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Recognition and analysis of human a�ect has been researched extensively within the �eld of computer
science in the last two decades. However, most of the past research in automatic analysis of human a�ect has
focused on the recognition of a�ect displayed by people in individual se�ings and li�le a�ention has been
paid to the analysis of the a�ect expressed in group se�ings. In this paper, we �rst analyze the a�ect expressed
by each individual in terms of arousal and valence dimensions in both individual and group videos and then
propose methods to recognize the contextual information, i.e., whether a person is alone or in-a-group by
analyzing their face and body behavioral cues. For a�ect analysis, we �rst devise a�ect recognition models
separately in individual and group videos and then introduce a cross-condition a�ect recognition model that
is trained by combining the two di�erent types of data. We conduct a set of experiments on two datasets that
contain both individual and group videos. Our experiments show that (1) the proposed Volume �antized
Local Zernike Moments Fisher Vector (vQLZM-FV) outperforms other unimodal features in a�ect analysis;
(2) the temporal learning model, Long-Short Term Memory Networks (LSTM), works be�er than the static
learning model, Support Vector Machine (SVM); (3) decision fusion helps to improve the a�ect recognition,
indicating that body behaviors carry emotional information that is complementary rather than redundant to
the emotion content in facial behaviors; and (4) it is possible to predict the context, i.e., whether a person is
alone or in-a-group, using their non-verbal behavioral cues.
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1 INTRODUCTION
A�ect analysis has a�racted a lot of a�ention [50] in recent years. Automatic a�ect analysis aims to
create a system capable of automatically interpreting, understanding and responding to emotions
and moods displayed by humans. Building such systems are expected to advance Human-Computer
Interaction (HCI) further.

Over the last decades, various methodologies have been proposed to automate the analysis of
a�ect and emotions. However, the majority of the existing works focus on individual se�ings
and li�le a�ention has been paid so far to the analysis in group se�ings, either at the the overall
group-level emotion displayed by the entire group or at the individual-level emotion displayed by
each individual within that group. From the psychological perspective, a�ect analysis in group
se�ings is more complex than in individual se�ings due to the in�uence of the overall group as
well as in�uences by each group member [2]. From the automatic analysis perspective, it has been
shown that the degree of variation between individual and group se�ings is signi�cant in terms of



di�erences in facial and bodily behaviors, timing and dynamics [41, 42]. To obtain further insights
into this challenging problem, it is important to study the a�ect expressed in group se�ings. A few
works focus on group-level a�ect analysis in static images in recent years [13, 14, 26, 40]. However,
to the best of the our knowledge, except of our previous work [42], no works pays a�ention to
individual-level a�ect analysis in group videos.

In this paper, we aim to investigate the following: (1) whether it is possible to recognize the a�ect
expressed by each participant while presented with movie stimuli; (2) whether the a�ect recognition
performance is a�ected by di�erent se�ings or databases, i.e., individual vs group se�ing; (3) what
kind of body and face features work be�er for di�erent tasks; (4) whether the fusion of body
and facial features is able to improve the recognition results; (5) whether it is possible to predict
the context information (a person being alone or in-a-group) using facial and body behavioral
cues. �is work is an extended version of our previous works [41] and [42]. Di�erently from the
aforementioned papers, the contributions of this work are:

(1) A novel framework for “individual vs. group” contextual information prediction is proposed.
�at is to recognize whether a person is alone or in-a-group using their face and body
behavioral cues.

(2) �e temporal modeling method, Long Short-Term Memory Networks (LSTM) combined
with QLZM facial features, is utilized to analyze a�ect in terms of both arousal and valence
dimensions.

(3) We conduct multiple experiments with both the individual and group datasets acquired in
coherent setups for:
(a) A�ect classi�cation / regression using both face and body behavioral cues.
(b) A�ect classi�cation / regression using multi-modal fusion.
(c) A�ect classi�cation / regression using both static learning model (i.e., SVM) and

dynamic learning model (i.e., LSTM).
(d) Context prediction using both face and body behavioral cues.

Speci�cally, in our previous work [41], we introduced a framework to analyze individual a�ect
in individual and group videos along arousal and valence using facial features only. In [42], we
proposed a method to recognize a�ect and group membership in group videos. For both of these
works, we conducted experiments across small databases, e.g., only 576 samples in group videos.
In [41], only one type of facial features was used by the classi�cation model. In this paper, we
investigate both a�ect analysis and contextual prediction in both individual and group videos using
a multitude of face and body features combined with temporal learning. For a�ect analysis, on the
one hand, we �rst train the a�ect recognition model separately in individual and group videos
and then analyze how a combined model trained with data from two databases (i.e., individual
and group videos) performs. On the other hand, we �rst utilize the Fisher Vector representation
of the face and body features with a static learning model (Support Vector Machine) and then we
use the static facial features with a temporal learning model, that is Long Short-term Memory
Networks. Such a comparison for modeling a�ect in individual and group se�ings has never been
conducted before. To this end, we extract di�erent face and body features and train di�erent a�ect
recognition models using data from two di�erent datasets, i.e., individualDB and groupDB (details
of the databases are given in Section 3.1). For the prediction of contextual information, we propose
an approach to predict whether a person is alone or in-a-group based on non-verbal visual cues -
this has never been studied in previous works.

�e remaining part of the paper is structured as follows: we review the previous works in
Section 2; we state the proposed method in Section 3; we present and discuss the experimental



Table 1. Databases for individual a�ect analysis

Database CK database
[55]

JAFFE [36] GEMEP [1] SFEW [11] AFEW [11]

Environment Lab Lab Lab Movie Movie
Posed/acting/
spontaneous

Posed Posed Acting Acting Acting

Annotations 6 basic
emotions

6 basic
emotions
+ neutral

18 discrete
emotions

6 basic
emotions
+ neutral

6 basic
emotions
+ neutral

6 basic emotions refer to ”anger, disgust, fear, happiness, sadness, and surprise”.

results and analysis in Section 4; and �nally in Section 5 we conclude this work and discuss the
future works.

2 RELATEDWORKS
Automatic a�ect recognition has received a lot of a�ention in recent years with various applications
in very diverse areas such as human-computer interaction [10], security [24], healthcare [30]
and education [32]. Humans express their emotions through di�erent channels: speech, facial
expressions, head motion, body gestures, etc. In the a�ective computing �eld, various studies have
been carried out to create systems that can recognize a�ective states by using multiple cues. Most
of these works have been carried out in individual se�ings. However, in the real world, people are
very o�en with others, interacting in group se�ings. More recently an increasing number of works
have started focusing on a�ect analysis in group se�ings and there are challenges organized in this
�eld since 2016 [14, 15]. �e literature review below is divided into two parts, i.e., a�ect analysis in
individual se�ings and group se�ings.

2.1 A�ect Analysis in Individual Se�ings
�e literature for analyzing a single person’s emotion, and a�ective states is rich. We reviewed
these works in terms of databases, modalities and methodologies for a�ect analysis in individual
se�ings. Further details for automatic a�ect analysis in individual se�ings please refer to the recent
survey studies [8, 50].

Databases. In the early days, most of the databases contain posed expressions, e.g., CK database
[55] and JAFFE [36]. Currently, it is widely accepted that the recognition of posed expressions,
even though is an interesting research problem, is not very relevant for real world se�ings. �e
expressions in the real life are far more diverse and complex. Hence, the focus has gradually shi�ed
to automatic recognition of a�ect expressed in more naturalistic se�ings. For instance, AFEW and
SFEW databases used in Emotion Recognition in the Wild (EmotiW) challenges are collected from
movies [11], and images from the FER-2013 database were collected from the web [20]. In addition,
researchers started using not only visual but also physiological signals. �erefore, some databases
provide not only visual signals but physiological signals (from such as EEG and MCA modalities)
for analysis, such as the Database for Emotion Analysis using Physiological Signals (DEAP) [33].

Features. Face is one of the most important channels of non-verbal communication. Facial
expressions are prominent in researches for almost every aspect of emotion. In a�ective computing
community, most of the research in vision-based emotion recognition has centered around facial
expressions [7, 31, 32, 50]. However, humans naturally express emotions in a multi-modal way by
means of language, vocal intonation, facial expression, body movements, postures etc [21]. Despite



Table 2. Representative works on a�ect analysis in group se�ings

Dhall et
al. [13, 16]

Dhall et
al. [17]

Huang et
al. [28]

Huang et
al. [26]

Li et
al. [35]

Tan [54] Our work

Data Source Web Web Web Web Web Web Recordings
Data Type Static Static Static Static Static Static Dynamic
Samples 3134 504 3134 3134 3134 6471 7630
Labellers 4 3 4 4 4 - 3
Labels 6 stages of

happiness
3 cate-
gories for
valence

6 stages of
happiness

6 stages of
happiness

6 stages of
happiness

3 cate-
gories for
valence

Categorical
& continu-
ous

Se�ings Group Group Group Group Group Group Individual
& group

Features Face &
scene

Face &
scene

Face &
scene

Face, body
& scene

Face &
scene

Face &
whole
image

Face &
body

the available range of cues and modalities used by humans, the mainstream on automatic emotion
recognition has mostly focused on recognition of facial expressions in terms of the basic emotion
categories (neutral, happiness, sadness, surprise, fear, anger and disgust). However, other cues,
such as body movements and gestures, also play an important role in emotion expression and
perception [32]. Facial expressions in combination with body behaviors have been successfully
used to predict various emotional states in [40].

Methodologies. A�ect recognition can utilize both traditional machine learning methods (e.g.,
Support Vector Machine) and deep learning methods. Many works on a�ect recognition are using
traditional learning methods. For example, the methodologies that obtained top results [52] in
EmotiW 2013 challenge utilized Support Vector Machine. Recently, deep learning has shown a
good performance in the conventional computer vision problems, such as action recognition [43]
and face detection [63]. �erefore, some works in emotion recognition have also started using deep
neural networks. In recent EmotiW series of competitions [14, 15] and AVEC challenges [46, 56],
most of the submi�ed works used deep neural networks. �e winner of EmotiW challenge for
video-based emotion recognition [18] used a CNN-RNN framework. �e winner of AVEC’17 a�ect
sub-challenge used di�erent hand-cra�ed and deep learned features to predict arousal, valence
and likability [6]. �ey also showed that the temporal learning model, Long Short-term Memory
(LSTM), performs be�er than the non-temporal model SVM, especially in terms of arousal and
valence prediction. As we are dealing with dynamic videos in this paper, we utilize LSTM for
arousal and valence recognition.

2.2 A�ect Analysis in Group Se�ings
In the early years of a�ect analysis, most of the works focused on individual se�ings. However,
preliminary works have shown that the degree of variation and e�ect between individual and group
se�ings is signi�cant (e.g., di�erences in facial and body behaviors, timing and dynamics) [41, 42].
�erefore, in the past few years, a number of works have started paying a�ention to a�ect analysis
in group se�ings [13, 17, 40, 41]. �e representative works on a�ect analysis in group se�ings are
listed in Table 2.

Databases. �e �rst database for group emotion analysis, named as HAPPEI, was collected by
Dhall et al. [16]. �is database contains 4,886 images that are collected from Flickr using key words,
such as “party + people” and “graduation + ceremony”. Each image was labeled with a group-level
happiness intensity, face level happiness intensity, occlusion intensity and pose by four human



annotators. �e happiness intensity is categorized into six levels of happiness (0-5), i.e., neutral,
small smile, large smile, small laugh, large laugh and thrilled. �en Dhall et al. [17] collected
another database containing 504 images, GAFF database, which extended the HAPPEI database
from positive a�ect only [13] to other emotion categories, i.e., “positive, neutral and negative”.
In EmotiW challenge 2017 [14], GAFF database was extended to contain 6,471 images named as
GReco, which was labeled in the same way as GAFF. In a further step, Mou et al. [40] collected a
dataset for group-level emotion analysis along both arousal and valence dimensions. Each image
was annotated by 15 labelers and each labeler was asked to select one label from “low, medium,
high” for arousal and one from “negative, neutral, positive” for valence, that best described the
group-level emotion expressed by people in each image. However, to the best of our knowledge,
there is no publicly available database that contains both individual and group data in the same
setup.

Features. Analysis of the a�ect expressed by people in group se�ings is challenging due to
the challenging situations that involve head and body pose variations. A number of works have
already reported multi-modal emotion recognition in group se�ings [17, 27, 40, 42]. Compared
to individual se�ings, a group se�ing may contain face, body and other contextual information,
such as who the person is talking to and what the person is watching. Facial features are the most
widely used cues for automatic a�ect analysis [22]. Facial representations include geometric and
appearance representations. Facial geometric features are used to represent the shape of facial
components and the location of facial salient points, such as the shape of mouth and eyes and
the location of corners of a person’s mouth and eye brown [44], while appearance features can
represent the texture of the face such as wrinkles and furrows [50]. More and more studies have
shown that body features are as powerful as facial features and are complementary information for
emotion recognition to facial features [32]. For example, De Gelder and colleagues found that body
expressions provide more useful information than the facial expressions for discriminating between
happiness and fear [57], and discriminating between anger and fear [37]. It is reported that when
a�ective information conveyed by the di�erent modalities, i.e., face and body, is incongruent, body
information appears to be the prominent factor for the recognized emotion [57]. Face and body, as
part of an integrated whole, both contribute to the recognition of human a�ect [23]. Inspired by
such works, in this paper we utilize both facial and body information for a�ect analysis in terms
of arousal and valence and report the results when using both the individual modalites and the
results of their fusion at decision level.

Pioneering works have also shown that the emotion displayed by people heavily relies on context
[58], e.g., whether the person is alone or staying with others and whether the person is in a meeting
or in a party at the time. �erefore, in addition to using face and body information, the utilization
and analysis of contextual features is ge�ing increasingly popular for automatic a�ect analysis
[39], especially in the case of group se�ings where there are multiple people inherently involved in
more complex contextual situations than individual se�ings, not only in terms of each individual’s
information (e.g., the identity of an individual and location of the person) but also in terms of
dynamics among group members (e.g., where the person is staying and how the others are feeling
at the moment). [19] is a pioneering work using the contextual features based on the distribution
of a group of people in an image to infer the individual age and gender. In [64], it is found that
social context (i.e., alone or together with others) has an e�ect on the �ality of the Viewing
Experience in terms of �ve aspects, namely enjoyment, endurability, satisfaction, involvement in
the viewing experience and perceived visual quality. Contextual information based on the relative
location and scale of the people in an image was used for group-level a�ect analysis in [40]. Context
features / information on one hand can be used as a type of feature to analyze a�ect and other



social dimensions, on the other hand it can be combined with other features, such as facial and
bodily expressions. In this paper, we predict the contextual information - whether a person is alone
or in-a-group using non-verbal behavioral cues.

Methodologies. Automatic emotion recognition in group se�ings can be reviewed under two
categories, group-level emotion analysis [17, 26, 40] and individual-level emotion analysis [42].
Psychological studies show that group members are in�uenced by each other [2]. Speci�cally, group
emotion as a whole is in�uenced by emotions of the individuals within the group, and the emotions
of the individuals are in�uenced by the emotion of the whole group. �erefore, group-level and
individual-level a�ect analysis are both important for understanding the group dynamics. �ere
are a few works focusing on group-level a�ect analysis in recent years. For instance, the �rst
framework of group-level a�ect analysis was proposed by Dhall et al. [13], which aimed to infer
the “overall happiness mood intensities” displayed by a group of people (i.e., no less than two people)
in static images. Subsequently, Dhall et al. [17] introduced a framework to predict the collective
valence levels of a group of people, “positive, neutral and negative”. Meanwhile, another extended
framework was proposed in [40] for recognizing the a�ect displayed by a group of people in static
images along the arousal and valence dimensions. Each dimension was divided into 3 levels, arousal
for “high, medium and low” and valence for “positive, neutral and negative”. EmotiW [14, 15] has
organized a group-based emotion recognition sub-challenge since 2016, which aimed at predicting
a�ect displayed by a group of people in static images. However, none of the aforementioned works
focus on individual-level a�ect analysis in group se�ings. Furthermore, all of the above works are
limited to static images, while dynamic videos naturally include interactions and enable the use of
temporal information which makes the recognition of human a�ect more insightful. In this paper,
we focus on individual-level a�ect analysis in group videos.

A few works focus on group-level a�ect analysis in static images in recent years [13, 14, 26, 40].
However, to the best of our knowledge, except of our previous work [42], no works pay a�ention
to individual-level a�ect analysis in group videos.

3 THE PROPOSED METHOD
�is paper proposes a framework to recognize (1) the a�ect of individuals in di�erent se�ings, i.e.,
individual and group videos and (2) the prediction of contextual information, i.e., whether a person
is alone or in-a-group by using non-verbal behavioral cues, i.e., face and body cues. We illustrate
the proposed framework in Fig. 1.

We �rst adopt an SVM-based multi-modal method using dynamic features and conduct experi-
ments on both individual and group videos. To represent faces, we use geometric and appearance
representations. �e geometric feature we utilize is facial landmark trajectory, while appearance
feature we use is the extended volume �antized Local Zernike Moments (QLZM) [50, 51] extracted
along facial landmark trajectories. In light of the body representations, we �rst extract dense
trajectories and then we extract Histogram of Oriented Gradients (HOG) and Histograms of Optical
Flow (HOF) descriptors along each trajectory [60]. Before feeding the features to di�erent classi�ers
and regressors, we encode the di�erent face and body low-level descriptors into Fisher Vectors
(FV). Multiple experiments are carried out for a�ect analysis using unimodal and multi-modal
cues. Secondly, we train an temporal learning model, namely an LSTM, using static features for
a�ect recognition. LSTM is one of the state-of-the-art sequence modeling approaches and has been
successfully applied to a�ect analysis [6, 35].
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Fig. 1. Description of the proposed framework. (a) Input videos, videos from individualDB, and groupDB; (b)
Feature extraction - face and body features extracted; (c) Di�erent recognition models are trained, i.e., a�ect
recognition models and contextual information recognition models.

Table 3. The stimuli of long movies / videos are presented with their sources (movie / video IDs are listed in
parentheses and in the remaining part of the paper, the video IDs are used to refer to movies / videos) and
the movie / video durations.

Movie / Video Duration/min
Descent (N1) 23:30
Mr. Bean (P1) 18:38
Batman the Dark Knight (B1) 23:25
Up (U1) 14:01

3.1 Data and Annotation
3.1.1 Data Collection. Two recently collected databases that are part of the AMIGOS dataset

[38] are used in this work, i.e., group database (groupDB) and individual database (individualDB). �e
main objective of the databases is to study the personality, mood and a�ective responses of people
engaging with multimedia content in two social contexts, (i) when they are alone (individualDB),
and (ii) when they are part of an audience (groupDB). During the recordings, the participants were
asked to watch stimuli of di�erent a�ective nature. In both databases, four long movie segments
(14-24 mins) were used as movie stimuli, details of which are listed in Table 3. In groupDB, sixteen
participants were recorded while they were watching di�erent movies. �ese sixteen participants
were arranged into four groups (i.e., four participants in each group) watching all of the four movies
(the information of the four movies are presented in Table 3) together. In individualDB, seventeen
participants which were di�erent from the sixteen participants in groupDB, watched these four
movies individually. Videos were recorded at 1280×720 resolution, 25fps. Representative frames
from these two databases are shown in Fig. 2. In addition, in the recordings, implicit responses,
namely, Electroencephalogram (EEG), Galvanic Skin Response (GSR), Electrocardiogram (ECG)



      (b) GroupDB(a) IndividualDB

Fig. 2. Representative sequences from both the (a) individualDB and (b) groupDB.

Table 4. The results of the measurement of inter-labeler agreement on the annotations are reported in terms of
arousal and valence dimensions among 3 labelers. Two methods of measurement are provided, i.e., Cronbach’s
α and Pearson�s correlation coe�icient (PCC).

Dimension Arousal Valence
Methods Cronbach’s α PCC Cronbach’s α PCC
GroupDB 0.80 0.60 0.89 0.76
individualDB 0.75 0.63 0.88 0.75

and RGB-D full body videos were also recorded. For further details about the database we refer the
reader to [38].

3.1.2 Data Annotation. �e annotation was conducted by human labelers, three researchers
who are focusing on a�ect analysis. Independent observer annotations were obtained by using an
in-house a�ect annotation interface that requires the labelers to scroll a bar between a range of
continuous values (-0.5 and 0.5). �e labelers were asked to give one label for valence and one label
for arousal for every 20 seconds starting from the beginning of each recording (e.g., the interval
for 00:00∼00:20 min, 00:21∼00:40 min etc). �e labeler annotated arousal and valence separately
to avoid the confusion between these two dimensions; the 20-second recordings were played in
a random order to each labeler; each labeler was asked to observe the visual behaviors without
hearing any audio and rate a single annotation for each 20-second recording along either arousal
or valence dimension. Each of the labelers annotated all of the video segments, which means that
each video segment obtained three annotations from all of the three labelers.

In order to assess the inter-labeler agreement, Cronbach’s α [9] and Pearson’s correlation
(PCC), that have been widely used in the literature for agreement assessment on continuous scale
[3, 4, 47, 48], were computed. Mean Cronbach’s α and PCC over all participants for both groupDB
and individualDB along arousal and valence dimensions are listed in Table 4. From Table 4, we can
see that the values of Chronbach�s α are all > 0.7, that is considered as an acceptable agreement
level [4, 48]. In addition, we can see that high positive relationships among labelers, i.e., PCC > 0.6,
which ensures inter-labeler agreement.



3.2 Face and Body Feature Extraction
3.2.1 Face Features. Before extracting facial features, we �rst utilize Intraface [62] to detect

facial landmarks of each face in the video. A�er applying Intraface, each face obtains 49 facial
points. However, not all faces are detected due to illumination, occlusion, and pose variations in
such a naturalistic scenario. In order to make the facial feature extraction consistent among all
frames, when the face detection fails in a current frame, the position of the last detected face is
used.

In terms of facial geometric features, let Xt = [ (x
1
t , y

1
t ), (x

2
t , y

2
t ) ... (x

n
t , y

n
t ) ] denotes

the position of n landmark points of the face at the current frame t . �e number of landmark
points on each face n = 49. xkt and ykt refer to the coordinates of the k-th landmark point at the
current frame t . �en landmark points of the subsequent frames are concatenated to generate
the facial landmark trajectories. In this way, the representation of the facial landmark trajectory
encodes the motion pa�erns of the facial points as the body trajectories used in [60]. �e k-th facial
landmark point is described by a sequence (∆X k

t , ∆X
k
t+1 ... ∆X

k
t+L−1) of displacement vectors, where

∆X k
t = (X

k
t+1 − X

k
t ) = (x

k
t+1 − x

k
t ,y

k
t+1 − y

k
t ) and L is the length of the facial landmark trajectories.

�e obtained vector is then normalized by the sum of the displacement vector magnitudes:

Y k =
(∆X k

t ,∆X
k
t+1...∆X

k
t+L−1)

t+L−1∑
j=t
| |∆X k

j | |

(1)

Y k is referred as Facial Landmarks in the remaining part of the paper. �e length of the facial
landmark trajectories is �xed as L = 15 frames based on [60]. In this way, a 30 (30 = 2×L, where
L = 15) dimensional feature is generated around each landmark point of the face. And for each
face, the dimensionality of the descriptor is 49x30 as 49 landmark points are detected for each face.

A�er the geometric features, �antised Local Zernike Moments (QLZM) [51] obtained from the
local patch around each facial landmark point are extracted as the facial appearance representation.
QLZM [51] originally designed for static images. However, as we are focusing on video information
processing, temporal information is important. �erefore, it is extended to a volume representation
to embed both spatial and temporal information, as described in Fig. 3. We refer the facial
appearance feature as vQLZM in the remaining part of the paper. �e size of the volume is N × N
pixels, while the length is L = 15 frames, the same volume size with the Facial Landmarks. �e
volume is then subdivided into a spatio-temporal grid of size nτ × nτ × nσ to encode structure
information. �e QLZM descriptor is computed in each cell of the spatio-temporal grid. �e �nal
descriptor is generated by concatenating these descriptors of each cell. In our experiments, we
set N = 24 that is the average of the distances between the centroids of two eyes from all of the
detected faces across the whole dataset. Note, that as participants are relatively static, at very
similar distance from the camera and their faces are at roughly equal sizes (standard deviation
between the centroids of two eyes is very small, 2.1 pixels).

3.2.2 Body Features. Body feature extraction is a type of person-based representation, there-
fore, the �rst step is to apply a person detector. Constrained by our experimental setups - a �xed
number of people in the video (either one in individualDB or four in groupDB) and a static camera,
we use an ad-hoc scheme that is to use only the central part where the person is in individualDB
and equally divide the frame in four parts in groupDB. In order to avoid the overlap between the
participants that are neighboring each other, we leave a space between every two neighbors. �e
space size is equal to the average size of the faces across all videos, i.e., 64. �en, dense trajecto-
ries [60] are extracted. Trajectories capture the local motion information of the video and dense
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Fig. 3. Details of the approach to extract the facial appearance feature, vQLZM. The le� figure shows the
detection of facial landmark points. The right figure illustrates the tracking of facial landmark point over L
frames. Appearance and motion information is extracted over a local neighborhood of N ×N pixels along each
landmark point. To encode the structure information, the local volume is subdivided into a spatio-temporal
grid of size nτ × nσ . nτ = 3, nσ = 2 and L = 15 based on [60].

representation guarantees a good coverage of foreground motion as well as of the surrounding
context. Subsequently, HOG and HOF features are obtained along each extracted trajectory. �ey
are computed in the spatio-temporal volume aligned with the trajectories as shown in Fig. 4. HOG
and HOF orientations are quantized into eight bins with full orientations. However, as an additional
zero bin is added for HOF for pixels with optical �ow magnitudes lower than the threshold (i.e., nine
bins in total), the �nal representation size of HOG is 96 and that of HOF is 108 with the trajectory
length L = 15 frames. We refer these two body related representations as body HOG and body HOF
respectively in the rest of the paper.

�e trajectory is extracted based on motion information using optical �ow method. �e step by
step description of the extraction of the trajectories is given below:

(1) Dense sampling. Feature points are densely sampled on a grid spaced byW = 5 (obtained
from experiments [60]) pixels.

(2) Trajectories extraction. For the current frame It , its dense optical �ow �eldwt = (µt ,νt )
is computed with respect to the next frame It+1, where µt and νt refer to the horizontal
and vertical components of the optical �ow respectively. If we refer a point in the current
frame It as Pt = (xt ,yt ) , the point Pt+1 in the next frame It+1 is smoothed by applying a
median �lter on wt :

Pt+1 = (xt+1,yt+1) = (xt ,yt ) + (M ∗wt )|(xt ,yt ) (2)

where M is the kernel of the median �lter. Points in the subsequent frames are concatenated
to form trajectories, i.e., (Pt , Pt+1, Pt+2, Pt+3, ...).

(3) Remove static points. �e static points are removed in the post-processing as they can
not provide any motion related information.

3.3 Fisher Vector Encoding
Fisher Vector (FV) representation [49] has been widely utilized in traditional computer vision
problems (e.g., action recognition [60, 61]) and a�ect analysis (e.g., depression analysis [12, 29]).
�e �rst work that applied Fisher Vector descriptors for the problem of action recognition in videos
used local features extracted along dense trajectories [59]. �e trajectories are extracted by de�ning
a dense grid of points which are then tracked using optical �ow that was estimated o�ine to include
motion information in the pipeline. By encoding the extracted trajectory features with the Fisher
Vector descriptor, this approach and its improved version [60, 61] achieved the state-of-the-art
results for the action recognition before deep neural networks are widely utilized. It encodes
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Fig. 4. Description of the method of body HOG/HOF feature extraction. (a) shows the detected dense
trajectories. (b) illustrates the HOG/HOF feature extraction along the trajectories in the spatial scale over
L frames. Motion information over a local neighborhood of N × N pixels along each trajectory point are
extracted. In order to encode the structure information, the local volume is divided into small spatio-temporal
grid of size nτ × nσ . Based on [60], nτ = 3, nσ = 2 and L = 15.

both the �rst and second order statistics between the low-level (local) video/image descriptors
and a Gaussian Mixture Model (GMM). To obtain the Fisher Vector, �rstly, Principal Component
Analysis (PCA) is applied to the descriptors to decrease the dimensionality. Secondly, the low-level
descriptors (i.e., face and body descriptors in our case) is ��ed to a GMM . �e covariance matrices
for GMM are diagonal. As suggested by [60, 61], the number of Gaussians is set to K = 256 and
randomly selected 256,000 descriptors are used to �t a GMM. �e dimensionality of the Fisher
Vector is (2D + 1)K (D refers to the dimensionality of the descriptor before feeding to GMM, i.e.,
a�er applying PCA), which is used to represent one clip. Four di�erent types of Fisher Vectors
(FVs) are generated based on face and body features, namely, Facial Landmarks, vQLZM, body HOG
and body HOF.

4 EXPERIMENTS AND ANALYSIS
�e experiments are carried out using both individualDB and groupDB, two databases for studying
a�ect analysis from multi-modal cues in di�erent se�ings, i.e., individual se�ings and group se�ings
respectively. We aim to analyze (1) the recognition of the a�ect expressed by each individual in
individual and group se�ings; (2) whether it is possible to predict contextual information, i.e.,
whether a person is being alone or within a group while watching movie clips; and (3) how di�erent
face and body cues perform for di�erent recognition tasks.

4.1 Experimental Details
4.1.1 Experimental Setup. For groupDB, group videos from four groups are used in the

experiments, i.e., three groups (twelve subjects) with recordings of people watching four movies
(N1, P1, B1 and U1) and one group (four subjects) with recordings of people watching three movies
(B1, N1 and U1). In this case, we have data from sixteen subjects and ��een sessions in total used
in the experiments. One session refers to the recording of one group watching one movie. For
each session, 20-seconds clips in line with the annotations labeled are utilized. �e number of the
20-second clips from di�erent sessions varies with the length of the movies, i.e., 70 clips for N1,



Table 5. The distribution of samples for individualDB and groupDB along arousal and valence dimensions
a�er quantization

Dimensions Arousal Valence
Labels High Low Positive Negative
GroupDB 1792 1792 1792 1792
individualDB 2023 2023 2023 2023

70 clips for B1, 56 clips for P1 and 42 clips for U1. As a result, the total number of clips we use in
our experiments is (70(B1) × 4(4subjects) × 4(4movies)) + (70(N 1) × 4(4subjects) × 4(4дroups)) +
(56(P1) × 4(4subjects) × 3(3дroups)) + (42(U 1) × 4(4subjects) × 4(4дroups)) = 3584. In terms of
individualDB, videos from 17 participants are used in the experiments. Each participant was
recorded while watching 4 movies (N1, P1, B1 and U1). We also use 20-seconds clips. �erefore, the
total number of clips we use in the experiments is (70 + 70 + 56 + 42) × 17 = 4046. Classi�cation
and regression models are built with di�erent cross-validation setups, such as subject-speci�c and
leave-one-subject-out. �e parameters of each model are optimized over the training-validation data.
Subject-speci�c refers to train the model using leave-one-sample-out cross-validation for the data of
each subject separately. Namely, in each fold, one sample from a certain subject is used as testing
data and all the other samples from the same subject are used as training data. In order to avoid
the subject-dependency problem caused by the subject-speci�c model, leave-one-subject-out cross-
validation is also applied. Leave-one-subject-out means that we use one subject’s data for testing
and all other subjects’ data for training-validation in each fold. For groupDB, leave-one-group-out
cross-validation is also applied. Leave-one-group-out validation means that we use data from three
groups out of four groups as training data, and data from the le� one group as the testing data. For
a�ect analysis, we did both classi�cation and regression. Classi�cation is formulated as a binary
classi�cation problem by quantizing both arousal and valence annotations into two classes using
the median of all of the annotations as thresholds. In this way, arousal is quantized into high and
low arousal and valence is quantized into positive and negative valence. �e distribution of samples
for groupDB and individualDB along both arousal and valence dimensions a�er quantization is
shown in Table 5. For contextual information prediction, it is formulated as a binary classi�cation
problem. We conduct experiments to predict whether a person is being alone or in-a-group based
on face and body behavioral cues using leave-one-subject-out cross-validation.

4.1.2 Classifier. In the �rst session of a�ect analysis, we conduct experiments using the same
classi�er as we did in our previous works [41, 42], i.e., Support Vector Machines (SVM) [5] for
classi�cation and Support Vector Regression (SVR) for regression, with all extracted face and body
features. In addition, SVM is also used for context prediction. In the second step of a�ect analysis,
we conduct experiments on a�ect analysis using Long Short-Term Memory (LSTM) Networks [25]
with the best performing feature obtained from the �rst experiment. LSTM is a type of Recurrent
Neural Network (RNN) and commonly used for the analysis of sequential signals. An LSTM unit
is composed of a cell, an input gate, a forget gate and an output gate. �e cell is responsible for
memorizing the important information/features, while how much of the information in the cell can
be passed depends on the input and forget gates, which enables the model to learn the long-term
dependencies in our experiments. LSTM is trained using the frame-level raw features without the
Fisher Vector representation and take each 20-seconds clip as a sequence as shown in Fig. 5.

4.1.3 Evaluation. �e classi�cation results of a�ect analysis are evaluated by the average of
F1 scores (average of F1 scores for both classes). In terms of regression results of a�ect analysis, the
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Fig. 5. Illustration of the approach for a�ect analysis using LSTM. (a) Input sequence, the 20-seconds clip. (b)
Frame-level features are extracted. (c) Features extracted from every frame are fed into a one-layer LSTM
with 128 hidden states. (d) A�ect prediction results obtained for either classification or regression.

Mean Squared Error (MSE) is presented. In addition to the above measure, Pearson’s Correlation
Coe�cient (PCC) and Concordance Correlation Coe�cient (CCC) are also reported. As illustrated
in [47], CCC combines the PCC with the squared di�erence between the means:

ρc =
2ρσxσy

σ 2
x + σ

2
y + (µx − µy )2

(3)

where ρ is the PCC between the ground truth and prediction, σ 2
x and σ 2

y are the variance, and µx
and µy are the mean of ground truth and prediction, respectively. In this way, the predictions that
are correlated well with the ground truth but are shi�ed, are penalized by the deviation.

A�ect analysis is divided into two parts, i.e., a�ect classi�cation and regression along arousal
and valence dimensions. �e �rst part of the experiments is a�ect recognition that is conducted
using (1) di�erent unimodal cues and (2) decision-level fusion method. As we use SVM as the
classi�er, decision-fusion is applied on the so� outputs of the single-modality classi�ers. We utilize
the publicly available SVM libary, LibSVM [5] for training and testing. Before the face and body
features are fed to any classi�er or regressor, we �rst apply PCA to reduce the dimensionality by
preserving 99% of the variance. �e second part of the a�ect recognition is carried out on the best
performed unimodal feature, QLZM, using LSTM implemented on Pytorch platform [45].

4.2 Results and Analysis
In this section, the a�ect recognition results are provided and discussed based on the two databases,
individualDB and groupDB separately. In addition, a�ect recognition across di�erent databases is
also analyzed. Finally, the context recognition results are reported in terms of prediction of whether
a person is alone or in-a-group.

4.2.1 A�ect Recognition in individualDB. We utilize Linear Support Vector Machine (SVM)
to do classi�cation w.r.t. the dimensions of arousal (high arousal vs low arousal) and valence
(positive valence vs negative valence). �e classi�cation results obtained using unimodal features
and decision-level fusion are illustrated in Table 6. We can see that di�erent types of features
perform di�erently. Generally, vQLZM-FV shows the best performance in both leave-one-subject-out
and subject-speci�c cross-validation. It indicates that the proposed vQLZM-FV descriptors encode
the information of spatio-temporal textures and are informative for tasks of a�ect analysis. On
the other hand, we can see that compared to leave-one-subject-out models, subject-speci�c models
perform be�er due to the subject-dependency. We can see that compared to QLZM Fisher Vectors



Table 6. The a�ect classification results in terms of F1 score for individualDB using SVM with
unimodal face and body features and the decision-level fusion. The statistical significance (p-value) is
also presented in parentheses.

Dimensions Arousal Valence
F1(p −value) F1(p −value)

Chance level 0.5 0.5
Leave-one-subject-out
vQLZM 0.555 (p < 0.05) 0.59 (p < 0.05)
Facial Landmarks 0.548 (p < 0.05) 0.57 (p < 0.05)
body HOG 0.549 (p < 0.05) 0.54 (p < 0.05)
body HOF 0.551 (p < 0.05) 0.52 (p < 0.05)
Decision-fusion
of four features

0.57 (p < 0.05) 0.60 (p < 0.05)

Subject-speci�c
vQLZM 0.70 (p < 0.01) 0.73 (p < 0.01)
Facial Landmarks 0.66 (p < 0.01) 0.66 (p < 0.01)
body HOG 0.70 (p < 0.01) 0.69 (p < 0.01)
body HOF 0.66 (p < 0.01) 0.66 (p < 0.01)
Decision-fusion
of four features

0.72 (p < 0.01) 0.75 (p < 0.01)

Table 7. The a�ect classification results in terms of F1 score for individualDB with QLZM features using
LSTM. The statistical significance (p-value) is also presented in parentheses.

Dimensions Arousal Valence
F1(p −value) F1(p −value)

Chance level 0.5 0.5
Leave-one-subject-out
IndividualDB 0.60 (p < 0.01) 0.61 (p < 0.01)

(vQLZM) with SVM and even the decision-fusion with SVM, LSTM is more powerful for arousal and
valence recognition in dynamic videos. To show the results clearly, we compare the classi�cation
and regression results obtained with QLZM Fisher Vectors (vQLZM) with SVM, decision-fusion with
SVM and QLZM with LSTM in Fig. 7 and 8. �is is the �rst work to report a�ect analysis in
group videos using temporal models. �e results show that LSTM improves a�ect recognition
performance signi�cantly as has previously been reported in single-person videos in [6].

In terms of decision-level, the decision values, that is the obtained probabilities for all classes,
from individual features are given as input to a linear-SVM. �e results show that the classi�cation
performance using decision-fusion of four face and body features is most of the times equal to
or be�er than that obtained with unimodal features. For example, the best a�ect classi�cation
results obtained using unimodal cues are 0.55 (0.70) in terms of arousal and 0.59 (0.73) in terms
of valence using the F1 score as our evaluation method in leave-one-subject-out (subject-speci�c)
setups; and those classi�cation results of a�ect analysis obtained using decision fusion are 0.57
(0.72) in terms of arousal and 0.60 (0.75) in terms of valence. �erefore, the fusion of multiple cues,
in general, improves the classi�cation results albeit not by a large margin in comparison to the
proposed vQLZM-FV descriptor.



Table 8. The a�ect regression results in terms of MSE, CC and CCC for individualDB using SVR with
unimodal face and body features and the decision-level fusion.

Dimensions Arousal Valence
MSE(std) CC CCC MSE(std) CC CCC

Leave-one-subject-out
vQLZM 0.08(0.01) 0.34 0.29 0.08(0.01) 0.34 0.33
Facial Landmarks 0.01(0.01) 0.29 0.15 0.05(0.01) 0.25 0.19
body HOG 0.07(0.01) 0.27 0.23 0.06(0.01) 0.13 0.12
body HOF 0.01(0.01) 0.30 0.18 0.06(0.05)) 0.26 0.21
Decision-fusion
of four features

0.07 (0.01) 0.44 0.34 0.04(0.01) 0.47 0.32

Subject-speci�c
vQLZM 0.04(0.01) 0.76 0.62 0.03(0.01) 0.69 0.60
Facial Landmarks 0.06(0.01) 0.59 0.39 0.04(0.01) 0.48 0.36
body HOG 0.05(0.01) 0.66 0.53 .0.03(0.01) 0.58 0.52
body HOF 0.06(0.01) 0.59 0.40 0.04(0.01) 0.46 0.35
Decision-fusion
of four features

0.04(0.01) 0.75 0.66 0.02(0.01) 0.69 0.67

Table 9. The a�ect regression results in terms of MSE, CC and CCC for individualDB with QLZM features
using LSTM.

Dimensions Arousal Valence
MSE(std) CC CCC MSE(std) CC CCC

Leave-one-subject-out
IndividualDB 0.006(0.003) 0.60 0.59 0.004(0.002) 0.62 0.61

For the regression of the a�ect analysis, we utilize Support Vector Regression (SVR) with a radial
basis function (RBF) kernel. �e results obtained with unimodal and multi-modal features are
presented in Table 8. For the unimodal results, we can see that the regression results are quite similar
to the classi�cation ones, i.e., vQLZM-FV generally performs best among all unimodal features.
As to the decision-level fusion, we proceed in a similar way to the fusion in a�ect classi�cation.
Speci�cally, we fuse the ratings predicted from unimodal features in an RBF-SVR. �e results show
that using only the proposed vQLZM-FV feature can achieve results that are very close to those
obtained by using multi-modal fusion.

Subsequently, we utilize LSTM and facial QLZM feature for a�ect classi�cation and regression.
LSTM is one of the state-of-the-art temporal modeling methods and facial QLZM feature is the best
performed unimodal representation as shown in Table 6 and 8. �e classi�cation and regression
results are reported in Table 7 and 9. We can see that compared to QLZM Fisher Vectors (vQLZM)
with SVM and even the decision-fusion with SVM, LSTM is more powerful for arousal and valence
recognition in dynamic videos. To show the results clearly, we compare the classi�cation and
regression results obtained with QLZM Fisher Vectors (vQLZM) with SVM, decision-fusion with SVM
and QLZM with LSTM in Fig. 7 and 8. �is is the �rst work to report a�ect analysis in group videos
using temporal models. �e results show that LSTM improves a�ect recognition performance
signi�cantly as has previously been reported in single-person videos in [6].

4.2.2 A�ect Recognition inGroupDB. Similar to a�ect recognition in individualDB, Support
Vector Machine (SVM) is utilized to do classi�cation and regression w.r.t. the dimensions along
arousal and valence. �e classi�cation and regression results using four di�erent unimodal features
and decision-level fusion are illustrated in Table 10 and Table 12 respectively. It can be seen



that the results are consistent with the results obtained using individualDB: (1) di�erent features
provide di�erent classi�cation/regression results and vQLZM-FV generally outperforms the other
unimodal features in both classi�cation and regression models; and (2) the fusion results are either
equal to or be�er than those obtained with unimodal features, which indicates that the fusion of
di�erent features is generally helpful for improving the a�ect recognition results. On the other hand,
compared to the individual se�ings, a�ect recognition in group se�ings performs be�er using the
leave-one-subject-out evaluation criteria. �e di�erences between subject-independent conditions
(leave-one-subject-out cross-validation) and subject-dependent conditions (subject-speci�c cross-
validation) in group se�ings are less pronounced than individual se�ings. A possible explanation
is that for leave-one-subject-out experiments, for groupDB, although the subject is le� out, there
are members from the same group in the training data, which provides some useful information.
More speci�cally, compared to participants from di�erent groups, members in the same group
display more similar emotions and present more similar behaviors. In order to test this, we conduct
leave-one-group-out cross-validation. From Table 10 and 12, we can see that the results obtained
with leave-one-group-out are not as good as the ones obtained with leave-one-subject-out. For each
individual in a group, other members’ behavioral cues can provide useful information for predicting
the a�ect of that individual, which indicates that (1) group members show similar behaviors
and share some common information; and (2) people may behave distinctively when they are in
individual se�ings and when in group se�ings. For a further analysis of our �rst hypothesis, we
compare the a�ect recognition results of subjects within the same group and from di�erent groups.
Fig. 6 shows the variance of the regression results among subjects in terms of valence dimension
obtained using QLZM Fisher Vectors (vQLZM) and SVR under leave-one-subject-out cross-validation
setup along video/movie U1. �e red line and blue line refer to two distinct groups respectively
while the black line represents results for these two groups. We can see that the variance within
the same group tends to be smaller than that of across di�erent groups. �is shows that subjects
within the same group display more similar a�ective states than subjects across di�erent groups.
In addition, in order to investigate whether people behave di�erently in di�erent se�ings, in
Section 4.2.4 we propose a method that a�empts to predict whether a person is alone or in-a-group
using their non-verbal behaviors.

Similar to the individual se�ings, we then utilize LSTM and facial QLZM feature for a�ect
recognition in group se�ings. �e classi�cation and regression results are presented in Table 11 and
13 respectively. �e comparison of the results obtained with non-temporal models (i.e., SVM and
SVR) and temporal models (i.e., LSTM) is presented in Fig. 7 and 8. It can be clearly seen that the
temporal modeling method, LSTM, outperforms the non-temporal model in terms of both arousal
and valence recognition.

4.2.3 Cross-condition A�ect Recognition. For the cross-condition a�ect recognition, com-
bined models are trained using two databases, i.e., combined model trained with individualDB and
groupDB. In the experiments, leave-one-subject-out cross-validation is applied and the experimental
results are illustrated in Table 14. From the results, it can be seen that compared to Table 10, the
results obtained with the combined model are slightly worse. Note that, the combined models are
trained with data from both databases, only excluding the participant used as the test subject at
each round. �erefore, it is trained with more data than models trained on each database separately.
However, more training data does not always provide a be�er recognition model. A possible
explanation is that the combined models have to make a compromise when modelling di�erent
types of data simultaneously, which results in decreased performance. However, compared to Table
6, the results obtained with the combined model are slightly be�er. A possible explanation is that
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people in group se�ings show more diverse social behaviors than when they are being alone, which
helps improve the recognition results for individualDB when tested using the combined model.



Table 10. The a�ect classification results in terms of F1 score for groupDB using SVM with unimodal
face and body features and the decision-level fusion. The statistical significant test (p-value) is also
presented.

Dimensions Arousal Valence
F1(p −value) F1(p −value)

Chance level 0.5 0.5
Leave-one-subject-out
vQLZM 0.68 (p < 0.01) 0.68 (p < 0.01)
Facial Landmarks 0.61 (p < 0.01) 0.58 (p < 0.01)
body HOG 0.57 (p < 0.05) 0.58 (p < 0.01)
body HOF 0.61 (p < 0.01) 0.59 (p < 0.01)
Decision-fusion
of four features

0.69 (p < 0.01) 0.68 (p < 0.01)

Leave-one-group-out
vQLZM 0.67 (p < 0.01) 0.64 (p < 0.01)
Facial Landmarks 0.61 (p < 0.01) 0.59 (p < 0.01)
body HOG 0.55 (p < 0.05) 0.58 (p < 0.01)
body HOF 0.61 (p < 0.01) 0.57 (p < 0.01)
Decision-fusion
of four features

0.68 (p < 0.01) 0.65 (p < 0.01)

Subject-speci�c
vQLZM 0.80 (p < 0.01) 0.80 (p < 0.01)
Facial Landmarks 0.69 (p < 0.01) 0.64 (p < 0.01)
body HOG 0.70 (p < 0.01) 0.68 (p < 0.01)
body HOF 0.70 (p < 0.01) 0.67 (p < 0.01)
Decision-fusion
of four features

0.80 (p < 0.01) 0.80 (p < 0.01)

Table 11. The a�ect classification results in terms of F1 score for GroupDB with QLZM features using
LSTM. The statistical significance (p-value) is also presented in parentheses.

Dimensions Arousal Valence
F1(p −value) F1(p −value)

Chance level 0.5 0.5
Leave-one-subject-out
GroupDB 0.71 (p < 0.01) 0.79 (p < 0.01)

4.2.4 Contextual Information Recognition. In a further step, we investigate contextual
information prediction using non-verbal behavioral cues. We conduct experiments to recognize
whether a person is alone or in-a-group using the extracted face and body features described in
Section 3.2. �e results are shown in Table 15. We can see that the results we obtained, all above
85%, are signi�cantly be�er than the chance level of 50%. In addition, it can be seen that body
features perform slightly be�er than face features. It is possibly due to the fact that it is relatively
di�cult to utilize the facial information in this case as facial information is more subtle than body
motion and gestures. Similarly to the a�ect recognition results shown in Table 6, 8, 10 and 12,
fusion of di�erent features again helps improve the performance. Predicting whether a person
is alone or in-a-group successfully indicates that people behave distinctly while they are alone
compared to being within a group.



Table 12. The a�ect regression results in terms of MSE, CC and CCC for groupDB using SVR with unimodal
face and body features and the decision-level fusion.

Dimensions Arousal Valence
MSE(std) CC CCC MSE(std) CC CCC

Leave-one-subject-out
vQLZM 0.02(0.02) 0.58 0.44 0.01(0.01) 0.57 0.52
Facial Landmarks 0.02 (0.02) 0.44 0.23 0.01(0.01) 0.39 0.25
body HOG 0.02(0.03) 0.27 0.21 0.011(0.02) 0.29 0.26
body HOF 0.02(0.02) 0.42 0.27 0.01(0.01) 0.31 0.25
Decision-fusion
of four features

0.08(0.02) 0.61 0.44 0.03(0.01) 0.58 0.53

Leave-one-group-out
vQLZM 0.12(0.02) 0.55 0.40 0.04(0.01) 0.56 0.52
Facial Landmarks 0.13(0.02) 0.42 0.20 0.05(0.01) 0.36 0.24
body HOG 0.18(0.033) 0.18 0.13 0.07(0.02) 0.24 0.21
body HOF 0.14(0.02) 0.35 0.21 0.06(0.02) 0.28 0.23
Decision-fusion
of four features

0.03(0.02) 0.55 0.38 0.03(0.01) 0.65 0.55

Subject-speci�c
vQLZM 0.09(0.01) 0.71 0.54 0.03(0.01) 0.67 0.56
Facial Landmarks 0.12(0.02) 0.54 0.30 0.05(0.01) 0.46 0.32
body HOG 0.11(0.02) 0.58 0.45 0.04(0.01) 0.56 0.47
body HOF 0.12(0.02) 0.53 0.32 0.05(0.01) 0.48 0.35
Decision-fusion
of four features

0.08(0.02) 0.70 0.57 0.03(0.01) 0.69 0.62

Table 13. The a�ect regression results in terms of MSE, CC and CCC for GroupDB with QLZM features
using LSTM.

Dimensions Arousal Valence
MSE(std) CC CCC MSE(std) CC CCC

Leave-one-subject-out
groupDB 0.008(0.005) 0.66 0.65 0.004(0.002) 0.72 0.70

4.2.5 Related works. As the data, annotation and evaluation methods utilized in this work
are di�erent from existing works, it is di�cult to directly compare the results with the published
works in the literature. However, for reference, we brie�y report here results obtained in other
works using similar approaches and setups. For instance, in [34] a�ect analysis was formulated as
a binary classi�cation problem and results on MAHNOB HCI [53], focusing on emotions evoked
by the presentation of multimedia content were reported – the F1 score by using facial features
was 0.638 for arousal and 0.628 for valence. �e results we achieved in the leave-one-subject-out
setup by using LSTM and QLZM features are 0.71 for arousal and 0.79 for valence respectively.
So far as a�ect regression is concerned, we report the results obained in the 2017 Audio-Visual
Emotion Challenge (AVEC 2017) - a�ect sub-challenge, which aimed at a�ect analysis using the
Sentiment Analysis in the Wild (SEWA) database collected ‘in-the-wild’. �is challenge used a
subject-independent setup and the same evaluation metric (i.e., CCC) with us. �e multi-modal



Table 14. Classification results obtained with Combined Model trained with individualDB and groupDB
on both individualDB and groupDB in terms of F1 score using leave-one-subject-out cross-validation.

Models Combined Model
Test Data GroupDB
Dimensions Arousal Valence
Chance level 0.5 0.5
Leave-one-subject-out
vQLZM 0.67 (p < 0.01) 0.67 (p < 0.01)
Landmarks 0.54 (p < 0.05) 0.57 (p < 0.05)
HOG 0.57 (p < 0.05) 0.59 (p < 0.05)
HOF 0.60 (p < 0.01) 0.59 (p < 0.01)
Models Combined Model
Test Data individualDB
Dimensions Arousal Valence
Chance level 0.5 0.5
Leave-one-subject-out
vQLZM 0.58 (p < 0.05) 0.59 (p < 0.05)
Landmarks 0.55 (p < 0.05) 0.57 (p < 0.05)
HOG 0.55 (p < 0.05) 0.55 (p < 0.05)
HOF 0.57 (p < 0.01) 0.52 (p < 0.05)

Table 15. The contextual recognition (whether a person is alone or in-a-group) results obtained with unimodal
face and body features, and the decision-level fusion. The table reports the average recognition accuracy over
all subjects. The statistical significance (p-value) is also presented in parentheses. The chance level (50%) is
also provided.

Leave-one-subject-out
Chance level 50%
vQLZM 85% (p < 0.01)
Facial Landmarks 90% (p < 0.01)
body HOG 93% (p < 0.01)
body HOF 91% (p < 0.01)
Decision-fusion 94% (p < 0.01)

baseline results obtained with multi-modal audio-visual-text features is 0.306 in terms of arousal
and 0.466 in terms of valence (using CCC as evaluation method). �e best results obtained by the
winner paper [46] using unimodal features - facial appearance features were 0.67 for arousal and
0.70 for valence. �e results that we obtained with LSTM and QLZM facial appearance feature are
0.65 in terms of arousal and 0.70 in terms of valence using the subject-independent setup.

5 CONCLUSIONS AND FUTUREWORKS
A novel framework is introduced in this paper for automatic context recognition and a�ect recogni-
tion in di�erent se�ings - individual se�ings (i.e., individualDB) and group se�ings (i.e., groupDB).
Face and body features are �rst extracted to analyze the a�ect states in terms of valence and arousal
dimensions. In order to use the temporal information, we use two di�erent methods: (1) from
feature perspective, to represent facial information in spatio-temporal domain, we introduce a novel



volume based vQLZM-FV descriptor; (2) in terms of the learning model, we utilize the temporal
modeling method, LSTM. We then propose a method to recognize contextual information, namely
whether a person is alone or in-a-group by using their non-verbal behavioral features. A set of
experiments is carried out on a database containing both individual and group videos. Firstly, we
�nd that the vQLZM-FV descriptor achieves the best performance among all the unimodal face and
body features, and generates similar results to decision-level fusion for a�ect recognition in both
databases. Secondly, we �nd that the temporal learning model outperforms the non-temporal model
in terms of a�ect recognition. Finally, the contextual information of being alone or in-a-group can
be successfully recognized using facial and body cues.

Even though the promising results are obtained in our experiments, a�ect analysis is still a
challenging problem, especially when it comes to di�erent se�ings and needs to be investigated in
a further step in future work by taking advantage of other machine learning and deep learning
techniques. �e current work can be extended by combining information from the group members,
and it can also be extended to group-level a�ect analysis instead of a�ect recognition of each
individual.
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