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Exosomes and the kidney: Blaming the messenger
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SUMMARY AT A GLANCE

Enormous interest has focused on

exosomes, the small membrane-bound

vesicles released into the extracellular

environment by many cell types, since

the realization that they play important

functional roles across many aspects of

cell biology and the potential to use their

unique protein and RNA content as

signatures in biomarker research.

ABSTRACT:

Exosomes are membrane-bound vesicles of endosomal origin, present in a
wide range of biological fluids, including blood and urine. They range
between 30 and 100 nm in diameter, and consist of a limiting lipid bilayer,
transmembrane proteins and a hydrophilic core containing proteins,
mRNAs and microRNAs (miRNA). Exosomes can act as extracellular vehi-
cles by which cells communicate, through the delivery of their functional
cargo to recipient cells, with many important biological, physiological
and pathological implications. The exosome release pathway contributes
towards protein secretion, antigen presentation, pathogen transfer and
cancer progression. Exosomes and exosome-mediated signalling have been
implicated in disease processes such as atherosclerosis, calcification and
kidney diseases. Circulating levels of exosomes and extracellular vesicles can
be influenced by the progression of renal disease. Advances in methods for
purification and analysis of exosomes are leading to potential diagnostic and
therapeutic avenues for kidney diseases. This review will focus on biophysi-
cal properties and biogenesis of exosomes, their pathophysiological roles
and their potential as biomarkers and therapeutics in kidney diseases.

Intercellular communication is vital for the regulation and
coordination of many different processes within multicellu-
lar organisms. Extracellular membrane-bound vesicles are
emerging as a novel and significant mechanism of cell sig-
nalling and communication. Exosomes are a specific subset
of membrane-bound vesicles of endosomal origin, which are
released into the extracellular environment by many cells
from different tissues and organs. Exosomes exist in a wide
range of biological fluids, including blood and urine. The
ubiquitous nature of exosomes has highlighted them as sig-
nificant vehicles of cellular communication, with many
important biological and pathophysiological implications.

MOLECULAR AND BIOPHYSICAL
PROPERTIES OF EXOSOMES

Exosomes are defined as small vesicles between 30 and
100 nm in diameter, consisting of a limiting lipid bilayer,

transmembrane proteins and a hydrophilic core containing
proteins, mRNAs and microRNAs (miRNA). They are distin-
guished from other microparticles by their size and the fact
that they are formed intracellularly within multivesicular
endosomes (multivesicular bodies; MVB), while microvesi-
cles (100 to 1000 nm in diameter) are shed from the plasma
membrane surface1 (see Table 1).

Exosomes contain a defined set of proteins, which varies
according to the cell of origin.6 Common components of
exosomes are proteins involved with endosomal trafficking,
membrane trafficking and fusion proteins, tetraspanins
(CD63, CD81, CD9, CD82), heat shock proteins (HSP70,
HSP90), metabolic enzymes, adhesion molecules, signal
transduction proteins, lipid rafts and cytoskeletal proteins, in
addition to cell type-specific proteins, such as major histo-
compatibility complex (MHC) class I and II, a-synuclein, and
the A33 antigen.6 Exosomes have a specific lipid composition
distinct from their parental MVB, although they do reflect
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their cell of origin, and can also contain bioactive lipids
such as prostaglandins, which may contribute to their
function.7

Exosomes contain mRNAs and miRNAs, and RNA profil-
ing of exosomal fractions has identified significant differ-
ences to parental cellular RNA.8,9 Both mRNAs and miRNAs
present in the exosomal fraction maintain their function
when transferred to other cells,8,10 demonstrating that exo-
somal RNA transfer may be an important route for epigenetic
signalling between cells. However, recent studies suggested
that many extracellular miRNAs may not be contained
within exosomes, but can be complexed with circulating
Argonaute-2 or other ribonucleoprotein complexes.11–13

EXOSOMES BIOGENESIS AND RELEASE

Exosomes are formed by the intraluminal budding of late
endosomal compartments to create MVB, containing intra-
luminal vesicles.14 As vesicles bud inward, the lumina of
these future exosomes capture a small portion of the cytosol,
taking along a cargo of soluble proteins, mRNAs, miRNAs
and other cytosolic molecules. Fusion of the limiting MVB
endosomal membrane with the plasma membrane releases
the intraluminal vesicles into the extracellular environ-
ment,14 whereafter they are known as exosomes (Fig. 1). The
fusion of MVB with the plasma membrane and subsequent
release of exosomes is a constitutive process in most cell
types,15 although it is also subject to regulation by a variety of
stimuli. Exosome release from MVB has been demonstrated
to be regulated by endosomal and vesicular trafficking pro-
teins,16,17 Rab small GTPase family members,18,19 ceramide20

and calcium.18

Exosomes are emerging as a part of the cellular response to
a range of different stresses. Increased exosome release has
been reported in hypoxia,21 acidic pH22, heat shock23 and
oxidative stress.24 Significantly, p53 has been implicated in
regulating exosome release,25 further providing support to
the idea that exosomes may act as a intercellular signals to
communicate during cellular stress.

EXOSOMES PURIFICATION, DETECTION
AND CHARACTERIZATION

Exosome isolation protocols vary depending on the biologi-
cal fluid of origin, but generally involve serial centrifugation
at low speed, followed by ultracentrifugation at 100 000 g to
pellet exosomes.26,27 Alternatively, exosomes can be isolated
by immunocapture or size exclusion methods.26,28 Filtration
and microfluidics approaches have been developed,29,30 but
have yet to be widely adopted. Recently, a proprietary
method of exosome isolation called ExoquickTM (System Bio-
sciences, Mountain View, California, USA) has been made
commercially available.31 Exosomes have densities between
1.10–1.21 g/mL, and this characteristic is often exploited for
further purification, either by sucrose density gradients or
flotation on sucrose/deuterium oxide cushion.26,27,32 Velocity
gradients can also be used, especially in order to distinguish
between viral and exosomal vesicles.33,34 A comparison of
different methods showed that circulating exosomes
isolated by ExoquickTM precipitation produce exosomal
mRNA and miRNA with greater purity and quantity than
ultracentrifugation.35

The morphology and size of exosomes were first charac-
terized by electron microscopy (see Fig. 2), and further char-
acterization of exosomes has traditionally relied upon
biochemical methods such as immunoblotting, mass spec-
trometry, 2-DIGE and microarrays, although atomic force
microscopy and dynamic light scattering technologies have
also been used. The ExoCarta and vesiclepedia databases
provide a comprehensive record of exosomal protein, RNA
and lipid profiles (http://www.microvesicles.org).36 Detec-
tion and quantification of exosomes currently relies upon
indirect methods such as immunoblotting of exosomal
proteins, activity of exosomal enzymes,37,38 exosomal protein
quantification,23 fluorescent labelling of exosomes39,40 or
antibody-specific bead-coupled approaches.19,28 Recently,
nanoparticle tracking analysis using the Nanosight micro-
scope (NanoSight Ltd., Amesbury, Wiltshire, UK) has been
demonstrated to allow both characterization of exosome size,
as well as direct quantification of exosomes.41,42

Table 1 Characteristics of exosomes, microvesicles and apoptotic bodies

Exosomes Microvesicles Apoptotic bodies

Size 30–100 nm 100–1000 nm Up to 4000 nm

Formation and release Formed intracellularly within

multivesicular bodies

Shed from plasma membrane surface Cellular breakdown

Release from cellular blebs during apoptosis

Isolation and detection Ultracentrifugation, electron

microscopy, western blotting,

mass spectrometry, nanoparticle

tracking analysis

Differential centrifugation, flow cytometry,

electron microscopy, western blotting,

mass spectrometry, nanoparticle tracking

analysis

Flow cytometry using e.g. FITC-conjugated

annexin V antibody, electron microscopy

Markers Alix, TSG101 and the tetraspanin

proteins CD81 and CD9

Integrins, selectins, markers of parental cells Genomic DNA and intact organelles,

externalized phophatidylserine

References 1–4 1–5 2–4
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Fig. 1 Schematic representation of biogenesis of exosomes by cells and their content of proteins, mRNAs and microRNAs. The figure illustrates an example of the

release of exosomes by cells such as the podocyte, their passage through the renal tubule and their uptake and influence on recipient cells such as the epithelial

cells of the collecting duct and appearance in urine. MVB, multivesicular body.
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There are particular considerations required in the purifi-
cation and storage of urinary exosomes. Tamm-Horsfall
protein (uromodulin) can form fibrillary aggregates in urine
especially at low temperature which can entrap exosomes
and prevent their efficient isolation and purification by cen-
trifugation. The entrapment can be eliminated by using the
reducing agent dithiothreitol (DTT).43 Currently, there is no
standard protocol for collection, processing and storage of
urine samples that will allow correct, comparable and repro-
ducible urinary exosome analyses. Protease inhibitors and
storage at -70°C gave a better recovery of urinary exosomes
than at -20°C.44 Nephrotic urine contains a large amount of
proteins that tend to be retained after ultracentrifugation,
which can affect the detection of exosomal proteins. Recent
studies have demonstrated that ultracentrifugation followed
by size exclusion chromatography can enrich and purify
exosomes in nephrotic urine sample.45

BIOLOGICAL ROLES OF EXOSOMES

Despite being first described in the early 1980s,46,47 exosomes
garnered minimal scientific attention as their role was con-
sidered little more than to discard unwanted cellular com-
ponents, until the 2000s. As a result, their biological and
physiological roles are still being discovered. Currently, exo-
somes are known to play significant roles in intercellular
communication, non-classical protein secretion, immu-
nomodulation, pathogen biology and cancer progression.

Intercellular communication

Intercellular communication was previously thought to be
limited to cell-to-cell adhesion contact (gap junctions) or
secreted signals such as hormones, neurotransmitters, and

cytokines released from cells and acting in an autocrine or
paracrine manner. Exosomes can mediate a novel intercel-
lular communication mechanism. They can be transported
between different cells and adhere to target cells with high
specificity via receptor or adhesion molecules but without
membrane fusion leading to receptor activation and down-
stream signalling. Alternatively, exosomes can fuse with
target cells or be incorporated by target cells via endocyto-
sis.10,48 Transferred RNAs can affect protein production and
gene expression in target cells.49 The exosomal lipid bilayer
protects proteins, mRNAs and miRNAs from degradation,
which may make this intercellular communication pathway
more reliable in comparison with free floating proteins and
RNAs and enable targeted delivery of a higher concentration
of messenger.

Non-classical protein secretion pathway

A physiological role for exosomes was first described in the
maturation process of erythrocytes from reticulocytes.14,50 It
is known that transferrin receptors are lost during this matu-
ration process. Using labelled transferrin or antibody against
the transferrin receptor, and electron microscopy, it was
demonstrated that after endocytosis of the surface receptor
and fusion of endosomes to form larger structures, budding
occurred at the internal surface of the vesicles. MVB were
then formed with the release of these small buds of ~50 nm
diameter (intraluminal vesicles) into the main body of the
vesicles. These MVB eventually fused with the cell mem-
brane releasing the ~50 nm buds, now known as exosomes,
into the extracellular milieu.51 Exosome release allows
maturing reticulocytes to shed obsolete membrane proteins
and remodel their plasma membrane,52 providing an alter-
native to lysosomal degradation. In addition to the secretion
of unnecessary or damaged proteins, exosomes provide a
non-classical secretion pathway for a wide range of physi-
ologically relevant proteins, including b-catenin.53

Immune system functions

Exosomes released by immune cells play a wide range of
important roles in the normal immune system,54 as well as
being involved with tumour immunomodulation.55 The
presence of functional MHC class II molecules in immune
cell-derived exosomes highlights their role in antigen pres-
entation.56 Exosomes are capable of presenting pathogen-
derived antigens57 or exerting immunosuppressive or
cytotoxic functions.58 The functional effect of exosomes on
immune cells may be exerted by exosomal miRNA transfer,
as recently observed by T cells in response to antigen
stimulation.59

Pathogen biology

Exosomes are exploited by pathogens as a means of intercel-
lular spreading and communication. Exosomes are capable of

Fig. 2 Urinary exosomes visualized by scanning electron microscopy. Exo-

somes were purified by ultracentrifugation from urine and then visualized by

scanning electron microscopy at 80 000¥ magnification. Multiple small spheri-

cal vesicles, many with a small central depression and with a mean diameter of

approximately 100 nm, can be seen.
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shuttling viral proteins which can promote pathogenesis or
immune escape,34 as well as functional viral miRNAs49 and
dissemination of HIV-1 infection.60 The pathogenic prion
protein has also been demonstrated to be packaged into
exosomes.61

Roles in cancer progression

During tumour development, tumour cells interact with
their surrounding microenvironment to promote their
growth, survival and invasion. Tumour-derived exosomes
are being described as important mediators of many of these
processes, including tumour cell proliferation,62 angiogen-
esis,10 metastasis,63,64 stromal remodelling65,66 and immu-
nomodulation.55 In experimental models of renal cancer,
cancer stem cell-derived vesicles appear able to contribute to
triggering the angiogenic switch and promote metastasis.67

Tumour-derived exosomes can suppress antigen-specific
immune responses and dendritic cell maturation in vivo,68 in
addition to upregulating immunosuppressive cell differentia-
tion and function, including regulatory T cells69 and myeloid-
derived suppressor cells.16

EXOSOMES IN BLOOD AND URINE

As described above, exosomes were initially identified in the
loss of transferrin receptors, which accompanies maturation
of reticulocytes to erythrocytes. Furthermore, evidence has
since been obtained for the secretion of exosomes in vitro by
a variety of other cells including lymphocytes, dendritic cells,
mast cells, endothelial cells, platelets, and presumably other
cell types that contact intravascular space.60,64–68 In keeping
with such release, more recent studies provided evidence for
the presence of exosomes in vivo in the blood. Caby et al.
examined plasma samples from healthy donors and success-
fully identified vesicles of 50–90 nm in diameter that have
the molecular and biophysical properties of exosomes.70

Besides blood, exosomes have also been detected in various
bodily fluids such as urine, cerebrospinal fluid, saliva, breast
milk, semen, amniotic fluid, malignant ascites, bronchoal-
veolar lavage fluid and synovial fluid.71

The presence of urinary exosomes was verified when small
vesicles (<100 nm in diameter) orientated ‘cytoplasmic-side
inward’ were observed in normal urine with functions in
urinary secretion of aquaporin-2 and other membrane-
associated proteins72 (see Fig. 2). The proteomic analysis
of urinary exosomes identified proteins characteristically
restricted in expression to renal epithelia of the glomerular
podocytes, the proximal tubule, the thick ascending limb of
Henle, the distal convoluted tubule and the collecting duct.
Proteins from the transitional epithelium of the urinary
bladder were also identified, suggesting urinary exosomes
may be derived from cells throughout the renal tract.72–74

Thus, analysis of urinary exosomes provides an attractive
non-invasive means of acquiring information about the

pathophysiological state of their renal cells of origin. CD24, a
small but extensively glycosylated protein linked to the cell
surface by means of a glycosyl-phosphatidylinositol anchor,
has been reported to be a marker for urinary exosomes.75

EVIDENCE FOR PHYSIOLOGICAL AND
PATHOLOGICAL ROLES IN THE KIDNEY

It was previously thought that the main physiological role for
urinary exosomes is the disposal of senescent proteins from
cells, which may be a more efficient way of protein elimina-
tion than proteasomal and lysosomal degradation,76 similar
to the process by which maturing reticulocytes shed obsolete
membrane proteins and remodel their plasma membrane
through the exosomal pathway.52 However, increasing evi-
dence is suggesting that urinary exosomes play a role beyond
exocytic cell waste elimination.75,77 Another possible role
of exosomes in the urinary tract is to regulate the
co-functioning between different parts of the nephron,
through secretion and reuptake of their contents such as
mRNAs and miRNAs that can affect the function of the
recipient cell73 (Fig. 1). Functional transfer of molecules such
as aquaporin-2 between different renal cells has been
described78 and could mediate coordinate adaptation of
nephron function.

The role of circulating exosomes in physiological messag-
ing remains poorly defined, but pathophysiological roles
have been increasingly explored. Endothelial dysfunction is
thought to be the key event in the pathogenesis of athero-
sclerosis. Endothelial dysfunction is a systemic inflammatory
process associated with increased adhesion molecule expres-
sion, loss of anti-thrombotic factors, increase in vasoconstric-
tor products and platelet activation. Activated platelets
secrete two different types of membrane vesicles: microvesi-
cles (100–1000 nm in diameter) shed from the plasma mem-
brane, and exosomes which are released following fusion of
MVB.1 Microvesicles have protein content similar to the
plasma membrane of activated platelets and have procoagu-
lant and inflammatory functions.79,80 In contrast, platelet
exosomes only interact poorly with annexin-V and do not
bind prothrombin and factor X. Platelet-derived exosomes
are enriched in CD63, a tetraspanin protein also found on
exosomes from other cell types.81 Tetraspanin proteins have
been implicated in adhesive as well as co-stimulatory and
signalling functions. Platelet-derived exosomes may be
released at sites of vascular injury and could well function in
promotion of platelet and neutrophil adhesion.1,82

Endothelial dysfunction and vascular calcification is a sig-
nificant risk factor for cardiovascular morbidity and mortality
in patients with renal disease. In vitro, vesicles appear to be
important in mediating vascular smooth muscle cell calcifi-
cation.83 In a recent study, it was found that phosphorylated
fetuin-A is present in the calciprotein particles in serum of
predialysis chronic kidney disease (CKD) patients. Increased
calciprotein particle fetuin-A levels reflect an increasingly
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procalcific milieu and are associated with increased aortic
stiffness.84 Increased levels of circulating microparticles (MP)
or microvesicles have been detected in patients with CKD.
Circulating levels of MP and microvesicles derived from
endothelial cells correlate with arterial stiffness in haemodi-
alysis patients.85–87 It is unclear whether exosomes and/or
other circulating MP may play an important role in trans-
porting or promoting vascular calcification in CKD or in
other calcification-associated diseases.

Nephrolithiasis is associated with the formation of calcium
oxalate, calcium phosphate, cystine, struvite or urate crystals
in the kidneys. In vitro studies have demonstrated that renal
brush border-derived exosomes/microvesicles of ~100 nm in
diameter can induce and promote calcium oxalate crystalli-
zation in nephrolithiasis.88

In transplantation, it has been shown that the exchange of
exosomes between dendritic cells may constitute a potential
mechanism by which passenger leukocytes transfer alloanti-
gens to recipient antigen-presenting cells, leading to an
increased generation of donor-reactive T cells.89 On the other
hand, other studies have found that dendritic cell-derived
exosomes may induce tolerance rather than immune stimu-
lation.90 Engineering of dendritic cells to release tolerogenic
exosomes could be useful to prevent/ameliorate transplant
rejection.

ROLE AS BIOMARKERS IN RENAL DISEASE

Urine is the ideal biological sample for discovery of new
biomarkers for kidney diseases because of the ease of non-
invasive collection. Urinary exosomes are released from
renal epithelial cells, including podocytes, renal tubule cells
and the transitional epithelial cells lining the urinary drain-
age system. Isolation of urinary exosomes can identify their
source and result in enrichment of low-abundance urinary
protein, mRNAs, miRNAs and transcription factors that have
potential pathophysiological significance.73

Exosome analysis may be useful for providing information
with regard to kidney genetic diseases. Autosomal-dominant
polycystic kidney disease (ADPKD) Types 1 and 2 are the
most common genetic kidney diseases leading to renal
failure. Polycystin-1 and -2 are the protein products of two
genes mutated in ADPKD. These proteins are of low abun-
dance or undetectable in kidney tissue homogenate, but
easily detectable in urinary exosomes.91,92 Immunoblot
analysis of urinary exosomes was able to differentiate two
different types of mutations for the thiazide-sensitive Na–Cl
co-transporter of the distal convoluted tubule. This approach
could have the potential to become a useful diagnostic tool to
detect and sub-classify Gitelman’s syndrome.73 Similarly,
immunoblotting of exosomes from urine samples of patients
with a clinical diagnosis of Bartter syndrome type I showed
absence of the sodium–potassium–chloride co-transporter 2
(NKCC2).78

It has been demonstrated that transcription factors can be
detected and may be concentrated within urinary exo-
somes.93 Using acute kidney injury (AKI) models (cisplatin
and ischaemia-reperfusion) and podocyte injury models
(puromycin-treated rats and podocin/Vpr-transgenic mice),
elevated levels of activating transcription factor 3 (ATF3)
were associated with AKI and Wilms Tumour 1 (WT-1) with
early podocyte injury.93 In a small number of patients, ATF3
was detected in urinary exosomes in patients with AKI but
not in normal subjects or patients with CKD, and WT-1 in
patients with focal segmental glomerulosclerosis (FSGS).
Although further validation has not emerged, exosomal
ATF3 may be a novel renal tubular cell injury biomarker for
detecting AKI, and exosomal WT-1 might indicate podocyte
injury.93 Differences in the protein content of urinary
exosomes from patients with early IgA nephropathy
(IgAN) or thin basement membrane nephropathy have been
reported.94 Similarly, the presence of fetuin-A in urine exo-
somes has been reported as a predictive biomarker for AKI95

and urinary exosomal aquaporin-1 was reduced in experi-
mental ischaemia reperfusion injury.96 Another recent obser-
vation of potential importance is the finding of high
molecular oligomers of light chains only in urinary exosomes
of patients with active amyloid light-chain amyloidosis and
not in patients with other plasma cell dyscrasia-related
kidney diseases.97 While these preliminary studies are of
interest, it has not been clearly established whether renal
injury, ischaemia or proteinuria alter the actual numbers of
exosomes liberated into urine and it is important to empha-
size that all of these clinical studies have been limited to very
small numbers of patients.

Exosomes contain mRNA and miRNAs. Although urinary
mRNAs can be analysed directly from whole urine using
reverse transcription polymerase chain reaction (RT-PCR),
efficient urinary exosome isolation protocols might increase
the sensitivity and specificity of urinary mRNA analysis.98

This might be of relevance to recent studies that have found
increased glycoprotein B7-1 to nephrin mRNA ratios in
urinary sediments from patients with minimal change
disease compared with FSGS99 and to the finding that
urinary granzyme A mRNA levels can potentially distinguish
patients with cellular rejection from those with AKI.100

THERAPEUTICS

Harnessing exosomal delivery mechanisms to therapeutic
ends could have far-reaching consequences. The exploitation
of ‘custom-made’ exosomes as a delivery tool for pharmaco-
logical agents could allow the precise targeting of those mol-
ecules to certain cell types. Exosomes are potentially ideal
gene delivery vectors. Their small size and flexibility enables
them to cross biological membranes, while their bi-lipid
structure protects the mRNA, miRNA and protein cargo
from degradation, facilitating delivery to its target. A proof of
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concept study has used modified murine exosomes to suc-
cessfully deliver siRNA resulting in gene-specific silencing in
the brain.101

For many kidney-related diseases a prime target for poten-
tial exosome-based therapy could be endothelial cells, which
have essential roles in regulation of blood pressure, local
regulation of blood flow, regulation of thrombosis and clear-
ance of plasma lipids and are easily accessible to exosomes
from the circulation. The artificial engineering of exosomes is
a natural extension of the success of some liposomal thera-
pies and can be used for delivery of specific RNAi mol-
ecules.101 Furthermore, the purification and use of exosomes
from particular cells or generated under certain stresses may
be useful therapeutically. An example of this has developed
from the interest in the mechanism underlying the potential
of mesenchymal stem cells to promote tissue repair and
mediate regeneration. Several studies have demonstrated
that mesenchymal stem cells have the capacity to reverse
acute and chronic kidney injury in different experimental
models. These effects appear to be at least in part paracrine
and can be largely mediated by the RNA cargo of exosomes
and/or microvesicles.102,103

A potential approach to cancer immunotherapy based on
exosomes has arisen from initial studies showing that den-
dritic cell-derived exosomes loaded with tumour peptides are
capable of priming cytotoxic T cells. This can then mediate the
rejection of tumours expressing the relevant antigens in
mice.104 These exosomes also promote natural killer (NK) cell
activation in immunocompetent mice and NK cell-dependent
anti-tumour effects. Based on these results, clinical trials are
in progress. Vaccination strategies could also be envisioned
using exosomes from tumour cells that carry tumour anti-
gens. By using different sources of tumour exosomes such as
plasmacytoma-derived exosomes, several groups have shown
that exosomes can induce tumour-specific immunity in
animal models,105 prevent tumour development and are a
potential strategy for future therapeutic tumour vaccination.

Exosomes released from cancers contain oncoproteins and
miRNAs which may promote cancer progression. A novel
technology which consists of immobilized affinity agents in
the outer-capillary space of hollow-fibre plasma separator
cartridges that integrate into standard dialysis machines has
been devised. This technology is currently being evaluated
for its efficacy for capturing exosomes secreted by cancer cell
lines and present in biological fluids from cancer patients106

and could potentially be applied to other situations such as
atherosclerosis in which circulating microvesicles might have
pathogenic roles.

FUTURE CHALLENGES

While there is an increasing appreciation of the existence
and potential functions of exosomes and other vesicles, some
very fundamental questions remain. Are there distinct cell-
specific types or families of exosomes with well-defined sizes,

cargos and differing functions? How is exosomal cargo modi-
fied? What are the physiological and pathological stimuli to
their production, release and uptake? What are their physi-
ological signalling roles in the circulation and urine? What
receptors or other mechanisms define their target cells?
What is the effect of renal function and disease on the levels
and nature of circulating and urinary exosomes? Addressing
these questions should provide new insights in the intercel-
lular communication mechanism and enable a more
sophisticated translation of the use of exosomes as novel
biomarkers and therapeutic intervention strategies.
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