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Abstract. 

Vascular Smooth Muscle cells (VSMCs) have very important role in pathogenesis of 

atherosclerosis and neointima formation. VSMCs phenotype switching and resultant increase in 

migration and proliferation under the influence of certain pro-inflammatory mediators is widely 

addressed but further research aiming at identifying the molecular mechanisms governing these 

changes is still required. Since the identification of microRNA (miR) as potent post transcriptional 

gene regulators, several studies have revealed their role in atherosclerosis and neointima 

formation. miR-214 was previously considered as oncogene but later studies have pointed at its 

role in tumourogenesis inhibition. Researchers have postulated a divergent role of miR-214 in 

cardiovascular diseases ranging from beneficial and cardiomyocyte protector to damaging by 

causing cardiac hypertrophy but its role in VSMC functional regulation is still unclear. In our study, 

we analysed its role in regulating VSMC function (migration and proliferation) during neointima 

formation. By applying loss of function and gain of function experiments, we identified that miR-

214 has an inverse relationship to VSMCs functions. Overexpressing miR-214 resulted in reduced 

VSMC migration and proliferation and vice versa. Proteomics analysis and algorithmic 

computation models revealed an interesting relationship between miR-214 and Nck associated 

protein 1 (NCKAP1), a major components of WAVE complex and involved in regulating actin 

polymerization and lamellipodia formation. 

In our study on VSMCs, we have identified NCKAP1 as the functional target gene of miR-214 in 

regulating VSMC functions in atherosclerosis and neointima formation. By implementing gene 

and protein biochemical assays including proteomic analysis, we have provided compelling 

evidence to support a regulatory role for miR-214/NCKAP1 in VSMCs migration and motility. 

NCKAP1 knockdown in VSMCs recapitulates the inhibitory effects of miR-214 over-expression on 

actin plymerization, cell migration and proliferation. Furthermore, cotransfection experiments 
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also revealed that inhibition of NCKAP1 is required for miR-214 medited lamellipodia formation, 

cell motility and growth. Importantly, locally enforced expression of miR-214 to the injured 

vessels significantly reduced NCKAP1 expression levels, inhibited VSMC proliferation and 

prevented neointima hyperplasia after injury. 

Our data is in line with the aforementioned role of NCKAP1 as imperative and constitutive 

component of WAVE complex, leading to lamellipodia formation and actin filament 

polymerization. We have extended NCKAP1’s role in VSMC mobility and proliferation under the 

effect of pro-inflammatory mediators and under conditions of vascular injury. Our study has 

uncovered an important relationship between miR-214 and its target gene NCKAP1 in 

modulating VSMC functions and their effect on neointima hyperplasia. Our findings suggest that 

miR-214 represents a potentioal therapeutic target for vascular disease. 
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1 Introduction: 

Cardiovascular diseases (CVD) are the major cause of morbidity and mortality in the world. About 

50% of all cardiovascular deaths are due to ischemic heart disease whereas atherosclerosis is 

regarded as the major factor in the development of cardiovascular diseases including myocardial 

infarction (MI), and stroke (Ross 1999). Reduced blood supply due to narrowing of the lumen of 

artery caused by atherosclerotic plaque leads to hypoxia (a condition characterized by low 

oxygen supply) in the tissues/organs such as brain and heart, resulting in dysfunctions of these 

organs. Rupturing of atherosclerotic plaque may cause blood clot and eventually MI, heart attack, 

stroke and/or other peripheral arterial diseases. Stress, hyperlipidaemia, hypertension, diabetes, 

smoking, aging and obesity have been regarded as the main risk factors for atherosclerosis. 

Most common clinical technique developed and employed successfully to treat atherosclerosis 

and occluded arteries is Percutaneous transluminal coronary angioplasty (PTCA), which involve 

insertion of a balloon catheter along with a metallic stent. Inflation of balloon opens up the 

blocked artery and insertion of stent keeps the artery open for long periods. Despite excellent 

success rate, there has been some limitation associated with this technique, most prominent of 

which, is the formation of neointima and thrombosis, resulting in vascular inward remodelling 

(restenosis) which require repetitive interventions, thus debilitating quality of life. 

Vascular smooth muscle cells (VSMCs) have a pronounced role in the pathophysiology of 

atherosclerosis and neointima formation. Researchers have reported a contributory as well as 

protective role of VSMC in atheroma development. VSMCs respond to cytokine stimulation 

produced by inflammatory mediators after vascular injury, by switching to a synthetic phenotype 

with increased capacity of proliferation, migration, and modulating the synthesis of various 

extracellular matrix proteins to repair the injured vessel wall. During the early stage of 

atherosclerotic lesion development, VSMCs migration, proliferation, apoptosis and secretion of 
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extracellular matrix proteins result in an increase in plaque size, whereas such functions also 

promotes fibrous cap formation which helps in stabilizing the atherosclerotic plaques and thus 

protecting against thrombotic eruption. Researchers in the cardiovascular field have work 

extensively to understand the underlying mechanism involving VSMC phenotype switch and their 

contributory roles in the pathogenesis of atherosclerosis and neointima formation (Hansson 

2005) but still the role of some regulatory factors and their involvement in VSMC behaviour 

needs to be address. 

Among these newly identified regulatory factors are microRNAs (miRNAs or miRs). MicroRNAs 

are regarded as potent post-transcriptional regulatory agent as a single miRNA can target many 

mRNAs and hence can regulate multiple downstream signalling pathways. MiRNAs are short, 

single stranded, non-coding 22 nucleotide RNAs involved in post transcriptional gene silencing. 

MiRNA along with its associative Argonaute family of proteins binds with the 3′ UTR of mRNA, 

resulting in its cleavage, degradation or de-adenylation and translational repression hence 

regulating the specific gene and controlling fundamental biological processes like cell 

proliferation, differentiation, apoptosis and tumour progression or repression. Whereas 

cardiovascular diseases are concerned, involvement of miRNA has been reported in a number of 

processes ranging from cardiac development during embryogenesis to the progression of 

multiple diseases. Role of miR-214 has been described by some researchers in endothelial and 

myocardial cell survival after ischemia reperfusion injury (IR) but its role in VSMC regulation and 

its involvement in atherosclerosis and neointima formation remain to be elucidated.  

In this study, we will evaluate the possible role of miR-214 in regulating VSMC functions 

(proliferation, migration, and apoptosis), the potential therapeutic effect of miR-214 invascular 

injury-induced neointima formation, and investigate the possible candidate genes involved and 

underlying molecular mechanisms. 
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1.1 Cardiovascular Diseases (CVD) 

Cardiovascular diseases are regarded as disorders of blood circulatory system comprising of 

heart and blood vessels. According to the world health organisation data, cardiovascular diseases 

are the number one cause of death globally with an estimated 17.7 million people died in 2015. 

A study published in 2016 by Nick Townsend estimates CVD related death around 4,002,632 

which is 45% of total number of deaths in European region (Townsend, et al. 2016). British heart 

foundation has estimated that there are around 7 million people living with cardiovascular 

disease in UK (BHF Stats). Among CVDs ischaemic heart disease and stroke are the two biggest 

killers accounting for a combined 15 million deaths worldwide in 2015. There are a number of 

predisposing factors contributing to cardiovascular diseases largely categorised as non-

modifiable and modifiable risk factors. Non-modifiable risk factors include gender, age, poverty 

and low education status, ethnicity family history and genetic makeup. The modifiable risk 

factors include behavioural risk factors and metabolic risk factors. The behavioural risk factors 

include smoking/use of tobacco, alcohol, less physical activity, unhealthy dietary habits 

(excessive use of salt and fats). Metabolic risk factors are hypertension (consistent raised blood 

pressure), Diabetes (high blood sugar), obesity and hyperlipidemia (high blood cholesterol levels).  

As aforementioned, coronary artery disease (causing myocardial infarction MI) and 

cerebrovascular disease (causing stroke) are the two major aliments causing mortality and 

morbidity, whereas atherosclerosis and neointima formation is regarded as the main processes 

behind these ailments. A number of factors are involved in triggering the process of 

atherosclerosis which includes metabolic risk factors, mechanical forces, immunomodulatory 

cells, inflammatory cytokines, extracellular matrix proteins, and vascular cells.  
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Figure 1. Top 10 causes of deaths worldwide. World Health Organization 2017 
http://www.who.int/gho 

 

Figure 2. Prevalence of cardiovascular disease in the UK: bhf.org.uk/heart-
health/conditions/cardiovascular-disease  

http://www.who.int/gho
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2 Atherosclerosis 

Atherosclerosis is an inflammatory disease, characterized by gradual narrowing of the artery 

lumen due to formation of atherosclerotic plaque. Various metabolic risk factors, mechanical 

stimuli, immunomodulatory and inflammatory mechanisms trigger the pathogenesis of 

atherosclerosis (Hansson 2005; Ross 1999). The vasculature is lined by monolayer of cells called 

endothelium which is selectively permeable, anti-thrombogenic, anti-inflammatory and 

vasoprotective in nature. Integrity of endothelium plays a critical role in the initiation and 

development of atherosclerotic plaque. Pathological conditions such as hyperlipidaemia, 

diabetes, hypertension, smoking, stress, or injury may result in aberrant endothelial cell 

activation. Meanwhile, endothelial cell programmed cell death (apoptosis) severely damages the 

integrity and functions of endothelium. Mechanical forces like shear stress and cyclic strain also 

influence the mechanisms involved in atherosclerosis. A turbulent blood flow at arterial 

bifurcations may trigger the process of atherosclerosis by effecting endothelial integrity and 

promoting infiltration of inflammatory mediators, whereas laminar flow exerts anti-

atherosclerotic and anti-apoptotic effects. 

Currently two major techniques are employed to treat atherosclerosis and to open the occluded 

vessels, i.e.Percutaneous transluminal coronary angioplasty (PTCA) or Percutaneous coronary 

interventions (PCI) and coronary artery bypass grafting (CABG). Considering the advantage of 

rapid procedure with less invasive option, quicker discharge from hospital and earlier return to 

daily activities, PTCA is considered preferred option by both clinicians and patients. PTCA/PCI 

involves opening up of stenotic vessel by inserting and inflating a balloon on the catheter tip and 

implanting a metallic drug eluting stent. This controlled vascular remodelling results in plaque 

compression and arterial stretching, thereby improving blood supply to relevant tissue/organ. 
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Despite the development in treatment protocols and introduction of drug eluting stents which 

results in excellent success rate, treatment with PTCA comes with few limiting factors like 

vascular remodelling (restenosis) and neointima hyperplasia requiring repeated interventions. 

Neointima hyperplasia is the development of new thickened layer in arterial intima (comprising 

largely of vascular smooth muscle cells along with macrophages, leukocytes, lipid/cholesterol 

particles, and apoptotic cells) formed by the proliferation and migration of cells (VSMCs and 

fibroblasts) from surrounding tissue or from blood vessel media. 

Likewise atherosclerosis, neointima hyperplasia (arising after artery injury) shares same 

inflammatory pathways, pathological conditions (hyperlipidaemia, hypertension, diabetes, stress) 

and pre-disposing factors, aggravating the disease/inflammation at much rapid pace than occurs 

in atherosclerosis (chronic inflammatory process), requiring the need for subsequent 

intervention in 10-30% of cases in few year time (Serruys, et al. 1988). 

2.1 Pathogenesis of Atherosclerosis and Neointima Formation. 

2.1.1 Vascular injury/Endothelial integrity. 

Blood circulatory system is highly specialized to perform its function i.e. to transport nutrients 

throughout human body and excrete waste. Blood vessels are uniquely adapted to changes in 

external and internal environment, for example, inflammation, infection, maintenance of blood 

pressure and volume, maintenance of vascular tone, etc. Typically, a blood vessel is composed of 

three distinct layers of cells, named as tunica intima, media and adventitia. The intima is 

composed of single layer of endothelial cells (ECs) lying on basement membrane composed of 

collagen type IV, laminin and heparin sulphate proteoglycans (Yurchenco 2011). Tunica media is 

largely composed of vascular smooth muscle cells (VSMCs) embedded in extracellular matrix 

containing elastin, collagen type I, fibronectin and other glycoproteins. Tunica media is separated 

from intima by layer of insoluble contractile elastin fibres called internal elastic lamina 
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(Wagenseil and Mecham 2009). A similar layer composed of thick elastin fibres called external 

elastic lamina separates tunica media from adventitia. The adventitia comprises of mainly loosely 

bounded connective tissue, fibroblast cells, fat cells along with different type of stem/progenitor 

cells. 

 As aforementioned, Endothelium being the innermost layer is in direct contact with the flowing 

blood and hence, constantly exposed to the mechanical force exerted by the blood (cyclic strain 

and shear stress). Shear stress is the frictional force generated by the flow of blood against the 

vessel wall and is usually expressed in dynes/cm2. Unidirectional, laminar flow of blood exerting 

high shear stress (approx 15 dynes/cm2) against vessel wall is considered anti-inflammatory, 

antithrombotic and atheroprotective whereas at vessel bifurcation and bends, the flow of blood 

is disturbed and results in oscillatory or low shear stress (<5 dynes/cm2) (Malek, et al. 1999; 

Warboys, et al. 2011). This disturbed blood flow exposes endothelial cells vulnerable to 

inflammation by inducing expression of adhesion molecules and contributing to endothelial 

dysfunction. These areas of arterial tree (bifurcations, bends and branches) are termed as 

atheroprone areas as they are more vulnerable towards developing atherosclerotic lesions 

because of low shear stress/blood flow leading to decreased rolling speed and hence, providing 

better access to leukocytes and low density lipoproteins to transmigrate to the arterial wall as 

well as increased expression of adhesion factors and chemokines (Kwak, et al. 2014). 

2.1.2 Up-regulation of adhesion molecules and recruitment of 

inflammatory cells. 

Modified LDL, free radicals and hemodynamic stress activates ECs resulting in enhanced 

expression of pro-inflammatory cytokines. Denudation of endothelium as a result of vascular 

injury (such as stenting) also promotes inflammatory signalling from adjoining intact ECs. The 

inflammatory signals from ECs, monocytes, leukocytes and platelets intiate an inflammatory 
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cascade which triggers the pathogenesis of atherosclerosis and neointima formation. Such 

cytokines in-turn increases leukocyte and monocyte adhesion to endothelium by raising the 

expression of cell surface leukocyte adhesion molecules e.g. ICAM-1 and VCAM-1 (Butini, et al. 

1994; Diacovo, et al. 1994) and by triggering the productionof selectins, particularly E-selectin 

and P-selectin (Inoue, et al. 1998). Transmigration of monocytes into the site of inflammation is 

triggered by the interactions between VCAM-1 and its counter receptor, integrin α1β4 on 

monocytes. Oxidized LDL also stimulates release of MCP-1 from ECs (Cushing, et al. 1990). MCP-1 

interacts with its counter receptor integrin on macrophages and T cells leading to their enhanced 

binding and transmigration across the endothelium (Schober and Zernecke 2007). Monocytes, 

adhered to the inflamed endothelial layer, starts producing inflammatory cytokines such as IL-1β 

and tumour necrosis factor-α (TNF-α), thereby further exacerbating inflammation. Reactive 

oxygen species (ROS) mediate multiple cellular pathways regulating inflammatory responses 

during atherosclerosis. Among them two major pro-inflammatory signalling pathways: the 

nuclear factor kappa B (NF-ƙB) and mitogen-activated protein kinase (MAPK) pathway are 

identified as key regulators because of there effect on multiple downstream pathways to 

regulate protected and susceptible sites of arterial tree (Passerini, et al. 2004; Yu, et al. 2015; 

Zhang, et al. 2016a). 
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Figure 3. Role of VSMCs at different stages of atheroma development during atherosclerosis. 
Cardiovascular risk factors or/and endothelial injury initiate a cascade of events involving increased 
expression of cell adhesion molecules, recruitment of leukocytes, foam cell formation and release of 
cytokines, chemokines and growth factors by inflammatory cells, EC and VSMCs. VSMCs migration, 
proliferation and secretion of extra cellular matrix proteins leads to formation of fibrous cap resulting 
in stable atherosclerotic plaque. At later stage, fibroblast also migrate from adventitia to intima 
contributing in plaque enlargement, adapted from Dzau VJ,et al, Vasular proliferation and 
atherosclerosis, Nat Med 2002 (Dzau, et al. 2002). 
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2.1.3 Formation of Foam Cells. 

As aforementioned that chronic inflammation contributes to the development and progression 

of atherosclerotic plaque, plaque rupture and thrombosis. Oxidative stress due to the generation 

of reactive oxygen species (ROS) and reactive nitrogen species (RNS) also induces inflammation 

(Ooi, et al. 2017; Pashkow 2011). Oxidation of lipoproteins induced by ROS can amplify oxidized 

low density lipoproteins (oxLDL) formation. Foam cell formation results from the disruption in 

the normal macrophage cholesterol metabolism which involves uptake, intracellular metabolism 

and efflux of cholesterol and oxLDL.   

Cytokines such as IL-1 up-regulate the expression of scavenger receptors (SR) on macrophages by 

influencing macrophage colony stimulating factor (M-CSF)(Clinton, et al. 1992; Zoellner, et al. 

1992). Upregulated scavenger receptors (SR) on macrophage surface, recognizes and uptake 

these oxidized lipoproteins (ox-LDL) by the process of phagocytosis and pinocytosis, resulting in 

formation of foam cells. Scavenger receptor class A (SR-A) and scavenger receptor class B (CD36) 

are the most important receptors responsible for the uptake of oxLDLs. Studies have 

documented that about 75% to 90% of oxLDL internalization into macrophages is done by these 

two receptors (Kunjathoor, et al. 2002). Moreover, lectin-type oxidized LDL receptor 1 (LOX1), 

toll-like receptor 4 (TLR4) and chemokine (C-X-C) motif ligand are among other receptors 

responsible for oxLDL uptake (Schaeffer, et al. 2009). CD36 is 88-KDa transmembrane 

glycoprotein receptor belonging to SR class B family. It is heavily expressed by platelets, 

monocytes/macrophages, and endothelial cells and exhibits high affinity for ox-LDLs. Studies 

have demonstrated that genetic deletion of CD36 in ApoE-/- null mice fed with standard rodent 

chow and western diet were protected against atherosclerotic lesion as compared with wild type 

mice (Febbraio, et al. 2000). Treatment with moleculaes showing Anti-CD36 activity such as 

EP80317 (a competitive CD36 ligand) significantly reduce oxLDL internalization and promote 
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cholesterol efflux by inhibiting CD36 cell surface expression (Marleau, et al. 2005). On the 

contrary, Moore et al 2005 reported that ApoE-/- mice lacking CD36 or SR-A displayed increased 

atherosclerotic area and macrophage foam cell formation in aortic intima (Moore, et al. 2005). 

Furthermore, some clinical studies showed that patients with CD36 deficiency exhibit severe and 

enhaced atheroscleritc disease (Yuasa-Kawase, et al. 2012). The pathorgenic role of ox-LDL in 

atherosclerosis largely depends on CD36 but its actions as proatherogeneic mediator needs to be 

reassessed.  

Another scavenger receptor actively involved in internalization of oxLDLs is SR-A, which is 77-KDa 

trimeric transmembrane glycoprotein and member of class A SR family. SR-A is highly expressed 

on monocytes, macrophages and endothelial cells. Inhibition of SR-A in macrophages significantly 

ameliorates foam cell formation and atherosclerosis in ApoE-/- mice (Dai, et al. 2012). Silencing 

either CD36 or SR-A reduces atherogenesis in LDL receptor (LDLR) deficient apolipoprotein B100 

mice but no beneficial effect was observed when both receptors were blocked suggesting that 

compensatory activation of both receptors is sufficient for the uptake of modified LDL (Makinen, 

et al. 2010; Yu, et al. 2013).  

In addition to the cholesterol uptake, the balance of free cholesterol (FC) and cholesterol esters 

(CE) is very crucial for the regulation of intracellular cholesterol content in macrophage foam 

cells. After internalization, modified LDLs are delivered to the lysosomes where lysosomal acid 

lipase (LAL) hydrolyse the excess CE to FC. To prevent cells from FC-associated cell toxicity, FC is 

effluxed from the cell by ABC transporters (ABCA1 and ABCG1) or re-esterified to CE by enzyme 

acyl-CoA:cholesterol acyltransferase (ACAT1) within endoplasmic reticulum (ER) and stored as 

cytoplasmic lipid droplets. Disruption in this process results in excessive accumulation of CE in 

macrophages resulting in the formation of foam cells (Linton, et al. 2000).(Ooi, et al. 2017) 
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With the progression of atherosclerosis, due to oxidative stress and generation of ROS, cellular 

antioxidant defence system comes into play to maintain redox homeostasis. One of the major 

mechanism involved in maintaining cellular redox homeostasis is the Nuclear factor erythroid 2-

related factor 2 (Nrf2). Nrf2 is a transcription factor closely associated with the development of 

atherosclerosis and act as master redox switch in activating cellular antioxidant defence 

mechanism. Nrf2 belongs to the cap “n” collar family of basic region-leucine zipper (CNC-bZIP) 

transcription factors. It regulates genes which contain antioxidant/electrophile response 

elements (ARE/EpRE), including antioxidant and phase II detoxification enzymes, ABC 

transporters and other stress response protein expressions (Sykiotis and Bohmann 2010).  

Several studies have documented that the transcriptional activation of Nrf2 signalling mechanism 

protects the cells against oxidative stress which may lead to inflammation, apoptosis, aging and 

cellular transformation. Activated Nrf2 suppresses endothelial cell activation by inhibiting p38 

mitogen activated protein (MAP) kinase activity and suppressing VCAM-1 expression (Zakkar, et 

al. 2009). Studies have postulated that shear stress and laminar flow also exert their action by 

activating Nrf2 signalling pathway leading to ARE gene expression and suppression of EC 

activation (Kim, et al. 2012). Under normal homeostatic and stress free conditions, Nrf2 stays 

inactive by binding to its inhibitor Keap1, an adaptor protein of a cullin3 (Cul3)-ring-box 1 (Rbx1). 

Nrf2-Keap1 complex keeps cytosolic Nrf2 protein at low levels by constant polyubiquitination 

and subsequent proteosomal degradation of Nrf2, hence preventing transcription of 

downstream target genes (Kobayashi, et al. 2004). But when cells are exposed to oxidative stress, 

ROS and proinflammatory cytokines, the low affinity interactions between Keap1-Nrf2 breaks 

down due to a modification in the cysteine residue of Keap1 leading to a conformational change 

in its structure. This disruption results in release of Nrf2 from Keap1 and its translocation into the 

nucleus where they form heterodimers with small Maf proteins, followed by transcriptional 
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activation of cell defence genes, resulting in increased resistance to stress (Bryan, et al. 2013). 

Apart from Keap1 dependent regulation, Nrf2 activation is also mediated by p38, PKC, PI3K/AKT, 

MAPK/ERK and JNK via phosphorylation of the serine or threonine residues of Nrf2 (Bryan, et al. 

2013; Chen, et al. 2015a). Nrf2 exerts its protective effects against oxidative stress by regulating 

the expression of multiple genes involved in cholesterol influx and efflux, scavenger receptors, 

antioxidant enzymes and ABC transport protein such as heme oxygenase 1 (HMX1), glutathione 

peroxidise 1 (GPX1) ], glutamate-cysteine ligase modifier subunit (GCLM) and NADPH quinine 

oxidoreductase 1 (NQO1) (Ishii, et al. 2004; Jyrkkanen, et al. 2008; Maltese, et al. 2017; Singh and 

Ramji 2006a). 

Macrophage foam cells produce several cytokines and growth factors such as TNF-α, TGF-β, IL-1, 

and fibroblast growth factors (FGF) which promotes infiltration and proliferation of VSMCs into 

the intima. VSMCs also play a crucial role in the development of foam cells by their ability to take 

up oxidized lipids by endocytosis. VSMCs expresses several scavenger receptors like SRA-I, SRA-II, 

Lectin-like ox-LDL receptor-1 (Lox-1) and CD36, all of which are involved in the process of 

endocytosis of oxidized or acetylated LDLs and many other heterogeneous compounds (Camino-

Lopez, et al. 2007; Moore and Freeman 2006). Cationic proteins are endocytosed through 

interactions with negatively charged glycocalyx whereas anionic proteins such as LDLs interact 

with their specific SRs (Mitra, et al. 2011; Sprague, et al. 1985). LDLs can also activate tool like 

receptors (TLRs) especially TLR-4 which inturn participate in lipid uptake and generation of 

subsequent inflammatory responses (Choi, et al. 2009b). The endocytosis and subsequent 

accumulation of LDLs into VSMCs converts them into lipid laden foam cells containing large lipid 

droplets within their cytoplasm (Mitra, et al. 2011). The accumulation of foam cells leads to the 

formation of fatty streaks which is considered as the initial lesion-leading step to the 

development of atherosclerosis (Geng and Hansson 1992; van Lenten and Fogelman 1992). 
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Activated endothelium, macrophages, leukocytes and T-cells produce inflammatory cytokines 

and growth factors which regulate the proliferation, migration and/or apoptosis of VSMCs from 

the media to intima (Libby and Clinton 1992). 

2.1.4 Migration and proliferation of VSMCs from media to intima. 

It has been well established that VSMCs play an important role at different stages of atheroma 

development during atherosclerosis (Figure 3). Activated platelets accumulated at the site of 

injury along with ECs and macrophages, produce a potent growth factor, platelet derived growth 

factor (PDGF)(Heldin, et al. 1981; Libby 2002) which stimulates the migration, proliferation and 

accumulation of medial VSMCs into sub-endothelial spaces (Myllärniemi, et al. 1997). PDGF and 

other pro-inflammatory cytokines also influence VSMCs to change their phenotypic properties 

from elongated and contractile nature (called differentiated VSMCs as observed in medial layer) 

to cobblestone, secretary and non-contractile nature often known as ‘synthetic VSMCs’ (Mack 

2011). Enhanced expression of matrix metalloproteinases (MMPs)(especially MMP-2, MMP-8 

and -9) also facilitates VSMC migration by degradation of basement membrane and remodelling 

of extracellular matrix. Furthermore, apoptotic VSMCs are engulfed and degraded by the 

adjacent VSMCs through phagolysosomes leading to secretion of TGF-β and MCP-1, hence 

further exacerbating inflammation. Healthy human VSMCs are potent phagocytes of apoptotic 

VSMCs (Clarke, et al. 2010) but during hyperlipidemic conditions as observed in atherosclerotic 

plaque, the reduced ability of VSMCs to phagocytose or efferocytose the apoptotic VSMCs 

results in secondary necrosis and an increase in lipid content of the plaque (Van Vre, et al. 2012). 

Recent in vitro evidence has mentioned the transfer of cholesterol loaded lysosomes from foam 

cell macrophages to VSMCs hence inducing VSMC foam cell formation (Weinert, et al. 2013). 

Death of foam VSMCs also promotes proliferation and migration of adjacent VSMCs into intima 

and subsequent plaque calcification (Clarke, et al. 2008) thus participate in plaque progression. 
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Migration and accumulation of VSMCs and their excessive secretion of extracellular matrix 

proteins (e.g. collagen) results in hardening of fibrous cap of atherosclerotic lesion (Owens, et al. 

2004). Gradual thickening of arterial wall results in the development of atherosclerotic plaques 

which represents the core cause of CVDs and a major cause of morbidity and mortality 

worldwide (Libby 2002; Ross 1999).  

2.1.5 Plaque Calcification. 

As disease progresses, increased apoptosis and loss of SMC contractile proteins results in 

calcification of VSMCs and subsequently of advanced atherosclerotic plaque. Calcium phosphate 

deposition in arterial wall (VSMC and atherosclerotic plaque) results in reduced elasticity leading 

to vasoconstriction and raised systolic hypertension, and left ventricular hypertrophy, diastolic 

dysfunction, valve incompetence and increase in oxidative stress (Karwowski, et al. 2012). 

Several mechanisms including inflammatory factors (e.g., TNF-α, Gas6, and TGF-β), metabolic 

factors incorporating oxidative stress and oxLDLs, vitamin D, and developmental factors (e.g., 

bone morphogenetic proteins (BMPs), RUNX and the osteoprotegerin/RANKL axis (Johnson 2014; 

Magne, et al. 2005; Maziere, et al. 2013; Sage, et al. 2010) are postulated to play a role in this 

process. Calcium deposition results in formation of so-called calcified vascular cells (CVCs). 

VSMC/plaque calcification has been broadly divided into two groups, spotty or micro-calcification 

and dense or macro-calcification. Researchers have observed that the pattern of calcification is 

more indicative of plaque stability as compared to the total amount of calcification hence spotty 

or micro-calcification indicates a culprit plaque prone to erupt whereas macro-calcification 

increases the burden of plaque but associated with stable lesion (Ehara, et al. 2004; Pflederer, et 

al. 2010; Yang, et al. 2013c). 
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2.2 Additional mechanisms in atherosclerosis and neointima 

formation, 

Aforementioned ‘the response to injury’ paradigm proposed by Ross has been really helpful in 

demonstrating the role of injury, inflammation and subsequent repair process in atherosclerosis 

and neointima formation. In this model, involvement (migration, proliferation and secretion of 

extracellular matrix proteins) of medial wall SMCs is regarded as the most likely mechanism of 

neointimal development. But over the past few years, several studies have also reported various 

stem/progenitor cells such as circulating smooth muscle progenitor cells and adventitial stem 

cells/fibroblasts as additional origins of cells within neointima (Figure 4).  

2.2.1 Endothelial Progenitor Cells. 

In response to vascular damage, vascular repair is initiated by local endothelial cells and bone 

marrow derived cells called Endothelial Progenitor Cells (EPCs). EPCs were first described as adult 

vascular progenitor cells in late 1990s (Lu and Li 2018; Marcola and Rodrigues 2015). Since then, 

there has been extensive research in the field of EPCs but continues to be controversial because 

of absence of any unique identifying marker. EPCs are circulating; bone-marrow derived 

stem/progenitor cells, which have the ability to participate in vasculogenesis and vascular 

homeostasis as they can differentiate into mature endothelial cells (Bonello, et al. 2012). After 

vascular injury, EPC rapidly move to the site of vascular damage to fill in the empty spaces and 

initiate the process of re-endothelialization (Ben-Shoshan and George 2007; Werner, et al. 2005). 

Some researchers have postulated that circulating levels of EPCs correlates with the progression 

of certain diseases like Takayasu arteritis and peripheral artery disease, hence labelling them as 

potential biomarker (Bitterli, et al. 2016; Keskek, et al. 2017). The phenotype of EPCs is 
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characterized by the co-expression of stem cell surface markers (CD34, CD133), endothelial cell 

markers (CD144, VEGFR2/KDR2) and by their ability to form endothelial colony forming units.  

As aforementioned, the precise characterization of EPCs is difficult because many of the cell 

surface markers used in phenotyping them are common to both hematopoietic stem cells and 

mature endothelial cells. Surface antigens CD34, VEGFR2 and CD133 are non specific and also 

expressed by hematopoietic progenitor cells. CD34 is expressed by bone-marrow derived stem 

cells which also exhibit the ability to differentiate into smooth muscle progenitor cells and 

inflammatory cells and only a small portion of CD34 positive cells are actually EPCs (Tesfamariam 

2016; Urbich and Dimmeler 2004).  

Another limitation in phenotypic characterization of EPCs is the presence of other circulating 

endothelial cells (CECs) in the peripheral circulation. After vascular damage, resident endothelial 

cells initiate the repair process which results in the release of CECs from vascular intima. 

Circulating endothelial cells are mature cells that are characterised by the presence of mature 

endothelail cell surface markers (CD31 and CD144) and absence of hematopoietic progenitor cell 

markers (CD45, CD133). CECs came in the circulation either by detaching from the vessel wall in 

response to injury, by sloughing of endothelial cells into the circulation, as part of normal 

turnover process, or as an effect of damaging factors (e.g. infectious agents and oxidative stress) 

(Ahmed, et al. 2016; Burger and Touyz 2012; Richardson and Yoder 2011). They have limited 

proliferative capacity as compared to the EPCs but their levels increases significantly following 

endothelial damage as occurs during intravascular stent implantation (Blann, et al. 2005; Quilici, 

et al. 2004).   

2.2.2 Circulating Smooth Muscle Progenitor Cells. 

Several researchers have reported the involvement of circulating vascular progenitor cells in 

neointima development from different sources (bone marrow derived as well as non-bone 
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marrow sources), thus challenging the classical model of medial VSMC based neointima 

hyperplasia (Iwata, et al. 2010; Saiura, et al. 2001; Sata, et al. 2002). Many investigators have 

identified and provided evidence for the role of circulating progenitor cells infiltrating into the 

intima and differentiating (under the influence of PDGF and VEGF) into ECs (Miyata, et al. 2005) 

and VSMC (Sata, et al. 2002; Shimizu, et al. 2001) during vascular repair and neointoma 

formation. In cardiac/aortic allograft transplantation studies, researchers have demonstrated the 

proportional involvement of SMCs from recipient (72%-90%) and donor (10%-20%) within the 

atherosclerotic/neointimal lesion (Caplice, et al. 2003; Sata, et al. 2002) indicating the 

transmigration of progenitor cells into intimal layer and differentiation into VSMCs. Although 

circulating smooth muscle progenitor cells may arise from different potential sources, they are 

mainly categorized into bone marrow derived and of non-bone marrow origin. Bone marrow 

serves as major reservoir of hematopoietic and mesenchymal stem cells which differentiate into 

blood cells as well as cardiovascular cells (cardiomyocytes, ECs and SMCs). Scientists have used 

bone marrow transplantation models to investigate the potential involvement of stem cells to 

differentiate into VSMC by infiltrating through the arterial wall. But conflicting data has been 

reported by different scientist regarding the involvement of BM derived SMCs in neointima 

formation (ranging from 11% to as high as 56%) (Hillebrands, et al. 2002; Hu, et al. 2002) 

In addition to bone marrow derived SMCs, significant amount of data also refers to the non-bone 

marrow origin of SM progenitor cells. Although the exact source of these progenitor cells is still 

unknown, several possible sources have been investigated including liver, spleen, intestine and 

the vascular system. Progenitor cells from these organs also present in the circulation to be 

trarnsferred to the area of inflammation to initiate their specific action. Different researchers 

have reported these organs as potential reservoirs harbouring specialized cells which undergo 

differentiation into ECs and SMCs once arrived at their location (intima and/or media) and after 
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stimulation with appropriate stimuli (mainly PDGF, VEGF) (Caplan 2009; Crisan, et al. 2008; 

Groenewegen, et al. 2008). 

  

Figure 4. Origins of neointima SMCs. 

1-Vascular SMCs from media attain a synthetic phenotype and migrate, proliferate and 

accumulate in neointima. 

2-Circulating smooth muscle progenitor cells, hematopoietic and mesenchymal stem cells can 

differentiate and contribute to neointimal growth. 

3-Adventitial stem cells or fibroblasts can convert into myofibroblast under the effect of certain 

inflammatory mediators and can migrate into neointima. 

Image adapted from diverse origin of vascular smooth muscle by (Zhou, et al. 2005) Zhou X, et al, 

Anatol J Cardiol 2005 
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2.2.3 Role of adventitial fibroblasts/ stem cells. 

Another hypothesis regarding neointima development focuses on the involvement of vascular 

adventitial cells i.e. fibroblast and any progenitor population residing within adventitia. 

Adventitial fibroblasts are heterogeneous population, indicating two possible sources of origin 

during embryonic development (one distinct progenitor and the other might be same progenitor 

that gives rise to VSMCs). Similar to VSMCs, fibroblasts are capable of switching structural and 

functional phenotype according to environmental factors e.g. inflammation, thus referred as 

myofibroblasts (Hu, et al. 2004). During pathogenesis of atherosclerosis and neointima 

development, fibroblasts can differentiate toward myofibroblasts under the influence of various 

growth factors and cytokines (TGF-β, PDGF, TNF-α, GM-CSF) and can migrate to the intima (Li, et 

al. 2000). Scott et al and Shi et al have reported significant hyper-proliferative fibroblast 

response (in models of artery injury) followed by increased migration towards medial layer and 

to neointima (Scott, et al. 1996; Shi, et al. 1996a). Their trans-migratory capacity were further 

established by Liet al who reported Lac-Z expressing fibroblasts presence and participation in 

media and neointima, 7 days after the fibroblasts have been transplanted to the adventitia of rat 

carotid arteries following balloon injury (Li, et al. 2000). 

Various other studies have reported existence of Sca-1+/c-Kit+ resident progenitor cells within 

adventitia. These cells upon activation by PDGF can differentiate into SMC like cells expressing 

specific surface markers and contributing to neointima formation (Shi, et al. 1996b; Shi, et al. 

1996c). Thus adventitial fibroblasts and resident progenitor cells present another cell population 

that might play a role in neointima development.   
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2.3 Factors affecting Atherosclerosis and Neointima Formation. 

2.3.1 Hypertension. 

Hypertension (high blood pressure) is defined as sustained high blood pressure usually more 

than140/90mm of Hg. Generally high blood pressure is asymptomatic and thus neglected for 

proper treatment. High blood pressure is a major risk factor for developing coronary artery 

disease (CAD) and/ or stroke, and is positively associated with the severity of disease. 

Hypertension also contributes to congestive heart failure, renal impairment, aneurysm, 

peripheral vascular disease and visual impairment due to damage to retinal blood vessels. 

2.3.2 Hyperlipidemia. 

Hyperlipidemia (higher levels of blood cholesterol/lipids) is a major risk factor for coronary heart 

disease (CHD). Cholesterol (lipophilic molecule) is transported in the body as Lipoprotein. 

Lipoprotein profile is categorised into LDL, high density lipoprotein (HDL) and triglycerides. Total 

blood cholesterol is a measure of all aforementioned types of cholesterol (LDL, HDL, triglycerides 

and other lipid molecules). Accumulation of LDL and subsequent oxidation in the blood vessels 

contributes to atherosclerosis whereas HDL removes the bad cholesterol from walls of arteries 

and thus protects against atherosclerosis. High levels of triglycerides also increase the likelihood 

of atherosclerosis. 

2.3.3 Diabetes. 

Diabetes mellitus (raised blood sugar levels) is a chronic disease caused by inherited or acquired 

deficiency in insulin production by the pancreas and by resistance to insulin effects. It is defined 

as having fasting plasma glucose level of ≥ 7.0mmol/l (126mg/dl). Such deficiency results in 

increased concentrations of glucose (Hyperglycaemia) and other metabolites in the circulation. 
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Hyperglycaemia induced damage occurs in the cells of certain tissue types as they fail to reduce 

the transport of glucose inside them when exposed to hyperglycaemia, for example, endothelial 

cells of retina, mesengail cells, schwann cells, and neurons of peripheral nerves. 

One of the major mechanisms involved in hyperglycaemic induced damage is through activation 

of protein kinase C (PKC) isoforms. Hyperglycaemia increases the synthesis of diacylglycerol DAG 

which activates PKC isoforms α, β and gamma (Ighodaro 2018; Nishizuka 1995). Activation of PKC 

results in decrease production of endothelial nitric oxide (eNOS), increased production of 

endothelin-1, VEGF (increases permeability, angiogenesis), PAI-1 (vascular occlusion), TGFB 

(increases collagen), NFƙB (pro-inflammatory gene expression) and NADPH oxidase (Inoguchi, et 

al. 2000). Hyperglycaemic induced PKC activation can directly increase permeability of 

macromolecules across endothelial barriers by phosphorylating cytoskeletal proteins or by 

regulating activity of various growth factors (Giacco and Brownlee 2010).  

Multiple vascular complications have been associated with diabetes, including changes in blood 

flow, basement membrane thickening, extracellular matrix expansion, vascular permeability, 

angiogenesis, generation of reactive oxygen species, cell growth and enzymatic activity. The most 

prominent structural abnormalities of the vasculatures are thickening of capillary basement 

membrane and matrix expansion. These changes can alter vascular permeability, cell adhesion, 

proliferation, differentiation and gene expression (Kizub, et al. 2014). Thickening of capillary 

basement membrane is due to extracellular matrix collagen, fibronectin and laminin. 

Hyperglycaemic induced PKC activation is responsible for TGF-B1 mediated increased levels of 

matrix protein. Inhibition of TGF-B1 activity significantly reduces collagen synthesis (Lee 2018; Shi, 

et al. 2018). Expression of TGF-B1 and Connective Tissue Growth Factor (CTGF) play a key role in 

the development of basement membrane thickening and ECM in diabetes. Both TGF-B1 and 
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CTGF regulate ECM accumulation and stimulate production of collagen IV, fibronectin and 

laminin (Klaassen, et al. 2015).  

Diabetic patients are two to three times more at risk of developing CVD as compared to healthy 

non-diabetic individuals. About 60% of all mortality in diabetic patients is because of CVD events, 

which makes diabetes as one major risk factor among others. 

2.3.4 Obesity. 

Obesity (over weight) is a major health problem worldwide and an estimated 2.8 million people 

die each year due to obesity. Obesity is defined through the body mass index (BMI) which gives 

the estimation of adipose tissue in the body by calculating the person’s total body weight (Kg) 

divided by square of height in meters. According to the World heath organization (WHO) 

classification: underweight (BMI <18.5 kg/m2), normal weight (BMI 18.5-24.9 kg/m2), overweight 

(BMI 25.0-29.9 kg/m2), class I obesity (BMI 30.0-34.9 kg/m2), class II or moderate obesity (BMI 

35.0-39.9 kg/m2), and class III or severe obesity (BMI ≥ 40 kg/m2), hence a person is considered 

obese if their BMI is equal or greater than ≥25kg/m2 (Alpert, et al. 2014). Obesity has a strong 

positive relation to major cardiovascular ailments and contributes to the development of heart 

failure (HF) and ischaemic stroke. Obesity is also regarded as a major contributor to 

cardiovascular risk factor such as hypertension, dyslipidaemia, diabetes, metabolic syndrome, 

myocardial infarction and arterial fibrillation (Lavie, et al. 2014; Parto and Lavie 2017). 

Obese individuals are observed to have higher circulating blood volume which inturn increases 

left ventricular (LV) stroke volume that helps in increasing cardiac output. But consistent higher 

stroke volume and cardiac output pose heavy burden on heart muscles resulting in alteration in 

ventricular (both left and right) structure leading to ventricular enlargement and hypertrophy, 

predisposing to heart failure (HF) (Lavie, et al. 2013). According to a big study conducted by 

Abdullah et al involving 5036 participants of Framingham Cohort study who were followed every 
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two years for ≤ 48 years concluded that every 2 years living with obesity increases the risk of 

cardiovascular mortality by 7% (Abdullah, et al. 2011). 

Vascular endothelial cell activation also occurs in the adipose tissue in obesity. These activated 

endothelial cells initiate inflammatory process by upregulating the expression of adhesion 

molecules and chemotactic factors which in turn further recruit inflammatory cells and adipocyte 

dysfunction (Nakamura, et al. 2014). Hence, the systemic inflammatory state and endocrine 

abnormalities induced by obesity contribute significantly to elevate risks for CVD (Ortega, et al. 

2016; Parto and Lavie 2017). 

 

2.3.5 Hemodynamic forces (shear stress). 

Various hemodynamic forces consistently act on blood vessels. Among them, two main 

mechanical forces exerted by blood on vasculature are cyclic strain and fluid shear stress. Cyclic 

strain is induced by the pulsatile blood pressure against the vessel wall. The frictional force 

generated by the flow of blood against the vessel wall and acting parallel to vessel lumen is 

termed as fluid shear stress. There are specific mechanoreceptors expressed by ECs which sense 

and respond according to the changes in microenvironment and subsequently guide the process 

of development during embryogenesis and remodelling during adult life. Studies have revealed 

the magnitude of fluid shear stress in human ranges from 10-70 dyn/cm2 in arteries and 1-6 

dyn/cm2 in veins (Girerd, et al. 1996; Malek, et al. 1999). Generally, the larger, straight segments 

of vessels experience higher fluid shear stress following unidirectional flow acting parallel to 

lumen surface but at points where arteries split naturally into branches and at curvature of 

arteries or through surgical interventions such as stent implantation and as in bypass grafting, 

this normal blood flow gets disturbed and result in turbulent blood flow. Various studies have 

reported the athero-protective effect of unidirectional, high laminar shear due to the induction 
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of anti-inflammatory, antithrombotic and antioxidative genes such as flow-dependent 

transcription factor KLF2 and nuclear factor (erythroid-derived 2) like-2 (Nrf2)(Nigro, et al. 2011). 

On the contrary, a disturbed blood flow with low shear stress results in generation of ROS, an 

increase NF-kB and MAPK activity, increased cytokines and receptor expression for leukocyte and 

monocyte recruitment, reduced NO production (Yurdagul, et al. 2013) and increased 

endothelium permeability (Chiu and Chien 2011; Gimbrone, et al. 1997; Green, et al. 2014; Zhou, 

et al. 2014). The oxidative stress and increased production of ROS lead to the cellular injury and 

apoptosis through direct effects (lipid peroxidation) or indirect effects (activation of redox 

signalling pathway). MAPK and NF-ƙB (activated under low shear stress) are labelled as major 

pathways involved in regulating and contributing to inflammation and lesion development by 

inducing the expression of genes encoding for E-selectin, IL-8 and VCAM-1 (Passerini, et al. 2004). 

To counteract the oxidative stress, an endogenous cellular defense mechanism using Vitagenes 

becomes activated. This mechanism comprised of cytoprotective vitagenes involved in 

antioxidant defense, being activated by nuclear factor erythroid 2-related factor (Nrf2). Nrf2 is a 

transcription factor (member of cap-n-collar family of basic leucine zipper proteins) which was 

first isolated as an activator of β-globin gene expression but later described as major regulater of 

intercellular redox signalling and a sensor of oxidative stress. Nrf2 is activated by high shear 

stress and protects the endothelial layer by negatively regulating the MAPK pathway. Keap1 

(Keelch-like ECH-associated protein-1) is the main intracellular regulator of Nrf2. Under normal 

conditions, Nrf2 is suppressed by binding to the cytoplasmic Keap-1 which targets it for 

ubiquitination and proteasomal degradation (Warboys, et al. 2011). Under conditions of 

oxidative stress, the Nrf2-Keap1 interaction is disrupted leading to dissociation of Nrf2 from 

Keap-1. Free and newly synthesized Nrf2 translocates to the nucleaus and heterodimerizes with 

small Maf proteins. The heterodimers recognize the ARE sequences present in the regulatory 



  
      
 
 

Page | 52 
 
 

regions of Nrf2 target genes and hence, induces the expression of many antioxidant genes (e.g. 

ferrintin, heme oxygenase-1, and glutathione S-transferase) responsible for encoding detoxifying 

enzymes, stress response proteins and redox balancing factors (Bellezza, et al. 2018; Zakkar, et al. 

2009). Apart from Nrf2, several studies have postulated an atheroprotective role for Kruppel-like 

factor-2 (KLF2) in response to high laminar shear stress (SenBanerjee, et al. 2004). KLF-2 inhibits 

the expression of proinflamatory genes such as VCAM-1 and E-selectin, thus inhibiting 

endothelial activation and leukocyte transmigration in cultured endothelial cells (Parmar, et al. 

2006). KLF2 exerts its anti-inflammatory effects through inhibiting NF-ƙB mediated 

transcriptional pathways by sequestering critical coactivators of NF-ƙB, cyclic AMP response 

element binding protein (CBP) and p300 (Wang, et al. 2006). Aforementioned evidence suggests 

that the expression pattern of Nrf2 and KLF2 in response to different blood hemodynamics has a 

profound role in pathogenesis of atherosclerosis as well as other clinical disorders like arterial 

aneurysm, in-stent restenosis, and ischaemia/reperfusion injury.  
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Figure 5: Schematic illustration to present Nrf2/Keap1 interactions in normal and under stress 
conditions. 

Under homeostatic conditions, Nrf2 is kept inactive by binding to its endogenous inhibitor Keap1, 
associated with F-actin cytoskeleton. Keap1 functions as a substrate adaptor protein for a Cul3-dependent 
E3 ubiquitin ligase complex, which degrades Nrf2 protein level through proteosome system and maintains 
Nrf2 protein at a low level under normal homeostatic condition. But under oxidative stress, Nrf2 detaches 
from Keap-1, translocates to the nucleus and heterodimerizes with Maf. The Nrf2-Maf heterodimer binds 
to ARE to induce expression of antioxidant genes. Image adapted from Nrf2-Keap1 signalling in oxidative 
and reductive stress by Bellezza et al 2018: (Bellezza, et al. 2018) 
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2.3.6 Cytokines. 

Cytokines are smaller size, low molecular weight proteins secreted by various body cells and 

exert their pleiotropic action by regulating immune system and several inflammatory responses. 

The term cytokines originated from two Greek words, cytos means the ‘cell’ and kinein means ‘to 

move’ so as to distinguish them as immune-modulator molecules differentiating from growth 

factors. Cytokines are grouped into several major families depending upon high degree of 

homology among their primary amino acid sequence orbased on their tertiary structure and 

spatial organization. Interleukins (designated by prefix IL) has originally been thought to 

responsible for signalling between leukocytes but now known to regulate numerous 

immunological responses involving multiple cell types. Tumour necrosis factor (TNF) is the first 

monocyte/macrophages derived cytokine, isolated and identified for its specific role as cytotoxic 

protein for certain tumour cells. Interferons (IFN) were first identified as selective antiviral 

agents due to their role as immunomodulatory agent but because of their effect on cell growth 

and differentiation, they are categorized among cytokines. Forth group comprises of 

hematopoietic growth factors (Colony stimulating factors) because of their role in cellular 

growth and differentiation. Another group of cytokines consist of growth factors such as 

transforming growth factor-β (TGF-β)(Young, et al. 2002). Chemokines are also considered as a 

major group among cytokines modulating various cellular functions. Cytokines have two main 

characteristic features i.e. property of redundancy (structurally dissimilar cytokines can have 

similar spectrum of action) and the pleiotropy of cytokine action (individual cytokine can exert 

multiple actions on different cells). Till now about 100 cytokines have been isolated and 

identified, many of which are actively involved at different stages during the pathogenesis of 

atherosclerosis (Ramji and Davies 2015). 

 



  
      
 
 

Page | 55 
 
 

 

2.3.7 Cytokine signalling in atherosclerosis. 

As atherosclerosis is an inflammatory process, hence many cytokines get involved from the 

earliest stages of atherosclerosis, contributing to the progression of atherosclerotic plaque by 

exerting pro- and anti-atherogenic effects (Figure 5). A number of factors mediate cytokine 

activation such as hypertension, oscillatory hemodynamic/shear stress, hyperlipidaemia and 

OxLDL accumulation, free radicals and infection. Interleukin such as IL-1α, IL-1β and IL-18 and 

TNFα (classical pro-inflammatory cytokines) exerts pro-atherogenic effects by increasing 

leukocyte adhesiveness and promoting their transmigration across endothelium via upregulating 

expression of ICAM-1 and VCAM-1 (Raines and Ferri 2005). On the contrary, IL-4 and IL-10 is 

considered as anti-inflammatory cytokine, reducing macrophage infiltration and VSMC 

proliferation (Charo and Ransohoff 2006). Pro-inflammatory cytokines such as IL-18 and TNFα 

trigger the release of chemokine MCP-1 from activated platelets, ECs, and VSMCs which further 

enhances the binding and transmigration of monocytes through endothelium (Gawaz, et al. 1998; 

Schober, et al. 2004). 

 



  
      
 
 

Page | 56 
 
 

 

Figure 6. Illustration of the role of different cytokines and chemokines. 

 Monocyte adhesion and formation of foam cell during pathogenesis of atherosclerosis. Adapted from 

Macrophages in atherosclerosis: a dynamic balance by.Moore KJ et al, Nat Rev Immunol. 2013 (Moore, et 

al. 2013) 

 

Monocyte differentiation into macrophages inside intima is mediate by cytokine macrophage 

colony stimulating factor (M-CSF)(McLaren, et al. 2011). Inside arterial intima, macrophage exists 

in 3 phenotypes, M1, M2, and M4. Among these M1, considered as a pro-inflammatory 

phenotype of macrophage, is responsible for generating IL-6, IL-12 TNFα (pro-inflammatory) 

cytokines, whereas M2,considered as anti-inflammatory phenotypes, is involved in the 

production of IL-10 and TGF-β (anti-inflammatory) cytokines (Chinetti-Gbaguidi, et al. 2015; 

Leitinger and Schulman 2013). Foam cell formation is an important homeostatic step towards 

progression of inflammation and atherosclerosis. IFNϒ disrupts this process by regulating the 

genes responsible for the expression of SR and hence promotes uptake of modified LDL (Wuttge, 

et al. 2004). IFNϒ also decreases cholesterol efflux by inhibiting ATP biding cassette transporter 

A1 (ABCA1) gene expression, resulting in higher intracellular levels of cholesterol esters (Li, et al. 

http://www.ncbi.nlm.nih.gov/pubmed/23995626
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2010b). Contrary to this, IL-1RA and IL-33 exerts anti-inflammatory actions and inhibit foam cell 

formation (McLaren, et al. 2011). 

2.3.8 Chemokines. 

In addition to ILs and TNFα, another family of cytokines, the chemokines along with its receptors 

play an important role in pathophysiology of neointimal hyperplasia (Schober and Zernecke 

2007). Chemokines are small chemotactic cytokines which are divided into 4 subfamilies 

depending upon their amino acid sequence (according to the configuration of first two N-

terminal cysteine residues). The four subfamilies of chemokines and their receptors are 

designated with the letters CXC, C, CX3C, and CC with a consecutive number (Allen, et al. 2007). 

The CXC chemokine stromal cell-derived factor (SDF)-1α induces vascular repair by mobilizing 

bone marrow (BM) derived smooth muscle progenitor cells migration through its receptor CXCR4 

(Bleul, et al. 1996). Three distinct chemokines such as RANTES (CCL5), MCP-1 (CCL2), and 

Fractalkine (CX3CL1) are upregulated during vascular remodelling/repair process and influence 

leukocyte recruitment and adhesion to the injured area (von Hundelshausen, et al. 2001; Zeiffer, 

et al. 2004; Zernecke, et al. 2005). CXC chemokine keratinocyte-derived chemokine (KC)/ growth 

regulated oncogene (GRO)-a (CXCL1) promotes endothelial recovery through its receptor CXCR2 

resulting in reduction in neointima formation (Boisvert, et al. 2006; Liehn, et al. 2004). In addition 

to their role in leukocyte and monocyte infiltration, upregulated MCP-1 and Fractalkine also 

induces SMC accumulation and proliferation in neointima through their respective receptors 

CCR2 and CX3CR1 (Chandrasekar, et al. 2003; Roque, et al. 2002; Schober, et al. 2002). CX3CL1-

CX3CR1 axis exerts an important homeostatic function by protecting macrophages and 

monocytes against apoptosis and promotes their survival in atherosclerotic lesion (Landsman, et 

al. 2009). Inductionof CXCL12-CXCR4 axis promotes SMC migration into the atherosclerotic lesion 
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and subsequent secretion of extracellular matrix (collagen), hence help in stabilisation of plaque 

(Akhtar, et al. 2013). 

2.3.9 Transforming Growth Factor (TGF). 

Members of TGF super family consist of two small (molecular size 12-15kDa) subunits linked 

together by a disulphide bond. Around 35 members have been identified in different organisms 

with all of them sharing similar structural homology. Whereas the role of TGF in atherosclerosis is 

concerned, different studies have proposed contradictory effects comprising both pro and anti-

inflammatory roles. TGF-β1, TGF-β2 and TGF-β3 are the 3 isoforms of TGF-β, sharing 70-80% 

sequence homology and displaying similar properties. All the cells involved in inflammatory 

cascade (EC, SMC, monocytes/macrophages, platelets, myofibroblasts) expressTGF-β. 

TGF-β exerts anti-inflammatory action on macrophages by suppressing the expression of KLF-4 

(mediator of proinflammatory signalling in macrophages), inhibiting the expression of MCP-1 as 

well as reducing the production of NO and superoxide radicals (Feinberg, et al. 2005; Feinberg, et 

al. 2004; Singh and Ramji 2006a). TGF-β enhances production of anti-inflammatory cytokine IL-10 

(Maeda, et al. 1995) as well as play a crucial role in cholesterol efflux by promoting the 

expression of ABCA1 and apoE (proteins involved in macrophage cholesterol uptake and efflux) 

(Panousis, et al. 2001; Singh and Ramji 2006b). Contrary to the anti-inflammatory role of TGF-β, 

several researchers have proposed its pro-inflammatory role. Van Royen has reported that 

exogenous application of TGF-β enhances monocyte transmigration through endothelial by up-

regulation of monocyte adhesion receptor (MAC-1)(van Royen, et al. 2002). TGF-β also up-

regulates expression of pro-inflammatory cytokine IL-1 and IL-6, as well as lymphocyte function 

associated antigen-1(LF-A1) in monocytes, which facilitates adherence of monocytes to 

extracellular matrix (Turner, et al. 1990; Wahl, et al. 1993; Wahl, et al. 1987). 
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2.3.10 Platelet Derived Growth Factor (PDGF). 

PDGF was first discovered as constituent of platelet α granules influencing cellular growth and 

development for SMCs and fibroblasts. Gradually the pivotal role of PDGF in regulating cell 

proliferation and development become clearer and by the fact that it was being released by the 

cells involved in inflammatory responses, PDGF was considered as one of most potent 

chemoattractant involved in cell proliferation, chemotaxis, matrix production and tissue repair. 

Later on, it was evident that in addition to platelets, PDGF is also produced by various cells under 

pathological/inflammatory conditions. PDGF is a 30kDa dimeric molecule composed of two A and 

B disulphide-bonded chains. PDGF activates its downstream signal pathways through binding one 

or both PDGF receptors PDGFR-α and PDGFR-β. 

Multiple cells (ECs, VSMCs, platelets, macrophages) involved in the pathogenesis of 

atherosclerosis produce PDGF. PDGF is actively involved in VSMC phenotype switching by 

inducing the downregulation of mature SM-markers and promoting VSMC proliferation and 

migration. Several researchers have elegantly presented studies on the role of PDGF in regulating 

VSMC proliferation during atherosclerosis (Hu and Huang 2015; Raines 2004; Rubin, et al. 1988; 

Wilcox, et al. 1988). Sano et al reported a 67% reduction in aortic atherosclerotic lesion size and 

80% reduction in VSMC prevalence in neointima in mice injected with rat monoclonal antibody 

(APB5) against PDGFR–β receptors whereas no such reduction was observed when mice treated 

with rat monoclonal antibody (APA5) developed against PDGFRα receptor. Furthermore it was 

observed that PDGF-β receptor is responsible for regulating signal transduction and subsequent 

reduction of VSMC migration and proliferation (Sano, et al. 2001). 

2.3.11 Role of Extracellular Matrix (ECM). 

Extracellular matrix (ECM) is the fundamental constitutive component of blood vessels providing 

structural integrity and support to vessel wall. A normal vessel wall contains several functionally 
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distinct types of vascular matrices depending upon the specific cellular and structural 

requirements. These vascular matrices support different types of cells and contain several 

distinct proteins and thus can be classified into subendothelial basement membrane, internal 

elastic lamina, medial ECM, external elastic lamina, adventitial and interstitial matrix. Major 

constitutive proteins found in vascular ECM include elastin, collagens, fibronectin, laminin, 

amorphous or soluble proteoglycans, microfibrils and leucine-rich glycoproteins.  

ECM is a dynamic structure regulating various cellular functions such as adhesion, phenotype 

switching, proliferation, migration and construction of tissue architecture. The role of ECM is vital 

in driving vascular function under normal and pathological conditions resulting in crucial changes 

in vascular wall structure and physiology (Newby and Zaltsman 1999). 

An important characteristic of ECM is the storage and mobilization of growth factors and other 

signalling molecules that induce or restrict VSMC proliferation and migration. Another distinctive 

feature of ECM is the presence of binding sites for adhesion molecules (N-cadherin) and integrins 

that mediate leukocyte/monocyte attachment to ECs and transmigration to subendothelial 

spaces thus playing a crucial role in atherosclerosis and neointima development (Schwartz 2001; 

Schwartz and Assoian 2001). Obstructing the interactions and binding of integrins with their 

respective interstitial matrix proteins sufficiently inhibits VSMC proliferation and migration 

resulting in reduces neointima formation (Dufourcq, et al. 2002; Kappert, et al. 2001). ECM 

proteins such as collagen-IV, elastin and laminin suppresses VSMC proliferation and migration, 

reduce inflammatory gene expression and promote a contractile phenotype, whereas interstitial 

matrix proteins like collagen I, collagen III, and fibronectin reduce contractile gene expression 

and promote VSMC growth (Schultz and Wysocki 2009). 

During atherosclerosis and vascular injury, the composition of basal lamina also changes with 

down-regulation in the levels of laminin, collagen IV and perlecan and an increase in the 
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expression of syndecan-4, fibronectin and osteopontin (Moiseeva 2001). Fibronectin expression 

is also triggered by proinflammatory cytokines such as TNFα and IL-1β. Qwarnstrom et al has 

reported that VSMCs cultured in vitro on fibronectin produces 3 times higher expression of NF-kB 

which induces proinflammatory phenotype in VSMCs (Qwarnstrom, et al. 1994). Uraemia is a 

strong risk factor for CVD characterised by dedifferentiation of VSMCs. Depletion of osteopontin 

resulted in less advanced dedifferentiation of VSMC in uraemic mice thus regulating VSMC 

phenotype modulation (Pedersen, et al. 2013). Osteopontin also induces expression of IL-1β in 

VSMCs through NF-kB pathway (Yin, et al. 2009).Deletion of syndecan-4 (a trans-membrane 

heparin sulphate proteoglycan) also resulted in reduced neointima formation and VSMC 

proliferation (Ikesue, et al. 2011). 

2.3.12 Matrix Metalloproteases (MMP) 

Matrix metalloproteinases (MMPs) are a large family of zinc-containing endopeptidases with 

over 25 enzymes isolated and labelled till now. MMPs are mainly involved in the cleavage and 

metabolism of proteins with particular reference to ECM components. MMPs have been divided 

into 6 subgroups according to their structure, substrate selection and proteolytic activity. The 

major groups and their representative members are as follow: collagenases (MMP-1, -8 & -13), 

gelatinases (MMP2, & -9), stromelysins (MMP-3, -10 & -11), matrilysins (MMP-7 & -26), 

membrane-bound metalloproteinases (MMP-14, -15, -16 and -25) and zinc and calcium 

dependent endopeptidases (MMP-20). Majority of MMPs are synthesized by the cells as pro-

enzyme, in an inactive form, which can be converted to active their forms through a strict 

controlled mechanism. 

As collagen represent the major component of vascular ECM, the action and subsequent 

cleavage of collagen by MMPs shifts the plaque phenotype. Hence, MMPs play an important role 

in development of atherosclerosis and vulnerability of plaque to rupture. During inflammation, 
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they are not only released by ECs and VSMCs but also from inflammatory mediators like 

macrophages. This increase in MMP’s activity not only modify the matrix but also triggers the 

VSMC phenotype switching characterised by enhanced proliferation and migration to the intimal 

plaque. The high quantity of MMPs in the plaque leads to the degradation of collagen (which 

forms about 60% of total plaque protein (Smith 1965) and important for the formation of the 

fibrous cap) leading to large lipid core and thin fibrous cap and rupture prone plaque. 

MMP-1, MMP-8 and MMP-13 are responsible for degradation of collagen type I,II and III whereas 

MMP-2 and -9 (gelatinases) are the main enzymes responsible for cleavage of Collagen type IV 

along with other major extracellular components e.g. elastin, fibronectin and laminin. They also 

involved in the cleavage and subsequent activation of several bioactive molecules such as 

cytokines (pro-TGF-β and pro-TNFα), chemokines (IL-8) and vasoconstrictor endothelin-1. 

Gelatinases also cleave and activate their own and other MMPs such as pro-MMP-9, pro-MMP-1, 

pro-MMP-2 and pro-MMP-13. 

Morphological analysis of plaques have shown higher MMP-1 levels in carotid lesions with large 

lipid core and thin fibrous cap (Morgan, et al. 2004). Li et al has shown enhanced expression of 

MMP-2 and MMP-9 in the fatty streaks, calcified atheroma and fully occluded lesions (Li, et al. 

1996). In addition to that levels of MMP-2 and MMP-9 were upregulated in fatty streaks and 

atherosclerotic plaques from diseased human vessels as compared to healthy ones (Kieffer, et al. 

2001). On the contrary, in fibrotic atherosclerotic plaques, the levels of TIMP-1 and TIMP-2 were 

upregulated whereas MMP levels were reduced (Choudhary, et al. 2006). Genetic targeting of 

MMP-3 resulted in larger atherosclerotic lesions with less collagen and SMC content as 

compared to the control individuals suggesting a more vulnerable plaque phenotype (Johnson, et 

al. 2005; Silence, et al. 2001). 
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Tissue inhibitors of MMP (TIMPs) regulate the MMP activity and provide/maintain endogenous 

mechanism to balance and prevent excessive degradation of ECM. TIMP family has 4 members 

referred as TIMP1-4, amongst these, TIMP-1 and TIMP-2 are constitutively expressed to inhibit 

MMPs activity and maintain a balance between matrix production and degradation. Though in 

healthy individuals, the MMP-2 to TIMP-1 & -2 ratio is maintained but inclined towards MMP 

during atherosclerosis and lesion development due to the excessive secretion of MMP-3 & -9 

leading to plaque destabilization as mention earlier (Galis and Khatri 2002; Owens, et al. 2004). 

 

2.4 Role of Circulating and Resident Cells in Atherosclerosis and 

Neointima Development: 

2.4.1 Macrophages. 

Macrophages are regarded as phagocytic cells because of their ability/function to remove 

apoptotic cells and cellular debris during metabolic processes. Macrophage originate as 

monocytes from the same myeloid progenitor cells in the bone marrow as neutrophils and 

dendritic cells (Mosser and Edwards 2008). Low shear stress at areas of disturbed flow and 

accumulation of lipoproteins renders endothelial layer dysfunctional and thus paving the way for 

these inflammatory monocytes to transmigrate through the endothelium into the intima. In the 

intima, monocytes differentiate into macrophages under the influence of specific cytokines with 

M-CSF (Macrophage colony stimulating factor) as major facilitator (Bobryshev 2006). Under the 

effect of cytokines, a heterogeneous population of macrophages is produced, which includes 

inflammation promoting M1 macrophages and inflammation resolving M2 macrophages. 

Cytokines like INF-ϒ and IL-1β produces M1 macrophages whereas IL-4 and IL-13 are responsible 

for M2 macrophage production (Shimada 2009). Imbalance between these two sub-populations 
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of macrophages M1:M2 may contribute to plaque development due to impaired pro-resolving 

response and the resulting imbalance between lipoprotein uptake and cholesterol efflux result in 

foam cell formation.  

Inside intima, these macrophage proliferate and convert into lipid laden foam cells by 

internalizing native and modified lipoproteins (oxidised oxLDL and acetylated AcLDL) through 

multiple pathways. These includes phagocytosis of aggregated lipoproteins, up-regulation of SR-

A, CD36 and SR for phosphatidylserine and oxLDL (SR-PSOX), and by fluid-phase pinocytosis of 

native lipoproteins (Pluddemann, et al. 2007). Following internalization, lipoproteins are 

delivered to lysosomes and late endosomes where they are hydrolyzed into free cholesterol and 

fatty acids by lysosomal acid lipase. Excessive cholesterol is transferred to endoplasmic reticulum 

(ER) for esterification (Chinetti-Gbaguidi and Staels 2009).    

Dysfunctional efferocytosis, disruption of cholesterol metabolism and efflux, ER stressincuded 

Ca2+release, NF-ƙB activation due to mitochondrial oxidative stress, as well as continued influx of 

lipoproteins and monocytes and secretion of cytokines result in inflammation and subsequent 

apoptosis of lesional macrophages. Apoptosis of macrophagesis is an important step towards 

advanced atherosclerotic lesion development leading to post apoptotic necrosis, thus further 

amplifying inflammation. Stability of plaque is also hampered by macrophages through secretion 

of proteases such as serine proteases, and MMPs, thus contributing to thinning of fibrous cap. 

(Libby 2013) 

2.4.2 Endothelial cells (EC). 

ECs lined the innermost layer of blood vessels thus forming an interface between the blood and 

the remaining cells of blood vessel. As they are in direct contact with the blood hence are 

exposed to various chemical and hemodynamic changes. These cells play important role in 

regulating vascular tone and maintaining haemostatic functions such as angiogenesis and 
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vascular remodelling, selective permeability for macromolecules, leukocyte trafficking, 

monocyte/macrophages transmigration and secretion of various procoagulant, anticoagulant 

and fibrinolytic agents. ECs are also involved in initiating key inflammatory response by triggering 

the release of major inflammatory mediators, over expression of surface adhesion molecules and 

release of chemokines and cytokines.   

Alteration in endothelial integrity either because of its denudation resulting from PCI or its 

dysfunction constitutes pathogenic risk factor leading to several vascular diseases including 

atherosclerosis and neo-intima formation. 

In healthy straight vessels, ECs display elongated/ellipsoidal morphology and are aligned parallel 

to the primary flow direction but different studies indicated that in certain areas (like arterial 

bifurcation and branches) where blood flow is oscillatory/disturbed with low shear stress instead 

of laminar flow with high shear stress, the ECs show cuboidal morphology. These areas with 

disturbed flow pattern are more prone to atherosclerosis, suggesting that laminar and oscillatory 

flow patterns can induce different molecular responses in ECs. This dysfunctional endothelial 

phenotype exhibits proinflammatory, prothrombotic and impaired barrier function leading to 

initiation of atherosclerosis (Berk 2008).  

The pathphysiological consequences of endothelial dysfunction includes (Bonetti, et al. 2003): 

 Increased cellular senescence and higher rate of cell turnover leading to endothelial 

dysfunction and apoptosis. 

 Impaired endothelial barrier function leading to increased permeability to 

macromolecules like cholesterol and lipoproteins (Chien 2003). 

 Over-expression of cell surface adhesion molecules such as ICAM-1, VCAM-1 and 

chemotactic markers like MCP-1, E-selectin and P-selectin (Chiu, et al. 2003). 
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 Over-expression of proatherogenic genes like NF-ƙB and reduced expression of eNOS 

(endothelial Nitric oxide synthase)(Cooke 2003; de Nigris, et al. 2003). 

 Down-regulation of NRF-2 (Warabi, et al. 2007), KLF-2 and KLF-4 (Kruppel-like factor 2 and 

4) which are considered as atheroprotective genes (Atkins and Simon 2013; Villarreal, et 

al. 2010). 

Atheroprone endothelium also produce various proinflammatory cytokines, chemokines, ECM-

degrading proteins (e.g., MMPs), and growth factors contributing to enhanced recruitment and 

transmigration of monocytes/macrophages to the intima and formation of foam cells (Galis and 

Khatri 2002).  

2.4.3 Fibroblast. 

Fibroblasts are heterogeneous cell population which constitute the outermost layer of vessel 

wall called adventitia. For many years, their main function was thought to provide nourishment 

to the VSMCs and support to the blood vessel, but with the advancement in research, their role 

in atherosclerosis and development of neointima is under discussion. Under the effect of certain 

growth factors such as TGF-β, PDGF-BB, and TNFα, these cells can proliferate and express 

contractile and synthetic phenotype like SMCs (Sartore, et al. 2001). The activated fibroblasts 

exhibiting SMC features (expression of SM-α Actingene and synthesis of collagen type I) are 

termed as myofibroblasts (Desmouliere, et al. 1993). 

Myofibroblasts can migrate toward intima under the effect of MMPs and TIMPs and thus 

contribute toneointima thickening (Shi, et al. 1999). Shi et al has reported such phenomenon 

(increased level of myofibroblast transmigration towards medial layer and to the intima) in 

addition to a hyper-proliferative response of myofibroblasts after coronary artery injury (Shi, et 

al. 1996a). In another study, Siow et al also reported that fibroblasts expressing Lac-Z could 

express SM-αActin and transmigrate through the media, thus actively involved in neointima 
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formation (Siow, et al. 2003). Scot et al has also described an increased cellular proliferation rate 

in adventitial layer as compared with medial layer after conducting balloon injury to anterior 

descending artery in swine (Scott, et al. 1996). Myofibroblasts also produce excessive amounts of 

ECM which may be responsible for adventitial thickening (Shi, et al. 2000). Hence, above studies 

demonstrates that activation of fibroblasts resulting from vessel injury or under the effect of 

inflammatory mediators can have pronounced impact on neointima formation. 

2.4.4 Vascular smooth muscle cells (VSMCs) 

Smooth muscle cells (SMCs) appear as thin layer of sheets and are found throughout our body, 

lining the walls of passageways and cavities/hollow organs such as blood vessels (VSMCs), 

lymphatic vessels, airways/bronchial smooth muscle, intestine, bladder and uterus (uterine 

smooth muscle). Their primary function is to create contractions under the influence of foreign 

stimulus. The contractions created by SMCs are due to sliding movement of actin and myosin 

filaments which are also most abundant proteins (about 40%) in SMCs. The movement of actin 

filaments not only helps the cell in maintaining its cytoskeleton but also regulate cellular 

movements under the effect of molecular or mechanical stimulus/injury. The energy required for 

this movement is provided by hydrolysis of ATP.  

In cardiovascular system, VSMCs are not only the constitutive component of blood vessels but 

also play a crucial role in regulating multiple functions under specific conditions. They along with 

ECM constitute the middle layer (tunica media) of the vessels thus providing structural integrity. 

Contraction and relaxation of VSMCs controls the vascular tone and diameter thus regulating 

volume of blood through them and subsequent blood pressure. Excessive vasoconstriction leads 

to high blood pressure (hypertension) whereas vasodilation results in hypotension. Interestingly, 

role and phenotype of VSMCs changes dramatically depending upon the specific stage of 

development. During early stages of vasculogenesis, VSMCs show high rate of proliferation and 
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migration which results in formation of cardiovascular system. During vascular development, 

VSMCs also secret excessive amounts of ECM proteins including collagen, elastin, fibronectin, 

cadherins and integrins which not only constitute major portion of blood vessel wall but also 

provide structural integrity (Owens 1995). In contrast, in adult blood vessels, mature VSMCs 

show a quiescent phenotype characterized by an extremely low proliferation rate, non-migratory 

and decreased synthesis of ECM components. Mature and fully differentiated VMSCs are 

contractile, express a unique repertoire of contractile proteins, ion channels, calcium regulatory 

proteins and specific receptors, and signal transduction molecular pathways. The proteins 

exhibited by contractile VSMCs includes SM-α Actin, SM22a, Smooth Muscle myosin heavy chain 

(SM-MHC), calponin, and smoothelin all recognized as selective VSMCs markers. (Owens, et al. 

2004) 

An important characteristic of VSMCs is their phenotypic plasticity, unlike skeletal muscle and 

cardiomyocytes, VSMCs are not terminally differentiated and can undergo reversible changes in 

phenotype upon stimulation from environmental cues (Bobryshev and Lord 1996; Gomez and 

Owens 2012). For example, in case of vascular injury, the VSMCs play a critical role in vascular 

repair by actively initiating processes of migration and proliferation towards the damaged area 

and secret large quantities of ECM components to speed up healing process. Generally, the 

phenotype switching of VSMCs occurs during neovascularization, vascular remodelling, 

atherosclerosis and repair of vessel injury, and is accompanied by strictly regulated induction of 

VSMC genes associated with contractility and subsequent downregulation of VSMC markers 

associated with proliferation and migration (Fischer, et al. 2006; Gomez and Owens 2012).  

Growing evidence also suggests ability for VSMCs to trans-differentiate into macrophage like 

cells in lipid rich regions of plaque during atherosclerosis. Such VSMCs exhibit properties like lipid 

molecules uptake (phagocytosis), foam cells formation and start expressing CD68 (a macrophage 
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marker) along with SM-α Actin (a smooth muscle cell marker) (Chistiakov, et al. 2015; Rong, et al. 

2003). 

2.5 Vascular Smooth Muscle Cell phenotype switch in 

atherosclerosis. 

Phenotype switching or plasticity of VSMCs (any change in the normal structure or function of 

differentiated VSMC) plays a critical role in development of a number of major diseases in human 

including hypertension, cancer, atherosclerosis and neointima formation. As mentioned earlier, 

mature VSMCs express a unique set of contractile proteins such as smooth muscle α actin (α-

SMA), smooth muscle 22α (SM22α), smooth muscle myosin heavy chain (SMMHC), smoothelin 

and calponin which impart them the specific characteristic of contractility, thus maintaining 

vascular tone and regulating blood volume and pressure in the circulatory system (Owens 1995; 

Xiao, et al. 2010). Adult VSMC retain and exhibit the distinct quality of plasticity (phenotype 

switch) throughout their life cycle which render their ability to proliferate, migrate and secret 

ECM proteins under pathological condition (atherosclerosis) or after mechanical injury to vessel 

wall. Based on their property of plasticity, evidence has suggested a profound dual role 

(propagating and protective) for VSMCs in progression of atherosclerosis (Ross 1993). Under 

normal circumstances, mature VSMCs are elongated, contractile with expression of specific 

proteins, show very little proliferation and aligned at their long axis directed longitudinally 

around the vessel (Figure 6). However, during inflammation as in atherosclerosis or upon 

vascular injury, VSMCs become less contractile, show enhanced proliferation and migration along 

with increased production of inflammatory cytokines and proteases, becomes cobblestone in 

shape and are termed as synthetic or proliferative VSMCs (Rzucidlo, et al. 2007; Sobue, et al. 

1999) (Figure 6). This synthetic phenotype plays a major pathophysiological role in the 
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development of atherosclerotic plaque and neointima formation (Kawai-Kowase and Owens 

2007; Yoshida, et al. 2008b). At the beginning, in response to the stimulation of inflammatory 

cytokines released from activated T-cells and macrophages, VSMCs migrate from media to intima, 

where they proliferate and switch to synthetic phenotype, thus contribute to plaque formation 

and growth. However, at the later stage of atherosclerosis progression, the accumulated VSMCs 

and ECM proteins including collagen, elastin and fibronectin produced by VSMCs contribute to 

stabilization of the plaque by forming a thick fibrous cap on it. Thus they play a beneficial role by 

protecting plaque rupture and preventing thrombus formation, which is main cause of the 

clinical complications of atherosclerosis.  

 

 

Figure 7. Phenotypic switching by vascular smooth muscle cells. 

Mature smooth muscle cells are able to switch between differentiated/contractile and 

dedifferentiated/synthetic phenotypes. A: Synthetic/Dedifferentiated Cell, whose main purpose is 

proliferation, migration, and modulation of extracellular matrix to repair the vessel wall.B: Differentiated/ 

ContractileCells: Schematic diagram adapted from (Reid, et al. 2010). 
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2.6 Factors affecting VSMC phenotype switching. 

Considering the documented role of VSMC in pathogenesis of cardiovascular diseases, studies 

focusing on signalling pathways and underlying molecular mechanisms regulating SMC behaviour 

are crucial for improving our understanding of the pathological processes involve in CVDs and 

developing novel therapies. As mentioned earlier that mature contractile VSMCs undergo 

phenotypic switching upon activation by inflammatory stimuli as occurs during atherosclerosis, 

generating synthetic VSMCs that is pro-atherogenic so it would be interesting to have a brief look 

at the factors governing this phenotype modulation. 

2.6.1 Shear stress. 

In healthy individuals, endothelial cells provide a barrier and shield VSMCs from direct exposure 

to the blood flow and the resulting shear stress. But if EC layer is ruptured due to mechanical 

injury caused by stent implantation during angioplasty or by rupturing of atherosclerotic plaque, 

VSMCs comes in direct contact with the flowing blood and results in modulation of several 

molecular signalling pathways. VSMCs sense and respond to the cyclic strain and shear stress 

through activation of similar mechanosensory mechanisms as in case of ECs including integrins, 

receptor tyrosine kinases (RTKs) e.g. PDGFRα and EGFR and ion channels (Ca2+ and nonselective 

ion channels) (Iwasaki, et al. 2000; Mohanty and Li 2002; Wernig, et al. 2003). VSMC 

mechanosensing leads to the activation of several signalling pathways including focal adhesion 

proteins FAK and Src, PKC, PI3K/Akt, Ras and Rho family of small GTPases. The interaction of 

VSMC integrins with the ECM plays a significant role in the initiation of process of 

mechanotransduction under the influence of cyclic strain. Blocking integrins by using antibodies 

can significantly effect VSMC proliferation and apoptosis. VSMCs under the influence of stretch, 

expressed integrin activation as manifested by its association with the adapter protein Shc 

(Wernig, et al. 2003). Stretch induced phosphorylation of PDGFRα and EGF receptor (EGFR) in 
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VSMCs in a magnitude dependent manner leads to inhibition of cell proliferation (Hu, et al. 1998; 

Iwasaki, et al. 2000). Stretch stress induced ion channel activation have been studied extensively 

in ECs and later in VSMCs. Stretch induced increase in cytosolic Ca2+ concentration has been 

reported through stretch activated Ca2+ channels, triggering its release from intracellular Ca2+ 

stores (Mohanty and Li 2002). The active transport of ion via membrane bound ion transport 

pumps has also been explored. Stretching of VSMCs cause an increase in the mRNA and protein 

expression of the α-subunit of Na+ and K+ ATPase resulting in their activation and translocation of 

α-subunit to the pasma membrane (Sevieux, et al. 2003),leading to VSMC functional changes. 

Laminar flow and resultant steady shear stress induces atheroprotective response in VSMCs by 

triggering prostaglandin E2 (PGE2) and eNOS production in ECs leading to increased bioavailability 

of NO and subsequent vasodilatation of VSMCs (Qiu, et al. 2014). Shear stress also inhibited 

VSMCs proliferation and migration by attenuating PDGFRβ expression and decrease matrix 

metalloproteinase 2 (MMP-2) levels (Ueba, et al. 1997). Shear stress induces nitric oxide 

production and activates AMPK by upregulating its phosphorylation in VSMCs via NOS expression, 

hence suppressing cell proliferation (Kim, et al. 2017). Laminar flow also modulate VSMC 

proliferation and migration by downregulating expression levels of Extracellular signal regulated 

kinase 1/2 (ERK1/2) and phosphatidylinositol 3 kinase (PI3K)/ protein kinease B (Akt) signalling 

leading to inhibition of MMP-2 production, along with reduction in the levels of PDGFR and TGF-

β (Goldman, et al. 2007). 

On the contrary, disturbed hemodynamics resulting from turbulent, oscillatory flow results in 

unstable pattern of mechanical stretch which is recognized by VSMCs through a variety of 

mechanoreceptors including integrins, PDGFRs, insulin-like growth factor-1 receptor (IGF1R) and 

Notch receptors (Liu, et al. 2011a; Liu, et al. 2003; Morrow, et al. 2005; Wernig, et al. 2003). 

Integrins and Notch receptors stimulates VSMC migration by activating RhoA/ROCK1 (Ras 
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homologue A (RhoA)/rho-associated, coiled-coil containing protein kinase 1 (ROCK1) dependent 

signalling mechanism through PTK2 (protein tyrosine kinase 2)(Gambillara, et al. 2008). 

Activation of PDGFR results in upregulation of p53 expression through MEK1/2/p53 MAPK 

signalling pathway resulting in VSMC proliferation and apoptosis (Mayr, et al. 2002). 

2.6.2 Oxidized LDL. 

LDL accumulation and subsequent oxidation in the intima holds prime position in initiation of 

inflammatory response during atherosclerosis. VSMCs express a myriad of specific receptors at 

their surface which mediate the endocytosis of modified lipoproteins (oxLDLs) resulting in 

conversion of VSMCs into foam cells thus further exacerbating inflammation. Proatherogenic 

effects of oxLDL result in up-regulation of these receptors which includes SRA-I, SRA-II, Lectin-

type oxidized LDL receptor 1 (LOX-1), CD36, and low-density lipoprotein receptor related protein 

1 (LRP1)(Allahverdian, et al. 2012; Lacolley, et al. 2012). Treating VSMCs with ox-LDL components 

like lysophosphatidylcholine (LPC) resulted in up-regulation of LOX-1 expression and increased 

ox-LDL uptake (Aoyama, et al. 2000). Ox-LDLs also interfere with differentiation of SM progenitor 

cells into SM-like cells by regulating PDGF dependent differentiation pathways (Teslovich, et al. 

2010). Furthermore, activities of ATP-binding cassette transporter A1 (ABCA1) and 

apolipoprotein A1 (ApoA1), which are components of cholesterol transport pathway, mediating 

the efflux of cholesterol from the VSMCs, are downregulated in rat intimal SMCs and human 

atherosclerotic intimal SMCs when exposed to cholesterol treatment (Choi, et al. 2009a). 

Increased cholesterol influx alongside decreased efflux further exacerbates VSMC foam cell 

formation. Continuous accumulation of cholesterol in lipid-laden VSMCs results in cell death and 

apoptosis, hence promoting migrating and proliferation of adjacent VSMCs to the intima. 

Hyperlipidemic conditions also reduces phagocytic/efferocytic activities of VSMC which results in 

accumulation of apoptotic VSMC foam cell in the atheroma, due to impaired clearance leading to 
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secondary necrosis and enlargement of atherosclerotic plaque (Clarke, et al. 2010; Van Vre, et al. 

2012). To sum up, oxLDLs promotes proatherogenic activation and phenotype switching of 

VSMCs towards synthetic form with a dysregulated cell proliferation, dedifferentiation, migration 

and apoptosis.  

2.6.3 Proinflammatory stimuli. 

Proinflammatory cytokines like TNFα and IL-1β play a crucial role in initiating the inflammatory 

process as well as activation of VSMC. TNFα triggers the release of ICAM-1 and VCAM-1 from 

VSMCs hence regulating adhesion of monocyte/macrophages (Lee, et al. 2006a). Furthermore, it 

also induces secretion of MMP-9 from VSMCs which through it proteolytic activity enhances 

migration of VSMCs into the intima (Lin, et al. 2008). IL-1β also induces the production of ICAM-1, 

VCAM-1 and MMP-9 through p42/p44 MAPK-p38 MAPK-Jnk-NF-ƙB signalling pathway (Liang, et 

al. 2007). TLRs are pattern recognising receptors involved in initiation of immune response upon 

activation by viral and bacterial biomolecules. TLR-2 and TLR-4 on VSMCs are reported to be 

upregulated during inflammation and atherosclerotic lesion development (Curtiss and Tobias 

2009). Both TLR-2 and TLR-4 promote VSMC proliferation, migration and neointima formation by 

activating various proinflammatory signalling pathways such as Akt, Jnk1/2, p38MAPK and Erk1/2 

resulting in the enhanced production of proinflammatory cytokine IL-6 and MMP-2 (Lee, et al. 

2012; Liu, et al. 2014). Low concentrations of Escherichia coli LPS can activate TLR-4 which results 

in enhanced production of IL-1α, IL-6, MCP-1 and stimulates ERK1/2 activity (Yang, et al. 2005b). 

TLR-4 stimulation upregulates NF-ƙB leading to enhanced production of MMP-9, associated with 

VSMC migration and plaque vulnerability owing to its proteolytic activity (Li, et al. 2012). 

Disruption in Calcium signalling/handling and resultant overload through modulation in activity 

of SERCA (sarco/endoplasmic reticulum Ca2+ ATPase) also regulates VSMCs proliferation. VSMCs 

from athero-susceptible mice showed altered expression of SERCA and impaired calcium 
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handling (Van Assche, et al. 2007). Lipskaia et al demonstrated that SERCA 2a along with protein 

phosphatase inhibitor-1 (I-1) inhibited VSMC switching to synthetic phenotype by regulating 

Ca2+handling (Lipskaia, et al. 2005). Furthermore, SERCA also reduced VSMC proliferation and 

subsequent balloon injury induced neointima hyperplasia by regulation of transcription factor 

NFAT (Nuclear factor of activated T-cells) activity. Exploring further, Lipskaia et al also observed 

that VSMC phenotype switching and neointimal thickening was reduced by overexpression of I-1 

in rat angioplasty models (Lipskaia, et al. 2014). 

2.6.4 Transcription factors. 

As aforementioned, switching of VSMCs from contractile to synthetic phenotype involves 

decrease in expression of SM contractile proteins like SM-α Actin and SM-MHC with subsequent 

increase in expression of genes involved with SM proliferation and migration. These regulations 

of SM marker genes are controlled by different mechanisms. Transcription factors such as KLF2 

and Nrf2 which are associated with regulation of constriction and dilatation of VSMCs are also 

upregulated under normal blood flow conditions (laminar flow and steady shear stress)(Lee, et al. 

2006b; Takabe, et al. 2011). KLF2 is considered as an atheroprotective transcription factor 

controlling the expression of various genes actively involved in the regulation of VSMCs 

constriction and dilatation. Transcription factor Nrf2 is responsible for upregulation of many 

antioxidant enzymes as well as detoxifying agents thus preventing the cells from proatherogenic 

effects of ROS and oxidative stress (Warabi, et al. 2007). Furthermore, PDGF and oxidized 

phospholipids regulate Klf-4 expression which results in downregulation of VSMC markers such 

as SM22α (Dandre and Owens 2004; Salmon, et al. 2012). Myocardin is critical factor for VSMC 

differentiation and expression of mature SMC marker genes. During atherosclerosis, expression 

of KLF4 is upregulated in VSMC leading to inhibition of myocardin-mediated expression of VSMC 

marker genes by downregulating both the myocardin gene and its targets (Liu, et al. 2005). 
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Transcription factor NF-kB also contributes to inflammation, proliferation and apoptosis. 

Activation of NF-kB promotes a synthetic phenotype (Cao, et al. 2006) in VSMCs through 

upregulation of proinflammatory genes such as MCP-1 (Landry, et al. 1997), VCAM-1, ICAM-1, 

(Cercek, et al. 1997), chemokine (C-X-C motif) ligand-1 (CXCL1) (Kim, et al. 2008) and MMP-1, 2 

and 9 (Cui, et al. 2014; Moon, et al. 2004). MCP-1 and CXCL1 initiate the inflammatory response 

by attracting monocytes and neutrophils to the site of injury whereas MMPs degrade ECM 

leading to increased migration of VSMCs (Chen, et al. 2013b). NFAT is a family of transcription 

factors shown to be important in immune response. Upon activation by calcineurin (Ca2+ 

dependent protein kinase) NFAT translocates to nucleus and drives the expression of genes 

controlling VSMC proliferation and migration (Yellaturu, et al. 2002). 

2.6.5 Extracellular matrix proteins. 

ECM proteins have a pronounced role in regulating phenotype modulation of VSMCs, the 

atheroma development and plaque stability. ECM proteins such as collagen, elastin, and 

fibronectin not only provide the elasticity and integrity to the blood vessel but also suppress 

phenotype switching by keep the VSMCs in a ‘contractile’ state. During atherosclerosis, excessive 

production of proteases like MMPs from macrophages and VSMCs leading to breakdown of ECM 

(e.g., collagen and elastin) and hence promotes phenotype switching and increases VSMC 

proliferation and migration. Furthermore appearance of syndecan-4, fibronectin and osteopontin 

also change the composition of basal lamina and influences VSMC proliferation through Erk-

dependent mechanism (Moiseeva 2001).  

N-cadherin is a major cell-cell adhesion molecule in VSMCs. Several MMPs (MMP-7,-9,-12) have 

been reported to influence VSMC activity (proliferation and migration) by cleaving N-cadherin 

(Dwivedi, et al. 2009; Williams, et al. 2010). Different researchers have proposed the role of 

oxidative stress in MMP-directed shedding of N-cadherin from VSMCs and resultant phenotype 
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switching. Lee and Jagadesh have proposed role of Nox1 (NADPH Oxidase-1) in activation of 

MMP-2 and MMP-9 through two different mechanisms involving TLR-2 ligand interactions with 

Nox1 and through trans-activation of epidermal growth factor receptor (EGFR) respectively 

(Jagadeesha, et al. 2012; Lee, et al. 2013). Study showed (Barnes and Farndale 1999) that under 

inflammatory conditions more MMP-1 and MMP-9 is produced by VSMCs, which degrades 

collagen-I and collagen IV respectively, leading to the liberation of collagen I in monomeric form. 

Collagen-I promotes VCAM-1 expression in VSMC via a NFAT dependent mechanism and induces 

VSMC migration through its interactions with integrin α2β1. (Heino 2000; Minami, et al. 2006; Orr, 

et al. 2009).  

It is important to understand that the MMP levels are strictly controlled in VSMCs of healthy 

individuals by the synthesis of TIMPs (Fabunmi, et al. 1998). A balance between MMP-2 and 

TIMP-1 and TIMP-2 is maintained in normal arteries, but such balance shifts towards MMPs 

favour during atheroma development due to the excessive production of MMP-2 and MMP-9, 

and thus influence plaque stability (Galis and Khatri 2002). Expectedly, an imbalance between 

MMP/TIMP is one of major mechanisms underlying the development of atherosclerosis.   

 

2.7 MicroRNAs (miRNA) 

Precise regulation of genes and related downstreammolecular mechanisms are extremely 

important in embryogenesis and development. DNA and chromatin modifiers and transcription 

regulators are indispensable in proper gene expression patterns. However the gene expression is 

also regulated at post-transcriptional level. Various post-transcriptional regulatory mechanisms 

such as alternative splicing, messenger RNA stability and translational control, and RNA silencing 

have been extensively investigated in the past decades. Most recently, a class of 
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endogenousnon-coding, small, regulatory RNA molecule called microRNA (miRNA) has emerged 

as another key regulator of gene expression during development and disease progression.  

MiRNAs are endogenous, highly conserved, single strand, short (20-23 nucleotides), non-coding 

RNAs which were first identified about 30 years ago by Lee and Ambros while working on 

nematode Caenorhabditis elegans (Ambros and Horvitz 1984). They regulate target gene 

expression at post-transcription level by interacting with the 3′ un-translated regions (UTRs) of 

the specific mRNAs (Ambros 2004; Wightman, et al. 1993). The fact that single miRNA can 

suppress many mRNA (thus regulating multiple genes), make them stand out as key gene 

regulators, controlling fundamental biological processes like cell proliferation, differentiation, 

apoptosis and tumour progression or repression and the pathways that control developmental 

processes. Currently more than 2588 mature miRNAs in human genome and around 1915 from 

mouse musculus have been reported with each regulating dozens of target mRNAs. The miRBASE 

Registry (http://www.mirbase.org) holds and organised the published data about the miRNA 

sequence with associated annotations and provide gene naming and nomenclature function. 

2.7.1 MicroRNA Nomenclature: 

With the advancement in the miRNA research, proper categorisation and classification of all the 

identified miRNAs is critical for miRNA biology since increasing number of miRNAs have been 

reported in the literature. Furthermore, as one miRNA could regulate many genes, thus 

identifying particular target genes for specific miRNA is another area need to be addressed. 

Sanger institute and welcome trust have jointly developed miRNA sequence database called 

miRBase (freely available online as http://www.mirbase.org) to help researchers in this field to 

access a centralise searchable database of all identified miRNA, their sequence and annotations 

along with specific gene nomenclature and prospective targets. 

http://www.mirbase.org/
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Briefly, miRNAs are now classified by using a prefix “miR” followed by a specific number such as 

miR-214. The assignment of these numbers to miRNAs is sequential as earlier identified miRNAs 

are given lower number whereas newly identified miRNAs are given higher numbers. The genes 

responsible for their transcription are also assigned same numbers but represented with smaller 

letter ‘mir’ instead of ‘miR’. To help distinguish between primary and precursor miRNAs, primary 

miRNA transcript is referred as pri-miR-214 whereas precursor hairpin miRNA is referred as pre-

miR-214. 

As some miRNAs might be specific to particular organism, hence miRBase also includes three 

letters abbreviation from organism genus and species to identify particular species, miRNAs are 

derived from, for example, hsa-mir-214 refers to human miR-214. An additional lower case letter 

is added after the number if the same miRNA precursor gives rise to multiple miRNAs with 

difference of 1-2 nucleotide in their sequences (e.g. miR-200a, miR-200b, and miR-200c are 

closely related miRNAs). Mature miRNA with identical neucleotide sequence can arise from more 

than one genome locus and different pre-miRNA. In such case, their loci are named with the 

addition of a number suffix at the end (e.g. mir-125a-1 and mir-125b-2), both generate mature 

miR-125.Mature miRNAs are double stranded (functional guide strand and passenger strand 

which generally degraded) but in some case both strand become functional. In such cases 

mature miRNAs are classified by the addition of suffixes representing their specific arms, e.g. 

miR-142-5p ‘5’ (from 5’arm) and miR-142-3p ‘3’ (from3’ arm). (Ambros, et al. 2003; Griffiths-

Jones 2004; Griffiths-Jones 2006; Lee and Ambros 2001). 

2.7.2 MicroRNA Biogenesis. 

MiRNAs genes are either distributed throughout the genome as clusters and are transcribed as 

polycistronic primary transcripts, which are subsequently cleaved into many miRNAs or they may 

be located within intergenic regions or in intronic sequences of protein-coding or non-coding 
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exonic sequences. MiRNAs are transcribed as long double-stranded transcripts termed as 

primary miRNA (pri-miRNAs) byRNA polymerase II in association with certain transcription 

factors and epigenetic regulators. Although some researchers have proposed RNA polymerase III 

as transcribing agent for certain pri-miRNAs (Pfeffer, et al. 2005), still majority of pri-miRNAs are 

transcribed by RNA polymerase II as evident by their polyadenylation and capping. Recent 

studies have suggested that epigenetic factors like histone modification and DNA methylation 

may contribute to miRNA gene regulation whereas p53, ZEB1 & ZEB2, MYC and myoblast 

determination protein 1 (MYOD1) are the reported major transcription factors regulating miRNA 

transcription (Davis-Dusenbery and Hata 2010; Kim, et al. 2009). pri-miRNA generated after 

initial transcription is usually quite long (over 1kb) with a characteristic stem loop structure 

containing mature miRNA sequences and single stranded RNA segments at both 5’ and 3’ ends. 

Processing of pri-miRNA into mature miRNA involves catalytic activity of two RNase III family 

enzymes, Drosha and Dicer along with their associated proteins, in a step wise manner (Figure 7). 

The first process initiates within nucleus by double stranded ribonuclease III (RNase III) type 

endonuclease enzyme, Drosha (a 160 kDa protein) and its co-effector DiGeorge syndrome critical 

region 8 (DGCR-8) protein (also called Pasha)(Wang, et al. 2007). DGCR8 (a 90kDa protein 

localized within nucleolus and nucleoplasm) works as an essential co-factor with Drosha and 

together they form a complex called microprocessor. DGCR8 interacts with Drosha through its 

conserved C terminus whereas its two double-stranded RNA binding domains (dsRBDs) help in 

recognizing pri-miRNA (Shiohama, et al. 2007). Drosha has two tandem RNase III domains (RIIIDs) 

and a double stranded RNA-binding domain (dsRBD) that works in conjunction with the two 

dsRBDs of DGCR8 to provide optimum pri-miRNA binding and cleavage activity. Pri-miRNA has a 

characteristic hairpin structure consisting of 33-35 base-pairs (encoding portion of the miRNA), a 

terminal loop, and two single stranded RNA segments upstream and downstream of the hairpin 
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(5’ and 3’) that is precisely recognised by Drosha and DGCR-8/Pasha complex near the hairpin 

base. Drosha cuts the 3’ strand of pri-miRNA stem by first RIIID (RIIIDa), whereas second RIID 

(RIIIDb) cuts the 5’ strand of pri-miRNA (Blaszczyk, et al. 2001; Han, et al. 2004) whereas DGCR8 

provides stability to pri-miRNA and function as molecular ruler to support precise cleavage, thus 

producing the 70-90 nucleotides hairpin shaped stem-loop precursor-miRNA (pre-miRNA) with a 

staggered 2 nucleotide long 3’ overhang end (Han, et al. 2006; Yeom, et al. 2006). Although 

majority of pre-miRNAs are generated by Drosha/DGCR8 pathway, however, researchers have 

proposed that some short intron-derived miRNAs (mitrons) can be processed into pre-miRNA 

through splicing and lariat debranching enzyme action thus bypassing Drosha/DGCR8 pathway 

(Okamura, et al. 2007). 
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Figure 8. Biogenesis of miRNAs 
miRNAs are transcribed in nucleus by RNA Polymerase II/III into pti-miRNAs which subsequently 
processed into pre-miRNAs. Pre-miRNAs are exported from nucleus by exportin-5 into cytoplasm where 
they mature into miRNA and incorporate with RISC to perform their action. (Winter, et al. 2009) 
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Regulation of this microprocessor (Drosha/DGCR8 complex) activity is very crucial in determining 

miRNA expression level, specificity and abundance. Multiple mechanisms have been identified to 

control Drosha expression and function. An important one is the autoregulation process between 

Drosha and DRCG8. At optimum levels of DGCR8, it stabilized Drosha through protein-protein 

interaction, but under higher concentration of DGCR8, Drosha cleaves the DGCR8 mRNA at a 

hairpin in the second exon thus stabilizing DGCR8 levels and maintaining homeostasis for 

microprocessor activity. Other notable mediators of Drosha/DGCR8 activity are post translational 

modifications (phosphorylation and acetylation) histone deacetylation of DGCR8, MECP2, p68, 

p72, p68 and SMAD proteins, all of them can promote microprocessor activity. 

After nuclear processing, the pre-miRNA is transported from nucleus into cytoplasm by a nuclear 

pore transport complex consisting of protein, ‘Exportin 5’ (XPO5) along with GTP-binding nuclear 

protein RAN-GTP. Once translocated, GTP is hydrolysed, resulting in the disassembly of the 

complex and release of pre-miRNA in the cytosol (Ha and Kim 2014; Lund, et al. 2004; Yi, et al. 

2003). Knockdown of Exportin 5 (XPO5) resulted in reduction in mature miRNA levels without 

pre-miRNA nuclear accumulation, indicating that Exportin 5 also protects pre-miRNA from 

nucleolytic activity in nucleus (Yi, et al. 2003).  

In cytoplasm, pre-miRNA is further processed by another RNase III family endonuclease enzyme 

Dicer. About 200kDa in size, Dicer recognizes the pre-miRNA by interactions between its N-

terminal helicase domain and the terminal loop of pre-miRNAs and exerts its catalytic activity 

through its C-terminal tandem RNase III domain (Tsutsumi, et al. 2011; Zhang, et al. 2004). Dicer 

forms a complex with its double stranded RNA-binding domain proteins called trans-activator 

RNA binding protein (TRBP) to cleave the pre-miRNA into 22-nt double stranded mature miRNA 

(Bartel 2004). In some cases the double stranded RNA binding domain cofactor PACT (protein 

activator of PKR) can also bind with mammalian dicer but its specific role is still unknown. 
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Although Dicer does not require TRBP and PACT for its pre-miRNA specific cleavage activity, they 

facilitate and stabilize the cleavage process (Haase, et al. 2005; Lee, et al. 2006c). 

After the cleavage of pre-miRNA into a mature miRNA duplex by Dicer, the next step is it’s 

loading into RNA-induced silencing complex (RISC) and subsequent unwinding. RISC assembly is 

preceded under the control of RISC loading complex (RLC), which consists of Dicer, TRBP, PACT 

and members of Argonaut proteins (AGO). Although 4 homologues of Ago proteins are expressed 

in humans (AGO1-4) with all of them capable of inducing translational repression and mRNA 

degradation, only AGO2 is regarded as most important member in RISC formation and 

maintenance as well as miRNA directed mRNA cleavage. During RISC formation, the two strands 

of miRNA duplex subsequently unwound by helicases (p68, p72 RNA helicase A, Gemin ¾ and 

human Mov10) and AGO-2 into functional guide strand, which is complimentary to the target 

and the passenger strand, which is subsequently degraded by Argonaute proteins (Okamura, et 

al. 2004). Although miRNA duplex can give rise to two different mature miRNAs, only one strand 

incorporates into RISC and performs specific gene regulation. Relative thermodynamic stability/ 

difference between the 5′end of the two miRNA strands determines the fate by allowing less 

stable strand to be selected as guide strand and to incorporate into RISC (Khvorova, et al. 2003; 

Schwarz, et al. 2003). Another determinant of strand choice may be the 1st nucleotide sequence 

in both strands as AGO proteins select strands with ‘U’ at nucleotide position 1 as guide strand. 
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Figure 9. Schematic description of microRNA biogenesis and target prediction. 
Adapted from (Zhao and Srivastava 2007) 

 

 

2.7.3 MircoRNA Target Regulation. 

A single mature miRNA can regulate multiple cellular functions by recognizing, binding and 

inhibiting expression of multiple mRNAs. Interactions between mature miRNA and mRNA are 

mediated by RISC. As mentioned earlier, RISC is multi-protein complex with Argonaut proteins as 

essential structural and functional constituents, performing the crucial role of mRNA degradation. 

5′ UTR end of the miRNA binds to the 3′ UTR of their target mRNA in a Watson-Crick base-pairing 

pattern at the seed region (between base 2 and 8) resulting in repression of mRNA expression by 
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several mechanisms. A precise complementarity between miRNA seed sequence and 3’UTR of 

mRNAs results in RNA cleavage by members of Argonaut protein family and subsequent 

degradation by ribonucleases. A less degree of complementarity results in repression of mRNA 

translation at ribosomal level, de-adenylation, or accumulation within P bodies (Figure 

8)(Filipowicz 2005; Pillai, et al. 2005; Wu, et al. 2006). The ability to repress gene expression by 

even imperfect base pairing renders the enormous regulatory potential of any given miRNA. 

Apart from their well established role as translation repression agents, researchers have recently 

revealed that miRNA can also bind to the 5′UTR of mRNA and therefore can upregulate gene 

expression (Vasudevan, et al. 2007). Interactions between miRNA 369-3, AGO2, fragile X mental 

retardation related protein 1 (FXR1) and AU-rich elements (AREs) within the 3’UTR of target gene 

are imperative for such activation in HEK293 cells. Tili et al (2007) has reported an enhanced 

TNFα  translation in macrophages under the influence of miR-155. Other researchers have also 

reported such upregulatory activities involving multiple miRNAs (miR-373, miR-744) under 

specific conditions (Huang, et al. 2012; Place, et al. 2008; Tili, et al. 2007). Another characteristic 

of miRNA is their tissue specificity, which highlights their importance in cell/tissue differentiation 

and development. 

2.7.4 MiRNA and Target Prediction. 

As aforementioned, single miRNA can regulate multiple mRNAs and subsequent biological 

processes, so defining miRNA target genes and their specific regulations is imperative in all 

miRNA studies. Furthermore, validated targets also help in determining the specificity and 

efficacy of certain miRNA (mimic or inhibitor) as potential biomarker in clinical therapies. Several 

techniques are applied in determining/predicting the best suitable targets for specific miRNAs; 

among those techniques are bioinformatics algorithmic target prediction tools, proteomics 

analysis, and miRNA/mRNA interactions. 
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Bioinformatics tools (computational algorithmic models) are commonly used as they give us a lot 

of information about predicted targets of miRNAs by analysing their seed region (first 2-8 

nucleotides) located at their 5’ terminus and its complementarity with 3’ terminus of possible 

mRNAs using standard Watson-Crick rules. A number of additional additive approaches are 

implemented to improve accuracy of target gene prediction and to eliminate possibility of false 

positive. Most popular target prediction algorithmic tools used in our study were miRanda, 

TargetScan and PicTar. 

Our 2nd approach was to use quantitative proteomics analysis (Mass Spectrometry) to directly 

observe the influence of miRNA overexpression using whole cell lysate and to predict target 

proteins by upregulation or downregulation of their expression. Although, as expected, many 

proteins were downregulated validating miRNA’s role as post transcriptional regulator, there are 

a number of proteins whom expression was upregulated, indicating a role of miRNA’s in 

modulating epigenetic regulators and transcription factors. 

Gene specific experiments are commonly employed to validate individual miRNA/mRNA 

interactions and subsequent targets. These includes series of well-established methods like RT-

qPCR, luciferase reporter analysis and western blot to verify both gene and protein expression. 

RT-qPCR and Western blot analysis reveal up-regulation/down-regulation of target gene (mRNA 

expression) and protein levels under the influence of given miRNA, whereas luciferase reporter 

assay provides a direct evidence of miRNA activity whereby the activity of 3’UTR of luciferase 

reporter is altered under the effect of a particular miRNA. Further validation of miRNA activity 

can be assessed by introducing binding site mutations in luciferase reporter to better understand 

and validate the specific binding sites required for miRNA-mediated target gene regulation.  

In addition to above mentioned techniques, unbiased biochemical target identification methods 

are also employed to identify miRNA targets. Microarray analysis or next generation of RNA 
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sequencing is used to identify target RNAs by immunoprecipitating RISC with anti-Argonaute 

antibodies, with or without prior RNA crosslinking. 

 

2.8 Role of microRNAs in Atherosclerosis and CVD 

MiRNA biogenesis is regulated by Dicer, so researchers have develop dicer deficient mice model 

to evaluate the role of miRNAs during development and disease progression by conducting loss 

of function experiments. Dicer knockout in vascular smooth muscle attenuates SMC proliferation 

and differentiation which resulted in haemorrhage, thinner vessel walls, and impaired 

contractility (Albinsson, et al. 2010; Yang, et al. 2005a), suggesting a critical role of miRNAs in 

VSMC functions and CVDs. In this aspect miR-1 and miR-133 are well documented for their role 

in cardiac myogenesis during embryonic development, where miR-1 cardiac specific over-

expression inhibits cardiomyocyte proliferation whereas miR-133 knockdown results in cardiac 

hypertrophy (Carè, et al. 2007; Zhao, et al. 2005). Additionally, miR-155 was also reported to 

down-regulate enhanced angiotensin II type 1 receptor activity in VSMCs which is associated 

with CVDs (Martin, et al. 2007). 

2.8.1 Role of MicroRNA in Endothelial Function: 

As aforementioned, endothelial integrity plays a pivotal role in pathophysiology of 

atherosclerosis and neointima development. Endothelial dysfunction can be characterized by 

many features such as reduced NO bioavailability, increased levels of pro-inflammatory 

mediators, enhanced expression of adhesion molecules, and oxidative stress. Being regarded as 

master regulator, role of miRNAs cannot be overlooked in case of endothelial functionality,  
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MiRNA Target Function Reference 

MiR-21 MAPK VSMCs (Thum, et al. 2008) 

miR-33 ABCA1, ABCG1 Cholesterol efflux, 
Macrophages,  

(Rayner, et al. 2010) 

miR-34a Sirt-1 EC senescence (Chen, et al. 2015d) 

miR-125a 

 

ET-1, ORP9 

 

Regulation of 
Endothelial function 

(Chen, et al. 2009) 

(Li, et al. 2010a) 

miR-126 VCAM-1, Dlk1 Regulation of Monocyte 
adhesion     

(Zernecke, et al. 2009) 

miR-133  Cardiomyocytes (Carè, et al. 2007) 

miR-146 TRAF-6, NFkB EC, Macrophages (Li, et al. 2015a) 

miR-155 Angiotensin type II 
receptor, eNOS 

VSMCs, Macrophages (Martin, et al. 2007) 

miR-92a KLF4 Angiogemesis, EC (Fang and Davies 2012) 

miR-200 VEGF Endothelail angiogenesis (Choi, et al. 2011) 

 

Table 1: Brief list of miRNAs involved in progeression of atherosclerosis 
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Hence, it is not surprising that investigators have reported a number of miRNAs actively involved 

in modulating endothelial function. MiR-34a is highly expressed in ECs and its overexpression 

results in EC senescence and a reduction in cell proliferation mainly due to inhibition of SirT1 

protein expression (Chen, et al. 2015c). miR-125a-5p and 125b-5p target and downregulate 

endothelin-1 (ET-1) gene responsible for deregulation of endothelial function thus protecting 

against development of atherosclerosis (Li, et al. 2010a). miR-126 is regarded as EC specific 

miRNA. It exerts anti atherosclerotic properties by regulating monocyte/macrophage adhesion 

by targeting VCAM-1, thus reducing apoptotic cell content and lesion size (Zernecke, et al. 2009). 

miR-200 can reduce protein levels of vascular endothelial growth factor (VEGF) resulting in an 

inhibition of endothelial angiogenesis (Choi, et al. 2011). Finding from our group also revealed 

that miR-150 and miR-200c play an important role in human endothelial lineage specification and 

chick embryonic vasculogenesis by targeting ZEB1 (Luo, et al. 2013). 

2.8.2 Role of microRNA in macrophage movement: 

Macrophages evolved from monocytes under the effect of certain cytokines are indispensable 

components of innate immunity and provide defence against inflammation, however, formation 

of lipid laden foam cells from macrophage is a key step in the pathogenesis of atherosclerosis. By 

using miRNA microarray, Chen et al found that miR-9, miR-146a and miR-125a-5p were 

upregulated in ox-LDL stimulated monocytes (Chen, et al. 2009). Antagonizing miR-155 in 

macrophages results in enhanced lipid uptake and increased expression of scavenger receptors 

indicating a regulatory role of miR-155 towards inflammatory response (Teng and Papavasiliou 

2009). 

2.9 MicroRNAs regulation of Vascular Smooth Muscle Cells: 

VSMCs hold a central role in paradigm of atherosclerosis and neointima formation. The ability of 

plasticity impart them prime importance in neointima and plaque development. Under normal 
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conditions, differentiated VSMCs comprising blood vessels are spindle-shaped showing low rate 

of proliferation, migration and production of ECM, but high level of contractile gene expression. 

Whereas under pathological conditions evolving due to the loss of ECs resulting from angioplasty 

(stenting), mechanical forces like hemodynamic sheer stress, cellular apoptosis or/and 

inflammation, VSMCs undergo phenotype switch and attain a rhomboid shaped phenotype 

accompanied by high rate of proliferation, migration and excessive production of ECM along with 

blunted/decreased expression of contractile genes/proteins. Such proliferatory and migratory 

VSMC are termed as dedifferentiated or synthetic VSMCs. As differentiation and phenotype 

switching of VSMCs holds prime importance in development of CVDs hence it has been tightly 

regulated through a complex, multilayered combination of factors involving DNA-binding 

transcription factors e.g., SRF (serum response factor), Cofactors of DNA binding proteins e.g., 

Myocardin (MyoCD) and myocardin-related transcription factor A and B (MRTF-A/B), ETS-like 

protein-1 (Elk-1), KLF4 (Kruppel like factor-4), DNA and histone modifications within promoters 

chromatin (H4 acetylation at CArG box) and direct interactions of DNA and transcription factors 

complexes, e.g. SRF/CArG interactions (Kawai-Kowase and Owens 2007; McDonald and Owens 

2007). Interestingly, VSMC genes responsible for migration, proliferation, secretion of contractile 

proteins and production of extracellular matrix have an evolutionary conserved CArG box 

[CC(A/T)6GG] DNA sequene located within their promoter region (Miano 2003; Sun, et al. 2006). 

Myocardin is regarded as most potent SRF transcriptional coactivator as it physically associates 

with SRF and forms a ternary complex with CArG DNA (Spiegelman and Heinrich 2004; Wang and 

Olson 2004). SRF binding to this CArG box with the help of its cofactors myocardin and 

myocardin related transcription factor (MRTF-A/B) results in activation of VSMC contractile gene 

expression and cell differentiation, whereas under the effect of growth mediators/signals, Elk-1 
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displaces myocardin from its docking site on SRF resulting in suppression of SMC gene expression 

(Figure 9)(Buchwalter, et al. 2004; McDonald, et al. 2006; Wang, et al. 2004).  

Furthermore, PDGF-BB inhibits VSMCs differentiation and promotes cell proliferation and 

migration by upregulating KLF-4 production. KLF4 represses VSMC differentiation marker genes 

by inhibition of mycardin expression and suppression of SRF/myocardin induced activation of 

VSMC contractile gene promoters (Liu, et al. 2003; Liu, et al. 2005). VSMC gene expression is also 

influenced by histone modifications (acetylation and methylation) as they regulate multiple 

functions including chromatin remodelling and transcriptional regulation (Cao, et al. 2005; Nie, et 

al. 2003; Qiu and Li 2002).  

During development, SRF binding to the chromatin is also regulated by histone 

acetylation/deacetylation within the CArG box chromatin of VSMC genes, hence effecting VSMC 

differentiation process (Bhaumik, et al. 2007). For example, H4 acetylation facilitates SRF access 

to CArG box DNA by opening up the chromatin structure (McDonald, et al. 2006), whereas, H4 

deacetylase dismantle the association of SRF and CArG box DNA by promoting the release of SRF 

from the methylated histones and CArG box chromatin, thus repressing VSMC gene expression 

(Yoshida, et al. 2008a; Yoshida, et al. 2008b). 
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Figure 10. Formation of SRF-CArG-myocardin complex and maintenance of contractile state of 
VSMCs. 
SRF upon activation by MyoCD and MRTF-A/B forms complex with CArG DNA box located within the 
promoter region of contractile genes. Contrary to this, Elk-1 represses SMC gene expression by competing 
and displacing the myocardin from the common docking site on SRF in response of growth signals. 
Activation or suppression of CArG-SRF-myocardin complex regulates many biochemical factor and 
cytokines associated with VSMC phenotype switching.  (Zhang, et al. 2016b)                    

 

 

MiRNA’s represents a new regulatory layer providing post transcriptional regulation of gene 

expression thus controlling numerous physiological and pathological conditions under varying 

environmental and metabolic stimuli. Several miRNA’s are involved in regulation of the VSMC 

gene expression, differentiation, cell proliferation, migration and apoptosis by fine-tuning 

protein levels post transcriptionally (Ji, et al. 2007; Kuehbacher, et al. 2007; Lin, et al. 2009). 

Albinsson et al in 2010, provided a direct evidence of the involvement of miRNA in regulation of 

VSMC differentiationin vivo by using conditional knockout mice for the enzyme Dicer in VSMCs of 

blood vessels. Deletion of Dicer resulted in dilated, thin-walled blood vessels chracterised by 

decreased medial thickening mainly due to reduced cellular proliferation and an extensive 

internal hemorrhage. The contractility of vessels was also reduced due to impaired contractile 
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ability of mutant VSMCs. Furthermore, Dicer knockdown resulted in late embryonic lethality at 

E16-17 suggesting that miRNAs are imperative for proper VSMC development and 

performance.(Albinsson, et al. 2010) 

2.9.1 MiRNA and VSMC Differentiation: 

Several researchers have reported dynamic changes in the levels of multiple miRNAs during 

murine Embryonic Stem (ES) cells differentiation to VSMCs (Huang, et al. 2010; Xie, et al. 2011; 

Yu, et al. 2014; Zhao, et al. 2015), thus postulating an important role of miRNAs during this 

process. Huang and Xie have reported upregulation in the expression of miR-1 and miR-10a 

during the differentiation of VSMCs from mouse ES cells, and that their blockade results in 

reduction in VSMCs differentiation as evident by the percentage of differentiated VSMCs (Huang, 

et al. 2010; Xie, et al. 2011). Xie had proposed KLF4 repression by miR-1 as possible mechanism 

determining SMC fate during retinoid acid-induced ESC/SMC differentiation (Xie, et al. 2011). 

MiR-10a targets histone deacetylase 4 (HDAC4) to mediate its function during retinoid acid-

induced SMCs differentiation from ES cells. Interestingly, Huang et al have reported a consensus 

NF-ƙB element in miR-10a gene promoter region and that NF-ƙB binding to its promoter 

regulates miR-10a expression as they observed that inhibition of NF-ƙB nuclear translocation 

repressed miR-10a expression and decreased SMC differentiation from ESCs (Huang, et al. 2010). 

Importantly, our group has also identified two miRNAs (miR-34a and miR-22) involved in 

regulation of SMC differentiation from ES cells and adventitial progenitor cells through novel 

mechanisms. Our data showed that levels of miR-34a and miR-22 were significantly up-regulated 

during SMC differentiation from ES cells. MiR-22 targets Methyl CpG-binding protein 2 (MECP-2) 

gene resulting in down-regulation of MECP2 gene expression. MECP2 is known to repress SMC 

gene expression by modulating multiple SMC transcription factors and thus its repression by miR-
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22 is proposed as major mechanism that promotes SMC differentiation from ES cells and 

adventitial stem/progenitor cells (Zhao, et al. 2015). 

In the meantime, Xu has elegantly presented miR-34a as an important mediator for SMC 

differentiation from pluripotent stem cells by positively regulating its target gene deacetylase 

sirtuin 1 (SirT1), thus challenging the traditional concept of miRNAs as translational repressor. He 

observed that miR-34a promoted differentiating stem cells arrest at G0/G1 phase along with 

significantly reduces incorporation of miR-34a and SirT1 RNA into Ago2-RISC complex upon SMC 

differentiation. He proposed a positive relationship between miR-34a and SirT1 during SMC 

differentiation in a cellular context and RNA sequence manner wherein SirT1 acted as 

transcriptional activator modulating the regulation of SMC genes and cellular differentiation. (Yu, 

et al. 2014) 

2.9.2 MiRNA and VSMC Phenotype Switching: 

As aforementioned, that under pathological conditions VSMC undergoes phenotype switching 

from normal contractile state to synthetic state characterized by increased proliferation, 

migration, and ECM production. During atherosclerosis and neointimal hyperplasia, synthetic 

VSMCs constitute the major cellular type in the plaque. Multiple factors exert their effect in 

dictating this change at the micro-environmental level, including local inflammatory signals, 

cytokines, intercellular contact and adhesion, ECM interactions, mechanical injury and the effect 

of PDGF-BB, BMP and TGF-β. PDGF-BB is a potent stimulator of SMCs phenotype switching from 

differentiated, contractile phenotype to dedifferentiated, synthetic phenotype, thus acting as 

pro-proliferative agent. Conversely, TGF-β and BMP act as anti-proliferative agent by promoting 

the contractile, differentiated state of VSMCs through enhanced expression of contractile genes. 

Several studies have documented KLF4 as potent repressor of VSMC specific contractile genes by 

repressing MyoCD levels during VSMC phenotype switch in response to vascular injury, PDGE-BB 
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or TGF-β. Likewise KLF4, Pim-1 (proviral integration site for Moloney murine leukemia virus 1), an 

oncogene serine/threonine kinase also induces neointimal hyperplasia by promoting VSMC 

proliferation. miR-1 targets KLF4 along with Pim-1 to exert its pro-contractile effects on VSMCs, 

thus regulating the differentiation process. miR-1 levels are significantly higher in contractile and 

differentiated VSMCs compared to synthetic VSMCs, and downregulated during neointima 

formation. 

TGF-β and BMP play an important role in VSMC phenotype switching by maintaiing VSMCs in 

contractile state with enhanced expression of contractile genes/proteins. Davis et al 2008 have 

proposed that TGF-β and BMP exerts their effect by enhancing the production of miR-21 which 

inturn downregulates programmed cell death 4 (PDCD4) which is a negative regulator of SMC 

contractile genes. TGF-β and BMP promots the processing of pri-miR-21 (primary miRNA) to pre-

miR-21 (precursor miRNA) by influencing SMAD signal transducer and hence, regulating Drosha 

complex (Davis, et al. 2008). Contrary to this, other researchers have proposed a different role of 

miR-21, by promoting phenotypic modulation and inhibiting differentiation of VSMC, they mark 

its role as controversial in VSMC phenotype switching. According to those studies, miR-21 work 

as pro-proliferatory agent as it promotes proliferation, reduced apoptosis and inhibit VSMC 

differentiation by modulating Sp-1 (Ji, et al. 2007; Yang, et al. 2012). 

miR-31 levels are highly expressed in contractile VSMCs, and reduced in proliferative VSMCs 

induced under the influence of PDGF-BB. miR-31 exerts its effects by suppressing cellular 

repressor of EIA-stimulated gene (CREG), thus indirectly increasing CREG level and promoting 

VSMC contractile phenotype (Han, et al. 2008). CREG over-expression promotes VSMC 

differentiated phenotype whereas shRNA-mediated CREG knockdown results in VSMC 

dedifferentiation and phenotype switching. miR-133 levels are downregulated in proliferating 

VSMC but upregulated to normal concentration, once VSMCs are back to contractile state. miR-
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133 favours the inhibition of VSMC phenotype switching to synthetic phenotype by inhibiting the 

transcription factor, specificity protein-1 (Sp-1). Activated Sp-1 is responsible for up-regulation of 

the KLF4 activity, thus repressing myocardin and subsequently down-regulation of the expression 

of most of the genes in VSMC (Torella, et al. 2011). 

MiR-143/145 are abundantly expressed in VSMCs and several studies have reported a reduction 

in their levels during VSMCs phenotype switching (Boettger, et al. 2009; Cordes, et al. 2009). 

Cordes et al 2009 has suggested that SRF-MyoCD interactions can directly activate the expression 

of miR143/145 which was suffiecient to promote VSMC contractile state by enhancing contractile 

gene expression and subsequently inhibiting the proliferation of cultured VSMCs (Cheng, et al. 

2009; Cordes, et al. 2009). miR143/145 knockdown ApoE-/- mice developed spontaneous 

atherosclerotic lesion in the femoral artery in the absence of hypercholesterolemia. Isolated 

VSMC from such miR143/145-/- mice showed enhanced migratory activity in response to PDGF-

BB compared to wild type VSMCs (Boettger, et al. 2009; Elia, et al. 2009).  

miR-145 based therapy to ApoE-/- mice fed on western diet for 12 weeks resulted in significant 

reduction in plaque size compared to controls, along with an increase in fibrous cap area 

accompanied by increase in levels of calponin and SMαA. These results mainly attributed to miR-

145 mediated reduction in KLF4 levels and elevated MyoCD expression (Lovren, et al. 2012).  

Studies have revealed multiple targets of miR143/145 including transcription factors like KLF4, 

KLF5, Elk1, angiotensin converting enzyme (ACE), actin remodelling proteins, and SRF-MyoCD 

interactions in VSMCs to regulate their contractility and proliferation (Cordes, et al. 2009; Lovren, 

et al. 2012; Rangrez, et al. 2011). 

miR-24 expression levels are upregulated in VSMCs in response to PDGF-BB treatment. 

Upregulation of miR-24 results in down-regulation of Tribbles-like protein 3 (Trb3) due to its 

posttranscriptional effect. Trb3 interacts with type-II BMP receptor (BMPRII) and promotes the 



  
      
 
 

Page | 98 
 
 

degradation of SMAD ubiquitin regulatory factor-1 (Smurf1). Smurf1 is a negative regulator of 

TGF-β and BMP’s SMAD dependent signalling, hence, degradation of Trb3 results in upregulation 

of Smurf1 and subsequent reduction expression of SMAD proteins leading to inhibition of TGF-β 

and BMP signalling and enhanced VSMC proliferation and synthetic phenotype (Chan, et al. 

2010; Chan, et al. 2007). 

miR-26a is also involved in promoting VSMC proliferation, migration and phenotyp switching as 

its levels are significantly upregulated in synthetic VSMCs. Over-expression of miR-26a targets 

SMAD-1 and SMAD-4 (two elements of TGF-β and BMP signalling pathways, related to pro-

differentiation of VSMCs), resulting in inhibition of differentiation of VSMCs. On the contrary, 

inhibition of miR-26a promoted VSMC contractile phenotype while inhibiting proliferation and 

migration (Leeper, et al. 2011).  

miR-221 and miR-222 both share a common seed sequence and are significantly upregulated in 

VSMCs upon PDGF-BB treatment or following balloon injury of the vessel. They regulate multiple 

functions related to phenotype switching, such as promoting proliferation, migration and 

inhibiting the expression of contractile genes (Liu, et al. 2009). Knockdown of miR-221 enhanced 

the expression of VSMC specific markers and consequently inhibiting VSMC migration and 

proliferation, whereas transfection of exogenous miR-221 results in reduction of VSMC markers 

and increased VSMC migration and proliferation (Davis, et al. 2009). The effects of miR-221 and 

miR-222 are attributed to the suppression of multiple target genes including c-Kit, MyoCD, p27 

(Kip1), and p57 (Kip2)(Liu, et al. 2012; Tanner, et al. 1998; Yu and Li 2014). 
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Figure 11. Schematic diagram of VSMC phenotype switching and the role of different miRNAs 
along with their respective targets. 

Schemetic image adapted from (Zhang, et al. 2016b) 
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2.9.3 MiRNA regulate VSMC Proliferation: 

Differentiated VSMCs express higher levels of miR-1 which is significantly down-regulated upon 

vascular injury and during neointima formation. Myocardin, which is a strong inhibitor of VSMC 

proliferation, also induce miR-1 expression in VSMCs. miR-1 inhibits the VSMC proliferation by 

targeting Pim-1, which encodes an oncogenic serine/threonine kinase, necessary for SMC 

proliferation and neointima formation after vessel injury (Chen, et al. 2011a; Katakami, et al. 

2004). 

Zheng et al 2013 reported that KLF4 significantly upregulated the miR-15a expression in VSMCs, 

and conversely, KLF4 depletion resulted in reduction in the miR-15a expression leading to 

subsequent inhibition or activation of VSMC proliferation. Hence, miR-15a serves as a direct 

transcriptional target of KLF4 that mediates the anti-proliferative and anti-angiogenic actions of 

KLF4 (Zheng, et al. 2013). miR-133 has pronounced role in VSMC phenotype switching during 

atherosclerosis and neointima formation following vascular injury. Its over-expression results in 

reduction in VSMC proliferation and migration, whereas its inhibition results in an increase in 

VSMC proliferation and migration. Transcription factor specificity protein-1 (Sp-1) is proposed as 

specific target of miR-133 to perform its inhibitory action (Torella, et al. 2011).  

As aforementioned, several studies have mentioned the important role of miR-143/145 in 

regulating the phenotypic modulation of VSMCs. Their expression is down-regulated in VSMCs 

following PDGF-BB treatment and after vascular injury. KLF5 and its downstream signaling 

molecule, myocardin, are suggested to be the possible targets of miR-145 mediated phenotype 

modulation. Neointima formation in balloon-injured rat carotid artery was blunted after 

restoration of miR-145 via adeovirus mediated (Ad-miR-145) gene transfer (Cheng, et al. 2009; 

Cordes, et al. 2009). 
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Reduced expression of miR-152 was observed when VSMCs were treated with lipopolysaccharide 

(LPS). VSMC proliferation (following LPS treatment) was inhibited by over-expression of miR-152. 

DNA methyltransferase 1 (DNMT1) is the most abundant DNA methyltransferase in mammalian 

cells responsible for maintenance of hemimethylated DNA during DNA replication leading to cell 

proliferation. MiR-152 exerts its action by down-regulating DNA methyltransferase 1 (DNMT1) 

and subsequent decrease in the methylation of estrogen receptor α (ERα) gene promoter region 

leading to reduced cell proliferation (Li, et al. 1992; Wang, et al. 2012a). 

VSMCs interactions with collagen are crucial for their migration, proliferation and stability of 

atherosclerotic plaque. Over-expression of miR-181a inhibits the adhesion of VSMCs with the 

collagen following Angiotensin-II (Ang-II) treatment. Ang-II mediated osteopontin (OPN) 

expression (pro inflammatory marker) was also inhibited by over-expression of miR-181a (Remus, 

et al. 2013). 

Cdc42, cyclin D1 (CCND1) and fibroblast growth factor 1 (FGF1) are functionally related genes 

and are imperative in modulating cell cycle, cell migration and proliferation. Cdc42 is 

downstream effector of phosphoinositide-3-kinase (PI3K) and can induce CCND1 and FGF1 

expression in VSMCs resulting in enhanced migration and proliferation. Over-expression of miR-

195 significantly down-regulates the expressions of Cdc42, FGF1 and CCND1 thus inhibiting the 

VSMC phenotype switching and reducing neointimal hyperplasia (Chotani, et al. 2000; Hanna, et 

al. 1997; Wang, et al. 2012b). Moreover, miR-195 also inhibits ox-LDL induced VSMC proliferation, 

migration, and synthesis of inflammatory mediators like IL-1β and IL-6 leading to reduction in 

neointima hyperplasia (Wang, et al. 2012b). The expression levels of miR-424 (ortholog of rat 

miR-322) were observed to be upregulated in proliferative VSMCs in vitro and following vascular 

injury. Increased levels of miR-424/322 inhibit VSMC proliferation and reduce neointima 
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formation after balloon-artery injury by targeting and down-regulating cyclin D1 and calumenin 

protein levels (Merlet, et al. 2013). 

Human atherosclerotic plaques and VSMCs treated with ox-LDL shows significant reduction in 

the expression levels of miR-490-3p, whereas pregnancy-associated plasma protein A (PAPP-A) 

and insulin like growth factor (IGF2) expression were up-regulated. VSMCs are enriched with 

PAPP-A which can act as activator of insulin like growth factor (IGF) and IGF-binding protein-4 

(IGFBP-4) leading to VSMC proliferation (Sun, et al. 2013). miR-490-3p mimics inhibited the 

upregulation of PAPP-A induced by ox-LDL, and subsequently suppressing the matrix 

metaloprotease effect of PAPP-A on IGFBP-4 leading to inhibition of VSMC proliferation. 

Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) upon activation by ox-LDL can 

initiate multiple inflammatory signals including superoxided radical formation and upregulation 

of endothelial pro-inflammatory genes. All these inflammatory stimuli stimulate VSMC 

proliferation and migration into atherosclerotic plaque and participate in neointima formation. 

Abnormally low levels of let-7g were observed in serum of human subjects suffering from 

hypercholesterolemia as well as mice fed on western diet. Over expression of let-7g by 

transfecting it into VSMCs targets LOX-1 which resulted in significant reduction in VSMC 

proliferation and migration (Chen, et al. 2011b). 

Expression of miR-21 was significantly upregulated in synthetic VSMCs compared to 

differentiated ones and a similar pattern was observed in the VSMCs from vessel wall after 

balloon injury. Inhibition of miR-21 resulted in decreased cell proliferation and increased cell 

apoptosis in cultured VSMCs as well as in balloon-injured rat carotid arteries. PTEN and Bcl-2 are 

proposed to be the major target of miR-21 to mediate such cellular effects. (Ji, et al. 2007; Yang, 

et al. 2012). 
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miR-26a promotes VSMC proliferation and inhibits cellular differentiation by influencing TGF-β 

signalling. Inhibition of SMAD proteins is being the major underlying mechanism. Over-

expression of miR-26a inhibitd gene expression of SMAD-1 whereas expression of SMAD-1 and 

SMAD-4 were upregulated upon miR-26a inhibition (Leeper, et al. 2011). 

In addition to its role in phenotypic modulation of VSMCs, miR-31 is also involved in regulating 

VSMCs proliferation. The expression of miR-31 is significantly upregulated in proliferative VSMCs. 

Large tumour suppressor homolog 2 (LATS2) is proposed to be the target of miR-31 to perform 

its pro-proliferative role. LATS2 is an important regulator of tissue development and plays a 

major role in cellular proliferation and apoptosis. Inhibition of miR-31 results in downregulation 

of LATS2 activity leading to reduction in VSMC proliferation ability.(Liu, et al. 2011b) 

Arteries of hypertensive individuals show upregulation of miR-130 expression which is thought to 

be involved in promoting the proliferation of VSMCs through its effect on growth arrest-specific 

homeobox (GAX). Several factors involved in initiation and propagation of vascular disease 

including balloon injury, hypertension, Ang-II and PDGF downregulate GAX expression. GAX has 

potent inhibitory effect on VSMCs proliferation, migration and differentiation and its down 

regulation by miR-130 significantly enhanced the proliferatory and migratory capacity of VSMCs 

(Saito, et al. 2005; Wu, et al. 2011; Xia, et al. 2011). 

miR-146a is another pro-proliferative miRNA whose expression is upregulated in atherosclerotic 

vessels compared to normal controlarteries. miR-146a exerts its proliferatory effects by targeting 

KLF4 in VSMCs. Overexpression of miR-146a decreases KLF4 level, whereas silencing of miR-146a 

in VSMCs increases KLF4 expression. KLF4 is postulated to express its anti-proliferative effects by 

upregulating p21, which is a member of cyclin-dependent kinase (CDK) inhibitory protein family. 

miR-146a mediated inhibition of KLF4 results in reduction in p21 levels leading to blunted 

inhibitory response and subsequently increased proliferation of VSMCs. Sun et al 2011 had 
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reported inhibition of VSMC proliferation and migration resulting in significant decrease in 

neointimal hyperplasia with the transfection of antisense miR-146a oligonucleotide into balloon-

injured rat carotid arteries (Sun, et al. 2011). 

miR-221/222 play an important role in VSMC phenotype switching by regulating multiple 

functions ranging from promotion of proliferation, and migration to reduction in the expression 

of contractile genes. Their expression is upregulated in proliferating VSMCs whereas inhibition of 

miR221/222 results in significant reduction in VSMC proliferation and neointima formation 

following balloon injury in rat arteries. Down-regulation of p27 and p57 (members of Cyclin 

dependent kinase inhibitors (CKI) involved in inhibition of cell proliferation) is proposed to be the 

major mechanism by which miR221/222 regulate and enhance VSMCs proliferation. (Liu, et al. 

2012; Liu, et al. 2009) 
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Function  miRNAs Targets Reference 

Inhibits proliferation miR-1 

miR-15a 

miR-133 

miR-143/145 

miR-152 

miR-181a 

miR-195 

miR-424/322 

miR-490-3p 

let-7 

Pim-1 

KLF4 

Sp-1 

KLF5, ELK1, MyoCD 

DNMT1 

--- 

Cdc42, CCND1, FGF1 

Cyclin D1, Calumenin 

PAPP-A 

LOX-1 

(Katakami, et al. 2004) 

(Zheng, et al. 2013) 

(Torella, et al. 2011) 

(Cheng, et al. 2009; 
Cordes, et al. 2009) 
(Wang, et al. 2012a) 
 
(Remus, et al. 2013) 
 
(Wang, et al. 2012b) 
 
(Merlet, et al. 2013) 
 
(Sun, et al. 2013) 
 
(Chen, et al. 2011b) 

Promotes prolifaration miR-21 

miR-26a 

miR-31 

miR-130a 

miR-146a 

miR-221/222 

PTEN, Bcl-2 

SMAD-1/4 

LATS2 

GAX 

KLF4 

PTEN, Bcl-2, p27, p57 

(Ji, et al. 2007) 

(Leeper, et al. 2011) 

(Liu, et al. 2011b) 

(Wu, et al. 2011) 

(Sun, et al. 2011) 

(Liu, et al. 2012; Liu, et 

al. 2009) 

Table 2: miRNAs involved in the regulation of VSMC prliferation 
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2.9.4 MiRNAs regulate VSMC Migration: 

Similar to proliferation, VSMC migration also plays paramount role in the progression of 

atherosclerotic plaque and neointima formation. Following vascular injury, either because of 

inflammation or mechanical injury (ballooning with or without stenting), the VSMCs migrate 

from medial layer to intima (to the site of injury) to perform their rehabilitatory role by 

proliferation, excretion and deposition of extra cellular matrix. VSMC proliferation and migration 

are closely associated events which normaly appear simultaneously and are regulated by similar 

growth and/or inflammatory stimuli. 

As mentioned earlier, expression levels of miR-133 also influence VSMC proliferation and 

migration. A reduction in miR-133 levels after vascular injury results in enhanced VSMC 

proliferation and migration whereas an increase in miR-133 expression levels decrease VSMC 

migration. Similar effects were observed by antagonizing miR-133 with anti-miR-133 leading to 

increase in VSMC proliferarion and migration. Suppression of Transcription factor Sp1 is the 

proposed underlying mechanism behind miR-133’s effects.(Torella, et al. 2011) 

Podosomes are highly dynamic, actin rich membrane protrusion involved in the migration of 

several cell types including VSMCs. PDGF is reported as major promoter of podosome formation 

in VSMCs through Scr and p53 pathways (Gimona, et al. 2003; Linder and Aepfelbacher 2003). 

Overexpession of miR-143/145 inhibit podosome formation thus reduces VSMC migration, 

whereas loss of miR-143/145 in vivo and in vitro results in enhanced podosome formation 

leading to increased migration, prolifearation and neointima formation. PDGF receptor alpha and 

protein kinase C epsilon are described as miR-143 targets whereas fascin is postulated as miR-

145 target (Quintavalle, et al. 2010; Rangrez, et al. 2011). 

miR-181a exerts its anti migratory action by inhibiting the adhesion of VSMCs to collagen in 

response to Ang-II, which is crucial for migration and proliferation (Remus, et al. 2013). miR-195 



  
      
 
 

Page | 107 
 
 

inhibits the synthesis of pro-inflammatory cytokines such as IL-1β, IL-6 and IL-8 by ox-LDL, thus 

reducing the inflammatory conditions and suppressing the proliferation and migration of VMSCs 

(Wang, et al. 2012b). Synthetic VSMCs exhibit significantly down-regulated expression of miR-

638. Overexpression of miR-638 downregulate NOR1/cyclin D1 pathway in order to inhibit VSMC 

migration and proliferation in response to PDGF (Li, et al. 2013). Let-7g is also a potent inhibitor 

of VSMC migration and proliferation. It exerts its action by inhibiting LOX-1 and OCT-1 expression 

induced in response to ox-LDL treatment, thus reducing VSMC proliferation and migration (Chen, 

et al. 2011b). 

 

Function  miRNAs Targets Reference 

Inhibits migration MiR-133 

miR-143/145 

miR-181a 

miR-195 

miR-638 

let-7 

Sp-1 

KLF5, ELK1, MyoCD 

--- 

Cdc42, CCND1, FGF1 

NDR1 

LOX-1 

(Torella, et al. 2011) 
 
(Quintavalle, et al. 2010; 
Rangrez, et al. 2011) 
(Remus, et al. 2013) 
 
(Wang, et al. 2012b) 
 
(Li, et al. 2013) 
 
(Chen, et al. 2011b) 

Promotes migration miR-26a 

miR-29b 

SMAD1, SMAD4 

DNMT3b 

 

(Leeper, et al. 2011) 

(Chen, et al. 2011c) 

Table 3: miRNAs involved in VSMC migration 

 

As miR-26a performs multiple functions during VSMC phenotype switching, hence, it regulates 

VSMC migration as well along with proliferation. Inhibition of miR-26a results in reduction in 

cellular migration under the influence of inflammatory mediators and/or growth factors (Leeper, 

et al. 2011). Expression of miR-29b was upregulated when VSMCs were treated with ox-LDL. 
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Upregulated miR-29b promotes VSMC migration by targeting DNA methyltransferase 3b 

(DNMT3b) which results in reduction in DNMT3b expression and leading to enhanced oxLDL-

induced DNA demethylation levels of MMP-2/MMP-9. Treating VSMCs with antagomiR-29b 

knockdown miR-29b expression resulting in attenuation of OxLDL-mediated MMP-2/MMP-9 up-

regulation, DNMT3b down-regulation, and DNA demethylation (Chen, et al. 2011c; Urbich, et al. 

2008).  

2.9.5 MiRNA and VSMC Neointima Hyperplasia: 

Neointimal hyperplasia is cellular response to repair injured vessels following any inflammatory 

(vascular disease) or mechanical demage to the artery such as atherosclerosis or after balloon 

injury (post angioplasty). The process is tightly regulated involving multiple inflammatory 

stimuli/factors and cell types such as adhesion molecules, ECM proteins, cytokines, chemokines, 

EC, macrophages and VSMCs. As described earlier, VSMC phenotype switching after injury plays 

a key role in regulating their movement towards the damaged area and development of 

neointimal hyperplasia. A number of miRNAs described above modulate VSMC phenotype 

switching, and control neointiml hyperplasia formation. Microarray analysis indicated high 

expression of certain miRNAs in normal murine arteries such as miR-21 (Ji, et al. 2007), miR-

221/222 (Liu, et al. 2009) and miR-143/145 (Boettger, et al. 2009; Cordes, et al. 2009). As a result 

of vascular injury the expression profile of these miRNAs changes significantly with miR-21 and 

miR-221/222 were upregulated whereas miR-145 expression level was downregulated (Cheng, et 

al. 2009; Liu, et al. 2009). Upregulation of miR-21 and miR-221/222 act as pro-proliferatory 

stimuli for VSMC and their inhibition resulted in significant reduction in neointimal hyperplasia in 

rat carotid artery ballon injury model (Ji, et al. 2007; Liu, et al. 2009). Knockdown of miR-221 and 

miR-222 expression resulted in decrease proliferation of VSMCs (Dentelli, et al. 2010; Liu, et al. 

2009). Sun et al 2011 had reported similar phenomenon of blunted neointimal hyperplasia 
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accompanied by inhibition of VSMC migration with the suppression of miR-146a (Sun, et al. 

2011).  

On the contrary, Feng et al 2018 has elegantly presented miR-22 as a crucial regulator of VSMC 

phenotype switching and neointimal formation (Yang, et al. 2018). He not only observed 

variations in miR-22 expression levels in wire injury indueced mice model but also employed 

normal and diseased human femoral artery injury models to explore the therapeutic potential of 

miR-22. He identified Virus Integration Site 1 Protin Homologue (EVI1) as a novel target of miR-22 

and proposed an inverse relationship between the two. He deduced that miR-22 over expression 

in the injured vessles significantly reduced the expression of its target gene along with decrease 

in VSMC proliferation and blunted neointima formation in wire injured femoral arteries model. 

As expected, similar inverse relationship were observed (reduced miR-22 expression whereas 

increased EVI1 and MECP2 expression) in diseased arteries copared to healthy femoral human 

arteries. Thus, he proposed over-expression of miR-22 and/or inhibition of EVI1 as possible 

therapeutic targets for treating vascular disease and neointimal hyperplasia. 

miR-34a also plays an important role in regulating VSMC proliferation, migration and neointima 

formation by targeting Notch homolog 1 (Notch1). Overexpression of miR-34a inhibited VSMCs 

proliferation and migration by negatively regulating Notch1. Similar results were observed during 

in vivo experiments by over expressing miR-34a perivascular to wire-injurd mice femoral arteries, 

which resulted in reduction in Notch1 expression, reduced VSMC proliferation and inhibited 

neointima formation (Chen, et al. 2015d). 

Zhang et al (2017) has as reports an interesting role of miR-124 and hnRNAP1 in regulating 

VSMCs functions. hnRNAP1 (heterogeneous nuclear ribonucleoprotein A1) was reported to 

regulate VSMC specific gene expression, proliferation and migration by inversely regulating 

IQGAP1 (IQ motif containing GTPase activating protein 1) (Zhang, et al. 2017). Zhang et al has 
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proposed a relationship between hnRNAP1/miR-124 and IQGAP1 where hnRNP1 is upstream of 

miR-124, involved in promoting its biogenesis and which inturn, targets and degrades IQGAP1 

mRNA. In wire-injured carotid arteries, ectopic overexpression of hnRNPA1 results in higher miR-

124 expression levels leading to significantly reduced VSMC proliferation and blunted neointima 

formation (Zhang, et al. 2017).  

Cheng et al has presented miR-145 as an important mediator in VSMC phenotype switching and 

neointima formation. According to him, restoring levels of miR-145 using adenoviral mediated 

gene transfer to the balloon injured arteries, resulted in inhibition of neointima, along with 

reduction in VSMCs proliferation and migration but an upregulation of VSMC differentiation 

markers (Cheng, et al. 2009). 

In a different experiment settings, by using 18 months old miR-143/145-/- mutant mice, Boettger 

et al 2009 had reported a significant increase in spontaneous neointimal hyperplasia consisting 

of VSMCs and macrophages along with high deposits of amorphous collagen I in the femoral 

arteries (Boettger, et al. 2009). Interestingly, contrary to this, Xin et al 2009 reported that miR-

143/145 deletion (either single or double) resulted in reduced VSMC migration leading to 

significant reduction in neointimal development (Xin, et al. 2009). The reported difference in 

their results may be attributed to difference in vascular injury models (mouse vs rat; young vs 

old) used as well as difference in genetic modification techniques (virus mediated vs systemically 

modified). Expression profile of several extracellular proteins e.g. elastin, collagens and fibrillins 

are downregulated by miR-29 hence regulating the stability of atherosclerotic plaque (Chen, et 

al. 2011c; Latronico and Condorelli 2010).  

miR-195 also inhibits the VSMC phenotype switching and reduces neointima formation by down-

regulating the expressions of Cdc42, FGF1 and CCND1 (Chotani, et al. 2000; Hanna, et al. 1997; 

Wang, et al. 2012b). Furthermore, over expression of miR-195 also inhibits ox-LDL mediated 
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secretion of inflammatory mediators like IL-1β and IL-6, hence leading to reduction in VSMC 

proliferation, migration, and neointima hyperplasia (Wang, et al. 2012b) 

Concluding above discussion and literature review, miRNA came up as prominent mediators of 

inflammation resulting from atherosclerosis and vascular injury/repair process by regulating 

multiple steps involving VSMC phenotype switching (contractile or synthetic), proliferation, 

migration, excretion of ECM proteins and expression of contractile proteins.  

 

Function  miRNAs Targets Reference 

Inhibits neointima 
hyperplasia 

miR-22 

miR-34a 

miR124 

miR-143/145 

miR-195 

EVI1, MECP2 

Notch1 

IQGAP1 

KLF5, ELK1, MyoCD 

Cdc42, CCND1, FGF1 

(Yang, et al. 2018) 
 
(Chen, et al. 2015c) 
 
(Zhang, et al. 2017) 
 
(Cheng, et al. 2009) 
(Boettger, et al. 2009) 
(Chotani, et al. 2000; 
Wang, et al. 2012b) 

Promotes neointima 
hyperplasia 

miR-21 

miR-221/222 

miR-146a 

PTEN, Bcl-2 

PTEN, Bcl-2, p27, p57 

KLF4 

(Ji, et al. 2007) 

(Liu, et al. 2009) 

(Sun, et al. 2011) 

Table 4. miRNAs involved in regulating neointima formation 

 

2.10 MicroRNA 214 

miR-214 is regarded as highly conserved miRNA among species indicating its pivotal role in broad 

range of physiological functions ranging from cell fate decision, differentiation and 

morphogenesis of muscles and skeleton from precursor cells, nervous system, tumourigenesis to 

pancreas and cardiac development. miR-214 is a member of miR-199a-214 cluster (which 
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contains two members miR-199a and miR-214 approximately 6kb apart)(Watanabe, et al. 2008). 

(Figure 11) 

   

 

Figure 12. Genomic location of human miR-214. 
7.9kb long Non-coding RNA precursor DNM3os carrying miR-214 and miR-199a, 6kb apart, in intron 14 of 
Dynamin-3 gene. (Adapted from E Penna et al journal of investigative dermatology 2015)(Penna, et al. 
2015) 

 

Human gene for miR-214 is located in intron 14 of the Dynamin-3 gene (DNM3) and is encoded 

into a long (8kb) non-coding RNA named as DNM3os, which is transcribed in the opposite strand 

of the DNM3 gene (Lee, et al. 2009; Loebel, et al. 2005; Yin, et al. 2010). miR-214 was shown to 

regulate multiple genes such as Ezh2, P53, Quaking, Sufu, N-RAS, and Ncx1 (Aurora, et al. 2012; 

Long, et al. 2015; van Mil, et al. 2012; Wang, et al. 2015; Yang, et al. 2013b) as well as various key 

signalling pathways like β-catenin or tyrosine kinase receptor pathway and PTEN/AKT pathway 

simultaneously (Gu, et al. 2015; Wang, et al. 2014). Accordingly,many biological process such as 

regulating mitochondrial morphology and cell cycle, skin and hair follicle development, 

angiogenesis and differentiation of myoblast cells, dendritic cell activation and regulation of 

tumour progression growth and suppression are strictly controlled by miR-214 (Ahmed, et al. 

2014; Bucha, et al. 2015; Duan, et al. 2015; Gu, et al. 2015; van Mil, et al. 2012). 
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2.10.1 MicroRNA-214 in Cancer. 

As aforementioned, miR-214 has profound role in tumourigenesis and is deregulated in several 

human tumours including breasts, ovarian, hepatocellular carcinoma and melanoma. miR-214 

was first described as an oncogene which regulatestumour growth, stemness, angiogenesis, 

invasiveness and resistance to chemotherapy, but later studies have also suggesteda divergent 

role for miR-214 in tumourigenesis since an inhibitory role for miR-214 in cancer cell progression, 

metastasis, apoptosis and chemoresistancewas reported by various researchers (Gutierrez, et al. 

2010; Wang, et al. 2013b; Xia, et al. 2012; Xu, et al. 2012). 

Raised expression of miR-214 in pancreatic cancer cells influences ING4 gene (involved in cell 

cycle arrest, DNA repair and apoptosis) resulting in decrease sensitivity to treatment (Zhang, et al. 

2010). miR-214 expression is also up-regulated in lung tumours, nasopharyngeal, stomach and 

prostate cancer resulting in unfavourable prognosis in overall survival and poor response to 

therapy (Deng, et al. 2013; Ueda, et al. 2010; Volinia, et al. 2006; Yanaihara, et al. 2006). Contrary 

to this, down-regulation of miR-214 expression occurs in hepatocellular, bladder and colorectal 

carcinomas as compared to healthy individuals, resulting in tumour angiogenesis, poor survival, 

metastasis and malignancy (Chen, et al. 2014; Gutierrez, et al. 2010; Okada, et al. 2015; Ratert, et 

al. 2013; Wang, et al. 2013b). In hepatocellular carcinoma, overexpressing miR-214 reduces 

tumour growth and vascularity by targeting hepatoma-derived growth factor (HDGF) (Shih, et al. 

2012). Conflicting results have also emerged for miR-214 functionsfrom ovarian cancer studies. 

Significant deregulations were observed in miR-214 expression level during late-stage and high 

grade overian cancer tumours. Over expression of miR-214 in ovarian tumours is associated with 

tumour cell survival and cisplatin resistance through targeting the 3’UTR of PTEN leading to 

inhibition of PTEN translation and activation of Akt pathway (Yang, et al. 2008). However, miR-

214 down-regulation has also been reported in neoplastic ovaries compared to healthy tissue 
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(Iorio, et al. 2007). Whereas skin cancer is concerned, increased expression of miR-214 in primary 

malignant cutaneous melanomas and in ocular melanomas is associated with poor prognosis and 

high metastatic risk (Molnár, et al. 2008; Penna, et al. 2011; Worley, et al. 2008). In squamous 

cell carcinoma (SCC) of oral cavity and tongue, the levels of miR-214 are up-regulated but is been 

down-regulated in oesophageal and cutaneous SCC (Yu, et al. 2010). 

miR-214 promotes tumour cell proliferation and survival in gastric tumours and nasopharyngeal 

carcinomas by promoting AKT signalling via PTEN and by targeting lactoferrin and Bim 

respectively (Deng, et al. 2013; Yang, et al. 2013a; Zhang, et al. 2014). In contrast, miR-214 

inhibits hepatic and breast carcinoma proliferation by targeting Ezh2, XBP1 and β-catenin 

(Derfoul, et al. 2011; Schwarzenbach, et al. 2012; Wang, et al. 2013b). Over-expression of miR-

214 down-regulates fibroblast growth factor receptor 1 (FGFR-1) in colorectal and hepatocellular 

carcinomas and inhibits cancer cell invasion and progression (Chen, et al. 2014; Wang, et al. 

2013b). 

During tumourigenesis, cell stemness and developmental pathways are re-activated and several 

studies have highlighted an important role of miR-214 in this scenario. Over-expression of miR-

214 results in inhibition of p53 and indirect upregulation of Nanog, leading to increased stemness 

among ovarian cancer stem cells (Xu, et al. 2012). 

Response to treatment (chemoresistance) is another important parameter for cancer treatment. 

Raised miR-214 levels reduces chemotherapy sensitivity (cisplantin chemoresistance) in tongue 

squamous cell carcinoma (Yu, et al. 2010) and inhibits cisplatin-induced apoptosis in ovarian 

cancer by triggering AKT pathway and enhancing cell survival (Yang, et al. 2008). In contrast, 

another study by Wang et al (2013) found that over-expression of miR-214 inhibits Bcl212 in 

cervical cancer cells and enhances cisplatin induced cytotoxicity (Wang, et al. 2013a). 
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To sum up, miR-214 appears as pleiotropic hub that performs contradictory but decisive function 

during tumorigenesis. Such versatile behaviour of miR-214 depends on a couple of factors. First, 

as miR-214 modulates several genes by inhibiting specific mRNAs and regulating different 

transcription factors, so differences in downstream pathways of these players might be the 

reason of its divergent role. For example, TFAP2 and ALCAM (miR-214 regulated genes) exhibit 

contrasting behaviour in different cell types. Second, different tumour cells have altered cellular 

mechanisms and disparities in expression of different molecular and growth factors in distinct 

tumour cell population may account for these discrepancies in miR-214 action suggesting that 

the functional implication of miR-214 is cell context dependent.   

2.10.2 MicroRNA 214 in CVD 

A contradictory but pivotal role of miR-214 (protective and pathological) in cardiovascular 

disease and in cancer progression has been reported from recent studies. miR-214 is upregulated 

in response to several factors including cardiac stress, myocardial infarction (MI) and Ca2+ 

overload (van Rooij, et al. 2006; van Rooij, et al. 2008). miR-214 has been reported to protect 

myocardial cells against excessive Ca2+ uptake during ischemia reperfusion (IR) injury by 

repressing mRNA encoding sodium/calcium exchanger 1 (Ncx1), thus maintaining Ca2+ 

homeostasis and increasing cell survival (Aurora, et al. 2012). In another finding, a decrease in 

miR-214 levels has been associated with an increase in PLGF (placental growth factor) levels and 

worsening of atherosclerosis, suggesting its role as a protective agent and promising biomarker 

for severe CAD (Lu, et al. 2013). It has been proposed that over-expression of miR-214 inhibits 

left ventricular remodelling and suppress myocardial apoptosis after an acute myocardial 

infarction via its effect on phosphatase and tensin homolog (PTEN)(Yang, et al. 2016). Study by Lv 

G et al (2014) has demonstrated its protective role for cardiac myocytes against H2O2-induced 

injury (Lv, et al. 2014). However, in another study by Tao Yang, antagonizing (inhibiting) miRNA 
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214 is suggested as a new therapeutic approach for treating cardiac hypertrophy. In this study, 

overexpression of miR-214 resulted in pathological cardiac growth and heart failure, suggesting 

EZH2 as a proposed target gene for miR-214 mediated cardiac hypertrophy (Yang, et al. 2013b). 

Aforementioned studies have provided clear evidence that miR-214 plays a role in cardiac 

hypertrophy, but less is known about its role in regulating VSMC functions and its significance in 

atherosclerosis or neointima formation.  

2.10.3 miR-214 in VSMC differentiation 

Data from the microRNA microarray analysis revealed that miR-214 was upregulated during SMC 

differentiation from Day 0 to Day 8 (Yu, et al. 2014). Our microarray results also identified other 

miRNAs apart from miR-214 that were upregulated in SMC differentiation from ES cells indicating 

their specific role at different stages of differentiation and proliferation. miRNAs such as miR-143, 

miR-145, and miR-133 (which are involved in SMC differentiation), were upregulated in the early 

stage of SMC differentiation (Day 4) when compared with their expression in undifferentiated ES 

cells (Day 0). In contrast, miR-21, which has profound role in SMC proliferation, was undetectable 

at the early stage of differentiation (Day 4) but upregulated at the late stage (Day 8). No 

significant changes were observed in levels of miRNAs specific for other cell lineages, for example, 

miR-146a (for T lymphocytes), miR-203 (for epidermal cells), miR-126 (for endothelial cells), miR-

206 (for myogenic cells) and miR-124 (for neural cells) as they were increased at the early stage 

of differentiation and undetectable or downregulated at the late stage. The summary of 

upregulated and downregulated miRNAs is shown in following table 4. 
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Name  Fluorescence signal  Reported 
functions  

 
Reference  Day4/day0  Day8/day0  

miR-290-5P  0.775761  

 

0.286816  

 

ES cell specific  Houbaviy et 
al(2003)  
 

miR-291a-5P  0.925415  0.271932  ES cell specific  Houbaviy et 
al(2003)  

miR-292-3P  1.427017  0.468515  ES cell specific  Houbaviy et 
al(2003)  

miR-293   
1.18702  

 
0.411204  

ES cell specific   
Houbaviy et 
al(2003)  

miR-294  1.146818  

 

1.367687  

 

ES cell specific  Houbaviy et 
al(2003)  
 

miR-295  1.062308  0.265621  ES cell specific  Houbaviy et 
al(2003)  

miR-143   
1.470071  

 

 
1.237568  

 

SMC 
differentiation  

 
Cordes et 
al(2009)  
 

miR-145  2.113956  1.460188  SMC 
differentiation  

Cordes et 
al(2009)  

miR-21   
UD  

 
9.848351  

SMC 
proliferation  

 
Ji et al(2007)  

miR-22   
2.20227  

 
11.205712  

Tumour 
suppressor  

 
Xiong et 
al(2010)  

miR-24  0.987122  3.597099  Heart 
contraction 
and myoblast 
differentiation  

Li et al 
(2013b), Sun 
et al(2008)  

miR-214  3.451106  2.024559  Muscle cell 
specification 
and 
myogenesis  

Flynt et 
al(2007), Liu 
et al(2010)  

miR-146a  1.225387  UD  T 
lymphopoiesis  

Georgantas 
et al(2007)  

miR-16  0.668986  1.187912  Universal  
expression  

Landgraf et al 
(2007)  

miR-107  0.754878  0.861935  Monocytopoie
sis  

Georgantas 
et al(2007)  

miR-203  1.103917  UD  Epidermal 
differentiation  

Yi et al(2008)  

miR-206  1.563997  1.063436  Myogenic cells  Rao et 
al(2006), Kim 
et al(2006)  
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Table 5. Selected miRNA expression profile during SMC differentiation from Embryonic stem 
cells. 

 

In another study, assessing miR-214’s role in VSMC differentiation from ESCs, Wu et al 2017 

postulated suppression of quaking (QKI) expression by miR-214 as major underlying mechanism 

to regulate VSMCs gene expression during VSMCs differentiation from ESCs. The authors 

demonstrated that overexpression of QKI down-regulated the expression of SRF, MEF2C and 

Myocd through transcriptional repression and direct binding to promoters of the SRF, MEF2c and 

Myocd genes, thus inhibiting VSMC contractile gene expression. Whereas, QKI inhibition by miR-

214 resulted in upregulation of SRF, MEF2c and Myocd gene expression followed by VSMC 

differentiation, thus presenting QKI as a functional modulating target in miR-214 mediated VSMC 

differentiation from ESCs (Wu, et al. 2017) 

 

2.11 NCKAP1 (Nck associated protein 1). 

Cells exhibit astonishing diversity in their shape depending upon their function, for example, 

neurons forms long branching network to communicate and perform functions; ECs are strictly 

bound to each other to provide a barrier between blood and neighbouring tissues; Blood and 

immune cells display ever changing shapes from round to elliptical. At time, cells change their 

normal shape to adjust and address the dynamic conditions (pathogen, injury or metabolic 

disorder) in microenvironment. This change in shape enables them to move from one place to 

another under the influence of certain inflammatory or pathological stimuli (immune cells crawl 

to catch the pathogen, VSMCs migrate to the intimal layer in atherosclerosis). Cell migration is a 

miR-124  0.707948  0.458512  Brain specific  Landgraf et al 
(2007)  

miR-126-3P  1.455875  UD  Endothelial 
cells  

Fish et 
al(2008)  
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fundamental property of cells and is important in maintaining homeostasis (embryonic 

development, wound healing) under normal conditions but if it’s not tightly controlled, it allows 

cells to invade nearby tissue and hinder normal functionality as in cancer and neointima 

formation.  

The shape and movement of cells is under the control of their internal framework called 

cytoskeleton. A highly specialized and dynamic protein called actin is responsible for these 

changes in cytoskeleton through its reversible polymerization and hence regulate cellular 

migration. In its globular, monomeric form, actin is soluble but upon polymerization, it forms 

insoluble filaments with significant mechanical strength to maintain cellular structure. Actin 

polymerization involves assembly of three actin monomers into a trimmer and is triggered by 

several factors that stimulate this ‘nucleation’. Under certain conditions, when cells need to 

migrate, these actin filaments spread at the front of the cell pushing its membrane forwards in a 

sheet-like structure (lamellipodium) or finger like protrusions (filopodia). These cell protrusions 

forms adhesions at the cellular front and when coordinated with contractions at its tail end, cell 

can propel itself and move forward at a speed of 30 micrometers per minute (Cory and Ridley 

2002). This actin polymerization and subsequent cell migration is beautifully orchestrated by a 

family of regulatory proteins called Wiskott-Aldreich syndrome protein (WASP) consisting of 

WASP,N-WASP and SCAR, and WAVEs 1,2 and 3, combined with multiple other proteins including 

PIR121, Nap125, HSPC300 and Arp2/3 protein complex (Takenawa and Miki 2001). WAVE 

proteins are accumulated at the extreme edges of these protrusions providing required 

propulsive force along with additional proteins like signalling adaptors Abi-1 (e3b1), Abi-2 and 

IRSp53, thus forming a multiprotein complex. WAVEs and WASP are themselves regulated by 

Rac1 and Cdc42 (members of Rho family of small GTPases). The Rho-GTPases Rac1 and Cdc42, 

and members of Src homology (SH) domain containing adapter proteins such as NCK1 
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(Noncatalytic region of tyrosine kinase adaptor protein 1) stimulates actin polymerization by 

relaying signals to WASP/WAVEs proteins leading to activation of Arp2/3 complex which in turn 

catalysis the nucleation of actin filaments (Mullins 2000; Rohatgi, et al. 2000). It is well 

documented that Cdc42 directly interacts with N-WASP through its Cdc42/Rac1 interactive 

binding (CRIB) domain, which in turn reacts with Arp2/3 complex through its conserved 

verprolin-homology acidic (VCA) domain and catalysis actin filament nucleation but such direct 

interactions have not been reported in the case of Rac1-WAVE pathway because of lack of 

binding sites on WAVE proteins for Rac1 (Kim, et al. 2000; Machesky, et al. 1999; Rohatgi, et al. 

2001). 

 Eden et al 2002 have proposed a mechanism by which Rac1 binds to the adapter protein NCK 

resulting in WAVE1 activation and actin nucleation. According to this model WAVE1 exists in an 

inactive mode (as heterotetrameric) by forming acomplex comprising proteins such as human 

PIR121, Nap125 and HSPC300. A combination of Rac1 with the adapter protein NCK causes 

dissociation of WAVE1 complex thereby releasing active WAVE1 and enhanced actin nucleation 

(Eden, et al. 2002).  

Another appealing study came up 2 years after Eden’s work by Anika et al 2004, in which the 

relationship between Rac1 and Nap1/NCKAP1 (NCK associated protein 1) was beautifully 

elaborated. According to this study Nap1/NCKAP1 and Rac1-associated protein 1 (Sra-1) interact 

with WAVE2 and signalling adaptors Abi-1 containing complex and thus linking Rac1 to actin 

nucleation. They presented mammalian Nap1/NCKAP1 and Sra-1 as an integral part of 

WAVE2/Abi-1 complex, which co-localizes at the tips of lamellipodial protrusion after Rac 

activation. Furthermore, loss of function of either protein Nap1/NCKAP1 or Sra-1 resulted in 

severe alteration in actin cytoskeleton owing to complete inhibition of cellular ability to respond 

to Rac activation and a failure to develop lamellipodia protrusion and membrane ruffles, thus 



  
      
 
 

Page | 121 
 
 

making them an essential component of Rac dependent actin polymerization complex (Steffen, 

et al. 2004). 

NCK is an adapter protein (serve as link connecting enzymes and phosphorylated proteins) 

composed of one Src homology (SH2) domain and three Src homology (SH3) domains. NCKAP1 

(Nap1) was first identified as 125kDa protein that specifically associates with the first Src 

homology (SH3) domain of NCK in both in vitro and in vivo (Kitamura, et al. 1996). Further 

evidence for its role, structure and chromosomal location came from Suzuki et al 2000 while 

working on patients suffering from Alzheimer disease as its been reported as most 

downregulated gene among 31 other differentially expressed genes. The human NCKAP1/Nap1 

gene was mapped to human chromosome 2q32 by using FISH (fluorescence in situ 

hybridization)(Suzuki, et al. 2000). 

In addition to its aforementioned role in lamellipodia formation, a developmental role for 

NCKAP1/Nap1 has also been discovered as mice lacking this gene showed arrested growth at 

midgestation and morphogenesis defects of all 3 embryonic germ layers. NCKAP1/Nap1 mutants 

failed to form single heart tube, showed delayed migration of endoderm and mesoderm along a 

striking phenotypic condition associated with duplication of the antero-posterior body axis 

(Rakeman and Anderson 2006).  
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3 Hypothesis and Aims of the PhD Project: 

3.1 Hypothesis 

Aforementioned studies have provided clear evidence that miR-214 plays a role in cardiac 

hypertrophy, but less is known about its role in regulating VSMC functions and its significance in 

atherosclerosis or neointima formation. Importantly, data from our miRNA microarrays analysis 

revealed that miR-214 was one of the most up-regulated miRNAs during SMC differentiation 

from stem cells (Yu, et al. 2014). The functional roles of other most up-regulated miRNAs (miR-22 

& miR-34a) in VSMC functions/phenotypic modulation were already under investigation in our 

group.(Yu, et al. 2014; Zhao, et al. 2015). Furthermore, Studies by Wu et al 2017 (our 

collaborators at Zhejiang University, China) have also proposed crucial role of miR-214 in SMC 

differentiation (Wu, et al. 2017). Aforementioned evidence prompted us to hypothesize that 

miR-214 could play an important role in modulating VSMC functions and in vascular remodelling 

(neointima formation).   

 

Table 6 Graphcal representation of miRNAs microarray showing miR-214 is consistently expressed and 
most upregulated miRNA during SMC differentiation (Yu, et al. 2014). 
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3.2 Aims: 

1. To investigate the potential role of miR-214 in regulating SMC behaviour by addressing a 

possible role for miR-214 in VSMC proliferation and migration. 

2. To identify and validate its target gene(s). 

3. To delineate the underlying molecular mechanisms through which miR-214/target gene(s) 

regulate VSMC functions. 

4. To explore the functional involvement/significance of miR-214 in vascular remodelling 

(neointima formation) using femoral artery injury model. 
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4 Materials and Methods: 

4.1 Materials. 

Antibody against NCKAP1 (goat, N-12, sc-161124) was purchased from Santa Cruz Biotech, USA. 

The anti-NCKAP1 antibody used for paraffin-section staining was purchased from Antibodies-

online GMBH, Germany. Antibodies against GAPDH (mouse), Ki-67 (rabbit) and PCNA (rabbit) 

were from Abcam, UK. All secondary antibodies were from Dako, Denmark. Other materials 

including Phalloidin-FITC (P5282) used in this study were purchased from Sigma unless 

specifically indicated. Human aortic SMCs were purchased from PromoCell GmbH (C-12533) and 

cultured in SMC growth medium 2 (C-22062 PromoCell GmbH), according to manufacturer’s 

guidelines.  

4.2 VSMC Isolation Solutions 

Operation and collection medium: DMEM, FBS 5%, GP 1% 

Perfusion medium: HBSS+1% GP,  

0.1% Gelatin in PBS,  

0.25% Trypsin-EDTA  

Digestion Medium: 1mg/ml Collagenase I and 0.744 U/ml Elastase in DMEM 

Culture Medium: DMEM, FBS 20%, GP 1%   

1% GP: 100U/ml Penicillin, 100 𝜇g/ml Streptomycin, 2mM L-glutamine 

DMEM: Dulbecco’s modified eagle medium 

FBS: Foetal bovine serum 

4.3 VSMC isolation protocol. 

Primary murine VSMCs were isolated from mouse aorta, and routinely maintained in DMEM 

supplemented with 10% FBS. The detailed process is as follow: 
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Preparation 

1. Prepare all the buffers and media, sterilize the surgical instruments and culture dishes by UV 

lights for at least 30min. 

2. Coat 12-well plate with 0.1% gelatin for 30-40min. 

Retrieval of aorta 

1. Asphyxiate mouse with CO2 for 2 min. Spray the mouse with 70% ethanol thoroughly.  

2. Open the chest without cutting any vessels with sterilized forceps and scissors. 

3. Perfuse the mouse through a cardiac puncture at the apex with Perfusion medium. 

4. Remove the organs to allow a clear view of the whole aorta. 

5. Remove the connective tissue around the aorta carefully. 

6. Cut down the aorta when it is free of fibrous material and fat tissue. (approximately 1.5cm 

long) 

7. Place the aorta into the collection medium and keep them on ice. 

Removal of the adventitia 

1. Rinse the aorta in operation medium quickly and place it on the sterile dissection board 

covering with operation medium. 

2. Scrap off as much surrounding tissue of the artery as possible under microscope.  

3. Digest the artery in 1 mg/ml Collagenase Ⅰ at 37°C for 15min 

4. Strip off adventitial layer and outer portion of the media under the microscope, guaranteeing 

to gain a clean smooth aorta with as less stretch of the artery as possible. 

Enzyme digestion 

1. Cut the aorta open longitudinally with scissors and remove the endothelium by gently 

scrapping the luminal side of the artery with a fine forceps or a scalpel blade. 

2. Cut the artery into cubes as small as possible. 
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3. Digest the tubes in 1 mg/ml Collagenase Ⅰ for 3-3.5hrs. 

4. Stop the digestion by adding Culture medium. 

5. Spin down the cells at 800rpm*3min and resuspend in culture medium(DMEM with 10% FBS). 

6. Plate the cells in 12 well plates pre-coated with 0.04% gelatine and culture at 37℃ in 5% CO2 

incubator. (2-3 aortas in one well of 12-well plate) 

4.4 VSMC Culture medium. (CM) 

VSMC culture medium contains Dulbecco’s Modified Eagle’s Medium (DMEM) 90% from Sigma, 

foetal bovine serum (FBS) 10%, 100 U/ml penicillin and 100 μg/ml streptomycin. To keep culture 

medium biologically active, it was prepared in small batches of 50ml and kept at 4℃ in 

refrigerator for frequent use. 

4.5 VSMC culture, maintenance, and treatment. 

VSMCs between passages 5 to 10 were used in the current study. VSMCs were cultured/ 

maintained in T25/T75 flasks with 5/15ml completed culture medium subsequently and 

incubated at 37℃ under constant supply of 5% CO2. Cells were observed everyday to check 

cellular growth and morphology. Cell passaging at a ratio of 1:3 were performed once cell reach 

confluence level of 80-90%.  

4.5.1 VSMC Passaging. 

When VSMCs reach confluence level of around 80-90%, they were passaged/sub cultured to new 

T25/ T75 flasks. New flasks were coated with pre-warmed 0.04% gelatine (Sigma-Aldrich) in PBS 

and kept in incubator at 37℃ for minimum 30 mins. Culture medium was removed from the flask 

and VSMCs were washed once with pre-warmed PBS and treated with trypsin-EDTA for 1 min, 

while keeping them in incubator at 37℃. After that, pre-warmed culture medium was added to 

the cells to neutralize the trypsin and subsequently cells were dissociated into single cells 
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suspension by pipetting several times. VSMC suspension, then, transferred to new pre-coated 

T25/T75 flasks at a ratio of 1:3. Fresh CM was added to the flask up to the required level and cells 

were cultured in a CO2 (5%) incubator at 37℃ for 2-3 days. 

4.5.2 VSMC freezing and thawing 

VSMC were preserved by freezing them in -80℃ freezers (for short term) and in liquid nitrogen 

(for long term preservation) by using specific freezing medium. The medium contains FBS 50%, 

40% DMEM (Sigma-Alderich) and 10% of Dimethyl sulfoxide (DMSO, Sigma-Alderich).  The 

procedure is as follow: 

After removing old culture medium, the VSMCs were washed once with pre-warmed PBS. After 

washing, the cells were treated with trypsin-EDTA for about a minute in 37℃ incubator and 

subsequently added pre-warmed CM to neutralize the trypsin. The resulting cell suspension was 

transferred to 15ml falcon tube and centrifuged at 1000× g for 3 mins. Discard the supernatant 

and re-suspend the VSMCs by adding suitable quantity of freezing medium (generally 1 ml for 

each cryovial). The cells were split into several cryovials at a ratio of 1:4 and transferred to 

freezing container and placed in -80℃ freezers overnight. For longer preservation, the cryovials 

were transferred from -80℃ freezers to liquid nitrogen. 

For thawing purpose, cryovials containing cells from liquid nitrogen were placed in water bath at 

37℃ to defrost the medium containing cells. The cell suspension immediately transferred to 

15ml falcon tube and 5ml pre-warmed DMEM were added to it. The cells were subjected to 

centrifugation at 800× g for 3 mins to collect the cells in the bottom of falcon tube. Supernatant 

were discarded and cells were re-suspended using CM and finally plated in T25/75 flasks pre-

coated with 0.04% gelatine and cultured in 37℃ incubator with 5% CO2. 

4.5.3 VSMC Treatment. 
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VSMCs were treated with various athenogenic stimuli. Briefly, for PDGF-BB (Biolegend) and 

serum stimulation, VSMCs were serum starved for 24~48 hours (0.5% FBS), followed by an 

incubation with 20% FBS and 10ng/ml PDGF-BB for 3, 6, 12, 24 and 48 hours, respectively; For ox-

LDL component treatments, VSMCs were serum starved for 24~48 hours, followed by an 

incubation with 10µM 4-Hydroxynonenal (4-HNE) and 7-ketocholesterol (7-Keto) for 24 hours. 

 

4.6 Transfection 

4.6.1 miRNA mimics and inhibitor transfection 

Transfection is the process of introducing foreign genetic material (nucleic acid, plasmid) into 

cells. miRNA mimics or inhibitors and respective miRNA negative controls (25nM, final 

concentration) were transfected into VSMCs using TransIT-X2 Transfection Reagent (Geneflow 

Limited, UK) according to the manufacturer's instructions. VSMCs cultured in T75 flasks were 

washed with 1X PBS once and treated with trypsin-EDTA and subsequently neutralized by adding 

culture medium to obtain single cell suspension. After counting the cells using hemocytometer, 

1.5x105 cell per well were seeded into six-well plate 24 hours prior to transfection. Before 

transfection, cells were washed with 1x PBS once and replenished with 1.75 ml fresh culture 

medium containing 5% FBS. TransIT-X2 reagent was warmed to room temperature and 7.5µl of 

TransIT-X2 reagent was added to 250µl of pre-warmed serum free DMEM and transferred to a 

sterile Eppendorf tube labelled for each treatment. Five µl of miR-214 mimics/inhibitor or their 

respective control scramble microRNA mimics/inhibitor (10µM/L in stock) was added and mixed 

gently using a pipette. This solution was left to incubate at room temperature for 20-30mins to 

allow the transfection complexes to form. After incubation, the TransIT-X2: miRNA complexes 

were added on top of the cells in drop-wise manner with circular motions to ensure all the cells 

being covered by the mixture. The 6-well plate was rocked back-and-forth and side-to-side to 
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evenly distribute the TransIT-X2: miRNA complexes onto the cultured cells. The transfected cells 

were cultured for 16-24hrs at 37℃ in 5% CO2 incubator prior to medium change or serum 

starvation. All miRNAs inhibitors or mimics and respective negative controls were purchased 

from Sigma- Alderich. 

 

4.7 NCKAP1 stable knockdown cell lines 

4.7.1 Generation of NCKAP1 shRNA lentivirus 

To generate NCKAP1 knockdown cell lines, NCKAP1 short hairpin (shRNA) lentiviral particles were 

produced using MISSION shRNA NCKAP1 plasmids DNA (SHCLNG-NM_016965,MISSION® shRNA 

Bacterial Glycerol Stock, Sigma) according to protocol provided. The shRNA Non Targeting 

control vector (SHC002) was used as a negative control. Briefly, 293T cells were cultured in T75 

flasks for 24 hrs followed by transfection with the lentiviral vector and the packaging plasmids, 

pCMV-dR8.2 and pCMVVSV-G (both obtained from Addgene) using TransIT-X2 Transfection 

Reagent (Geneflow Limited, UK) according to the manufacturer's instructions. Transfected the 

cells overnight, followed by replenishing the culture medium with fresh one on the next day. The 

supernatant containing the lentivirus was harvested 48h later, filtered, aliquoted in 15ml falcon 

tubes and stored at –80°C. p24 antigen ELISA (Zeptometrix) was used to determine the viral titre. 

The Transducing Unit (TU) was calculated using the conversion factor recommended by the 

manufacturer (104 physical particles per pg of p24 and 1 transducing unit per 103 physical 

particles for a VSV-G pseudotyped lentiviral vector), with 1pg of p24 antigen converted to 10 

Transducing Units (TU). 

4.7.2 Lentiviral infection. 
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 For shRNA lentiviral infection and NCKAP1 stable knockdown cell line generation, VSMCs were 

plated 24 hours prior to infection in 6 well-plates at 37°C. One transducing Unit per cell (or 2-

3x105/well) of shRNA or control virus were added into the culture medium with 10μg/ml 

polybrene (hexadimethrine bromide H9268; Sigma) and incubated at 37℃. Viral constructs were 

incubated 24 hours with the cells before the media was replaced with fresh complete culture 

media. For cellular selection puromysin (4μg/ml) (P9620, Sigma) was added to the fresh medium. 

For selection of transductants, fresh media containing puromycin was replenished every 2-3 day 

intervals for 10 days. Stably infected cells were split and frozen for future experiments. 

4.7.3 Co-transduction of NCKAP1 shRNA lentivirus and miR-214 inhibitor 

To evaluate the effect of miR-214 inhibition on NCKAP1 knockdown cell lines to help us better 

understand the mechanism of action, miR-214 inhibitor and NCKAP1 shRNA lentivirus co-

transfection were performed. Vascular smooth muscle NCKAP1 knockdown cell lines generated 

by infecting with non-target control or NCKAP1 shRNA lentivirus were cultured in 6 well plates 

for 24 hrs prior to be transfected with miR-214 inhibitor or control miRNA inhibitor (25nM final 

concentration) as indicated in the figures, using TransIT-X2 Transfection Reagent (Geneflow 

Limited, UK) according to the manufacturer's instructions. All procedures were same as the single 

microRNA transfection explained earlier, except that the VSMCs were prior infected with non-

target or NCKAP1 shRNA virus as described in the above section. 
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4.8 Gene cloning and Mutation. 

4.8.1 NCKAP1 3’UTR clone and miR-214 binding sites mutation. 

Reporter vector harbouring sequences of the murine NCKAP1 was created using cDNA from 

VSMCs. The 3’-flanking untranslation region (3’UTR, 3605nt ~4403nt) of murine NCKAP1 gene 

(NM_016965.3) (Figure 20) was amplified by PCR with primers shown in Table 6. The insert DNA 

fragment and the pmiR-reporter-basic vector (ThermoFisher Scientific Inc. UK) were first digested 

with MIuI (Promega) at 37℃ overnight. After purification, the purified inserts and vectors were 

digested with Hind III and Sac I (Promega) at 37℃ for 12hr. Next day, 1 μl bacterial alkaline 

phosphatase (BAP; Invitrogen) was added to the digested vector, mixed and incubated at 65℃ 

for 1-2 hr for vector dephosphorylation. The DNA inserts and vectors were purified with agarose 

gel electrophoresis and their concentration was measured using Nanodrop spectrophotometer. 

The purified DNA inserts were ligated into pmiR-Luc vectors in a solution containing T4 DNA 

ligase and 10 × Ligase Buffer (New England Biolabs) at room temperature overnight. The self 

ligation vector was used as control. After overnight incubation, the ligation mixture was 

transformed into JM109 competent cells. The resultant clones were picked and identified by PCR. 

The correct clones were further amplified and the plasmid DNA was extracted using GenElute 

Plasmid Miniprep Kit (Sigma). The DNA was sequenced for final verification and the resultant 

vector was designated as pmiR-Luc-NCKAP1-WT.  

Computational algorithmic tools reported three binding sites for miR-214 on NCKAP1 gene as 

shown in figure 20. miR-214 binding site 1, 2, 3 mutation alone or combination were introduced 

into pmiR-Luc-NCKAP1-WT by using QuikChange™ site-directed mutagenesis kit (Agilent 

Technologies) according to the manufacturer's instructions. The pmiR-Luc-NCKAP1-WT reporter 

from -20℃ freezer was thawed in ice. The site directed mutagenesis reaction contains 10 × 

QuickChange Multi Reaction Buffer, QuickSolution, dsDNA template, dNTP mix, Mutagenic 
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primers, double distilled water, and QuickChange multi enzyme blend were prepared for thermal 

cycling under following programme; 95℃ for 2min, 30 cycles at 95℃ for 30sec, 55℃ for 30sec, 

and 65℃ for 5 min (1 min/ 1kb), 10 min at 65℃, and 4℃ for 2 mins. The amplification product 

was digested with DpnI (1.5 μl) for 5 min at 37℃. 

For transformation, JM109 competent cells were thawed from -80℃ freezer on ice and 30μl 

were aliquoted for each pre-cold tube and mixed gently with 2 μl β-ME while keeping them on 

ice. 2μl of Dpnl treated DNA from each mutagenesis reaction was added to each tube of 

competent cells. The mixture was incubated on ice for 30 mins before giving heat shock 

treatment at 42℃  for 30-45sec and again putting them on ice for 5mins bringing the 

temperature down to 2-8℃. 250μl of pre-heated and cooled Luria Broth (LB) medium without 

ampicillin was added to this treated mixture and incubated for 1 hr on a floor shaker at 37℃ with 

225rpm. Afterwards, the bacteria were spread on a culture dish containing LB (Luria Broth) 

medium with 1000 × ampicillin (50μg/ml) and incubated at 37℃ for 16-20 hrs or overnight. Next 

morning, the plasmid was extracted using GenElute Plasmid Miniprep Kit (Sigma) and verified by 

both PCR and DNA sequencing. 

The resultant plasmids were designated as pmiR-Luc-NCKAP1-BS1mut, pmiR-Luc-NCKAP1-BS2mut, 

pmiR-Luc-NCKAP1-BS3mut, and pmiR-Luc-Notch1-BS1/2/3mut mutants, respectively. 

4.8.2 Generation of KLF14 and SMYD5 3’ UTR Reporters 

Reporter vectors harbouring sequences of the murine Kruppel-Like factor 14 (KLF-14) and SET 

and MYND domain containing 5 (SMYD5) were created using cDNA from VSMCs. The flanking 3’ 

UTR of the murine KLF14 gene (NM_001135093; 3’UTR: 1272nt-2970nt) or SMYD5 

(NM_144918;3’ UTR:1281nt-2491nt) gene was amplified by PCR with primers shown in table and 

cloned into the SacI and Hind III sites of the pmiR-reporter-basic vector (Thermo Fisher Scientific 
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Inc), designated as pmiR-Luc-KLF12 and pmiR-Luc-SMYD5, respectively. The process is exactly 

similar as described above. All vectors were verified by DNA sequencing. 

4.8.3 Generation of miR-214 Gene promotor. 

By using similar protocol as described above, two miR-214 gene promoter plasmids were 

generated. Briefly, the functional full length of miR-214 gene promoter (-640:0) and its truncated 

form (-640:-357) were recovered from mouse genomic DNA by PCR using respective primers 

shown in table 5. Amplified DNA fragments were cloned into the Sac I and Hind III sites of the 

pGL3-basic vector (Promega), designated as pGL3-miR-214_FL and pGL-miR-214-short, 

respectively. All vectors were verified by DNA sequencing. 
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Figure 13: Maps of pmiR-Luciferase Reporter, β-gal Control Plasmid (ThermoFisher) and 
pGL3 Basic vector (Promega) 

 



  
      
 
 

Page | 135 
 
 

  

Gene 

names 

Forward (5’-3’) Reverse (5’-3’) Application 

U6 snoRNA 

(mu/hu) 

GATGACACGCAAATTCGTG miRNA universal reverse primer 

(Invitrogen, A11193-051) 

Real-time RT-

PCR 

Mus/hu miR-

214 (mature) 

CAGGCACAGACAGGCAGT miRNA universal reverse primer 

(Invitrogen, A11193-051) 

Real-time RT-

PCR 

Mus Pri-miR-

214 

GCAAGGCTATGGCACTTACCTA CCTGTTGTTACTGGCCCTCA Real-time RT-

PCR 

Mus NCKAP1 GAGAAGCTCACCATCCTCAAC CAAGAAGCAAGGACAAGTTTGG Real-time RT-

PCR 

Mus PCNA TTGCACGTATATGCCGAGACCT ATTGCCAAGCTCTCCACTTGC Real-time RT-

PCR 

Mus  Twist-1 GAGGTCTTGCCAATCAGCCA CCAGTTTGATCCCAGCGTTT Real-time RT-

PCR 

pmiR-Luc-

NCKAP1-WT 

GTGGTGGAGCTCAGAC 

AAGCACGAGTTTCTGTTG 

CTGCTGAAGCTTCAAGGTGTGAT

ACAGTCTAGTG 

NCKAP1 3’UTR 

reporter clone 

(Sac I/Hind III) 

pmiR-Luc-

NCKAP1-

BS1mu 

gtggatgaaattttcttAaCgcGTGtgt

attttctgatcattggc 

gccaatgatcagaaaataca CACgcGtT 

aagaaaatttcatccac 

miR-214 

binding site 1 

mutation 

pmiR-Luc-

NCKAP1-

BS2mu 

ggcatctAcactgcctttacAACgcGT

Gataataaacaaccagacac 

gtgtctggttgtttattatCACgcGTTgta

aaggcagtgTagatgcc 

miR-214 

binding site 2 

mutation 

pmiR-Luc-

NCKAP1-

BS3mu 

tgctgccgccgcACgtagaaCgcGtac

ACtagaaacatctcatcc 

ggatgagatgtttctaGTgtaCgcgttcta

cGTgcggcggcagca 

miR-214 

binding site 3 

mutation 

pmiR-Luc- 
KLF14 
 

GTCGTC GAGCTC 
GACTGTCTTGCTGTCTATCT 

GTCGTC AAGCTT 
CTCAGCATTTAAAGATTTATAG 

KLF14 3’UTR 
reporter Clone 
(Sac I/Hind III) 

pmiR-Luc- 
SMYD5 
 

CACGAC GAGCTC 
TGTTATCTCACCTGGAAGGC 
 

CACGAC AAGCTT 
TCACCACTCACATTTTATTGAGAC 
 

SMYD5 3’UTR 
reporter clone 
(SacI/Hind III)          

pGL3-miR- 
214-FL 
 

gaggag GAGCTC 
aggggggagccccaacttatctga 
 

gaggag AAGCTT 
TTCCTGCACCAGGGGCTTGT 
 

Mouse miR-214 
gene promoter 
(-640:0)clone 

pGL3-miR- 
214-short 

gaggag GAGCTC 
aggggggagccccaacttatctga 

ctggtc AAGCTT 
TGGGGCCCCAGTATGGAAAA 

Mouse miR-214 
gene promoter 
(-640:-357) 
clone 

Table 7. Set of Primers used in this study 
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4.9 Plasmid Amplification and Extraction. 

4.9.1 Plasmid Amplification. 

Transformation was applied to amplify plasmid DNA using JM109 bacteria. Briefly, Bacteria and 

Plasmid/DNA was thawed on ice and 1μl of plasmid DNA was mixed with 30-50 μl of JM109 

bacteria aliquoted in pre-cold tubes for each amplification reaction. Gently mixed and incubated 

on ice for 30 mins before giving heat treatment at 42℃ for 1 min and again chilling the mixture 

for 3-5 mins by keeping in ice 2-8℃. 500μl of LB medium without antibiotics (ampicillin) was 

added to the plasmid/bacteria mixture and incubated at 37℃ for 1 hr on a floor shaker at 

225rpm. After incubation, the plasmid/bacteria mixture was transferred and evenly spread onto 

the surface of culture dish containing LB medium with antibiotics (ampicillin 50μg/ml) and 

incubated at 37℃ for overnight. Next morning, distinct single clones were picked and transferred 

to 14ml polystyrene round bottom tube containing 5ml LB each mixed with ampicillin. These 

tubes were incubated at 37℃ to help bacterial growth for 14-18 hrs in a shaker at 225rpm. After 

incubation, the samples were centrifuged at 4,000 × g for 10 mins, discarded the supernatant 

and bacteria was collected to obtain the plasmids. 

4.9.2 Plasmid Extraction. 

GenElute Plasmid Miniprep Kit (Sigam) was used to isolate and extract plasmid from bacteria as 

per manufacturer’s instructions.  

The collected bacterial pellet from previously described procedure was resuspended in 200μl of 

resuspension solution containing RNase A solution in 14ml polystyrene round bottom tube and 

mixed to obtain homogenised solution. This bacterial solution was transferred to 1.5ml 

microcentrifuge tube and mixed with 200μl lysis solution to lyse the cells. The lysis reaction 

should be terminated within 5 min by adding 350μl of Neutralization solution to stop the 
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reaction and help precipitate cell debris. Prolonged lysis permanently denatures supercoiled 

plasmid DNA and renders it unsuitable for most downstream applications. After mixing 

neutralization solution, the tube was centrifuged at 12,000×g for 10min. The supernatant clear 

lysate containing DNA was transferred to DNA binding column (pre-treated with 500μl column 

preparation solution) with a 2ml collection tube. Keep the apparatus (DNA binding column and 

the collection tube) at room temperature for 3-5 min to facilitate DNA binding. Centrifuge the 

column with the tube at 13,000 rpm for 30sec and discarded the flow through. Optional wash 

solution (500μl) was added to the column to avoid nuclease contamination of the final plasmid 

product (when the bacterial strain used contain the wild type EndA+ gene. 750μl of wash solution 

diluted with ethanol prior to use) was added to tube and centrifuged at 12,000 ×g for 1 min and 

discarded the flow through. The column was placed into new collection tube and 50μl elution 

buffer was added, incubated for 1-3 min and centrifuged at 12,000× g to collect plasmid in 

collection tube. Nanodrop spectrophotometer was used to measure plasmid DNA concentration 

before storing it in -20℃ freezer for future use. 

 

4.10 Luciferase Assay. 

4.10.1 Transient transfection and luciferase assay. 

Luciferase assay for NCKAP1 3’UTR reporters were conducted by co-transfecting VSMCs (cultured 

on 24 well, 0.04% gelatin coated plates) with individual reporter gene (pmiR-Luc-NCKAP1-WT, 

pmiR-Luc-NCKAP1-BS1mut, pmiR-Luc-NCKAP1-BS2mut, pmiR-Luc-NCKAP1-BS3mut, or pmiR-Luc-

NCKAP1-BS1/2/3mut, 0.15-0.20μg/2.5 x 104 cells) and control or miR-214 mimics (25nM) using 

TransIT-X2 Transfection Reagent (Geneflow Limited, UK), according to the manufacturer’s 

instructions. pmiR-Luc-β-gal (0.20μg/2.5 x 104 cells) or Renilla plasmid (15ng/well) was included 

in all transfection assays as internal control. Luciferase, Renilla, and/or β-galactosidase activities 
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were detected 48 hours after transfection using a standard protocol. Briefly, VSMCs were 

refreshed with new culture medium after overnight transfectionand the luciferase assay 

continued for 48-72hr post transfection.  For luciferase assay where Renilla gene was used as 

control, the culture medium was removed and cells were washed twice with 1× PBS (pre-warm). 

After washing, 100μl reporter lysis buffer (Promega) was added to each well and placed on 2D 

rocker for 30 min at room temperature. The cell culture plate with lysis buffer was then 

incubated in -80℃ freezer for 2h followed by thawing for 30 min on shaker at room temperature 

to facilitate cell lysis. The cell lysate was then transferred to 1.5ml eppendorf tube and 

centrifuged at 13,200 rpm for 5 min at 4℃. 15μl of supernatant from each sample were mixed 

with luciferase or Renilla substrate (Promega) to detect the activity using a Single-Tube 

Luminometer (Turner BioSystem Sunnyvale, CA, USA). Relative luciferase unit was defined as the 

ratio of Luciferase activity versus Renilla activity with that of the control set as 1.0. 

The activity of LacZ was detected using β-Gal Kit (Invitrogen) when the pShuttle2-LacZ was used 

as internal control. Similar procedure was adapted as described earlier for measuring luciferase 

activity, except for detecting β-galactosidase activity, where 10-15μl from cell lysate was diluted 

to a final volume of 30μl with distilled water and transferred to a fresh 1.5ml eppendorf tube. 

70μl of OPNG (Ortho-nitrophenyl-β-D-galactopyranoside) and 200μl of 1 × Cleavage buffer with 

β-mercaptoehanol (β-ME) were added to the diluted cell lysate. After vortex and brief centrifuge, 

the mixture was incubated at 37℃ for 30min. Hydrolysis of OPNG to the ONP anion by β-

galactosidase produces a bright yellow colour, a distinct feature of β-galactosidase presence and 

activity. Stop buffer (500μl) was added to mixture to stop the reaction and the mixture was 

observed at 420nm using a luminometer against a blank reaction mixture containing lysis buffer, 

OPNG and cleavage buffer. Relative luciferase unit (RLU) was defined as the ratio of Luciferase 

versus β-galactosidase or Renilla activity with that of the control (set as 1.0).  
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4.11 RNA extraction and Analysis. 

4.11.1 Total RNA Extraction. 

Before harvesting cell, all work area was cleaned with 75% ethanol to minimize contamination. 

Cell scrappers were sterilized in 75%  ethanol for 10 mins and rinsed with autoclaved 1X cold PBS.  

Cell culture medium from flasks or plates was removed and washed once with 1X cold PBS. Cells 

were scrapped in cold 1X PBS to minimize enzymatic activity and resulting cell suspension was 

collected in 1.5ml sterilized eppendorf tubes. The cells were centrifuged at 8,000rpm, 4℃ for 2 

mins to obtain cell pellet which were either preserved at -80℃ or processed further for RNA 

extraction. 

All RNA related work was performed in RNase free environment using 75% ethanol to clean work 

surface and by using sterilized/autoclaved tubes and pipette tips to minimise risk of RNA 

contamination and/or degradation. Total RNA was isolated from the cells using GenElute 

Mammalian Total RNA Miniperp Kit (Sigma-Alderich) according to manufecturer’s instructions. 

To fully inactivate RNase activity during RNA extraction, fresh Lysis solution was prepared each 

time by adding 2-mercaptoethanol at a ratio of 1:100 to lysis buffer (provided in the kit).  

Appropriate quantity of lysis solution/2-ME mixture was added to each cell pellet (250 or 500 𝜇𝑙 

for 5× 106cells or 1× 107 cells respectively. The cell solution was vortexed to dissolve all cell 

clumps before transferring it to the GenElute Filtration Column placed in a 2ml collection tube.  

The Cell solution was centrifuged at 13,200 rpm for 2 mins at room temperature.  Filtrate column 

was discarded from collection tube and equal volume (250-500𝜇𝑙) of 70% ethanol was added to 

the filtrate and mixed well to precipitate RNA. The lysate/ethanol mixture (500~700𝜇𝑙) was 

transferred into a clear GenElute binding column placed in 2ml collection tube and centrifuged at 

13,200rpm for 30sec. The flow through was discarded and GenElute binding column was again 

placed back in the same collection tube. If the volume of lysate/ethanol mixture was greater 
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than 700𝜇𝑙, then repeat the previous step to allow all RNA to bind to the column. 500𝜇𝑙 of wash 

solution 1 was added to each column and spun at 13,200rpm for 15-30 sec. Discarded the flow 

through and added 500𝜇𝑙 of wash solution 2 to each column and spun again at 13,200 rpm for 

15-30 sec. After the final wash and removal of flow through from collection tube, the sample 

column was centrifuged at maximum speed (13,200 rpm) for 2 mins to remove the traces of 

ethanol from the column. Binding columns were then transferred to new RNase free collection 

tubes and 50𝜇𝑙 of elution buffer was added to each column.  After incubation for 1 min at rom 

temperature, the column was centrifuged at maximum speed (13,200 rpm) for a minute to elute 

RNA. All RNA samples were kept on ice after centrifugation and for concentration measurement. 

NanoDrop spectrophotometer was used to measure concentration of RNA samples. RNA samples 

were either processed further (reverse transcribed) to obtain complimentary DNA (cDNA) or 

stored at -80℃ for future use. 

 

4.11.2 MicroRNA Extraction. 

Total RNA including microRNA was extracted from the cells using mirVana Protein and RNA 

isolation System kit (Thermo Fisher Scientific Inc) or TRI-reagent (Sigma-Alderich) according to 

the manufacturer’s instructions and subjected to DNase I digestion (Sigma-Alderich) to remove 

potential DNA contamination. 

Briefly, Cell pellet obtained from flasks using cold PBS and cell scrapper (previously described 

method) were mixed with 625μl ice-cold cell disruption buffer. Samples were vortexed to 

completely lyse the cells and to obtain a homogeneous lysate. Immediately, an equal volume of 

2× denaturing solution was added to the lysate to prevent RNA degradation. Next, 1250 𝜇𝑙 of 

acid-phenol:chloroform was added to the mixture and vortex for a minute. After mixing, the 

samples were centrifuged at 13,200 rpm for 5 mins at room temperature, which resulted in 
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separation of sample into upper colourless aqueous phase containing RNA and lower organic 

phase. The upper aqueous phase was carefully collected into new RNase free tube. 100% ethanol 

was added to the aqueous phase (collected). The volume of ethanol was 1.25 times to the 

volume of the recovered aqueous phase. The ethanol/lysate complex was mixed thoroughly and 

aliquoted onto a filter cartridge placed on the collection tubes. The mixture was centrifuged at 

13,200 rpm for 30sec and the flow through was discarded. The process of centrifugation was 

repeated till the entire ethanol/lysate sample had filtered through the cartridge. MicroRNA wash 

solution 1 (700𝜇𝑙) was added to the filter cartridge and centrifuged for 30 sec with the flow 

through discarded. Wash solution 2/3 (500𝜇𝑙) was added to the filter cartridge, centrifuged for 

30 sec and discarded the flow through. A repeat wash procedure was performed with wash 

solution 2/3 to completely wash the microRNA. The filter cartridge was centrifuged empty for a 

minute to remove any residual fluid. The filter cartridge was transferred into a fresh collection 

tube and 100𝜇𝑙 elution solution (pre-heated to 95℃) was added to the centre of the filter 

cartridge. The miRNA elute was recovered by centrifugation for 30sec. NanoDrop 

spectrophotometer was used to measure RNA concentration before further processing or storing 

the samples at -80℃. 

Total RNA including microRNA was also extracted from the cells using TRI-reagent (Sigma-

Alderich) according to manufacturer’s instructions. The cells (in flasks) were scrapped using 

sterilized scrapper in cold PBS and transferred to sterilized RNase free 1.5ml eppendorf tubes. 

Centrifugation of cells at 8,000rpm, 4℃ for 2 mins resulted in cell pellet. Supernatant was 

discarded and 500𝜇𝑙 of TRI-reagent (Sigma-Alderich) was added to each sample. Whereas, if cells 

were cultured in 6 well plates, 500 𝜇𝑙 of TRI-reagent was directly added on top of cells, after 

being washed with cold PBS. Pipetting several times resulted in homogenised cell lysate, which 

was transferred to RNase free 1.5ml tubes. The homogenised samples were left at room 
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temperature for 5 minutes to permit complete dissociation of nucleoprotein complexes. The 

lysate were centrifuged at 13,200rpm for 1 min to remove cell debris and the resulting 

suspensions were transferred to new RNase free tube. 200𝜇𝑙 chloroform (Sigma-Alderich) was 

added to each sample and shacked vigorously for 15 sec. The resultant mixture was left at room 

temperature for 5 minutes before centrifuging the samples at 12,000 ×g for 15 minutes at 4℃. 

After centrifugation, the sample separated into upper colourless part and lower pink coloured 

(organic) part containing cellular debris. Upper colourless supernatant containing RNA was 

carefully collected in new RNase free tubes. 500𝜇𝑙 of isopropanol (equal volume to that of TRIzol 

Reagent) was added to each sample and mixed gently. Samples were incubated at room 

temperature for 10 minutes before centrifuging them at 12,000 × g for 10 mins at 2-8℃. 

Centrifugation results in RNA precipitation as small pellet at the bottom of the tube. Supernatant 

was discarded and RNA pellet was washed with 75% ethanol (500𝜇𝑙, equal volume as that of 

TRIzole reagent used). The samples were centrifuged at 7,500 × g for 5 mins at 2-8℃ and the 

resulting supernatant discarded. The resulting RNA pellet was air dried for 10 mins and dissolved 

in 30𝜇𝑙 of RNase free water by gentle mixing. RNA concentrations were measured using 

NanoDrop spectrophotometer and were preserved in -80℃ freezer. 

4.11.3 Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 

For reverse-transcription polymerase chain reaction (RT-PCR), RevertAid Reverse Transcriptase 

by Thermo Scientific was used. RNA samples from -80℃ freezer were thawed on ice and gently 

mixed. 1-2𝜇g of RNA was used as template for each reaction by diluting with RNase-free water 

and mixed with 1 𝜇𝑙 of random primer (50ng/𝜇𝑙, Promega). The final volume of mixture was 

13μl. After mixing and briefly centrifuging, this reaction mix was placed in a thermal cycler and 

run a programme at 65℃ for 5mins followed by cooling down to 4℃. The above treatment 

destabilizes RNA secondary structure (because of G-C rich sequence) and enhances primer 
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bonding. Subsequently, master mix for RT-PCR was prepared which includes following 

components:  

5× Reaction Buffer 4μl, dNTPs (2’-deoxynucleoside 5’-triphosphate) mixture (10mM) 2μl, 

Thermo Scientific RiboLock RNase Inhibitor 0.5μl, RevertAid Reverse Transcriptase 0.5μl. The 

final volume for each reaction was 20μl.  This master mix was combined with the RNA samples 

and start the thermal cycler with the following programme; 25℃ for 10 mins for annealing 

followed by an extension phase at 42℃ for 60 mins and finally to stop reaction by enzyme 

denaturation, the temperature raises to 70℃ for 10 min. The reaction was then cooled down and 

holds at 4℃.  The resultant complimentary Deoxyribonucleic acid (cDNA) product was diluted to 

working concentration of 5ng/μl and stored at -20℃ for future use. 

4.11.4 microRNA Reverse transcription. 

The microRNA cDNA was prepared by using NCode VILO miRNA cDNA synthesis Kit (Invitrogen), 

which synthesize poly(A) tails of all the microRNA and then synthesizing the cDNA from the tailed 

population in a single reaction. Briefly, 1 μg of template RNA was mixed with 4μl of 5× Reaction 

Mix and 2μl of 10× SuperScript Enzyme Mix and topped up to 20μl by adding DEPC-treated 

water. The mixture was mixed and briefly spun down before incubating in a PCR thermal cycler 

running following programme; 37℃ for 60mins followed by 95℃ for 5 min to terminate the 

reaction and finally cooled down and hold at 4℃. The final cDNA product was diluted to 5ng/μl 

and stored in freezer at -20℃ or used immediately. 

4.11.5 Polymerase Chain Reaction. (PCR) 

The working area was cleaned with 70% ethanol and sterilize pipette tips were used to minimise 

contamination while preparing Real Time Polymerase Chain Reaction samples. To minimise 

pipetting error, the PCR reaction mix was prepared by mixing 13μl nuclease free water, 2.5μl 10 

× DreamTaq Buffer, 2.5μl dNTP mix (final concentration 2mM), 2μl primers (1μl forward and 
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reverse primer each) and 0.14 μl DreamTaq DNA Polymerase for each PCR reaction. The mixture 

was mixed and aliquoted to individual PCR tubes containing 2μl of cDNA. The reaction mix was 

incubated in PCR thermal cycler (DNA Engine Tetrad 2: MJ Research) and run the programme as 

described in table 6. 

 

Step Temperature Time Number of Cycles 

Initial Denaturation 95 5 mins 1 

Denaturation 95 1 min  

Annealing 55 1 min 35 

Extension 72 1 min/kb  

Final Extension 72 5-10 mins 1 

Table 8. Normal PCR conditions 

UltraPure Agarose (Invitrogen) get electrophoresis was performed to detect and identify the final 

PCR product. Agarose gel is used to separate and purify the DNA segments [nucleic acid 

fragments] ranging in size from 0.2kb to 20kb [kilo base pairs]. Concentrations of agarose gel 

preparations vary from 0.3% to 3% depending upon the nature and size of DNA segment to be 

analysed. Smaller fragments resolve better in gel with higher percentage of agarose and vice 

versa. For agarose gel preparation, calculated amount of agarose gel powder was mixed with TAE 

buffer [usually 1.5g in 100ml of TAE buffer] and heated in a microwave. The mixture was stirred 

after every 30 seconds to make it homogenise. When the solution became clear, transferred it to 

water bath at 50˚c for 10 mins or cool down under cold running water to bring the temperature 

down to around 50-60℃ while assessing by touch. 5µl of GelRed Nucleic Acid Stain (10,000 ×in 

DMSO; Biotium) was added to the solution. Poured the solution in a closed edged casting glass 

plate to avoid solution spillage. Fixed a comb at one end of the plate and left it for 2 hours to 
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settle down and solidify. After 2 hours, transfer the gel to a reservoir containing TAE buffer. Filled 

the wells with 20-30 μl of DNA samples along with 10-15 μl of DNA ladder and run the gel by 

applying the electrical current of 160V for 25 mins or till the dye front reached the end of the gel. 

Captured the florescent image depicting expression of cDNA using AlphaImager HP System 

(Alpha Innotech) with dual wavelength ultra violet illumination (365 nm or 302 nm) and 

automatic image processing software by Alpha Innotech. 

4.11.6 Real-Time Polymerase Chain Reaction (q-PCR) 

The working area was cleaned with 70% ethanol and sterilized pipette tips were used to avoid 

any contamination during qPCR samples/mixtures preparation. cDNA samples were thawed from 

-20℃ freezer and kept on ice. 

For qPCR, KAPA SYBR FAST qPCR Kit Master Mix (KAPA Biosystems) was used. The qPCR master 

mix contains following components shown in table 7. 

Reagents Volume for 1 reaction 

KAPA SYBR FAST qPCR Master Mix 5μl 

Forward primer 1μl 

Reverse Primer 1μl 

RNase free water 1μl 

Table 9. Components and quantity for qPCR reaction, using KAPA SYBR FAST qPCR Kit 

 

For miRNA samples, the master mix consists of NCode EXPRESS SYBR Green ER qPCR SuperMix 

Universal (Thermo Fisher Scientific Inc). miRNA specific forward primer was mixed with miRNA 

universal reverse primer (Invitrogen) in equal quantity and topped up with RNase free water to a 

final volume of 8μl which then added to each well of 384 well plate. The specific quantities used 

were as follow: 
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Reagents Volume for 1 reaction 

NCode EXPRESS SYBR GreenER qPCR 

Master Mix 

5μl 

miRNA specific Forward Primer 1μl 

Universal Reverse Primer 1μl 

RNase free water 1μl 

Table 10. Components and quantity of qPCR for mircoRNA 

 

The above master mix was gently mixed and 8μl was aliquoted in each well of 384 wells plate 

(MicroAmp Optical) along with 2μl of cDNA sample (5ng/μl). The plate was sealed with 

MicroAmp PCR film vortexed briefly and centrifuged at 2000 rpm for 2 min. An Applied 

Biosystems 7900 HT TaqMan Real-Time PCR System was used to run the qPCR reaction with the 

following programme: 95℃ for 10 min, 40 cycles of 95℃ for 15 sec and 60℃ for 1min. Once the 

reaction completed, the result was analysed using SDS 2.3 software (Applied Biosystems). The 

raw Ct values and the relative expression abundance of the mRNA of interest were analysed and 

calculated using relative quantification methods (2-δδCt ). Relative mRNA or miRNA expression 

level was defined as the ratio of target gene expression level or miRNA expression level to 18S or 

U6 small nuclear RNA exoression level, respectively, with that of the control sample set as 1.0.  

The respective endogenous control was set as 18S rRNA for mRNA detection and U6 snRNA was 

used as the endogenous control to normalise the expression levels of small/micro RNAs. 
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4.11.7 PCR Quality control 

A number of steps were employed to ensure a good quality for real time PCR measurements and 

the resultant product, which ranges from primer design, RNA and cDNA quality and quantity to 

experiment protocol which involves conducting the experiment in triplicate, running the RT and 

qPCR with negative control and general cleanliness to avoid cross-contamination. 

Primers were designed with following criteria; 

Intron spanning primers were designed, between 18–25 bases in length, and have a Guanine-

Cytosine content between 40–60% which helps to prevent mismatch stabilization. 

Designed primers to have comparable melting temperatures (Tms) between 58 and 65°C. The Tm 

difference between the forward and reverse primers should be ≤ 4°C, and the last five nucleotides at 

the 3’ end of each primer should not contain more than two guanines (G) or cytosines (C).  

Avoid sequence complementarity within each primer and between all primers used in an assay. 

Standard operating and cleaning procedures were employed. Work area was cleaned with ethanol 

along with sterilised equipment was used to minimize cross-contamination. Quality and quantity of 

RNA and cDNA was ensured to lie between the optimum values with running negative controls for RT 

reaction. Running positive and negative control for qPCR. Running the experiment in triplicate and 

detecting the cDNA for specific product band size by running agarose gel electrophoresis and finally 

checking for cDNA sequence to valide the PCR product is indeed our intended gene product.  
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4.12 Protein Extraction and Analysis. 

4.12.1 Chemicals and Buffers 

Solution name Components 

RIPA Buffer Tris-HCL: 50 mM, pH 7.4 

NP-40:   1% 

Na-deoxycholate:0.25% 

NaCl:  150mM 

5 × SDS Loading Buffer Tris-Cl (0.25M, pH 6.8) 

SDS (Sodium dodecyl sulphate:  10%) 

Glycerol:  (50%) 

Bromophenol Blue: (0.25%) 

DTT (Dithiothreitol):  0.5 M) 

10 × Tris-Glycine Buffer,  

pH 8.4,  

Tris Base:   30.3 g 

Glycine:    144.1 g 

Distilled water up to 1 litre 

1 × Running Buffer 10 × Tris-Glycine Buffer:  100ml 

10% SDS:  10ml 

Distilled water up to 1 litre 

1 × Transfer Buffer 10 × Tris-Glycine Buffer: 100 ml 

Methanol:   200 ml 

Distilled water up to 1 litre 

10 × TBS Buffer Tris-HCL:    24 g 

Tris Base:  5.6 g 

NaCl:           88 g 

Distilled water up to 1 litre 

TBST (0.1%) 10 × TBS:  100 ml 

Tweet 20:      1 ml 

Distilled water up to 1 litre 

 

Table 11. List of Chemicals and buffers used for western blot experiment 
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4.12.2 Protein Extraction. 

The work surface was cleaned using 70% ethanol and autoclaved pipette tips and tubes were 

used to minimise contamination.  

Similar to the process mentioned above for RNA extraction, the cells were harvested from 

T27/T75 flasks using cell scrapper (cleaned with 70% ethanol and rinsed with PBS) in cold 1 × PBS 

to minimise proteolytic activity. Centrifugation at 8,000 rpm for 2 min at 4℃ gives cell palette, 

which after removing the supernatant was preserved at -80℃ or processed immediately for 

protein extraction. Each cell pellet was mixed with 100μl of lysis buffer (RIPA Buffer containing 

Protease Inhibitor Cocktail by Sigma- Alderich) and 0/5% Triton on ice. The lysate was vortexed 

and then sonicated at 4℃ for 20sec to disrupt cell membrane and facilitate release of protein 

content. The lysate were left on ice for 1 hour while vortexed after every 15 min to completely 

lyse the cells. After incubation on ice, the cell lysate was centrifuges at 13,200 rpm for 10 

minutes at 4℃ to remove cellular debris. Up to 100 μl of supernatant from each sample was 

transferred to new pre-cooled eppendorf tube and placed on ice. The concentration of protein 

was measured by using BIO-RAD Protein Assay Reagent (Bio-Rad Herts UK). The Bio-Rad solution 

was first diluted in a 1:5 ratio by using distilled water. 998μl of diluted Bio-Rad assay solution was 

added to 2μl of each protein sample, mixed and incubated at room temperature for 10 minutes. 

A negative control was prepared by adding 2μl of lysis buffer with 998μl of Bio-Rad Protein Assay 

solution to normalize the final protein concentration values. Protein concentration was 

measured by using spectrophotometer (Smart Spec 3000: Bio-Rad) at 595nm wavelength. Lysis 

buffer and pre-warmed 5 × SDS Protein loading buffer was added to each sample to adjust and 

normalise the concentration. The protein samples were heated at 95℃ for 10 min to denature 

any secondary structures followed by brief vortex and centrifugation. After cooling down to 
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room temperature, the samples were used for western blot experiments or stored in -80℃ 

freezers. 

4.12.3 Western Blot. 

Western blot electrophoresis was performed using a Mini-PROTEAN Tetra Cell system (Bio-Rad, 

UK) and proteins were separated by using sodium dodecyl sulphate-polyacrylamidegel 

electrophoresis (SDS-PAGE) with 6-10% Tris-glycine gels. The 10% separating and 6% stacking 

gels were prepared fresh on the day of experiment. The constituents and their relative quantity 

for making 10% separating gel and 6% stacking gel is descried in table 10 and 11. 

The 10% separating gel (5ml) was prepared first and poured in glass casting chamber. 1ml 

Butanol (Sigma-Alderich) was added on top of the gel to level its surface. The mixture was left at 

room temperature for 20 minutes to let gel solidify, after which the butanol was removed and 

solidified gel was washed twice with distilled water to remove traces of butanol. Now, 2.5ml of 6% 

stacking gel was added on top of separating gel and immediately a plastic comb was inserted into 

stacking gel creating 12 wells per gel. Again, the solution was left at room temperature for 20 

min to let stacking gel solidify after which the gel glass cassette was transferred to a chamber for 

running electrophoresis. 1 × running buffer was added to the chamber to the extent that it 

covers the gel and the inserted comb. 10-12μl of ColorPlus Pre-stained Protein Ladder (New 

England BioLabs Inc) was added to first well as marker labelled for specific protein sizes. 

Calculated amount of protein (usually 20-30 μg) were loaded into each well and the gel was run 

at 90 Volts for 20-25 min to help stacking the proteins followed by 160 Volts for 70-90 min at 

room temperature until the protein marker ladder reached the bottom of gel. 
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Reagents Quantity for 1 gel (10%) 

Double distilled water 1.9 ml 

Acrylamide (National Diagnostics, USA) 30% Stock 1.7 ml 

Tris-HCL Buffer 1.5M (pH 8.8) 1.3 ml 

SDS (10%) 50 μl 

APS (10%) 50 μl 

TEMED 4μl 

Table 12. Reagents for 10% separating gel (final vol. 5ml) 

 

Reagents Quantity for 1 gel (5%) 

Double distilled water 2.1 ml 

Acrylamide (National Diagnostics, USA) 30% Stock 0.5 ml 

Tris-HCL Buffer 0.5M  (pH 6.8) 0.4 ml 

SDS (10%) 30μl 

APS (10%) 30μl 

TEMED 3μl 

Table 13. Reagents for 5% stacking gel (final vol. 3ml) 

 

Polyvinylidene difuoride (PVDF) membranes (GE Healthcare) are used to transfer protein form 

gel to membrane. Before transferring proteins, PVDF membrane is activated by submerging it in 

methanol for about 5 min. After this, the membrane is soaked in pre-cold 1× transfer buffer 

along with pre-washed blotting sponges and filter papers. After completion of electrophoresis, 

the gel was assembled with PVDF membrane along with blotting sponges (transfer buffer soaked) 

and filter papers in a western blot cassette in correct order/ direction to facilitate protein 

transfer. The assembly was performed in 1× transfer buffer and air bubbles were carefully 
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removed by rolling over the surface with a roller. This apparatus is placed into Mini Trans Blot 

Central Core (Bio-Rad) filled with pre-cold 1× transfer buffer. The proteins were electro-

transferred to membrane for 2 hours 30 min at 60Volts. After transfer, the membrane was 

removed from blotting cassette and blocked with milk (5%) diluted in 1× TBST buffer on a 2D 

rocker, with the protein facing upwards, for 1 hour at room temperature. The membrane was 

then incubated with specific antibody prepared in 5% skimmed milk in TBST, overnight on a slow 

roller at 4℃. 

Next morning, membrane were washed with 1× TBST 3 times for 10 min each wash on 2D shaker. 

The membrane was then incubated with horseradish peroxidase-conjugated secondary antibody 

in 5% milk TBST for 1 hr while gently shaking at room temperature. After secondary antibody 

incubation, the membrane is again washed 3 times 10 min each with 1 × TBST buffer. Then the 

membrane was incubated with ECL-Plus Reagent (Amersham Biosciences, Stockholm, Sweden) 

for 2-3 min at room temperature. After removing excess ECL solution, the membrane was placed 

in an autoradiographic cassette and transferred to dark room, where membranes are exposed 

against a piece of X-ray film (Hyperfilm ECL, GE Healthcare) for normally between 10 sec to 5mins 

depending upon strength of signals from protein under observation. The film was developed with 

an X-Ray Film Processor (SRX-101A, Konica Minolta, USA) using Fix buffer and Develop Buffer.In 

some experiments, the blots were subjected to densitometric analysis with Image J software. 

Relative protein expression level was defined as the ratio of target protein expression level to 

GAPDH expression level with that of the control sample set as 1.0. 
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4.13 VSMC proliferation assays. 

4.13.1 Cell counting. 

For cell counting, VSMCs were plated (1x105 per well) and cultured in 6 well plates pre-coated 

with 0.04% gelatine and supplemented with complete culture medium containing DMEM, 10% 

FBS and 1% Penicillin/streptomycin-glutamine. The plates were placed in humified incubators at 

37˚c and 5% CO2. After culturing for 24hrs, the cells were transfected with single miR-214 

mimics/inhibitor, or co-transduced with miR-214 inhibitor/NCKAP1 shRNA, or respective 

negative control as indicated in the figures. After 12-16 hrs of transfection, the cells were starved 

by culturing them in the DMEM supplemented with 1% Penicillin/streptomycin-glutamine and 

0.5% serum for further 24 hrs. After starvation process, the cells were treated with 20% FBS or 

PDGF-BB (10ng/ml) for 48hrs before trypsinizing and manually counting the cells under 

hematocytometer.  

4.13.2 BrdU incorporation assay. 

VSMCs were transfected as described above, and were re-cultured (0.75 x104 per well) in 96 well 

plates overnight, followed by serum starvation for 24 hours. Starved VSMCs were re-stimulated 

with 20% FBS or 10ng/ml PDGF-BB, respectively, for 48 hours. Cell proliferations were evaluated 

using 5-Bromo-2’-deoxy-uridine (BrdU) Labelling and Detection Kit II (Roche) according to the 

manufacturer's instructions. Briefly, cells were incubated with BrdU at a final concentration of 

10μM for 8~12h before measurement. After fixation, cellular DNA was digested by nuclease and 

labelled with a peroxidase-conjugated BrdU antibody, followed by incubation with the 

peroxidase substrate. The absorbance of the samples was measured by a microplate reader at 

405nm (OD405) with reference measurement at 490nm (OD490). Absorbance (A405nm-A490nm) 

values representing cell proliferation ability were compared between treatments. 
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4.14 VSMC migration assays. 

4.14.1 Wound healing (Scratch model). 

For scratch wound healing assays, VSMCs were cultured on 12-well plates 24h prior to 

transfection, and then transfected with miR-214 mimics, miR-214 inhibitor, or respective miRNA 

negative control as described earlier. After 12-16 hrs of transfection, the confluent cells were 

starved by culturing them in the DMEM supplemented with 1% Penicillin/streptomycin-

glutamine and 0.5% serum for further 24 hrs. After starvation process, the cells were treated 

with hydroxyurea (2mM) to inhibit cell proliferation for 2hrs before subjecting them to 20%FBS 

or PDGF-BB (10ng/ml) treatment. The cells were scratched using a sterilized 200μl pipette tip in 

criss-cross manner and rinsed with PBS or DMEM three times to remove cell debris. 2 crosses 

were made in each well to get duplicate readings for each treatment as well as to better identify 

the scratched area. The cells were cultured in DMEM supplemented with 20% FBS or PDGF-BB 

(10ng/ml) in the presence of 2mM hydroxyurea. The observations were made and 

photomicrographic images were taken at 0hr and 24 hrs, respectively. ImageJ software was used 

to measure the denuded cell surface of each wound (criss-cross) by two experienced 

investigators blinded to the treatments, and the percentages of cell closures (migrated area) 

were calculated as the denuded area difference between hour 0 (A0) and hour 24 (A24) over the 

denuded area at hour 0, then times 100 [or (A0-A24)/A0*100].  

4.14.2 Trans-well migration assay. 

Cell migration plays a fundamental role in regulating several pathological and physiological 

processes such as embryonic development, inflammation, immune response, wound healing, and 

tumorigenesis. Transwell migration assay is an excellent tool to observe cellular movement 

under different immunomodulatory and inflammatory stimuli and provides us ability to better 
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understand underlying chemokinetic and chemotactic signals regulating biological mechanisms. 

The transwell migration assay involves two compartment system whereby cells are stimulated to 

migrate from an upper compartment into a lower compartment through a porous membrane 

under the influence of certain chemoattractant molecule. The relative migratory profile of cells 

gives us information about cellular responses towards different molecules and is a gradient of 

cellular function. 

VSMCs, cultured in flasks, were transfected with miR-214 (mimics or inhibitor), NCKAP1 shRNA 

and relevant controls for overnight. Next morning, refreshed the medium and continued 

culturing the transfected cells for 24 hrs in DMEM containing 0.5% serum for 24 hours. After that, 

the cells were harvested by using trypsin, washed with PBS and resuspended in serum free 

medium. Transwell inserts precoated with 0.5% gelatin were placed in 24 well culture plate. 

An aliquot (250,000 cells/200µl) of the cells in serum-free DMEM was dispensed into the trans-

well inserts (8µm pore size, Greiner Bio-One Ltd, UK. Item number: 662638). Added 500-550µl of 

culture medium with 20%FBS or 30ng/ml of PDGF-BB in the lower chamber and incubated the 

trans-well apparatus at 37°C in a 5% CO2 incubator for 18~24 hours. The cells will migrate across 

the porous membrane under the influence of chemoattractant signals from the 

treatment/culture medium placed in the lower chamber. After certain time, removed the culture 

media from cell culture inserts and lower chamber, and fixed the cells with 4% PFA for 20 mins at 

room temperature and subsequently washed them twice with PBS. Transfer the cell inserts into 

new 24 well cell culture plate and incubate them with 0.1% crystal violet added in lower chamber 

for 15-20 mins at room temp. Removed the stain and washed with PBS twice to remove 

excessive crystal violet. Carefully removed the non-migrated cells from the inner surface of top 

culture inserts with cotton swab and observed the migrated cells under the microscope.Images 
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were captured at five fixed locations (right, bottom, left, up and centre), and migrated cells were 

counted by two experienced investigators blinded to the treatments.    

4.15 Indirect immunofluorescent staining for cells. 

For double immunofluorescent staining of NCKAP1 and Phalloidin-FITC, VSMCs transfected with 

miR-214 and NCKAP1 shRNA and/or respective controls were cultured in chamber slides and 

subject to different treatments (20%FBS and PDGF-BB).  Upon reaching 60%-70% confluence, the 

treatment medium was discarded and cells were washed with PBS twice before fixing with 4% 

paraformaldehyde (PFA) at room temperature for 5-10 mins. Fixation immobilizes antigens while 

retaining cellular and sub cellular structures. After fixation, the cells were washed with PBS 3 

times for 10 mins each before proceeding to permeablization process. Permeablization is 

required when antibody needs access to the inside of the cells to detect proteins. 

Permeablization was performed by treating the cells with Triton x100 (0.1% Triton x100 in PBS) 

for 10 mins at room temperature. The cells were then blocked by using 5% BSA in PBST (1x PBS + 

0.2% Tween 20) for 1 hr at room temperature before incubating them with primary antibody 

NCKAP1 and rabbit isotype IgG control at a dilution of 1:500 in blocking buffer overnight at 4℃. 

Next morning, cells were washed with PBS three times, 10 mins each before incubating them 

with the appropriate secondary antibody (donkey anti-rabbit IgG) conjugated with CF 568 

fluorescence (Sigma, in 1:400 dilution) and Phalloidin-FITC (P5282) according to manufacturer’s 

instructions. After incubating cells with secondary antibody, in dark, for an hour, they were 

washes with PBS 3 times, 10 mins each and counterstained with 4’,6-diamidino-2-phenylindole 

(DAPI; Sigma). Finally the cells were mounted with fluoromount-G (Cytomation; Dako, Glostrup, 

Denmark). 
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Images were examined using SP5 confocal microscope with Plan-NEOFLUAR 63x objective lenses 

and Leica TCS Sp5 software (Leica, Germany) at room temperature, and were processed with 

Photoshop software (Adobe).  

For detecting Ki-67-positive cells, VSM cells subjected to various treatments were fixed and 

blocked as described earlier and labelled with antibody against Ki-67 (Abcam), or rabbit isotype 

IgG control, and visualized using a donkey anti-rabbit IgG antibody conjugated with CF™ 568 

fluorescence (Sigma, in 1:400 dilution).  

For Phalloidin-FITC staining alone, similar procedure was applied involving separate setting of 

cells with different treatments as indicated in the figures. The VSMCs were fixed, blocked and 

labelled with Phalloidin-FITC (P5282) according to the manufacturer's instructions. 

4.15.1 Immunofluorescent Staining for Sections. 

Paraffin embedded sections of mouse aorta were numbered and subjected to 

immunohistological analysis with appropriate antibody. Before proceeding to staining protocol, 

the slides were deparaffinized and rehydrated by subjecting them through a process which 

includes treating the slides/tissue with Xylene to remove paraffin and then through ethanol 

concentration gradient (ranging from 100% ethanol to 50% ethanol) to rehydrate them and 

finally immersing the slides in cold water.  Placed all section slides in a staining chamber to 

facilitate deparaffinization and rehydration step by ensuring equal treatment to all the sections. 

The slides holding tissues were kept in xylene for 2 times 5 mins each to get paraffin wax dissolve 

completely, followed by their transfer to ethanol concentration gradient chambers containing 

100%, 90%, 70% and 50% ethanol. The slides were immersed in each chamber for 3-5 mins 

before finally immersing them in water for complete hydration. After the tissue is rehydrated, it 

should not be allowed to dry as drying out will cause non-specific antibody binding and hence 

high background staining. The tissue sections were then subjected to antigen retrieval process. 
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The antigen retrieval method serves to break the methylene bridges (may formed during fixation 

process) and expose the antigenic sites in order to allow antibodies to bind. Sodium citrate buffer 

(Sodium Citrate (10mM) 1.5gm, ddH2O 500ml, pH 6.0) were applied to help with antigen 

retrieval. The slide chamber was filled with sodium citrate solution and covered with covering 

film with holes in it to allow evaporation and to refill antigen retrieval solution. The slide 

chamber filled with sodium citrate solution was placed in microwave and set to full/maximum 

power until solution starts boiling. Boiled the slide chamber for 20 mins while constantly 

checking for evaporation and subsequently filling up with more antigen retrieval solution to 

avoid slides from drying. After 20 mins of heat treatment, took out the slide box and let it cooled 

at room temperature for 30 mins. The slides were washed then with 1x PBS 3 times, 5 mins each. 

All tissue sections were then blocked with 5% BSA in PBS (Sigma) for 1 hr at room temperature. 

After blocking, wash the slides again with PBS, 3 times 5 mins each and then encircle the tissue 

sections using PARA Pen. Primary antibodies (NCKAP1 or rabbit isotype IgG control) prepared in 

blocking solution were added in a drop wise manner on the tissue sections and incubated at 4℃ 

overnight. 

Next morning, cells were washed with PBS three times, 10 mins each before incubating them 

with the appropriate secondary antibody (donkey anti-rabbit IgG) conjugated with CF 568 

fluorescence (Sigma, in 1:400 dilution) and Phalloidin-FITC (P5282) according to manufacturer’s 

instructions. After incubating cells with secondary antibody, in dark, for an hour, they were 

washes with PBS 3 times, 10 mins each. Sections were counterstained with DAPI (4’,6-diamidino-

2-phenylindole, Sigma) at a ratio of 1.1000 for 5mins and mounted with fluoromount-G 

(Cytomation;Dako, Glostrup, Denmark). 
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Images were examined using SP5 confocal microscope with Plan-NEOFLUAR 63x objective lenses 

and Leica TCS Sp5 software (Leica, Germany) at room temperature, and were processed with 

Photoshop software (Adobe).  

For double immunofluorescent staining of NCKAP1 and Phalloidin-FITC,a separate setting of cells 

with different treatments as indicated in the figures were fixed and labelled with anti-NCKAP1, or 

rabbit isotype IgG control. After then, cells were visualized using a donkey anti-rabbit IgG 

antibody conjugated with CF™ 568 fluorescence (Sigma, in 1:400 dilution) and Phalloidin-FITC 

(P5282) according to the manufacturer's instructions. Cells were counterstained with 4', 6-

diamidino-2-phenylindole (DAPI; Sigma) and mounted in Fluoromount-G (Cytomation; DAKO, 

Glostrup, Denmark). Images were examined using SP5 confocal microscope with Plan-NEOFLUAR 

63x objective lenses and Leica TCS Sp5 software (Leica, Germany) at room temperature, and 

were processed with Photoshop software (Adobe). For detecting Ki-67-positive cells, cells 

subjected to various treatments were fixed and labelled with antibody against Ki-67 (Abcam), or 

rabbit isotype IgG control, and visualized using a donkey anti-rabbit IgG antibody conjugated with 

CF™ 568 fluorescence (Sigma, in 1:400 dilution). For Phalloidin-FITC staining alone, another 

setting of cells with different treatments as indicated in the figures were fixed and labelled with 

Phalloidin-FITC (P5282) according to the manufacturer's instructions.  

4.16 Proteomics studies. 

4.16.1 Sample preparation for Proteomic analysis. 

VSMCs transfected with control or miR-214 mimics were directly lysed in a urea-based lysis 

buffer [10ml buffer containing 9770 µL of 8M urea in 20mM HEPES, pH 8.0, 100 µL of 100 mM 

Na3VO4 (sodium orthovanadate), 20 µL of 500mM NaF (sodium fluoride), 10 µL of 1M β-glycerol 

phosphate, and 100 µL of 250mM Na2H2P2O7 (disodium pyrophosphate) and proteins were 

digested using trypsin. The enriched peptides were subjected to mass spectrometry. 
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4.16.2 Mass Spectrometry. 

Protein-derived peptides were analysed by LTQ Orbitrap Velos mass spectrometer (Thermo 

Fisher Scientific, Hemel Hempstead, UK) coupled to EASY-nLC (Proxeon, ThermoScientific). 

Peptide separation was performed in a C18 Pepmap reverse phase column (75 μm I.D, 3μm 

particle size; proxeon, Thermo-Fisher) using solution A (0.1% formic acid in liquid 

chromatography (LC)-MS grade water) and solution B (0.1% formic acid in LC-MS ACN) as mobile 

phases. Gradient runs from 2% to 30% in solution B for 100 min and from 30% to 60% for 10 min 

followed by a final 10 min wash at 85% in solution B. Full MS scans were acquired in the Orbitrap 

mass analyser over the range m/z 375–1500 with a mass resolution of 30,000. Tandem MS 

(MS/MS) was acquired using top seven data-dependent acquisition using high energy collision 

dissociation (40%). Gas phase fractionation method was applied to acquire MS/MS scans. 

4.16.3 Peptide Identification by Database Search. 

MS/MS data were converted to mgf files using Mascot Distiller (version 2.2) and searched against 

the 2012_03 databases of UniProt-TrEMBL (104,945 and 60,427 entries for Homo 

sapien and Mus musculus sequences,respectively) and UniProt SwissProt (20,249 Homo 

sapiens and 16,521 Mus musculus entries) and a decoy database using the Mascot search engine 

(version 2.2). The data was searched twice, restricting searches against human or mouse-specific 

sequences in each separate search. Significance of peptide identification was assessed by 

comparing results returned by searches against random and forward databases. Fold discovery 

rates at several cut-off values of Mascot scores and mass tolerances were used to calculate an 

empirical value of probability of random identification.  

4.16.4 Data Analysis and Volcano Plot Analysis. 

Relative quantification of peptides across experimental conditions was achieved by comparing 

peak heights of extracted ion chromatograms (automated by Pescal). The data were normalized 
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to the sum of all intensities derived from a sample (columns). When comparing peptide signals 

across different treatments, these were also divided by the average signals of such peptide 

across all the samples (rows). When comparing the effects of miR-214 over-expression on 

protein regulation, peptide signals were divided by those of the untreated control samples 

(control miRNA mimics). The p values of differences across treatments were obtained by means 

of a t test of log2 transformed fold changes and these were adjusted for multiple testing through 

the Benjamini-Hochberg procedure. To identify peptide sequences specific for mouse, peptides 

returned as positive identifications by Mascot were searched against the UniProt-TrEmbl 

database restricted to human sequences using a script written in Visual Basic to automate these 

searches. Failure to detect peptides from human searches in mouse database, indicated that 

these peptides were specific for mouse. The fold change was transformed using the log2 function, 

so that the data is cantered around zero, while the Benjamini–Hochberg corrected P value was 

−log10 transformed for volcano plot analysis. 

4.17 Mouse Femoral Artery Denudation Injury and miR-214 

Agomir Perivascular Delivery. 

C57BL/6 mice were anesthetized and the surgical procedure performed was similar to that as 

described previously (Xiao, et al. 2006; Xiao, et al. 2014; Zeng, et al. 2006). Removal of the 

endothelium of the femoral arteries was achieved by 3 to 5 passages of a 0.25mm angioplasty 

spring wire (tips of cross-IT 200 × guide wire, Abbott laboratories). After the vascular injury, the 

injured femoral arteries were randomly received miR-214 or Cel-miR-67 agomir treatments, as 

described in our previous study (Chen, et al. 2015d). Briefly, after injury, 100μl of 30% pluronic 

gel containing chemically modified and cholesterol conjugated 2.5nmol miR-214 or scramble 

(Cel-miR-67) agomirs was applied perivascularly to the injured femoral arteries. The miRNA 
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agomirs were purchased from RiboBio (Guangzhou RiboBio Co, Ltd). The in vivo expression 

efficiency and stability of such agomirs have been documented extensively by many research 

groups worldwide. Additional femoral arteries were harvested at 3 days (for gene expression) or 

14 days (for protein expression) after injury (3-5 femoral arteries from each group were pooled 

for each independent experiment, and triplicate experiment were conducted). Total RNAs 

including small RNAs and protein were extracted for RT-qPCR or western blotting analysis of miR-

214, NCKAP1, or PCNA gene/protein expression in injured vessels. Our previous study (Chen, et 

al. 2015d) showed that perivascular delivery of 2.5nmol agomirs into each injured vessel 

generally resulted in 5-10 times higher expression level compared with control mice (received 

Cel-miR-67) or normalized target miRNA expression level in injured arteries to level similar to 

those in normal uninjured vessels. All animal experiments were performed according to animal 

(Scientific procedures) act of 1986 (United Kingdom) and all protocols were approved by the 

institutional committee for use and care of laboratory animals. In addition, the principles 

governing the care and treatment of animals, as stated in the guide for the care and use of 

laboratory animals published by the national academy of science (8th edition,2011) were 

followed at all times during the study. All mice were euthanized by placing them under deep 

anaesthesia with 100% O2 and 5% isoflurane, followed by decapitation. 

4.17.1 Morphometric Analysis and Quantification of Lesion 

Formation. 

All the procedures used in this study were similar to that described in our previous study (Chen, 

et al. 2015d). Briefly, the femoral arteries (~1.0µm from injury site) were harvested 4 weeks after 

the operation. The specimens were fixed in 4% formaldehyde for H&E staining. Sections (5µm) 

were collected at 100µm intervals (10sections per segment/interval), mounted on slides, 
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andnumbered. Six digitised sections with same identification number from three 

segments/intervals (~0.4µm, 0.5µm and 0.6µm from injury site) of each animal (e.g. IV-1/2, V-1/2, 

VI-1/2 represent the 1st and 2nd section of the 4th, 5th and 6th segment/interval, respectively) 

were stained with H&E for morphometric analysis. The procedure used for lesion quantification 

was similar to that described previously (Chen, et al. 2015d; Xiao, et al. 2006; Xiao, et al. 2014; 

Zeng, et al. 2006). Briefly, EEL (external elastic membrane), IEL (internal elastic membrane), 

lumen, media and neointimal areas were automatically measured on H&E stained cross sectional 

femoral artery segments using acomputerized image analysis system (pixel2, Axiovision software) 

by two experienced investigators blinded to the treatments. Six sections were analyzed per 

vessel sample and averaged.  

For immunofluorescence staining of NCKAP1 expression in the injured vessels, three digitised 

paraffin sections with same identification number from same segment/interval (e.g. IV-3, V-3, VI-

3) of each animal were deparaffined with xylene and rehydrated with ethanol, and then 

incubated with 10mM sodium citrate at 100˚C for 10 minutes to retrieve antigens, followed by 

incubation with 1% bovine serum albumin (BSA) for 30 minutes.Thereafter, the sections were 

incubated with rabbit anti-NCKAP1 antibody (1:100 dilutions, Antibodies-online GMBH) or rabbit 

IgG control diluted in blocking buffer in a cold room (4°C) overnight. The tissue sections were 

then washed and subsequently incubated with a donkey anti-rabbit IgG antibody conjugated 

with CF™ 568 fluorescence (Sigma, in 1:400 dilution), followed by nuclei staining with 4,6-

diamidino-2-phenylindole (DAPI) (1ug/ml). After mounting, the slides were examined using a 

laser scanning confocal microscope (Zeiss LSM 510 Mark 4) and Zen2009 image software. The 

mean fluorescence intensity (MFI) for red fluorescence signal from each section was measured 

with Image J pro software. Three sections were analyzed per vessel sample and averaged.  
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For immunohistochemistry analysis of PCNA-positive cells in the injured vessels, another set of 

paraffin sections (e.g. IV-5, V-5, VI-5) were deparaffined and prepared as described above, 

followed byan incubation with 3% H2O2, and then 10% goat serum (Dako). The sections were 

incubated with rabbit anti-PCNA antibody (1:500 dilutions) or rabbit IgG control diluted in 

blocking buffer in a cold room (4°C) overnight. The tissue sections were then washed and 

subsequently incubated with a goat anti-rabbit IgG antibody conjugated with HRP (1:400 

dilution). Thereafter, sections were incubated with 3,3´-diaminodbenzidine (Dako), and followed 

by an incubation with hematoxylin solution. After mounting, the sections were examined using 

an All-in-One Fluorescence Microscope (BZ-X700, Keyence) and images taken using attached 

camera. Images were processed with Photoshop software (Adobe). The percentage of PCNA-

positive cells over total cells within vessel wall were examined and calculated by two well-trained 

independent investigators blinded to the treatments. Three sections were analyzed per vessel 

sample and averaged. 

4.18 Statistical Analysis. 

Three to five independent experiments were performed for each experiment category (in vitro 

and in vivo). Results are presented as Mean ± SEM. Statistical analysis was performed using 

GraphPad Prism5 (GraphPad Software). The Shapiro-Wilk normality test was used for checking 

the normality of the data. Data with a Shapiro-Wilk test P>0.05 was considered to fit a normal 

distribution. A 2-talied unpaired Student t test was used for comparison between 2 groups, and a 

1-way ANOVA test with a Bonferroni post hoc test was applied when >2 groups were compared 

if the data displayed a normal distribution. An α=0.05 was chosen as the significance level, and P 

values of <0.001, <0.01, and <0.05 were considered statistically significant.  
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5 Results: 

Mouse primary VSMCs were used for most of in vitro experiments, apart from three experiments 

in which human aortic smooth muscle cells (HAoSMC) were used to analyse the effect of miR-214 

inhibitor on their proliferation and migration profile, mentioned in result section. (Result 5.5).  

Human aortic smooth muscle cells were purchased from Promocell GmbH (C-12533) and 

cultured in smooth muscle growth medium 2 (C-22062 PromoCell GmbH) according to the 

manufacturer instructions. Passage 5-10 VSMCs were used in this study. 

 

5.1 miR-214regulation in VSMCs. 

Various pathological stimuli including high concentration of serum (20%), PDGF-BB, oxidized Low 

density lipoproteins (LDL) or its components such as 4-Hydroxynonenal (4-HNE) and 7-

ketocholesterol (7-Keto) have been extensively used to induce differentiated/contractile VSMC 

phenotype switching to a dedifferentiated/synthetic phenotypeafter serum starvation-induced 

cell growth arrest (Auge, et al. 2002; Chahine, et al. 2009; Salmon, et al. 2012; Torella, et al. 2011; 

Wang, et al. 2010). To examine the miR-214 expression during VSMC phenotype switching, under 

the effect of above mentioned stimuli, serum starved VSMCs were treated with various stimuli 

and harvested at different time intervals. As expected, both PDGF-BB and 20%FBS significantly 

down-regulated miR-214 levels in murine VSMCs (Figure 14A) after 3-24hr of treatment 

compared with untreated control cells at 0hr. 4-Hydroxynonenal (4-HNE) is a major active 

product formed following the oxidation of n-6 polyunsaturated fatty acids. 4-HNE is highly 

lipophilic and can interfere with the functions of many proteins by forming adducts. 4-HNE is 

associated with the generation of reactive oxygen species and hence its levels increases 

significantly in many diseases such as atherosclerosis and diabetes (Chapple, et al. 2013; Selley 
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1997). Physiological levels of 4-HNE in human plasma range between 0.3-0.7 μM (Selley, et al. 

1989) which under pathological conditions increases significantly to 20μM or even higher 

concentrations (100μM) have been reported in areas suh as plasma membrane (Chapple, et al. 

2013; Esterbauer, et al. 1991). 4-HNE levels in plasma also serve as markers of oxidative stress 

(Chapple, et al. 2013). To analize effect of 4-HNE and 7-Keto on miR-214 expression in VSMCs, 

different group of cells were cultured in 1%DMSO (vehicle control), 4-HNE (10μΜ) and 7-Keto 

(10μΜ each) as described in our previous study (Chen, et al. 2013a). The dosage of 4-HNE was 

carefully selected to avoid the undesirable effects of cellular apoptosis whereas creating suitable 

inflammatory conditions to stimulate cellular responses based on our own experience and 

previous publications (Pidkovka, et al. 2007). As expected, decreased miR-214 expression was 

observed with 4-HNE and 7-Keto stimulation compared to vehicle control (cells in 1%DMSO) 

(Figure 14C). Above data suggest a role for miR-214 in VSMC functions, such as proliferation and 

migration. 

To evaluate the expression of miR-214 in Human VSMCs under these stimuli (20% serum and 

PDGF-BB), human aortic SMCs (hAoSMCs) were subject to above mentioned stimuli treatment. 

RT-qPCR data (Figure 14B) showed a similar response i.e. miR-214 expression level was 

significantly reduces by both serum and PDGF-BB, confirming a similar regulatory role of serum 

and PDGF-BB on miR-214 expression in human VSMCs. Cellular viability after above treatments 

were observed by physically monitoring the cell morphology and by using Annexin V kit followed 

by FACS analysis. 

Furthermore, as miRNA activity depends upon 2 major factors; its synthesis within nucleus 

(transcription) and maturation in cytosol (biogenesis), so we wondered at which step does the 

serum and PDGF-BB effects and downregulated miR-214 activity. To differentiate between these 

two mechanisms, we initially examined miR-214 primary transcript activity by conducting RT-
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qPCR analysis with specific primers. Interestingly, the expression level of primary miR-214 was 

significantly downregulated by serum and PDGF-BB treatment as shown in RT-qPCR analysis 

(Figure 14D) indicating that these pathological stimuli regulate miR-214 activity at transcriptional 

level. 
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Figure 14. miR-214 was significantly down-regulated in response to various pathological stimuli 
in Murine VSMCs. 
A-C miR-214 is regulated by different pathological stimuli. Murine VSMCs (A and C) and human aorta 
smooth muscle cells (hAoSMC)(B) were subjected to serum starvation for 24 hours, followed by four 
different stimulations. Cells treated with20% serum, 10ng/ml PDGF-BB (A,B) were harvested at indicated 
times, whereas 4-hydroxynonenal (4-HNE) and 7-Ketocholesterol (7-keto) treatments were applied for 24 
hrs before harvesting cells and readings were compared with the cells cultured in 1% DMSO (Vehicle). 
Total RNAs including small RNAs were extracted, and subjected to RT-qPCR (reverse transcriptase 
quantitative PCR) analyses with specific miR-214 forward primer and universal miRNA reverse primer. Data 
presented as mean ±SEM (circles and error bars respectively (A and B) and as mean ±SEM (bars plus error 
bars) in (C) of 5 independent experiments (n=5).*P<0.05, **<0.01 and ***<0.001; (different treatment 
groups were compared versus 0hr or vehicle). (D) Transcriptional inhibition of miR-214 by PDGF-BB and 
serum as evident from down-regulation of miR-214 primary transcript. Serum starved VSMCs were treated 
with 20% serum and PDGF-BB for 3 hrs followed by collection of cells and extraction of total RNA and 
subsequent RT-qPCR analysis. Data presented as mean ± SEM (bars plus error bars) of 3 independent 
experiments n=3 *P<0.05, 
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5.2 PDGF-BB and Serum Down-regulate miR-214 via inhibition 

of transcription factor Twist-1. 

Previous research has documented that miRNA synthesis and maturation is controlled by 2 

molecular events; transcription and biogenesis. To differentiate between these two mechanisms, 

we conducted RT-qPCR analysis with specific primers to examine the miR-214 primary transcript. 

RT-qPCR data showed that the expression level of primary miR-214 was significantly reduced by 

serum and PDGF-BB (Figure 14D) indicating that miR-214 is regulated by these inflammatory 

mediators at the transcriptional level. Lee et al (Lee, et al. 2009) had reported that miR-214 

expression is regulated by transcription factor Twist-1 via an E-box promoter element during 

development. Therefore, we wonder if similar mechanism was responsible for miR-214 inhibition 

by PDGF-BB and serum. To address this issue, we generated 2 mouse miR-214 gene promoter 

plasmids, one containing E-box promoter element termed as pGL3-miR-214-FL and the other 

devoid of this promoter region was termed as pGL3-miR-214-short, by using similar strategy to 

that reported by Lee et al. (Figure 15A) 

It has been mentioned in the literature that miR-214 is hypoxia inducible miRNA which can be 

regulated in a HIF1α dependent or independent pathway but considering our experimental 

design, it seem unlikely that HIF1α might have been involved in miR-214 regulations as we 

cultured VSMCs in normoxic conditions. 

The murine VSMCs were transfected with these plasmids and cultured in normoxic conditions in 

incubator at 37℃ for 48h under the PDGF-BB and serum treatment before performing luciferase 

activity assay as described above. Data showed that the luciferase activity was significantly 

decreased in VSMCs transfected with pGL3-miR-214-FL under the effect of serum and PDGF-BB 

(Figure 15C, 15D), whereas no such inhibitory effect was observed in VSMCs transfected with 
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pGL3-miR-214-Short reporter (lacking E-box), suggesting E-box is critical to perform such 

inhibitory action. The data demonstrates that miR-214 expression in VSMCs is regulated by 

various stimuli through a transcriptional mechanism and that E-box element is required for such 

action. As expected, the expression level of Twist-1 was also dramatically reduced by serum and 

PDGF-BB (Figure 15B) suggesting that these 2 pathogenic stimuli down-regulate miR-214 

expression in VSMCs by inhibiting the transcription factor Twist-1. 
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Figure 15. Transcription factor Twist-1 is crucial for miR-214 modulation by PDGF-bb and Serum. 

(A) Schematic diagram of mouse miR-214 gene promoter reporter. (C and D) The E-box element is 
required for miR-214 gene inhibition. Murine VSMCs transfected with respective reporters harbouring the 
full length (pGL3-miR-214-FL; -640:0) or truncated form (pGL3-miR-214-short; -640:-357, lacking E-box 
element) of the miR-214 gene promoter were subjected to serum starvation for 24hrs followed by 
treatment with 10ng/ml PDGF-BB and 20% serum for 3 hrs. Cell lysate was harvested and subjected to 
luciferase activity assay. Data presented as mean ±SEM (bars plus error bars) of 6 independent 
experiments *<0.05 compared with control (n=6). (B) Twist-1 expression is inhibited by serum and PDGF-
BB in VSMCs. Twist-1 expression levels were examined by RT-qPCR. Data presented as mean ±SEM of 3 
independent experiments.**<0.01 compared with control (n=3). 
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5.3 miR-214 modulates VSMC proliferation. 

As mentioned previously, VSMC proliferation/growth and accumulation within intima has been 

recognised as a major early stage event contributing to development and progression of 

atherosclerotic lesion and postangioplasty restenosis. We wondered if miR-214 could play a role 

in VSMC proliferation. To address this question, gain of function and loss of function experiments 

were performed by transfecting VSMCs with miR-214 mimics, inhibitor and respective controls. 

miRNA mimics or inhibitors are small, synthetic double stranded RNA molecules designed to 

mimic endogenous mature miRNA or inhibit its activity by binding to its target miRNA molecule. 

A complete complimentarity between miRNA inhibitor and its target results in inhibition of 

miRNA’s activity as well as cleavage and degradation of miRNA in a manner similar to the 

function of siRNA. miRNA mimics and inhibitors can be introduced into the cells using 

transfection or electroporation. To evaluate VSMCs proliferative profile, actual cell number 

counting and BrdU incorporation assay was performed as described earlier. Specifically, VSMCs 

cultured in complete culture medium were transfected with miR-214 mimics or negative control 

overnight to evaluate the potential effects of miR-214 overexpression on VSMC proliferation. The 

final concentrations of miRNA (mimics and inhibitor) for VSMC transfection was optimised in our 

previous study, in which we observed a final concentration of 25nM miRNAs could result in 

significant miRNA over-expression and inhibition in VSMCs but cause a minimal unwanted side 

effects such as cell apoptosis (Yu, et al. 2014; Zhao, et al. 2015). Expectedly, the expression levels 

of miR-214 in VSMCs were significantly up-regulated after transfection with miR-214 mimics 

(Figure 16A). Compared with control treatment, an increased BrdU incorporation (Figure 16B) 

and much higher total cell number (Figure 16C) were observed in both PDGF-BB and 20%FBS 

treatments. Importantly, miR-214 over-expression significantly inhibited both serum and PDGF-

BB induced VSMC proliferation. To further confirm the role of miR-214 in VSMC proliferation, 
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loss-of-function experiments were conducted using miR-214 inhibitor in VSMCs cultured under 

similar conditions. As shown in Figure 16D, over 50% miR-214 inhibition was achieved in VSMCs 

by using miR-214 inhibitor. Consistent with miR-214 over-expression (gain of function) 

experiment, inhibition of miR-214 significantly increased PDGF-BB and serum induced VSMC 

proliferation, as observed by manually counting cell number and applying BrdU assay, 

respectively (Figure 16E and 16F), supporting a role for miR-214 in VSMC proliferation. 
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Figure 16. miR-214 modulates VSMC proliferation. 
Murine VSMCs were transfected with miR-214 mimics (A-C), miR-214 inhibitor (D-F), or respective negative 
control miRNAs, followed by 24 hours serum starvation. After then, cells were induced to growth by PDGF-BB 
or serum for further 48 hours, followed by BrdU (bromodeoxyuridine incorporation) assays (B and F) and cell 
counting (C and E), respectively. Meanwhile, cells were harvested to examine the miR-214 expression levels 
by RT-qPCR analyses. Data present here as mean +SEM, are average of three to four independent 
experiments (n=3-4). *P<0.05 (miR-214 mimics or inhibitor versus negative control miRNA); #P<0.05 
(treatments versus vehicle). 
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5.4 miR-214 down-regulates VSMC migration. 

Increased VSMC migration into the atheroma is another major contributor to the development 

and progression of atherosclerotic lesion and post-angioplasty restenosis. To investigate if miR-

214 also plays a role in VSMC migration, murine VSMCs were transfected with miR-214 mimics, 

inhibitor and their respective negative controls overnight, followed by cell migration assays 

(wound healing and trans-well experiments as described earlier) under similar stimulatory 

conditions (20% serum and PDGF-BB). The cell migration data showed a similar pattern as of cell 

proliferation towards miR-214 over-expression and inhibition (Figure 17). Percentage of denuded 

area compared to covered (in wound healing experiment) gives us information about cellular 

migratory response and is calculated by measuring the denuded area at 0hr (A0) and at specific 

time point (AT), get the difference between two time points and then divided it by the denuded 

area measurement at 0hr(A0) followed by percentage. The migratory tendency of VSMCs 

transfected with miR-214 mimics were significantly lower than their counterparts in control 

group in response to both PDGF-BB and serum stimulations as observed in wound healing (Figure 

17A) and trans-well migration (Figure 17B) assays. On the contrary, the migraotry capacity of 

cells transfected with miR-214 inhibitor was clearly higher than that of control samples as 

evident from wound healing (Figure 17C) and trans-well migration (Figure 17D) experiment data, 

suggesting that miR-214 inhibits VSMC migration. Cellular viability after above treatments (miR-

214 inhibitor transfection and inflammatory mediators) was observed by physically monitoring 

the changes in cell morphology. 
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Figure 17. miR-214 regulates SMC migration. 

Murine VSMCs were transfected with miR-214 mimics (A-B), miR-214 inhibitor (C-D), or respective 

negative control miRNAs, followed by 24 hours serum starvation. After then, cells were subjected to 

wound-healing (A and C) and transwell migration (B and D) assays in the presence of PDGF-BB or serum 

stimulation for another 24hrs, respectively. The percentage of cell closure (%) in panels A and C was 

calculated as the percentage of denuded area difference between 0 hour (A0) and indicated time points 

(AT) [or (A0-AT)/A0*100]. Data presented here as mean+SEM, are average of three to four independent 

experiments (n=3-4). *P<0.05 (miR-214 mimics or inhibitor versus negative control miRNA); #P<0.05 

(treatments PDGF-BB and serum versus control). 
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5.5 miR-214 modulates Human VSMC Proliferation and 

migration. 

To investigate whether miR-214 also plays a pathological role in human VSMCs, similar (miR-214 

loss of function) experiments were performed using human Aortic SMCs and analysing their 

proliferation by BrdU assay and migration capacity by transwell experiment. Three independent 

experiments were performed using Human aortic smooth muscle cells (HAoSMC) at different 

passages to analyse the effect of miR-214 inhibitor on their proliferation and migration profile. 

Human aortic smooth muscle cells isolated from were purchased from Promocell GmbH (C-12533) 

and cultured in smooth muscle growth medium 2 (C-22062 PromoCell GmbH) according to the 

manufacturer instructions. The human aortic SMCs were cultured under normal conditions and 

transfected by miR-214 inhibitor and respective control overnight, followed by serum strvation 

and treatment with PDGF-BB and high concentration serum (20%) stimulation. Serum starvation 

helped in minimizing the interference of many unknown stimulators which may present in serum 

as well as keeping cells in G0 phase of cell cycle, so that the cellular response would be an 

indicative of the specific treatment. RT-qPCR data showed an over 50% miR-214 inhibition was 

achived using miR-214 inhibitor in human VSMCs (Figure 18A). Expectedly, as evident from the 

results that (BrdU incorporation assay) VSMC proliferation was significantly enhanced by miR-

214 inhibition under PDGF-BB and serum stimulation (Figure 18B). A similar pattern was 

observed interms of VSMC migration (Figure 18C). 

Untill now it was clear that miR-214 has important role in modulating VSMC functions during 

inflammation and atherosclerosis.  
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Figure 18. Effect of miR-214 on Human VSMC‘s Proliferation and Migration. 
miR-214 inhibitor and respective negative control were transfected into human aortic smooth muscle 
cells, followed by 24hrs of starvation. Serum starved cells were treated with PDGF-BB (30ng/ml) and 
Serum (20%) for another 48hrs, followed by RT-qPCR to examine miR-214 expression level (A), 
bromodeoxyuridine incorporation assay (B) and transwell migration analysis (C) in 2 different settings. 
Data presented here is mean+ SEM of 3 independent experiments (n=3) *P<0.05 (miR-214 inhibitor versus 
negative control miRNA) #P<0.05 (treatments PDGF-BB and serum versus control).    
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5.6 Proteomics analysis reveals miR-214 modulates NCKAP-1 

level. 

Till this stage, it was quite clear that miR-214 influences VSMCs proliferation and migration, so 

our next objective was to investigate the underlying genes/ proteins and the molecular 

mechanism through which miR-214 performs its inhibitory role in VSMCs. To this end, we applied 

two methods. First, we conducted protomics analysis of whole cell lysate of murine VSMCs 

transfected with miR-214 mimics and subjected to mass spectrometer for quantitative 

proteomics analysis. Second, we applied computational algorithmic prediction tools to predict 

possible target genes for miR-214. 

To conduct proteomics analysis, Murine VSMCs were first transfected with miR-214 mimics or 

negative control and then lysed to obtain total protein contents, which were then subjected to 

label-free quantitative proteomics analysis. miR-214 over-expression in transfected VSMCs was 

confirmed using RT-qPCR (Figure 19A). By applying 25% of change as cut-off value, 219 proteins 

were observed to be modulated by miR-214 over-expression. Among them 59 proteins were 

down regulated and 160 proteins were up-regulated (Table 16). As its widely established that 

miRNAs perform their function (post transcriptional regulation) by binding to 3’UTRs of target 

RNAs which results in RNA cleavage, degradation and/or silencing, so we consider only those 

proteins which were down-regulated by over-expression of miR-214 as potential targets.  

Interestingly, Gene Ontology (GO) term enrichment analysis of the down-regulated proteins 

showed that actin filament polymerization was the highest enriched functional/biological process 

and was inhibited by miR-214 over expression in VSMCs (Table 15).  We also observed that most 

of these down-regulated proteins (28 of 59) are under the GO terms of ‘regulation of cell 

migration’(e.g.,NCKAP1, EMAL1, LIMS2, SPI2), ‘proliferation’ (e.g.,EMAL1, LIMS2, LTOR3), 
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‘adhesion’ (e.g., SNX5, SNX12, LIMS2), ‘actin filament reorganisation and actin polymerization’ 

regulating proteins (e.g.,NCKAP1, ARPC2, CAPZB), ‘Cell cycle’(e.g.,APC7, ARL3, ULA1), and ‘gene 

expression regulator’ proteins (e.g.,KLF14, SMYD5, and LONM), respectively, thus further 

confirming a role of miR-214 in VSMC proliferation and migration. 

Our next step was to further examine the gene sequence to identify possible binding sites for 

miR-214 among these down-regulated proteins/genes by utilizing several computational 

algorithmic databases, such as RNA22 (https://cm.jefferson.edu/rna22/), 

DIANA-microT-CDS(http://diana.imis.athena-

innovation.gr/DianaTools/index.php?r=MicroT_CDS/index), 

TargetScan7.1(http://www.targetscan.org/mmu_71/), 

miRanda-rel2010(http://www.microrna.org/microrna/getGeneForm.do), and miRDB4.0 

(http://mirdb.org/cgi-bin/search.cgi). We identified one or more miR-214 binding sites within 

3’UTR of 39 (out of 59) genes that its protein expression levels have been decreased by miR-214 

over-expression, presenting potential target genes for miR-214. As such, these proteins likely 

represent good candidates as the functional direct target genes of miR-214 in VSMCs.  

As it is unrealistic to assess whether all identified 39 downregulated genes with predicted binding 

sites are direct target of miR-214 in current project so to further concise the data, volcano plot 

was applied to identify the most-meaningful change in our large proteomic dataset. As shown in 

the volcano graph, with stringent criteria and P <0.05, NCKAP1, also known as NAP1 or NAP125 

was identified as the most important target gene for miR-214 in VSMCs (Figure 19B)(Table 14). 

NCKAP1 is 129kDa, type II transmembrane protein transcribed by NCKAP1 gene. NCKAP1 is an 

important constitutive component of the WAVE2 complex that regulates actin filament 

polymerisation hence plays crucial role in lamelliopodia (cell membrane protrusions) formation 

https://cm.jefferson.edu/rna22/
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=MicroT_CDS/index
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=MicroT_CDS/index
http://www.targetscan.org/mmu_71/
http://www.microrna.org/microrna/getGeneForm.do
http://mirdb.org/cgi-bin/search.cgi
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and regulating cellular migration. Interestingly, computational algorithmic models DIANA-

microT/RNA22 showed three binding sites for miR-214 (binding site2 is predicted to be highly 

conserved across > 10 species including human, whereas binding site 1 and 3 are conserved in 

mouse and rat) within 3’UTR of NCKAP1 (Figure 20A). Moreover, a favourable minimum loop-

free energy (dH: -136.5, -143.1 and -150.2 kcal/mol for binding site 1, 2 and 3, respectively) in the 

formation of the miR-214:NCKAP1 3’UTR duplex stem-loop for all three binding sites was 

observed by using mFold software (http://mfold.rna.albany.edu/?q=DINAMelt/Two-state-

melting) (Figure 20B). 

  

http://mfold.rna.albany.edu/?q=DINAMelt/Two-state-melting
http://mfold.rna.albany.edu/?q=DINAMelt/Two-state-melting
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Figure 19. Proteomics analysis: Identification of NCKAP1. 

Murine VSMC were transfected with miR-214 mimics. After 48 hours of transfection, cells were 
lysed directly in urea based lysis buffer containing Na3VO4 (sodium orthovanadate),NaF (sodium 
fluoride),β-glycerol phosphate, and Na2H2P2O7 (disodium pyrophosphate)] and proteins were 
digested using trypsin. Transfected cells were also examined for miR-214 expression levels by 
RT-qPCR analyses (A). (B) The enriched peptides were subjected to mass spectrometry. The fold 
change was transformed using the log2 function, so that the data is centred around zero, while 
the Benjamini–Hochberg corrected P value was −log10 transformed for volcano plot analysis 
versus protein ratio of miR-214 mimics/control (log2) of all 1594 proteins fulfilling strict 
quantitation criteria (Red, 14 upregulated proteins with 2-fold changes; Blue, 7 downregulated 
proteins with 2-fold changes; Purple, significantly changed but such change is <2-fold on miR-
214 overexpression ANOVA with P<0.05). NCKAP1 emerged as the most down-regulated protein 
along with greatest significance value. 
  

 

 

 

 

 

  

NCKAP1 

Log2 fold 1.435 

Log10 P-value: 

-4.186 

B A 



  
      
 
 

Page | 183 
 
 

Downregulated 
Proteins 

LogFR 
(Treatment 
Vs Control) 

Fold change 
(Treatment 
vs Control) 

 

Upregulated 
Protein 

LogFR 
(Treatment 
Vs Control) 

Fold change 
(Treatment 
vs Control) 

PEPD -2.7379 0.1498 
 

PSB7 0.3232 1.2511 
ABL2 -1.4546 0.3648 

 
DPOE1 0.3235 1.2513 

LSM8 -1.4546 0.3648 
 

CALX 0.325 1.2527 
NCKAP1 -1.4349 0.3698 

 
COPZ1 0.3261 1.2537 

HYPK -1.3531 0.3914 
 

VPS29 0.3275 1.2548 
COX2 -1.3027 0.4053 

 
NASP 0.3283 1.2555 

EMAL1 -1.1601 0.4474 
 

HNRPK 0.3286 1.2558 
SYAP1 -1.0218 0.4924 

 
RTCB 0.3289 1.256 

SPTB1 -0.9188 0.5289 
 

UBL4A 0.3299 1.2569 
ILEUC -0.8274 0.5635 

 
H12 0.3303 1.2573 

LYPA2 -0.806 0.5719 
 

PHB2 0.3327 1.2593 
KLF14 -0.793 0.5771 

 
SC61B 0.3353 1.2616 

ARPC2 -0.7868 0.5796 
 

CNPY2 0.3391 1.265 
PGM1 -0.7861 0.5798 

 
TRXR1 0.3406 1.2663 

PPM1F -0.7534 0.5931 
 

QCR1 0.3414 1.267 
ABHEB -0.7046 0.6135 

 
RFA2 0.3418 1.2673 

TPP1 -0.6898 0.6199 
 

UBE2K 0.3436 1.2689 
SNX12 -0.6707 0.6281 

 
NUCB2 0.3483 1.2732 

CIRBP -0.6599 0.6329 
 

ALR 0.3494 1.274 
IDHC -0.6531 0.6358 

 
TIA1 0.3523 1.2766 

INT3 -0.632 0.6452 
 

TBC15 0.3538 1.2779 
LIMS2 -0.5997 0.6598 

 
LSM6 0.3567 1.2805 

SNX5 -0.5951 0.6619 
 

IMPA2 0.357 1.2807 
SMYD5 -0.5722 0.6725 

 
VATA 0.3607 1.2841 

 

 

Table 14. Proteomics data. List of 25 upregulated and downregulated Proteins by miR-214 in 
VSMCs. 
Note: Proteins/genes with Red/yellow-highlighted have been most down regulated by miR-214 mimics 
whereas Proteins in Green were among most upregulated ones. 
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Analysis Type: 
PANTHER Overrepresentation Test (release20160321) 

Annotation  
 
GO Ontology database Released 2016-04-23 

Version and 
ReleaseDate: 
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Down-regulated(Musmusculus) 

 

ReferenceList: 
Musmusculus(all genesindatabase) 

Bonferroni  

TRUE 
correction: 
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Regulationof  
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0.44 

 
 
 
 

+ 
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SPTB1,PROF1,CAPZB, 

EMAL1 

Protein  
Polymerization 2.29E- 
(GO:0032271) 03 
Regulationof  

 
 
 
 
 
 

156 

 

 
 
 
 
 
 

6 

 

 
 
 
 
 
 

0.39 
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15.33 
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Polymerization  
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(GO:0008064) 02 
Regulationof  

 
 
 

157 

 
 
 
 

6 

 
 
 
 

0.39 

 
 
 
 

+ 

 
 
 
 

15.23 

 
 

 
 

NCKPA1,RHOA,ARPC2, 

SPTB1,PROF1,CAPZB 

actin filament  
Length 2.30E- 
(GO:0030832) 02 
Regulationof  

 
 
 
 

278 

 
 
 
 
 

7 

 
 
 
 
 

0.7 

 
 
 
 
 

+ 

 
 
 
 
 

10.04 

 
 

 
 

NCKPA1,RHOA,ARPC2, 

SPTB1,PROF1,CAPZB, 

PPM1F 

Actin  
Cytoskeleton  
Organization 4.99E- 
(GO:0032956) 02 

 
 
 
 
 

Organelle 

 
 
 
 
 
 
 
 

2779 

 
 
 
 
 
 
 
 

21 

 
 
 
 
 
 
 
 

6.97 

 
 
 
 
 
 
 
 

+ 

 
 
 
 
 
 
 
 

3.01 

 NCKAP1,RHOA,STK25, 
SNX12,PLSI,THIM,TPP1, 

CATD,EMAL1,ARPC2, 

PPM1F,PROF1,ABL2, 

SMC3,ARL3,SNX5, 

SNP29,LONM,SMC1A, 

CAPZB,APC7 

Organization 1.30E- 
(GO:0006996) 02 

 

Table 15. GO term enrichment analysis of down-regulated proteins by miR-214 in VSMCs. 
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Figure 20. Three potential wild type binding sites (BS1-BS3) of miR-214 within NCKAP1 3’UTR. 
(A)As predicted by RNAhybrid and their mutants (BS1/2/3mut). (B)The formation of the miR-214:NCKAP1 
3’UTR (spanning through miR-214 BS1-3) duplex stem-loop and the minimum loop-free energy for 
individual loop (binding site) (http://mfold.rna.albany.edu/?q=DINAMelt/Two-state-melting)were 
calculated by and extracted from mFold software. 

5.7 Identification of NCKAP1 as a functional target of miR-214. 

http://mfold.rna.albany.edu/?q=DINAMelt/Two-state-melting
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As NCKAP1 appears as a prominent target for miR-214, we wonder how does it respond to the 

effect of inflammatory mediators (PDGF-BB and serum). At first, we studied NCKAP1 gene 

expression in murine VSMCs treated with the atherogenic stimuli like PDGF-BB and serum (20%). 

As expected, RT-qPCR results showed up-regulated expression of NCKAP1 gene under the effect 

of these pathological stimuli (Figure 21A). Our next step was to check NCKAP1 gene expression 

levels under the effect of miR-214 over expression and inhibition. miRNA mimics or inhibitors are 

small, synthetic double stranded RNA molecules designed to mimic endogenous mature miRNA 

or inhibit its activity by binding to its target miRNA molecule. A complete complimentarity 

between miRNA inhibitor and its target results in inhibition of miRNA’s activity as well as 

cleavage and degradation of miRNA in a manner similar to the function of siRNA. For this 

purpose, VSMCs were transfected with 25nM of miR-214 mimics/ inhibitors or respective 

controls overnight as described earlier. After transfection, murine VSMCs were cultured for 48hr 

before harvesting them for RT-qPCR and protein expression (western blot). Data from Western 

blot analyses further confirmed the proteomics data that NCKAP1 protein level was significantly 

down-regulated by miR-214 over-expression (Figure 21B). As expected, NCKAP1 gene expression 

levels were significantly down-regulated when the cells were transfected with miR-214 mimics 

(miR-214 over expression) and were up-regulated under the inhibition of miR-214 in VSMCs 

(Figure 21C and 21D). Data also showed a reduction in the miR-214 levels under the effect of 

miR-214 inhibitor which not only inhibited miRNA-214 funtions by binding to miR-214 but also 

lead to reduction in its levels by showing a precisely complimentarity and subsequent 

degradation of miR-214 in a siRNA manner. These data clearly imply that NCKAP1 is the specific 

target of miR-214 which is inversely regulated in VSMCs under miR-214 over-expression. 
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Figure 21. miR-214 negatively regulates NCKAP1 gene expressions in Murine VSMCs. 

(A) Levels of NCKAP1 gene expression were upregulated under the influence of inflammatory mediators 

20% Serum and PDGF-BB. (B) NCKAP1 protein levels were downregulated in VSMCs by miR-214 over 

expression as shown in western blot. (C and D) Effects of modulation of miR-214 expression levels in 

VSMCs on NCKAP1 gene expression.VSMCs were transfected with miR-214 mimics (miR-214) or inhibitor 

(miR-214 inhibitor) (final conc. 25nM), or respective negative controls. Total RNAs were harvested and 

subjected to RT-qPCR analyses with indicated primers. Data presented is representative (B) or show mean 

±SEM of 3-4 independent experiments (n=3-4), ***<0.001, *<0.05, compared with control miRNA. 
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5.8 MiR-214 directly regulates NCKAP1 through its binding sites. 

As mentioned previously, three binding sites for miR-214 were identified in the 3’UTR of NCKAP1 

gene with favourable minimum loop free energy (Figure 20). To determine if miR-214 can 

directly regulate NCKAP1 and to identify the main binding site among three binding sites 

(identified using computational data) responsible for NCKAP1 gene repression by miR-214, the 

3’UTR of NCKAP1 containing all the three binding sites was cloned into a luciferase reporter. In 

addition to this, four luciferase reporters each carrying mutation at one binding site (single 

mutation) named as BS1mut ( Binding site mutation 1), BS2mut (Binding site mutation2), or BS3mut 

(Binding site mutation3) as well as for a combination of three binding sites (combinational 

BS1/2/3mut mutant reporters), were also generated (according to the guidelines of QuikChange 

Site-Directed Mutagenesis Kit, Agilent Technologies) to identify the best binding site for miR-214 

to perform its function. Luciferase analysis data from our miRNA reporter assay showed that the 

activity of luciferase from construct harbouring the wild-type NCKAP1 3’UTR, but not the 

mutants, was significantly inhibited by miR-214 over-expression indicating that all three binding 

sites are important for NCKAP1 3’UTR reporter activity repression mediated by miR-214 (Figure 

22). Taken together, these data have clearly demonstrated that NCKAP1 is a true mRNA target of 

miR-214, which is negatively regulated by miR-214 in VSMCs. 
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Figure 22. All Binding sites within the 3′-UTR are required for NCKAP1 gene repression by miR-214. 

Murine VSMCs were seeded in flasks coated with 0.04% gelatin and cultured for 24hrs in Culture Medium 

before transfection. According to the co-transfection protocol, miR-214 mimics or negative control were 

co-transfected into VSMCs with wild type NCKAP1 3’UTR reporter, or the indicated single/ combined 

binding site mutants [bindings site 1 (BS1mut), 2 (BS2mut), 3 (BS3mut), or the combinational mutations 

(BS1/2/3mut) respectively, for 14-16hrs, followed by medium change to normal CM and the luciferase 

activities were measured at 48 hrs post transfection. The luciferase activities of the four indicated 

mutants [pmiR-Luc-NCKAP1-BS1, pmiR-Luc-NCKAP1-BS2, pmiR-Luc-NCKAP1-BS3 and pmiR-Luc-NCKAP1-

BS1/2/3] were analysed with over expression of miR-214. All three binding sites are important for miR-

214 mediated NCKAP1 gene repression. The data presented here are the mean ± SEM of three to four 

independent experiments. (n=3-4) *P < 0.05 (treatment vs. control). The ratio of luciferase activity to β-

galactosidase (𝛽 −gal) activity in the control samples was set at 1.0.  
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5.9 Effect of miR-214 on SMYD5 and KLF14. 

miRNAs are regarded as master regulator as single miRNA can regulate multiple function by 

targeting many genes and so was observed in our proteomic data, that 59 proteins/genes have 

been downregulated by miR-214 overexpression. Out of these 59 genes, 39 genes are predicted 

to have miR-214 binding site in their 3’UTRs as per the algorithmic computational models. To 

further assess other candidate genes among these 39 downregulated genes with predicted miR-

214 binding sites, we selected KLF14 and SMYD5 as possible direct target genes of miR-214 in the 

context of VSMCs. KLF14 is a member of Kruppel-like factors family of transcription factors and 

regulate the transcription of various genes including type II receptor of TGFβ (TGFβRII) (Truty, et 

al. 2009). In addition to that, KLF14 also plays major role in regulating multiple inflammatory 

diseases like coronary artery disease, Diabetes type II, and hypercholesterolemia (Grarup, et al. 

2010; Voight, et al. 2010). The reason for selecting SMYD5 since it is a powerful epigenetic 

regulator with methyltransferase activity. Moreover, we observed multiple miR-214 binding sites 

within 3’UTR of KLF14 and SMYD5, suggesting a regulatory role for miR-214 in these two gene 

expression. 

The 3’UTRs of KLF-14 and SMYD5 (containing 2 and 4 miR-214 binding sites respectively) were 

cloned into luciferase reporter (pmiR-Luc) and transfected into VSMCs along with miR-214 

mimics or respective negative control for 14-16hrs. Cells were harvested after 48hrs and 

subjected to luciferase activity assay. No significant reduction was observed in the luciferase 

activity with the construct harbouring KLF14 3’UTR, suggesting that miR-214 does not directly 

represses KLF-14 but rather does its activity in an indirect manner (probably by interacting with 

another epigenetic factor whose inhibition or over-expression results in KLF-14 repression) 

(Figure 23A). Importantly, the luciferase activity of the SMYD5 3’UTR construct was significantly 
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inhibited by miR-214 over expression, confirming it as another target gene for miR-214 (Figure 

23B). 

 

 

Figure 23. KLF-14 and SMYD5 regulation in Murine VSMCs by miR-214. 

Murine VSMCs were seeded in flasks coated with 0.04% gelatin and cultured for 24hrs in Culture Medium 

before transfection.miR-214 mimics or negative control were co-transfected into VSMCs with KLF14 

3’UTR reporter (A), or with SMYD5 3’UTR reporter (B) (pmiR-Luc-KLF14, and pmiR-Luc-SMYD5) 

respectively, for 14-16hrs. The luciferase activities were measured at 48hrs post transfection. The data 

presented here are the mean ± SEM of three to four independent experiments. *P < 0.05 (treatment vs. 

control). The ratio of luciferase activity to β-galactosidase (𝛽 −gal) activity in the control samples was set 

at 1.0. 
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5.10 Crosstalk between miR-214 and miR-34a. 

Our group have reported that another miRNA, miR-34a also plays an important role in 

modulating VSMC functions and neointima formation through targeting the Notch1 gene (Chen, 

et al. 2015c). We wondered if there was any overlap or crosstalk between miR-214 and miR-34a 

in terms of target gene regulation. To address this issue, we designed an experiment to evaluate 

the regulatory effect of miR-214 on Notch1 (reported target gene for miR-34a) and vice versa. 

We performed co-transfection experiments involving miR-214 mimics with Notch1 3’UTR 

reporter and miR-34a mimics along with NCKAP1 3’UTR reporter in VSMCs. The cells were 

harvested 48hrs post transfection and subjected to luciferase activity analysis. The data revealed 

that the Notch1 3’UTR reporter activity was unaffected by miR-214 over-expression (Figure 24). 

Similar phenomenon was observed in terms of NCKAP1 3’UTR reporter as miR-34a over 

expression didn’t have any pronounced effect on its activity. 
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Figure 24. No cross-talk between miR-34a and miR-22 in Murine VSMCs. 

Serum starved Murine VSMCs were co-transfected with miR-34a and miR-214 mimics/negative control 

along with NCKAP1 (A, pmiR-Luc-NCKAP1) and NOTCH1 reporter (B, pmiR-Luc-Notch1) respectively. Cells 

were lysed 48hrs post transfection and luciferase activity was measured. No significant effect was 

observed on reporter activity in either group under the influence of miR-34a (A) or miR-214 (B) suggesting 

an independent mechanism of action for both microRNAs in VSMCs. Data presented here are mean ±SEM 

of four to six  independent experiments (n=4-6) P *<0.05 versus miR control. 
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5.11 Effect of NCAKAP1 knockdown on Murine VSMC functions. 

Till now, these results have confirmed NCKAP1 mRNA as a legitimate target of miR-214 in murine 

VSMCs. NCKAP1 is an important constitutive component of the WAVE2 complex that regulates 

actin filament polymerisation. NCKAP1 plays crucial role in lamelliopodia (cell membrane 

protrusions) formation, thus regulating cellular migration.To further analyse/evaluate the role of 

NCKAP1 in VSMC migration and proliferation process, NCKAP1 knockdown stable cell lines were 

generated using NCKAP1 shRNA lentivirus. RT-qPCR (Figure 25A) showed over 60% NCKAP1 

inhibition efficiency was achieved in NCKAP1 knockdown stable VSMCs which was comparable to 

NCKAP1 levels under miR-214 mimics overexpression. Compared to control, NCKAP1 knockdown 

stable cell lines exhibited a significant reduction in cell proliferation as demonstrated by cell 

counting (Figure 25B) and cell proliferation marker (Ki-67) staining (Figure 25C). Similar effect 

was observed with miR-214 over-expression in VSMCs (Figure 25B and 25C). As expected, similar 

pattern was demonstrated in terms of cell migration profile (low migratory profile in NCKAP1 

knockdown stable cell line) as analysed by trans-well migration assay (Figure 25D). Furthermore, 

no significant difference was observed between two groups (miR-214 mimics and NCKAP1 

knockdown cells) in terms of inhibition/reduction of VSMCs proliferation and migration 

confirming comparable effects of miR-214 over expression to NCKAP1 silencing on VSMC 

functions. 
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Figure 25. NCKAP1 knockdown in Murine VSMCs recapitulates the effects of miR-214 over-
expression on cell migration and proliferation. 
Murine VSMCs were infected with non-target or NCKAP1 short hairpin RNA (shRNA) virus, followed by 
serum starvation (0.5%) and restimulation with 20% serum for 24hrs. Cells were subjected to RT-qPCR (A), 
cell counting(B) and immunofluorescence staining with antibody against Ki-67 (C).miR-214 overexpression 
or NCKAP1 knockdown inhibited VSMC proliferation (B & C) and Migration (D). C1, representative images; 
C2, quantitative data from three independent experiments (n=3). In another set of experiments, (n=3) 
mVSMCs were transfected with control or miR-214 mimics or infected with nontarget or NCKAP1 shRNA 
virus, serum-starved cells were subjected to trans-well migration assays in the presence of 30ng/ml PDGF-
BB (D). Bar graphs are quantitative data (mean±S.E.M.) from three independent experiments (n=3). 
**P<0.01 (compared with control mimics or non target shRNA, respectively). In C1, white arrows indicate 
Ki-67 positive cells, and the cell clusters positive for Ki-67 staining in Non-target shRNA group indicate 
actively proliferating VSMCs. 
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5.12 miR-214 and NCKAP1 modulate VSMC migration and 

proliferation through modulating Actin polymerization. 

As aforementioned, NCKAP1 is reversely regulated by miR-214 in VSMCs, and NCKAP1 plays a 

crucial role in cell migration and proliferation through its role in actin cytoskeleton 

rearrangements and lamelliopodia formation. It is plausible that miR-214 and/or NCKAP1 

modulate VSMC migration and proliferation by regulating actin polymerization and/or 

lamelliopodia formation. Such effect can be examined by observing changes in actin 

polymerization and resultant lamellipodia formation under the influence of miR-214 over-

expression. To address this, VSMCs were transfected with miR-214 mimics and respective control, 

and subjected to immunofluorescence staining with NCKAP1 antibody and phalloidin-FITC (a high 

affinity F-actin probe conjugated to FITC) as described in previous chapter at page 158 (Materials 

and methods 4.15). Confocal microscopy showed that typical lamellipodia was formed in VSMCs 

transfected with control miRNA mimics whereas such characteristic was inconspicuous in VSMCs 

transfected with miR-214 mimics (Figure 26A). Furthermore data from immunofluorescence 

staining with NCKAP1 antibody showed very little expression for NCKAP1 protein in VSMCs 

transfected with miR-214 mimics as compared to control, which supports our notion that miR-

214 exerts its action by inhibiting NCKAP1 expression. When NCKAP1 knockdown stable VSMC 

lines were subjected to immunofluorescence staining with NCKAP1 antibody and Phalloidin-FITC, 

a similar phenomenon in terms of actin polymerization and/or lamellipodia formation was 

observed in VSMCs with NCKAP1 knockdown that showed a much lower level of actin 

polymerization as displayed by a weaker F-actin staining intensity in these cells (Figure 26B). 

Interestingly, NCKAP1 was observed to co-localize with F-actin within lamellipodia and 

membrane ruffles that faces the direction of cell movement in the control cells whereas such 
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assembly was disrupted in the cells transfected with miR-214 mimics or in NCKAP1 knockdown 

VSMC lines, indicating that NCKAP1 inhibition can recapitulate the effects of miR-214 over 

expression on actin polymerization and cell migration. Above data beautifully demonstrated that 

miR-214 regulates VSMC functions (proliferation and migration) by inhibiting/repressing NCKAP1 

expression, thus leading to less lamelliopodia formation and lower actin polymerization, resulting 

in reduced cell migration and proliferation.  

An interesting finding is the higher proportion of NCKAP1 localized in nucleus of control VSMCs 

infected with shRNA lentivirus (marked as red staining in B) as compared to VSMCs transfected 

with control miRNA mimics (A), which will be discussed later in chapter 6 (Discussion). 
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Figure 26. NCKAP1 knockdown in Murine VSMCs recapitulates the effects of miR-214 over-

expression on actin polymerization. 

(A) Actin polymerization in VSMCs was inhibited by miR-214 over-expression. Murine VSMC were 

transfected with miR-214 mimics/control, followed by serum starvation for 24 hrs.Serum-starved 

cells were treated with 20% serum for another 24 hours and subjected to immunofluorescence 

staining with antibody against NCKAP1 and Phalloidin-FITC (F-actin staining). (B) NCKAP1 

knockdown decreased actin polymerization in VSMCs. VSMCs were infected with non-target or 

NCKAP1 shRNA virus, followed by similar treatment and analyses as described in (A). Representative 

images from three independent experiments (n=3) were presented here. Note: white arrows (A and 

B) indicate that NCKAP1 co-localizes with F-actin within lamellipodia and membrane ruffles, which 

are facing the direction of cell movement. 
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5.13 NCKAP1 inhibition is required for miR-214 mediated VSMC 

growth and motility. 

We further reasoned that inhibiting miR-214 promotes cell migration and proliferation via 

interacting with NCKAP1, so we investigated if such interactionis required for VSMC functions 

regulated by miR-214. To address this aspect, co-transduction experiments were conducted in 

VSMC using miR-214 inhibitor, NCKAP1 short hairpin RNA (shRNA) lentivirus and respective 

controls. Following transfection, the cells were serum starved for 24hrs before treating them 

with serum and PDGF-BB (30ng/ml) and subjected to immunofluorescence staining with antibody 

against Ki-67, F-Actin staining by using phalloidin-FITC, VSMCs proliferation (cell counting) and 

transwell migration assays. Levels of both miR-214 and NCKAP1 were down-regulated after 

treatment with miR-214 inhibitor orNCKAP1 shRNA lentivirus, respectively, as shown by RT-qPCR 

data (Figure 27A). In control VSMCs, treatment with miR-214 inhibitor resulted in an increase in 

NCKAP1 levels, which were abolished in NCKAP1 knockdown cell lines even under the effect of 

miR-214 inhibition.Furthermore, expression level of cell proliferation gene PCNA (proliferating 

cell nuclear antigen) was upregulated in VSMCs treated with miR-214 inhibitor but such 

expression was down-regulated in NCKAP1 knockdown cell lines (Figure 27A). Interestingly, 

PCNA gene activation by miR-214 inhibition was also blunted by NCKAP1 shRNA. Consistently, 

cell proliferation was up-regulated as evident from cell number (Figure 27B) and Ki-67 staining 

assay (Figure 27 C1 and C2) under the effect of miR214 inhibition but down-regulatedin NCKAP1 

knockdown cell lines. Importantly, suppressing NCKAP1 expression in VSMCs transfected with 

miR-214 inhibitor almost abolished the promoting effect of miR-214 inhibition on VSMC 

proliferation, suggesting that miR-214 inhibits VSMC proliferation through repression of NCKAP1. 

Similar results were observed for VSMC migration as demonstrated by trans-well experiments 
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(Figure 27 D1 and D2). Moreover, phalloidin-FITC staining showed lower levels of actin 

polymerization as evidenced by a weak staining in NCKAP1 shRNA group as compared to the 

control and miR-214 inhibitor treated group, and the inhibitory effectof NCKAP1 knockdown on 

actin polymerization was almost restored by miR-214 inhibition (Figure 27E), supporting the 

notion that miR-214 exerts its inhibitory effects on VSMC proliferation and migration through 

NCKAP1 repression. 
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Figure 27. miR-214 mediates VSMC (Murine) growth, motility and actin polymerization through 
modulating NCKAP1. 
Murine VSMCs were co-transduced with miR-214 inhibitor, NCKAP1 shRNA lentivirus (NCKAP1 sh), and/or 
respective controls (Control miRNA and/or non-target shRNA) as indicated. Transduced cells were serum-
starved for 24 hours, followed by treatment with 20% serum (A-C) and 30ng/ml PDGF-BBfor trans-well 
migration (D), respectively.Cells were subjected to RT-qPCRanalysis for examining miR-214, NCKAP1 and 
PCNA (proliferating cell nuclear antigen) gene expression level (A), Cell counting (B), Immunofluorescence 
staining for Ki-67 (C1 and C2),trans-well migration (D1 and D2) and F-actin staining using Phalloidin-FITC 
(E).Data presented are representative images (C2, D2, and E) or mean+SEM (A,B, C1 and D1) from three 
independent experiments (n=3). *<0.05, **<0.01, ***<0.001 (compared various treatments with double 
control, #P<0.05 (compared NCKAP1 knockdown with control in VSMCs with miR-214 inhibition). 
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Figure 27. Continued  
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5.14 In Vivo Experiment: Locally Enforced expression of miR-

214 to Injured Artery Reduced NCKAP1 expression, Decreased 

VSMC Proliferation and Blunted Neointima SMC Hyperplasia. 

To explore the functional implication of miR-214 in vascular remodelling after angioplasty, 

femoral artery wire injuries were conducted in C57BL/6 mice, as described in our previous 

studies (Xiao, et al. 2006; Xiao, et al. 2014; Zeng, et al. 2006) and elaborated in the section 4.7 

(materials and methods), the expression levels of miR-214 was examined by RT-qPCR assay. 

Consistent with our in vitro findings (figure 14), upon vascular injury, the expression levels of 

miR-214 were substantially downregulated in femoral arteries from day 1 to day 14, whereas 

their expression levels were almost back to normal at 28 days after angioplasty (figure 28A), 

suggesting a regulatory role of miR-214 in neointima formation. To further determine the effect 

of miR-214 on VSMCs proliferation and neointimal growth in vivo, 100ul of 30% pluronic gel 

containing chemically modified and cholesterol conjugated 2.5 nmol miR-214 or Cel-miR-

67agomiRs (negative control) was applied perivascularly to femoral arteries immediately after 

injury, as described in our previous study (Xiao, et al. 2006; Xiao, et al. 2014; Zeng, et al. 2006). 

Local transferring miR-214 agomiRs increased vascular miR-214 levels 72 hours following wire 

injury to a level comparable to that of uninjured femoral artery, which was significant higher 

than that of injured vessel treated with Cel-miR-67 agomiRs (Figure 28B). Compared with the 

control group, enforced expression of miR-214 in the injured vessels dramatically decrease 

NCKAP1 expression levels, as demonstrated in RT-qPCR (Figure 28B) and western blot analysis 

(Figure 28C and 28D). These data demonstrate an inverse relationship between miR-214 and 

NCKAP1 expression in the injured vessels. As expected, a deceased level of PCNA gene (Figure 

28B) and protein (Figure 28C and 28D) expression was observed in the injured vessel treated 
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with miR-214 agomiRs, demonstrating that the perivascular enforced expression of miR-214 in 

the injured vessel inhibits VSMCs proliferation. Consequently, local transfection of miR-214 in the 

injured vessel resulted in 42% decrease in neointima formation after angioplasty (Figure 28E and 

28F). As expected, a thick intima was induced by wire injury of the femoral artery after 28 days in 

the mice treated with Cel-miR-67 agomiRs (n=11), which significantly reduced the lumen of the 

vessel. However such remodelling response was significantly inhibited by treatment with miR-

214 agomiRs (n=11). Our data suggests that locally restoring the expression levels of miR-214 

inhibits neointima SMC hyperplasia induced by vascular injury. 
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Figure 28. Enforced expression of miR-214 to the injured C57BL/6 mouse femoral artery reduces 

NCKAP1 expression, decreases VSMC proliferation and blunts neointima hyperplasia. 

(A) miR-214 was downregulated after injury. *<0.05, **<0.01 (compared with uninjured control). (B-D) 

Gene/ Protein expression levels in the injured vessel after perivascular delivery of miR-214 agomiRs. After 

injury, 100ul of 30% pluronic gel containing 2.5 nmol agomiRs per vessel per mice was immediately 

applied and packed around the injured vessel. At 3 days (B), 14 days (C and D), or 28 days (E and F) later, 

injured segments of femoral arteries were harvested and subjected to various studies. Total RNA and 

proteins were extracted from the uninjured and injured femoral arteries (3-5 mice for each experiment, 

n=3 experiments) and subjected to RT-qPCR (B) and western blot (C and D) analysis. Representative 

images (C) and quantitative data as mean+SEM (B and D) of 3 independent experiments are 

presented.#P<0.05 (compared miR-214 agomiRs with Cel-miR-67 agomiRs (B,D, and F). *<0.05, **<0.01 

(compared with uninjured vessel B and D). 
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Figure 28 Continued. Wire injury induced neointima formation was blunted by miR-214 overexpression 
(E and F). Paraffin sections from both groups were prepared (n=11 mice for each group) and subjected to 
hematoxylin and eosin staining analysis. Representative images (E) and quantitative morphological 
characteristics (mean+SEM) including media area, neointima area, neointima/media ratio and lumen area 
(F) are presented. #P<0.05 (compared miR-214 agomiRs with Cel-miR-67 agomiRs (B, D, and F). *<0.05, 
**<0.01 (compared with uninjured vessel B and D). For measurements of external elastic lamina (EEL), 
internal elastic lamina (IEL), artery lumen and Neintimal area on H&E stained cross sections of femoral 
artery, following calculations were made using computerized image analysis system (pixel2 Axiovision 
software).  
External Elastic Lamina (EEL) - Internal Elastic Lamina (IEL) = Media area,  
IEL - Artery Lumen = Neointima area (NI) 
Neointima area (NI)/ Media area= NI/Media ratio 
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6 Discussion: 

Unlike other somatic cells that are terminally differentiated, VSMCs within adult animals retain 

incredible ability of plasticity and can undergo phenotype switching in response to changes in 

local environmental cues or stimulations that normally regulate VSMC phenotype. Among the 

various stimuli, high concentration of serum (20%), PDGF-BB, oxidized LDL or its components 

such as 4-Hydroxynonenal (4-HNE) and 7-ketocholesterol (7-Keto) have been extensively used to 

study the molecular mechanisms underlying VSMC phenotype switching. This phenomenon of 

plasticity plays a crucial role in the development of atheroma as well as in neointimal hyperplasia 

post angioplasty. MicroRNAs have beens recently identified as a class of non-coding small RNAs 

involved in post transcriptional regulation of genes through influencing their target gene 

messenger RNA stability, translation and cleavage/degradation. In this study, we have expanded 

our knowledge about interactions between VSMCs and miRNAs with particular emphasis 

regarding the role of miR-214 and explored a new mechanism through which miR-214 regulates 

VSMC function (proliferation and migration) by influencing NCKAP1 gene function.  

6.1 Atherogenic stimuli downregulate miR-214 levels in 

mVSMCs 

Interestingly, we observed that proatherogenic stimuli such as PDGF-BB, high concentration of 

serum, and ox-LDL components (4-HNE, 7Keto) influence miR-214 expression in VSMCs. Although 

we didn’t examine if other miRNA expression is regulated by PDGF-bb and 20% Serum in this 

study, our group have previously reported the expression levels of other miRNAs were controlled 

by these two stimuli in VSMCs. Specifically, a similar response was observed regarding the 

cellular expression levels of miR-22 and miR-34a when VSMC were treated with PDGF-bb and 

high conc of serum (Yang, et al. 2018). miR-22 and miR-34a expressions in cultured VSMCs were 
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reduced in response to PDGF-BB and serum stimulation, while the opposite effect were seen in 

the serum starved VSMCs (Yang, et al. 2018; Yu, et al. 2014; Zhao, et al. 2015). 

4-Hydroxynonenal (4-HNE) is a major active product formed following the oxidation of n-6 

polyunsaturated fatty acids. 4-HNE is highly lipophilic and can interfere with the functions of 

many proteins by forming adducts. 4-HNE is associated with the generation of reactive oxygen 

species and hence its levels increases significantly during diseases involving oxidative stress and 

results in generation of ROS as happens in atherosclerosis and diabetes (Chapple, et al. 2013; 

Selley 1997). Physiological levels of 4-HNE in human plasma range between 0.3-0.7 μM which 

under pathological conditions increases significantly to 20μM or to even higher concentrations 

(100μM) have been reported in areas such as plasma membrane (Chapple, et al. 2013; 

Esterbauer, et al. 1991; Selley, et al. 1989). 4-HNE levels in plasma also serve as markers of 

oxidative stress (Chapple, et al. 2013). To analize effect of 4-HNE and 7-Keto, different group of 

cells were cultured in 1% DMSO (vehicle control), 4-HNE (10μΜ) and 7-Keto (10μΜ each) (Chen, 

et al. 2013a). The dosage of 4-HNE was carefully selected to avoid the undesirable effects of 

cellular apoptosis whereas creating suitable inflammatory conditions to stimulate cellular 

responses by considering our lab experience and previous publications (Pidkovka, et al. 2007). 4-

HNE and 7-Keto stimulation resulted in reduction in the levels of miR-214 (Figure 14C) compared 

to vehicle control (cells in 1% DMSO), suggesting that miR-214 plays a role in VSMC proliferation 

and migration.Furthermore, decrease in levels of miR-214 was observed during vascular 

remodelling after injury. Our in vitro data indicates that miR-214 reduces VSMC proliferation and 

migration, and NCKAP1 has emerged as the functional target of miR-214 in context of VSMC 

functions. Considering the fact that NCKAP1 is the constitutive component of WAVE complex and 

plays an important role in actin cytoskeleton and lamelliopodia formation, it is very reasonable to 

suggest that miR-214 regulates VSMC functions by regulating actin polymerization and 
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lamelliopodia formation via inhibiting NCKAP1. Translationally, documented evidence suggests 

that locally enforced expression of miR-214 in the injured vessels (femoral artery wire injury 

models) resultes in reduced neointimal hyperplasia compared to control group. This beneficial 

outcome attributes to decreased NCKAP1 expression levels resulting in inhibition of VSMCs 

migration and proliferation into neointima. Although we didn’t examine the direct effect of 4-

HNE and 7-Keto on the expression levels of NCKAP1, by considering the role and effect of 4-HNE 

during oxidative stress and it’s involvement in generation of ROS which further deteriorates the 

micro-environment within atheroma leading to exacerbation of atherosclerosis, one can 

speculate its role in pathrogenesis of atherosclerosis. Furthermore, as we observed that 4-HNE 

reduces the levels of miR-214 which is responsible for reduction in VSMCs proliferation and 

migration by negatively regulating NCKAP1 levels, hence, one can speculate that 4-HNE may be 

positively influencing the expression levels of NCKAP1 to induce VSMCs migration and 

proliferation. As mentioned above that NCKAP1 is the constituative component of Wave complex 

and is required for actin filament polymerization, so it is plausible that a relationship may occur 

between components generating oxidative stress and ROS (e.g. 4-HNE) and NCKAP1 to regulate 

cellular response during stress and injury. However, further studies are required to fully 

elaborate the role of 4-HNE and its effects on NCKAP1 levels and if there is any direct mechanism 

exists between 4-HNE and NCKAP1. 

 

 

6.2 MiR-214 reduces mVSMCs proliferation and migration in 

vitro and in vivo. 
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miR-214 is the member of miR-199a-214 cluster and is encoded from DNM3os (opposite strand 

of DNM gene) as a long non-coding RNA and has emerged as indispensable for normal skeletal 

development and body growth in mammals (Watanabe, et al. 2008). Increasing amount of data is 

now supporting a role for miR-214 in many cellular functions including tumorigenesis, cardiac 

development, cardiac protection, mitochondrial morphology, mitochondrial fatty acid oxidation 

and cell cycle, gluconeogenesis suppression, angiogenesis, skin and hair follicle development and 

dendritic cell switching from tolerance to immunity. Initially it has been labelled as oncogene 

contributing to tumour growth, progression and cell cycle control, enhancing motility, promoting 

angiogenesis and invasiveness, metastasis, stemness and resistance to chemotherapy (Deng, et 

al. 2013; Molnár, et al. 2008; Penna, et al. 2015; Ueda, et al. 2010; Yang, et al. 2008; Yin, et al. 

2010; Zhang, et al. 2010; Zhang, et al. 2014), but now various studies have suggested 

aninhibitory role for miR-214 in tumorigenesis, cencer cell survival and metastasis as well 

(Derfoul, et al. 2011; Gutierrez, et al. 2010; Schwarzenbach, et al. 2012; Shih, et al. 2012; Wang, 

et al. 2013a; Wang, et al. 2013b; Xia, et al. 2012; Xu, et al. 2012). The reported divergent (or even 

opposite) roles for miR-214 in different types of cancer may attrebute to the fact that miR-214 

can target respective target genes and modulate various downstream signalling networks in 

different cancers. Another major underlying factor of such discrepancy is the using of different 

cancer models involving different cancer cell lines, suggesting that cell context is decisive for 

miR-214’s function. 

A similar phenomenon is observed when studying role of miR-214 in cardiovascular system. 

Genetic deletion of miR-214 resulted in heart defects, increased apoptosis and loss of cardiac 

contractility and excessive fibrosis after ischemia-reperfusion injury. miR-214 protects 

cardiomyocytes from Ca2+ overload by repressing Ncx1 and maintaining Ca2+ homeostasis (Aurora, 

et al. 2012). Lu et al., 2013 has suggested miR-214 as a cardioprotective agent and promising 
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biomarker for severe coronary artery disease (Lu, et al. 2013). miR-214 has also been suggested 

to protect cardiac myocytes against H2O2 induced injury, and inhibits left ventricular remodelling 

after acute myocardial infarction (Lv, et al. 2014). In a recent study by Natsume et al have 

identified miR-214 along with 3 other miRNAs as a novel biomarker for atrial fibrillation 

(predictive accuracy of 80%) in mice and men. (Natsume, et al. 2018). 

Whereas the above studies have provided evidences to support a role of miR-214 in protecting 

cardiomyocytes from various insults and maintaining cardiac function, in another study up-

regulation of miR-214 is associated with cardiac hypertrophy and its antagonization is proposed 

as therapeutic approach to treat this ailment (Yang, et al. 2013b).  

In our study, we have found that miR-214 reduces VSMC proliferation and migration as evident 

from gain of function and loss of funtion studies under the effect of two proatherogenic stimuli 

(high concentration of serum and PDGF-BB). It is worth noting that though miR-214 mimics 

resulted in 60 fold increase in miR-214 levels but we were unable to see such big response 

(reduction) in VSMCs proliferation. Such observation indicates that multiple signal pathways are 

responsible for VSMC proliferation and that miR-214 is only one of them.  

To better evaluate the effects of any treatment on VSMC functions, we starved the cells in serum 

starvation culture medium to minimize the possible interference of many unknown stimulators 

which may present in serum as well as keep cells in G0 phase of cell cycle, so that the cellular 

response would be an indicative of the specific treatment.  

Different concentration of miRNAs (20 to 100nM) has been used in various studies. We titred the 

concentrations of miRNA transfection (mimics and inhibitor) to 25nM depending upon our 

previous lab experience which has resulted in significant over-expression and inhibition during 

our experiments (Zhao, et al. 2015). In this study, miR-214 expression levels in VSMCs were 

successfully up-regulated and down-regulated by 25nM miR-214 mimics and inhibitor, 
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respectively, without apparent cell apoptosis and cytotoxicity. There is no significant change in 

terms of cellular viability after treatment with miR-214 mimics or inhibitor transfection and 

inflammatory mediators, as observed by physically monitoring the changes in cell morphology.  

 Furthermore, we elegantly demostrated that miR-214 regulate VSMC migration and 

proliferation and inhibit neointima SMC hyperplasia by using our well established wire injury-

induced neointima formation model and applying enforced expression of miR-214 by 

perivascular delivery of miR-214 agomiRs into injured vessels. Because these VSMC functions 

hold prime importance in the pathophysiology of neointimal hyperplasia, so miR-214 could 

represent a new therapeutic target for the treatment of post-angioplast restenosis. Importantly, 

findings from our study and previous studies have indicated a divergent role of miR-214 with 

respect to different organs and diseases. As impact of miR-214 on various cellular functions are 

conflicting concerning a wide range of human diseases (particularly cancer, cardiovascular 

diseases, diabetes, and rheumatology), caution should have been taken when considering the 

therapeutic benefits of miR-214 overexpression and/or inhibition on distinct human disease. 

6.3 MiR-214 levels are regulated by Transcription factor Twist-1. 

Different studies have proposed changes in miR-214 levels (normally upregulation) under the 

effect of different stimuli including hypoxia, cardiac stress, H2O2, and Ca2+ overload, but we 

observed downregulation in miR-214 levels under the influence of various atherogenic stimuli 

(PDGF-BB, serum, 4HNE, and 7Keto) when cultured using normoxic conditions. Different 

mechanism have been proposed for regulation of miR-214 expression. miR-214 has been shown 

as a hypoxia-inducible miRNA which can be regulated in HIF1-α dependent/independent manner 

(el Azzouzi, et al. 2013), whereas other study has identified an E-box element within miR-214 

promotor, through which the basic helix-loop-helix transcription factor, Twist 1, can regulate 

miR-214 expression in hepatic stellate cells (Chen, et al. 2015b). 
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Hypoxia is a physiological and/or pathological state characterized by imbalance between oxygen 

need and supply leading to insufficient concentration of oxygen to meet cellular or tissue 

demands. It may arise due to reduced oxygen supply (due to defects in blood vessels leading to 

insufficient blood supply) or due to an icreased consumption of oxygen relative to the supply (as 

in areas of rapid cell proliferation). Oxygen consumption rate also varies significantly depending 

upon specific cell/tissue type, for example the brain consumes 3ml O2/min 100g tissue whereas 

heart consumes 8-15ml O2/min 100g (Braunwald 2001). These differences between O2 

consumption arise from difference in metabolic activity and mitochondrial density. Under 

hypoxic conditions, cellular transcriptional, translational and post-translational response changes 

and results in upregulation of expression of certain genes known as hypoxia inducible genes. 

Genes involved in angiogenesis (VEGFR), erythropoiesis (erythropoietin EPO), cellular 

metabolism (Pyruvate dehydrogenase kinase 1,Pdk-1) and inflammation (inducible nitric oxide 

synthase iNOS) are some examples of hypoxia inducible gene. Hypoxia inducible factor 1α (HIF-

1α) and HIF-2α act as trascriptional mediators in the induction of above mentioned hypoxic 

genes. 

Atmospheric oxygen is transported to the cell in two forms, bound to Hb and dissolved in blood. 

Total amount of oxygen which fully O2 saturated blood can carry is 20.4 ml/100ml blood. From 

the atmospheric air, O2 passes through many gradients to finally reach at cellular/tissue level and 

at each levels its partial pressure (PO2) decreases. At 1st step, (during breathing) the PO2 of O2 

which is normally around 19.9kPa reduces to 13.3kPa due to introduction of CO2 and water 

vapour partial pressure (Keeley and Mann 2019) . Moving further (from blood to cytosol), the O2 

levels decrease significantly between the systemic arterial circulation and arteriolar vessels 

which is directly proportional to lumen diameter and inversely proportional to blood flow 

(Bohlen 1983; Duling, et al. 1979; Kerger, et al. 1995). Significant O2 gradient is observed in the 
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vascular wall of arterioles which is proportional to the thickness of artriolar wall (Duling, et al. 

1979). In addition to the longitudinal O2 concentration gradient, radial or transluminal O2 

concentration gradient across vascular wall also significantly depend on the concentration of 

available O2. Researchers have demonstrated significant reduction in O2 levels between the 

lumen and adjacent thin tissue layer by penetrating the vascular wall using electrodes (Niinikoski, 

et al. 1973; Santilli, et al. 2000). Different researchers have proposed different and contradictory 

ideas about this significant difference between the intimal and luminal PO2. Recent evidence 

suggests that the major barrier to transfer of O2 from the lumen to the tissue may be the plasma 

phase of blood as it creates significant barrier between red blood cells and endothelium. The 3rd 

gradient for O2 transfer is from vessels to cytosol. The pressence of longitudinal and radial O2 

concentration gradient in the vasculature, diffusional transfer of O2 between neighbouring 

arterioles, capillries and venules results in significant narrow Guassian tissue PO2 distribution 

(Tsai, et al. 2007). 

Various types of cells including EC, monocytes/macrophages, T lymphocytes, fibroblasts and 

VSMCs are involved in initiation and development of atheroma plaque. Several studies have 

docuented the presence of hypoxic regions within plaque. In developed atherosclerosis, oxygen 

consumption rate increases than supply, leading to the development of tissue hypoxia at the 

plaque lesion. As aforementioned, the partial pressure PO2 differes significantly across different 

gradients while travelling from lungs to the tissue/cells and varies greatly within artery wall even 

in helathy individuals. During atherosclerosis, due to impared O2 diffusion capacity and excessive 

oxygen consumption by marcophages, hypoxic zones develop within atherosclerotic plaques. 

Hypoxia has been observed in atherosclerotic plaques from human and animal models including 

ApoE-/- and LDLr-/- mouse models (Bjornheden, et al. 1999; Parathath, et al. 2013). 

Hypoxia/reoxygenation cycles leads to the formation of ROS which may promote angiogenesis by 
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regulating HIF-1α expression and activation of NOS and NADPH oxidase activity. HIF-1α plays 

critical role in proression of atherosclerosis by promoting the formation of foam cells, EC 

dysfunction, apoptosis and by increasing inflammation. Considering our in vivo model, we can 

speculate (though its currently unknown) the involvement of HIF-1α for regulating miR-214 

expression and resulting NCKAP-1 expression along with the dominant effect of inflammatory 

stimulators (PDGF-bb and serum) on the transcription factor Twist-1.  

Whereas our in vitro model is concerned, we assume that changes in miR-214 levels under the 

influence of inflammatory stimuli (PDGF-bb and serum) are mainly due to their influence on 

transcription factor Twist-1 rather than the involvement of HIF-1α dependent pathway because 

the cells were cultured under normoxic conditions although recent studies do present that cells 

cultured under in vitro condition experience different PO2 than the PO2 of air in the room (Keeley 

and Mann 2019). 

The PO2 in room (20.9 kPa) is strictly refers to the dry atmospheric air whereas the conditions 

inside laboratory incubators are somewhat different with 95% of air and 5% CO2. Moreover 

incubators run at 75% humidity to reduce growth medium evaporation, compared to around 50% 

at room air, hence the actual PO2 in room reduces to 18.5 kPa (Keeley and Mann 2019). In the 

absence of Hb as happens during in vitro studies, O2 delivery to the cell monolayer is defined 

largely by the PO2 of the culture medium directly adjacent and hence the total availale O2 is 

considerably lower. To address any hypoxic condition arising from such situation, gas permeable 

culture substrate can be effective in minimizing unintentional hypoxic condition. Furthermore, 

temperature also adversely effects the solubility of gas in water/solution. Higher temperature 

increases evaporation and thus increase PH2O at the expense of O2. Solubility of O2 in pure water 

at 37°C is 77% than at 20°C, resulting in about 30% less O2 in the solution (Keeley and Mann 

2019). Another factor influencing O2 solubility is the salinity of the solution. Equilibrium between 
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atmospheric and medium O2 levels is another varient effecting O2 levels in culture. Normally O2 

levels equilibrates in the solution through the gas/liquid interface and hence addition of poorly 

equilibrated, overly oxygenated medium to cells adapted to low O2 may create condition similar 

to ischaemia/ reoxygenation as observed in stroke and MI.  

One limitation in this study was the lack of technology to accurately monitor intracellular O2 

levels in living cells. Requirement for such tool arises because even if the cells are cultured under 

normoxic condition, they can experience culture-induced hypoxia by consuming O2 faster than it 

can diffuse specially when they were actively proliferating as it was in our case. Under such 

conditions, it may become difficult to differentiate the cellular response to physiological and 

hypoxic O2 levels, resulting in incorrect interpretation. 

 Althought, it is currently unknown whether the above mentioned atherogenic stilmuli 

downregulate miR-214 expression in VSMCs through HIF1- α  dependent and/or HIF1- α 

independent mechanism; however, it is unlikely that the HIF1-α signalling pathway will be 

involved in miR-214 modulation by atherogenic stimuli because the VSMCs were cultured under 

normoxic conditions rather than hypoxic one in this study. Instead our data demonstrate that 

both serum and PDGF-BB regulate miR-214 expression through a transcriptional mechanism, and 

the E-box element within the miR-214 promoter region is required for such regulations. So in this 

regard, our data is consistent with the previous finding that miR-214 expression in hepatic 

stellate cells and during development is dependent on Twist-1.(Chen, et al. 2015b). Interestingly, 

we also observed incomplete inhibition of miR-214 when VSMCs were transfected with full 

length miR-214 gene promoter containing E-box (figure 15C) indicating that miR-214 and Twist-1 

gene regulation is under controlled by multiple factors (Serum, PDGF-BB, other growth factors or 

cytokine/chemokines, etc) and/or many other yet unknown signalling pathways. 

6.4 NCKAP-1 is the downstream target of miR-214. 
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As aforementioned, major finding in our study was the identification of NCKAP1 as the functional 

target gene of miR-214 in the context of VSMC functions. Although multiple miR-214 targets 

have been reported invarious cellular context and diseases (e.g. ITCH, FGFR1, Quaking, Osterix, 

Ncx1, β-catenin, Mitofusin2 and ATF4)(Ahmed, et al. 2014; Aurora, et al. 2012; Bucha, et al. 2015; 

Chen, et al. 2014; Chen, et al. 2015e; Li, et al. 2015b; Shi, et al. 2013; van Mil, et al. 2012), we 

provided evidence to suggest that NCKAP1 is the novel target gene for miR-214 in VSMCs. Our 

proteomics data showed NCKAP1 is the most down-regulated protein with the highest 

significance. Using computational algorithmic data, we identified three binding sites for miR-214 

within 3’UTR of NCKAP1. Furthermore, miR-214 over-expression and inhibition experiments 

showed an inverse relationship between miR-214 and NCKAP1 in VSMCs as evidenced by 

upregulation of miR-214 results in decrease in NCKAP1 levels and vice versa. NCKAP1 is 129kda 

protein primarily shown to be associated with NCK (non-catalytic region of tyrosine kinase 

adaptor protein 1) through binding to the Src homology 3 (SH3) domains of NCK (Kitamura, et al. 

1996; Suzuki, et al. 2000). But later studies have suggested a critical role for NCKAP1 in regulating 

cell motility and adhesion through regulation of actin polymerization (Nakao, et al. 2008). Mice 

lacking NCKAP1 gene were arrested at midgestation and have defects in morphogenesis of all 3 

embryonic germ layers (Rakeman and Anderson 2006). Cellular movement/migration process is 

triggered with the formation of lamelliopodia (membrane protrusions) and/or filopodia (finger 

like protrusions), followed by changes in action cytoskeleton which enables cell movement. It has 

been well established that Rac signalling to actin mediated by WAVE complex holds key role in 

cell movement. NCKAP1 being integral constructive part of WAVE complex has prime importance 

in regulating VSMC functions (Ibarra, et al. 2006; Steffen, et al. 2004). NCKAP1 is described as 

locallized at the protruding ends of lamelliopodia thus playing a key role in regulation of cell 

motility, contact dependent cell migration and adhesion by driving actin assembly. Though role 
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of NCKAP1 is well postulated but by now the underlying mechanism for NCKAP1 regulation in 

VSMCs was not clearly establised. 

6.5 NCKAP1 inhibition leads to reduced Actin polymerization, 

lamelliopodia formtion and cell migration. 

By using proteomics analysis, miR-214 over-expression and inhibition experiments, and by 

generating NCKAP1 stable knockdown VSMC lines, we have, for the first time, provided 

compelling evidence to show that NCKAP1 is regulated by miR-214 in VSMCs. Futhermore, 

immunoflourescense staining has provided additional evidence about its localization 

(lamelliopodial ends) and showed an inverse relationship between miR-214 and NCKAP1 (low 

levels of F-actin and NCKAP1 in lamelliopodia in miR-214 over-expressing VSMCs). Another 

technique which could have been employed to investigate co-localization of NCKAP1 and F-actin 

would be proximity ligation assay (PLA). PLA allows in situ detection of endogenous proteins, 

protein interactions and modifications with high sensitivity and specificity. The detection and 

cellular localization of proteins can be made with single molecule resolution in unmodified cells 

and tissues. Two primary antibodies raised in different species are used to detect two unique 

protein targets. Then two secondary antibodies containing a short unique DNA strand 

oligonucleotide probe (PLA Probe) binds to the specific primary antibodies. If the two PLA probes 

(occurs only if the target proteins are very close) are in close proximity of each other, the 

hybridizing connector oligos joins the PLA probes into a closed circular DNA template required 

for rolling-circle amplification (RCA). The PLA probe then acts as primer for DNA polymerase, 

which generates concatemeric sequences during RCA resulting several hundreds fold 

amplification of DNA circle. Next, flourescent labelled complementary oligonucleotide probes are 

added to amplified DNA, which being tethered to DNA probe allows localization of the signals. 
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The resultant flouresence is visualized and quantified as discrete spots by microscopy image 

analysis. In our case, as it was widely accepted that both NCKAP1 and F-actin are involved in actin 

cytoskeleton and cellular movement so it was quite logical to speculate that both are present at 

same location and involved in cell migration which was evidant in our immunoflouresence assay. 

Luciferase reporter and mutagenesis assay finally confirmed that NCKAP1 is the direct and 

functional target of miR-214. 

Functionally and mechanistically, we have demonstrated that controlling actin assembly and 

polymerization and lamellipodia formation in VSMCs through modulation of NCKAP1 expression 

is the primary mechanism through which miR-214 mediates VSMC functions and behaviours 

including growth and movement. We observed a much lower level of F-actin and lamellipodia 

formation and a significantly reduces levels of NCKAP1 in miR-214 overexpressing VSMCs (Figure 

26), suggesting that miR-214 impairs actin assembly and polymerization and lamellipodia 

formation through inhibition of NCKAP1. Additional data from NCKAP1 knockdown expeiments 

(Figure 25C and 25D) showed that NCKAP1 inhibition can recapitulate the inhibitory effects of 

miR-214 overexpression on VSMC functions and behaviours. Finally, evidences from 

cotransduction experiments (miR-214 inhibition and NCKAP1 knockdown)(Figure 25) indicated 

that NCKAP1 repression is required for miR-214 mediated inhibition of VSMC proliferation, 

migration and actin polymerization. 

One of the surprising findings which warrants further investigations was an unexpected 

observation about the localization of NCKAP1 within the nuclei of VSMCs particularly after the 

cells were restimulated with serum after serum starvation (Figure 26A and 26B). The functional 

implication of such behaviour requires further investigation in a separate study. Furthermore, we 

observed a higher level of nuclear localization of NCKAP1 in control VSMCs infected with shRNA 

lentivirus than in VSMCs transfected withcontrol miRNA mimics. Because these two control 
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VSMCs  were subjected to different treatments (cells with control miRNA mimics received 

transient transfection for 24 hours, whereas the control VSMCs with nontarget shRNA were 

generated from lentivirus infection and a 10 days puromycin selection) prior to serum starvation, 

we speculate that such discrepencies is due to the additive or synergistic effects of serum 

restimulation and lentivirus infection (and/or puromycin selection during the cell line generation), 

which require further investigation in separate study. 

6.6 MiR-214 Crosstalk and effet on other Genes/proteins. 

The fact that multiple genes have been identified as functional targets of miR-214 in different 

studies involving different organs suggests that miR-214 plays a diverse or even contradictory 

role under different physiological and pathological conditions. So considering the findings of 

other researchers and from our proteomics data, we can postulate that miR-214 regulates 

specific genes in a organ/cellular context dependent manner. Furthermore, despite the limitation 

of our study, majority of the proteins downregulated by miR-214, as per data from our 

proteomics analysis, showed that they are involved in actin filament reorganization and 

polymerization, regulation of cell migration, proliferation, cell cycle and gene expression, further 

supporting a role for miR-214 in modulating VSMC proliferation and migration. 

Interestingly, as per our proteomics data, overexpression of miR-214 in VSMCs resulted in 

upregulation of 160 proteins out of 219 total observed proteins (Table 14), whereas just 59 

proteins were downregulated by miR-214 in VSMCs, which suggestes that miR-214 might 

suppress one or more transcription or epigenetic factors which resulted in a positive 

impact/upregulation of these proteins. As expected, SMYD5, a major epigenetic regulator, was 

observed to be significantly downregulated by miR-214 in VSMCs. Moreover, data from 

luciferase assay showed that SMYD5 3’UTR reporter activity is negatively regulated by miR-214 

(Figure 23B), thus providing a direct evidence to support that SMYD5 is a target gene of miR-214 
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in VSMCs. SMYD5 belongs to the class V-like SAM-binding methyltransferase superfamily, which 

has been suggested to play an important role in regulation of gene silencing by modulating the 

methylation of a variety of histone and nonhistone targets. It would be interesting to further 

investigate the implication of SMYD5 modulation and the regulation of associated genes under 

the influence of miR-214 over expression and inhibition, and how such regulation affect VSMC 

functions and neointima hyperplasia.  

In addition to SMYD5, we also selected KLF14 to evaluate miR-214 activity as algorithmic 

computational models showed 2 binding sites for miR-214 in its 3’UTR. KLF14 is a member of 

Kruppel-like factor family of transcription factors and plays an important role in regulating 

expression of many genes involved in various biological processes. As aforementioned many 

predisposing factors (inflammation, hyperlipidemia, obesity, diabetes) are involved in the 

progression of atherosclerosis and KLF14 gene expression is closely associated with regulation of 

these factors. KLF14 regulates the expression of genes involved in cellular proferation, 

differentiation, apoptosis, inflammation and cardiovascular disease (McConnell and Yang 2010). 

TGFβ is antiatherosclerotic cytokine which is involved in inhibition of cell proliferation at the 

initial stage of atherosclerosis and later in the stabilization of atherosclerotic plaque by help in 

maintaining a fibrous cap. TGFβ treatment results in upregulation of KLF14 expression levels 

which leads to silencing of TGFβRII promoter, resulting in suppression of TGFβRII activity, thus 

playing a role in maintaining cellular homeostasis (Truty, et al. 2009). Recent genome-wide 

association studies (GWAS) presented involvment of KLF14 variant in etiology of atherosclerosis, 

ischaemic strock and MI (Chen, et al. 2012; Grarup, et al. 2010; Voight, et al. 2010). KLF14 

hepatic-specific deletion in apoE-/- mice resulted in accelerated development of atherosclerotic 

lesion due to decrease cholesterol efflux and reduced HDL-C levels (Huang, et al. 2013). On the 

contrary, activation of KLF14 resulted in reduction in atherosclerotic lesion suggesting KLF14 as 
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potential therapeutic target. Study also reported that KLF14 regulates lipid metabolism through 

HDL biogenesis and by maintaining triglycerides and cholesterol homeostasis (Teslovich, et al. 

2010).  

Activation, migration and infiltration of macrophages and T-cells is an important step in 

progression of atherosclerosis and KLF14 plays a profound role in driving T-cells differentiation 

(Sarmento, et al. 2015). Interestingly KLF14 knockdown significantly decrease the circulating 

levels of inflammatory cytokines such as TNF-α, IL-6 and MCP-1 in apoE-/- mice (Wei, et al. 2017). 

Abovementioned roles for KLF14 in multiple processes involved in atherosclerosis prompted us 

to investigate if KLF14 expression is regulated by miR-214 in VSMCs. The 3’UTRs of KLF-14 were 

cloned into luciferase reporter (pmiR-Luc) and transfected into VSMCs along with miR-214 

mimics or respective negative control for 14-16hrs. Cells were harvested after 48hrs and 

subjected to luciferase activity assay. No significant reduction was observed in the luciferase 

activity with the construct harbouring KLF14 3’UTR, suggesting that miR-214 does not directly 

represses KLF-14 but rather does its activity in an indirect mannar (probably by interacting with 

another epigenetic factor whose inhibition or over-expression results in KLF-14 repression). 

Furthermore, as a major characteristic of miRNAs, it has been widely known that single miRNA 

can effect multiple target genes and downstream cellular/molecular processes so we can 

pressume that there might be more miRNAs whose specific roles and involvement in the 

cardiovascular system still needs to be explore. They might be working in harmony, synchronising 

cellular response or they may be counteracting each other’s influence or might be influencing 

cellular and biological functions completely independent of each other, working though separate 

molecular mechanism to produce their effect as we observed in our case of miR-214 and miR-

34a. Both miR-214 and miR-34a influence VSMCs functions and neintima formation but through 

their own respective pathways independent of each other i.e. through NCKAP1 and Notch1 
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respectively and that there is no cross talk or link between the effect of these two miRNAs with 

respect to murine VSMCs. But there are possibilities that some other miRNAs (whose role hasn’t 

been explored yet) might be working through similar mechanisms and pathways resulting in 

similar response on target tissue/organ. Hence, we can speculate that there is possibility that 

some other miRNA could be working on NCKAP1 or influencing the transcription of miR-214 and 

thus regulating the cellular responses and functions.    

Another area requiring further investigations is other down-regulated proteins/genes by miR-214 

in VSMCs. Multiple miR-214 target genes have been reported in different cell population, but 

among them we only found two genes (β-catenin and PCBP2) were slightly decreased by miR-214 

over expression in VSMCs in our proteomics anslysis. All other reported miR-214 target genes 

failed to pass the strict threshold setting for our proteomic analysis. Possible reason for this 

discripency might include sensitivity of mass spectrometer in identifying such regulatory proteins 

from our sample of whole cell lysate. Another reason might be the VSMCs which may contain 

less amount or lack of expression of these proteins. Β-catenin is involved in coordinating 

intercellular interactions and regulation of gene transcription. Several studies have documented 

its role in endothelial cells as it regulates cellular growth and adhesion by interacting with VE-

cadherin and intracellular actin cytoskeleton (Rho, et al. 2017; Tian, et al. 2011). In our proteomic 

data, β-catenin protein level was not significantly downregulated by miR-214 overexpression in 

VSMCs. One possible reason for such observation would be specific cellular context as we were 

examining VSMCs but not ECs. Furthermore, it is widely accepted that miRNAs behave differently 

in different cells and can exhibit totally divergent interactions regarding post translational mRNA 

inhibition, hence, we can presume that miR-214 might have regulated different genes/proteins in 

VSMCs compared to ECs. Another reason for such discripency might be the inflammatory 

stimulus employed in our experiment. Finally the limitation regarding the low sensitivity of mass 
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spectrometer in identifiying β-catenin from our sample could be another reason for such 

observation. 

In the current study, we have mainly focused on the regulatory role of miR-214 in modulating 

VSMC functions and their involvement towards neointima formation, however its noteworthy to 

mention another major contributing factor to neointima formation after vessel injury, namely 

the lack of re-endothelialization and impaired response of ECs towards injury and subsequent 

initiation of inflammatory response. Several studies (Chan, et al. 2009; Duan, et al. 2015; van Mil, 

et al. 2012) have reported a role of miR-214 in modulating endothelial response and resulting 

angiogenesis; therefore, the biological effects of miR-214 on ECs and re-endothelialization after 

injury may also contribute to the miR-214 mediated effect on decreased neointima formation 

and resulting vascular remodelling which need to be further investigated in separate study. 

Nonetheless, in the current study, we have successfully uncovered the functional involvement of 

miR-214 in VSMC biology and in vascular remodelling after injury and we can conclude that, miR-

214 exerts its function by regulating the lamelliopodia formation and controlling actin 

polymerization through modulating NCKAP1 expression and hence affects VSMC migration and 

proliferation during atherosclerois and neointima formation. Although miR-214 exerts a diverse 

array of functions (as with the other miRNAs) in different organs and cellular context, findings 

from our study present miR-214 as potential therapeutic target for VSMC related diseases such 

as atherosclerosis and postangioplasty restenosis. 
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7 Conclusion, Limitations and Future Plan 

 

7.1 Conclusion 

VSMCs phenotype switching and the resultant migration, proliferation and ECM secretion holds 

fundamental importance in pathogenesis of atherosclerosis and neointima hyperplasia. 

Determination of underlying molecular mechanism and their regulation can help to modify the 

disease progression as well as reduce the fatal/disabling outcome. miRNAs are relatively recent 

class of small non-coding RNAs playing crucial role in biological processes. They modulate cellular 

processes at post-transcriptional level, inhibiting the translation of mRNA and leading to their 

degradation. They are regarded as master regulator as single miRNA can regulate multiple genes 

and the related proteins. Several researchers are investigating their role in multiple biological 

processes including VSMCs phenotype switching, atherosclerosis and neointimal formation. 

In this study, we expanded our knowledge by uncovering a novel role of miR-214 in modulating 

VSMC phenotype switching by regulating two major VSMC function (proliferation and migration) 

in vitro and in vivo. Interestingly, we observed that differet inflammatory stimuli (e.g. PDGF-BB, 

high concentration of serum, 7-ketocholesterol and 4-hydroxynonenal) can modify miR-214 

levels which results in down-regulation of miR-214 levels. A similar pattern of reduced miR-214 

expression was observed during vascular remodelling after injury. Consistent with the previous 

studies, (Lee, et al. 2009) our data indicate that both PDGF-BB and high concentration of serum 

regulate miR-214 expression through a transcriptional mechanism.miR-214 has an E-box element 

within its promoter region, which upon binding with basic helix-loop-helix transcription factor 

Twist-1, regulates its activities. Both atherogenic stimuli, PDGF-BB and high concentration of 
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serum, downregulate Twist-1 gene expression in VSMCs, thus leading to reduced 

expression/activity of miR-214.  

Regarding cellular function, by using miRNA gain-and loss-of-function analysis, we documented 

that, 2 critical cellular events in vascular neointima formation, VSMC proliferation and migration 

were inhibited by miR-214 over-expression, when treated with PDGF-BB and high concentration 

of serum.  

Major finding in our study was identification of NCKAP1 as functional target gene of miR-214 in 

regulating VSMC functions. miR-214 inversely regulate NCKAP1 expression as overexpression of 

miR-214 significantly downregulates NCKAP1 and vice versa. NCKAP1 was most downregulated 

protein in our proteomics analysis as well as we identified 3 binding sites for miR-214 in 3’UTR of 

NCKAP1. Actin polymerization and lamellipodia formation in response to extracellular stimuli and 

resultant WAVE signalling is fundamental to cell migration. As a constitutive component of WAVE 

complex, NCKAP1 plays key role in regulting cell motility and adhesion. Thus inhibition of Actin 

polymerization and/or lamellipodia formation by downregulating NCKAP1 expression is one of 

the underlying molecular mechanisms through which miR-214 regulates VSMC functions (growth 

and motility) and prevents neointimal SMC hyperplasia in response to vascular injury. 

Importantly, by using our well-established wire injury-induced neointima formation model and 

perivascular delivery of miR-214 agomirs into injured vessels, we further demonstrated that miR-

214 reduced NCKAP1 expression levels, modulated VSMC proliferation and inhibited neointima 

SMC hyperplasia after injury, suggesting that miR-214 can be a potential therapeutic target in 

postangioplasty restenosis. 

In conclusion, findings from this study significantly increased our understanding about the 

interaction between atherosclerotic/inflammatory stimuli and miRNAs, and the subsequent 

molecular mechanisms behind VSMC phenotype switching leading to neointimal hyperplasia. 
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This study also highlighted the importance of miRNAs (particularly miR-214) as prospective new 

targets to address CVD with particular reference to SMC biology, atherosclerosis, and neointimal 

hyperplasia. 
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7.2 Study Limitations. 

Altough we beautifully elaborated role of miR-214 in modulating neointima formation by 

regulatig NCKAP1 levels and resultant inhibition of VSMC migration and proliferation, we did 

come across some obstacles involved in our in vivo works. One of the major study limitations is 

the difference between our in vivo model (mice) and human disease. Neointima formation is the 

inflammatory process following angioplasty and stenting leading to restenosis of vessels. 

Although our mouse femoral artery injury model is well established in generating neointima and 

to analyse the contributing factors but it does not completely mimics the conditions prevailing at 

the micro-environmental level after stent implantation in patients, hence it cannot provide us a 

best alternative to study the underlying factors at such micro level. 

Additionally, atherosclerosis (being chronic inflammatory disease) and post-angioplasty 

neointima formation normaly occurs at later stages in life (generally in middle to old age 

population) and hence the cellular and molecular response to different inflammatory stimuli is 

somewat different than in normal young individual and this was the 2nd limitation of our study as 

we used adult C57BL/6 mice where the cellular response to injury might slightly different from 

middle to old age human population.  

Moreover, hyperlipidemia is considered as a major predisposing factor for atherosclerosis and 

neointima formation by effecting endothelial integrity leading to increased accumulation, 

transmigration and oxidation of LDL, generation of ROS and activation of inflammatory mediators. 

The difference of lipid content represents another limitation of our study model as it has normal 

levels of cholesterol and phospholipid content as compared to the actual patients which 

normally presents high levels of cholesterol and triglycerides. 

Another potential limitation affecting our in vivo work is the use of GAPDH (Glyceraldehyde-3-

phosphate dehydrogenase) as an internal control gene. GAPDH is commonly used as reference 
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gene while investigating for gene expression and protein studies. GAPDH has long been 

recognized as an important enzyme for energy metabolism and the production of ATP with 

highest levels in cytoplasm. Although increased GAPDH gene expression and enzymatic function 

is associated with cell proliferation, recent studies have highlighted it as multi-functional protein 

and that its levels are affected by conditions such as oxidative stress which impair GAPDH 

catalytic activity (Nicholls, et al. 2012). Specifically, in response to oxidative stress, GAPDH 

translocates to the nucleus under the effect of NO from inducible nitric oxide synthase (iNOS) or 

neuronal nitric oxide synthase (nNOS) and participate in regulating cell survival and apoptosis 

(Hara, et al. 2006; Rodacka, et al. 2014). Despite of such a pitfall, I believed that GAPDH is still a 

valid reference gene in our study since we didn’t observe any significant change of GAPDH gene 

expression in response to wire-induced vascular injury in our study.   
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7.3 Future plan 

Although we did provide compelling evidence about the role of miR-214 and its interactions with 

NCKAP1 and subsequent effects on VSMC functions and neointima formation, during the course 

of study we came across some new findings which warrant further investigation. 

1. Investigating the other parameters involved in SMC biology (e.g. apoptosis and ECM 

production/secretion) under the influence of miR-214 would be another area for 

future work. VSMC apoptosis is another determinant for vascular wall remodelling 

and atherosclerotic lesion progression. The functional involvement of miR-214 will be 

explored in the future by using flow cytometry analysis (FITC Annexin V/Dead Cell 

Apoptosis Kit, Life Technologies, V13242) and/or terminal deoxynucleotidyl 

transferase dUTP nick end labelling (TUNEL) assay (DeadEnd™ Fluorometric TUNEL 

System, Promega, G3250). 

For ECM secretion profile, VSMCs will be transfected with miR-214 precursor or 

inhibitor, and the gene/protein expression levels of various ECM proteins will be 

examined using RT-qPCR, Western blot and/or ELISA analyses, respectively. 

2. Data from the present study demonstrate that miR-214 downregulates NCKAP1 in 

murine VSMCs thus contributing to inhibition of neointima formation but how we can 

incorporate these results into human requires experiments on human tissue using 

human VSMCs. 

3. Transfering the results of our finding into clinical benefits requires investigating 

miR214 and NCKAP1 involvement in neointima hyperplasia using human tissues. 

(Gene expression and immunohistochemistry). 

4. Interestingly, we unexpectedly observed that NCKAP1 can be localized inside the 

nuclei of VSMCs particularly after the cells were treated with serum starvation (Figure 
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24B). To investigate the functional implication/importance and mechanisms involved 

in NCKAP1 re-localization to nucleus in VSMCs upon serum starvation and re-

stimulation would be another interesting area to explore in a different study. 

5. Proteomics analysis gave us a vast array of data (total 219 proteins regulated by miR-

214, out of which 160 upregulated and 59 downregulated) (Table 13), which suggests 

that miR-214 influences ≥1 major transcription/epigenetic factors to exert such 

changes. Indeed in this study, we observed SMYD5 (epigenetic regulator) 

downregulated by miR-214 overexpression. Furthermore, data from luciferase 

reporter assay showed repressed SMYD5 3’UTR activity by miR-214 overexpression, 

providing evidence that SMYD5 is also another major target gene of miR-214. SMYD5 

plays an important role in regulating gene silencing and hence, SMYD5 inhibition may 

result in upregulation of several proteins as observed in our proteomics data. Further 

studies are reqired to fully elucidate the interactions between miR-214 and SMYD5 

and their resultant implications on VSMC biology. 

6. A major area of our research is converting our findings into treatment perspective: It 

would be interesting to develop such mechanisms which help enable our findings in 

lab, transfer into human to treat specific disease. Using nano-particles is emerging as 

new delivery method to deliver and apply the drug at the microenvironment level. 

Hence, Site specific delivery of miR214 using nano-particles to reduce neointima 

hyperplasia would be an interesting and challenging way forward to translate 

laboratory findings into clinical outcome. 
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 F-actin-cappingproteinsubunitbeta 
OS=MusmusculusGN=CapzbPE=1 

CAPZB_MOUSE -0.463590 0.3 0.725179 No  SV=3 
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SMC3_MOUSE 

 
-0.451019 

 
0 

 
0.731526 

 

Yes(5) 
 chromosomesprotein3OS=Mus 
musculusGN=Smc3PE=1SV=2 

      TransformingproteinRhoAOS=Mus 
RHOA_MOUSE -0.447904 0 0.733107 Yes(1)  musculusGN=RhoaPE=1 SV=1 

      RasGTPase-activatingprotein- 

      bindingprotein1OS=Musmusculus 

G3BP1_MOUSE -0.444125 0 0.73503 Yes(7)  GN=G3bp1PE=1SV=1 

      Lysosome-associatedmembrane 
      glycoprotein1OS=Musmusculus 

LAMP1_MOUSE -0.443885 0 0.735152 Yes(1)  GN=Lamp1PE=1SV=2 

      Structuralmaintenanceof 
SMC1A_MOUS      chromosomesprotein1AOS=Mus 

E -0.443237 0 0.735483 Yes(1)  musculusGN=Smc1aPE=1SV=4 

      SerpinI2OS=Musmusculus 
SPI2_MOUSE -0.441805 0.5 0.736213 No  GN=Serpini2PE=2SV=1 

      Plastin-1OS=Musmusculus 
PLSI_MOUSE -0.440962 0 0.736643 Yes(2)  GN=Pls1PE=2SV=1 

      Ragulatorcomplexprotein 
      LAMTOR3OS=Musmusculus 

LTOR3_MOUSE -0.439528 0 0.737376 Yes(3)  GN=Lamtor3PE=1SV=1 

      Proteasomesubunitbetatype-4 

 
PSB4_MOUSE 

 
-0.438911 

 
0 

 
0.737691 

 

No 
 OS=MusmusculusGN=Psmb4 
PE=1SV=1 

      3-ketoacyl-CoAthiolase, 

 
THIM_MOUSE 

 
-0.437870 

 
0 

 
0.738224 

 

Yes(2) 
 mitochondrialOS=Musmusculus 
GN=Acaa2PE=1SV=3 

      Serine/threonine-protein kinase25 
      OS=MusmusculusGN=Stk25PE=1 

STK25_MOUSE -0.434782 0 0.739805 Yes(1)  SV=2 

      CathepsinDOS=Musmusculus 
CATD_MOUSE -0.434733 0 0.739831 Yes(4)  GN=CtsdPE=1SV=1 

      NEDD8-activatingenzymeE1 
      regulatorysubunitOS=Mus 

ULA1_MOUSE -0.433753 0 0.740333 No  musculusGN=Nae1PE=1 SV=1 

      Tubulinalphachain-like3OS=Mus 
TBAL3_MOUSE -0.433621 0 0.740401 Yes(1)  musculusGN=Tubal3PE=2SV=2 

      COP9signalosomecomplexsubunit 
      5OS=MusmusculusGN=Cops5 

CSN5_MOUSE -0.431786 0.1 0.741343 No  PE=1SV=3 

      Serine/threonine-protein 
      phosphatase6catalyticsubunit 

      OS=MusmusculusGN=Ppp6cPE=2 

PPP6_MOUSE -0.421643 0 0.746574 Yes(2)  SV=1 

      Ubiquitin-40Sribosomalprotein 

 
RS27A_MOUSE 

 
-0.421124 

 
0 

 
0.746842 

 

No 
 S27aOS=Musmusculus 
GN=Rps27aPE=1SV=2 

      Chromoboxproteinhomolog1 

      OS=MusmusculusGN=Cbx1PE=1 
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CBX1_MOUSE -0.419343 0 0.747765 Yes(2)  SV=1 

 

 
MK10_MOUSE 

 

 
-0.418101 

 

 
0 

 

 
0.748409 

 
 

Yes(3) 

Mitogen-activatedproteinkinase10 
OS=MusmusculusGN=Mapk10 
PE=1SV=2 

UpregulatedproteinsbymiR-214 

 

 
PSB7_MOUSE 

 

 
0.323204 

 

 
0.2 

 

 
1.251106 

 Proteasomesubunitbetatype-7 
OS=MusmusculusGN=Psmb7 
PE=1SV=1 

 
DPOE1_MOUS 

 

 
0.323513 

 

 
0.1 

 

 
1.251374 

 DNApolymeraseepsiloncatalytic 
subunitA OS=Musmusculus 
GN=PolePE=2SV=3 E  

 
CALX_MOUSE 

 
0.325062 

 
0.3 

 
1.252718 

 CalnexinOS=Musmusculus 
GN=CanxPE=1SV=1 

COPZ1_MOUS  
0.326198 

 
0.3 

 
1.253705 

 Coatomersubunitzeta-1OS=Mus 
musculusGN=Copz1PE=2SV=1 E  

 
VPS29_MOUS 

 

 
0.327551 

 

 
0.1 

 

 
1.254881 

 Vacuolarproteinsorting-associated 
protein29OS=Musmusculus 
GN=Vps29PE=1SV=1 E  

 

 
NASP_MOUSE 

 

 
0.328329 

 

 
0.1 

 

 
1.255558 

 Nuclearautoantigenicspermprotein 
OS=MusmusculusGN=NaspPE=1 
SV=2 

  

 
0.328623 

 

 
0.2 

 

 
1.255814 

 Heterogeneousnuclear 
HNRPK_MOUS  ribonucleoproteinKOS=Mus 
E  musculusGN=HnrnpkPE=1SV=1 

 

 
RTCB_MOUSE 

 

 
0.328922 

 

 
0.5 

 

 
1.256075 

 tRNA-splicingligaseRtcBhomolog 
OS=MusmusculusGN=RtcbPE=2 
SV=1 

UBL4A_MOUS  
0.329965 

 
0.2 

 
1.256983 

 Ubiquitin-likeprotein4AOS=Mus 
musculusGN=Ubl4aPE=2SV=1 E  

 
H12_MOUSE 

 
0.330383 

 
0.3 

 
1.257347 

 HistoneH1.2OS=Musmusculus 
GN=Hist1h1cPE=1SV=2 

 
PHB2_MOUSE 

 
0.332705 

 
0 

 
1.259372 

 Prohibitin-2OS=Musmusculus 
GN=Phb2PE=1SV=1 

 
SC61B_MOUS 

 

 
0.335326 

 

 
0.2 

 

 
1.261662 

 ProteintransportproteinSec61 
subunitbetaOS=Musmusculus 
GN=Sec61bPE=1SV=3 E  

CNPY2_MOUS  
0.339157 

 
0.3 

 
1.265017 

 Proteincanopyhomolog2 OS=Mus 
musculusGN=Cnpy2PE=1SV=1 E  

 
TRXR1_MOUS 

 

 
0.340636 

 

 
0.1 

 

 
1.266315 

 Thioredoxinreductase1, 
cytoplasmicOS=Musmusculus 
GN=Txnrd1PE=1SV=3 E  

 

 
QCR1_MOUSE 

 

 
0.341453 

 

 
0.2 

 

 
1.267032 

 Cytochromeb-c1complexsubunit1, 
mitochondrialOS=Musmusculus 
GN=Uqcrc1PE=1SV=2 

 

 
RFA2_MOUSE 

 

 
0.341865 

 

 
0 

 

 
1.267394 

 ReplicationproteinA 32kDasubunit 
OS=MusmusculusGN=Rpa2PE=1 
SV=1 

 
UBE2K_MOUS 

 

 
0.343689 

 

 
0.2 

 

 
1.268997 

 Ubiquitin-conjugatingenzymeE2K 
OS=MusmusculusGN=Ube2kPE=1 
SV=3 E  

NUCB2_MOUS  
0.348476 

 
0.3 

 
1.273215 

 Nucleobindin-2OS=Musmusculus 
GN=Nucb2PE=1SV=2 E  

 

 
ALR_MOUSE 

 

 
0.349409 

 

 
0.5 

 

 
1.274038 

 FAD-linkedsulfhydryloxidaseALR 
OS=MusmusculusGN=GferPE=2 
SV=2 

 
TIA1_MOUSE 

 
0.352377 

 
0.1 

 
1.276662 

 NucleolysinTIA-1OS=Mus 
musculusGN=Tia1PE=1SV=1 

TBC15_MOUS 0.353875 0.4 1.277988  TBC1domainfamilymember15 
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E     OS=MusmusculusGN=Tbc1d15 
PE=1SV=1 

 

 
LSM6_MOUSE 

 

 
0.356710 

 

 
0 

 

 
1.280502 

 U6snRNA-associatedSm-like 
proteinLSm6OS=Musmusculus 
GN=Lsm6PE=3SV=1 

 

 
IMPA2_MOUSE 

 

 
0.357044 

 

 
0.6 

 

 
1.280799 

 Inositolmonophosphatase2 
OS=MusmusculusGN=Impa2PE=1 
SV=1 

 

 
VATA_MOUSE 

 

 
0.360771 

 

 
0.2 

 

 
1.284112 

 V-typeprotonATPasecatalytic 
subunitA OS=Musmusculus 
GN=Atp6v1aPE=1SV=2 

 
CTBP1_MOUS 

 

 
0.364133 

 

 
0 

 

 
1.287108 

 C-terminal-bindingprotein1 
OS=MusmusculusGN=Ctbp1PE=1 
SV=2 E  

 
SZT2_MOUSE 

 
0.365471 

 
0.2 

 
1.288303 

 ProteinSZT2OS=Musmusculus 
GN=Szt2PE=1SV=1 

RBM25_MOUS  
0.365489 

 
0 

 
1.288318 

 RNA-bindingprotein25OS=Mus 
musculusGN=Rbm25PE=1SV=2 E  

 
PTMS_MOUSE 

 
0.366225 

 
0.7 

 
1.288976 

 ParathymosinOS=Musmusculus 
GN=PtmsPE=1SV=3 

 
INF2_MOUSE 

 
0.367510 

 
0.1 

 
1.290124 

 Invertedformin-2OS=Musmusculus 
GN=Inf2PE=1SV=1 

 

 
ILF3_MOUSE 

 

 
0.368909 

 

 
0 

 

 
1.291376 

 Interleukinenhancer-bindingfactor3 
OS=MusmusculusGN=Ilf3PE=1 
SV=2 

 
PABP2_MOUS 

 

 
0.371446 

 

 
0.1 

 

 
1.293649 

 Polyadenylate-bindingprotein2 
OS=MusmusculusGN=Pabpn1 
PE=2SV=3 E  

 

 
ALD2_MOUSE 

 

 
0.372046 

 

 
0.2 

 

 
1.294187 

 Aldosereductase-relatedprotein2 
OS=MusmusculusGN=Akr1b8 
PE=1SV=2 

 
TCOF_MOUSE 

 
0.373927 

 
0 

 
1.295875 

 TreacleproteinOS=Musmusculus 
GN=Tcof1PE=1SV=1 

 

 
I2BP2_MOUSE 

 

 
0.374380 

 

 
0.3 

 

 
1.296283 

 Interferonregulatoryfactor2-binding 
protein2OS=Musmusculus 
GN=Irf2bp2PE=1SV=1 

 
H32_MOUSE 

 
0.375301 

 
0.2 

 
1.29711 

 HistoneH3.2OS=Musmusculus 
GN=Hist1h3bPE=1SV=2 

 
XRN2_MOUSE 

 
0.376271 

 
0.3 

 
1.297983 

 5'-3'exoribonuclease2OS=Mus 
musculusGN=Xrn2PE=1SV=1 

 
CK5P2_MOUS 

 

 
0.376365 

 

 
0.2 

 

 
1.298067 

 CDK5regulatorysubunit-associated 
protein2OS=Musmusculus 
GN=Cdk5rap2PE=1SV=3 E  

 
 

 
RPN1_MOUSE 

 
 

 
0.377760 

 
 

 
0.1 

 
 

 
1.299323 

 Dolichyl-diphosphooligosaccharide-- 
 proteinglycosyltransferasesubunit1 

OS=MusmusculusGN=Rpn1PE=1 
SV=1 

 
RS28_MOUSE 

 
0.378317 

 
0.3 

 
1.299825 

 40SribosomalproteinS28OS=Mus 
musculusGN=Rps28PE=2SV=1 

 
API5_MOUSE 

 
0.378529 

 
0.3 

 
1.300016 

 Apoptosisinhibitor5OS=Mus 
musculusGN=Api5PE=1SV=2 

 

 
IF2B3_MOUSE 

 

 
0.379407 

 

 
0.2 

 

 
1.300807 

 Insulin-likegrowthfactor2mRNA- 
bindingprotein3OS=Musmusculus 
GN=Igf2bp3PE=1SV=1 

CUL4B_MOUS  
0.379845 

 
0.2 

 
1.301202 

 Cullin-4BOS=Musmusculus 
GN=Cul4bPE=1SV=1 E  

 
NXT2_MOUSE 

 
0.380032 

 
0.1 

 
1.30137 

 NTF2-relatedexportprotein2 
OS=MusmusculusGN=Nxt2PE=2 

     SV=1 
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MYL6B_MOUS  
0.382474 

 
0 

 
1.303576 

 Myosinlightchain6BOS=Mus 
musculusGN=Myl6bPE=2SV=1 E  

 
PYR1_MOUSE 

 
0.384037 

 
0.2 

 
1.304988 

 CADproteinOS=Musmusculus 
GN=CadPE=2SV=1 

 
RTN4_MOUSE 

 
0.384912 

 
0.1 

 
1.30578 

 Reticulon-4OS=Musmusculus 
GN=Rtn4PE=1SV=2 

 
KTN1_MOUSE 

 
0.385735 

 
0.1 

 
1.306525 

 KinectinOS=Musmusculus 
GN=Ktn1PE=2SV=1 

E2F8_MOUSE 0.386205 0 1.306951   

 

 
MALT1_MOUS 

 
 

 
0.386487 

 
 

 
0.4 

 
 

 
1.307206 

 Mucosa-associatedlymphoidtissue 
lymphomatranslocationprotein1 
homologOS=Musmusculus 
GN=Malt1PE=1SV=2 E  

 
KLC2_MOUSE 

 
0.388877 

 
0.4 

 
1.309374 

 Kinesinlightchain2OS=Mus 
musculusGN=Klc2PE=1SV=1 

  
 

 
0.393627 

 
 

 
0 

 
 

 
1.313692 

 Glutamine--fructose-6-phosphate 
 
GFPT2_MOUS 

 aminotransferase[isomerizing]2 
OS=MusmusculusGN=Gfpt2PE=2 

E  SV=3 

 
BAP31_MOUS 

 

 
0.396808 

 

 
0.1 

 

 
1.316592 

 B-cellreceptor-associatedprotein31 
OS=MusmusculusGN=Bcap31 
PE=1SV=4 E  

RAB10_MOUS  
0.405410 

 
0.4 

 
1.324465 

 Ras-relatedproteinRab-10OS=Mus 
musculusGN=Rab10PE=1SV=1 E  

 
H1T_MOUSE 

 
0.406704 

 
0.2 

 
1.325653 

 HistoneH1tOS=Musmusculus 
GN=Hist1h1tPE=1SV=4 

 

 
NDUA4_MOUS 

 
 

 
0.411036 

 
 

 
0.6 

 
 

 
1.32964 

 NADHdehydrogenase[ubiquinone] 
1alphasubcomplexsubunit4 
OS=MusmusculusGN=Ndufa4 
PE=1SV=2 E  

 
RS27L_MOUS 

 

 
0.411764 

 

 
0.2 

 

 
1.330311 

 40SribosomalproteinS27-like 
OS=MusmusculusGN=Rps27l 
PE=2SV=3 E  

RRBP1_MOUS  
0.414189 

 
0.2 

 
1.33255 

 Ribosome-bindingprotein1 OS=Mus 
musculusGN=Rrbp1PE=1SV=2 E  

 

 
D19L1_MOUSE 

 

 
0.414387 

 

 
0.2 

 

 
1.332733 

 ProbableC-mannosyltransferase 
 DPY19L1OS=Musmusculus 

GN=Dpy19l1PE=2SV=1 

PRUNE_MOUS  
0.414520 

 
0.5 

 
1.332855 

 ProteinprunehomologOS=Mus 
musculusGN=PrunePE=2SV=1 E  

 
UCHL5_MOUS 

 

 
0.415921 

 

 
0.2 

 

 
1.33415 

 Ubiquitincarboxyl-terminalhydrolase 
isozymeL5OS=Musmusculus 
GN=Uchl5PE=1SV=2 E  

 
SH3L3_MOUS 

 

 
0.420241 

 

 
0.2 

 

 
1.338151 

 SH3domain-bindingglutamicacid- 
rich-likeprotein3OS=Musmusculus 
GN=Sh3bgrl3PE=1SV=1 E  

 

 
AN32B_MOUS 

 
 

 
0.422776 

 
 

 
0.4 

 
 

 
1.340504 

 Acidicleucine-richnuclear 
phosphoprotein32 familymemberB 
OS=MusmusculusGN=Anp32b 
PE=1SV=1 E  

TYB10_MOUS  
0.423131 

 
0.4 

 
1.340834 

 Thymosinbeta-10OS=Mus 
musculusGN=Tmsb10PE=2SV=3 E  

 

 
VASP_MOUSE 

 

 
0.425311 

 

 
0.3 

 

 
1.342862 

 Vasodilator-stimulated 
 phosphoproteinOS=Musmusculus 

GN=VaspPE=1SV=4 

 
IDHP_MOUSE 

 
0.427113 

 
0.2 

 
1.344541 

 Isocitratedehydrogenase[NADP], 
mitochondrialOS=Musmusculus 

     GN=Idh2PE=1SV=3 
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SFR1_MOUSE 

 

 
0.428830 

 

 
0.3 

 

 
1.346141 

 Swi5-dependentrecombinationDNA 
repairprotein1homologOS=Mus 
musculusGN=Sfr1PE=1SV=2 

CO6A1_MOUS  
0.435420 

 
0.2 

 
1.352304 

 Collagenalpha-1(VI)chainOS=Mus 
musculusGN=Col6a1PE=2SV=1 E  

CCD38_MOUS  
0.438081 

 
0.4 

 
1.354801 

  
E   

 

 
PPP5_MOUSE 

 

 
0.439429 

 

 
0.5 

 

 
1.356067 

 Serine/threonine-protein 
 phosphatase5OS=Musmusculus 

GN=Ppp5cPE=1SV=3 

 

 
ILF2_MOUSE 

 

 
0.445389 

 

 
0.3 

 

 
1.361681 

 Interleukinenhancer-bindingfactor2 
OS=MusmusculusGN=Ilf2PE=1 
SV=1 

ERLN2_MOUS  
0.449599 

 
0.1 

 
1.36566 

 Erlin-2OS=Musmusculus 
GN=Erlin2PE=1SV=1 E  

 
TTC9C_MOUS 

 

 
0.456300 

 

 
0 

 

 
1.372019 

 Tetratricopeptiderepeatprotein9C 
OS=MusmusculusGN=Ttc9cPE=2 
SV=1 E  

 

 
SRA1_MOUSE 

 

 
0.458491 

 

 
0.1 

 

 
1.374104 

 SteroidreceptorRNAactivator1 
OS=MusmusculusGN=Sra1PE=1 
SV=3 

RAB1A_MOUS  
0.461907 

 
0.5 

 
1.377361 

 Ras-relatedproteinRab-1AOS=Mus 
musculusGN=Rab1APE=1SV=3 E  

 

 
QCR6_MOUSE 

 

 
0.462570 

 

 
0.4 

 

 
1.377995 

 Cytochromeb-c1complexsubunit6, 
mitochondrialOS=Musmusculus 
GN=UqcrhPE=1SV=2 

 

 
SAE2_MOUSE 

 

 
0.463759 

 

 
0 

 

 
1.379131 

 SUMO-activatingenzymesubunit2 
OS=MusmusculusGN=Uba2PE=1 
SV=1 

 
H2AZ_MOUSE 

 
0.467525 

 
0.2 

 
1.382735 

 HistoneH2A.ZOS=Musmusculus 
GN=H2afzPE=1SV=2 

 
SMAD3_MOUS 

 

 
0.476613 

 

 
0.2 

 

 
1.391473 

 Mothersagainstdecapentaplegic 
homolog3OS=Musmusculus 
GN=Smad3PE=1SV=2 E  

 

 
IKIP_MOUSE 

 

 
0.477947 

 

 
0 

 

 
1.39276 

 Inhibitorof nuclearfactorkappa-B 
kinase-interactingproteinOS=Mus 
musculusGN=IkbipPE=2SV=2 

 
HBA_MOUSE 

 
0.478404 

 
0.4 

 
1.393201 

 HemoglobinsubunitalphaOS=Mus 
musculusGN=HbaPE=1SV=2 

CALL3_MOUS  
0.479895 

 
0.5 

 
1.394642 

 Calmodulin-likeprotein3OS=Mus 
musculusGN=Calml3PE=2SV=1 E  

 

 
FBRL_MOUSE 

 

 
0.481143 

 

 
0.1 

 

 
1.395849 

 rRNA2'-O-methyltransferase 
 fibrillarinOS=MusmusculusGN=Fbl 

PE=2SV=2 

 
ARF4_MOUSE 

 
0.486244 

 
0.2 

 
1.400793 

 ADP-ribosylationfactor4OS=Mus 
musculusGN=Arf4PE=1SV=2 

 
GCR_MOUSE 

 
0.488620 

 
0.1 

 
1.403102 

 GlucocorticoidreceptorOS=Mus 
musculusGN=Nr3c1PE=1SV=1 

 

 
TBCA_MOUSE 

 

 
0.491108 

 

 
0.4 

 

 
1.405524 

 Tubulin-specificchaperoneA 
OS=MusmusculusGN=TbcaPE=2 
SV=3 

 
OFUT2_MOUS 

 

 
0.495153 

 

 
0.4 

 

 
1.40947 

 GDP-fucoseproteinO- 
fucosyltransferase2OS=Mus 
musculusGN=Pofut2PE=1SV=1 E  

 
LTOR2_MOUS 

 

 
0.499423 

 

 
0.2 

 

 
1.413648 

 Ragulatorcomplexprotein 
LAMTOR2OS=Musmusculus 
GN=Lamtor2PE=1SV=1  

 
ATPD_MOUSE 

 

 
0.500446 

 

 
0.3 

 

 
1.41465 

 ATPsynthasesubunitdelta, 
mitochondrialOS=Musmusculus 
GN=Atp5dPE=1SV=1 

MKLN1_MOUS      
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E 0.500446 0.3 1.41465   

 
MP2K1_MOUS 

 

 
0.501973 

 

 
0.1 

 

 
1.416149 

 Dualspecificitymitogen-activated 
proteinkinasekinase1 OS=Mus 
musculusGN=Map2k1PE=1SV=2 E  

 
REPS1_MOUS 

 

 
0.508337 

 

 
0.1 

 

 
1.42241 

 RalBP1-associatedEpsdomain- 
containingprotein1 OS=Mus 
musculusGN=Reps1PE=1SV=2 E  

  

 
0.509393 

 

 
0.2 

 

 
1.423451 

 Dehydrogenase/reductaseSDR 
DHRS4_MOUS  familymember4OS=Musmusculus 
E  GN=Dhrs4PE=1SV=3 

 
PTMA_MOUSE 

 
0.525322 

 
0.4 

 
1.439254 

 ProthymosinalphaOS=Mus 
musculusGN=PtmaPE=1SV=2 

 
NC2B_MOUSE 

 
0.527111 

 
0.1 

 
1.441041 

 ProteinDr1OS=Musmusculus 
GN=Dr1PE=2SV=1 

FETUA_MOUS  
0.530992 

 
0.3 

 
1.444922 

 Alpha-2-HS-glycoprotein OS=Mus 
E  musculusGN=AhsgPE=1SV=1 

 

 
LAP2B_MOUS 

 
 

 
0.531212 

 
 

 
0.1 

 
 

 
1.445143 

 Lamina-associatedpolypeptide2, 
isoformsbeta/delta/epsilon/gamma 
OS=MusmusculusGN=TmpoPE=1 
SV=4 E  

 
PRS10_MOUS 

 

 
0.532698 

 

 
0.4 

 

 
1.446632 

 26Sproteaseregulatorysubunit10B 
OS=MusmusculusGN=Psmc6 
PE=1SV=1 E  

 
NEST_MOUSE 

 
0.533669 

 
0.2 

 
1.447606 

 NestinOS=MusmusculusGN=Nes 
PE=1SV=1 

 
NPTN_MOUSE 

 
0.533795 

 
0.1 

 
1.447732 

 NeuroplastinOS=Musmusculus 
GN=NptnPE=1SV=3 

 
E41L3_MOUSE 

 
0.537226 

 
0.5 

 
1.451179 

 Band4.1-likeprotein3OS=Mus 
musculusGN=Epb41l3PE=1SV=1 

 
MEPCE_MOUS 

 

 
0.537434 

 

 
0.2 

 

 
1.451389 

 7SKsnRNAmethylphosphate 
cappingenzymeOS=Musmusculus 
GN=MepcePE=1SV=2 E  

 
LAP2A_MOUS 

 

 
0.537485 

 

 
0 

 

 
1.45144 

 Lamina-associatedpolypeptide2, 
isoformsalpha/zetaOS=Mus 
musculusGN=TmpoPE=1SV=4 E  

 
SRSF4_MOUS 

 

 
0.550978 

 

 
0 

 

 
1.465078 

 Serine/arginine-richsplicingfactor4 
OS=MusmusculusGN=Srsf4PE=2 
SV=1 E  

 
PR40A_MOUS 

 

 
0.552884 

 

 
0 

 

 
1.467015 

 Pre-mRNA-processingfactor40 
homologA OS=Musmusculus 
GN=Prpf40aPE=1SV=1 E  

 
H33_MOUSE 

 
0.562486 

 
0.2 

 
1.476811 

 HistoneH3.3OS=Musmusculus 
GN=H3f3aPE=1SV=2 

  

 
0.567058 

 

 
0.1 

 

 
1.481499 

 Dehydrogenase/reductaseSDR 
DHRS1_MOUS  familymember1OS=Musmusculus 
E  GN=Dhrs1PE=2SV=1 

 

 
IF1A_MOUSE 

 

 
0.571096 

 

 
0 

 

 
1.485652 

 Eukaryotictranslationinitiationfactor 
1AOS=MusmusculusGN=Eif1a 
PE=2SV=3 

 
PP14B_MOUS 

 

 
0.595869 

 

 
0.2 

 

 
1.511382 

 Proteinphosphatase1regulatory 
subunit14BOS=Musmusculus 
GN=Ppp1r14bPE=1SV=2 E  

 
IMMT_MOUSE 

 
0.599209 

 
0.1 

 
1.514886 

 Mitochondrialinnermembrane 
proteinOS=MusmusculusGN=Immt 

     PE=1SV=1 

MBB1A_MOUS  
0.601030 

 
0 

 
1.5168 

 Myb-bindingprotein1AOS=Mus 
musculusGN=Mybbp1aPE=1SV=2 E  

     Ribonucleoside-diphosphate 
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RIR1_MOUSE 

 
0.603171 

 
0 

 
1.519051 

 reductaselargesubunitOS=Mus 
musculusGN=Rrm1PE=1SV=2 

 

 
IF2B2_MOUSE 

 

 
0.607204 

 

 
0.2 

 

 
1.523304 

 Insulin-likegrowthfactor2mRNA- 
bindingprotein2OS=Musmusculus 
GN=Igf2bp2PE=1SV=1 

 
H13_MOUSE 

 
0.627204 

 
0 

 
1.544569 

 HistoneH1.3OS=Musmusculus 
GN=Hist1h1dPE=1SV=2 

RANB3_MOUS  
0.630777 

 
0.3 

 
1.548399 

 Ran-bindingprotein3OS=Mus 
musculusGN=Ranbp3PE=1SV=2 E  

 
SPF27_MOUS 

 

 
0.635218 

 

 
0.3 

 

 
1.553173 

 Pre-mRNA-splicingfactorSPF27 
OS=MusmusculusGN=Bcas2PE=2 
SV=1 E  

 

 
P20L1_MOUSE 

 

 
0.637010 

 

 
0 

 

 
1.555103 

 PHDfingerprotein20-likeprotein1 
OS=MusmusculusGN=Phf20l1 
PE=2SV=2 

 
HMGA2_MOUS 

 

 
0.643604 

 

 
0.1 

 

 
1.562227 

 HighmobilitygroupproteinHMGI-C 
OS=MusmusculusGN=Hmga2 
PE=1SV=1 E  

 

 
EDF1_MOUSE 

 

 
0.643840 

 

 
0.3 

 

 
1.562482 

 Endothelialdifferentiation-related 
 factor1OS=MusmusculusGN=Edf1 

PE=1SV=1 

 

 
TECR_MOUSE 

 

 
0.644426 

 

 
0.2 

 

 
1.563117 

 Very-long-chainenoyl-CoA 
 reductaseOS=Musmusculus 

GN=TecrPE=1SV=1 

 
ITAL_MOUSE 

 
0.649337 

 
0.1 

 
1.568448 

 Integrinalpha-LOS=Musmusculus 
GN=ItgalPE=1SV=2 

 
ABCE1_MOUS 

 

 
0.650618 

 

 
0.1 

 

 
1.56984 

 ATP-bindingcassettesub-familyE 
member1OS=Musmusculus 
GN=Abce1PE=2SV=1 E  

 

 
C1QBP_MOUS 

 
 

 
0.665730 

 
 

 
0.2 

 
 

 
1.586371 

 Complementcomponent1Q 
subcomponent-bindingprotein, 
mitochondrialOS=Musmusculus 
GN=C1qbpPE=1SV=1 E  

 
AT2B2_MOUS 

 

 
0.671810 

 

 
0.2 

 

 
1.59307 

 Plasmamembranecalcium- 
transportingATPase2OS=Mus 
musculusGN=Atp2b2PE=1SV=2 E  

 

 
DVL3_MOUSE 

 

 
0.674132 

 

 
0.3 

 

 
1.595637 

 Segmentpolarityproteindishevelled 
homologDVL-3OS=Musmusculus 
GN=Dvl3PE=1SV=2 

RFPLA_MOUS  
0.691521 

 
0.2 

 
1.614985 

 Retfingerprotein-like4AOS=Mus 
musculusGN=Rfpl4aPE=2SV=1 E  

 

 
WNK1_MOUSE 

 

 
0.703097 

 

 
0.6 

 

 
1.627996 

 Serine/threonine-protein kinase 
 WNK1OS=Musmusculus 

GN=Wnk1PE=1SV=2 

 
NDUS5_MOUS 

 

 
0.703673 

 

 
0.1 

 

 
1.628646 

 NADHdehydrogenase[ubiquinone] 
iron-sulfurprotein5OS=Mus 
musculusGN=Ndufs5PE=1SV=3 E  

 
FKB11_MOUS 

 

 
0.704716 

 

 
0.6 

 

 
1.629824 

 Peptidyl-prolylcis-transisomerase 
FKBP11OS=Musmusculus 
GN=Fkbp11PE=2SV=1 E  

 
SC22B_MOUS 

 

 
0.707687 

 

 
0.1 

 

 
1.633183 

 Vesicle-traffickingproteinSEC22b 
OS=MusmusculusGN=Sec22b 
PE=1SV=3 E  

PUR8_MOUSE 0.718084 0.1 1.644996  AdenylosuccinatelyaseOS=Mus 

     musculusGN=AdslPE=2SV=2 

 
BIEA_MOUSE 

 
0.734828 

 
0 

 
1.664199 

 BiliverdinreductaseAOS=Mus 
musculusGN=BlvraPE=2SV=1 

 
ADT4_MOUSE 

 
0.752110 

 
0 

 
1.684254 

 ADP/ATPtranslocase4 OS=Mus 
musculusGN=Slc25a31PE=2SV=1 
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H2AY_MOUSE 

 
0.761745 

 
0.3 

 
1.69554 

 Corehistonemacro-H2A.1OS=Mus 
musculusGN=H2afyPE=1SV=3 

GSLG1_MOUS  
0.771952 

 
0.3 

 
1.707579 

 Golgiapparatusprotein1 OS=Mus 
musculusGN=Glg1PE=1SV=1 E  

 
EVL_MOUSE 

 
0.778213 

 
0 

 
1.715005 

 Ena/VASP-likeproteinOS=Mus 
musculusGN=EvlPE=1SV=2 

 

 
RPC2_MOUSE 

 

 
0.780418 

 

 
0 

 

 
1.717628 

 DNA-directedRNApolymeraseIII 
subunitRPC2OS=Musmusculus 
GN=Polr3bPE=2SV=2 

 

 
SLK_MOUSE 

 

 
0.789592 

 

 
0.1 

 

 
1.728586 

 STE20-likeserine/threonine-protein 
 kinaseOS=MusmusculusGN=Slk 

PE=1SV=2 

LARP7_MOUS  
0.790086 

 
0 

 
1.729178 

 La-relatedprotein7OS=Mus 
musculusGN=Larp7PE=1SV=2 E  

 

 
ATPG_MOUSE 

 

 
0.849791 

 

 
0 

 

 
1.80224 

 ATPsynthasesubunitgamma, 
mitochondrialOS=Musmusculus 
GN=Atp5c1PE=1SV=1 

 
H2A2B_MOUS 

 

 
0.867560 

 

 
0 

 

 
1.824574 

 HistoneH2Atype2-BOS=Mus 
musculusGN=Hist2h2abPE=1 
SV=3 E  

 

 
ZBT43_MOUSE 

 

 
0.883939 

 

 
0.1 

 

 
1.845407 

 Zincfingerand BTBdomain- 
containingprotein43OS=Mus 
musculusGN=Zbtb43PE=2SV=2 

 
HECD1_MOUS 

 

 
0.898640 

 

 
0.3 

 

 
1.864307 

 E3ubiquitin-proteinligaseHECTD1 
OS=MusmusculusGN=Hectd1 
PE=1SV=2 E  

 
ALBU_MOUSE 

 
0.907684 

 
0.3 

 
1.876031 

 SerumalbuminOS=Musmusculus 
GN=AlbPE=1SV=3 

MEP50_MOUS  
0.921289 

 
0.4 

 
1.893807 

 Methylosomeprotein50 OS=Mus 
musculusGN=Wdr77PE=1SV=1 E  

 

 
MAP6_MOUSE 

 

 
0.960701 

 

 
0 

 

 
1.946255 

 Microtubule-associatedprotein6 
OS=MusmusculusGN=Map6PE=1 
SV=2 

 
PLP2_MOUSE 

 
0.968741 

 
0.4 

 
1.957132 

 Proteolipidprotein2OS=Mus 
musculusGN=Plp2PE=2SV=1 

 

 
M4K4_MOUSE 

 

 
1.004881 

 

 
0.1 

 

 
2.006777 

 Mitogen-activatedproteinkinase 
kinasekinasekinase4OS=Mus 
musculusGN=Map4k4PE=1SV=1 

 

 
EHD3_MOUSE 

 

 
1.008355 

 

 
0 

 

 
2.011615 

 EHdomain-containingprotein3 
OS=MusmusculusGN=Ehd3PE=1 
SV=2 

  
 

 
1.010373 

 
 

 
0.1 

 
 

 
2.014431 

 EGF-containingfibulin-like 
 
FBLN3_MOUS 

 extracellularmatrixprotein1 
OS=MusmusculusGN=Efemp1 

E  PE=2SV=1 

 

 
PI3R4_MOUSE 

 

 
1.022615 

 

 
0.2 

 

 
2.031597 

 Phosphoinositide3-kinaseregulatory 
subunit4OS=Musmusculus 
GN=Pik3r4PE=1SV=3 

 
HAP28_MOUS 

 

 
1.123091 

 

 
0.7 

 

 
2.178132 

 28kDaheat-andacid-stable 
phosphoproteinOS=Musmusculus 
GN=Pdap1PE=1SV=1 E  

 
ATPO_MOUSE 

 
1.164437 

 
0.6 

 
2.241457 

 ATPsynthasesubunitO, 
mitochondrialOS=Musmusculus 

     GN=Atp5oPE=1SV=1 

 
NUFP2_MOUS 

 

 
1.298795 

 

 
0.1 

 

 
2.460232 

 NuclearfragileX mentalretardation- 
interactingprotein2OS=Mus 
musculusGN=Nufip2PE=1SV=1 E  

     Serine/threonine-protein kinase 
MRCKB_MOUS  MRCKbetaOS=Musmusculus 
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E  
1.353744 

 
0.3 

 
2.555745 

 GN=Cdc42bpbPE=1SV=2 

  

 
1.474910 

 

 
0 

 

 
2.779663 

 Serine/threonine-protein 
CPPED_MOUS  phosphataseCPPED1OS=Mus 
E  musculusGN=Cpped1PE=2SV=1 

ABRA_MOUSE 1.561250 0.3 2.951095   

 
H2AX_MOUSE 

 
1.567391 

 
0.1 

 
2.963682 

 HistoneH2AXOS=Musmusculus 
GN=H2afxPE=1SV=2 

  

 
1.613716 

 

 
0.4 

 

 
3.060391 

 Lys-63-specificdeubiquitinase 
BRCC3_MOUS  BRCC36OS=Musmusculus 
E  GN=Brcc3PE=2SV=1 

ARP3B_MOUS  
1.795556 

 
0.6 

 
3.471492 

 Actin-relatedprotein3BOS=Mus 
musculusGN=Actr3bPE=2SV=1 E  

 
FRIL2_MOUSE 

 
2.195888 

 
0.4 

 
4.581715 

 Ferritinlightchain2OS=Mus 
musculusGN=Ftl2PE=2SV=2 

OtherreportedtargetsofmiR-214 

CTNB1_MOUS  
-0.181716 

 
0.6 

 
0.881654 

 Cateninbeta-1OS=Musmusculus 
GN=Ctnnb1PE=1SV=1 E  

PCBP2_MOUS  
-0.042262 

 
0.8 

 
0.971131 

 Poly(rC)-bindingprotein2 OS=Mus 
musculusGN=Pcbp2PE=1SV=1  

 

Table 16. . Proteomics data.Complete list of Proteins regulated by miR-214 in VSMCs. 
Note: Proteins/genes with yellow-highlighted have been implicated in regulation of cell migration, 

proliferation, adhesion, actin filament reorganization and actin polymerization, cell cycle, and gene 
expression, etc. 
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