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ABSTRACT

Smartphone-based identification of the mode of transportation of
the user is important for context-aware services. We investigate
the feasibility of recognizing the 8 most common modes of
locomotion and transportation from the sound recorded by a
smartphone carried by the user. We propose a convolutional neural
network based recognition pipeline, which operates on the short-
time Fourier transform (STFT) spectrogram of the sound in the
log domain. Experiment with the Sussex-Huawei locomotion-
transportation (SHL) dataset on 366 hours of data shows promising
results where the proposed pipeline can recognize the activities
Still, Walk, Run, Bike, Car, Bus, Train and Subway with a global
accuracy of 86.6%, which is 23% higher than classical machine
learning pipelines. It is shown that sound is particularly useful for
distinguishing between various vehicle activities (e.g. Car vs Bus,
Train vs Subway). This discriminablity is complementary to the
widely used motion sensors, which are poor at distinguish between
rail and road transport.

Index Terms— Computational auditory scene analysis; context-
awareness; convolutional neural network; sound event classification;
transportation mode recognition

1. INTRODUCTION

The mode of transportation of smartphone users is an important type
of contextual information that denotes users’ mobility status during
travel, such as walking, cycling or driving [1]. Analyzing such
multimodal data enables context-aware applications in fields such
as intelligent service adaptation, individual environmental impact
monitoring, human-centered activity monitoring [2, 3].

In recent years, there have been numerous studies showing
how to recognize transportation modes from motion (accelerometer,
gyroscope and magnetometer) and global positioning system (GPS)
sensors that are embedded in smartphone devices [4-10]. These
approaches typically employ classical machine learning and deep
learning pipelines to infer the mode of transportation from the
sensor data. A majority of the research effort has been placed
on motion sensors, as they are comparatively much less energy
demanding compared to continuous GPS sensing, and they provide
richer information about the movement (e.g. vibration and change in
orientation) of the mobile device in comparison to GPS. The state of
the art in motion-based transportation recognition performance was
established in the SHL recognition challenge 2018 through an open
international competition among 20 research teams [11, 12]. The
outcomes reveal that approaches based on motion sensors struggle
distinguishing between distinct transportation modes of similar
classes: for example between train and subway (rail transport)

or between bus and car (road transport). Recently, vision-based
transportation recognition has also been reported [16].

Sound is an important modality that is available in smartphone
devices and has been increasingly used to infer the context of
ambient environment with multiple advantages. First, it is a
complementary modality to motion. It may outperform motion-
based context recognition for some classes, or help in their
disambiguation through data fusion. Second, it is capable of
providing broader contextual information. For instance, the recent
challenge on detection and classification of acoustic scenes and
events (DCASE) aims to classify various sound events in domestic
and wild environments [13, 14]. Finally, manufacturers of mobile
processors are placing significant emphasis on including hardware
acceleration for sound processing pipelines to enable always-on
sound-based interaction at low energy cost (e.g. to detect “ok
google” on Android devices). So far, only few work has been placed
on sound-based transportation mode recognition [19, 20]. An in-
depth analysis on the recognition performance for a large variety
of transportation activities has not been reported yet. There are
mainly two challenges that hinder the progress in this field. First,
most public locomotion and transportation datasets contain only
motion and GPS sensor data and do not have sound data available [8,
15].  Second, smartphone recordings in real-life environments
contain overlapped sound from the travelling vehicle, human, and
the environment, which makes the recognition of transportation
activities a challenging task.

In this paper we aim to answer a research question that
has not been well addressed: Can sound be used to detect the
transportation mode of the user effectively? We use the state-of-
the-art Sussex-Huawei locomotion-transportation (SHL) dataset that
contains multimodal data recorded by smartphone sensors, including
from microphones'. We present different pipelines, including
classical machine learning and emerging deep learning approaches,
to recognize eight transportation activities (Still, Walk, Run, Bike,
Car, Bus, Train, Subway) from the sound recorded by smartphones.
We evaluate the recognition performance using the same train/test
partitioning and data segmentation scheme as the SHL recognition
challenge [11]. Recognition using convolutional neural networks
shows promising results on the evaluation dataset, and demonstrates
complementary performance between sound and motion sensors.

2. DATASET

The SHL dataset is a major outcome of a large-scale longitudinal
data collection campaign, which collected 2812 hours of labeled
data over a period of 7 months corresponding to 17,562 km in the
south-east of the UK including London [17, 18]. The SHL dataset

"http://www.shl-dataset.org/
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Fig. 2. Spectrogram of sound clips (5 seconds) for each transportation activity. (a) Clean sound. (b) Noisy sound with environmental noise.
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Fig. 1. The duration of each class activity in the training and the
testing dataset. The 8 class activities are: 1 - Still; 2 - Walk; 3 - Run;
4 - Bike; 5 - Car; 6 - Bus; 7 - Train; 8 - Subway.

was recorded by three participants engaging in eight transportation
and locomotion activities in real-life settings: Still, Walk, Run,
Bike, Car, Bus, Train and Subway. Each participant carried four
smartphones at four body positions simultaneously: hand, torso,
hips and bag. Each smartphone logged the data of 16 sensors that
are available in the device, including motion sensors, GPS, ambient
pressure sensor, microphone, etc. The dataset is one of the biggest
public dataset in the research community and the first dataset that
contains sound modality. The dataset served as a main source
feasting the recent SHL challenge: a competition on motion sensor-
based transportation activity recognition [11, 12].

The sound recording in the SHL dataset enables us to investigate
the feasibility of sound-based transportation mode recognition. For
ease of comparison, we use exactly the same data as in the SHL
challenge and abide by the same definition of training and testing
data partitioning. Specifically, we use the sound recorded by the
first participant with hand smartphone during 82 days (5-8 hours per
day), which is partitioned in 62 days (271 hours) for training and 20
days (95 hours) for testing. Fig. 1 depicts the duration of each class
activity in the training and testing datasets. The sound was originally
recorded at a sampling rate of 16 kHz, and downsampled to 8 kHz.

Fig. 2 compares the short-time Fourier transform (STFT)
spectrogram of the sound recorded during the 8 transportation
activities, with and without environmental noise. In Fig. 2(a), the
clean sound of each activity (without environmental noise) tends
to show different spectrogram patterns. For instance, the activities
Still, Car, Bus, Train and Subway tend to present different energy
distribution in the low and high frequencies, while the activities
Walk, Run and Bike tend to present different cyclic behaviour. This
observation grounds the feasibility of sound-based transportation
mode recognition. In practice, the clean sound of each transportation
activity is usually overlapped with environmental noise, such as
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Fig. 3. Pipeline for sound-based transportation mode recognition.

wind, friction, human speech, and other sound events nearby, as
shown in Fig. 2(b). These environmental noises are typically much
stronger than the clean transportation sound. This significantly
increases the challenges when recognizing transportation activities.

3. RECOGNITION PIPELINE

Fig. 3 depicts the processing pipeline for predicting transportation
mode from sound, which is segmented into 5-second frames (40000
samples) in the training and testing datasets. The sound frames in
the training dataset is used to train a classifier model, which is used
to infer the mode of transportation in each sound frame in the testing
dataset. A post-processing step follows to improve the recognition
result by smoothing decisions across consecutive frames.

The size of raw sound data is 58 GB and 20 G'B in the training
and testing datasets, respectively. This large amount of data imposes
additional challenges in the training stage. To minimize memory
needs during training, we subsample the frames in the training data
with a ratio of 1/4, i.e. using a sliding window of 5 seconds long
and jump size 20 seconds. For testing data, we do not conduct
subsampling, i.e. using a sliding window of 5 seconds long and jump
size 5 seconds. Finally, we have 52,091 training frames and 55,818
testing frames.

We consider two different types of classifiers: the classical
classifier and the convolutional deep neural network. The former
one performs feature computation and classification independently
while the latter one learns the features and the classifier (deep neural
network) simultaneously from the training data.

3.1. Classical machine learning

We extract two types of basic features, which are suggested in [21],
in each sound frame: zero-crossing rate and mel-frequency cepstral
coefficients (MFCC). The former is a very simple yet useful feature,
whereas the latter is ubiquitous in speech processing and analyzing
harmonic content. In each 5-second frame, the MFCC and the zero-
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Fig. 4. Sound-based transportation mode recognition using a convolutional deep neural network.

crossing rate are computed with a sliding window of size 32 ms
(256 samples) and half overlap. We compute the first 13 MFCC
coefficients and the zero-crossing rate in each 32 ms subframe, and
then summarize their mean and standard deviation across the 5-
second frame. This leads to 28 features (14 mean and 14 std) in
each sound frame.

We feed the feature vectors as input to five types of classifiers:
naive Bayesian (NB), k-nearest neighbours (KNN), decision tree
(DT), random forest (RF) and support vector machine (SVM).

3.2. Deep learning

Fig. 4 depicts a pipeline for sound-based transportation mode
recognition using a convolutional neural network (CNN). CNN is
a typical multi-layer neural network first proposed for computer
vision problems and it is very suitable for image-related applications
in machine learning. In recent years, the application of CNN to
environment sound classification has been widely reported [22-25].
We compute STFT spectrogram in each sound frame and then feed
it as an image input to the CNN classifier.

3.2.1. STFT Input

The STFT spectrogram is computed in each 5-second frame with
a sliding window of length 64 ms (512 samples) and half overlap.
Let’s represent the STFT in a frame as S(k, [), where k and [ denote
the frequency and the STFT subframe indices, respectively. In this
way, the size of the spectrogram in one sound frame is 257 x 157.

To reduce the dynamic range of the data, we compute the log
spectrogram as A(k,l) = log,, |S(k,l)|, where | - | denotes the
absolute value. We then normalize the data to the range of [0, 1]
as I(k,l) = FEb—fmin
maximum and the minimum values in the log spectrogram A(:,:)
throughout the training dataset.

, where Apar and A,,in denote the

3.2.2. CNN architecture

A convolutional neural network typically consists of a number of
neural layers stacked together in a deep architecture: an input layer,
several CNN and fully-connected neural network (FCNN) blocks,
and an output decision block.

The input layer receives and stores the original spectrogram
image I. Each CNN block sequentially consists of a convolutional
layer, a batch normalization (Norm) layer, a nonlinear (ReLu)
layer and a pooling layer. The convolutional layer puts the input
spectrogram image through a set of convolutional filters, each of
which activates certain features from the input. The convolutional
layer is defined by the number of filters, the size of the filter, and
the step size (stride) when traversing the input. The rectified linear
unit (ReLU) layer allows for faster and more effective training by
mapping negative values to zero and maintaining positive values, e.g.
by using the activation function f(z) = max(0,z). In this way,

Table 1. Parameters of the CNN architecture.

Input layer size: (257, 127)
Conv1/Conv2 number: 32; size: (5,5); stride: (1,1); padding: (0,0)
Pool1/Pool2 max pooling: (2,2); stride: (1,1); padding: (0,0)
FC1/FC2 nodes: 300
Dropl/Drop2 | 50%
FC3 nodes: 8
Norm1-4 mini-batch: 150

only the activated features are carried forward into the next layer.
The batch normalization layer normalizes the filtering output across
a mini-batch, in order to speed up training of the neural network
and to reduce the sensitivity to network initialization. The pooling
layer simplifies the output by performing nonlinear downsampling,
reducing the number of parameters that the network needs to learn.
We employ the max-pooling method, where the input is divided into
rectangles (pool) and the largest is taken from among all sub-pieces.
The pooling layer is defined by the size of the pool and the stride
when traversing the input.

Each FCNN block sequentially consists of a fully-connected
(FC) layer, a batch normalization (Norm) layer, a nonlinear (ReLu)
layer and a dropout layer. The FC layer consists of a number of
neurons which are connected to all the neurons in the previous layer.
The FC layer is defined by the number of neurons. The batch
normalization layer normalizes the neuron outputs while the ReLu
layer performs non-linear activation. The dropout layer randomly
sets input elements to zero with a given probability in order to
prevent overfitting [26].

The decision block consists of a FC layer, a nonlinear (Softmax)
layer which outputs the classification result. The FC layer contains
a number of neurons equalling to the number of decision labels.

Fig. 4 shows the proposed convolutional neural network archi-
tecture which consists of one input layer, two CNN blocks, two
FCNN blocks and one output block. The parameters of neural
network are given in Table 1. Due to the large amount of data, we
employ a mini-batch processing scheme which updates the weights
of the neural network per subset of training samples. We set the
maximum number of epoches as 30 during training.

3.3. Post-processing

The recognition pipeline makes a decision per frame (5 seconds).
Since the transportation mode of a user typically continues for a
certain period and there is a strong correlation between neighbouring
frames, we reasonably assume that the transportation mode remains
the same in a short period (segment). Based on this assumption, we
employ a majority voting scheme to further improve the recognition
performance. Specifically, for a short segments with F' sound
frames, the decision is unified as the class activity that occurs mostly
in these F' frames [12]. To obtain consistent results with the SHL
challenge, which chopped the data into 1-minute blocks, we also set



Table 2. Sound-based transportation mode recognition performance.

= Performance [%] Processing time [s]
Classifier — -
Accuracy F1 score Training Testing
NB 54.6 51.5 0.31 0.1
DT 54.8 50.9 0.93 0.03
RF 62.8 58.3 5.0 0.6
KNN 59.4 57.4 0.04 17.1
SVM 58.8 53.0 223.6 0.18
CNN 80.6 77.9
CNN+PP 86.6 85.6 39848 703
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Fig. 5. Confusion matrices achieved with different modalities.
(a)(b): using sound and post-processing. (c)(d): using motion
sensors and post-processing. The 8 classes: 1 - Still; 2 - Walk; 3
- Run; 4 - Bike; 5 - Car; 6 - Bus; 7 - Train; 8 - Subway.

the length of the smoothing segment to be 1 minute [12].

4. EVALUATION RESULTS

We use a computer equipped with an Intel i7-4770 4-core CPU @
3.40 GHz with 32 GB memory, and a GeForce GTX 1080 Ti GPU
with 3584 CUDA cores @ 1.58 GHz and 11 GB memory. The code
is written with Matlab 2018a, calling functions from the Machine
Learning Toolbox and the Deep Learning Toolbox. The recognition
performance of the classifier is evaluated on the testing data in terms
of global accuracy and F1 score [11].

Table 2 compares the results achieved by various classifiers in
terms of performance and processing time. For the same classifier,
the accuracy and the F1 score do not show significant difference. We
thus only compare the global accuracy.

All the classical classifiers perform poorly on the testing data
with RF achieving the highest accuracy of 62.8%. The deep-learning
CNN pipeline (80.6%) outperforms classical classifiers remarkably
over classical classifiers. In this paper we employed a very simple
feature extraction scheme for the classical classifier, potentially
leading to the poor performance. In addition, the hyper-parameters
of these classifiers are not optimized. Deep learning does not rely
on a pre-defined feature extraction stage. Instead, the convolutional
layers, which act as feature extractors, are optimised as part of the

learning process, which explains the significantly better performance
when sufficient training data is available. The processing time,
however, is more significant: RF takes 5 seconds for training and 0.6
seconds for testing, while CNN takes 39,848 seconds for training and
70 seconds for testing despite using GPU acceleration. In addition,
the simple post-processing scheme (86.6%) can further improve
recognition performance effectively by exploiting the temporal
correlation between consecutive frames.

Fig. 5 compares the confusion matrices achieved by using sound
alone and by using motion sensors (accelerometer, gyroscope and
magnetometer) alone. For sound, we use the result achieved by
CNN and CNN+PP. For motion sensors, we use the results that were
reported in Fig. 5 in [12], which used CNN on the frequency-domain
raw data and post-processing. Note that the two groups of results are
comparable as they use exactly the same train/test partitioning and
data segmentation.

The comparison leads to several interesting observations. Sound
is better at classifying the vehicle activities (Car, Bus, Train
and Subway) than motion sensors. This is because each vehicle
transportation typically emits unique sound that distinguishes itself
from other activities, but presents similar motion patterns. Motion
sensor is better at classifying pedestrian activities (Still, Walk,
Run, Bike) than sound. This is because pedestrian and biking
activities require strong user engagement, but emit sound which is
much weaker than environmental noise. Overall, the recognition
results using the sound and using the motion sensors are truly
complementary. The implies that the combination of the two can
potentially lead to better recognition result.

5. CONCLUSION

We investigate the possibility of using sound to recognize transporta-
tion mode and propose a deep-learning CNN network operating on
the STFT log spectrum of the sound. Experimental results validate
the feasibility of sound-based transportation mode recognition, and
demonstrate that CNN outperforms classical classifiers with the set
of features we selected here. The classification result based on sound
is complementary to the one based on motion sensors, where the
former one is good at recognizing vehicle activities and the latter is
good at recognition pedestrian and biking activities.

As one of the first works that systematically investigate sound-
based transportation mode recognition, the paper foresees several
future directions of research. First, the recognition performance
using sound can be improved by optimizing the CNN architecture,
and by combining with other modalities such as motion and GPS
sensors. Second, sound tends to work more robustly in case of user
and sensor placement variation than motion sensors. It would be
interesting to investigate the recognition performance using sound in
the full SHL dataset, which includes various users and smartphone
positioning. Finally, the audio dataset is currently not publicly
available, for ethical approval and privacy protection reasons. The
sound recordings have never been listened to by the researchers, and
all the process has been automated looking only at the 8 indicated
classes. Future work will investigate means to release this audio
dataset while preserving the privacy of users.
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