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Abstract. In this paper, we establish the weighted anisotropic Hardy and Rellich
type inequalities with boundary terms for general (real-valued) vector fields. As
consequences, we derive new as well as many of the fundamental Hardy and Rellich
type inequalities which are known in different settings.

1. Introduction

The main aim of this paper is to present the weighted anisotropic Hardy and
Rellich type inequalities with boundary terms for general (real-valued) vector fields.
The consequences recover many previously known results in different settings. The
anisotropic Picone type identities play key roles in our proofs.

Recall the Hardy inequality for Ω ⊂ Rn stating that∫
Ω

|∇u|pdx ≥ C

∫
Ω

|u|p

|x|p
dx, u ∈ C1

0(Ω), (1.1)

where ∇ is the Euclidean gradient and p > 1. It has been vastly studied by many
authors and developed in different settings, see e.g. [1], [3], [6], [7], [9], [21] and the
references therein.

First, let us review some of the recent results:

• Hardy type inequalities in the setting of the Heisenberg group Hn have the
following form∫

Hn
|∇Hu|2dx ≥ C

∫
Hn

ψ2
H

ρ2
|u|2dx, u ∈ C1

0(Hn\{0}), (1.2)

where ∇H is a (horizontal) gradient associated to the sub-Laplacian, ψH and
ρ are a weight function and a suitable distance from the origin, respectively.
For example, Garofalo and Lanconelli in [8], Niu, Zhang and Wang in [15],
D’Ambrosio in [4] and others have made a contribution to prove the above
inequality and its extensions in Hn.
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• Hardy type inequalities in the setting of the Carnot group G can be given by
the formula∫

G
dα|∇Hu|2dx ≥ C

∫
G
dα−2|∇Hd|2|u|2dx, u ∈ C∞0 (G\{0}), (1.3)

where ∇H is the horizontal gradient on G, α ∈ R, and d is a homogeneous
norm associated with a fundamental solution for the sub-Laplacian. For in-
stance, the Hardy type inequalities on G have been studied by Goldstein,
Kombe and Yener in [9], Kombe in [13], Wang and Niu in [24] and the au-
thors in [18].
• Hardy type inequalities in the setting of general vector fields can be presented

in the form∫
Ω

|∇Xu|pdx ≥ C

∫
Ω

|∇Xφ|p

φp
|u|pdx, u ∈ C1

0(Ω), (1.4)

where ∇X := (X1, . . . , XN) and φ is any positive weight function. To the best
of our knowledge, D’Ambrosio obtained first versions of Hardy type inequali-
ties for general vector fields in [4].

Consider a family of real vector fields {Xk}Nk=1, N ≤ n, on a smooth manifold M
with dimension n and a volume form dx. In Section 2, we use the approach developed
in [9] and [17] to establish the following weighted Hardy type inequalities for general
vector fields ∫

Ω

W (x)|∇Xu|pdx ≥
∫

Ω

H(x)|u|pdx, u ∈ C1
0(Ω),

with the hypothesis

−∇X · (W (x)|∇Xv|p−2∇Xv) ≥ H(x)vp−1,

where ∇X = (X1, X2, . . . , XN) is the associated gradient and v is a function satisfying
the above hypothesis. From this weighted Hardy type inequality, we recover most of
the fundamental Hardy type inequalities including (1.2), (1.3) and (1.4). In Section
3, we prove the weighted anisotropic Rellich type inequality for general vector fields.

2. Weighted anisotropic Hardy type inequality

In this section, we obtain the weighted anisotropic Hardy type inequalities for
general (real-valued) vector fields. It will be proved by using the anisotropic Picone
type identity. As consequences, we discover most of the Hardy type inequalities and
the uncertainty principles which are known in the setting of the Euclidean space,
Heisenberg and Carnot groups.

Consider a family of real vector fields {Xk}Nk=1, N ≤ n, on a smooth manifold M
with dimension n and a volume form dx. Then we say that an open bounded set
Ω ⊂ M is an admissible domain if its boundary ∂Ω has no self-intersections, and if
the vector fields {Xk}Nk=1 satisfy

N∑
k=1

∫
Ω

Xkfkdx =
N∑
k=1

∫
∂Ω

fk〈Xk, dx〉, (2.1)
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for all fk ∈ C1(Ω) ∩ C(Ω), k = 1, . . . , N . For more details see [19] and [20], where it
is shown that (2.1) is usually satisfied for most domains Ω, and we also recall some
examples below.

First, we formulate an assumption which is important for presenting some examples
of Theorem 2.3 and of other related results:

Assumption: Let Ty ⊂ M be an open set containing y ∈ M such that the
operator

L :=
N∑
i=1

X2
i

has a fundamental solution in Ty, that is, there exists a function Γy ∈ C2(Ty\{y})
such that

− LΓy = δy in Ty, (2.2)

where δy is the Dirac δ-distribution at y.

We will say that an admissible domain Ω is a strongly admissible domain with
y ∈ M if the above assumption is satisfied, Ω ⊂ Ty, and (2.1) holds for fk = vXkΓy
for all v ∈ C1(Ω) ∩ C(Ω).

Note that the fundamental solution for sums of squares of vector fields satisfying
Hörmander’s condition were obtained by Sánchez-Calle in [22].

Let us recall several important examples from [20] (see, also [12]) which satisfy the
above condition:

Example 1: Let M be a stratified group with n ≥ 3, and let {Xk}Nk=1 be the
left-invariant vector fields giving the first stratum of M . Then any open
bounded set Ω ⊂ M with a piecewise smooth simple boundary is strongly
admissible.

Example 2: Let M ≡ Rn with n ≥ 3, and let the vector fields Xk with k =
1, . . . , N , N ≤ n, have the following form

Xk :=
∂

∂xk
+

n∑
m=N+1

ak,m(x)
∂

∂xm
, (2.3)

where ak,m(x) are locally C1,α-regular for some 0 < α ≤ 1, where C1,α stands
for the space of functions with Xk-derivative in the Hölder space Cα with
respect ot the control distance defined by these vector fields. Assume that

∂

∂xk
=

∑
1≤i>j≤N

λi,j(x)[Xi, Xj]

for all k = N + 1, . . . , n with λi,jk ∈ L∞loc(M). Then any open bounded set
Ω ⊂M ≡ Rn with a piecewise smooth simple boundary is strongly admissible.

Example 3: More generally, let M ≡ Rn with n ≥ 3. Let the vector fields Xk

for k = 1, . . . , N , N ≤ n, satisfy the Hörmander commutator condition of step
r ≥ 2. Assume that all the vector fields Xk for k = 1, . . . , N belong to Cr,α(U)
for some 0 < α ≤ 1 and U ⊂ M ≡ Rn, and if r = 2, then we assume α = 1.
Then if Xk’s are in the form (2.3), then any open bounded set Ω ⊂ M ≡ Rn

with a piecewise smooth simple boundary is strongly admissible.
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Moreover, let us recall the following analogue of Green’s formulae which was proved
in [20].

Proposition 2.1 (Green’s formulae). Let Ω ⊂ M be an admissible domain. Let
u ∈ C2(Ω) ∩ C1(Ω) and v ∈ C1(Ω) ∩ C(Ω), then we have the following analogue of
Green’s first formula ∫

G

(
(∇̃v)u+ vLu

)
dx =

∫
∂Ω

v〈∇̃u, dx〉, (2.4)

where

∇̃u =
N∑
i=1

(Xiu)Xi. (2.5)

If u, v ∈ C2(Ω)∩C1(Ω), then we have the following analogue of Green’s second formula∫
Ω

(uLv − vLu)dx =

∫
∂Ω

(
u〈∇̃v, dx〉 − v〈∇̃u, dx〉

)
. (2.6)

2.1. Anisotropic Picone type identity. First, we present the anisotropic Picone
type identity for vector fields.

Lemma 2.2. Let Ω ⊂ M be an open set. Let u, v be differentiable a.e. in Ω, v > 0
a.e. in Ω and u ≥ 0. Define

R(u, v) :=
N∑
i=1

|Xiu|pi −
N∑
i=1

Xi

(
upi

vpi−1

)
|Xiv|pi−2Xiv, (2.7)

L(u, v) :=
N∑
i=1

|Xiu|pi −
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2XivXiu

+
N∑
i=1

(pi − 1)
upi

vpi
|Xiv|pi , (2.8)

where pi > 1, i = 1, . . . , N . Then

L(u, v) = R(u, v) ≥ 0. (2.9)

In addition, we have L(u, v) = 0 a.e. in Ω if and only if u = cv a.e. in Ω with a
positive constant c.

Note that Lemma 2.2 for the left-invariant vector fields in the setting of stratified
groups was proved in [17].

Proof of Lemma 2.2. First, we show the equality in (2.9) by a direct computation as
follows

R(u, v) =
N∑
i=1

|Xiu|pi −
N∑
i=1

Xi

(
upi

vpi−1

)
|Xiv|pi−2Xiv

=
N∑
i=1

|Xiu|pi −
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2XivXiu+

N∑
i=1

(pi − 1)
upi

vpi
|Xiv|pi

= L(u, v).



WEIGHTED ANISOTROPIC HARDY AND RELLICH TYPE INEQUALITIES 5

Now we rewrite L(u, v) to see L(u, v) ≥ 0, that is,

L(u, v) =
N∑
i=1

|Xiu|pi −
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−1|Xiu|+

N∑
i=1

(pi − 1)
upi

vpi
|Xiv|pi

+
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2 (|Xiv||Xiu| −XivXiu)

=S1 + S2,

where we denote S1 and S2 in the following form

S1 :=
N∑
i=1

pi

[
1

pi
|Xiu|pi +

pi − 1

pi

((u
v
|Xiv|

)pi−1
) pi

pi−1

]

−
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−1|Xiu|,

and

S2 :=
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2 (|Xiv||Xiu| −XivXiu) .

Since |Xiv||Xiu| ≥ XivXiu we have S2 ≥ 0. To check that S1 ≥ 0 we will use Young’s
inequality for a ≥ 0 and b ≥ 0 stating that

ab ≤ api

pi
+
bqi

qi
, (2.10)

where pi > 1, qi > 1, and 1
pi

+ 1
qi

= 1 for i = 1, . . . , N . The equality in (2.10) holds if

and only if api = bqi , i.e. if a = b
1

pi−1 . By setting a = |Xiu| and b =
(
u
v
|Xiv|

)pi−1
in

(2.10), we get

pi|Xiu|
(u
v
|Xiv|

)pi−1

≤ pi

[
1

pi
|Xiu|pi +

pi − 1

pi

((u
v
|Xiv|

)pi−1
) pi

pi−1

]
. (2.11)

This yields S1 ≥ 0 which proves that L(u, v) = S1 + S2 ≥ 0. It is easy to check that
u = cv implies R(u, v) = 0. Now let us show that L(u, v) = 0 implies u = cv. Due
to u(x) ≥ 0 and L(u, v)(x0) = 0, x0 ∈ Ω, we consider the two cases u(x0) > 0 and
u(x0) = 0. For the case u(x0) > 0 we conclude from L(u, v)(x0) = 0 that S1 = 0 and
S2 = 0. Then S1 = 0 implies

|Xiu| =
u

v
|Xiv|, i = 1, . . . , N, (2.12)

and S2 = 0 implies

|Xiv||Xiu| −XivXiu = 0, i = 1, . . . , N. (2.13)

The combination of (2.12) and (2.13) gives

Xiu

Xiv
=
u

v
= c, with c 6= 0, i = 1, . . . , N. (2.14)

Let us denote Ω∗ := {x ∈ Ω|u(x) = 0}. If Ω∗ 6= Ω, then suppose that x0 ∈ ∂Ω∗.
Then there exists a sequence xk /∈ Ω∗ such that xk → x0. In particular, u(xk) 6= 0,
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and hence by the first case we have u(xk) = cv(xk). Passing to the limit we get
u(x0) = cv(x0). Since u(x0) = 0 and v(x0) 6= 0, we get that c = 0. But then by the
first case again, since u = cv and u 6= 0 in Ω\Ω∗, it is impossible that c = 0. This
contradiction implies that Ω∗ = Ω. The proof of Lemma 2.2 is complete. �

2.2. Weighted anisotropic Hardy type inequality. Now we are ready to obtain
the weighted anisotropic Hardy type inequalities for general vector fields by using the
anisotropic Picone type identity.

Theorem 2.3. Let Ω ⊂ M be an admissible domain. Let Wi(x) ≥ 0 and Hi(x) ≥ 0
be functions with i = 1, . . . , N , such that for a function v ∈ C1(Ω)

⋂
C(Ω) and v > 0

a.e. in Ω, we have

−Xi(Wi(x)|Xiv|pi−2Xiv) ≥ Hi(x)vpi−1, i = 1, . . . , N. (2.15)

Then, for all functions 0 ≤ u ∈ C2(Ω)
⋂
C1(Ω) and the positive function v ∈

C1(Ω)
⋂
C(Ω) satisfying (2.15), we get

N∑
i=1

∫
Ω

Wi(x)|Xiu|pidx ≥
N∑
i=1

∫
Ω

Hi(x)|u|pidx (2.16)

+
N∑
i=1

∫
∂Ω

upi

vpi−1
〈∇̃i

(
Wi(x)|Xiv|pi−2Xiv

)
, dx〉,

where ∇̃if = XifXi and pi > 1, for i = 1, . . . , N .

Remark 2.4. Note that if u vanishes on the boundary ∂Ω and pi = p, then we have
the weighted Hardy type inequalities for general vector fields

∫
Ω

W (x)|∇Xu|pdx ≥
∫

Ω

H(x)|u|pdx, (2.17)

where ∇X := (X1, . . . , XN).
A Carnot group version of this Hardy type inequality was obtained with the slightly

different proof by Goldstein, Kombe and Yener in [9].

Proof of Theorem 2.3. Let us give a brief outline of the following proof. We start by
using the property of the anisotropic Picone type identity (2.9), then we apply the
divergence theorem and the hypothesis (2.15), respectively. At the end, we arrive at
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(2.16). Thus, we have

0 ≤
∫

Ω

N∑
i=1

Wi(x)L(u, v)dx =

∫
Ω

N∑
i=1

Wi(x)R(u, v)dx

=
N∑
i=1

∫
Ω

Wi(x)|Xiu|pidx−
N∑
i=1

∫
Ω

Xi

(
upi

vpi−1

)
Wi(x)|Xiv|pi−2Xivdx

=
N∑
i=1

∫
Ω

Wi(x)|Xiu|pidx+
N∑
i=1

∫
Ω

upi

vpi−1
Xi

(
Wi(x)|Xiv|pi−2Xiv

)
dx

−
N∑
i=1

∫
∂Ω

upi

vpi−1
〈∇̃i

(
Wi(x)|Xiv|pi−2Xiv

)
, dx〉

≤
N∑
i=1

∫
Ω

Wi(x)|Xiu|pidx−
N∑
i=1

∫
Ω

Hi(x)upidx

−
N∑
i=1

∫
∂Ω

upi

vpi−1
〈∇̃i

(
Wi(x)|Xiv|pi−2Xiv

)
, dx〉,

where ∇̃if = XifXi. This completes the proof of Theorem 2.3. �

2.3. Consequences of the weighted anisotropic Hardy type inequalities.
Now we present some concrete examples of the weighted anisotropic Hardy type
inequalities (2.16).

Note that examples of the weighted anisotropic Hardy type inequalities on M will
be expressed in terms of the fundamental solution Γ = Γy(x) in the assumption.
For brevity, we can just write it as Γ, if we fix some y ∈M and the corresponding Ty
and Γy.

Corollary 2.5. Let Ω ⊂M be an admissible domain. Let α ∈ R, 1 < pi < β+α, i =
1, . . . , N, and γ > −1, β > 2. Then for all u ∈ C∞0 (Ω\{0}) we have

N∑
i=1

∫
Ω

Γ
α

2−β |XiΓ
1

2−β |γ|Xiu|pidx ≥
N∑
i=1

(
β + α− pi

pi

)pi ∫
Ω

Γ
α−pi
2−β |XiΓ

1
2−β |pi+γ|u|pidx.

(2.18)

Note that (2.18) is an analogue of the result of Wang and Niu [24], now for general
vector fields.

Remark 2.6. By taking γ = 0 and pi = 2 we have the following inequality∫
Ω

Γ
α

2−β |∇Xu|2dx ≥
N∑
i=1

(
β + α− 2

2

)2 ∫
Ω

Γ
α−2
2−β |∇XΓ

1
2−β |2|u|2dx, (2.19)

for all u ∈ C∞0 (Ω) and where ∇X = (X1, . . . , XN).
Inequality (2.19) for general vector fields was established in [20].

Proof of Corollary 2.5. Consider the functions Wi and v such that

Wi = dα|Xid|γ and v = Γ
ψ

2−β = dψ, (2.20)
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where we denote d = Γ
1

2−β and ψ = −
(
β+α−pi

pi

)
for simplicity. Now we plug (2.20) in

(2.15) to calculate the function Hi. Before we need to have the following computations

Xiv = ψdψ−1Xid,

|Xiv|pi−2 = |ψ|pi−2d(ψ−1)(pi−2)|Xid|pi−2,

Wi|Xiv|pi−2Xiv = |ψ|pi−2ψdα+(ψ−1)(pi−1)|Xid|γ+pi−2Xid.

Also, we get

N∑
i=1

X2
i d

α =
N∑
i=1

Xi(XiΓ
α

2−β ) =
N∑
i=1

Xi

(
α

2− β
Γ
α+β−2
2−β XiΓ

)

=
α(α + β − 2)

(2− β)2
Γ
α+2β−4

2−β

N∑
i=1

|XiΓ|2 +
α

2− β
Γ
α+β−2
2−β

N∑
i=1

X2
i Γ

=
α(α + β − 2)

(2− β)2
dα+2β−4

N∑
i=1

|Xid
2−β|2

= α(α + β − 2)dα−2

N∑
i=1

|Xid|2. (2.21)

We observe that
∑N

i=1X
2
i Γ = 0, since Γ = Γy is the fundamental solution to L. Also,

we have

Xi|Xid|γ = Xi((Xid)2)
γ
2

= γ|Xid|γ−2XidX
2
i d

= γ(β − 1)d−1|Xid|γXid. (2.22)

In the last line, we have used (2.21) with α = 1.
Using (2.21) and (2.22) we compute

Xi(Wi|Xiv|pi−2Xiv) = |ψ|pi−2ψXi

(
dα+(ψ−1)(pi−1)|Xid|γ+pi−2Xid

)
= |ψ|pi−2ψ

(
(α + (ψ − 1)(pi − 1))dα+(ψ−1)(pi−1)−1|Xid|γ+pi

)
+ |ψ|pi−2ψ

(
(γ + pi − 2)(β − 1)dα+(ψ−1)(pi−1)−1|Xid|γ+pi

)
+ |ψ|pi−2ψ

(
(β − 1)dα+(ψ−1)(pi−1)−1|Xid|γ+pi

)
= |ψ|pi−2ψ (−ψ + (γ + pi − 2)(β − 1)) dα−pi+ψ(pi−1)|Xid|γ+pi

= −|ψ|pidα−pi |Xid|γ+pivpi−1

+ |ψ|pi−2ψ(γ + pi − 2)(β − 1)dα−pi |Xid|γ+pivpi−1.
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Now we put back the value of ψ, then we get

−Xi(Wi|Xiv|pi−2Xiv) =

∣∣∣∣β + α− pi
pi

∣∣∣∣pi dα−pi |Xid|γ+pivpi−1

+

∣∣∣∣β + α− pi
pi

∣∣∣∣pi−2(
β + α− pi

pi

)
(γ + pi − 2)(β − 1)dα−pi |Xid|γ+pivpi−1

≥
∣∣∣∣β + α− pi

pi

∣∣∣∣pi dα−pi |Xid|γ+pivpi−1

≥ Hi(x)vpi−1.

So we have satisfied the hypothesis, then we plug the values of functions Wi and

Hi =

∣∣∣∣β + α− pi
pi

∣∣∣∣pi Γ
α−pi
2−β |XiΓ

1
2−β |γ+pi ,

in (2.16), which completes the proof. �

Corollary 2.7. Let Ω ⊂M be an admissible domain. Let α, γ ∈ R and α 6= 0, β > 2.
Then for any u ∈ C1

0(Ω) we have

N∑
i=1

∫
Ω

Γ
γ+pi
2−β |Xiu|pidx ≥

N∑
i=1

Ci(α, γ, pi)
pi

∫
Ω

Γ
γ

2−β |XiΓ
1

2−β |pi |u|pidx, (2.23)

where Ci(α, γ, pi) := (α−1)(pi−1)−γ−1
pi

, pi > 1, and i = 1, . . . , N .

Note that we recover the result of D’Ambrosio in [4, Theorem 2.7]. Corollary 2.7
is proved with the same approach as the previous case by considering the functions

Wi = Γ
γ+pi
2−β and v = Γ

− (α−1)(pi−1)−γ−1

(2−β)pi .

Corollary 2.8. Let Ω ⊂ M be an admissible domain. Let α ∈ R, β > 2, 1 < pi <
β + α for i = 1, . . . , N . Then for all u ∈ C∞0 (Ω) we have

N∑
i=1

∫
Ω

Γ
α

2−β |Xiu|pidx ≥
N∑
i=1

Ci(β, α, pi)

∫
Ω

Γ
α

2−β
|XiΓ

1
2−β |pi(

1 + Γ
pi

(pi−1)(2−β)
)pi |u|pidx, (2.24)

where Ci(β, α, pi) :=
(
β+α−pi
pi−1

)pi−1

(β + α).

Note that a Carnot group version of inequality (2.24) was established by Goldstein,
Kombe and Yener in [9]. Corollary 2.8 is proved with the same approach as the
previous cases by considering the functions

Wi = Γ
α

2−β and v =
(

1 + Γ
pi

(pi−1)(2−β)
)−β+α−pi

pi .
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Corollary 2.9. Let Ω ⊂ M be an admissible domain. Let α ∈ R, β > 2, 1 < pi <
β + α for i = 1, . . . , N . Then for all u ∈ C∞0 (Ω) we have

N∑
i=1

∫
Ω

(
1 + Γ

pi
(pi−1)(2−β)

)α(pi−1)

|Xiu|pidx (2.25)

≥
N∑
i=1

Ci(β, pi, α)

∫
Ω

|XiΓ
1

2−β |pi(
1 + Γ

pi
(pi−1)(2−β)

)(1−pi)(1−α)
|u|pidx.

where Ci(β, pi, α) := β
(
pi(α−1)
pi−1

)pi−1

.

Note that Carnot and Euclidean versions of inequality (2.25) were established in [9]
and [23], respectively. Corollary 2.9 is proved with the same approach as the previous
case by considering the functions

Wi =
(

1 + Γ
pi

(pi−1)(2−β)
)α(pi−1)

and v =
(

1 + Γ
pi

(pi−1)(2−β)
)1−α

.

Corollary 2.10. Let Ω ⊂ M be an admissible domain. Let β > 2, a, b > 0 and
α, γ,m ∈ R. If αγ > 0 and m ≤ β−2

2
. Then for all u ∈ C∞0 (Ω) we have∫

Ω

(a+ bΓ
α

2−β )γ

Γ
2m
2−β

|∇Xu|2dx ≥ C(β,m)2

∫
Ω

(a+ bΓ
α

2−β )γ

Γ
2m+2
2−β

|∇XΓ
1

2−β |2|u|2dx

+ C(β,m)αγb

∫
Ω

(a+ bΓ
α

2−β )γ−1

Γ
2m−α+2

2−β
|∇XΓ

1
2−β |2|u|2dx, (2.26)

where C(β,m) := β−2m−2
2

and ∇X = (X1, . . . , XN).

Note that Carnot and Euclidean version of inequality (2.26) were established in
[9] and [11], respectively. Corollary 2.10 can be proved with the same approach for
pi = 2, i = 1, . . . , N, as the previous cases by considering the functions

W =
(a+ bΓ

α
2−β )γ

Γ
2m
2−β

and v = Γ−
β−2m−2
2(2−β) .

2.4. Uncertainty principles for the vector fields. Theorem 2.3 also implies the
following uncertainty principles:

Corollary 2.11. Let Ω ⊂ M be an admissible domain. Let β > 2. Then for all
u ∈ C∞0 (Ω) we have

β2

4

(∫
Ω

|u|2dx
)2

≤
(∫

Ω

|∇XΓ
1

2−β |−2|∇Xu|2dx
)(∫

Ω

Γ
2

2−β |u|2dx
)
. (2.27)

Proof of Corollary 2.11. In Theorem 2.3, by letting

W (x) = |∇XΓ
1

2−β |−2 and v = e−αΓ
2

2−β
,

where α ∈ R, we arrive at

−4α2

∫
Ω

Γ
2

2−β |u|2dx+ 2αβ

∫
Ω

|u|2dx−
∫

Ω

|∇XΓ
1

2−β |−2|∇Xu|2dx ≤ 0.
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It can be noted that above inequality has the form aα2 + bα+ c ≤ 0 if we denote by

a := −4

∫
Ω

Γ
2

2−β |u|2dx,

b := 2β

∫
Ω

|u|2dx,

and

c := −
∫

Ω

|∇XΓ
1

2−β |−2|∇Xu|2dx.

Thus, we have b2 − 4ac ≤ 0 which proves Corollary 2.11. �

Corollary 2.12. Let Ω ⊂ M be an admissible domain. Let β > 2. Then for all
u ∈ C∞0 (Ω) we have(∫

Ω

|∇Xu|2dx
)(∫

Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dx
)
≥ β2

4

(∫
Ω

|∇XΓ
1

2−β |2|u|2dx
)2

. (2.28)

Proof of Corollary 2.12. Setting

W = 1 and v = e−αΓ
2

2−β
,

where α ∈ R, we have∫
Ω

|∇Xu|2dx ≥ 2αβ

∫
Ω

|∇XΓ
1

2−β |2|u|2dx− 4α2

∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dx.

Using the same technique as before we prove Corollary 2.12. �

Corollary 2.13. Let Ω ⊂ M be an admissible domain. Let β > 2. Then for all
u ∈ C∞0 (Ω) we have(∫

Ω

|∇Xu|2dx
)(∫

Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dx
)

(2.29)

≥ (β − 1)2

4

(∫
Ω

Γ−
1

2−β |∇XΓ
1

2−β |2|u|2dx
)2

.

We can prove it with the same approach by considering the following pair

W = 1 and v = e−αΓ
1

2−β
.

Remark 2.14. Carnot group versions of these uncertainty principles were established
in [13] and [9].

3. Weighted anisotropic Rellich type inequalities

In this section, we now present the anisotropic (second order) Picone type identity.
As a byproduct, we obtain the weighted anisotropic Rellich type inequalities for the
general vector fields.
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3.1. Anisotropic (second order) Picone type identity.

Lemma 3.1. Let Ω ⊂ G be an open set. Let u, v be twice differentiable a.e. in Ω
and satisfying the following conditions: u ≥ 0, v > 0, X2

i v < 0 a.e. in Ω. Let pi > 1,
i = 1, . . . , N . Then we have

L1(u, v) = R1(u, v) ≥ 0, (3.1)

where

R1(u, v) :=
N∑
i=1

|X2
i u|pi −

N∑
i=1

X2
i

(
upi

vpi−1

)
|X2

i v|pi−2X2
i v,

and

L1(u, v) :=
N∑
i=1

|X2
i u|pi −

N∑
i=1

pi

(u
v

)pi−1

X2
i uX

2
i v|X2

i v|pi−2

+
N∑
i=1

(pi − 1)
(u
v

)pi
|X2

i v|pi

−
N∑
i=1

pi(pi − 1)
upi−2

vpi−1
|X2

i v|pi−2X2
i v
(
Xiu−

u

v
Xiv

)2

.

Proof of Lemma 3.1. A direct computation gives

X2
i

(
upi

vpi−1

)
= Xi

(
pi
upi−1

vpi−1
Xiu− (pi − 1)

upi

vpi
Xiv

)
= pi(pi − 1)

upi−2

vpi−2

(
(Xiu)v − u(Xiv)

v2

)
Xiu+ pi

upi−1

vpi−1
X2
i u

− pi(pi − 1)
upi−1

vpi−1

(
(Xiu)v − u(Xiv)

v2

)
Xiv − (pi − 1)

upi

vpi
X2
i v

= pi(pi − 1)

(
upi−2

vpi−1
|Xiu|2 − 2

upi−1

vpi
XivXiu+

upi

vpi+1
|Xiv|2

)
+ pi

upi−1

vpi−1
X2
i u− (pi − 1)

upi

vpi
X2
i v

= pi(pi − 1)
upi−2

vpi−1

(
Xiu−

u

v
Xiv

)2

+ pi
upi−1

vpi−1
X2
i u− (pi − 1)

upi

vpi
X2
i v,

which gives the equality in (3.1). By Young’s inequality we have

upi−1

vpi−1
X2
i uX

2
i v|X2

i v|pi−2 ≤ |X
2
i u|pi
pi

+
1

qi

upi

vpi
|X2

i v|pi , i = 1, . . . , N,
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where pi > 1 and qi > 1 with 1
pi

+ 1
qi

= 1. Since X2
i v < 0, i = 1, . . . , N, we arrive at

L1(u, v) ≥
N∑
i=1

|X2
i u|pi +

N∑
i=1

(pi − 1)
upi

vpi
|X2

i v|pi −
N∑
i=1

pi

(
|X2

i u|pi
pi

+
1

qi

upi

vpi
|X2

i v|pi
)

−
N∑
i=1

pi(pi − 1)
upi−2

vpi−1
|X2

i v|pi−2X2
i v
∣∣∣Xiu−

u

v
Xiv

∣∣∣2
=

N∑
i=1

(
pi − 1− pi

qi

)
upi

vpi
|X2

i v|pi

−
N∑
i=1

pi(pi − 1)
upi−2

vpi−1
|X2

i v|pi−2X2
i v
∣∣∣Xiu−

u

v
Xiv

∣∣∣2 ≥ 0.

This completes the proof of Lemma 3.1. �

3.2. Weighted anisotropic Rellich type inequalities.

Theorem 3.2. Let Ω ⊂ M be an admissible domain. Let Wi(x) ∈ C2(Ω) and
Hi(x) ∈ L1

loc(Ω) be the nonnegative weight functions. Let v > 0, v ∈ C2(Ω)
⋂
C1(Ω)

with

X2
i

(
Wi(x)|X2

i v|pi−2X2
i v
)
≥ Hi(x)vp−1, −X2

i v > 0, (3.2)

a.e. in Ω, for all i = 1, . . . , N . Then for every 0 ≤ u ∈ C2(Ω)
⋂
C1(Ω) we have the

following inequality

N∑
i=1

∫
Ω

Hi(x)|u|pidx ≤
N∑
i=1

∫
Ω

Wi(x)|X2
i u|pidx (3.3)

+
N∑
i=1

∫
∂Ω

Wi(x)|X2
i v|pi−2X2

i v〈∇̃i

(
upi

vpi−1

)
, dx〉

−
N∑
i=1

∫
∂Ω

(
upi

vpi−1

)
〈∇̃i(Wi(x)|X2

i v|pi−2X2
i v), dx〉,

where 1 < pi < N for i = 1, . . . , N , and ∇̃iu = XiuXi.

Note that a Carnot group version of Theorem 3.2 was obtained by Goldstein,
Kombe and Yener in [10]. Moreover, it should be also noted that the function v from
the assumption (3.2) appears in the boundary terms (3.3), which seems a new effect
unlike known particular cases of Theorem 3.2.

Proof of Theorem 3.2. Let us give a brief outline of the following proof as in Theorem
2.3. We start by using the property of the anisotropic (second order) Picone type
identity (3.1), then we apply analogue of Green’s second formula from Proposition 2.1
and the hypothesis (3.2), respectively. Finally, we arrive at (3.3) by using Hi(x) ≥ 0.



14 MICHAEL RUZHANSKY, BOLYS SABITBEK, AND DURVUDKHAN SURAGAN

Thus, we have

0 ≤
∫

Ω

Wi(x)L1(u, v)dx =

∫
Ω

Wi(x)R1(u, v)dx

=

∫
Ω

Wi(x)|X2
i u|pidx−

∫
Ω

X2
i

(
upi

vpi−1

)
Wi(x)|X2

i v|pi−2X2
i vdx

=

∫
Ω

Wi(x)|X2
i u|pidx−

∫
Ω

upi

vpi−1
X2
i

(
Wi(x)|X2

i v|pi−2X2
i v
)
dx

+

∫
∂Ω

(
Wi(x)|X2

i v|pi−2X2
i v〈∇̃i

(
upi

vpi−1

)
, dx〉 −

(
upi

vpi−1

)
〈∇̃i(Wi(x)|X2

i v|pi−2X2
i v), dx〉

)
≤
∫

Ω

Wi(x)|X2
i u|pidx−

∫
Ω

Hi(x)|u|pidx

+

∫
∂Ω

(
Wi(x)|X2

i v|pi−2X2
i v〈∇̃i

(
upi

vpi−1

)
, dx〉 −

(
upi

vpi−1

)
〈∇̃i(Wi(x)|X2

i v|pi−2X2
i v), dx〉

)
.

In the last line, we have used (3.2) which leads to (3.3). �

Let us recall that the operator L is the sum of squares of vector fields, defined by

L :=
N∑
i=1

X2
i . (3.4)

Corollary 3.3. Let Ω ⊂ M be an admissible domain. Let β > 2, α ∈ R, β + α > 4
and β > α. Then for all u ∈ C∞0 (Ω\{0}) we have

∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dx ≥ C(β, α)

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2dx, (3.5)

where C(β, α) := (β+α−4)2(β−α)2

16
is in general sharp.

Remark 3.4. Note that Kombe [13] proved the sharpness of the constant appearing
above inequality for the Carnot groups.

The proof of Corollary 3.3. Let us choose the function W (x) and v such that

W (x) =
Γ

α
2−β

|XiΓ
1

2−β |2
and v = Γ

γ
2−β , (3.6)
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where γ = −β+α−4
2

. As in the case of the Hardy inequality, we use the notation

Γ = d2−β for simplicity, then we get

N∑
i=1

X2
i d

γ =
N∑
i=1

X2
i Γ

γ
2−β =

N∑
i=1

Xi

(
γ

2− β
Γ
γ+β−2
2−β XiΓ

)

=
γ(γ + β − 2)

(2− β)2
Γ
γ+2β−4

2−β

N∑
i=1

|XiΓ|2 +
γ

2− β
Γ
γ+β−2
2−β

N∑
i=1

X2
i Γ

=
γ(γ + β − 2)

(2− β)2
dγ+2β−4

N∑
i=1

|Xid
2−β|2

= γ(γ + β − 2)dγ−2

N∑
i=1

|Xid|2.

We observe that
∑N

i=1X
2
i Γ = 0, since Γ = Γy is the fundamental solution to L. Now

we can compute the function H(x),

X2
i

(
Wi(x)X2

i v
)

= X2
i

(
γ(γ + β − 2)dγ+α−2

)
= γ(γ + β − 2)(γ + α− 2)(γ + α + β − 4)dγ+α−4|Xid|2.

By putting back γ = −β+α−4
2

we have

γ + β − 2 =
β − α

2
,

γ + α− 2 = −β − α
2

,

γ + α + β − 4 =
β + α− 4

2
.

Then

X2
i

(
W (x)X2

i v
)

=

(
β + α− 4

2

)2(
β − α

2

)2

dα−4|Xid|2v

= H(x)v.

So we have the values of functions W (x) and

H(x) =

(
β + α− 4

2

)2(
β − α

2

)2

Γ
α−4
2−β |XiΓ

1
2−β |2

which allows to plug them in (3.3) yielding

N∑
i=1

(
β + α− 4

2

)2(
β − α

2

)2 ∫
Ω

Γ
α−4
2−β |XiΓ

1
2−β |2|u|2dx ≤

N∑
i=1

∫
Ω

Γ
α

2−β

|XiΓ
1

2−β |2
|X2

i u|2dx.

Note that the sharpness of the constant was obtained by Kombe [13] in the setting
of the Carnot groups. In this general case, the argument is the same. �
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The following corollary can be also proved with the same approach as the above
case by setting

W (x) =
Γ
α+2p−2

2−β

|∇XΓ
1

2−β |2p−2
and v = γ−

β+α−2
p(2−β) .

Corollary 3.5. Let Ω ⊂ M be an admissible domain. Let 1 < p < ∞ and 2 − β <
α < min{(β − 2)(p− 1), (β − 2)}. Then for all u ∈ C∞0 (Ω\{0}) we have∫

Ω

Γ
α+2p−2

2−β

|∇XΓ
1

2−β |2p−2
|Lu|pdx ≥ C(β, α, p)p

∫
Ω

Γ
α−2
2−β |∇XΓ

1
2−β |2|u|pdx, (3.7)

where C(β, α, p) := (β+α−2)
p

(β−2)(p−1)−α
p

is sharp.

Remark 3.6. Note that Lian [14] presented the sharpness of the constant appearing
in (3.7) in the case of the Carnot groups.
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