showing that the conditional probabilities of EPU co-moving with either the VIX or

the S&P 500 are equally low. This shows that in extreme events, the EPU index conveys a

different information content from both the S&P 500 and the VIX. This confirms that EPU

is useful in providing new information to the market, even in stressed situations.

2.4 A HAR specification.

U. Muller & von Weizsacker (1997) introduced the idea that market participants act at dif-

ferent scales and this generates an additive cascade of partial volatilities. Each level of

the cascade is a function of not only its past value, but also of the expected values of the

other partial volatilities. Corsi (2009) shows by straightforward recursive substitutions of

the partial volatilities that this additive structure for the volatility cascade leads to a sim-

ple restricted linear autoregressive model featuring volatilities realized over different time

horizons. The heterogeneous nature of the model derives from the fact that, at each time

scale, the partial volatility relies on different autoregressive structures. This leads to a Het-

erogeneous Auto Regressive (HAR) specification.

Similar to Corsi’s argument, also political risk exists at various frequencies. The most ob-

vious is the electoral cycle, which in the US tends to last four years. Also, because of the

two years lag between presidential and congressional elections, there are two four year cy-

cles. On top of this, there are state congressional elections, mayoral elections, referenda on

propositions, etc. all acting at different frequencies and intensities. On top of these purely

political cycles, the monetary and economic boom-bust cycles can create a fiscal cycle, and

create further political complications, such as the need to raise the debt ceiling or to tackle

a budget deficit. The complex overlap of all these cycles determines the heterogeneous na-

ture of policy uncertainty and therefore renders the HAR model well suited to model this
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data.

The choice of the frequencies is not unique. Including many frequencies would improve

model fit but would reduce the interpretability of the model. In what follows I adhere to

Fernandes et al. (2014). Their choice of frequency starts with a common choice in the lit-

erature - 1,5 and 22 - so as to mirror daily, weekly and monthly components. They then

augment the frequencies with a biweekly (10) and a quarterly (66) component.

Let yt = log
(

EPUt
EPUt−1

)
. Let also yh

t = 1
h ∑h

s=1 yt−s+1 and define xt =
[
1, yh1

t , yh2
t , ..., yhN

t

]′
where the vector of periods is h = 1, 5, 10, 22, 66 days. The time series yt then follows a

HAR model if yt = βxt−1 + εt, where εt denotes a white noise process.

Following Fernandes et al. (2014), I consider three variations of the HAR specification.

The first includes a set of additional regressors zt such that yt = βxt−1 + γzt + εt where

zt = {z1t, ..., zKt} is a K-dimensional vector of explanatory variables. I refer to this as the

HARX specification.

Among the regressors, I include the following macrofinance variables: the h-day contin-

uously compounded return on the S&P 500 index for h = 1, 5, 10, 22, 66. (S&P 500 h-day

return); the h-day continuously compounded return on the one-month crude oil futures

contract (oil h-day return); the first difference of the logarithm of the trade-weighted av-

erage of the foreign exchange value of the US dollar index against the Australian dollar,

Canadian dollar, Swiss franc, euro, British sterling pound, Japanese yen, and Swedish kro-

ner (USD change); the excess yield of the Moody’s seasoned Baa corporate bond over the

Moody’s seasoned Aaa corporate bond (credit spread); the difference between the 10-Year

and 3-month treasury constant maturity rates (term spread); the difference between the

effective and target Federal Fund rates (FF deviation); and the h-day continuously com-

pounded return on the VIX index.

The choice of these factors is motivated by their ubiquitousness in the literature. They all

proxy for changes in the investment opportunity set as explained below. I use S&P 500 re-

turns in order to account for possible leverage and volatility effects (see for example Flem-

ing et al. (1995); Giot (2005) and Bollerslev & Zhou (2006). I include h-period returns on the

S&P 500 index so as to comply with the HAR nature of the model. The remaining regressors
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all convey information about the market conditions in the US. Both the term spread and oil

prices contain information about the future real economic activity (Estrella & Hardouvelis

(1991)) as well as about the future investment opportunity set (Petkova (2006)). The credit

spread can be considered a proxy for the amount of liquidity in the market, while US dol-

lar index returns and FF deviation are both related to the macroeconomic conditions in the

Country.

As a preliminary analysis, I run and Augmented Dickey Fuller test on all regressors, and

reject the null of unit roots at all levels of significance. I then test Granger-causality among

the macrofinance variables. The resulting F statistics from pairwise Granger causality tests

are showed in Table 2.8. The EPU index does not seem to Granger-cause the other macro

finance variables, but it is Granger-caused by S&P 500, VIX, BAA credit spread and term

spread. As a second test, I have tested the null hypothesis of a cointegrating relationship

among the structural variables. The test rejects the null at all levels of significance.

The second specification only includes lagged values: yt = βxt−1 + γzt−1 + εt. This speci-

fication helps to uncover the predictive ability of state variables. The third variant is an

HAR-type specification that controls for explanatory variables with asymmetric effects.

The chief motivation is to investigate if EPU shows the same asymmetric relation with

S&P 500 index returns as the VIX. In particular, the AHARX model is given by:

yt = βxt−1 + γ(−)z
(−)
t + γ(+)z

(+)
t + εt

where z(−)t =
{

z(−)1t , ..., z(−)Kt

}
and z(+)

t =
{

z(+)
1t , ..., z(+)

Kt

}
, with z(+)

1t = zkt1(zkt > 0) and

z(−)1t = zkt1(zkt < 0).

The models are estimated via OLS. Table 2.5 reports the estimation results. The constant is

never statistically different from zero. The first column reports the results of a HAR estima-

tion. The model exhibits a high level of persistence, at all lags considered. The coefficients

of the lagged values, all statistically significant at the 1 % level, increase with the lag period

h, from -0.17 to -6.87. By looking at partial R2s, we can notice in Table 2.6 that the 1 day

lagged EPU value explains about 18 % of the total variation alone. The 5 day lagged EPU

explains an additional 7 %. The improvement then decays substantially to 2.64 %, 2.77 %

and 1.06 % for the remaining components of the HAR. The biggest contributors to the ex-

planatory power of the model remains EPU’s own lagged values by far.
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The second column of Table 2.5 reports the estimation of the HARX model, where the vec-

tor of explaining factors zt is contemporaneous to the EPU index. The adjusted R2 to 33.01

%, and most of this increase is driven by lagged S & P 500 returns and lagged VIX changes.

The large negative and significant coefficient of the 66 day period return points to a nega-

tive relation with the S & P 500 but much more slow moving that the VIX. The 10 day oil

return, the change in credit and term spreads and fed funds deviation all carry statistically

significant coefficients, but with very little explanatory power, as measured by their contri-

bution to R2.

The third column shows the effect of lagging the set of explanatory variables one day back,

so as to simulate an in sample one step ahead forecast. The R2 falls very marginally to

32.88%. This can be a measure of predictability of the EPU index.

The fourth column displays the estimates of the Asymmetric HARX. The R2 rises only

marginally. The most interesting effect is that the 66 day period return. The effect is large

and negative when the S & P 500 experiences a positive return, while the effect disappears

during negative stock returns. This means that positive stock market performances tends

to decrease political risk, while negative stock market performances don’t seem to have a

large effect. Another interesting effect is the 5-day return on the VIX, which retains a sig-

nificant effect both during the upside and the downside.1

To investigate the predictive power of the model and to avoid over-fitting, I have estimated

the above models on a rolling window of 2000 observations, and then performed a one step

ahead forecast for each sample. Table 2.9 reports the mean forecast error (MFE), the stan-

dard deviation of the forecast error (SDFE), the mean squared error (MSE) and the mean

absolute error (MAE) for the three models. I have also added a simple random walk model

as a benchmark. All three models have a a similar MSE of 0.30, well below the value of 1.21

for the random walk. The three models perform in a similar way also in terms of MAE.

To test the predictive power of the models, I have run a Giacomini and White test on each

pair of specifications, reported in Table 2.10. The loss function is the absolute forecast error.

1To compare these results to another time series, I have estimated another (A)HARX on the VIX, using political
risk as an explanatory variable, collected in zt. The results are reported in Table 2.7. The model performs better on
the VIX, yielding a much higher R2. While VIX had some explanatory power on EPU, the opposite doesn’t seem
to hold true. The VIX is also much more difficult to predict one day ahead, with an R2 of only 3.49%.
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With a p-value of zero, the test rejects the null of equal predictive ability for HAR, HARX

and AHARX against the RW benchmark. It also tends to reject the null of equal predicitive

ability between HARX and AHARX. The test fails to reject the null for HARX and AHARX

against HAR. Judging by these results, it seems like adding the asymmetric effects sig-

nificantly deteriorates the predictive power of the model. It also means that adding a set

of exogenous explanatory variables does not improve the predictive performance signifi-

cantly.

2.5 Conclusions.

In this chapter I have investigated the time series properties of Baker et al.’s index of po-

litical uncertainty. The log differential is stationary and exhibits a leptokurtic distribution,

with heavy tails on both sides. The index also exhibits a time varying conditional variance,

as highlighted by an ARMA(1,1)-GARCH(1,1) model. This effect is only partially able to

explain the fat tails. Political risk also has small extreme correlations with the S & P 500,

pointing to the fact that it tends to convey a different type of risk other than market risk.

The set of HAR specifications has uncovered a number of further interesting properties.

The index is highly persistent and exhibits a strong heterogeneous nature, as current val-

ues are impacted by various h-period past returns. Political risk interacts interestingly with

a number of macro factors, most importantly the h-period return of the S&P 500, oil, credit

spreads, fed funds deviation and the VIX index. The regressive nature of EPU can be ex-

ploited to produce a one step ahead forecast of the index.
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Tables and Figures

The Economic Policy Uncertainty Index.

Figure 2.1: Plot of the EPU index time series, the sample period runs from from the 2nd

January 1986 to the 30th June 2014, including altogether 7016 observations.

Autocorrelation

Figure 2.2: Autocorrelation and partial autocorrelation functions for xt. The 95 % confi-
dence bands are reported around zero.
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Empirical distribution of xt.

Figure 2.3: Empirical distribution of the log differential of the EPU index with a logistic dis-
tribution over-imposed. The parameters of the fitted logistic distribution are µ = −0.0019
and σ = 0.3826.

Autocorrelation of residuals.

Figure 2.4: Sample autocorrelation function for various powers of an ARMA(1,1) residuals.
By quadrants, clockwise, (1) first moment, (2) second moment, (3) fourth moment and (4)
third moment. The residuals are computed from an ARMA(1,1) model as εt = xt − α −
φ1xt−1 − ψ1εt−1.
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Conditional volatilities.

Figure 2.5: Top panel reports the conditional volatility of EPU index returns extracted from
an ARMA(1,1)-GARCH(1,1) model. The bottom panel the log returns of the EPU index.

QQ plot of normalised residuals.

Figure 2.6: QQ plot of normalized residuals from the ARMA(1,1)-GARCH(1,1) model.
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ARMA order selection.

Figure 2.7: Akaike Information Criterion as a function of AR(p) and MA(q) order.

Tail correlations.

Figure 2.8: Tail correlation for three pairs: the VIX index with the S&P 500 index (blue), the
EPU index with the VIX index (green) and the EPU index with the S&P 500 index (red).
The figure reports various tail correlations for α from 30% to 1%. For a pair of station-
ary time series ri and rj, and for a set of αs from 30 % to 1%, I first compute the relevant
quantiles as qi = µi ± t1−ασi and qj = µj ± t1−ασj. The I compute the empirical frequen-

cies pi(α) = #ri<qi
N , pj(α) =

#rj<qj
N and pi,j(α) =

#ri<qi∧#rj<qj
N . The tail correlation between

ri and rj is then the conditional probability ρi,j(α) =
pi,j(α)

pi(α)
. I compute the tail correla-

tions for two scenarios: a positive return scenario, where qS&P500 = µS&P500 + t1−ασS&P500,
qVIX = µVIX − t1−ασVIX , qEPU = µEPU − t1−ασEPU , and a negative return scenario, where
qS&P500 = µS&P500 − t1−ασS&P500, qVIX = µVIX + t1−ασVIX , qEPU = µEPU + t1−ασEPU .

68



Table 2.1: Empirical moments of EPU index.

Mean Standard dev. Median Skew Kurtosis

EPUt 101.64 69.69 83.69 1.81 8.62

Table 2.1 reports the first four empirical moments of the Economic Pol-

icy Uncertainty index.

Table 2.2: Stationarity test

Test H0 H1 log(EPUt) Result log
(

EPUt
EPUt−1

)
Result

(p values) (p values)

Agumented Dickey Fuller (ADF) xt is unit root xt is not unit root 0.1 % Stationary 0.1 % Stationary

Phillips-Perron (PP) xt is unit root xt is not unit root 0.1 % Stationary 0.1 % Stationary

Kwiatkowski, Phillips, Schmidt and Shin (KPSS) xt is stationary xt is not stationary 1 % Not stationary 10 % Stationary

Leybourne-McCabe (LMC) xt follows AR(p) xt follows ARIMA(p,1,1) 1 % Not stationary 10 % Stationary

Table 2.2 reports the p-values for four stationarity tests, performed on log(EPUt) and its first difference.

Table 2.3: Goodness of fit test for EPU log differentials.

Distribution Parameters pValue CvMstat

mu sigma

Logistic -0.0019 0.3826 0.8861 0.0483

mu sigma nu

t Location-Scale -0.001 0.60 8.72 0.4436 0.1345

k sigma mu

Generalized Extreme Value -0.2048 0.6914 -0.27 0.0010 5.1738

mu sigma

Normal -0.00018 0.69 0.0010 1.7567

B

Rayleigh 0.488 0.0010 890

mu sigma

Extreme value 0.3469 0.7373 0.0010 23.43

Table 2.3 reports the result from a Cramer-Mises goodness of fit test. For each distribution

tested, I report the values of the relevant parameters, the p value of the test and the test

statistic.
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Table 2.4: Results of ARMA(1,1)-GARCH(1,1) estimation.

ARIMA(1,1,1) Model:

Parameter Value Error Statistic

Constant -0.00012888 0.000544319 -0.36

AR1 0.167194 0.0100245 16.67

MA1 -0.92625 0.00382862 -241.93

GARCH(1,1) Conditional Variance Model:

Parameter Value Error Statistic

Constant 0.000123846 5.55291e-05 2.23

GARCH1 0.990875 0.0009109 1087.80

ARCH1 0.008690 0.00088713 9.80

R2 61.64 %

Table 2.4 presents the results of the stimation of an ARIMA(1,1,1)-GARCH(1,1) on Xt = log EPUt.

This is equivalent to an ARMA(1,1) on xt = log EPUt − log EPUt−1.
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Table 2.5: Coefficient estimates for HARX and AHARX for EPU

Factors Only lag No lag One day lag Asymmetric

Constant -0.0008 0.0039 0.0055 -0.0155

1 day lagged EPU -0.17*** -0.16*** -0.16*** -0.16***

5 days lagged EPU -0.70*** -0.68*** -0.69*** -0.68***

10 days lagged EPU -1.09*** -1.10*** -1.10*** -1.12***

22 days lagged EPU -3.23*** -3.40*** -3.45*** -3.45***

66 days lagged EPU -6.88*** -8.14*** -8.29*** -8.16***

zt zt−1 z+t z−t

1 day S/P 500 return 0.07 -1.47* 1.07 -1.30

5 day S/P 500 return 4.91** 5.05* 5.31* 4.30

10 day S/P 500 return -1.16 -3.33 0.52 -1.67

22 day S/P 500 return -6.13 0.49 -9.90 -0.21

66 day S/P 500 return -17.47** -19.21 -35.63*** 7.23

1 day oil return 0.05 0.24 0.75* -0.55

5 day oil return 0.86 0.13 0.57 1.15

10 day oil return -3.03** -1.38 -2.04 -4.36**

22 day oil return 3.49* 2.12 -0.22 7.80**

66 day oil return -1.24 -0.09 -0.70 -1.74

1 day USD index return -1.36 -1.59 3.86* -5.85**

change in credit spread -0.30*** 0.13 -0.52*** -0.03

change in term spread -0.32*** 0.15 0.10 -0.77***

Fed Funds deviation 0.09*** -0.01 0.11 0.02

1 day VIX index change -0.40 -0.32** -0.64*** -0.25

5 day VIX index change 2.39*** 2.17*** 1.96*** 2.76***

10 day VIX index change -0.34 -0.72 0.65 -1.25

22 day VIX index change 2.91** 4.14*** 4.34** 1.26

66 day VIX index change 4.84** 3.47* 3.74 5.86*

Adjusted-R2 31.56 % 33.01 % 32.88 % 33.29 %

Table 2.5 reports results from three different HARX specifications estimated on the EPU. Column one

”No lag” reports estimates of yt = α + β′xt−1 + γ′zt, column two ”One day lag” reports the results of

yt = α + β′xt−1 + γ′zt−1 and column three reports the results for the asymmetric specification AHARX

yt = α + β′xt−1 + γ+z+t + γ−z−t . One, two and three starts correspond to significance at 10, 5 and 1%.
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Table 2.6: Partial R2

Factors R2 ∆R2

1 day lagged EPU 18.11 % +18.11 %

5 days lagged EPU 25.14 % +7.03 %

10 days lagged EPU 27.78 % +2.64 %

22 days lagged EPU 30.55 % +2.77 %

66 days lagged EPU 31.61 % +1.06 %

lagged S/P 500 returns 32.26 % +0.65 %

lagged oil returns 32.32 % +0.06 %

1 day USD index return 32.33 % +0.01 %

change in credit spread 32.34 % +0.01 %

change in term spread 32.40 % +0.06 %

Fed Funds deviation 32.45 % +0.05 %

lagged VIX index changes 33.05 % +0.6 %

Table 2.6 reports the partial R2 from sequential regressions.

Each regression includes all the previous factors, so the

change in R2 shows the marginal contribution of that fac-

tor, given the inclusion of all previous factors.
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Table 2.7: Coefficient estimates for HARX and AHARX for VIX

Factors No lag One day lag Asymmetric

Constant 0.0005 -0.0007 -0.0093***

1 day lagged VIX -0.045*** -0.0879*** -0.0435***

5 days lagged VIX -0.1687*** -0.1842*** -0.2038***

10 days lagged VIX -0.0698 -0.1323 -0.1029**

22 days lagged VIX -0.177** -0.0701 -0.2288***

66 days lagged VIX -0.5848*** -0.59*** -0.6833***

zt zt−1 z+t z−t

1 day S/P 500 return -4.1351*** -0.1604* -2.9917*** -5.1198***

5 day S/P 500 return -0.2835* 0.143 0.4393** -1.0895***

10 day S/P 500 return 0.3567 0.0995 0.808** 0.3087

22 day S/P 500 return -0.0327 0.843 0.2954 0.6805

66 day S/P 500 return 0.7963 1.042 0.7422 4.4592***

1 day oil return 0.0582*** 0.0603** 0.071** 0.05

5 day oil return 0.0659 -0.0048 0.0788 0.0645

10 day oil return -0.1197 -0.1926 -0.2987** 0.0497

22 day oil return 0.1023 0.3784* -0.0438 0.2149

66 day oil return 0.1418 -0.0154 -0.3495 1.1054***

1 day USD index return 0.0205 -0.1271 0.3189* -0.2537

change in credit spread -0.0551*** -0.0121 -0.0323** -0.0585***

change in term spread 0.0333*** 0.0063 0.0226* 0.0229*

Fed Funds deviation 0.0041* -0.008** 0.0052* 0.0005

1 day EPU index change 0.0014* -0.0012 0.0005 0.0033**

5 day EPU index change 0.0001 -0.0238*** -0.002 0.0017

10 day EPU index change -0.003 0.0046 0.0133 -0.0232*

22 day EPU index change 0.0072 0.0397* 0.0352 -0.0489*

66 day EPU index change 0.0134 0.1097* -0.085 0.1176*

Adjusted-R2 56.91 % 3.49 % 58.97 %

Table 2.7 reports results from three different HARX specifications estimated on the VIX. Column

one ”No lag” reports estimates of yt = α + β′xt−1 + γ′zt, column two ”One day lag” reports the

results of yt = α + β′xt−1 + γ′zt−1 and column three reports the results for the asymmetric

specification AHARX yt = α + β′xt−1 + γ+z+t + γ−z−t . One, two and three starts correspond to

significance at 10, 5 and 1%.
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Table 2.8: Granger causality test results

∆ log SP500 ∆ log VIX ∆ log EPU ∆ log AAA ∆ log BAA ∆ Y10-Y3 ∆ log EFF ∆ log USD ∆ log OIL ∆ log TFF ∆ FF Dev

∆ log SP500 1.53 3.46 1.84 1.80 19.91* 11.34* 1.73 5.92* 3.14 2.09 2.1

∆ log VIX 0.49 0.39 2.17 2.43 0.62 1.53 1.24 1.25 3.21 0.84 0.44

∆ log EPU 18.75* 23.69* 0.81 1.68 6.16* 14.99* 1.73 2.105 0.82 2.68 1.13

∆ log AAA 12.48* 5.24* 1.269 0.06 17.51 11.87* 0.59 0.19 0.14 20.84* 0.36

∆ log BAA 23.79* 17.49* 3.13 6.95 8.32 15.19* 5.26 0.08 0.47 0.25 6.14*

∆ Y10-Y3 0.32 0.09 0.37 0.36 4.39* 0.0012 1.66 0.37 2.05 0.42 0.50

∆ log EFF 15.09* 0.84 0.94 4.54* 4.73* 15.50* 0.01 0.01 0.58 58.88* 28.81*

∆ log USD 45.62* 18.78* 1.16 1.73 0.26 56.74* 2.59 0.20 3.37 14.58* 0.89

∆ log OIL 7.53* 3.49 1.87 5.76* 2.54 13.30 1.08 3.38 8.03 15.93* 1.26

∆ log TFF 0.044 0.06 0.45 0.60 0.62 0.11 22.69* 11.35* 3.06 0.0004 0.0537

∆ FF Dev 2.44 1.06 2.62 2.01 10.16* 2.02 7.99* 0.93 8.65* 0.61 0.60

Table 2.8 reports the F statistic from pairwise Granger causality tests. Significance is reported at 5%. All the time series are stationary.

Table 2.9: Forecasting performance.

MFE SDFE MSE MAE

RW 0.0001 1.1021 1.2144 0.8431

HAR 0.0006 0.549 0.3014 0.4186

HARX 0.0015 0.5476 0.2998 0.4186

AHARX -0.0026 0.5502 0.3027 0.4201

The sample period runs from from the 2nd January

1986 to the 30th June 2014, including altogether 7016

observations. I use a rolling window of 2000 time-

series observations to estimate the different models

and then perform a one day ahead out-of-sample

forecasting evaluation in the remaining time series.

I consider the following specifications: a random

walk (RW), a heterogeneous autoregression (HAR), a

heterogeneous autoregression with explanatory vari-

ables (HARX) and a heterogeneous autoregression

with explanatory variables and asymmetric effects

(AHARX). I gauge the forecasting performance by

evaluating the mean forecast error (MFE), the stan-

dard deviation of forecast errors (SDFE), the mean

squared error (MSE) and the mean absolute error

(MAE).
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Table 2.10: Giacomini-White tests for the
absolute forecast error.

RW HAR HARX

RW

HAR 0.0001

HARX 0.0001 0.93

AHARX 0.0001 0.20 0.017

The sample period runs from from the 2nd

January 1986 to the 30th June 2014, including

altogether 7016 observations. I use a rolling

window of 2000 time-series observations to

estimate the different models and then per-

form a one day ahead out-of-sample fore-

casting evaluation in the remaining time se-

ries. I consider the following specifications:

a random walk (RW), a heterogeneous au-

toregression (HAR), a heterogeneous autore-

gression with explanatory variables (HARX)

and a heterogeneous autoregression with ex-

planatory variables and asymmetric effects

(AHARX). The statistics in each entry cor-

respond to the p-value associated with the

Giacomini-White test statistic for the null hy-

pothesis that the column and row model per-

form equally well in terms of absolute fore-

cast errors.
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Chapter 3

The policy risk premium in equity

derivatives.

3.1 Introduction.

This chapter introduces a model that allows to measure the impact of policy risk on the

dynamics of the S&P 500 index using option data. I quantify the impact of policy risk on

the whole P-distribution of assets, not just on volatility, as most literature on policy risk

does. I document that this type of risk is priced and has a sizeable impact on expected

returns, volatilities, skewness and kurtosis. A one percent increase in the Economic Policy

Uncertainty index leads to a 2.25 percentage points increase in the Equity Risk Premium.

Policy risk has often materialized with very dramatic consequences in the recent past; one

example of such an event is the Greek debt crisis of 2010. In late 2009, New Democracy

incumbent Greek Prime Minister Kostas Karamanlis faced an electoral defeat to PASOK’s

George Papandreou, who became the New Prime Minister, with 44% of the vote. The new

government had to tackle a 12% budget deficit hangover from the 2008 recession and an

economy that was struggling to grow. By the early months of 2010, the spread between

10 year Greek debt and the Bund reached 300 basis points. Between March and April, the

Greek parliament passed a series of deficit reduction measures. These were not deemed

effective by the markets and the Greek sovereign spread kept increasing, reaching 900 ba-

sis points in late April. A number of rating agencies started downgrading the sovereign

debt of Greece, some to junk status. As borrowing on financial markets had become very

76



expensive, on April 23rd Papandreou formally requested a bailout package from the EU,

the ECB and the IMF. By May, international creditors had loaned the first 110 billion Euro

to Greece and further deficit reduction measures were approved by the Greek parliament.

Riots started to appear on the streets of Athens. Even with a comparatively small economy,

the events in Greece rattled financial markets and sent the VIX index surging from 17 to 34

in just a few weeks.

These events left some researchers puzzled: how could such a small economy trigger such

a global panic? How much of this crisis was due to real economic issues or the prospect of

a default, and how much was due to the behaviour of bickering politicians? The problem

in identifying these causes is of course that they tend to reinforce each other: poor growth

could make politicians more desperate, and more desperate politicians may make policy

mistakes that hamper economic growth. An interesting question is therefore how to sep-

arate the effects of policy risk from all “other” risks - economic, demographic, etc. - and

how to estimate its impact on asset prices.

I address this issue by estimating a two-factor Heston model. The first factor, pt, is policy

risk. The factor is observable and is measured with error by the EPU index of Baker, Bloom

and Davis (2016). I will discuss more about this index below. The second factor, vt, is latent,

constructed as uncorrelated with the first, and therefore captures all “other” risks, different

from policy. My model is reduced form and allows me to price options and estimate risk

parameters directly from market data. I can estimate the effect of political risk not only on

asset volatilities, but on the whole distribution of asset returns under the model assump-

tions. The model is estimated by running an Unscented Kalman Filter on the data and by

finding the parameters that maximise the likelihood of observing the actual market data,

given the model specification.

This chapter has produced a number of contributions. The first is that I am able to extract

the policy and non-policy risk factors from the data, a panel of option prices (more on my

data later). This gives an indication of how much market risk is driven by political events

and how much is left to be explained by “other” factors. I find that considering the average

3.93% variance of the S&P 500 index, 1.52% is due to policy risk while 2.41% is “other risks”.

The second result is that I recover the whole P-distribution of asset prices as a function of

policy risk. This allows to estimate the effects of policy risk on the whole distribution, i.e.

on all the moments of the asset price. For example, Table 3.2 reports a simulation: on Jan-
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uary 1st 2009, a 3 percentage points increase in policy risk would have increased expected

returns by 3.18% per quarter, from 14.76% to 17.94%, volatility by 1.97% from 19.29% to

21.26% and skewness from 0.35 to 0.36. The third result is that I can test if policy risk is

priced. I find that policy risk is indeed priced, and carries a statistically significant risk

premium of 2.25, while “other risks” are priced with a coefficient of 1.35. This means that

a 1% increase in policy risk would lead to an increase in the ERP of 2.25% per year.

This chapter is closely related to Pastor & Veronesi (2013). While they adopt a general

equilibrium approach, my model is reduced form. My model loses some of the economic

intuitions of theirs, but, on the other hand, is able to recover the impact of policy risk on

the whole distribution of an asset.

The rest of the chapter is organized as follows. In Section 2 I review the literature on policy

risk, in Section 3 I conduct a preliminary investigation into the EPU index, in Section 4 I

present my model. In Sections 5 and 6 I present my dataset and my estimation technique. I

then in Section 7 present my results and draw some conclusions.

3.2 Literature review on political risk.

Policy uncertainty risk has been usually researched from two different perspectives: a

macroeconomic perspective and a finance perspective.

In terms of the policy uncertainty effects on the macroeconomy, work has been done on

tax uncertainty and earnings uncertainty. For example Sialm (2006) analyzes the effect of

stochastic taxes on asset prices, and finds that investors require a premium to compen-

sate for the risk introduced by tax changes. Tax uncertainty also features in Croce et al.

(2012). They explore the asset pricing implications of tax uncertainty in a production econ-

omy with recursive preferences. They explore the long-run implications of public financing

policies aimed at short-run stabilization when: (i) agents are sensitive to model uncertainty,

as in Hansen and Sargent (2007), and (ii) growth is endogenous, as in Romer (1990). They

find that countercyclical deficit policies promoting short-run stabilization reduce the price

of model uncertainty at the cost of significantly increasing the amount of long-run risk.

Ultimately these tax policies depress innovation and long-run growth and may produce

welfare losses. Firm-level political risk features in Hassan et al. (2017). The authors build
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their own measure of political risk by measuring the share of their quarterly earnings con-

ference calls they devote to discussing political risks. They find that exposure to politi-

cal risk is negatively associated with investment and hiring and positively with lobbying.

Macroeconomic uncertainty also features in Bali et al. (2016). They use Jurado et al. (2015)’s

measure of uncertainty, which is the conditional volatility of the unforecastable component

of a large number of economic indicators. They find that exposure to economic uncertainty

carries a 6% risk premium.

The financial perspective has generally tried to characterize the risk exposure to policy

uncertainty through the lens of beta exposures. Belo et al. (2013) link the cross-section

of stock returns to firms’ exposures to the government sector. Bittlingmayer (1998), Voth

(2002), and Boutchkova et al. (2011) find a positive relation between policy uncertainty and

stock volatility in a variety of settings.

The paper that more closely resembles mine is Pastor & Veronesi (2013). They set up an

economy where agents learn in a Bayesian fashion about future government policies and

examine their effects on average implied volatilities. Policy heterogeneity plays a large

role in generating sufficient excess volatility. My paper improves on their contribution for

various reasons. First, I am able to characterize the impact of policy uncertainty on all mo-

ments, not just volatility. This is important as an increase in volatility could be coupled

with an increase in expected returns, potentially improving the investment opportunity set

during periods of high policy uncertainty. Second, my model is reduced form, so I do not

assume any particular underlying process for equity or for the learning process of agents.

Third, my approach uses a latent factor approach, which has become very common in fi-

nance and is very easily interpretable in its intuitions.

3.3 Preliminary data analysis.

Baker, Bloom and Davis’ main EPU index is compiled monthly. This is made of three com-

ponents:

(a) The first component is an index of search results from 10 large newspapers. The news-

papers included in their index are USA Today, the Miami Herald, the Chicago Tribune, the

Washington Post, the Los Angeles Times, the Boston Globe, the San Francisco Chronicle,
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the Dallas Morning News, the New York Times, and the Wall Street Journal. From these

papers, they construct a normalized index of the volume of news articles discussing eco-

nomic policy uncertainty.

(b) The second component of their index draws on Congressional Budget Office (CBO) re-

ports that compile lists of temporary federal tax code provisions. They create annual dollar-

weighted numbers of tax code provisions scheduled to expire over the next 10 years, giving

a measure of the level of uncertainty regarding the path that the federal tax code will take

in the future.

(c) The third component of their policy-related uncertainty index draws on the Federal

Reserve Bank of Philadelphia’s Survey of Professional Forecasters. They utilize the disper-

sion between individual forecasters’ predictions about future levels of the Consumer Price

Index, Federal Expenditures, and State and Local Expenditures to construct indices of un-

certainty about policy-related macroeconomic variables.

The authors also publish a daily index for the United States. It only consists of the first

component as CBO reports and Professional Forecasts are not available daily. The daily

index tracks closely the monthly one and the two have a 0.87 correlation coefficient. I use

the daily index, as it is better suited to explain the daily variation in the option-implied

forward density of the S&P 500 index.

As a preliminary analysis, I have checked that the EPU index has indeed some explana-

tory power on volatility by regressing it against the VIX index, which measures the 30-day

ahead expected realized volatility of the S&P 500 index. The estimated coefficients are

highly significant, with p-values indistinguishable from zero and an adjusted-R2 of 7.7%.

The positive slope suggests that an increase in the measure of policy uncertainty by 100

units leads to an increase in index implied volatility of about 3.6%.

VIXt = 0.17288 + 0.00036987 EPUt

t-stats: (95.52) (24.48)

A time series plot and a look at moments show that the daily EPU index is also highly per-
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sistent and exhibits high positive skewness (see Table 3.1).

In my previous chapter, I have analyzed the EPU index in more detail and have uncovered

a number of its features. The first is that the index is not stationary, while its first difference

is. The second is that it exhibits a time varying conditional variance. The third is that it

shows an autoregressive nature, and the fourth is that the EPU index Granger-causes the

VIX index.

3.4 The model.

This model is set out to achieve three main objectives: to capture the empirical features

uncovered in my previous analysis, to be simple enough to price options quickly, and to

deliver some economic insight on the dynamics of risk and returns. I model policy risk us-

ing a two-factor Heston model where one of the two factors, policy risk, is observable. The

other factor captures the volatility not due to policy risk and is constructed as uncorrelated

with policy risk.

Let (Ω,F, {Ft}t≥0 , P) be a filtered probability space satisfying the following assumptions:

i Set Ω is the set of all possible outcomes {ω1, ..., ωn}

ii F is a sigma algebra such that:

(a) Ak ∈ F ∨ k implies U∞
k=1 Ak ∈ F

(b) A ∈ F implies Ac ∈ F

(c) ∅ ∈ F

iii {Ft}t≥0 is a sub-sigma algebra of F with Fs ⊂ Ft if s < t

iv P is a probability measure such that P(Ω) = 1, P(∅) = 0 and P(A) = 1−P(Ac) ≥ 0.

A risk neutral measure Q is another probability measure such that
∫

dP =
∫ dQ

dP
dP

where dQ
dP

is a Radon-Nikodym.

Let St be the S&P 500 index, pt the latent policy risk factor and vt the variable collecting

”other risks”.
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The dynamics of index returns under P are:

dSt

St
= (r f + λvvt + λp pt)dt +

√
vtdW(1)

t + σEPU
√

ptdW(2)
t

dvt = kP
v (θ

P
v − vt)dt + σP

v
√

vtdW(3)
t

dpt = kP
p (θ

P
p − pt)dt + σP

p
√

ptdW(4)
t

with the following correlations:

E[dW(1)
t dW(3)

t ] = ρsvdt

E[dW(2)
t dW(4)

t ] = ρspdt

where W(·)
t denotes the four main Brownian motions that drive risk in this setting. Two

sources of risk appear in the index equations, and are proportional to the underlying risks.

The other two sources of risk drive the factor dynamics. The two processes for {vt}t≥0 and

{pt}t≥0 are instantaneously uncorrelated between them, but are correlated with the index

dynamics, generating the well known leverage effect. The model allows to estimate the

impact of policy risk on the S&P 500 index excess returns, quantifying the risk premium as-

sociated with policy risk. This model is able to capture the empirical features on policy risk

expressed in my previous chapter. In fact, the first difference of the Ornstein Uhlenbeck

process proposed is stationary, it has a time varying conditional variance equal to σP
p

2 pt,

it exhibits an autoregressive nature controlled by parameter κp, and the variable pt deter-

mines partially the value of the VIX index.

The same model under the risk neutral measure Q reads:

dSt

St
= r f dt +

√
vtdW(1)

t + σEPU
√

ptdW(2)
t

dvt = kQ
v (θ

Q
v − vt)dt + σQ

v
√

vtdW(3)
t

dpt = kQ
p (θ

Q
p − pt)dt + σQ

p
√

ptdW(4)
t

A feature of the two-factor Heston model is that we can recover a closed form expression

for the VIX index. In fact,
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VIXτ
t = E

Q
t

[∫ t+τ

t
(vs + ps)ds

]
=
∫ t+τ

t
E

Q
t [vs]ds +

∫ t+τ

t
E

Q
t [ps]ds

This fact will be used later during estimation, as it allows to understand how policy risk

affects volatility.

Another feature of the Heston model is that its characteristic function is known in closed

form. This allows to employ characteristics function techniques to price options fast. It

also means that the forward Q-density of the S&P 500 index is known short of a Fourier

transform and that it depends on the level of pt.

In particular, the price of a call can be computed as:

C(S0, K, τ) = S0e−qτ P1 − Ke−rτ P2

where S0 is the spot price of the index, K is the strike price, r is the risk free rate, q is the

dividend yield and τ is the maturity. P1 and P2 are two probabilities that can be recovered

via Fourier inversion as:

Pj =
1
2
+

1
π

∫ ∞

0
Re

[
e−iu log K f j(u, log ST , vt, pt)

iu

]
du for j = 1, 2

where Re(x) takes the real part of the complex number x and f j(u, log ST , vt, pt) is the con-

ditional characteristic function of the model and has a general form as:

f j(u, log St, vt, pt) = eAj(u)+Bj,v(u)vt+Bj,p(u)pt+iu log St

where coefficients A,B,C and D solve the corresponding Ordinary Differential Equation.

The characteristic function completely defines a probability distribution. Recall, for ex-

ample, that the k-th moment can be recovered from the characteristic function as the k-th

derivative:

E
[

xk
]
= (−i)k f (k)j (0)

The details of the option pricing formulas are available in Appendix C.
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3.5 Data.

My data is composed of two time series for the S&P 500 index and the Economic Policy

Uncertainty index, and a panel dataset for European vanilla options written on the S&P

500 index. The original data is daily, even if I then use only Wednesday prices to remove

intra-week trading seasonalities. The reference period runs from January 1st 1996 to De-

cember 31st 2013. All the securities data was downloaded through Wharton Research Data

Services. In particular, S&P 500 index data was provided by the Center for Research in

Security Prices (CRSP), while option data was downloaded from Ivy DB OptionMetrics.

The Economic Policy Uncertainty index, available from Baker, Bloom and Davis’ website

at www.policyuncertainty.com, is at a daily frequency, but I have kept Wednesday prices

only for consistency.

In addition to S&P 500 index values, I use European vanilla option data on the S&P 500

index from Ivy DB. I collect weekly Wednesdays call option quotes from January 1996 to

December 2013. I filter the option quotes by log moneyness from -3% to +3%. I also drop

the contracts with zero trading volume. In terms of maturities, I drop the very short end

of the maturity spectrum and the long end, so that my option sample has maturities from

62 to 117 days. This leaves me with 930 trading days and a total of 47,192 option contract

data points across moneyness and maturities, that is an average of fifty options per day. ??

reports descriptive statistics for various characteristics of the option panel.

3.6 Estimation strategy.

My estimation problem can be viewed as a traditional dynamic system described by a state

transition equation and a measurement equation:

xt+1 = g(xt, θ) + εt

ỹt+1 = f (xt, θ) + ut

The state variable xt is unobserved. In my case xt = {vt, pt}. What I do observe is the

return of the S&P 500 index, the level of the EPU index and a vector of options on the S&P

500 index, which I collect in the vector ỹt+1, which is my vector of market observables or

measurements.
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The parameters are estimated using an Unscented Kalman Filter (UKF) over the whole time

series of data. Filtering means using a set of market observables, called measurements, to

extract the dynamics of the unobservable state variables at each point in time. A filter can

then be coupled with maximum likelihood techniques to estimate the parameter vector θ.

Note that policy risk is latent but observed with error as:

pt = EPU indext + σεp εt,p

where εp is a standard normally distributed error term.

The choice of the Unscented Kalman Filter is motivated by the strong non-linearities present

in the observations equation. At each point in time, my measurements include options, and

options are not a linear function of the underlying state variables. In some cases one can at-

tempt to linearize the measurements, like in the Extended Kalman Filter (EKF). The EKF ap-

proximates the measurement equation to the first order of a Taylor series expansion. When

the function is highly non-linear, this procedure generates large errors. Instead, the UKF

does not attempt to linearize the function. The filter, developed by Wan & Merwe (2000),

approximates the state distribution by using a minimal set of carefully chosen points, called

sigma points. These completely capture the mean and covariance matrix of the state distri-

bution and, when propagated forward through the transition equation, are able to capture

the posterior mean and covariance matrix of the measurements accurately at the third or-

der of a Taylor series expansion, rather than the first order as the EKF. This makes the UKF

superior to the EKF, because a first derivative expansion of an option is not generally very

accurate if market movements are big. As I use weekly data, the movements in the under-

lying index and state variables over a seven day period can be big enough to deteriorate

the quality of the EKF.
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The estimation procedure is structured as follows.

I first discretize the continuous time state transition dynamics under P using an Euler dis-

cretization as follows:

vt+1

pt+1

 =

κvθv

κpθp

∆t +

1− κv 0

0 1− κp

vt

pt

∆t + Q(vt, pt)

εt,v

εt,p


Since I use weekly observations, ∆t is set to 1/52. In the equations above, εt,i is a standard

normally distributed random variable. These two variables are uncorrelated among each

other, but each of them is separately correlated with the stock market index. The matrix of

conditional variances for the state equation Q(vt, pt) is given by:

Q(vt, pt) =

 σ2
v
(
1− e−κv∆t)2

σ2
p

(
1− e−κp∆t

)2

+

σ2
v

e−κv∆t−e−2κv∆t

κv

σ2
p

e−κp∆t−e−2κp∆t

κp

vt

pt


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As previously mentioned, the measurement equation includes three components: the stock

market index, the policy risk index and a vector of options, with various maturities and

strike prices. For the stock market index and the vector of options the measurement is

calculated by taking the log differences between model and market observations. As such,

each week I observe:

ỹt =



log(S&P500t)− log(S&P500t−1)

EPU indextlog OptionModel(vt, pt; K, T, θ)t − log OptionMarket(K, T)t
...

K ∈ Kmin, Kmax

T ∈ Tmin, Tmax



The first term is simply the gross weekly index return. The second measurement equa-

tion assumes policy risk is observed with some error. The third component is the option

mispricing, where OptionModel(vt, pt; K, T, θ)t is the price of the option as estimated by my

model, given the parameters θ and the value of the state variables vt and pt; OptionMarket(K, T)t

is a vector of market option observations, for various maturities and strike prices. Since the

set of available observations changes every day, the size of my option sample is not, in gen-

eral, fixed. To clear the matters further, I also report below the model-implied observation

equation. Market observations should be, on average, equal to model-implied ones:

yt =



(r f + µ)∆t

pt

0

0
...

0


where the vector of zeros is the expected error in mispricing options. The elements of yt are

the expected values of ỹt. As the model should price options correctly, yt includes a vector

of zeros. Keeping the parameter µ in the model-implied observations allows to extract the

average Equity Risk Premium for my sample. Note that this is replaced by λvvt + λp pt

when I estimate the prices of risk.

To estimate the model, it is necessary to make some distributional assumptions on the

87



measurement errors. The error εt = ỹt − yt is assumed to follow a normal distribution

with mean zero and covariance matrix:

R =



vt + σ2
EPU pt 0 . . . . . . 0

0 σ2
εp 0 . . .

...
... 0 σ2

εOptionsi
. . .

...
... 0 0 . . .

...

0 . . . . . . . . . σ2
εOptionsi


∆t

As assuming the homoskedasticity of the errors would be too strong, I allow the variance of

the errors to depend on the moneyness and the maturity of the contract. The measurement

error for the option sample is therefore parametrized as:

σ2
εOptionsi

= φ0 + φ1 | log
Ki
St
| +φ2Ti

where Ki is the strike price and Ti is the time to maturity. The state variables are initial-

ized at their sample means. At each iteration, the state variables are spread out to create

“sigma points”. Each sigma point is then propagated forward through the state transition

equation, in order to generate a set of sigma points for t + 1. Each of these sigma points

is then passed through the measurement equation, so that for each sigma point there is a

model-implied measurement. These model-implied measurements are then compared to

the observed measurements. At each step, I compute the measurement error and its log-

likelihood. The likelihood of options is scaled by the number of options, so that the weights

of the three measurements (stock index, EPU index and options) are equal. The filter is it-

erated through the whole sample. The outcome is a sum of log-likelihoods, computed as a

function of the model parameters.

The estimation problem can be formalized as follows:

Let θ =
{

µ, λv, λp, κP
v , θP

v , σP
v , κQ

v , θQ
v , σQ

v , ρv, κP
p , θP

p , σP
p , κQ

p , θQ
p , σQ

p , ρp, σ2
EPUσ2

εp , φ0, φ1, φ2

}
be

the vector of parameters to be estimated.

Given an initial guess θ0, the UKF generates a time-series of state variables vt(θ0), pt(θ0)

and another time series of model-implied measurements yt(vt, pt, θ0). As a result, at each

point in time I observe the market measurements ỹt and compute an error εt(vt, pt, θ0). The
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problem is then to find the parameter vector than maximizes the log likelihood function of

the error, or that minimizes its opposite.

θ∗ = arg min
θ
− log L(θ) =

T

∑
t=1

log L(εt, θ)

The likelihood function exhibits several non-linearities. Therefore, I minimize the log-

likelihood numerically on a grid of parameters values. As a by product of this optimiza-

tion, I also extract the optimal paths for vt and pt, that is, the paths that are more likely

for the state variables given the observations. I then compute the asymptotic variance of

the parameter estimates via the inverse of the Fisher information criterion. I numerically

compute the derivatives, choosing a step equal to 1% of the parameter value.

The Equity Risk Premium is the expected excess return of the market over the risk free rate,

under the physical measure P.

ERPt = EP
t

[
log
(

SP500t+1

SP500t

)]
− r f ,t = (λvvt + λp pt)∆t

As my model is estimated under P, I am able to extract the Equity Risk Premium from my

option sample.

3.7 Results and discussion.

Table 3.3 reports the estimation of the model parameters. The state variable pt captures

policy risk. Policy risk exhibits a long term mean of 1.65% and a volatility of 43.20%. With

a correlation coefficient of -0.33, policy risk is negatively correlated with stock returns. It

also exhibits strong mean reversion (26.5). A plot of log EPU differentials and pt show

that the two are almost indistinguishable. My model therefore successfully reproduces the

empirical properties of EPU uncovered in my previous chapter. The state variable vt, or-

thogonal to pt, captures all “other risks”, that is all non-policy risks. It has a mean of 0.14%

and a volatility of 24%. Like policy risk, vt is also negatively correlated with stock returns,

by about the same order of magnitude (-0.4). vt is also less mean reverting. The estimated

average equity risk premium for the whole sample is 8%, which is in line with the literature.

We can now proceed to analyze the extracted paths of the state variables. The two factors
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exhibit a correlation coefficient of -0.18, which is weakly significant. Figure 3.5 shows the

extracted factors. Compare this with overall market risk in Figure 3.2. As we can see, the

big fall in market risk in 2009 was not driven by reduced policy risk. Despite a spike in

early 2009, policy risk remained largely flat for the whole of 2009. Also, the big spike in

risk in the summer of 2010 does not seem to be driven by an increase in policy risk. On the

contrary, at the end of 2011, it seems that the spike in policy risk drove overall risk higher.

The main focus of policy risk at the end of 2011 was the US debt ceiling crisis. Briefly, in the

US only Congress has the power to authorize government indebtedness. The US Treasury

keeps accumulating debt, so it has to ask periodically Congress to raise the debt ceiling. A

failure to raise the debt ceiling could, in principle, generate a government shut-down and

a credit event for the holders of US debt. This analysis shows that the risk posed by the

policy events of late 2011 was significant.

In terms of option fit, the average error is -0.72% Black & Scholes implied volatility per-

centage points. Figure 3.8 shows the option mispricing as a function of moneyness and of

time to maturity. The mispricings are scattered uniformly over the sample. Table 3.4 re-

ports the average mispricing as a function of moneyness and time to maturity. The model

consistently under prices almost all options. The most under priced options are the Out-

of-The-Money options with a mispricing of 1.14 percentage points of implied volatility.

At-The-Money options have an average mispricing of 0.8 percentage points and In-The-

Money options have a 0.18 percent mispricing. Along the time-to-maturity dimension, the

error rises from 0.32% to 1.25% as the maturity moves from under 0.22 to over 0.28. Fig-

ure 3.7 shows two smiles for two different maturities of two and three months, for the

specific date January 6th 2010. The mispricing is acceptable for In-The-Money options but

deteriorates for Out-Of-The Money contracts. To put these figures into context, Table 3.5

reports the mispricings for a regular one factor model (the original Heston model). The

two models are comparable because both models have only one latent factor, in the case of

Heston it is the unobserved stochastic volatility, in my case vt. My model improves on the

original Heston model along all maturities and strikes.

Table 3.3 also report the estimates for the risk premia associated to policy risk. The coeffi-

cients are significant and show that both risks are priced. To investigate the effect of higher

policy risk, I have simulated two P-distributions, one with low policy risk at 3% and an-

other with high policy risk at 6%. Figure 3.6 and Table 3.2 report the simulations. The

higher policy risk has the effect of increasing the ERP from 14.76% to 17.94%, the volatility
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from 19.29% to 21.26% and skewness slightly from 0.35 to 0.36. The effects on the distribu-

tion are more visible in Figure 3.6: as policy risk rises, volatility rises and the distribution

tilts to the right, increasing the ERP and slightly increasing skewness.

To summarise, I find that policy uncertainty risk has a positive impact on the equity risk

premium and that it impacts all moments. It is also able to filter a policy uncertainty factor

that has economic meaning. Finally, the two factor model is able to price options accurately.

3.8 Conclusions.

Disentangling policy risk from other risks helps to shed light on the drivers of the risk and

return of asset prices. In this chapter I have introduced a two-factor model where one of the

factors is observed while the other is latent. This reduced form model allows me to extract

important information from option prices, such as the path of these factors and how much

risk is due to each. By exploiting the reduced form nature of my model, I can also estimate

the effect that policy risk has on the whole P-distribution of returns, rather than just on

volatility. An increase in policy risk affects the first three moments, pushing expected re-

turns, volatilities and skewnesses higher. Finally I have established that policy risk drives

the Equity Risk Premium up and that the effect is statistically significant.

These results convey the importance of policy uncertainty as a priced factor in the market.

The economic message for asset managers is that policy uncertainty has a profound impact

on return dynamics, and it may affect the long term ability to deliver stable wealth creation

for investors. It may therefore be useful to try and hedge exposure to policy uncertainty

away. The economic message to policy-makers is that uncertainty around their actions have

statistically significant effects on markets, and therefore adopting stable and predictable

policies would remove most of this source of risk.
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Tables and Figures

Monthly EPU index.

Figure 3.1: Monthly Economic Policy Uncertainty index for the US, 1985 to 2014.

EPU and VIX indices.

Figure 3.2: EPU index compared to 30 day VIX index, January 1996 to December 2013.

EPU and VIX indices, different axis.

Figure 3.3: EPU index compared to 30 day VIX index, January 1996 to December 2013. The
two time series are plotted on two different axes to show their correlation.
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Scenario analysis.

Figure 3.4: Above, model implied distribution of terminal stock price ST for two scenarios,
low and high policy risk. Below, the difference in distributions. The probability distribution
is the P-distribution generated from the model P-parameters.

Extracted factors.

Figure 3.5: Extracted trajectories for the factors vt (blue) and pt (green) from the Unscented
Kalman Filter.
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Equity Risk Premium across time.

Figure 3.6: Estimated Equity Risk Premium from the P-distribution.
This is equal to ERPt,τ = EP

t

[
log
(

SP500t+τ
SP500t

)]
− r f ,t = λvvt + λp pt. Highlighted in red the

8 % average.
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Volatility smiles: market vs model.

Figure 3.7: Volatility smiles for market quotes vs policy uncertainty model, for two different
maturities of 2 and 3 months, on the 6 th of January 2010. The x axis shows the strike prices
and the y axis shows the Black and Scholes implied volatilities.
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Option mispricings across moneyness and maturities.

Figure 3.8: This picture plots the mispricing of the policy uncertainty model for various
log moneyness levels (top panel) and time to maturities (bottom panel). At each point in
time, I compute the model-implied price and compare it to the market price. The average
mispricing is measured as percentage points of Black and Scholes implied volatility. Time
to maturity is in years and moneyness is measured as a percentage from the forward price
kt,i = log Ki

F(t,Ti)
.
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Monte Carlo simulation.

Figure 3.9: Difference in Black & Scholes implied volatilities between closed-form Heston
prices and Monte Carlo prices. The difference are plotted as a function of moneyness,
computed as ki = log Ki

F(Ti)
. The scale of the error is in the order of 10−4.
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Table 3.1: Empirical moments of VIX and EPU indices.

Mean (µ) Standard deviation (σ) Skew (s) Kurtosis (κ) Correlation (ρ(EPUt ,VIXt))

EPUt 1.75% 1% 1.91 9.70 +0.28

VIXt 21.54% 8.43% 1.92 6.76

Table 3.1 reports the empirical moments of the VIX index and the EPU index from the 1st January 1996 to

the 31st December 2013.

Table 3.2: The effect of policy risk on the moments of ST .

Moments Low policy risk (EPU = 3 %) High policy risk (EPU = 6%) ∆

µ 14.76 % 17.94 % +3.18 %

σ 19.29 % 21.26 % +1.97 %

s 0.35 0.36 +0.01

κ 3.2610−5 2.6010−5

Table 3.2 reports the moments of the P-distribution. The parameters used are the optimal

parameters extracted from the Unscented Kalman filter. The remaining values are the values of

the market the 1st of January 2009, that is S&P 500 = 906.50, VIX = 43.39%, T=0.23, vt = 0.2247,

r = 0% and q = 0%. The moments are computed numerically on a 300 points grid, spanning

[300 1800], that is -3.27σ to +4.90σ.
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Table 3.3: Parameter estimates from the Unscented Kalman filter.

Policy risk (pt) Other risks (vt) Policy risk (pt) Other risks (vt)

under P under P under Q under Q

Mean reversion κ 26.5 2.64 11.2 1

[20.51 , 32.48] [1.29 , 3.99] [9.43 12.97] [0.85 , 1.15]

Mean θ 1.65 % 0.14 % 3 % 2.80 %

[1.51 % , 1.79 %] [0.14 % , 0.14 %] [2.78 % , 3.22 %] [2.20 % , 3.40 %]

Volatility σ 43.20 % 24 % 116 % 19.20 %

[36.74 % , 49.66 %] [10.79 % , 37.21 %] [96 % , 136 %] [16.73 % , 21.67 %]

Correlation ρ -0.33 -0.40

[-0.38 , -0.27] [-0.49 , -0.31]

Prices of risk λ 2.25 1.35

[0.57 , 3.93] [-0.66 , 3.36]

Total Equity Risk Premium 8.00%

[7.77 % , 8.23 %]

Table 3.3 reports coefficient estimates from the Unscented Kalman Filter. I also report the 95 % confidence

intervals, with standard errors computed by inverting the Fisher information criterion matrix. The estimates

are generated by numerically minimizing the log-likelihood function of the deviations from the filtered mea-

surements. For each parameter, I have generated a grid of 31 points and numerically found the minimum of the

log-likelihood. If a minimum was not achieved, I shifted the window in order to attempt another numerical min-

imization. The Fisher information criterion is computed by numerically approximating the second derivative by

finite difference, evaluated at the minimum.
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Table 3.4: Pricing performance of the policy risk model.

T < 0.22 0.22 < T < 0.28 T > 0.28 All maturities

k < −1% -0.85% -1.26% -1.48% -1.14%

−1% < k < 1% -0.36% -0.77% -1.37% -0.80%

k > 1% -0.29% -0.21% -0.85% -0.18%

All strikes -0.32% -0.70% -1.25% -0.72%

Table 3.4 reports the average mispricing for various time to maturities and various

moneyness levels. At each point in time, I compute the model implied price and

compare it to the market price. The average mispricing is measured as percentage

points of Black and Scholes implied volatility. Time to maturity is in years and

moneyness is measured as a percentage from the forward price kt,i = log Ki
F(t,Ti)

.
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Table 3.5: Pricing performance of a one-factor model.

T < 0.22 0.22 < T < 0.28 T > 0.28 All maturities

k < −1% -1.22% -1.93% -2.97% -2.30%

−1% < k < 1% -0.74% -1.42% -2.85% -1.23%

k > 1% -0.62% -0.47% -1.54% -0.47%

All strikes -0.60% -1.20% -1.93% -0.93%

Table 3.5 reports the average mispricing for various time to maturities and various

moneyness levels. At each point in time, I compute the model implied price and

compare it to the market price. The average mispricing is measured as percentage

points of Black and Scholes implied volatility. Time to maturity is in years and

moneyness is measured as a percentage from the forward price kt,i = log Ki
F(t,Ti)

.

Table 3.6: Pricing errors from Monte Carlo simulation.

N, number of simulations OTM ATM ITM

[0.8 < k < 0.95] [0.95 < k < 1.05] [1.05 < k < 1.2]

100.000 0.065% 0.083% 0.0123%

1.000.000 0.045% 0.072% 0.0107%

10.000.000 0.0161% 0.063% 0.0092%

Table 3.6 reports the pricing errors from the Monte Carlo simulation. Errors are computed as the

percentage points in implied volatility extracted from the Monte Carlo price CMC
T,K and the closed

form Heston price CHeston
T,K . The errors are very close to zero for all levels of moneyness. The

parameters used for the simulation are: κQ
v = 5, θQ

v = 0.25, σQ
v = 0.65, κQ

v = 5, θQ
v = 0.05,

σQ
v = 0.3, ρsv = −0.65, ρsp = −0.65.
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Table 3.7: Descriptive statistics for the option panel, 1996 - 2013

Percentiles

Mean Std Min 5% 10% 50% 90% 95% Max

S&P500 index 1246 251 598 786 904 1264 1554 1659 1810

EPU index 93.14 62.72 4.75 23.11 33.27 78.78 173.76 206.51 548.95

Implied Volatility (IV) 18.84% 6.38% 6.71% 11.06% 12.07% 17.91% 26.27% 29.29% 72.13%

Time to Maturity (T) 0.55 0.52 0.16 0.16 0.18 0.32 1.29 1.75 2.98

Log-moneyness (k) -0.0002 0.01 -0.03 -0.02 -0.02 0.00 0.02 0.02 0.03

Market Price, $ (P) 54.01 36.43 1.38 12.26 17.32 45.32 103.41 129.75 251.76

Strike Price, $ (K) 1246 251 585 785 900 1265 1555 1670 1865

Table 3.7 reports descriptive statistics for the S&P 500 index option panel. I collect weekly call option quotes from January 1996

to December 2013. I filter the option quotes by log moneyness from -3% to +3%. I also drop the contracts with zero trading

volume. I only use Wednesday prices to remove intra week trading seasonalities. In terms of maturities, I drop the very short

end of the maturity spectrum and the long end, so that my option sample has maturities from 62 to 117 days. This leaves me

with 930 trading days and a total of 47,192 option contract data points across moneyness and maturities, that is an average of

fifty options per day.
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Appendix A

An Orthogonal Decomposition.

The following exposition is based on Percival and Walden (2006) and it adopts a transform

approach. For a time series oriented exposition, the interested reader is referred to Tamoni,

Tebaldi and Ortu (2011).

Orthonormal transforms: Orthonormal transforms are of interest because they can be used

to re-express a time series in such a way that we can easily reconstruct the series from its

transform. In a loose sense, the ’information’ in the transform is thus equivalent to the

’information’ in the original series; to put it differently, the series and its transform can be

considered to be two representations of the same mathematical entity.

Let {Xt : t = 1, ..., N} represent a time series of N real-valued variables. Let X represent an

N dimensional column vector whose t-th element is Xt for t = 1, ..., N. If Y is another such

vector containing {Yt : t = 1, ..., N}, the inner product of X and Y is given by

〈XY〉 = XᵀY =
N

∑
t=1

XtYt

The squared norm of X is given by ||X||2 = 〈XX〉 = XᵀX = ∑N
t=1 X2

t . I will refer to the

quantity ξX = ||X||2 as the variance in the time series Xt.

Let O be an N x N real valued matrix satisfying the orthonormality property OᵀO = IN ,

where IN is the N x N identity matrix. Let Oj,• be a column vector whose elements contain
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the j-th row vector of O. With this notation, we can write

O =


Oᵀ

1,•

Oᵀ
2,•

...

Oᵀ
N,•

 = [O1,•,O2,•, ...,ON,•]

The orthonormality property can be restated in terms of the inner product as

〈
Oj,•,Oj′ ,•

〉
= δj,j′ =

 1 if j = j′;

0 otherwise,

where δj,j′ is the Kronecker delta function. Orthonormality also implies that the inverse

O−1 of the matrix O is just its transpose Oᵀ. Thus OO−1 = OOᵀ = IN . Hence the

columns of O are an orthonormal set of vectors.

We can decompose a time series Xt with respect to the orthonormal matrix O by premulti-

plying X by O to obtain

O = OX =


Oᵀ

1,•

Oᵀ
2,•

...

Oᵀ
N,•

X =


Oᵀ

1,•X

Oᵀ
2,•X

...

Oᵀ
N,•X

 =


〈X,O1,•〉

〈X,O2,•〉

...

〈X,ON,•〉


where we use the fact that Oᵀ

j,•X =
〈
Oj,•, X

〉
=
〈
X,Oj,•

〉
. The N dimensional column

vector O is referred to as the transform coefficients for X with respect to the orthonormal

transformO. The j-th transform coefficient is Oj and is given by the inner product
〈
X,Oj,•

〉
.

If we premultiply both sides of the above equation by Oᵀ and recall that OᵀO = IN , we

obtain the synthesis equation

X = OᵀO = [O1,•,O2,•, ...,ON,•]


O1

O2

...

ON

 =
N

∑
j=1

OjOj,• =
N

∑
j=1

〈
X,Oj,•

〉
Oj,•

which tells us how to reconstruct X from its transform coefficients O. I have used the fact

that Oj =
〈
X,Oj,•

〉
. The above holds for arbitrary X, so the Oj,• vectors form a basis for
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the finite dimensional space RN of all N-dimensional real valued vectors; i.e. any real

valued N-dimensional column vector can be expressed as a unique linear combination of

O0,•, ...,ON,•.

An important fact about an orthonormal transform is that it preserves variance, in the sense

that the variance of the transform coefficients O is equal to the variance of the original series

X, as can be seen from the following argument

ξO = ||O||2 = OᵀO = (OX)ᵀ(OX) = XᵀOᵀOX = XᵀX = ||X||2 = ξX

A transform that preserves variance is sometimes called isometric. Since ξX = ∑t X2
t and

ξO = ∑t O2
j , we can argue that the series X2

t describes how variance is decomposed across

time, whereas the series O2
j describes how variance is decomposed across different trans-

form indices; in my case, scale.

Suppose we wish to approximate X using a linear combination of the vectorsO0,•, ...,ON′ ,•,

where N′ < N. The projection theorem states that the best approximation X̂ to X that is

formed using just the N′ < N vectors O0,•, ...,ON,• is given by

X̂ =
N′

∑
j=1

OjOj,•

where ’best’ is to be interpreted in a least square sense; i.e. the norm of the error vector

e = X̂− X is minimized.

Wavelet transform: Let W be an N x N real valued matrix satisfying the othonormality

propertyWᵀW = IN , where IN is the N x N identity matrix. LetWj,• be a column vector

whose elements contain the j-th row vector of W . With this notation, we can write O =

[W1,•,W2,•, ...,WN,•].

The orthonormality property can be restated in terms of the inner product as

〈
Wj,•,Wj′ ,•

〉
= δj,j′ =

 1 if j = j′;

0 otherwise,

where δj,j′ is the Kronecker delta function. Orthonormality also implies that the inverse

W−1 of the matrix W is just its transpose Wᵀ. Thus WW−1 = WWᵀ = IN . Hence the
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columns ofW are an orthonormal set of vectors.

We can decompose a time series Xt with respect to the orthonormal matrixW by premul-

tiplying X byW to obtain

W =WX =


Wᵀ

1,•

Wᵀ
2,•

...

Wᵀ
N,•

X =


Wᵀ

1,•X

Wᵀ
2,•X

...

Wᵀ
N,•X

 =


〈X,W1,•〉

〈X,W2,•〉

...

〈X,WN,•〉


where we use the fact thatWᵀ

j,•X =
〈
Wj,•, X

〉
=
〈
X,Wj,•

〉
. The N dimensional column vec-

tor W is referred to as the wavelet coefficients for X with respect to the wavelet transform

W . The j-th wavelet coefficient is Wj and is given by the inner product
〈
X,Wj,•

〉
. If we

premultiply both sides of the above equation byWᵀ and recall thatWᵀW = IN , we obtain

the synthesis equation

X =WᵀW = [W1,•,W2,•, ...,WN,•]


W1

W2

...

WN

 =
N

∑
j=1

WjWj,• =
N

∑
j=1

〈
X,Wj,•

〉
Wj,•

which tells us how to reconstruct X from its wavelet transform coefficients W. I have used

the fact that Wj =
〈
X,Wj,•

〉
. The above holds for arbitrary X, so the Wj,• vectors form a

basis for the finite dimensional space RN of all N-dimensional real valued vectors; i.e. any

real valued N-dimensional column vector can be expressed as a unique linear combination

ofW0,•, ...,WN,•.

An important fact about an orthonormal transform is that it preserves variance, in the sense

that the variance of the transform coefficients W is equal to the variance of the original

series X, as can be seen from the following argument

ξW = ||W||2 = WᵀW = (WX)ᵀ(WX) = XᵀWᵀWX = XᵀX = ||X||2 = ξX

Since ξX = ∑t X2
t and ξW = ∑t W2

j , we can argue that the series X2
t describes how variance

is decomposed across time, whereas the series W2
j describes how variance is decomposed

across scales.
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The projection theorem holds for the wavelet transform as well. Suppose we wish to ap-

proximate X using a linear combination of the vectorsW0,•, ...,WN′ ,•, where N′ < N. Then,

the best least square approximation X̂ to X is given by X̂ = ∑N′
j=1 WjWj,•.

Let us now decompose the elements of W into J + 1 subvectors. The first J subvectors are

denoted by Wj, j = 1, ..., J, and the j-th subvector contains all the wavelet coefficients for

scale j. The final subvector is denoted as VJ and it contains the residual coefficient WJ . We

can then write

WX =



W1

W2

...

WJ

VJ


X =



W1X

W2X

...

WJX

VJX


=



W1

W2

...

WJ

VJ


= W

Within eachWj, the rows are circularly shifted versions of each other, but nevertheless are

pairwise orthonormal (because of the orthonormality ofW). The wavelet coefficients in the

vector Wj are associated with differences of various orders in adjacent weighted averages

over a scale of τj = 2j, while the scaling coefficient in VJ is equal to
√

N times the sample

mean X̄ of X. We can now write the isometric condition as

||X||2 = ||W||2 =
J

∑
j=1
||Wj||2 + ||VJ ||2

so that ||Wj||2 represents the contribution to the variance of {Xt} due to changes at scale

τj. Because of the orthonormality ofW and the special form of VJ , we can decompose the

variance of X into elements associated with scales τ1, ..., τJ :

σ̂2
X =

1
N
||X||2 − X̄2 =

1
N
||W||2 =

1
N

J

∑
j=1
||Wj||2

Using the same partitioning ofW and W, we can express the synthesis of X ad the addition

of J + 1 vectors of length N, the first J of which J are associated with a particular scale τj,
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while the final vector SJ has all elements equal to the sample mean

X =WᵀW = [Wᵀ
1 ,Wᵀ

2 , ...,Wᵀ
J ,VᵀJ ]



W1

W2

...

WJ

VJ


=

J

∑
j=1
WjWj + VᵀJ VJ =

J

∑
j=1

Dj + SJ

The collection of orthonormal coefficients {Dj} is called ”detail coefficients” while SJ is

called ”smooth coefficients”. The knowledge of {Dj} and SJ allows us to perfectly recon-

struct the original series X. Because ||Dj||2 = ||Wj||2 for j = 1, .., J, the decomposition of

variance on a scale by scale basis can be expressed as

σ̂2
X =

1
N

J

∑
j=1
||Dj||2

Clearly there are infinite choices of O or W which possess the orthonormality principle.

TheWj,• vectors form a basis for the finite dimensional space RN of all N-dimensional real

valued vectors so that any real valued N-dimensional column vector can be expressed as

a unique linear combination ofW0,•, ...,WJ,•. VectorsWj,• are usually built from so called

basis functions. Different basis functions have different properties, and the correspond-

ing vectors Wj,• inherit some or all of these peculiar properties. For example, if one uses

trigonometric functions as basis functions, Oj,•s will form the so called Orthonormal Dis-

crete Fouriers Transform (ODFT), an orthonormal version of the discrete Fourier transform.

Trigonometric functions have only one relevant parameter, frequency. This property is then

inherited by the ODFT: transform coefficients are localized in frequency only and the trans-

form completely erases the time-domain information of the original series X.

The Discrete Wavelet Transform (DWT) uses a special type of functions as basis functions,

called wavelets. Wavelet functions have a number of interesting properties, the most im-

portant of which is that they are functions simultaneously localized in frequency and time.

This allows the researcher to perform a richer analysis with respect to the ODFT, because

the DWT is able to retain time domain information as well as information at a discrete set

of frequencies, called scales.

A practical example: To illustrate this point, consider the matrix W built by chosing the
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Haar1 wavelet function as the basis function. If we choose N = 16 = 24 (so j = 4 scales),

the resulting 16 x 16 matrixW will look like:

W =



− 1√
2

1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 − 1√
2

1√
2

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 − 1√
2

1√
2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 − 1√
2

1√
2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 − 1√
2

1√
2

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 − 1√
2

1√
2

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 − 1√
2

1√
2

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1√
2

1√
2

− 1
2 − 1

2
1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 − 1
2 −

1
2

1
2

1
2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 − 1
2 − 1

2
1
2

1
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 − 1
2 −

1
2

1
2

1
2

− 1√
8
− 1√

8
− 1√

8
− 1√

8
1√
8

1√
8

1√
8

1√
8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 − 1√
8
− 1√

8
− 1√

8
− 1√

8
1√
8

1√
8

1√
8

1√
8

− 1
4 − 1

4 − 1
4 − 1

4 − 1
4 −

1
4 −

1
4 −

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4


By construction the rows ofW have unit variance. It is also easy to see that the inner prod-

uct of any two distinct rows must be zero, thus establishing thatW is orthonormal. Then

the discrete wavelet transform of X is simply given by W =WX.

Let me now define exactly what the notion of scale means. For any positive integer λ, let

X̄t(λ) =
1
λ

λ−1

∑
l=0

Xt−l

represent the average of contiguous data values with indices from t− λ + 1 to t. We refer

to X̄t(λ) as the sample average for scale λ over the set of times t − λ + 1 to t. Note that

X̄t(1) = Xt which we can regard as a ’single point average’, and that X̄N(J) = X̄, which is

the sample average of all N values.

1The Haar wavelet function was the first wavelet to be used in 1909 by Alfred Haar during his attempt to
construct an orthonormal basis for the set of all square integrable functions.
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Since W =WX, considerations of the rows ofW shows that we can write

W =



W1

...

W8

W9

...

W12

W13

...

W16



=



1√
2
(X2 − X1)

...
1√
2
(X16 − X15)

1
2 (X4 + X3 − X2 − X1)

...
1
2 (X16 + X15 − X14 − X13)

1√
8
(X8 + ... + X5 − X4 − ...− X1)

...
1
4 (X16 + X15 + ... + X1)



Using the definition for X̄t(λ) we can write the Wjs as W1 = 1√
2
(X̄2(1) − X̄1(1)), W8 =

1√
2
(X̄16(1) − X̄15(1)), W9 = X̄4(2) − X̄2(2), W12 = X̄16(2) − X̄14(2), W13 =

√
2(X̄8(4) −

X̄4(4)), W16 = 4X̄16(16). Note that the eight wavelet coefficients W1, ..., W8 are proportional

to differences in adjacent averages of {Xt} on a unit scale; the next coefficients W9, ..., W12 re

proportional to differences in adjacent averages on a scale of two; W13 and W14 are propor-

tional to differences in a scale of four; W15 is proportional to a difference on a scale of eight;

and the final coefficient W16 is proportional to the average of all data. Each wavelet coef-

ficient at each scale is also localized in time: W1 only involves time t = 1 and 2, whereas

W9 involves time t = 1, 2, 3 and 4. In comparison, recall that the ODFT coefficients are

not localized in time in any meaningful sense, which is an important distinction between

’global’ transforms such as the ODFT and ’localized’ transforms such as the DWT.
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Appendix B

From Credit Default Swap spreads

to Total Returns.

The credit default swap data consists of on-the-run credit spreads on various CDS con-

tracts. Each CDS contract has the following parameters: a reference entity, a maturity T, a

starting date t0, a valuation date tk, a notional contingent payment in case of default N and

a recovery rate R. At inception, the spread is chosen such that the value V(tk, t0, T, S0, St)

of the CDS is zero. In order to compute total returns, one has to convert on the run spreads

S(tk, t0, T) on a credit swap into total returns. To do this, I follow this process for each t:

• sell protection at the current spread S(t0, t0, T) on a newly created CDS. The value of

the position is $0 by definition

• compute the value of the position V(t1, t0, T, S(t0, t0, T), S(t1, t0, T)). This means repric-

ing the swap contract on the new credit curve, reducing the maturity of the contract

by one quarter. This will generate a profit or a loss on the contract

• to extract returns, divide the profit or loss at the previous point by the notional N

Recall that a CDS is a swap contract made of two legs: a premium leg, corresponding to

periodic payments Ta+1, ..., Tb until default τ equal to S, and a protection leg, corresponding

to only one contingent payment in case of default, equal to (1− R). In formulas:

Πa,b(t) =
b

∑
k=a+1

D(t, Tk)αkS1{τ>Tk} −
b

∑
k=a+1

1{Tk−1<τ≤Tk}D(t, Tk)(1− R)
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where D(t, Tk) are discount factors and αk are year fractions. By no arbitrage, E[Πa,b(t)] = 0

so the equilibrium CDS spread is

S =
∑b

k=a+1 E[1{Tk−1<τ≤Tk}]D(t, Tk)(1− R)

∑b
k=a+1 D(t, Tk)αkE[1{τ>Tk}]

which clearly requires the estimation of default and survival probabilities. If I assume that

these probabilities do not change much during one quarter and that discount factors are

constant, I can express the profit and loss on a CDS contract as:

PnL(t) = Πa,b(t)−Πa,b(t− 1) =

=
b

∑
k=a+2

D(t, Tk)αkS(t)1{τ>Tk} −
b

∑
k=a+1

D(t, Tk)αkS(t− 1)1{τ>Tk}

=
b

∑
k=a+2

D(t, Tk)αkS(t)1{τ>Tk} − D(t, T1)α1S(t− 1)−
b

∑
k=a+2

D(t, Tk)αkS(t− 1)1{τ>Tk}

=[S(t)− S(t− 1)]
b

∑
k=a+2

D(t, Tk)αkS(t)1{τ>Tk} − D(t, T1)α1S(t− 1)

For more details, the interested reader may consult Brigo and Mercurio. (2007) .
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Appendix C

Derivative pricing.

In the two-factor Heston model, the price of a call can be computed as:

C(S0, K, τ) = S0e−qτ P1 − Ke−rτ P2

where S0 is the spot price of the index, K is the strike price, r is the risk free rate, q is the

dividend yield and τ is the maturity. P1 and P2 are two probabilities than can be recovered

via Fourier inversion as:

Pj =
1
2
+

1
π

∫ ∞

0
Re

[
e−iu log K f j(u, log ST , vt, pt)

iu

]
du

where Re(x) take the real part of the complex number x and f j(u, log ST , vt, pt) is the con-

ditional characteristic function of the model and has a general form as:

f j(u, log St, vt, pt) = eAj(u)+Bj,v(u)vt+Bj,p(u)pt+iu log St

where coefficients Aj, Bj,v and Bj,p solve the corresponding Ordinary Differential Equation

and are available in closed form as:

dv = (κv − ρsvσviu)2 + σ2
v u(u + i)

dp = (κp − ρspσpiu)2 + σ2
pu(u + i)
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Gv =
κv − ρsvσvui− dv

κv − ρsvσvui + dp

Gp =
κp − ρspσpui− dp

κp − ρspσpui + dv

Xv =
1− Gve−dvτ

1− Gv

Xp =
1− Gpe−dpτ

1− Gp

B1,v(u) =
(κv − ρsvσvui− dv)(1− e−dvτ)

σ2
v (1− Gve−dvτ)

B1,p(u) =
(κp − ρspσpui− dp)(1− e−dpτ)

σ2
p(1− Gpe−dpτ)

A1(u) = r f uiτ+ κv
θv

σ2
v
(κv− ρsvσvui− dv)τ− 2 log(X1)+ κp

θp

σ2
p
(κp− ρspσpui− dp)τ− 2 log(X2)

and where:

B1,v(u) = B2,v(u− i)− B2,v(−i)

B1,p(u) = B2,p(u− i)− B2,p(−i)

A1(u) = A2(u− i)− B2(−i)

The P and Q distributions can be recovered by plugging the respective coefficients in the

above formulas. In the case of the P distribution computations, the formula for coefficient

A1(u) has to be slightly modified. Instead of just r f , one has to use r f + λvvt + λp pt.

Putting all together, the formula for P(x; St, vt, pt) is:

P(x; St, vt, pt) =
1

2π

∫
Real

[
e−iuxeAP

2 (u)+BP
2,v(u)vt+BP

2,p(u)pt+iu log St
]

du
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Appendix D

A Monte Carlo simulation.

In order to check that my option pricing and estimation methods are correct, I have con-

ducted a Monte Carlo simulation. The goal is to compare European option prices calcu-

lated in closed form with Monte Carlo prices calculated numerically as average of terminal

payoffs. The first thing is to simulate the path of volatility and of the log of stock price

according to:

Zv1 = ξ
(1)
0,1

Zv2 = ξ
(2)
0,1

Zs1 = ρZv1 +
√

1− ρ2
1ξ

(3)
0,1

Zs2 = ρZv2 +
√

1− ρ2
2ξ

(4)
0,1

v1(t) = v1(t− 1) + κv1(θv1 − v1(t− 1))∆t +
√

v1(t− 1)σv1 Zv1

√
∆t

v2(t) = v2(t− 1) + κv2(θv2 − v2(t− 1))∆t +
√

v2(t− 1)σv2 Zv2

√
∆t

s(t) = s(t− 1)+ (r− 1
2

v1(t− 1)− 1
2

v2(t− 1))∆t+
√

v1(t− 1)Zs1

√
∆t+

√
v2(t− 1)Zs2

√
∆t

where ξ
(j)
0,1 is a normal random variable with zero mean and unit variance. The final Monte

Carlo option price for a European call is computed as follows:

CMC
T,K = e−rT 1

N

N

∑
i=1

(e(sj(T)) − K)+

Here N is the number of simulations and T the maturity of the option.
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In ?? I compare CMC
T,K with the closed form Heston price CHeston

T,K and compute pricing errors

in terms of Black and Scholes implied volatilities. I report errors for various moneyness

levels and for various number of simulations. I find that errors are extremely small and

that the recovered implied volatility skews are almost indistinguishable from each other.

The results are similar to Boyle (1977). In Figure 8 I plot the Implied Volatility errors as a

function of moneyness.

123


	Business cycle risk in equities, fixed income and credit markets.
	Introduction.
	The Business Cycle CCAPM.
	Expanding the state-space
	Equilibrium

	Empirical Section
	Data
	Empirical performance of the Consumption CAPM

	Arbitrage pricing across the business cycle
	Conclusions

	The empirical properties of political risk.
	Introduction.
	Literature review.
	Preliminary data analysis.
	Autocorrelation.
	Non linear dependence
	Extreme correlations

	A HAR specification.
	Conclusions.

	The policy risk premium in equity derivatives.
	Introduction.
	Literature review on political risk.
	Preliminary data analysis.
	The model.
	Data.
	Estimation strategy.
	Results and discussion.
	Conclusions.

	Appendices
	An Orthogonal Decomposition.
	From Credit Default Swap spreads to Total Returns.
	Derivative pricing.
	A Monte Carlo simulation.

