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ABSTRACT
Motion sensors such as accelerometers and gyroscopes measure

the instant acceleration and rotation of a device, in three dimen-

sions. Raw data streams from motion sensors embedded in portable

and wearable devices may reveal private information about users

without their awareness. For example, motion data might disclose

the weight or gender of a user, or enable their re-identification. To

address this problem, we propose an on-device transformation of

sensor data to be shared for specific applications, such as moni-

toring selected daily activities, without revealing information that

enables user identification. We formulate the anonymization prob-

lem using an information-theoretic approach and propose a new

multi-objective loss function for training deep autoencoders. This

loss function helps minimizing user-identity information as well

as data distortion to preserve the application-specific utility. The

training process regulates the encoder to disregard user-identifiable

patterns and tunes the decoder to shape the output independently of

users in the training set. The trained autoencoder can be deployed

on a mobile or wearable device to anonymize sensor data even

for users who are not included in the training dataset. Data from

24 users transformed by the proposed anonymizing autoencoder

lead to a promising trade-off between utility and privacy, with an

accuracy for activity recognition above 92% and an accuracy for

user identification below 7%.
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Figure 1: The Anonymizer is a pre-trained autoencoder that
transforms raw data before they are shared with an (un-
trusted) app to enable a service-specific inference that does
not reveal private information about the user. KEY - Xs j :
raw data generated by sensor s at time j; X′s j : correspond-
ing anonymized data after transformation.

1 INTRODUCTION
Motion data from the sensors in mobile and wearable devices can

reveal private information about users without their awareness.

For instance, motion patterns can be used to create fine-grained

behavioral profiles of users that reveal their identity [23]. We are

interested in designing an on-device privacy-preserving approach

to share with apps transformed sensor data in order to prevent the

exposure of sensitive information unrelated to the service while

simultaneously preserving the service-specific utility (see Figure 1).

Approaches for privacy-preserving data release include differ-

entially private mechanisms [6] and information theoretic frame-

works [28]. Differential privacy [36] offers a privacy guarantee for

access to private datasets, but it is not applicable to continuously

released sensor data. In fact, a private mechanism for publishing

sensitive data needs to aggregate all users’ data [33] and, in our sce-

nario, we do not trust data aggregators. Moreover, we want to run

the mechanism on user devices, but the local version of differential

privacy [5, 16] is unsuitable in this case. Time series such as sensor

data present recurring patterns in consecutive temporal windows

and, unless considerable noise is added to each window that would

eliminate the utility of the data, applying the same differentially

private mechanism to all windows does not provide a privacy guar-

antee [32]. Instead, frameworks based on information theory [17]
consider as the measure of privacy the mutual information between

the released data and the latent information that can be inferred

from data. Under this framework we do not necessarily need to

design a noise addition mechanism and we can remove or at least

reduce private information while keeping useful service-specific

information [25].

To design a data release mechanism that simultaneously satisfies

utility and privacy constraints, we use adversarial approaches to

train deep autoencoders [19]. Using adversarial training [7, 34], we

https://doi.org/10.1145/3302505.3310068
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approximate the mutual information by estimating the posterior

distribution of private variables, given the released data. Moreover,

we anonymize data locally and define a mechanism that can be

shared across users, whereas existing solutions need a trusted party

to access user personal data to offer a reliable distortion mecha-

nism [16, 24, 37] or need users to participate in a privacy-preserving

training mechanism [1].

We formulate the sensor data anonymization problem as an op-

timization process based on information theory and propose a new

way of training deep autoencoders. Inspired by recent advances

in adversarial training to discover from raw data useful represen-

tations for a specific task [19], we propose a new multi-objective

loss function to train deep autoencoders [22]. The loss function

regulates the transformed data to keep as little information as pos-

sible about user identity, subject to a minimal distortion to preserve

utility, which in our case is that of an activity recognition service.

Unlike other approaches [10, 11, 20, 26, 28, 34], our training

process not only regulates the encoder to consider exclusively task-

specific features in the data, but also shapes the final output in-

dependently of the specific users in the training set. This process

leads to a generalized model that can be applied to new data of

unseen users, without user-specific re-training. We evaluate the effi-

ciency and utility-privacy trade-off of the proposed mechanism and

compare it with other methods on an activity recognition dataset
1
.

2 RELATEDWORK
Adversarial learning enables us to approximate, using generative

adversarial networks (GANs) [9], the underlying distribution of

data or to model, using variational autoencoders (VAE) [14], data

with well-known distributions. These techniques can be applied to

quantify mutual information for optimization problems [7, 11, 24,

34] and can be used to remove sensitive information from latent

low-dimensional representations of the data, e.g. removing text

from images [7]. An optimal privacy mechanism can be formulated

as a game between two players, a privatizer and an adversary, with

an iterative minimax algorithm [11]. Moreover, the service provider

can share a feature extractor based on an initial training set that is

then re-trained by the user on their data and then sent back to the

service provider [24, 30].

In our work, we do not assume the existence of a trusted data

aggregator to perform anonymization for end users. We assume

we only have access to a public dataset for training a general

anonymization model. The trained anonymizer should general-

ize to new unseen users, because it is impractical for all users to

provide their data for the training.

The feature maps of a convolutional autoencoder have the ability

to extract patterns and dependencies among data points and have

shown good performance in time series analysis [38]. Autoencoders

compress the input into a low-dimensional latent representation

and then reconstruct the input from this representation. Autoen-

coders are usually trained by minimizing the differences (e.g. mean

squared error or cross entropy) between the input and its recon-

struction [22]. The bottleneck of the autoencoder forces the training

process to capture the most descriptive patterns in the data (i.e. the

main factors of variation of the data) in order to generalize the

1
Code and data are available at: https://github.com/mmalekzadeh/motion-sense

model and prevent undesirable memorization [2, 8]. An effective

way to train an autoencoder is to randomly corrupt [35] or re-

place [21] the original input and force the model to refine it in the

reconstruction. In this way, a well-trained autoencoder captures

prominent and desired patterns in the data and ignores noise or

undesired patterns [35]. Moreover, a latent representation can be

learned that removes some meaningful patterns from the data to

reduce the risk of inferring sensitive information [21].

Only considering the latent representation produced by the en-

coder and leaving intact the decoder with information extracted

from the training data offer only limited protection [7, 16]. Con-

sidering the decoder’s output leads to a more reliable data pro-

tection [20, 26]. In this paper, we consider outputs from both the

encoder and decoder of an autoencoder for data transformation.

We also consider a distance function as an adjustable constraint on

the transformed data to control the amount of data distortion and

help tune the privacy-utility trade-off for different applications.

3 SENSOR DATA ANONYMIZATION
We aim to produce a data transformation mechanism to anonymize

mobile sensor data so that the user specific motion patterns, that

are highly informative about user’s identity, cannot be captured by

an untrusted app that has access to the sensor to recognize a set of

B required activities. Thus, we consider users’ identity, that can be

inferred from user specific motion patterns, as their sensitive data.

We use the concept of mutual information to quantify how much

can be inferred about a particular variable from a data set. We wish

to minimize the amount the data changes but remove the ability to

infer private information from the data.
2

3.1 Anonymization function
Let sensor component s (e.g. the z axis value of the gyroscope

sensor) at sampling instant j, generate Xs j ∈ R. Let the time series

generated byM sensor components in a time-window of lengthW ,

be represented by matrix X ∈ RM×W , with X = (Xs j ). Let N be

the number of users and U ∈ {0, 1}N be a variable representing the

identity of the user; a one-hot vector of length N , a vector with 1

in the k-th place and 0 in all other places if user k generated the

data being considered. Let the current activity that generates X be

T ∈ {0, 1}B ; a one-hot vector of length B with the one in position b
if the current activity is the b-th activity. Finally, we define the data

with the user’s identifiable information obscured as the anonymized
sensor data, X′.

Let I(·; ·) be the mutual information function, d(·, ·) a distance
function between two time series

3
, A(.) a data transformation func-

tion and X the data we want to anonymize. We define the fitness

function F(.) as
F

(
A (X)

)
= βi I

(
U; A (X)

)
− βa I

(
T; A (X)

)
+ βdd

(
X,A (X)

)
, (1)

where the non-negative weight parameters βi , βa and βd determine

the trade-off between privacy and utility.

2
As notation we use capital bold-face, e.g. X, for random variables (univariate or

multivariate) and lowercase bold-face, e.g. x, for an instantiation; roman typestyle, e.g.

I, for operations or functions; lowercase math font, e.g. i , for indexing; and capital

math font, e.g. M , for specific numbers such as the size of a vector.

3
In the specific implementation of this paper, we choose as d(·, ·) the mean squared

error,MSE, between raw data and the corresponding transformed data. One can choose

any other distance functions based on the tasks at hand.

2

https://github.com/mmalekzadeh/motion-sense


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 

 Encoder  Decoder 

Decoder 
Regularizer 

𝐗′ 
‘ 

X 
 𝑳𝒂  

Activity 
Regularizer 

𝐘 
 

𝐗 
 𝑳𝒅 

Distortion 
Measurement 

Encoder 
Regularizer 

 𝑳𝒊  

 𝑳 Multi-Objective 
Loss Fiunction 

 𝑳𝒊  

AAE 
A 

Figure 2: The losses involved in the training procedure.
After training, the Anonymizing AutoEncoder (AAE), or
Anonymizer, runs on the device as interface between sen-
sor data and (untrusted) apps. KEY – Solid lines: data flow;
dashed lines: loss functions. X: raw input data; Y: low-
dimensional representation of the input data; X′: trans-
formed data; Li : identity loss; La : activity loss; Ld : distortion
loss function; L: overall loss function for training the AAE.

Let us define the anonymization function, A(·), as
A (X) = argmin

A(X)
F

(
A (X)

)
. (2)

such that the optimal A(·) transforms X into X′ = A(X), which
contain as little information as possible associated to the identity of

the user (minimum I(U;X′)), while maintaining sufficient informa-

tion to discriminate the activity (maximum I(T;X′)) andminimizing

the distortion of the original data (minimum d(X,X′)).
As we cannot practically search over all possible anonymization

functions, we consider a deep neural network and look for the opti-

mal parameter set through training. To approximate the required

mutual information terms, we reformulate the optimization prob-

lem in (1) as a neural network optimization problem and train an

anonymizing autoencoder (AAE) based on adversarial training.

3.2 Architecture
Let A(X;θ ) be an autoencoder neural network, where θ is the pa-

rameter set and X is the input vector to be transformed into the

output vector X′ with the same dimensions. The network optimizer

finds the optimal parameter set θ∗ by searching the space of all the

possible parameter sets, Θ, as:

θ∗ = argmin

θ ∈Θ
βi I

(
U; A

(
X;θ

) )
−βa I

(
T; A

(
X;θ

) )
+βdMSE

(
X,A

(
X;θ

) )
(3)

where, A(·;θ∗) is the optimal estimator for a general A(·) in (1).

We obtain θ∗ using backpropagation with stochastic gradient

descent and a multi-objective loss function. We also determine

values of βi , βa and βd as the trade-off between utility and privacy

through cross validation over the training dataset.

Figure 2 shows the framework for the training of the AAE. The

Encoder mapsX into an identity concealing low-dimensional latent

representation Y by getting feedback from a pre-trained classifier,

the Encoder Regularizer, which penalizes the Encoder if it cap-

tures information corresponding to U into Y. The Decoder outputs
a reconstruction of the input, X′, from the Y, and gets feedback

from other pre-trained classifiers, the Decoder Regularizer and the

Activity Regularizer, respectively.

 out inp 
(2, 128) (24) 

DecReg Model 
out inp 

(2, 32) (24) 

EncReg Model 

Input Layer 
(2, 128) out inp 

(2, 128) (2, 32) 

Encoder Model 
out inp 

(2, 32) (2, 128) 

Decoder Model 
out inp 

(2, 128) (4) 

ActReg Model 

Figure 3: Implementation of the models shown in Figure 2
for a dataset with 24 users and 4 activities. KEY – EncReg:
Encoder Regularizer; DecReg: Decoder Regularizer; ActReg:
Activity Regularizer.
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Figure 4: Implementation of the AAE architecture: Encoder
and Decoder models in Figure 3.

The Encoder Regularizer (EncReg) and the Activity Regularizer

(ActReg) share the same architecture as the Decoder Regularizer

(DecReg). The only differences are that the shape of input for EncReg
is 32, instead of 128, and the shape of softmax output for ActReg is

4, instead of 24 for a dataset with 24 users and 4 activities. Figure 3

shows the overall architecture whereas Figures 4 and 5 show the

details of each neural network model.

Because convolutional layers capture well locally autocorrelated

and translation-invariant patterns in time series [15], we choose

the two privacy regularizers, EncReg and DecReg, and the activity

regularizer, ActReg, to be convolutional neural network classifiers

trained by a categorical cross-entropy loss function [38].

3.3 Training
Instead of just training on a single epoch, as usually done in adver-

sarial training [9], all the classifiers should be trained for several

epochs, e , on the entire dataset to converge to suboptimal infor-

mation estimators for use in the next step. In fact, our objective is

3
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Figure 5: Implementation of the the DecReg architecture in
Figure 3 (we have the same structure for EncReg andActReg).

not to learn the data distribution, but to transform data from an

identity-centred sample space (which is informative about users’

identity) to an activity-centred sample space (which carry only

information about the underlying activity). Therefore, each regu-

larizer should at least converge to a suboptimal approximator of

mutual information.

The EncReg learns to identify a user among N in the training

dataset by getting as input Y the low-dimensional representation

of X produced by the Encoder. The output is the identity label,

U. The DecReg learns to identify users by getting as input the

reconstructed data, X′, produced by the Decoder (here too the

output is the identity label, U). The ActReg learns to recognize the

current activity and gets the reconstructed data,X′, as input and the
activity label, T, as output. Finally, the distortion regularizer, a loss

function that constrains the allowed distortion on the data, gets the

original data, X, and reconstructed data, X′, to calculate pointwise

the mean squared error to quantify the amount of distortion.

After each iteration, we evaluate the convergence condition of

the AAE to decide, based on the current utility-privacy trade-off.

We discuss more about possible evaluation methods in Section 4.4.

Figure 6 summarizes the training of the AAE, which can be

done locally, on the user powerful devices; centrally, by a service

provider; or a user can download a public pre-trained model and

refined it on their own data [29].

3.4 Multi-objective loss function
After each round of training of the regularizers, we freeze their

parameters while training the AAE (line 11 of the training pro-

cedure, Figure 6). A key contributior to the AAE training is our

proposed multi-objective loss function, L, which implements the

fitness function F

(
A (x)

)
of Eq. (1):

L = βiLi − βaLa + βdLd , (4)

where the regularization parameters βa , βd , and βi are non-negative,
real-valued weights that determine the utility-privacy trade-off. La
and Ld are utility losses that can be customized based on the app

requirements (note that Ld is the only available utility loss if there

is no target application), whereas Li is an identity loss that helps
the AAE remove user-specific signals.

The categorical cross-entropy loss function for classification, La ,

aims to preserve activity-specific patterns
4
:

La = T log( ˆT), (5)

where T is the one-hot B-dimensional vector of the true activ-

ity label for X and
ˆT, the output of a softmax function, is a B-

dimensional vector of probabilities for the prediction of the activity

label.

To tune the desired privacy-utility trade-off, the distance function

that controls the amount of distortion, Ld , forces X′s j to be as

similar as possible to the input Xs j :

Ld =
1

M ×W

M∑
s=1

W∑
j=1
(Xs j − X′s j )2, (6)

Finally, the identity loss, Li , themost important term of ourmulti-

objective loss function that aims to minimize sensitive information

in the data, is defined as:

Li = −
(
U log

(
1N − Û

)
+ log

(
1 −max

(
Û
)))
, (7)

where 1N be the all-one column vector of length N , U is the true

identity label for X, and Û is the output of the softmax function,

the N -dimensional vector of probabilities learned by the classifier

(i.e. the probability of each user label, given the input).

A trivial anonymization would consistently transform data of a

user into the data of another user (and vice versa). However, this

transformation would only satisfy the first element of Li . As no
attacker should be able to confidently predict U from X′, we maxi-

mize the difference between the prediction, Û, and the true identity,
U by minimizing the cross-entropy between the true identity label

and the regularizer’s prediction of this label, as well as the max-

imum value of the predicted identity vector, Û (see Eq. (7)). The

derivation of Li is presented in the next section.

3.5 Derivation of the identity loss
Our goal is to makeU andX′ independent of each other. To this end,
we minimize the amount of information leakage from U to X′ [25].
As a function f that aims to infer the identity of a user does not

increase the available information, the following inequality holds:

I(U;X′) ≥ I(U; f(X′)), (8)

4
We can customize La for the task e.g. using a binary cross-entropy for fall detec-

tion [18].
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1: procedure TrainAAE(X,U,T, e) ▷ X: dataset (M ×W temporal windows);U: identity labels; T: activity labels; e number of epochs.

2: AAE (Encoder+Decoder)← Random initialization;

3: AAE← Train on X as both input and output for e epochs;
4: Y ← Encoder(X); ▷ Y is the extracted latent representation from the raw data.

5: X′ ← CopyO f (X); ▷ Keep raw data intact to use it for evaluation in each iteration.

6: EncReg, DecReg, ActReg, AAE← Random initialization;

7: do
8: EncReg← Train on Y as input andU as output using categorical cross-entropy as loss function, for e epochs;
9: DecReg← Train on X′ as input andU as output using categorical cross-entropy as loss function, for e epochs;
10: ActReg← Train on X′ as input and T as output using categorical cross-entropy as loss function, for e epochs;
11: Freeze parameters of EncReg, DecReg, and ActReg;
12: AAE← Train on X′ as input andU,U, T, and X as outputs for e epochs (see Figure 2);
13: Y ← Encoder(X);
14: X′ ← Decoder(Y);
15: Unfreeze parameters of EncReg, DecReg, and ActReg;
16: while it does not satisfies the convergence conditions;

17: return AAE; ▷ Resulting AAE to be used as Anonymizer.

Figure 6: The adversarial regularization procedure to train the Anonymizer, A(·,θ∗), using Eq. (3)

and therefore if we reduce the mutual information between the

user’s identity and their released data, the processing of these data

cannot increase the mutual information. The mutual information,

I(U;X′), can be defined as

I(U;X′) = H(U) − H(U|X′), (9)

where H(·) is the entropy. As the entropy is non-negative and we

cannot control H(U), we maximize the conditional entropy between

identity variable and the transformed data, H(U|X′), in order to

minimize the mutual information, I(U;X′):

H(U|X′) = H(U,X′) − H(X′). (10)

The entropy of X′, H(X′), can be reduced independently of any

other latent variables by simply downsampling the data. However,

as blindly minimizing H(X′) could lead to a substantial utility loss,

we focus on maximizing H(U,X′).
Let p(U,X′) be the joint distribution of U and X′; and Su and SX′

be the supports of U and X′, respectively. Then

H(U,X′) = −
∫
Su

∫
SX′

p(U,X′) logp(U,X′). (11)

We now need an estimator for H(U,X′) as we cannot calculate
the joint entropy directly for high-dimensional data. When labeled

data are available, X′ can be used as input to predict Û as an esti-

mation of U. We therefore reformulate the problem of maximizing

the joint entropy, H(U,X′), as maximization of the cross entropy

between the true label, U, and the predicted label, Û:

HÛ(U) = −
∫
SX′

U log Û. (12)

If Û[k] is the k-th element of the vector predicted by the mul-

ticlass classifier, the empirical cross entropy for data X′ of user k
is:

− U log Û = − log Û[k] (13)

and, since Û[k] ∈ [0, 1], maximizing − log Û[k] is equivalent to
minimizing − log (1 − Û[k]). Therefore minimizing the first term of

Eq. (7), U log(1N − Û), minimizes the mutual information, I(U;X′),
and, by forcing the AAE to minimize this value, we minimize the

amount of user-identifiable information in X′.

3.6 Examples
To gain an appreciation of the type of distortions introduced by the

AAE, we compare sensor data before and after transformation.

Figure 7 (top) shows the low-dimensional latent representation

of raw gyroscope data extracted by the bottleneck of the model.

The distribution of Y has useful information to distinguish not

only the activities, but also the users (color clusters of the top-right

plot). Figure 7 (bottom) shows the latent representation of the data

anonymized by our method: the transformation masks the data for

different users but preserves the Jogging activity samples separated

from those of the other activities (note that this is a considerably

compressed representation of the input data).

Figure 8 compares raw and transformed data of four activities.

It is possible to notice that the AAE obscures patterns and peaks,

but maintains differences among data of different activities.

Finally, Figure 9 compares the spectrogram of raw and trans-

formed data for a user: the AAE introduces new periodic compo-

nents and obscure some of the original ones, and they differ across

the activities. As periodic components in accelerometer data can

disclose information about attributes of users such as height and

weight, the AAE reduces the possibility of user re-identification by

introducing new periodic components in the data.

In the next section we quantify the performance of the proposed

method and compare it with alternative approaches.

4 EVALUATION
To evaluate the effectiveness of the proposed data anonymizer, we

analyze the trade-off between recognizing the activity of a user and

5



Figure 7: Latent representation, Y, of the 64D gyroscope data
in 2D. (Top row): raw data. (Bottom row): data transformed
by the AAE. (Left column): samples of four activities. (Right
column): Jogging data for all users.

Figure 8: Comparison of raw (first and third row) and trans-
formed data (second and fourth row) for gyroscope (first two
rows) and accelerometer (last two rows) for four activities.

concealing their identity. We measure the extent to which the activ-

ity recognition accuracy is reduced by the anonymization process,

compared to using the raw data. We compare with two baseline

methods for coarse-grained time series data, namely Resampling
and Singular Spectrum Analysis (SSA), and with REP [7], which only

considers sensitive information included in Y and does not take X′

into account (Figure 2).

4.1 Experimental Setup
Current public datasets of motion sensor data do not simultaneously

satisfy the requirements of abundance and variety of activities and

Figure 9: Spectrogram of raw (first and third row) and trans-
formed data (second and fourth row) for gyroscope (first two
rows) and accelerometer (last two rows) for four activities.

users
5
. We therefore collected a dataset from the accelerometer and

gyroscope of an iPhone 6s placed in the user’s front pocket of tight

trousers [13, 20]. The dataset includes 24 participants, in a range of

age, weight, height and gender, who performed 6 activities in 15

trials. In each trial, we used the same environment and conditions

for all the users (see Table 1). We divide the dataset into training

and test sets with two different strategies, namely Subject and Trial.

In Subject, we use as test data all the data of 4 users, 2 females and

2 males, and as training data that of the remaining 20 users. After

training, the model is evaluated on data of 20 unseen users. In Trial,
we use as test data one trial session for each user and as training

data the remaining trial sessions (for example, one trial of Walking

of each user is used as test and the other two trials are used as

training). In both cases, we put 20% of training data for validation

during the training phase. We repeat each experiment 5 times and

report the mean and the standard deviation. For all the experiments

we use the magnitude value for both gyroscope and accelerometer.

We choose as window lengthW = 128 (2.56 seconds) and we set

as stride S = 10. For all the regularizers, EncReg, DecReg, and ActReg,
we use 2D convolutional neural networks. To prevent overfitting to

the training data, we put a Dropout [31] layer after each convolution

layer. We also use an L2 regularization to penalize large weights so

that the classifier is forced to learn features that are more relevant

for the prediction.

4.2 Sensor Data Characteristics
In this section we discuss the characteristics of motion sensor data

that informed the design of our sensor data anonymizer.

5
Datasets that satisfy both (e.g. [23]) are still private.
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Number of users 24 (14 males, 10 females)

Sampling rate 50 Hz

Sensors

gyroscope

accelerometer

Features

rotationRate (x,y,z)

userAcceleration (x,y,z)

gravity (x,y,z)

attitude(roll, pitch, yaw)

Activities

(number of trials)

Downstairs (3 trials )

Upstairs (3 trials)

Walking (3 trials)

Jogging (2 trials)

Sat (2 trials)

Stand-Up (2 trials)

Table 1: TheMotionSense dataset [20]. Multiple trials of the
same activity are performed in different locations. KEY – (x,
y, z): the three axes of the sensor.

Figure 10: Sample accelerometer (top) and gyroscope (bot-
tom) data for Walking of a specific user. KEY – RPS: revolu-
tions per second,m/s2: metres per second squared

Figure 10 shows the correlation between the magnitude of the

time series collected from these sensors. We see that both sensors

almost follow each other, especially for the peaks and periodicity

of the magnitude value, whereas a correlation among axes is less

obvious. Figure 11 compares the magnitude values of the data from

Figure 11: Sample accelerometer (accl) and gyroscope (gyro)
data for six activities for a single user.

two sensors when the user performs in six different activities. Note

that Sat and Stand-Up are difficult to be told apart. The only data that

are informative to distinguish these activities from each other are

the values of the gravity axes which determine whether the phone

is held vertically or horizontally. However, we do not consider Sat

and Stand-Up in our experiments for training the AAE.

Figure 12 compares the F1 score obtained using as classifier a

deep convolutional neural network with seven groups of data
6
. We

use the Subject setting for activity recognition and the Trial setting
for identity recognition. The groups of data are the magnitude value

of each sensor, the exact value of each axis, the data of only one of

these sensors and then both. It is interesting to estimate the amount

of information about user’s identity that can be extracted form the

correlation between accelerometer and gyroscope. Note that we

can achieve equal (or better) accuracy for activity recognition using

only the magnitude, whereas we should use the values of each axis

for identity recognition. Moreover, using a 2D convolutional filter

(i.e. the classifier considers the correlation among the input sensors)

improves over both activity and identity recognition compared to

using 1D filters, which process each input separately. Hence, a

good anonymization mechanism should consider both inter-sensor

and intra-sensor correlations. We will use the magnitude value of

both gyro and accelerometer (MaдBoth_2D) in our experiments of

evaluating the utility-privacy trade-offs.

Figure 13 shows the autocorrelation at varying time lags for the

magnitude of accelerometer data for different activities (average

over 45 seconds of data for all users). Note that each activity has

a different period. Walking has the highest correlation, followed

by Jogging, Upstairs, and Downstairs. The distance between two

peaks can be related to the stride. There are also strong correlations

among samples inside a 2-second window, whereas correlations go

under the confidence interval after about 5 seconds.

Figure 14 shows the autocorrelations of the same activity per-

formed by three users. The heavier the user, the longer the intervals

between two peaks (user u_1 is the heaviest among the three). This

user-identifiable pattern is a challenging feature to obscure before

sharing the data. In fact, we see that baseline methods like down-

sampling cannot hide the user identity.

4.3 Baseline Methods
As baseline methods we use Resampling and Singular Spectrum

Analysis.

6
By the similar architecture described in Figure 5
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info. result type

raw

(50Hz)

resample

(10Hz)

resample

(5Hz)

SSA

(1,2)

SSA

(1)

REP [7]

(50Hz)

AAE

(50Hz)

(I) act

(subject)

mean F1 92.51 91.11 88.02 88.59 87.41 91.47 92.91

var F1 2.06 0.63 1.85 0.91 0.89 00.87 0.37

(I) id

(trial)

mean ACC 96.20 31.08 13.53 34.13 16.07 15.92 6.98

mean F1 95.90 25.57 8.86 28.59 12.58 11.25 1.76

(II) id

(DTW)

mean Rank 0 7.2 9.3 6.8 9.5 10.7 6.6

var Rank 0 5.7 5.8 5.6 5.4 5.5 4.7

Table 2: Trade-off between utility (activity recognition) and privacy (identity recognition). KEY – act: activity recognition,
id: identity recognition, ACC: accuracy, F1: F1 score, DTW: Dynamic Time Warping as the similarity measure, SSA: Singular
Spectrum Analysis REP: Only Anonymizing the latent Representation AAE: Our Anonymizing AutoEncoder. The forth row
shows the K-NN rank between 24 users.

Figure 12: Average F1 score for the recognition, with differ-
ent sensor data types, of activity (top) and identity (bottom).
The black vertical segments show the standard deviation.
KEY – Mag: magnitude; gyro: gyroscope; accl: accelerome-
ter; Both: both gyro and accl; 1D and 2D are the dimensions
of the convolution filter.

Resampling ideally aims to reduce the richness of the data to

the extent that it contains useful information for recognizing the

activity but not identity-specific patterns. We choose a resampling

based on the Fast Fourier Transform (FFT) and, specifically, we use

the “signal.resample” function of “SciPy” package [12]. Figure 15

(left plot) shows the classification accuracy with downsampled sen-

sor data. For a fair comparison, we trained a fixed model (in terms

of the size of the parameters and number of the layers) for all the

sample rates. The impact of downsampling on activity recognition

can be ignored for a rates greater than 20Hz. However, even at

5Hz, we can distinguish the 24 users from each other with over 60%

accuracy.

Singular Spectrum Analysis (SSA) [3] decomposes time series into

interpretable components such as trend, period, and structureless

(or noise) components. The window length parameter specifies the

number of components. We decompose each X, into a set of D
components, {X1,X2, . . . ,XD }, such that the original time series

Figure 13: Autocorrelation of accelerometer data for four ac-
tivities averaged over all the users. Correlation values out-
side the lines of the confidence interval (Conf. Int.) are sta-
tistically significant.

can be recovered as:

X =
D∑
d=1

Xd . (14)

As SSA arranges the elements Xd in descending order according

to their corresponding singular value, we explore the idea of in-
cremental reconstruction. Figure 15 (right plot) shows that training
a classifier on the reconstruction with only the first components,

up to the total of 10 extracted components, can achieve over 80%

accuracy for both activity and identity recognition.

4.4 Discussion
In this section, we compare the transformed data produced by our

trained AAE with the outputs of the other methods.

We train an activity recognition classifier on both the raw data

and the transformed data, and then use it for inference on the

corresponding test data. Here we use the Subject setting, thus the

test data includes data of new unseen users. The second row of

Table 2 shows that the average accuracy for activity recognition for

both Raw and AAE data is around 92%. Compared to other methods

that decrease the utility of the data, we can preserve the utility

8



Figure 14: Autocorrelation of the accelerometer data for
Walking for three users. KEY – Conf.Int.: confidence inter-
val; u1, u13, u19: data of user 1, 13, and 19.

Figure 15: Classification accuracy for a deep convolutional
neural network for both Activity and Identity recognition.
(Left) Using data resampled to another rate (from 5 to 50 Hz,
where 50Hz is the original sampling rate). (Right)Using data
reconstructed using only a subset of components (from 1 to
10, from a total of 50), ordered from largest to smallest by
corresponding singular values.

and even slightly improve it, on average, as the AAE shapes data

such that an activity recognition classifier can learn better from the

transformed data than from the raw data.

To evaluate the degree of anonymity, we assume that an adver-

sary has access to the training dataset and we measure the ability of

a pre-trained deep classifier on users raw data in inferring the iden-

tity of the users when it receives the transformed data. We train a

classifier in the Trial setting over raw data and then feed it different

types of transformed data. The third row of Table 2 shows that

downsampling data from 50Hz to 5Hz reveals more information

than using the AAE output in the original frequency. These results

show that the AAE can effectively obscure user-identifiable infor-

mation so that even a model that have had access to users’ original

data cannot distinguish them after applying the transformation.

Finally, to evaluate the efficiency of the anonymization with

another unsupervised mechanism, we implement the k-Nearest
Neighbors (k-NN) with Dynamic Time Warping (DTW) [27]. Using

DTW, we measure the similarity between the transformed data

of a target user k and the raw data of each user l , Xl
, for all l ∈

{1, 2, . . . ,k, . . . ,N }. Then we use this similarity measure to find

the nearest neighbors of user l and check the rank of k among

them. The last row of Table 2 shows that it is very difficult to find

similarities between the transformed and raw data of the users as

the performance of the AAE is very similar to the baseline methods

and the constraint in Eq. (3) maintain the data as similar as possible

to the original data.

5 CONCLUSION
We proposed a multi-objective loss function to train an anonymiz-

ing autoencoder (AAE) as sensor data anonymizer for personal and

wearable devices. To remove user-identifiable features included in

the data we consider not only the feature extractor of the neural

network model (encoder), but we also force the reconstructor (de-

coder) to shape the final output independently of each user in the

training set, so the final trained model is a generalized model that

can be used by a new unseen user. We ensure that the transformed

data is minimally perturbed so an app can still produce accurate

results, for example for activity recognition. The proposed solution

is important to ensure anonymization for participatory sensing [4],

when individuals contribute data recorded by their personal devices

for health and well-being data analysis.

As future work, we aim to measure the cost of running such

local transformations on user devices; to conduct experiments on

other use cases (i.e. different tasks); and to derive statistical bounds

for the level of privacy protection achieved.
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