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1 Introduction

Quantum field theory (QFT) in lower dimensions generally seems richer and less rigid

than QFT in higher dimensions. For example, in D < 7 dimensions we readily find many

examples of interacting conformal field theories (CFTs), while the situation looks some-

what murkier in D ≥ 7 (however, see [1]). As another example, 2D CFTs readily admit

non-supersymmetric exactly marginal deformations, while the situation in D > 2 seems

far more constrained. In some sense, the relative richness of lower dimensions is to be

expected: we can compactify higher dimensional QFTs, and the geometry and topology of

the compactifications then enrich the resulting lower-dimensional theories.

Given this picture, we may expect that when a direct algebraic link exists (without

going through a compactification) between certain QFTs in higher dimensions and a subset

of QFTs in lower dimensions, this subset of lower dimensional QFTs will be “small” in

comparison with the full space of lower dimensional theories.

One concrete playground in which to test this idea is given in [2]:1 classes of protected

local operators in 4DN = 2 superconformal field theories (SCFTs) called “Schur” operators

are related to sets of meromorphic currents generating non-unitary 2D chiral algebras.2

1Similar ideas can also be pursued using the more restricted theories in [3].
2Chiral algebras are the set of symmetries of the, say, left-movers (or right-movers) of 2D CFTs.
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While the resulting space of 2D chiral algebras is quite large (e.g., see [2, 4–17]) — reflecting

the diversity of 4D N = 2 SCFTs3 — it is a highly constrained subspace within the space

of 2D chiral algebras (e.g., see [7, 18, 19] for some constraints). More simply, if we start

from unitary 4D theories, then the corresponding 2D theories should be non-unitary chiral

algebras with a hidden notion of unitarity.

Motivated by these ideas and a duality discussed in [9, 15, 20], we embarked on a

program in [21] to relate the (typically) logarithmic theories that appear via the corre-

spondence in [2]4 with a more special set of 2D theories: the unitary rational conformal

field theories (RCFTs). These theories, which include the well-known (m,m + 1) (where

m ≥ 3) Virasoro minimal models as well as various affine Kac-Moody (AKM) theories

and even many of the more complicated higher-spin W -algebra theories (e.g., see [22] for

a review), form a very “small” subspace in the space of 2D CFTs.

More precisely, in [21] we studied an infinite class of 4D N = 2 SCFTs called the

D2[SU(2n + 1)] theories [23, 24]. The corresponding chiral algebras are the logarithmic
̂su(2n+ 1)− 2n+1

2
AKM theories (see [5, 25] for the n = 1 case and [10, 11] for n ≥ 1). We

then showed that the finite linear combinations of unrefined characters5 for admissible6

representations of ̂su(2n+ 1)− 2n+1
2

coincide (up to overall constants) with unrefined char-

acters of the free ̂so(4n(n+ 1))1 theories. For example, in the case of n = 1, D2[SU(3)],

we have (up to an overall constant that has been dropped) [21]

χ0(q)
ŝu(3)− 3

2 ∼ χ′ŝo(8)1
1
2

(q) , χ
′ŝu(3)− 3

2

− 1
2

(q) ∼ χŝo(8)1
0 (q) , (1.2)

where χ
ŝu(3)− 3

2
0 (q) and χ

ŝo(8)1
0 (q) are the vacuum characters of ŝu(3)− 3

2
and ŝo(8)1 respec-

tively, χ
′ŝo(8)1
1
2

(q) is the character for a dimension 1/2 primary of ŝo(8)1 (there are three such

primaries, and their unrefined characters are all equal), and χ
′ŝu(3)− 3

2

− 1
2

(q) is a finite linear

combination of characters for the three primaries with scaling dimension −1/2. In these

relations, the non-unitary vacuum is mapped to a unitary primary with largest scaling di-

mension, and a linear combination of the smallest scaling dimension non-unitary primaries

3It is not clear that the chiral algebra and its representations uniquely specify the 4D theory, so there

may be some coarse-graining involved in this correspondence. Note that even in 2D CFT itself, the left and

right chiral algebras and their representations are not always sufficient to specify a 2D CFT (e.g., we can

have different permutation modular invariants).
4Note that these theories are sometimes non-unitary but rational. For example, the (A1, Ap−3) SCFTs

with odd p ≥ 5, which will appear again below, have chiral algebras corresponding to those of the (2, p)

Virasoro minimal models.
5By unrefined characters, we just mean the usual sum

χ(q) = Tr qL0 , (1.1)

where L0 is the dilation generator. In particular, we do not turn on any flavor fugacities.
6For an introduction to these types of representations, see [26]. Roughly speaking, they are highest

weight representations that transform linearly into each other under modular transformations.
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is mapped to the unitary vacuum. Given this matching, a main result in [21] was to find

a 4D interpretation of the ŝo(8)1 chiral RCFT (and similarly for ̂so(4n(n+ 1))1).

While we will briefly return to the discussion of the 4D interpretation in [21] below,

our goals in the present paper are different:

• First, we straightforwardly generalize the correspondence in [21] between logarithmic

theories descending from 4D via [2] and 2D chiral RCFTs to include flavor fugacities

as refinements. For simplicity (and because of their more interesting Higgs branches),

we will mainly focus on a slightly different class of 4D N = 2 theories, the so-called

(A1, Dp) theories with p ∈ Zodd.7 However, we will return to the particular theories

in [21] toward the end of our paper.

• Second, we will study the topological quantum field theories (TQFTs) — or, in a

more mathematical language, the modular tensor categories (MTCs)8 — underlying

the 2D chiral RCFTs, and we will show that these MTCs contain seeds of the IR

physics that result from certain Higgs branch RG flows in 4D. In all the examples we

will consider, these MTCs are of Chern-Simons type.

At a naive level, one can see an apparently suggestive topological link between the

admissible representations of the logarithmic ŝu(3)− 3
2

chiral CFT and the representations

of ŝo(8)1 by constructing the naive fusion rules for the logarithmic theory that follow from

applying Verlinde’s formula to the modular S-matrix for the admissible representations.

Indeed, labeling the four admissible representations in this theory as 1, a, b, c (where 1 is

the vacuum, and a, b, c are dimension −1/2 representations), one finds (dropping the trivial

1⊗ x = x for x = 1, a, b, c)

a⊗ a = 1 , a⊗ b = −c , a⊗ c = −b , b⊗ b = 1 , b⊗ c = −a , c⊗ c = 1 . (1.3)

Up to some signs, which reflect the fact that these are not the actual fusion rules of the

theory (e.g., see [31–34]),9 we find the fusion rules for Z2×Z2. Still, we might be tempted to

interpret these signs as being related in some way to a projective representation of Z2×Z2.

More formally, we may write

x⊗ y = ω(x, y) · z , (1.4)

7We follow the naming conventions of [27].
8We will describe the relevant aspects of MTCs in somewhat more detail below. Roughly speaking,

MTCs consist of a fusion algebra (in this case a commutative multiplication operation) specified by the

action on various simple elements (i.e., elements that are not sums of other elements), a set of matrices, F ,

that implement associativity and satisfy a set of polynomial equations called the “pentagon” equations, and

a set of braiding matrices, R, that, together with the F matrices satisfy the so-called “hexagon” equations

(e.g., see [28–30]). Moreover, the associated S and T matrices are non-degenerate (and hence the theory is

modular).
9One issue is that, properly speaking, the admissible modules are not closed under fusion. To find a set

of representations that are (conjecturally) closed under fusion one should consider so-called (generalized)

“relaxed” highest weight modules and their images under spectral flow. We thank Simon Wood for a

discussion on this point.
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where ω(x, y) ∈ H2(Z2 × Z2,U(1)) = Z2 is a 2-cocycle10 with

ω(a, b) = ω(b, a) = ω(a, c) = ω(c, a) = ω(b, c) = ω(c, b) = −1 , (1.6)

and all other ω = 1. In fact, our ω is trivial in H2(Z2×Z2,U(1)) (i.e., it is a 2-coboundary11)

and so we are naively led to interpret the simple elements as leading to a genuine repre-

sentation of Z2 × Z2.

While the above analysis is suggestive of a link with Z2 × Z2 fusion rules, we can

make a more direct connection by noting that the ŝu(3)− 3
2

theory is related, at the level of

unrefined characters, to the ŝo(8)1 theory via (1.2). This latter theory has genuine Z2×Z2

fusion rules! The underlying MTC is just a theory of abelian anyons with a one-form

Z2 × Z2 symmetry (see [35] for a discussion of one-form symmetries) generated by these

anyons.12

A different link to abelian anyons appeared recently in the interesting paper [39] for the

(A1, A3) ' (A1, D3) SCFT and formed some of the motivation for the present paper. There

the authors studied new TQFTs coming from Argyres-Douglas theories and noted that by

“flipping the sign” of a simple object in their (A1, A3) TQFT, one obtains an MTC with Z3

fusion rules. In the present context, the naive fusion rules of the admissible representations

of the ŝu(2)− 4
3

chiral algebra associated with the (A1, A3) ' (A1, D3) theory [5] are

a⊗ b = −1 , a⊗ a = b , b⊗ b = −a , (1.7)

which, up to two signs, are just Z3 fusion rules.13 By solving the hexagon and pentagon

equations, it is easy to check that there are two independent unitary MTCs with such Z3

fusion rules14 (see also [36]): SU(3)1 and (E6)1. Therefore, it is natural to wonder if there

is an associated RCFT whose characters are related to those of the ŝu(2)− 4
3

theory in a

way that parallels the relation in (1.2).

10In other words, ω satisfies

ω(h, k) · ω(g, hk) = ω(g, h) · ω(gh, k) , ω(1, g) = 1 , ∀g, h, k ∈ Z2 × Z2 . (1.5)

11This statement amounts to the fact that ω(x, y) = ω(x)ω(y)ω(xy)−1 with ω(1) = 1 and ω(a) = ω(b) =

ω(c) = −1.
12At the level of the underlying MTC, one way to describe the full set of results in [21] is that we

associate the two independent MTCs with Z2 × Z2 fusion rules — the Spin(8)1 MTC and the toric code

MTC (e.g., see [36, 37] for a discussion of these MTCs)—with the D2[SU(2n + 1)] SCFTs. In particular,

if n(n + 1) = 0 (mod 4), then we associate the toric code MTC with the 4D theory. On the other hand,

if n(n + 1) = 2 (mod 4), then we associate the Spin(8)1 MTC with the theory. Note that the number of

admissible representations in ̂su(2n+ 1)− 2n+1
2

is 22n [38], so this is not, in general, a one-to-one map of

admissible representations to simple elements.
13As in the (A1, D4) case, it is easy to check that these two signs give rise to a 2-coboundary. This

statement is consistent with the fact that H2(Z3,U(1)) = ∅. In particular, by formally taking a → −a
in (1.7) we recover Z3 fusion rules.

14There are infinitely many CFTs associated with each of these MTCs since we can take any theory

satisfying these fusion rules and tensor in arbitrarily many (ê8)1 RCFTs.

– 4 –



J
H
E
P
0
3
(
2
0
1
9
)
0
2
5

In fact, an old result of Mukhi and Panda [40] shows the following proportionality of

unrefined characters

χ
ŝu(2)− 4

3
0 (q) ∼ χ

′ŝu(3)1
1
3

(q) , χ
′ŝu(2)− 4

3

− 1
3

(q) ∼ χŝu(3)1
0 (q) , (1.8)

where “∼” denotes “up to an overall constant,” χ
ŝu(2)− 4

3
0 (q) is the vacuum character of

ŝu(2)− 4
3
, χ
′ŝu(2)− 4

3

− 1
3

(q) is a finite linear combination of the characters corresponding to the

two dimension −1/3 representations of ŝu(2)− 4
3
, χ

ŝu(3)1
0 (q) is the vacuum character of

ŝu(3)1, and χ
′ŝu(3)1
1
3

(q) is the character of a dimension 1/3 representation of ŝu(3)1 (there

are two such representations, and their unrefined characters are equal). As in (1.2), the

non-unitary vacuum is mapped to a unitary primary with largest scaling dimension, and

a linear combination of the smallest scaling dimension non-unitary primaries is mapped to

the unitary vacuum. Therefore, we see that the ŝu(3)1 theory is the desired theory related

to an MTC with Z3 fusion rules.

It will be somewhat more useful to think about the ŝu(3)1 characters in terms of the

D-type modular invariant of ŝu(2)4 [41, 42], which we will denote as D̃4.15 This theory

can be obtained from ŝu(2)4 by gauging the Z2 symmetry.16 In particular, one finds [40]

χ
ŝu(2)− 4

3
0 (q) ∼ χ′D̃4

1
3

(q) = χ
ŝu(2)4
2 (q) , χ

′ŝu(2)− 4
3

− 1
3

(q) ∼ χD̃4
0 (q) = χ

ŝu(2)4
0 (q) + χ

ŝu(2)4
4 (q) ,

(1.9)

where the ŝu(2)4 characters appearing on the righthand side (r.h.s.) of the above expres-

sions are indexed by an su(2) Dynkin label subscript, and, as in (1.8), “∼” indicates that

the corresponding relations hold up to overall constants.

The interpretation in terms of ŝu(2)4 is particularly useful, since now there is a canon-

ical way in which we can try to turn on flavor fugacities in (1.9) (the number of fugacities

on the left and right hand sides match). As we will see below, there is a discrete subset of

fugacities we can turn on so that the characters of D̃4 are equal to those of ŝu(2)− 4
3

up to

overall q-independent functions. These q-independent functions generalize the constants

of proportionality we suppressed in writing (1.9). As we will see, a similar story holds for

the more general ŝu(2)2(1−p)/p chiral algebras corresponding to the (A1, Dp) theories with

p ∈ Zodd and the Z2 gauging of ŝu(2)2(p−1), D̃p+1.

The existence of such a matching set of fugacities then motivates us to study RG

flows onto the Higgs branch of our (A1, Dp) theories from the perspective of the related

2D rational chiral algebras and their representations. For ŝu(2) 2(1−p)
p

, the 2D avatar of

15We add the tilde on top of D̃4 to distinguish this D from the one appearing in the related (A1, D3) 4D

N = 2 SCFT.
16At the level of the underlying MTC, this procedure corresponds to the evocatively named “anyon

condensation” [43, 44] (see also the recent [45]) and leaves over an MTC with Z3 fusion rules consisting of

anyons having trivial braiding with the anyons generating the Z2 one-form symmetry in the SU(2)4 MTC.
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the 4D Higgs branch RG flow is just quantum Drinfeld-Sokolov (qDS) reduction [46] (see

also [2, 47] for earlier discussion in other theories).

Instead of performing qDS on the unitary side, we will show that the MTCs underlying

our unitary theories “know” about certain quantum dimensions (or expectation values for

Wilson loop operators) in the non-unitary MTCs related to the IR Higgs branch theories.

More precisely, we will argue that these quantum dimensions can be computed after per-

forming a suitable “Galois conjugation” [48] (see also [49, 50]) that takes the unitary RCFT

data and makes it non-unitary.

The plan of the paper is as follows. In the next section, we review the (A1, Dp) theories

and place them in a slightly larger context. We also describe the basics of the chiral algebra

map in [2] and how it is applied to these theories. We then review the 2D logarithmic/

rational correspondence of characters in [40] and introduce non-trivial flavor fugacities. In

the following section we describe how to see topological aspects of the 4D RG flow in the 2D

chiral RCFT. Along the way we review relevant aspects of MTCs and Galois conjugation.

We conclude with some comments on generalizations of our analysis.

2 The 4D theories and their associated non-unitary chiral algebras

Our primary theories of interest are the so-called (A1, Dp) theories with p ∈ Zodd. These

are 4D SCFTs, sometimes called Argyres-Douglas theories, that have N = 2 chiral pri-

maries17 of non-integer scaling dimension.18 This property guarantees that they cannot be

constructed by standard N = 2 Lagrangians. On the other hand, they can be engineered in

at least three other ways: as twisted compactifications of the A1 6D (2, 0) theory [53, 54],

at the maximally singular points on the Coulomb branches of 4D N = 2 so(2p) Super

Yang-Mills (SYM) [55], and as flows from N = 1 Lagrangians via accidental SUSY en-

hancement [56] (see also closely related results in [57–63]). For much of the discussion

below, the first description will be most intuitive.

To get the (A1, Dp) theory from the A1 6D (2, 0) theory, we perform a twisted com-

pactification on a twice-punctured CP1. One puncture is an irregular puncture and one is

a “full” regular puncture. The “full” regular puncture supports the su(2) flavor symmetry

of the theory, while the irregular puncture does not have any flavor symmetry associated

with it.19 This picture is useful for us because it gives rise to a natural set of RG flows in

4D: by turning on an expectation value for the moment map operator in the multiplet cor-

responding to the su(2) flavor symmetry, we can Higgs the regular puncture. In so doing,

we go onto the one-quaternionic dimensional Higgs branch of the theory.20 Moreover, the

remaining irregular singularity supports an (A1, Ap−3) theory. There is also a decoupled

17These are superconformal primaries annihilated by all the anti-chiral Poincaré supercharges.
18The p = 3 case originally appeared in [51] generalizing the earlier work in [52].
19In the Hitchin system description of the theory, the mass parameters are associated with simple poles

of the Higgs field. Near the irregular singularity, the Higgs field has more singular behavior and does not

include a simple pole.
20Note that we define the Higgs branch to be the moduli space on which only the su(2)R ⊂ su(2)R×u(1)R

UV superconformal R symmetry is broken. We do not necessarily mean a branch of moduli space on which

there are only free hypermultiplets at generic points.

– 6 –
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axion-dilaton hypermultiplet for spontaneous conformal symmetry breaking. As a result,

our flow is, up to the decoupled hypermultiplet which we drop21

(A1, Dp)→ (A1, Ap−3) . (2.1)

The latter (A1, Ap−3) SCFTs have no Higgs branches or flavor symmetry themselves and

are again strongly interacting Argyres-Douglas theories (the p = 5 case is the original

theory in [52]).

In order to unify the results of this paper with our previous work in [21], it will be

useful to slightly generalize the theories we are studying and consider the (ANN−1[p−N ], F )

SCFTs with p and N co-prime integers (e.g., see [10, 11]). The above discussion was for

the case of N = 2. In particular

(A1, Dp) = (A2
1[p− 2], F ) , (A1, Ap−3) = A2

1[p− 2] . (2.2)

However, the pattern for general N is similar: these theories are compactifications of the

AN−1 6D (2, 0) theory on a CP1 with an irregular and “full” regular puncture. This latter

puncture supports an su(N) flavor symmetry with level

k4d
su(N) =

2N(p− 1)

p
, (2.3)

while the irregular puncture does not have any flavor symmetry associated with it. We can

again fully Higgs the regular puncture and obtain the following RG flow (where again we

drop decoupled free hypermultiplets) to a theory with just an irregular puncture

(ANN−1[p−N ], F )→ ANN−1[p−N ] . (2.4)

The ANN−1[p−N ] theory is again an interacting SCFT only if p > N .22 The central charges

of the theories appearing in the above flow are [10, 11]

c(ANN−1[p−N ],F ) =
p− 1

12
(N2 − 1) , c(ANN−1[p−N ],F ) =

(N − 1)(p− 1−N)(p+ (p−N)N)

12p
.

(2.5)

As a final point, note that we can consider more general RG flows than the ones in (2.4).

Indeed, we can consider RG flows in which we only partially Higgs the regular puncture

(and break the associated global symmetry group to some more general subgroup). In

these cases, we can have more complicated theories in the IR. These flows will play a role

when we return to discuss the theories in [21].

In the next section, we will consider the 2D chiral algebras in the sense of [2] that

correspond to the two endpoints in (2.4).

21For further details, see [10, 11, 46].
22This statement is not an if and only if: the theory with p = 3 and N = 2 is trivial.
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2.1 The non-unitary chiral algebras

The authors in [2] found a very general connection between certain operators — called Schur

operators — that sit in short multiplets of any local 4D N = 2 SCFT and meromorphic

currents that generate 2D chiral algebras. In this section we will not try to give a thorough

review of this construction. Instead, we will conduct a quick review and highlight relevant

aspects of [2] for the theories at hand. We refer the interested reader to [2] for further

details.

Two particularly important types of multiplets containing Schur operators are the

stress-tensor multiplet, Ĉ0(0,0), and the flavor current multiplet, B̂1.23 In the case of Ĉ0(0,0),

the Schur operator is the highest Lorentz and R-weight component of the su(2)R symmetry

current, J ijαα̇|hw = J11
++̇

(recall that, as reviewed in footnote 20, 4D N = 2 SCFTs have

an su(2)R × u(1)R superconformal R symmetry). In our notation, α ∈ {±} , α̇ ∈
{
±̇
}

are chiral and anti-chiral Lorentz spinor indices respectively, and i, j ∈ {1, 2} are su(2)R
spin half indices. In the case of the flavor current multiplet, the Schur operator is the

su(2)R highest-weight component of the moment map superconformal primary (i.e., the

holomorphic moment map), J ij |hw = µ. In writing the holomorphic moment map, we have

suppressed adjoint indices for the flavor symmetry corresponding to the partner flavor

current.

The most important feature of a Schur operator, O (here we suppress su(2)R and

Lorentz indices), is that it satisfies

{Q,O(0)] = 0 , O(0) 6=
{
Q,O′(0)

]
, Q = S−1 − Q̃2−̇ , (2.6)

where, Q̃2−̇ is a Poincaré supercharge, and S−1 is a special supercharge of the 4D N = 2

superconformal algebra. In other words, we see from (2.6) that these operators form non-

trivial Q cohomology classes (other operators in the theory do not).

Given these facts, the main insight of [2] is that one can obtain an interesting alge-

bra of operators by placing the Schur operators in a plane, P = C ⊂ R4, and twisting

the anti-holomorphic sl(2,R) conformal subgroup in the plane by su(2)R transformations.

These twists are done in such a way that they render transformations in z̄ Q-exact. There-

fore, by restricting to Q cohomology classes of Schur operators, we find a map to a set of

meromorphic currents in P . In particular, we have the following natural maps

χ[J11
++̇] = T , χ[µ] = J , (2.7)

where T and J are the holomorphic 2D stress tensor and 2D AKM current respectively.

As a result, any local 4D N = 2 SCFT has a 2D chiral algebra that contains a Virasoro

sub-algebra. If the theory has a locally realized flavor symmetry, then the related chiral

algebra has an AKM sub-algebra. The structure of current-current OPEs implies that

c2d = −12c4d , k2d = −1

2
k4d . (2.8)

In particular, if the 4D theory is unitary, the 2D one is not.

23Here we use the nomenclature of [64] (see also the earlier work in [65]).
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One additional useful piece of data captured by the above correspondence is the so-

called Schur index [66, 67] of the 4D theory

IS(q, xi) = q
c4d
2 TrH(−1)F qE−R

∏
i

xfii . (2.9)

This is a refined Witten index that counts the Schur operators weighted by fermion number,

F , flavor fugacities, xi ∈ u(1), with charges fi, and a superconformal fugacity, q, satisfying

|q| < 1, weighted by the difference of the 4D scaling dimension, E, and the su(2)R weight,

R. Under the correspondence in [2], this index is naturally mapped to the torus partition

function of the 2D chiral algebra

IS(q, xi) = Z(−1, q, xi) , Z(y, q, xi) = q−
c2d
24 Tr yM

⊥
qL0xfii , (2.10)

where M⊥ generates rotations in the plane normal to P . This character forms part of a

representation of the modular group [68]. The 4D interpretation of the modular partners

of the vacuum character are as indices of operators living on certain N = (2, 2)-preserving

surface defects (e.g., see [46, 69] for some examples).

By applying this map to the (ANN−1[p−N ], F ) and ANN−1[p−N ] SCFTs, the authors

of [6, 10, 11] found

χ[(ANN−1[p−N ], F )] = ŝu(N)N 1−p
p
, χ[ANN−1[p−N ]] = WN−1(N, p) , (2.11)

where WN−1(N, p) is the chiral algebra of the AN−1 W -algebra minimal model. In particu-

lar, for the case of N = 2, W1(2, p) is just the algebra of the (2, p) Virasoro minimal model.

Interestingly, the indices for the UV theories take a particularly simple form [10, 11]24

IS,(ANN−1[p−N ],F ) = P.E.

(
q − qp

(1− q)(1− qp)
χadj

)
, P.E.(f(xi)) ≡ Exp

( ∞∑
n=1

1

n
f(xni )

)
,

(2.12)

where χadj is an adjoint character for su(N). Indeed, this result has been mathemati-

cally proven (assuming the correspondence in (2.11)) for so-called “boundary admissible”

theories in 2D [12, 73] (this class of theories includes the ŝu(N)N 1−p
p

theories).

3 From logarithmic theories to RCFT

For much of the remainder of the paper, we will be concerned with the case of N = 2. In

particular, the relevant logarithmic chiral algebras will be

χ[(A1, Dp)] = χ[(A2
1[p− 2], F )] = ŝu(2) 2(1−p)

p

, (3.1)

with positive p ∈ Zodd. As we briefly mentioned in the introduction, unrefined characters

for these chiral algebras and their admissible representations were studied in [40], where

the authors found an interesting connection with unrefined characters of the rational and

unitary ŝu(2)2(p−1) algebras and representations.

24See [5, 6] for earlier work on subsets of these theories (and also closely related work in [70–72]).
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These latter AKM algebras have 2p− 1 primaries, Φ` (here ` ∈ {0, 1, · · · , 2(p− 1)} is

an su(2) Dynkin label), with conformal dimensions

h(Φ`) =
`(`+ 2)

8p
. (3.2)

The Φ` satisfy the following fusion algebra [74]

Φ`1 ⊗ Φ`2 =

min(|`1+`2|,4(p−1)−`1−`2)∑
`=|`1−`2|

Φ` . (3.3)

Note that the Φ2(p−1) field satisfies Z2 fusion rules, Φ2(p−1)⊗Φ2(p−1) = Φ0, and is associated

with the non-trivial element of Z2 (here Φ0 = 1). More precisely, the associated topological

defect (see [75] for a recent discussion) implements the Z2 symmetry of the ŝu(2)2(p−1) CFT.

Equivalently, we can think of Φ2(p−1) as corresponding to the abelian anyon in the related

Chern-Simons theory (e.g., see the classic works [28, 76]) that generates the Z2 one-form

symmetry.

As discussed in the introduction, the particular theories that the authors studied in [40]

are actually Z2 oribfolds of the ŝu(2)2(p−1) theories. We label these theories as D̃p+1 (or

p̂su(2)2(p−1) ' ŝo(3)2(p−1)), and they are the chiral parts of the D-type modular invariants

in [41, 42]. Gauging the Z2 symmetry projects out fields that are not invariant under the

action of the corresponding topological defect, i.e. those fields satisfying

S2(p−1),`

S1,`
6= 1 , S`1,`2 =

1
√
p

sin

[
(`1 + 1)(`2 + 1)π

2p

]
, (3.4)

where S`1,`2 is the modular S-matrix of ŝu(2)2(p−1) [74]. This projection immediately elimi-

nates the (half-integer spin) odd ` fields. Next, one organizes primaries into representations

of a larger chiral algebra by associating each representation with the orbit under fusion

with Φ2(p−1) and treating fixed points separately. There is one fixed point under this fu-

sion since Φ2(p−1) ⊗ Φp−1 = Φp−1, and so one associates |Z2| = 2 representations of the

enlarged chiral algebra with this representation, Φi
D,p−1 where i = 1, 2. In other words,

our theory after Z2 gauging is just given in terms of the following representations of the

original theory25

ΦD,` = Φ` ⊕ Φ2(p−1)−` , ` ∈ {0, 2, 4, · · · , p− 3} , Φi
D,p−1 = Φi

p−1 . (3.5)

As a result, there are (p+ 3)/2 representations and (p+ 1)/2 independent characters since

the characters for Φi
p−1 are equal

χD,p−1,1(q) = χD,p−1,2(q) = χ
ŝu(2)2(p−1)

p−1 (q) . (3.6)

25In the condensed matter literature, the corresponding Chern-Simons MTC is said to have undergone

anyonic condensation.
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On the other hand, the ŝu(2) 2(1−p)
p

algebra has p admissible representations, Φ̂j , with

j = 0, 1, 2, · · · , p− 1 and scaling dimensions

h(Φ̂j) = − j
2

(
p− j
p

)
. (3.7)

In the limit that we turn off flavor fugacities, all the corresponding characters except the

vacuum character are divergent. However, the following linear combinations of non-unitary

characters are finite

χ−,0(q) ≡ χ0(q) , χ−,j ≡ χj(q)− χp−j(q) , j = 1, 2, · · · , p− 1

2
. (3.8)

Clearly, there are (p + 1)/2 such characters, which matches the number of independent

characters in the unitary case.

Given these sets of characters on the unitary and non-unitary sides, one of the main

results of [40] is that, up to overall constants, we have

χD,p−1−2j(q) ∼ χ
ŝu(2) 2(1−p)

p

−,j (q) . (3.9)

In other words, the unrefined character for the Dynkin label p−1−2j primary of ŝu(2)2(p−1)

is proportional to the unrefined character of the jth non-unitary primary.

In the next subsection we will briefly expand on this result and introduce discrete

flavor fugacities for su(2). This matching then motivates us to study RG flows onto the

4D Higgs branch from the perspective of the unitary 2D theory.

3.1 Flavoring the correspondence

Let us consider turning on the su(2) flavor fugacity, y, in the above correspondence. For

simplicity, we will limit ourselves to j = 0. This case is the most immediately interesting

from the 4D perspective since the j = 0 non-unitary character is the 4D Schur index of the

(A1, Dp) SCFT (see (2.10) and (2.11)).

For generic y ∈ u(1), the refined characters are related in relatively complicated ways.

However, it is straightforward to show that the two characters agree up to a q-independent

function of y when y is a (p+ 1)st root of unity. More precisely, we have

χD,p−1(q, y) = χsu(2),p−1(y) · χ
ŝu(2) 2(1−p)

p

0 (q, y) , y = yk = e
2πik
p+1 , (3.10)

where χsu(2),p−1(y) =
∑ p−1

2

i=− p−1
2

yi is a spin (p − 1)/2 character of su(2). At the dis-

crete points yk = e
2πik
p+1 6= 1, we have χsu(2),p−1(yk) = (−1)1+k while χsu(2),p−1(y0) ≡

χsu(2),p−1(1) = p, and so

χD,p−1(q, yk) =


(−1)1+k · χ

ŝu(2) 2(1−p)
p

−,0 (q, yk) , if 1 ≤ k ≤ p

p · χ
ŝu(2) 2(1−p)

p

−,0 (q, yk) , if k = 0 .

(3.11)
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To prove (3.11), we start by writing the explicit forms of the two characters. For the

non-unitary vacuum character, we have [26, 40, 77]

χ
ŝu(2) 2(1−p)

p

−,0 (q, y) =
Θ

(2p)
p (q, y

1
p )−Θ

(2p)
−p (q, y

1
p )

Θ
(2)
1 (q, y)−Θ

(2)
−1(q, y)

, (3.12)

where y = e−2πiz, and

Θ
(k)
j (q, x) = x

j
2 q

j2

4k

∑
n∈Z

xknqkn
2+nj . (3.13)

Similarly, the rational character is given by [26, 40, 77]

χ(p−1)D (q, y) =
Θ

(2p)
p (q, y)−Θ

(2p)
−p (q, y)

Θ
(2)
1 (q, y)−Θ

(2)
−1(q, y)

. (3.14)

In particular, the denominators in (3.12) and (3.14) agree. The numerators are closely

related as well. Indeed, the numerator of (3.12) is

Θ(2p)
p (q, y

1
p )−Θ

(2p)
−p (q, y

1
p ) =

∑
n∈Z

(
y2n+ 1

2 − y−(2n+ 1
2)
)
q
p
2 (2n+ 1

2)
2

, (3.15)

while the numerator of (3.14) is

Θ(2p)
p (q, y)−Θ

(2p)
−p (q, y) =

∑
n∈Z

(
yp(2n+ 1

2) − y−p(2n+ 1
2)
)
q
p
2 (2n+ 1

2)
2

. (3.16)

Asking that the characters be proportional to each other up to a function that is indepen-

dent of q requires that we choose values of y such that the ratio

r(y, n) =
yp(2n+ 1

2) − y−p(2n+ 1
2)

y2n+ 1
2 − y−(2n+ 1

2)
, (3.17)

is independent of n. This condition is satisfied when y = yk. To verify this statement, first

suppose k 6= 0. Then, the numerator and denominator in (3.17) do not vanish, and

r(y, n) =

sin

(
2π

(2n+ 1
2)kp

p+1

)
sin

(
2π

(2n+ 1
2)k

p+1

) =

sin

(
2πk

(
2n+ 1

2

)
− 2π

(2n+ 1
2)k

p+1

)
sin

(
2π

(2n+ 1
2)k

p+1

) = (−1)1+k . (3.18)

If k = 0, then we find r(y0, n) ≡ limy→1 r(y, n) = p as desired (the characters them-

selves do not degenerate, because the denominators in (3.12) and (3.14) also vanish at the

same order).

The simple relations in (3.10) and (3.11) for y 6= 1 suggest that D̃p+1 should know

something about the Higgs branch of the (A1, Dp) SCFT. Indeed, from the 4D perspective,

we can learn about the index of the Higgs branch theory by considering poles in the flavor

fugacity, y [78].26

26In fact, we will see that for general p we most directly learn something about the 4D theory in the

presence of a surface defect.
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4 MTCs and the RG flow

In section 2, we saw that there were interesting RG flows emanating from the (A1, Dp)

fixed points that take us onto their Higgs branches

(A1, Dp)→ (A1, Ap−3) . (4.1)

In writing (4.1), we have dropped a decoupled hypermultiplet containing goldstone bosons

and their superpartners. Since moving onto the Higgs branch requires breaking flavor

symmetry, and since we showed in the previous section that D̃p+1 knows about certain

(discretely) flavored observables in the (A1, Dp) SCFT, one might be tempted to guess

that we can learn about the 4D Higgs branch using the 2D chiral RCFT.

We will see that this intuition is indeed correct, although perhaps not in the most

obvious way one might first imagine. Indeed, as a first guess, one might try to perform

qDS reduction on the D̃p+1 theory, since this reduction applied to the 2D chiral algebra

of the (A1, Dp) theory gives the 2D chiral algebra of the (A1, Ap−3) theory (e.g., see the

discussion in [46]). Instead, we will describe a simpler connection.

The idea is to consider some of the most basic data in the Chern-Simons theories under-

lying the D̃p+1 theories: the S3 expectation values of Wilson loops, W i
D,p−1, corresponding

to the highest-spin primaries, Φi
D,p−1 (we will see that the answer does not depend on i)

〈W i
D,p−1〉 =

S0,(p−1)i

S0,0
, (4.2)

where Sa,b is the modular S-matrix for D̃p+1. We will show that this data can be related

— via Galois conjugation — to the expectation value of a Wilson loop in the TQFT

underlying the chiral part of the (2, p) Virasoro minimal model (i.e., the 2D theory for the

IR (A1, Ap−3) SCFT in the sense of [2]). More precisely, the expectation value in question

is for the Wilson loop corresponding to the lowest scaling dimension primary, φ(1,(p−1)/2).

In order to understand these statements and their implications, we review basic aspects

of MTCs and Galois conjugation in the next subsection. We then move on to discuss the

action of the RG flow on (4.2).

4.1 MTC/TQFT basics

Roughly speaking, to the representations of any 2D rational chiral algebra, we can associate

a corresponding MTC (or 3D TQFT depending on one’s preference) [28, 76]. In our cases

of interest, these MTCs are of Chern-Simons type. The general data that defines an MTC

is a set of simple objects with corresponding commutative fusion rules, a set of F matrices

that implement associativity and satisfy “pentagon” equations, and a set of braiding or R

matrices that satisfy, together with the F matrices, the so-called “hexagon” equations [28].

The MTC is modular because it has associated with it non-degenerate S and T matrices.

Since our MTCs arise from representations of 2D rational chiral algebras, the resulting

simple objects are in one-to-one correspondence with the representations of these chiral

algebras. In a Chern-Simons theory, one thinks of these simple objects as tracing out
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Wilson lines in some representation of the gauge group. As can be seen by studying their

braiding properties, these objects are generally anyonic.

For us in what follows, the most important data in the MTC will be the S and T

matrices. The T matrices we use consist of the twists (unnormalized by the standard

RCFT prefactor, e−2πi c
24 )

Ti,j = δijθi = δije
2πihi , (4.3)

where hi is the conformal dimension of the corresponding primary, Φi, of the 2D rational

chiral algebra. Another important piece of data for us is the set of quantum dimensions

di =
S0i

S00
, (4.4)

corresponding to the expectation value of a Wilson loop of type i on S3. Since our starting

point is unitary, we have

di ≥ 1 , (4.5)

where di = 1 if and only if the corresponding anyon is abelian, i.e. if there exists ī (which

may or may not satisfy i = ī) such that

i⊗ ī = 1 . (4.6)

Note that this fusion rule corresponds to the RCFT fusion φi ⊗ φī = φ0, where the φa are

RCFT primaries (φ0 is the identity). The proof of this statement follows from the fact that

d1 = 1, di = dī, and the fact that the quantum dimensions satisfy the fusion rules of the

theory [26, 79]

djdk =
∑
k

N `
jkd` , (4.7)

where the integers N `
jk ≥ 0 are the fusion multiplicities. As a result, the i anyon generates

(part of) the abelian one-form symmetry of the theory (and ī is i’s “inverse”). We call

such an anyon an “abelian” anyon to distinguish it from the anyons, a, with da > 1, whose

fusion rules are not those of a group (a × ā will involve at least two non-trivial fusion

channels).

4.1.1 Galois conjugation

Given an MTC, we may define various natural actions on it. One particularly important

action is that of Galois conjugation. While the precise action of Galois conjugation at the

level of the full MTC is subtle,27 a Galois action at the level of the generalized quantum

dimensions28 is simpler to describe [49, 80].

The main point is that the quantum dimensions can be thought of as taking values

in some “cyclotomic” field, Q(ξ), for ξ = e
2πi
k , which consists of appending kth roots of

unity to the rational numbers, Q.29 The cyclotomic field admits the action of a Galois

27One reason is that some of the data in the F and R matrices depends on certain gauge choices.
28These include not only the di = Si0

S00
but also the

Sij
S0j

with j 6= 0.
29A similar story holds for the modular S and T data, although the cyclotomic field is, in general,

different [49]. We will comment further on this fact below.
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group, G = Z×k , consisting of the multiplicative units between 1 and k (e.g., Z×4 = {1, 3}).
The action of G is simple to describe: it leaves the base field (i.e., the rational numbers)

invariant and acts non-trivially on ξ as

ξ → ξp , p ∈ Z×k , (4.8)

for p and k co-prime. In general, Galois conjugation takes unitary theories to non-unitary

ones (although there are exceptions). The mosts basic example being the Galois action

that takes the Lee-Yang MTC to (G2)1, (F4)1, and the complex conjugate of Lee-Yang. We

will return to this example shortly. Note that in the non-unitary conjugates of a unitary

theory, the quantum dimension bound in (4.5) is typically violated.

Before proceeding, let us emphasize that the examples of Galois group we discuss here

can be naturally related to one that acts on the full S and T matrices in an RCFT [49, 81]

by a surjective restriction (and similarly for the natural Galois action descending from the

quantum group structure underlying the MTC).

4.2 Galois action, RG flows, and quantum dimensions

In this section, we study the action of a Galois group on some of the data underlying the

D̃p+1 theory. We start with the special cases of p = 3 and p = 5 before discussing the

general case. As we will see, some additional interesting phenomena occur for p = 3, 5.

To that end, consider the case of p = 3. As discussed in section 3, the resulting D̃4

theory is a theory with abelian fusion rules. Indeed, after anyon condensation in SU(2)4,

the resulting Chern-Simons theory has abelian anyons and Z3 fusion rules. From (4.1),

we see that the resulting 4D IR theory is the trivial (A1, A0) theory.30 Later we will see

that this phenomenon appears in other examples as well: when the UV theory consists

of abelian anyons, the 4D Higgs branch theory is either trivial (after removing the decou-

pled hypermultiplet of spontaneous symmetry breaking) or free (at generic points). This

statement is also consistent with the matching of quantum dimensions alluded to in the

introduction

〈W i
D,2〉 = d2i =

S0,2i

S0,0
= 1 , SD =

1√
3

1 1 1

1 ω ω2

1 ω2 ω

 . (4.9)

In writing the S-matrix, we have taken the second (third) row / column to correspond to

21 (22). These rows and columns correspond to the anyons that generate Z3. Indeed, as we

explained in the previous subsection, anyons whose fusion rules are abelian have quantum

dimension one. The IR theory is trivial (after considering the 2D theory related to the 4D

theory we get by dropping the Goldstone multiplet) and so the only IR field is the vacuum,

φ(1,1), with quantum dimension one.

30One can also see from (2.5) that the corresponding central charge with p = 3 and N = 2 vanishes (in

the discussion below (2.11), this is because the IR chiral algebra is for the trivial (2, 3) Virasoro minimal

model).
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Next let us consider the case of p=5, i.e., D̃6. The corresponding modular S-matrix is31

SD =


1
10

(
5−
√

5
)

1
10

(
5 +
√

5
)

1√
5

1√
5

1
10

(
5 +
√

5
)

1
10

(
5−
√

5
)

− 1√
5

− 1√
5

1√
5

− 1√
5

− 1
10

(
5−
√

5
)

1
10

(
5 +
√

5
)

1√
5

− 1√
5

1
10

(
5 +
√

5
)
− 1

10

(
5−
√

5
)
 . (4.10)

Now, using the Verlinde formula

Nν
λµ =

∑
σ

Sλ,σSµ,σS
∗
σ,ν

S0D,σ
, (4.11)

we find that

Φi
D,4 × Φi

D,4 = ΦD,0 + Φi
D,4 . (4.12)

In particular, we see that
{

ΦD,0,Φ
i
D,4

}
are closed fusion subcategories (one two-element

subcategory for each value of i; without loss of generality, we will drop i from now on).

Moreover, their fusion rules are the so-called “Fibonnaci” fusion rules (e.g., see [82] for a

review) shared by the Lee-Yang, conjugate Lee-Yang, (G2)1, and (F4)1 fusion categories.

In our case, after normalizing the sub-S-matrix for {Φ0D ,Φ4D}, we obtain

S =
1√

ξ−1 + 3 + ξ

(
1 ξ−1 + 1 + ξ

ξ−1 + 1 + ξ −1

)
, dΦD,0 = 1 , dΦiD,4

= ξ−1 + 1 + ξ ,

T = diag(1, ξ3) , ξ = e
2πi
5 . (4.13)

These are the S and T matrices for the (F4)1 MTC [36]. Using Galois conjugation as in (4.8)

at the level of the S and T matrices, we can transform the above data into the data for

Lee-Yang. More precisely, if we Galois conjugate by the element 2 ∈ Z×5 , we obtain32

dLYφ(1,1) = 1 , dLYφ(1,2) = ξ−2 + 1 + ξ2 , TLY = diag(1, ξ6) , (4.14)

which is the complex conjugate of the Lee-Yang category. On the other hand, if we conju-

gate by the element 3 ∈ Z×5 , we obtain

dLYφ(1,1) = 1 , dLYφ(1,2) = ξ−3 + 1 + ξ3 , TLY = diag(1, ξ9) , (4.15)

31The modular S-matrix can be derived from the one for ŝu(2)8 as follows. First, note that the primaries

of the D̃6 chiral algebra are fixed in terms of the ŝu(2)8 primaries as in (3.5). This observation fixes the

first three rows / columns in the modular S-matrix in terms of the entries in the S-matrix in (3.4). The

remaining two rows and columns (i.e., for the two Φi
4 primaries) can be fixed by demanding symmetry

of the S-matrix, reality of the first row (and column), unitarity, and the sl(2,Z) conditions S2 = (ST )3

and S4 = 1.
32Note that the Galois group studied in [50, 81] is Z×60. The reason for this difference is that the authors

of these latter works consider the CFT-normalized T matrix (i.e., with the e−
2πic
24 prefactor). There is

no inconsistency in using these two different groups since we have an appropriate surjective restriction

Z×60 → Z×5 .
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which is the Lee-Yang category. Note that both Lee-Yang and its complex conjugate have

the same spectrum of quantum dimensions since

dLYφ(1,2) = ξ−3 + 1 + ξ3 = ξ−2 + 1 + ξ2 = dLYφ(1,2) . (4.16)

From this discussion, we see that the rational theory contains a sub-category that is

Galois conjugate to the MTC for the IR chiral algebra in the flow discussed around (4.1)

(the Lee-Yang or (2, 5) minimal model Virasoro algebra corresponding to χ[(A1, A2)]).

Therefore, the rational UV theory “knows” about the IR MTC.

More generally, one may ask if the MTC for the D̃p+1 theory contains a closed fusion

subcategory corresponding to the representations of the (2, p) Virasoro algebra for p ≥ 7.

It turns out that for general p ∈ Zodd, the D̃p+1 MTC does not have a non-trivial closed

subcategory. However, we can partly generalize what happens for p = 5 as follows. The vev

of the Wilson line in the D̃p+1 Chern-Simons theory that corresponds to the maximal spin

representation (and therefore, via the correspondence discussed above, to the 4D Schur

operators) is related, via Galois conjugation, to the vev of a Wilson line in the (2, p) MTC

corresponding to the 4D IR theory (see figure 1).33 In other words

〈W i
D,p−1〉 =

1

2 sin
(
π
2p

) =
SD0,(p−1)i

SD0,0
→2∈Z×p

S(1,1),(1,(p−1)/2)

S(1,1),(1,1)
=

(−1)
p+1
2

2 cos
(
π
p

) = 〈W(1,(p−1)/2)〉 ,

(4.17)

where “→2∈Z×p ” denotes Galois conjugation by the element 2 ∈ Z×p (since p ∈ Zodd, this is

always an element of the Galois group), and

S(r,s),(ρ,σ) =
2
√
p

(−1)sρ+rσ sin
(πp

2
rρ
)

sin

(
2π

p
sσ

)
. (4.18)

is the (2, p) minimal model S-matrix [26].34 Note that the Z×p Galois group we discuss

here can be obtained from the appropriate surjective restriction of the Z×2p Galois group

(if p − 1 = 0 mod 4) or Z×4p Galois group (if p − 1 = 2 mod 4) one finds by applying the

discussion in [81] to the full D̃p+1 RCFT modular data (a similar statement holds for the

Galois group that naturally arises when considering the underlying quantum group).

For the interested reader, we give the proof of (4.17) in appendix A. Here we mention

a few observations before discussing some generalizations in the next section:

• The identification in (4.17) leads to some simple rules that one can easily verify for

the theories in question. For example, if 〈W i
D,p−1〉 6= 1, then both the UV and the

IR theory have non-abelian anyons. The reason is that such a quantum dimension

33Note that we are not claiming the UV and IR MTCs are Galois conjugate. Indeed, the number of

simple elements is different.
34Note that, as in the p = 5 example, the Galois conjugate of the (p − 1)i twists generally do not agree

with the twist for (1, (p− 1)/2) in the IR MTC. On the other hand, conjugating by 3 ∈ Z×p (when p is not

a multiple of 3) does yield an equality of the twists. However, for general p not a multiple of three, we do

not have a relation of quantum dimensions as in (4.17) if we choose 3 ∈ Z×p .
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ξξ
2

(p-1)D (1,(p-1)/2)

UV IR

Figure 1. The anyonic imprint on the Higgs branch. The expectation value for the Wilson

lines corresponding to the Dynkin label (p − 1) fields in the rational 2D theory related to the UV

(A1, Dp) SCFT are mapped, via Galois conjugation, to the expectation value for the Wilson line

corresponding to the lowest scaling dimension primary in the (2, p) minimal model related to the

IR (A1, Ap−3) SCFT on the Higgs branch.

cannot equal one when raised to any power and so the corresponding Wilson line/

anyon cannot satisfy group-like fusion (this statement holds even though the IR

theory is non-unitary, and the quantum dimension bound in (4.5) is violated in the

IR). Indeed, the D̃p+1 and (2, p) theories with p > 5 have non-abelian anyons (in

fact, any non-unitary MTC must have non-abelian anyons). When 〈W i
D,p−1〉 = 1,

the UV theory has an abelian anyon, and the IR (after removing the decoupled

hypermultiplet) must also have an abelian anyon in its MTC or be trivial. As we

have seen, the only such case in our theories is the p = 3 case, where the UV has Z3

abelian anyons and the IR is trivial (after considering the theory related to the 4D

IR in which we have removed the Goldstone multiplet). In the next section, we will

comment on some generalizations of these observations to other theories.

• The quantum dimension on the lefthand side (l.h.s.) of (4.17) is related to the field

in the D̃p+1 theory whose character reproduces the Schur index of the UV (A1, Dp)

SCFT. On the other hand, the quantum dimension on the r.h.s. of (4.17) is related

to the field whose character reproduces the Schur index of the IR (A1, Ap−3) theory

in the presence of an N = (2, 2)-preserving surface defect [46].

• It is interesting to note that in the MTCs that are related to our 4D N = 2 SCFTs,

all bosonically generated one-form symmetries (i.e., the corresponding generators

have integer spin) have been gauged: the Z2 one-form symmetry in SU(2)2(p−1) has

been gauged, and the corresponding bosons have condensed. In the p = 3 case we

have a left-over one-form symmetry, Z3, after the Z2 gauging (note that the anyons

generating the Z3 symmetry have spin 1/3). However, this symmetry has a ’t Hooft

anomaly — and hence cannot be gauged (e.g., see the recent discussion in [45]).
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5 Connections with other theories

It would be interesting to understand how general the observations in the previous section

are in the space of 4D N = 2 SCFTs. As a modest first step, let us revisit the D2[SU(3)] =

(A3
2[−1], F ) SCFT35 discussed in [21] and recounted briefly in the introduction. Recall

from the introduction that the associated non-unitary chiral algebra in the sense of [2]

is ŝu(3)− 3
2

[5] and that the associated unitary RCFT discussed in [21] is ŝo(8)1.36 The

corresponding MTC is Spin(8)1 (e.g., see the recent discussion in [37]).

As in the examples mentioned in the previous sections, the Spin(8)1 TQFT has no

one-form symmetries generated by bosons. Indeed, all the non-trivial lines are fermionic.

One can gauge a Z2 one-form symmetry generated by one of the fermions and obtain the

SO(8)1 spin-TQFT.37

More generally, as explained in footnote 12, the results of [21] imply the following

MTCs are associated with the D2[SU(2n+ 1)] = (A2n+1
2n [1− 2n], F ) 4D N = 2 theories

D2[SU(2n+ 1)] →

{
Spin(8)1 MTC , if n(n+ 1) = 2 (mod4)

D(Z2) (toric code) MTC , if n(n+ 1) = 0 (mod4) .
(5.1)

The toric code MTC has two non-trivial bosons that can condense. However, this conden-

sation leads to a trivial theory.38 Therefore, we see that all the MTCs that are related to

the doubly infinite classes of 4D N = 2 SCFTs discussed in the present paper do not allow

for further non-trivial gauging of bosonic one-form symmetries. It would be interesting to

understand if this is a general feature of MTCs related to 4D theories in the way we have

described.

As in the case of the (A1, D3) theory, the MTCs described in (5.1) are abelian: they

have Z2×Z2 fusion rules. Moreover, as for the (A1, D3) theory, the Higgs branches of these

theories at generic points are free: they consist of decoupled hypermultiplets (the would-be

AN−1 W -algebra minimal models in (2.11) do not exist, since p < N). Therefore, we see

that, by again dropping decoupled hypermultiplets, UV and IR quantum dimensions can

be related as in (4.17)39

〈W[0,0,··· ,1]〉 = 〈W[0,0,··· ,1,0]〉 = 1 =
S0,[0,··· ,1]

S0,0
=
S0,[0,··· ,1,0]

S0,0
→1∈Z×1

S00

S00
= 1 = 〈W0〉 ,

(5.2)

where the representations on the l.h.s. correspond to the highest conformal weight primaries

in the respective ̂so(4n(n+ 1))1 chiral RCFTs. As in the case of the (A1, D3) theory, the

quantum dimension on the r.h.s. is for the trivial theory without an N = (2, 2)-preserving

surface defect included.
35We use the language of section 2 in writing (A3

2[−1], F ).
36The 4D interpretation of this 2D unitary theory is as the (Z2 orbifold of the) free theory of eight

non-unitary hypermulitplets with wrong spin-statistics.
37It might also be interesting to pursue ideas along the lines of [83].
38This statement follows, as in the related discussion around (3.4) for SU(2)2(p−1), from the modular

S-matrix [36] of the toric code MTC; see also [44].
39For n = 1, it is natural to include 〈W[1,0,0,0]〉 since this line corresponds to the ŝo(8)1 primary with

(co-highest) conformal weight.
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Before concluding, we should note an additional subtlety for the D2[SU(2n+1)] theories

with n > 1. In this case, we have non-generic flows to theories of the type D2[SU(2n′+ 1)]

with n′ < n and decoupled hypermultiplets. As a result, we have interacting IR factors.

However, as we have shown above, the related chiral RCFTs have only abelian anyons.

Therefore, we again have a matching as in (5.2) if we also “rationalize” the IR theory. The

fact that the IR chiral RCFTs have only abelian anyons is consistent with our Galois action

described above: the relevant Galois groups for Spin(8)1 and D(Z2) are trivial.

6 Conclusions

We conclude with some additional observations, comments, and open questions:

• Another way to find a unitary interpretation of the χ[D2[SU(3)]] = ŝu(3)− 3
2

char-

acters discussed around (1.2) and in this section is as follows. Consider the chiral

ŝu(3)3 CFT. Three of the ten primaries of this theory (transforming under su(3)

representations [0, 0], [3, 0], and [0, 3]) are related to the abelian lines that generate

the Z3 one-form symmetry of the SU(3)3 MTC. Gauging this one-form symmetry

projects out the lines in representations [0, 1], [1, 2], [2, 0], [0, 2], [2, 1], [1, 0]. The re-

maining [1, 1] representation is a fixed point under Z3 fusion, and so we add two

more copies of it. This object then gives rise to the three unitary dimension 1/2

chiral primaries in the associated chiral RCFT whose characters match the ŝu(3)− 3
2

vacuum character.

This approach is reminiscent of the Z2 gauging in the case of ŝu(2)2(p−1) discussed

at length in the present paper and also in [40]. As in the ŝu(2) case, it potentially

gives us a canonical way to relate the unitary and non-unitary theories when we

turn on (discrete) flavor fugacities. This example, combined with those in the rest

of this paper, suggest a link between the physics of the (ANN−1[p − N ], F ) theories,

the admissible characters of their associated chiral algebras, ŝu(N)N 1−p
p

and the ZN

gaugings of ŝu(N)N(p−1). The relation is already somewhat more elaborate in the

case of N = 2n+1 ≥ 5 and p = 2, since the anyons related to the one-form symmetry

correspond to 2D RCFT chiral primaries of conformal dimension larger than 1.

• For general p and N one must also take into account the fact that some of the admis-

sible characters of the logarithmic theories have negative coefficients.40 Perhaps these

can be related to rational theories after turning on some flavor fugacities (or, more

generally, fugacities for generators corresponding to a unitary W -algebra). Clearly it

would be interesting to understand this point better

• In our examples, we “rationalized” UV chiral CFTs constructed via [2] by associating

rational theories with them. On the other hand, the IR was already rational, though

40This statement can be easily seen by considering the linear modular differential equations (LMDEs)

satisfied by the Schur index (e.g., see [68] for an introduction in the context of the 4D/2D correspondence

of [2]). For other interesting recent work on LMDEs and their implications for 2D CFT, see [84–86].
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non-unitary, at the (A1, Ap−3) endpoints (since it was a (2, p) minimal model). More

generally, to allow for an anyonic imprint on the Higgs branch as in (4.17) and figure 1,

we have to “rationalize” the IR theory as well. Indeed, we saw an example of this

phenomenon in the D2[SU(2n+ 1)]→ D2[SU(2n′+ 1)] flows. It would be interesting

to understand this process more generally.

• Our most non-trivial correspondence (i.e., the one with a non-trivial Galois action)

was between UV chiral RCFTs and IR chiral algebras that are C2-cofinite. In physics

language, this means that we are studying IR theories on the Higgs branch that have

no Higgs branches themselves [68] (e.g., the (A1, Ap−3) theories with p ∈ Zodd do

not have Higgs branches). The authors of [68] and their collaborators have embarked

on a program to classify 4D N = 2 SCFTs using these C2-cofinite theories as basic

building blocks. It would be interesting if our work sheds light on this program.

• We did not pursue qDS reduction on the RCFT side. Clearly this is interesting to

do. Perhaps the recent notion of Galois conjugation at the level of RCFT charac-

ters [50] will prove useful to make contact between the UV and IR. The LMDE-based

discussion in [84] may also play a role.

We hope to return to some of these questions soon.
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A Proof of (4.17)

In this appendix, we will prove (4.17). For ease of reference, we reproduce it below

〈W i
D,p−1〉 =

1

2 sin
(
π
2p

) =
SD0,(p−1)i

SD0,0
→2∈Z×p

S(1,1),(1,(p−1)/2)

S(1,1),(1,1)
=

(−1)
p+1
2

2 cos
(
π
p

) = 〈W(1,(p−1)/2)〉 .

(A.1)

To obtain these elements we will use the S-transformation properties of the ŝu(2)2(p−1)

primaries given by the S-matrix in (3.4) which we reproduce below

Sl1,l2 =
1
√
p

sin

[
(l1 + 1)(l2 + 1)π

2p

]
. (A.2)

As discussed in (3.5), primaries of the condensed D̃p+1 theory take the following form in

terms of primaries of ŝu(2)2(p−1)

ΦD,` = Φ` ⊕ Φ2(p−1)−` , ` ∈ {0, 2, 4, · · · , p− 3} , Φi
D,p−1 = Φi

p−1 , (A.3)
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where i = 1, 2. To calculate elements of the first row of the D̃p+1 S-matrix we need to write

the S-transformation of the condensed vacuum in terms of condensed fields using (A.2)

(SDχD)0 =

p−3∑
`=0,`∈Zeven

SD0,`χD,` +
2∑
i=1

SD0,(p−1)i
χD,(p−1)i =

2(p−1)∑
`=0

(S0,` + S2(p−1),`)χ
ŝu(2)2(p−1)

`

=

2(p−1)∑
`=0

1
√
p

sin

(
`+1

2p
π

)
χ
ŝu(2)2(p−1)

` +

2(p−1)∑
`=0

1
√
p

sin

(
(2p−1)(`+1)

2p
π

)
χ
ŝu(2)2(p−1)

`

=

p−1∑
`=0

2
√
p

sin

(
2`+ 1

2p
π

)
χ
ŝu(2)2(p−1)

2` . (A.4)

In going to the last equality, we have used the relation sin
(

(2p−1)(`+1)
2p π

)
=(−1)` sin

(
`+1
2p π

)
.

Now, we can solve for the first (p− 1)/2 entries of the first row of the SD matrix

SD0,` =
2
√
p

sin

(
2`+ 1

2p
π

)
. (A.5)

The last two entries of the first row are also constrained to obey

SD0,(p−1)1
+ SD0,(p−1)2

=
2
√
p
, SD0,(p−1)1

∈ R , (A.6)

where the reality of these entries is required by the reality of the quantum dimensions.

Unitarity of the S-matrix requires the first row to have unit norm and so

SD0,(p−1)1
= SD0,(p−1)2

=
1
√
p
. (A.7)

In particular, we see that the quantum dimension in the UV theory is indeed

SD0,(p−1)i

SD0,0
=

1

2 sin
(
π
2p

) , (A.8)

as claimed in (A.1).

Now let us study the quantum dimension of φ(1,(p−1)/2). This quantity is easily com-

puted from the (2, p) S-matrix

S(r,s),(ρ,σ) =
2
√
p

(−1)sρ+rσ sin
(πp

2
rρ
)

sin

(
2π

p
sσ

)
. (A.9)

Indeed, we find

S(1,1),(1,(p−1)/2)

S(1,1),(1,1)
=

(−1)
p+1
2

2 cos
(
π
p

) , (A.10)

as claimed in (A.1).

Now we would like to discuss the Galois action that relates the two quantum dimen-

sions. First, we claim that the Galois group acting on the quantum dimensions (and also
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the T matrices) can be taken to be G = Z×p (see the main text for a discussion of the re-

duction to G from the larger groups one finds using the methods of [81] and also from the

underlying quantum groups). For the T matrices (defined with the normalization in (4.3)),

this statement follows from (3.2) since ` ∈ Zeven and so the θ` are pth roots of unity (a

similar statement holds on the (2, p) minimal model side). At the level of the quantum

dimensions, it is sufficient to show that sin
(

2`+1
2p π

)
can be written in the field Q(ξ), where

ξ = e
2πi
p .

To see this statement is correct, note that since p is odd, we have either p+2`+1 = 4n`
or p+ 2`+ 1 = 4n` + 2 for n` ∈ Z. In either case, we have

sin

(
2`+ 1

2p
π

)
=

1

2

(
e
iπ
2

(
2`+1
p
−1

)
+ e
− iπ

2

(
2`+1
p
−1

))
. (A.11)

Let us now suppose p+ 2`+ 1 = 4n`. We then have

sin

(
2`+ 1

2p
π

)
= −1

2

(
e
πi
2

(
2`+1
p

+1
)

+ e
−πi

2

(
2`+1
p

+1
))

= −1

2

(
e

2πin`
p + e

− 2πin`
p

)
=

(−1)
p−1
2

2

(
ξn` + ξ−n`

)
∈ Q(ξ) , (A.12)

as desired. Similarly, for p+ 2`+ 1 = 4n` + 2, we have

sin

(
2`+ 1

2p
π

)
=

1

2

(
e

2πi(`−n`)
p + e

− 2πi(`−n`)
p

)
=

(−1)
p−1
2

2

(
ξn`−` + ξ`−n`

)
∈ Q(ξ) ,

(A.13)

which completes our proof of the claim that G = Z×p .

Let us now apply the Galois action 2 ∈ G to the unitary quantum dimension. We have

from the previous two equations that

1

2 sin π
2p

=
(−1)

p−1
2

ξn + ξ−n
, n =

⌊
p+ 1

4

⌋
. (A.14)

Now, applying the Galois action yields

1

2 sin π
2p

=
(−1)

p−1
2

ξn + ξ−n
−→ (−1)

p−1
2

ξ2n + ξ−2n
=

(−1)
p−1
2

2 cos
(

4πn
p

) =
(−1)

p+1
2

2 cos
(
π
p

) , (A.15)

where in the last equality we used the relation cos
(

4πn
p

)
= − cos

(
π 4n−p

p

)
= − cos πp for

p = 4n± 1. This completes the proof of our assertion in (A.1) / (4.17).
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