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Post-mortem tissues samples are a key resource for investigating patterns of gene expres-

sion. However, the processes triggered by death and the post-mortem interval (PMI) can

significantly alter physiologically normal RNA levels. We investigate the impact of PMI on

gene expression using data from multiple tissues of post-mortem donors obtained from the

GTEx project. We find that many genes change expression over relatively short PMIs in a

tissue-specific manner, but this potentially confounding effect in a biological analysis can be

minimized by taking into account appropriate covariates. By comparing ante- and post-

mortem blood samples, we identify the cascade of transcriptional events triggered by death

of the organism. These events do not appear to simply reflect stochastic variation resulting

from mRNA degradation, but active and ongoing regulation of transcription. Finally, we

develop a model to predict the time since death from the analysis of the transcriptome of a

few readily accessible tissues.

DOI: 10.1038/s41467-017-02772-x OPEN

Correspondence and requests for materials should be addressed to P.G.F. (email: pferreira@ipatimup.pt)
or to R.Gó. (email: roderic.guigo@crg.cat). #A full list of authors and their affliations appears at the end of the paper.

NATURE COMMUNICATIONS |  (2018) 9:490 |DOI: 10.1038/s41467-017-02772-x |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-3838-8664
http://orcid.org/0000-0003-3838-8664
http://orcid.org/0000-0003-3838-8664
http://orcid.org/0000-0003-3838-8664
http://orcid.org/0000-0003-3838-8664
mailto:pferreira@ipatimup.pt
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Post-mortem human tissue samples are a valuable resource
for biological research. Specifically, use of post-mortem
material is crucial for studying the patterns of normal gene

expression underlying tissue specificity within individuals, as
sampling such tissues from living individuals would be impos-
sible. However, the death of an organism triggers a cascade of
events that ultimately, in a relatively short time frame, lead to cell
death and autolysis. Although DNA is known to be relatively
stable over long post-mortem periods, RNA is much more labile
in nature, and sensitive to degradation in a tissue-specific man-
ner1. There are conflicting reports on how the post-mortem
interval affects RNA integrity2–10 but several studies, in different
mammals, have shown that RNA can remain largely intact even
for considerable time periods, when samples remain properly
stored. In addition, a variety of pre-mortem factors, including
environmental parameters and the circumstances of death, may
also influence the quality of the collected tissues and their
RNA8,11. RNA quality impacts measures of gene expression.
Recent studies12–15 have shown that sequencing lower RNA
quality samples, as measured by the RNA integrity index (RIN)16,
leads to a decrease in the quality of the data obtained by high
throughput RNA sequencing (RNA-seq), and the use of RIN, and
other related variables, as covariates in differential expression
analysis, has been recommended12,13,17.

On the other hand, transcriptional changes are expected to
occur as a response to the death of an organism. However, little is
currently known about how death and the length of the post-
mortem cold ischemia interval specifically affect gene expression
since most existing reports are based on very few genes, tissues or
individuals5–7,10,11,17,18. Therefore, RNA levels measured in post-
mortem tissue samples will be affected both by biological
responses to organism death, as well as to RNA degradation
occurring as a consequence of cell death. Understanding how
these effects are dependent on the post-mortem interval is
essential for the proper use of post-mortem gene expression
measures as a proxy for ante-mortem physiological gene
expression levels5,10,18–20.

Here we analyze the GTEx21–25 RNA-sequencing data to
investigate the impact of death and the post-mortem cold
ischemic interval on the transcriptomes of human tissues. We
find that different tissues have a different response over the time
elapsed since death, but that when appropriate covariates are

identified and taken into account, the impact of death on tissue
transcriptomes can largely be controlled. We identify the cascade
of molecular events triggered by death specifically in the Blood
transcriptome. Finally, we develop a model to predict the time
since death from the analysis of the transcriptome of a few readily
accessible tissues.

Results
Study overview. We used mRNA sequencing data from the GTEx
project (V6, Supplementary Table 1 and 2), and the derived gene
and transcript quantifications obtained on Gencode26 V19. We
restricted our analyses to 36 tissues with >20 samples, including
whole blood and two brain sub-regions (cortex and cerebellum)
for a total of 7105 samples, corresponding to 540 donors (Sup-
plementary Fig. 1, 2, 3, Methods). All samples were collected and
preserved with the PAXgene Tissue preservation system21.

The GTEx metadata contains an extensive annotation of
samples and donors, including the postmortem interval (PMI).
For GTEx individuals, PMI is defined as the time since death to
the start of the GTEx collection procedure. For tissue samples,
this is defined as the time in minutes spanning the window from
the moment of death, or the cessation of blood flow, until tissue
stabilization and/or preservation takes place, with values ranging
from 17 to 1739 min (Fig. 1a, Supplementary Note 1). Correlation
analysis shows that there is a strong association of PMI with
variables describing tissue recovery and death circumstances, as
these variables are correlated and reflect the same intrinsic
features of the collection procedures (Supplementary Fig. 4,
Supplementary Table 3). The relationship between PMI and RNA
stability is very tissue-dependent (Fig. 1b, Supplementary Fig. 5,
Supplementary Table 4), in agreement with previous
observations5,17,27.

Impact of PMI on gene expression. To identify genes that
changed expression depending on PMI, we used the five PMI
intervals also used by the GTEx Biospecimen Methodological
Study (BMS)21, and asked which genes had a significant and
noticeable change between two consecutive time intervals (>2-
fold change and Wilcoxon test p< 0.05, see Methods and Sup-
plementary Note 2). The number of genes with a significant
change in at least one interval transition varies widely between
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Fig. 1 Characteristics of the samples and tissues used in this study. a Distribution of PMI values (in minutes) with tissues ordered by the median value.
Whole blood contains samples with negative time corresponding to samples obtained pre-mortem. b Distribution of Pearson correlation between PMI and
RIN values. Esophagus, Liver, Colon, Ovary, Uterus, Vagina, and Heart are the tissues in which RIN is more affected by PMI (r< −0.5), while Skin, Pituitary,
Spleen and Nerve are the ones in which is less affected (r> −0.1)
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tissues, ranging from none in brain cerebellum and spleen, to
>600 in muscle and colon transverse (Fig. 2a). Although most
tissues are characterized by a sharp shift in gene expression at
around 6 h after death, there are remarkable differences between
tissues regarding the transcriptional response to PMI (Fig. 2b).
Some tissues (e.g., muscle) exhibit an early response, with most
genes that change expression doing so right after death (Sup-
plementary Fig. 6). Another set of tissues show a more sustained
response, with gene expression changes of similar magnitude
occurring through all PMI intervals (Fig. 2c). Finally, another set
of tissues show a peaked response, with most changes occurring
between the intervals of 4–6 h and 6–15 h (Supplementary Fig. 7).

There is little overlap of affected genes across the tissues. We
identified 187 genes (94 are protein-coding) with post-mortem

gene expression changes in at least three tissues (Supplementary
Fig. 8). The gene that showed consistent changes across the
largest number of tissues was RNASE2, a gene from the family of
ribonucleases, enzymes involved in the degradation of RNA.
RNASE2 shows a consistent decrease in expression across 13
tissues (Fig. 2d). Two alpha globin genes, HBA1 and HBA2,
involved in the transport of oxygen from the lung to the
peripheral tissues, show an increased expression in several tissues
but not in blood, where they are the most expressed genes
(Fig. 2d). Several histone genes show increased patterns of
expression in line with previous results28,29 (Supplementary
Fig. 8, Supplementary Data 1). Growth factors, such as EGR3 also
have an increased expression from 4hr to later on (Fig. 2d,
Supplementary Fig. 8). Other genes such as the chemokine
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CXCL2 show a more dynamic behavior with expression changes
in opposite directions at subsequent intervals (Fig. 2d). Gene
ontology analysis of the genes affected across several tissues
(Supplementary Fig. 8) shows enrichment for genes in the
extracellular region and genes involved in nucleosome and
chromatin assembly and in protein–DNA complexes. There is
also enrichment for inflammatory and immune response
processes.

While there are noticeable changes in gene expression
associated with PMI, we nonetheless found that the characteristic
transcriptional signature of tissues remains largely intact through
the PMI intervals considered here. We clustered the GTEx
samples at these intervals and measured, using modularity (see
Methods), how well the clustering recapitulates tissue type. Here,
we compute modularity on the network constructed from gene
expression correlations between samples when the data are
grouped by tissues. Modularity remained stable through the PMI
intervals at any threshold of the correlation defining the network
edges (see Supplementary Fig. 9).

Because PMI dependent expression changes are largely tissue-
specific, they could confound tissue differential gene expression
since the observed effects could be caused by differential response
to PMI rather than by differences in tissue biology. To investigate
to what extent these effects can be controlled for, we used a linear
regression model that allows incorporating additional covariates.
We specifically selected fourteen variables, predominantly demo-
graphic, medical history and sample QC metrics that are
orthogonal to the sample collection procedure, to include as
expression covariates in the model21 (see Supplementary Fig. 4,
Supplementary Table 5 and 2). These are essentially the covariates
employed in the GTEx eQTL analyses24. Residuals were then used
as the expression phenotype and the Pearson correlation (r) as a
measure of linear relationship with PMI (Methods, Supplemen-
tary Notes 2). On average we found only 54 genes per tissue
(0.2%), which showed significant correlation of gene expression
with PMI (FDR< 1%) (Fig. 3a, Supplementary Table 6),
compared to 6919 genes per tissue (39.3%), if using the same

model without covariates. In most of these cases, however, the
effect is small (only 189 (1.1%) with r< |0.2| (Supplementary
Fig. 10). Moreover, clustering of tissues based on the ranking of
correlations gene expression-PMI generally recapitulates tissue
type (Fig. 3b). These results suggest that the effect of PMI on
measured gene expression is relatively modest and can be further
minimized by using appropriate covariate correction in analyses.
The effect is weakly mediated by the number of exons, the length
of the gene and of the coding region and GC content
(Supplementary Table 7). PMI has also little effect on the
proportion of intergenic RNA-seq reads, as well as on 3’ mapping
bias, commonly observed in RNA degraded samples12,14,30–32

(Supplementary Figs. 11–15, Methods).
To specifically analyze the impact of PMI in energy

metabolism, we investigated its relationship with mitochondrial
RNA (mtRNA) levels. We observed no significant changes in
mtRNA concentration across different RIN values, and donor
ages (Supplementary Figs. 16 and 17). Across most tissues,
samples exhibit a significantly lower proportion of mitochondrial
reads in late PMIs (Fig. 4a, Methods), except blood, salivary
gland, heart-left ventricle and, particularly, liver that exhibits a
substantial higher proportion of mitochondrial RNAs for late
PMIs (Fig. 4b, Supplementary Fig. 17). Decreasing mtRNA
abundance across all PMI intervals is observed specifically in
female tissues (ovary, vagina, and uterus, see Fig. 4c).

Finally, we investigated the effect of PMI on splicing. We
calculated the inclusion levels33 of internal exons (Supplementary
Fig. 18a, Methods). We then performed linear regression analysis
of PMI and PSI values and found 1,399 exons (612 unique)
significantly correlated with PMI (|r| > 0.5 and FDR ≤1%;
Fig. 5a–c), of which 160 were observed in three or more tissues
(Fig. 5a). In contrast to gene expression, there is a substantial
sharing of exons among the top affected tissues (those with
≥ 20 significant exons), with the tissue pairwise overlap ranging
from 43% to 82%, representing 22 to 76 shared exons. Functional
analysis of genes with recurrent exons (i.e., with association with
PMI in more than two tissues) shows a noteworthy enrichment

P
ea

rs
on

 c
or

re
la

tio
n 

of
ge

ne
 e

xp
re

ss
io

n 
an

d 
P

M
I

−0.5

−0.2

0

0.2

0.5

K
id

ne
y 

−
 c

or
te

x 
(3

2)
M

in
or

 s
al

iv
ar

y 
gl

an
d 

(5
7)

U
te

ru
s 

(8
3)

S
m

al
l i

nt
es

tin
e 

−
 te

rm
. (

88
)

V
ag

in
a 

(9
6)

O
va

ry
 (

97
)

P
itu

ita
ry

 (
10

3)
S

pl
ee

n 
(1

04
)

P
ro

st
at

e 
(1

06
)

B
ra

in
 −

 c
or

te
x 

(1
14

)
Li

ve
r 

(1
19

)
B

ra
in

 −
 c

er
eb

el
lu

m
 (

12
5)

A
rt

er
y 

−
 c

or
on

ar
y 

(1
33

)
A

dr
en

al
 g

la
nd

 (
14

5)
C

ol
on

 −
 s

ig
m

oi
d 

(1
49

)
E

so
ph

ag
us

 −
 g

as
tr

oe
so

p.
 (

15
3)

P
an

cr
ea

s 
(1

71
)

T
es

tis
 (

17
2)

S
to

m
ac

h 
(1

93
)

H
ea

rt
 −

 a
tr

ia
l a

pp
en

d.
 (

19
4)

C
ol

on
 −

 tr
an

sv
er

se
 (

19
6)

B
re

as
t −

 m
am

m
ar

y 
tis

su
e 

(2
14

)
H

ea
rt

 −
 le

ft 
ve

nt
ric

le
 (

21
8)

A
rt

er
y 

−
 a

or
ta

 (
22

4)
A

di
po

se
 −

 v
is

ce
ra

l (
22

7)
E

so
ph

ag
us

 −
 m

us
cu

la
ris

 (
24

7)
S

ki
n 

−
 n

ot
 s

un
 e

xp
os

ed
 (

25
0)

E
so

ph
ag

us
 −

 m
uc

os
a 

(2
86

)
N

er
ve

 −
 ti

bi
al

 (
30

4)
Lu

ng
 (

32
0)

T
hy

ro
id

 (
32

3)
A

rt
er

y 
−

 ti
bi

al
 (

33
2)

A
di

po
se

 −
 s

ub
cu

ta
ne

ou
s 

(3
50

)
S

ki
n 

−
 s

un
 e

xp
os

ed
 (

35
7)

W
ho

le
 b

lo
od

 (
39

3)
M

us
cl

e 
−

 s
ke

le
ta

l (
43

0)

ba

B
ra

in
 −

 c
er

eb
el

lu
m

S
m

al
l i

nt
es

tin
e 

−
 te

rm
in

al
 il

eu
m

M
in

or
 s

al
iv

ar
y 

gl
an

d
P

itu
ita

ry
S

ki
n 

−
 n

ot
 s

un
 e

xp
os

ed
S

ki
n 

−
 s

un
 e

xp
os

ed
B

ra
in

 −
 c

or
te

x
K

id
ne

y 
−

 c
or

te
x

T
hy

ro
id

P
an

cr
ea

s
A

dr
en

al
 g

la
nd

W
ho

le
 b

lo
od

O
va

ry
A

rt
er

y 
−

 c
or

on
ar

y
A

rt
er

y 
−

 a
or

ta
C

ol
on

 −
 s

ig
m

oi
d

H
ea

rt
 −

 a
tr

ia
l a

pp
en

da
ge

H
ea

rt
 −

 le
ft 

ve
nt

ric
le

E
so

ph
ag

us
 −

 g
as

tr
oe

so
p.

n
E

so
ph

ag
us

 −
 m

us
cu

la
ris

A
di

po
se

 −
 v

is
ce

ra
l

B
re

as
t −

 m
am

m
ar

y 
tis

su
e

A
di

po
se

 −
 s

ub
cu

ta
ne

ou
s

N
er

ve
 −

 ti
bi

al
A

rt
er

y 
−

 ti
bi

al
E

so
ph

ag
us

 −
 m

uc
os

a
Lu

ng
C

ol
on

 −
 tr

an
sv

er
se

S
to

m
ac

h
M

us
cl

e 
−

 s
ke

le
ta

l
P

ro
st

at
e

Li
ve

r
U

te
ru

s
V

ag
in

a
S

pl
ee

n
T

es
tis

Brain − cerebellum
Small intestine − t. Ileum
Minor salivary gland
Pituitary
Skin − not sun exposed
Skin − sun exposed
Brain − cortex
Kidney − cortex
Thyroid
Pancreas
Adrenal gland
Whole blood
Ovary
Artery − coronary
Artery − aorta
Colon − sigmoid
Heart − atrial appendage
Heart − left ventricle
Esophagus − gastroesop.
Esophagus − muscularis
Adipose − visceral
Breast − mammary tissue
Adipose − subcutaneous
Nerve − tibial
Artery − tibial
Esophagus − mucosa
Lung
Colon − transverse
Stomach
Muscle − skeletal
Prostate
Liver
Uterus
Vagina
Spleen
Testis

0

0.
2

0.
6

1.
0

Distance 
= 1-Spearman
correl.

Fig. 3 PMI and gene expression correlation patterns. a Distribution of Pearson correlation between gene expression and PMI, across the different tissues
(sorted by sample size, in parenthesis). Only for a few genes, this correlation exceeds an absolute r-value of 0.2. b Clustering based on the ranking
(Spearman) correlation of the values in (a) show that sub-tissues of a given tissue or closely related organs have the similar patterns of correlation

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02772-x

4 NATURE COMMUNICATIONS |  (2018) 9:490 |DOI: 10.1038/s41467-017-02772-x |www.nature.com/naturecommunications

www.nature.com/naturecommunications


on RNA binding and RNA splicing genes (Supplementary
Fig. 18b, c). We also investigated if, as a consequence of death,
we could observe a generic alteration of splicing. As a proxy for
splicing alteration, we computed the Shannon’s entropy on the
relative abundance of a gene’s alternative splicing isoforms
(Methods)—higher values corresponding to more stochastic
production of alternative isoforms. We did observe an increase
of splicing entropy in many cases (Fig. 5d, e), although not a
systematic trend across all tissues (Supplementary Fig. 19).

Changes induced by death in the whole blood transcriptome.
Among the samples collected for GTEx, the blood samples are
unique in having been collected pre-mortem for some donors and
post-mortem for others. This provides an opportunity to assess
the impact of death on the gene expression of a specific tissue.
Dimensionality reduction (MDS) and hierarchical clustering of
gene expression profiles clearly distinguishes pre- and post-
mortem states of blood samples (Fig. 6a and Supplementary
Fig. 20). The “cause of death” (assessed by the 4-point Hardy scale
classification, Supplementary Notes 1) is quite different for
individuals from whom Blood was obtained pre-mortem com-
pared to post-mortem, but this does not appear to have a major
impact on the clustering, which is independent of Hardy classi-
fication (see Methods, Fig. 6a).

To characterize changes in gene expression that are triggered
by death, we identified genes that were differentially expressed
between pre-mortem and post-mortem blood samples, the latter
being collected at several different PMI intervals (Fig. 6b,
Supplementary Table 8 and Supplementary Data 2). Immediately
following death (and up to seven consecutive hours) we observe
an increase in the expression of many genes, and a decrease in the
expression of a few. The majority of the changes in gene
expression, however, occur between 7 and 14 h post-death, with
thousands of genes showing differential expression (equally in
both directions) relative to pre-mortem samples. Then, between
14 and 24 h, the transcriptome seems to stabilize, with
comparatively few genes showing differential expression relative
to pre-mortem samples (among those that do, there are more

over-expressed than under-expressed). Categorizing the nature of
these changes in gene expression in blood samples following
death, we observed five main functional activities34 (Fig. 6c,
Supplementary Table 9, Supplementary Notes 3): 1) changes in
DNA synthesis and fibrinolysis; 2) deactivation of the immune
response; 3) an increase in activity of processes related to cell
necrosis; 4) an abrupt inactivation of carbohydrate metabolism,
synthesis of lipids (e.g., cholesterol) and ion transport; and 5) an
activation of processes related to Blood coagulation and Response
to stress (Supplementary Fig. 21a). Specifically, the way in which
carbohydrate metabolism is affected, with severe deactivation of
the tricarboxylic acid cycle, while glycolysis is activated (FDR<
10−27; Fig. 6d, Supplementary Table 9), suggests that hypoxia is
likely playing a major role in the initial pre- to post-mortem
transition (FDR 7.2 × 10−67). More gradually, the immune system
is also deactivated (several immunity-related functions with FDR
< 10−30, Supplementary Table 9, Supplementary Fig. 21b). In
addition, a response to stress, along with the detection of DNA
damage and the activation of the corresponding repair machinery
is observed (FDR< 10−14; Supplementary Table 9). Finally, a
general arrest of cell proliferative processes occurs. Processes like
growth arrest are activated and others, like Initiation factor, the
starting process of protein production, are dramatically
deactivated.

The transcriptional changes detected above may partially be
related to changes in the cellular composition of blood triggered
by death. Indeed, blood is a complex tissue composed of multiple
cell types. We investigated differences in cell composition
between blood samples collected pre- and post-mortem. We
used CIBERSORT35, to deconvolute bulk gene expression into
expression levels for 18 different cell types. We found significant
differences in overall cellular composition between pre- and post-
mortem blood samples (p< 0.001), the most notable changes
induced by death being an increase in resting NK cells and CD8
T-cells, and a substantial reduction in neutrophils (Fig. 7a). These
results are consistent with the observed deactivation of the
immune system (Supplementary Fig. 21b), since similar trends
are observed to be associated with dysregulation of the immune
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system with age. Neutrophils, in particular, are the first cells to
migrate to pathogenic infected sites, and a decrease in their levels
implies impaired ability to traffic into and out sites of infection.

Death also has an observable impact on splicing in the blood
transcriptome. We identified 497 exons (from 381 genes) that
were differentially included between the pre- and post-mortem
samples (p< 0.01, |ΔPSI| > 0.1, Supplementary Fig. 22, Supple-
mentary Table 10). This represents 14% of all exons (3441) that
were found to be variable across samples (Methods). Most of
these 497 exons (75%) tended to be “included” in the pre-mortem
samples (and not in the post-mortem samples), suggesting that
splicing deregulation is occurring. Indeed we found that post-
mortem samples have a higher entropy than pre-mortem samples

(Fig. 7b), reflecting tighter, more controlled, usage of splicing
isoforms in the pre-mortem samples. In general, we found there
was an increased usage of the major (dominant) isoform in the
pre-mortem samples relative to the post-mortem samples
(Supplementary Fig. 23).

Prediction of the post-mortem interval from gene expression.
The precise estimation of PMI is a problem of central importance
in forensic pathology. Traditional methods for this task rely on
physical modifications observed on the body, including algor,
livor, and rigor mortis36. However, these approaches may be
unreliable or inaccurate18. The use of RNA assays as an addition
to the forensic tool kit is of growing interest with studies looking
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for a correlation between RNA degradation and PMI1,10. The use
of mRNA markers in PMI prediction also holds great promise,
but so far only a few genes from a handful of human tissues have
been tested18. Herein, our analyses suggest that the patterns of
gene expression change with time after death in a tissue specific
manner, and might thus be collectively used to predict the PMI
for a given individual. We use the GTEx RNA-seq data to
develop and to test such an approach. We first use gradient
boosted trees37 to infer models that use expression of protein
coding genes to predict the PMI of each tissue separately. We
used data from 399 individuals (about 75% of the 528 available
individuals) for training the models and 129 (~25%) for testing
(Supplementary Fig. 24 and 25). In the test set we obtained R2

values between predicted and real tissue PMI ranging from 0.78
to 0.16 (Supplementary Fig. 26 and 27), similarly to what was

obtained in the training set (Supplementary Fig. 25). We also
calculated for each sample, the difference between real and pre-
dicted tissue PMI, and found little deviation on average, although
the models tend to overestimate PMI (Fig. 8a). To assess the
possibility of overfitting due to the complexity of the data we
performed a model stability analysis via resampling (Supple-
mentary Fig. 28). In addition, we used the blood samples and we
repeated the training and testing procedures (×100) separately in
post-mortem and in pre-mortem samples. We reasoned that if
predictions resulted from overfitting, we should be able to predict
the time to death in pre-mortem samples equally well as the time
since death in the post-mortem samples. Reassuringly, predic-
tions of time to death were essentially random (median R2 0.02
compared to 0.47 for predictions of time since death, see Sup-
plementary Fig. 29).
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To infer the PMI of each individual, we subtracted from each
tissue predicted PMI the time elapsed since the beginning of the
GTEx procedure to the processing of that tissue, and averaged the
resulting values (Fig. 8c, d). On average, the PMI prediction error
(signed difference between real and predicted) is 9.45 min and the
median of −63.75 min (Supplementary Fig. 30). The R2 of the
predicted and real PMI is 0.77 when all tissues are considered,
and 0.8 when using only the top 20 tissues (R2 > 0.5 in the
training set, Fig. 8b). As a measure of stability of the PMI
prediction on a given individual, we assess the consistency of the
tissue PMIs for the individuals. We reason that if all tissues
predict consistently very similar PMIs, the prediction of the PMI
for the individual is more reliable than if the tissue PMI
predictions are very variable across tissues. To assess the
consistency of the tissue PMI prediction for a given individual
we compute the coefficient of variation (cv), lower values thus
indicating more reliable predictions. Supplementary Figure 31
shows the cv distribution on the individuals from the test set.

Since the availability of so many tissues is unrealistic in a
forensics scenario, we identified the smallest combination of
tissues that can be used to determine an individual’s PMI
accurately. For each individual in the initial test set, we identified
the subset of tissues of a fixed size that can predict the individual
PMI with the highest precision. We find that for subsets of sizes
2–6, the tissues that appear more frequently are Adipose—
Subcutaneous, Lung, Thyroid, and Skin (Sun Exposed) (Supple-
mentary Fig. 32). We prioritized this approach over simply
identifying the combination of tissues with highest R2. Predic-
tions using these four tissues are even superior to those using all
top 20 tissues (R2 = 0.86) (Supplementary Fig. 33), and actually
only marginally superior to those obtained using some combina-
tions of only two tissues among the four above (Supplementary
Fig. 33 and 34).

We investigated to what extent the PMI predictions are robust
to the causes of death since this could also have an impact on the
transcriptome. To have sample sizes large enough, we grouped
the causes of death reported by GTEx (Supplementary Fig. 35a) in

three major death classes: cerebrovascular disease, heart disease,
and other causes of death. We did not observe an impact of the
class of death in the accuracy of the predictions, as measured by
R2 (Supplementary Fig. 35b).

The results above suggest that gene expression values
(estimated, for instance, through RNA-Seq) can be used to
effectively predict time since death. Figure 9 summarizes the main
steps to follow in a putative real case scenario.

We also investigated whether estimates of RNA degradation
can be used to predict PMI. We have employed exactly the same
methodology, but using the transcript integrity number15 (TIN)
data instead of gene expression. TINs have been proposed to
measure RNA integrity based on the uniformity of the read
distribution across transcript length15. TIN-based predictions of
individual PMI have similar accuracy to those based on gene
expression (Supplementary Figure 36a and 36b). However, there
is only moderate intersection between the two methods on the
genes contributing the most to the predictions (Supplementary
Figure 36c). This is consistent with our finding that the post-
mortem transcriptomic changes are both the result of RNA
degradation and of regulated gene expression.

Discussion
Here we report on the largest systematic study of the impact of
death and post-mortem cold ischemia on gene expression across
multiple human tissues. Samples obtained post-mortem are a
valuable source of material for studies requiring organs and tis-
sues difficult to obtain, or those where it is impossible to study
and manipulate them in living organisms. Hence, understanding
the impact of death in tissues is essential for the proper inter-
pretation of post-mortem gene expression levels as a proxy for
in vivo, living physiological levels.

The death of an organism clearly has an immediate impact on
tissue transcriptomes, as illustrated by our analysis of ante- and
post-mortem samples. Changes in gene expression as a response
to death, and during subsequent post-mortem ischemia, might be
expected to reflect stochastic variation resulting from the
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enzymatic processes underlying mRNA degradation. However,
our results suggest instead that there is ongoing regulation of
transcription, at least during the hours immediately following
death. We observed that in the majority of tissues there are many
genes that display expression profiles that are more complex than
simple monotonic changes with PMI. This is in agreement with a
recent study by Pozhitkov et al.29, in which gene expression
profiles produced by cDNA microarrays were analyzed in zeb-
rafish and mouse samples with post-mortem intervals up to 48
and 96 h. That study showed a non-monotonic increase in the

abundance of certain transcripts and suggested that previously
silenced genes were actively transcribed at later post-mortem time
points.

Similarly, analysis of splicing changes with PMI did not show
conclusive evidence of systematic splicing deregulation (as mea-
sured by the splicing entropy) across tissues. Death, in contrast,
did apparently lead to some splicing deregulation in blood. In
particular, we found that the usage of the major isoform (the most
abundant isoform compared to the rest) was attenuated in post-
compared to pre-mortem samples. The usage of a major isoform
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across tissues and biological conditions has been reported as a
general characteristic of genes38,39, and has lead to extensive
debate on the physiological relevance of regulated alternative
splicing39. Since most data to date has been collected from post-
mortem samples, the preferential usage of a single major isoform
in living cells may be even more prevalent than previously
reported.

While the effects of death per se on gene expression are distinct
from those of increasing PMI, we found a number of genes
involved in the assembly of DNA, nucleosome and chromatin
that were affected by both. Expression changes of these genes
suggest a possible form of gene regulation through the alteration
of the chromatin structure. Pozhitkov et al.29 described an
increased expression of epigenetic regulatory genes, hypothesizing
that the activation of these genes reveals the nucleosomes and
allows for the later transcription of developmental genes that have
no early expression. We consistently detected the upregulation of
genes involved in DNA organization, but we could not detect
changes in expression among genes related to development. This
could be due to the lack of reference expression levels from very
early post-mortem samples.

Based on the tissue specific response of the transcriptome to
PMI, we built machine-learning models to predict the time of
death of a recently deceased individual. We show that RNA-seq
performed on a few key tissues could become a powerful tool to
aid in forensic pathology. It could carry the footprint not only of
the time since death, but also of the cause of death—even though
we could not properly carry out these analyses because of the
small sample sizes available. Interestingly, the most informative
tissues to predict time of death included readily accessible ones,
such as skin and subcutaneous adipose. While these results show
promise, larger datasets more balanced across a wider post-
mortem time interval will be required to assess the full potential
of the approach.

In line with previous studies12,13,15,17,20 our analyses show that
the investigation of the impact of post-mortem ischemia in tissue
transcriptomes is essential to properly interpret gene expression
estimates obtained from post-mortem tissue samples. Further-
more, understanding the transcriptional changes occurring with
time after death could have multiple applications. Here, we illu-
strated an application specific to forensic pathology, but other
applications could include improving biospecimen procurement
and organ preservation protocols. These could, in turn, have an
impact on the procedures employed for organ transplantation.

Post-mortem tissues are irreplaceable sources for researching
and understanding human biology, but as our study demon-
strates, death does introduce a bias in the cellular transcriptomes,
even over relatively short timeframes. Ideally cellular transcript

levels should be measured “in vivo” in unperturbed cells to pro-
vide an unbiased characterization of true physiological cellular
transcriptomes, and this should in turn be performed individually
in each of the millions of cells that constitute a living tissue.
However, current technologies for the genome-wide character-
ization of the transcriptome still require the dissociation and
destruction of cells, even when obtained from living donors, and
the impact of this cellular destruction on the transcriptome is also
largely unknown. Despite this, our results indicate that overall,
relatively few genes show significant changes over the post
mortem intervals studied, and the genes that do change do not
change systematically, but vary by cell and tissue type. To mini-
mize and limit the impact of these changes, adhering to strict
protocols and standards for the collection of high quality tissue
and RNA, combined with careful documentation of all key
sample procurement covariates (as was done for GTEx21), can
allow the effects of post-mortem ischemia to be largely identified
and corrected for in analyses. Post-mortem samples can therefore
be of tremendous value for studies of both normal and disease
biology.

Methods
Data and filters. We used mRNA sequencing data (Illumina paired-end, 76 bp)
from the GTEx project Analysis Freeze V6 release (phs000424.v6.p1). RNA-seq
libraries are non-strand specific, with Poly-A selection and generated with Illumina
TruSeq protocol. Further details on sample collection, processing and quality
control of the RNA-seq samples from version V6 can be found in the supple-
mentary material of24 and in21,23,40. As described in Carithers et al.21 the GTEx
project made an effort to collect tissues within 8 h of PMI and RIN values ≥6. All
samples under analysis in this study were collected and preserved with the PAX-
gene Tissue preservation system developed by Qiagen21.

From the 55 available tissues in the V6, we started by selecting those with at
least 20 samples. Brain samples are preserved either with PAXgene Preserved or
Fresh Frozen methods. The latter does not have ischemic time available. We have
included 161 samples from Cerebellum and 147 from Cortex preserved with
PAXgene method and with ischemic time available. We further removed cell lines
from the set of tissues. The final dataset comprises 36 tissues, with 36–1049 samples
with a mean of 253 samples, see Supplementary Fig. 1.

Gene expression. RNA-seq reads were aligned to the human genome
(hg19/GRCh37) using TopHat41 (v1.4) and Gencode annotation v1926 was used for
gene quantification. We considered genes with at least 5 reads mapping in exons
and from all biotypes in the annotation. The raw read counts were used for dif-
ferential expression analysis and the RPKM42 values, which were log2 transformed
with an added pseudo-count used in the remaining analysis. For the regression
analyses, the matrix of expression values was obtained for the samples of each
tissue and then normalized with the normalize.quantiles function from the pre-
processCore library43.

In order to investigate the global patterns of gene expression we have
considered the gene expression values of all the tissues and all the genes from the
annotation26. We have then performed multi-dimensional scaling (MDS) using the
isoMDS function from the package MASS in R. We defined the distance for two
samples A and B as:

Protocol for post-mortem interval prediction of an individual

1. Annotate the start time of the forensic procedure, START_TIME.
2. Annotate the stabilization time of the tissues, among the following ones, that are available:

Skin sun exposed (lower leg) sample, SKNS_STAB.

Adipose Subcutaneous sample, ADPSC_STAB.
Thyroid sample, THYROID_STAB.

Lung sample, LUNG_STAB.
3. Prepare sample, extract RNA and perform RNA sequencing (RNA-seq) analysis, possibly with a portable

and real-time equipment of the available tissues.

4. Process the RNA-seq  data to obtain gene expression quantifications for each available tissue sample. 
5. Provide to the PMI prediction software the gene expression values in each available tissue together with

the stabilization time of the tissue, and the time of the initiation of the forensic procedure.   

6. The prediction software provides tissue and individual PMIs, as well as the coefficient of variation of the
tissue PMIs as a measure of the stability of the predictions 

Fig. 9 Protocol for post-mortem interval prediction. Steps to be performed to predict the PMI of an individual
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dist(A, B) = 1–PearsonCorrel(A, B). As shown in Supplementary Fig. 3 there is a
clear transcriptional signature characterizing each tissue. Further discussion on
detectable and tissue specificity expression and gene expression patterns across
tissues can be found here25.

Post-mortem interval (PMI) information. GTEx annotation provides informa-
tion on three types of ischemic time: Total Ischemic time for a sample, Total
Ischemic time for a donor and Ischemic Time (time for the start of the GTEx
procedure). All these variables are quantified in minutes. Throughout the text we
have used the term Post-Mortem Interval (PMI) to refer to ischemic time and
except if explicitly stated it refers to the sample ischemic time. Negative PMI values
(observed in blood samples) correspond to samples extracted pre-mortem. GTEx
annotation contains a total of 249 sample and subject variables, which are divided
in six groups: Sample attributes (prefix SM), Death circumstance (DTH), Demo-
graphic (no specific prefix), Medical History (MH), Tissue Recovery (TR), Serology
results (LB). We selected those variables with> = 2 and< = 15 values, removing
cases of unknown values. We then computed a linear regression with PMI,
obtaining the adjusted R2 and the Pearson correlation with PMI (cor.test in R with
use = “na.or.complete”). Categorical variables were converted to numeric. Supple-
mentary Fig. 4 shows the respective correlation values for all the variables, where
we observe that TR, LB and DTH variables are highly correlated with ischemic
time. This basically reflects different aspects of the tissue collection procedure that
are highly associated with PMI.

Covariate selection. In order to assess the impact of PMI on gene expression we
need to account for the possible effect of other pre-mortem variables on the var-
iation of gene expression. For the selection of the variables of interest we excluded
TR, LB and DTH variables due to their strong association with PMI, which may
result from the fact that all these variables capture the underlying characteristics of
death circumstances and tissue extirpation procedure. We then focused on sample,
demographic and medical history variables (correlation values with ischemic time
ignoring missing values), summing 166 variables. We further filter for those cov-
ariates that are qualitative and describe a phenotype such as age or gender and that
exclude those that are simply metrics from the sequencing (SM). Finally, we kept
those variables with |r| > 0.1 with PMI. Non-numerical variables are converted to
numeric format. The final set of covariates used for regression analysis of PMI and
gene expression is presented in Supplementary Table 5.

Gene expression and PMI regression model. In order to assess the impact of
PMI on gene expression we took into account a set of fourteen covariates (Sup-
plementary Table 5). Then, for each gene (with average expression across the tissue
samples greater than 0.5 RPKM) we implemented a linear regression model where
the gene expression profile is modeled with relation to the covariates: reg = lm
(gene_expression ~ matrix.selectedCovariates). The residuals of the model are then
used as the expression phenotype: gene_expression.resid = residuals(reg). Finally,
the correlation between the residuals and the PMI is calculated, r = correlation
(gene_expression.resid, pmi.vals). The corresponding correlation and p-values
(adjusted with BH method44) are then stored for all genes. This procedure is
repeated for all tissues (Supplementary Fig. 37). To compute the correlation values
of gene expression and PMI without the covariates, a procedure similar to the
above was used where Pearson correlation is obtained between gene expression and
PMI values (Supplementary Fig. 38). Supplementary Note 2 provides the algo-
rithmic details of the methodology.

Non-linear temporal differential expression. In order to find non-linear differ-
ential expression we developed a method to identify significant changes between
different post-mortem intervals. For each tissue we grouped the samples as in21 and
in five different PMI intervals I1:< 1 h, I2: ≥ 1 h and< 4 h, I3: ≥ 4 h and< 6 h, I4: ≥
6 h and< 15 h and I5: ≥ 15 h. We then normalized the gene expression of each gene
computing a Z-score = ((X-mean)/stdev) and calculated the median expression in
each of these intervals. Every two consecutive intervals, with a minimum number
of five samples are then compared. We consider an event of temporal differential
expression between Ti and Ti+1, where Ti and Ti+1 correspond to the expression
values of the gene in the interval i and i + 1 if we meet the two following conditions:

pvalði; iþ 1Þ ¼ wilcox:test Ti; Tiþ1ð Þ;with pval<0:05 ð1Þ

fold changeði; iþ 1Þ ¼ log2 median Tið Þ=medianðTiþ1Þð Þ; jfold changeði; iþ 1Þj>2
ð2Þ

Supplementary Fig. 39 provides the algorithmic details of the methodology.

Tissue similarity for PMI correlated expression. In order to build a tissue
similarity matrix of the correlation profiles (gene expression and PMI) we per-
formed a pairwise comparison of all tissues. For every pair of tissues we obtain the
common genes by intersecting genes that in both tissues have correlation value of
gene expression with PMI. For every pair of tissues we then obtain a Spearman
ranking correlation based on the correlation values of the common genes. We then

used the heatmap.2 function from gplots to calculate the heatmap with dendro-
gram in Fig. 2f.

Functional enrichment analysis. For functional enrichment analysis we used the
R libraries: DOSE45, ClusterProfiler46, Kegg.db47 following the tutorial of
ClusterProfiler46.

Differential expression in blood samples. For differential expression analysis we
used the statistical methods implemented in the edgeR package48. We started by
building a matrix with gene read counts in premortem (n = 169) and postmortem
(n = 223) Blood samples. Genes were filtered to have at least 5 reads per million
mapped reads in at least 10% of the samples on one of the tested groups (cpm
function). We created a design matrix taking into account 2 groups (pre- and
postmortem samples) and several covariates:

design<�model:matrix �ð SMRINþ AGEþ ETHNCTY þMHCANCERNMþ
SMCENTER þ SMTSTPTREFþ SMNABTCHT þ GENDER þ group; covars:matrixÞ

Covariates SMRIN and AGE were discretized according to the following
intervals: SMRIN =< 7*/7−8/8−9/9–10 and AGE = 20−30/30−40/40−50/50−60/60
−70. Covariates were converted as factors. See Supplementary Table 5 for the
description of the covariates, where group variable corresponds to the pre and post-
mortem samples. We then followed the protocol at48 performing the normalization
with the TMM method49 Generalized Linear Model (GLM) based functions to
estimate common dispersion and differential tests. For the differential expression
analysis across different post-mortem blood intervals, we first divided the post-
mortem samples in four groups, which provided an equal number of samples in
each group: G1 (n = 56): 0< pmi< = 406 min; G2 (n = 56): pmi> 406 and
pmi < = 635; G3 (n = 56): pmi > 635 and pmi< = 867; G4 (n = 55): pmi> 867 and
pmi < = 1401. A similar approach as the one described above was then applied to
compare all the pre-mortem samples with each of the G1, G2, G3, and G4 groups.
Figure 4b and Supplementary Table 8 shows the number of differentially expressed
genes for the different intervals.

Transcriptional patterns of pre and post-mortem blood. In order to explore the
transcriptional differences in pre and post mortem blood samples we have built the
respective expression matrix based on RPKM values that were then log2 converted
and normalized with normalize.quantiles function as previously described. We
then performed hierarchical clustering (HC) and multidimensional scaling (MDS).
We defined the distance between samples a and b as, dist(a,b) = 1 – cor(a,b), where
cor is the Pearson correlation of a and b vector. Hierarchical clustering solution was
then computed with hclust function using the average method. Visualization was
performed using the heatmap.2 function with the input of the distance matrix and
the previously calculated HC solution as the dendrogram parameter. Postmortem
samples (n = 20) with a PMI smaller than the respective individual PMI were
excluded. Heatmap with PMI interval colors is shown in Supplementary Fig. 20,
and samples in MDS plot were colored according to Hardy Scale (Fig. 4a).

Signaling pathway models. The hiPathia34 tool was used for the interpretation of
the consequences of the combined changes of gene expression levels and/or
genomic mutations in the context of signaling pathways (see Supplementary Fig. 40
and 41). Significant circuits associated to PMI were obtained by fitting a linear
model and were summarized by the median value across samples per circuit and
time points. Supplementary Note 3 and Hidalgo et al.34 provide the algorithmic
details of the methodology.

Gene structural features. Features were derived from the Gencode annotation
v1926, including the number of projected (non-redundant exonic regions) exons,
length of the coding regions, overall length of the gene, biotype. We obtained
projected exons first by sorting by genomic coordinates and then by merging
exons. We used bedtools50 for this step. GC content was obtained from the
Ensembl Biomart (www.ensembl.org/biomart). For each tissue we have calculated
the Pearson correlation between the vector of gene features and the respective
correlation value between gene expression and PMI. Supplementary Table 7 con-
tains the correlation values per tissue for each feature.

Mitochondrial transcription. For estimating the mitochondrial RNA concentra-
tions (MT%), we divided all reads in annotated mitochondrial (mt) genes by the
total number of reads in annotated (nuclear and mitochondrial) genes. To account
for the substantial different mitochondrial activity across tissues, we divided each
sample by the median MT% found in the corresponding tissue (nMT%). We then
regressed a linear model nMT% ~ PMI and compared the slopes obtained at each
time point between the different tissues (Supplementary Fig. 17). Correcting for the
influence of age in the linear model changed the distribution of relative MT% only
marginally (shifted values< = 0.05) (Supplementary Fig. 16).

RNA-seq metrics across tissues. We have explored if the different tissues show
differences in RNA-seq quality control metrics obtained with the RNA-SeQC40
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pipeline. Supplementary Table 11 lists the variables used for this analysis. The
mapping proportions along the different gene features are shown in Supplementary
Fig. 11 and 12. Degradation of the RNA may result in different mapping bias
effects, in particular in a higher read coverage at the 3′ end of the genes. We have
calculated for each sample a read coverage ratio between the 5′ and the 3′ 50bp-
based normalization. Distribution of these values for the different tissues is shown
in Supplementary Fig. 13 and the relation with RIN and PMI are shown in Sup-
plementary Fig. 14 and 15.

Clustering modularity. To assess if gene expression signatures of tissues are
preserved across the PMI bins, as defined above (section “Non-linear Temporal
Differential Expression”), we selected only the tissues that had at least 10 samples
within each bin of PMI. Because differences in the number of samples per tissues
can introduce variation in the network structure, we randomly selected the same
number of samples per tissue in each PMI bin, corresponding to the minimum
number of samples per tissue across all the PMI bins. Thus, we have 4 combina-
tions of 422 samples, one for each PMI bin, with the same tissues, and the same
number of samples per tissue. For each combination of samples, we compute
pairwise Pearson’s correlation coefficient on the log2-transformed RPKM expres-
sion values after adding a pseudo-count of 1. From each matrix of correlation
coefficients we built 7 networks, where nodes are the samples and edges are con-
nections between samples that are correlated with a coefficient higher than a given
threshold (out of 7 thresholds, from 0.86 to 0.92). These thresholds gave com-
parable network densities, defined as the proportion of connected nodes over the
total number of possible edges, across all the networks. We used the modularity
formula (R package igraph51, modularity function) to measure how well the
samples in each network are aggregated by tissue type. Supplementary Fig. 9 shows
the distribution of modularity with relation to network density.

Exon inclusion analysis. GTEx samples were processed through the Integrative
Pipeline for Splicing Analyses (IPSA) pipeline with default settings52. Namely,
short reads were mapped to human genome (hg19/GRCh37) using TopHat41

(v1.4). The alignments were filtered to have an overhang of at least 8 nt and
entropy of the offset distribution of at least 1.5 bits. Novel short exons (shorter than
the read length) were predicted using reads with more than one split with canonical
GT/AG splicing nucleotides and minimum entropy of at least 1.5 bits for each
splice junction. The percent-spliced-in (PSI) metric was computed as in Wang
et al.33 by using inclusion and exclusion reads with the minimum total count of 5
reads; that is, exons for which the combined number of inclusion and exclusion
reads was less than 5 were excluded.

From the PSI values calculated by the IPSA pipeline52 we have performed
further filtering on a tissue basis based on the three following criteria: Select exons
with NAs in less than 10% of the cases; Select exons they have a standard deviation
greater than 0; Select exons if the difference between the max and min PSI values is
larger than 0.1;

From this subset of selected exons we have then performed correlation analysis
of the PSI value with the PMI value for each tissue. Supplementary Fig. 18a shows
the number of tested exons according to the above filtering and Fig. 3d the number
of significant exons at 1% FDR and |r| > 0.5.

Differential exon inclusion in blood. Exons with PSI values following the three
criteria defined in the previous section in Blood samples were selected for differ-
ential expression analysis. This yielded a set of 3441 exons. Next, differential exon
inclusion was tested with Wilcoxon Sum Rank test, with multiple testing adjust-
ments by Benjamini-Hochberg method44, and the median of the PSI values in each
group calculated. Exons were deemed significant included if they pass the following
criteria: FDR< 1%; and |ΔPSI| > 0.1;

Cellular composition. In order to perform gene expression signal deconvolution
we applied CIBERSORT35 v1.04 and the LM22 gene signature to all blood samples,
using gene RPKMs, with default parameters, deconvoluting the signal into 22
different cell types. We discarded four cell types with average fraction below 0.01 in
both conditions, keeping 18 cell types. We compared the cell-fractions of pre- and
post-mortem samples globally using the Anderson–Darling test53 and by cell-type
obtaining a p-value using the two-sided Wilcoxon Rank-Sum test54, adjusted to
multiple-testing by Benjamini–Hochberg method44.

Splicing entropy analysis and PMI association. To investigate changes in pat-
terns of isoform usage and how these correlate with the PMI we have calculated the
splicing entropy based on the relative abundance of an isoform/transcript within a
gene. The following selection criteria and calculation was performed on a tissue-by-
tissue basis: start by selecting genes with two or more isoforms; next, select genes
with a non-zero expression in 90% of the samples of the tissue. Calculate isoform
ratios for each gene: For a gene G, with k isoforms I, the splicing ratio is defined as:

P Iið Þ ¼ IiPk

i¼1
Ii
, where Ii corresponds to the RPKM value for the isoform i of G.

Finally, calculate the entropy of a gene based on the Shannon Entropy formula,
as:

EðGÞ ¼ �
Xk

i¼1
p Iið Þ´ log p Iið Þ

The splicing entropy of gene G is maximal if all its isoforms have the same ratio
and minimal if one of the isoforms dominates all the expression of G.

Then, for each gene, we correlate the splicing entropy with the respective PMI
of the sample. From this test, we obtain the r-value and p-value. Perform p-value
adjustment for multiple testing by Benjamini–Hochberg method44. We repeat this
analysis for all the selected tissues. In Supplementary Table 10 we provide the total
number of genes tested per tissues and the genes with a |r| > 0.5 and FDR< 5%.
Figures 3g, h present an example of a gene with a significant change in lung.
Supplementary Fig. 19 presents the distribution of the correlation values for
Splicing Entropy and PMI across the different tissues.

Machine learning models for PMI prediction. The predictive model for PMI
based on gene expression was constructed with a two-step approach using an
ensemble of gradient boosted trees (Supplementary Fig. 24) in order to provide a
robust estimate of PMI and avoid overfitting. 528 available individuals are initially
partitioned into training and testing datasets, using 75% and 25% of the data,
respectively. This partition is performed in such a way that we try to keep a similar
underlying distribution of the number of available tissues per individual both for
the training and testing datasets.

In order to build these tissue models (with the R implementation of the xgboost
package37), we first create a fixed split of individuals into training and test sets. For
a given tissue, we perform 3-repeat-5-fold cross validation with the samples
corresponding to the individuals of the training block in order to select the best
model, and we generate the predictions over the unseen test set using this model.
This process is repeated 13 times using different seeds to take into account the
variation in the hyperparameter optimization process. The output is a matrix of n
samples×13 columns, where each column represents the tissue PMI prediction of
all test samples for each iteration. The final tissue PMI predictions will be taken as
the row average of this matrix. Only protein coding genes with a correlation > = 0.4
with the tissue ischemic time were used in order to reduce the computational
burden of model fitting. No other covariate was considered. Hyperparameter
search was performed during this cross-validation loop using standard grid search
for tree depth ranging from 4 to 6, η ranging from 0.001 to 0.1, γ ranging from 0 to
0.15 and up to 1000 rounds, using RMSE as optimization criteria. For each tissue
we repeat the previous process 13 times using different seeds to determine the
training set fold partitions in order to have a measure of the variability of the final
prediction while applying the models on the test set (Supplementary Fig. 24b). On
Supplementary Fig. 25a, we show the variability of the number of genes selected by
the each 13 models, per tissue.

Once we have obtained the 13 models per tissue, we use each one of them to
generate PMI predictions for each tissue sample in the test set. Therefore, 13
predictions are generated per tissue for a given test individual. We take the average
of these predictions as our final PMI prediction for that particular tissue. On
Supplementary Fig. 27 we can see examples of the tissue performance on the test
set.

In the second step of our procedure, for each individual we will correct the final
tissue PMI predictions by subtracting the elapsed time of the GTEx procedure.
Since we know how much time has passed since the beginning of the GTEx
procedure until a specific sample has been processed, this time difference has to be
subtracted from the tissue PMI predictions in order to normalize them to a
reference level, which is the start of the GTEx procedure. Finally, to predict the
individual PMI (which is considered to be the time from death until the beginning
of the procedure), we compute the average of these corrected tissue PMI
predictions.

One important remark is that the final quality of the individual PMI prediction
for the test individuals will highly depend on how accurate the individual tissue
models are. For this reason, while performing the second step of the prediction
procedure, we decided to use only the top 20 tissues with the best R2 performance
in the training data (Supplementary Fig. 25b). The R2 for each of these tissues while
applying the models on the test set is shown on Supplementary Fig. 26. The density
of the individual PMI prediction error, which is defined as the signed difference of
the real and predicted individual PMI is shown on Supplementary Fig. 30.

To investigate whether we are recovering a real predictive signal from gene
expression instead of just an artifact, we used whole Blood samples, where there is
information available for pre-mortem individuals as well. We reasoned if we were
able to predict accurately the time to death for pre-mortem individuals this would
reflect overfitting. To this end, for each cohort (pre-mortem and postmortem), we
partitioned the data into training and testing datasets, fitted the model on the
training data with 3-repeat-5-fold cross validation, performed the predictions on
the test set and then obtained the regression statistics of real vs. predicted Blood
PMI. We repeated this process a hundred times with different seeds, generating a
different training/testing partition each time, in order to study the variability of the
regression statistics. There is a significant difference of the regression statistics
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between pre-mortem and postmortem samples, with a very poor fit for pre-mortem
samples (Supplementary Fig. 29).

To study the stability of the tissue PMI predictive models we decided to evaluate
the tissue performance irrespective of the training/testing partition used so far. For
each tissue we partition all the available samples into 75% for training and 25% for
testing. Once each tissue model is fitted on the training set with 3-repeat-5-fold
cross validation, we calculate the p-value of the F-test (Supplementary Fig. 28), R2

and slope (not shown) for the regression of the predicted tissue PMI in the test set
versus the real tissue PMI. This process is then repeated 50 times by varying the
training/testing partition in order to measure the variability of the regression
statistics.

In order to find the optimal subsets of tissues for predicting an individual’s PMI,
we computed the individual PMI with all the possible combinations of sizes 2–6 of
the available tissues for each individual in the test set. Then for each set size we
keep the tissue combination that performed the best for each individual, in terms of
individual PMI prediction error. With this, we can calculate the proportion of
times a given tissue appeared in the optimal subset of a fixed size (Supplementary
Fig. 32). We see that Adipose—Subcutaneous, Lung, Thyroid and Skin—Sun
Exposed (Lower leg) are the tissues that consistently appeared on more optimal
subsets of all sizes; and these tissues are also the ones that appear among the top
most stable ones on the previously mentioned stability analysis. We then compute
the individual PMI using all the possible combinations from size 2 to 4 using these
four tissues (Supplementary Fig. 33 and 34).

As an additional description of stability of the individual PMI predictions, we
have computed the standard deviation (SD) and coefficient of variation (CV) of the
corrected tissue PMI predictions for each individual in our original test set, and
generated the density curves of these statistics, shown on Supplementary Fig. 31,
both for the top 20 tissues and the top 4 tissues of the best subset analysis.

Supplementary Fig. 35 shows the distribution of the death classes in the test set
individuals of our PMI prediction methodology. In order to inspect if there is any
immediate effect of the cause of death on the individual predictions, we have
grouped the death classes in three larger categories: cerebrovascular disease, heart
disease (which groups “Ischemic heart disease” and “Other forms of heart disease”)
and others (which groups the remaining classes). We observe that the performance
of the predictions in terms of R2 is very similar among the death classes.

To perform the prediction using TIN15 data, we have employed the same
methodology as with gene expression data, using the same initial partition of
training and testing individuals. Since it is a proof of concept, we have only
performed 3 repetitions of the process instead of 13 like in the gene expression
method in order to reduce the computational burden. Supplementary Fig. 36a
shows the performance of the model based on the TIN measure at the tissue level,
while Supplementary Fig. 36b compares the predictions based on TIN with the
predictions based on gene expression at the individual level. On Supplementary
Fig. 36c, we show the number of most informative genes (defined as the union of
genes with importance> = 0.1 across all the 13 models in the case of the gene
expression model, and the union of the genes with importance > = 0.1 across the 3
models in the case of TIN, with “importance” being a measure computed by
xgboost) with respect to each tissue and data type.

Data Availability. All data are available from dbGaP (accession phs000424.v6.p1)
with multiple publicly available data views available from the GTEx Portal
(www.gtexportal.org). The code can be obtained at https://public_docs.crg.es/
rguigo/Papers/human_PMI_transcriptome/.
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