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Transcription in gene expression is an intrinsically noisy process which involves production and
degradation of mRNAs. An important quantity to describe this stochastic process is the first
passage time (FPT), i.e., the time taken by mRNAs to reach a particular threshold. The process of
transcription can be modelled as a simple birth-death process, assuming that the promoter is always
in an active state and to encode the stochastic environment we consider the transcription rate to be
time-dependent. This generalization is suitable to capture bursty mRNA dynamics usually modelled
as an ON-Off model and simplifies the calculation of FPT statistics for a cell population. We study
the role of periodic modulation of the transcription rate on different moments of FPT distribution of
a population of cells. Our calculation shows that for sinusoidal modulation there exists an extremal
value of mean FPT as a function of time-period and phase of the transcription signal. However, for
square-wave modulation of transcription rates simulation results shows that the extremal value of
the MFPT behaves monotonically with the variation of the phase.

I. INTRODUCTION

The process of gene expression is initiated with the copying of a segment of DNA into mRNA and this initial step is
known as transcription. Transcription is an intrinsically stochastic process due to the occurrence of many probabilistic
events like conformal changes in DNA, random binding of transcription factors and the random biochemical reactions
which govern the process of transcription and translation inherently. In a single cell, mRNAs are often produced in
small numbers fluctuating over time subsequently resulting in large variability across a population of cells [1–6]. With
the development of experimental techniques to detect mRNA levels in single cells, namely bacteria [7, 8], mammalian
cells [6], eukaryotic cells [9] a large number of recent experiments have been devoted to measure and visualize the
transcriptome kinetics and dynamics [10–14]. Subsequently, the emphasis has been to explain the variability by
formulating a probabilistic description of the process [15, 16]. For example, the process of gene transcription, essentially
involving two steps: synthesis of mRNA and degradation of mRNA can be modelled as a birth-death (BD) process
[17]. Such description indicates mRNA distribution as Poissonian in contrast to the observed bursty behavior of
mRNA numbers [7, 18]. However, a similar probabilistic approach is still possible where the gene is considered to
toggle between two states of activity (ON-OFF model) [7, 19]. An alternative description of ON-OFF model can be
given by birth-death mechanism with time-dependent transcription rates. This necessitates solving the probabilistic
description of the stochastic process given by a master equation with time-dependent coefficients [20–22].

An explicit solution of the master equation gives the probability distribution of the number of mRNA and can be
compared with experiments for various parameter regimes. Moreover, a relevant quantity for a stochastic process is
to estimate how long does a randomly varying quantity take to reach a particular threshold value? This quantity
is called first passage time (FPT) [23, 24]. FPT can be defined as the time taken by mRNA numbers to reach a
particular threshold value for the first time and can be a useful quantity in understanding gene regulation. Single
cell measurements monitoring a target gene’s protein expression show that microRNAs (miRNA) act as control
establishing a threshold level of mRNA below which protein production is suppressed [25]. It has been indicated that
miRNA acts as a switch below a threshold mRNA level (strong repression) [26] and as a fine-tuner at high mRNA
levels (weak repression) [27]. Hence in the context of gene regulation, it is meaningful to investigate FPT quantifying
the time-scale of mRNAs to reach such threshold values. Since transcription is an intrinsically noisy process, FPT for
mRNA will vary cell to cell and one is interested in obtaining the FPT distribution function and its moments [28].

Bursty transcriptional dynamics has been observed for housekeeping genes and such behavior can be explained by
random switching of DNA between active (ON) and inactive (OFF) states or due to global constraints on transcription
[29–31]. However, the burstiness and the levels of transcription are not necessarily correlated [29] and a recent study
has numerically demonstrated that the mean first passage time (MFPT) is inversely proportional to transcription rates

∗School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom
†School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
‡anandamohan@iiserkol.ac.in



2

of mRNA or mean burst sizes [32]. In this paper, we model gene regulation as a simple BD process and to account
for the relaxation behavior of transcriptional dynamics we consider time-dependent reaction rates and present an
analytical understanding of the effects of higher transcription rates on the MFPT. We obtain an approximate solution
of the first-passage time distribution and characterize the dependence of its moments on periodic modulation of
transcription rates.

The primary focus of our present work is to study a general BD model which incorporates time-dependent tran-
scription rates encoding fluctuations in the transcriptional process. We are interested to derive a general form of first
passage time distribution for a population of cells each subjected to the same time-dependent transcription rates,
kt(t). It is possible to obtain a description of FPT distribution under the assumption that kt(t) is differentiable at
each point of time. We show that the mean mRNA dynamics in ON-OFF model can be obtained as a special case of
BD process with time-dependent rates and an approximate expression of MFPT can be obtained for initial normal
distribution on mRNA numbers. Periodically driven biological systems are often encountered in various contexts like
cAMP signalling [33], cell cycle and circadian rhythms [34–36], etc. In the context of gene expression, modulated
reaction rate has recently got some attention [37, 38] and the probability distribution of the mRNA numbers has been
obtained [22, 39, 40]. This motivates us to analyze the time-dependent BD process with a sinusoidal transcription rate
and to obtain an expression for the FPT distribution. An interesting observation is that there exist extremal values
of MFPT as a function of time period and phase of kt. The robustness of the extremal values has been ascertained by
incorporating fluctuations in frequency and amplitude of periodic transcription rate. The results have been compared
with the numerical simulation of the stochastic reactions implemented by a modified Gillespie algorithm considering
the time dependence in reaction rates [21, 41, 42].

The paper is organized as follows: in section [II] we present the formalism of FPT distribution function and different
moments of FPT for a general case, in section [II A] we discuss time independent BD process which is the limiting
case of time-dependent BD process, in section (II B) we have calculated MFPT for a population of ON-OFF cells, in
section [III A] we will provide an approximate solution of FPT distribution function for sinusoidal transcription rate
of BD process and compare approximately obtained value of moments of FPT distribution with numerical simulation,
in section III B we show FPT distribution and variation of MFPT, standard deviation with different time period and
phase of kt for square wave transcription rate by stochastic simulation, in section [IV] we will discuss the results which
we obtain from numerical simulation or analytical calculation for different type of transcription rates.

FIG. 1: Schematic diagram of BD model. mRNA is transcribed from active DNA with transcription rate kt and mRNAs
degrade with degradation rate kd.

II. FIRST PASSAGE TIME DISTRIBUTION

Transcription of mRNA and its subsequent degradation can be modelled as two first order irreversible chemical
reactions:

D
kt−→M

kd−→ ∅ (1)

where D stands for active DNA which transcribes at a rate kt, producing mRNAs, M , and kd is the rate of degradation.
Often, extracellular signals activate complex biochemical signal transcription pathways that result in a chemical
modification of specific transcription factors [43]. In eukaryotic cells the signalling molecules may simply enter the cell
and directly bind to the transcription factor inducing a physical change in the shape of the transcription factor protein
rendering it into an active molecular state. The transcription factor in its active state binds to the promoter region
of a gene and increases the rate of transcription [44]. Moreover, transcription factor can be activator or repressor
and they both can be activated or deactivated by signalling molecules and in this work our focus is on the activator
activation. Thus global environmental signals that fluctuate in time cause fluctuations in the rate of transcription
and consequently the transcription rate, in general, should be time-dependent, i.e. kt(t).
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The process of transcription being a stochastic process the number of mRNAs present in a cell is a fluctuating
variable and one is interested in finding the probability of finding n number of mRNAs at time t, i.e. p(n, t),
satisfying the master equation:

∂tp(n, t) = kt[p(n− 1, t)− p(n, t)] + kd[(n+ 1)p(n+ 1, t)− np(n, t). (2)

Let use the functions rn = kt(t) and gn = nkd and rewrite the above equation as

∂tp(n, t) = [pn−1rn−1 − pnrn] + [pn+1gn+1 − pngn]. (3)

If kt >> kd the production of mRNA will be higher consequently the number of mRNAs will be larger such that
mRNA can be considered to be a continuous variable and our aim is to approximate the dynamics by a Fokker-Planck
equation. The two descriptions are in general not exactly equivalent [45, 46] and the approach is to write the master
equation as a Kramer’s-Moyal expansion and retain terms up to second order from terms involving n ± 1 to obtain
the Fokker-Planck equation [17, 47]. Under this assumption we obtain the Fokker-Planck from Eq.(3)

∂tp(x, t|x0, 0) = − ∂

∂x

[
(kt(t)− xkd)p(x, t|x0, 0)

]
+

1

2

∂2

∂x2

[
(kt(t) + xkd)p(x, t|x0, 0)

]
. (4)

where p(x, t|x0, 0) is the probability of having x numbers of mRNA at time t given that the initial number of mRNA
was x0.

Now we briefly outline the procedure for computing the FPT distribution [47]. We are interested in the time taken
to reach a specific mRNA concentration nc starting from an initial number of mRNAs x ∈ (0, nc). The probability
that after time t the mRNA numbers are still in an interval (0, nc) is∫ nc

0

p(x′, t|x, 0)dx′ ≡ G<(x, t). (5)

Let T denote the FPT, within which mRNA leaves the interval (0, nc), such that

G<(x, t) = Prob(t ≤ T ) =

∫ nc

0

p(x′, t|x, 0)dx′ (6)

and the FPT distribution function f<(x, T ) can be written as

f<(x, T ) =
∂

∂t
Prob(t ≥ T ) = −∂G<(x, t)

∂t

∣∣
t=T

. (7)

Our primary aim is to solve for p(x, t|x0, 0) and we start by taking Fourier transform:

F [p] = ρ(ω, t) =

∫ ∞
−∞

p(x, t|x0, 0)e−iωxdx. (8)

It is to be noted that the number of mRNAs can only be positive, even though the limits in the above integral ranges
from −∞ to ∞. Fourier transformation of Eq. (4) gives

∂tρ(ω, t) = −
[
iωkt(t) +

kt(t)ω
2

2

]
ρ(ω, t)− ωkd∂ωρ(ω, t). (9)

where we have neglected the ∂2ω term assuming small value of the degradation constant kd. For solving Eq. (9) we
use the ansatz

ρ(ω, t) = exp(

∞∑
n=1

bn(t)ωn) (10)

and obtain

∞∑
n=1

[dbn
dt

+ nkdbn(t)
]
ωn + iωkt(t) +

kt(t)ω
2

2
= 0. (11)
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The above set of odes can be solved term by term

b1(t) = b10e
−kdt − iH1(t)e−kdt, H1(t) =

∫ t

0

kt(t
′)ekdt

′
dt′

b2(t) = b20e
−2kdt −H2(t)e−2kdt/2, H2(t) =

∫ t

0

kt(t
′)e2kdt

′
dt′

bn(t) = bn0e
−nkdt ∀n ≥ 3 (12)

resulting in the solution of Eq. (9)

ρ(ω, t) = exp
[
ω(b10e

−kdt − iH1(t)e−kdt) + ω2(b20e
−2kdt −H2(t)e−2kdt/2) +

∞∑
n=3

ωnbn0e
−nkdt

]
. (13)

From the initial condition ρ(ω, 0) = e−iωx0 we can fix b10 = −ix0 and bn0 = 0 ∀n ≥ 2. Finally the general solution
for ρ(ω, t) can be given by

ρ(ω, t) = exp
[
− iω

(
x0 +H1(t)

)
e−kdt − ω2H2(t)e−2kdt/2)

]
(14)

Inverse Fourier transform of ρ(ω, t) yields the solution of Eq. (4)

p(x, t|x0, 0) =
1√

2πH2(t)e−2kdt
exp
[
−
(
x− (x0 +H1(t)e−kdt)

)2
2H2(t)e−2kdt

]
. (15)

It is now straightforward to obtain G<(x0, t) from Eq. (6) and the FPT distribution from Eq. (7)

f<(x0, T ) = −1

2

∂

∂t

[
erf

(
x0 +H1(t)√

2H2(t)

)
− erf

(
x0 +H1(t)− ncekdt√

2H2(t)

)]∣∣∣∣
T

(16)

The above FPT distribution is an approximate solution for any time-dependent BD process that can be described by
an equivalent Fokker-Planck equation with the additional constraint that kt(t) should be differentiable at every point
of time. It is also useful to estimate the FPT statistics when the initial number of mRNAs are at steady state which
may lie below or above threshold. For instances the initial mRNA numbers lying above threshold, nc < x < ∞, we
will define

G>(x, t) =

∫ ∞
nc

p(x′, t|x, 0)dx′. (17)

and similar to the above calculations we can obtain the FPT distribution

f>(x0, T ) = −1

2

∂

∂t

[
erf

(
x0 +H1(t)− ncekdt√

2H2(t)

)]∣∣∣∣
T

(18)

Once we obtain the FPT distribution we can calculate the mean, µT , and the standard deviation, σT , for any time-
dependent transcription process. We will show the dependence of these moments on properties of the time-dependent
transcription rate, kt(t), as transcriptional threshold, nc, is set at different levels. A similar approach using Laplace
transform is able to provide Laplace transformed representation of the FPT distribution [48].

A. Time Independent Birth-Death Process

As a simple exercise we consider constant transcription rate, kt(t) = k1 ∀ t and calculate the FPT distributions

f>(x0, T ) =
k1e

kdT

√
2πH2

exp

(
− (x0 +H1 − ncekdT )2

2H2

)[
x0 +H1 − ncekdT

2H2
ekdT +

nckd
k1
− 1

]
(19)

f<(x0, T ) =
k1e

kdT

√
2πH2

exp

(
− (x0 +H1)2

2H2

)[
x0 +H1

2H2
ekdT − 1

]
− f>(x0, T ) (20)
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FIG. 2: The FPT distributions for time independent birth death process for initial mRNA numbers drawn from a normal
distribution, N (µx0 , 1) with mean at steady state (µx0 = xss = k1/kd) where k1 = 20, kd = 0.01, (a) above threshold
nc = xss − 10 (b) below threshold nc = xss + 10. The insets show the power-law tail of the FPT distributions for different

k1/kd ratios The numerical estimates are averaged over 104 realizations. The black line indicates f(T ) ≈ T−3/2 as a guide to
the eye.

where, H1(T ) = (k1/kd)[exp(kdT ) − 1] and H2(T ) = (k1/2kd)[exp(2kdT ) − 1]. Keeping the initial mRNA numbers
fixed at steady state value, xss = k1/kd, above and below the threshold we calculate the FPT and compare with the
distributions obtained numerically from Gillespie algorithm [Fig.(2)]. The FPT distributions have power-law tails and
are shown in the insets of for different ratios of k1/kd [Fig.(3)]. For our choice of the initial values of mRNA numbers
drawn from a normal distribution N (µx0

, 1) with the mean value set at the steady state µx0
= xss = k1/kd the large

time behavior of FPT distribution for small kd can be given as

f≶(x, T ) ∼ T (−3/2) nc√
k1
. (21)

Hence the tail of the FPT distribution f(T ) ∼ T−3/2 and the agreement is good for a wide range of levels of
transcription as observed by varying k1/kd. If the initial number of mRNA, x = 0, the behavior of the moments of
the FPT can be given by simple expressions if we set the threshold value high i.e., nc > k1/kd >> 1

• µT = nc/k1

• σT =
√
nc/k1

These approximate estimates and the results of numerical simulations of the mRNA dynamics implemented by the
Gillespie algorithm are shown in Fig.(3). We also show the errorbars in MFPT obtained from the standard deviation
of numerically estimated FPT distributions. It is expected that when mRNA levels are higher the Fokker-Planck
approximation is appropriate and the agreement with simulation results should be better. We also observe that the
error ∼ |µT − µnumT | decreases with transcription rates, k1. For small, k1, the mRNA copy numbers are less, and the
errors are higher as seen for different choice of parameters of the model.

B. ON-OFF Model as a time-dependent Birth-Death process

In the birth-death model, we assume that the promoter is always in an active state and the transcription rate is
constant with time. In general, the promoter is not always in an active state but switches between an active state and
an inactive state. The ON-OFF model of transcription can explain the experimental observation that the mRNAs
are produced in bursts obeying non-Poissonian statistics [7, 19]. The ON-OFF model can be represented as following
first order reactions:

Doff
kon−−−⇀↽−−−
koff

Don
k1−→M

kd−→ ∅ (22)
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1FIG. 3: Variation of MFPT (µT ) and standard deviation of FPT with transcription rate, k1, are shown (a) for different initial
mRNA numbers are drawn from a normal distribution, N (µx, 1), with mean µx and threshold value set at nc = 30 (b) for
different threshold value, nc, and with mean initial mRNA number µx = 0. The degradation rate is fixed at kd = 0.01. The
deviation of the MFPT simulation results with the approximate estimate is shown in (c) for different cutoff (nc) values and fixed
degradation rate, kd = 0.01 (d) for different kd and nc fixed at 5. All numerical estimates are averaged over 104 realizations.

where Don and Doff are the active and the inactive states of the promoter and kon and koff are activation and
inactivation rate constants, respectively. The transcription takes place with a constant rate k1 producing mRNA (M)
which degrades at a rate kd. Alternatively, the ON-OFF model can be treated as a BD model where DNA is always
in an active state and transcribing with a time-dependent transcription rate, kt(t), given by

kt(t) = D0k1e
−(kon+koff )t +

k1kon
kon + koff

[
1− e−(kon+koff )t

]
, (23)

where D0 is initial value of promoters which are in active state. From the expression of the effective transcription
rate kt we can calculate H1 and H2 as follow

H1(t) = c1(1− e−a1t) + b1(ekdt − 1)

H2(t) = c2(1− e−a2t) + b2(ekdt − 1). (24)

involving the constants c1 = k1
kon+koff−kd (D0 − kon

kon+koff
), b1 = k1kon

kd(kon+koff )
, a1 = kon + koff − kd, c2 =

k1
kon+koff−2kd (D0 − kon

kon+koff
), b2 = k1kon

2kd(kon+koff )
, a2 = kon + koff − 2kd. The detailed calculation of kt(t) is shown in

Appendix (A).
The FPT distributions f<(x0, T ) for ON-OFF model is obtained from Eq.(16) with the time-dependent functions

defined as follows:

f<(x0, T ) =
1√

2πH2(T )

[
e
− (H1(T )+x0)2

2H2(T )

(
a1c1e

−a1T + b1kde
kdT − (x0 +H1(T ))(a2c2e

−a2T + 2b2kde
2kdT )

2H2(T )

)
(25)

+ e
− (H1(T )+x0−nce

kdT )2

2H2(T )

(
a1c1e

−a1T + b1kde
kdT − nckdekdT −

(x0 +H1(T )− ncekdT )(a2c2e
−a2T + 2b2kde

2kdT )

2H2(T )

)]

Now under the condition (kon + koff ) >> 1 the effective transcription rate will be k1kon
kon+koff

and if kd << 1 the mean

first passage time is given by

µT =
nc − µx

β

[ 1

kon
+

1

koff

]
(26)
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σT =

√
nc − µx
β

[ 1

kon
+

1

koff

]
. (27)

where the mean burst size is denoted by β = k1/koff and µx denotes the average initial values of mRNA (x0) of a
population of cells. The typical values of model parameters are taken from single cell studies [18] and the dependence
of the MFPT on β is shown in Fig.4. We also show the dependence of MFPT on the mean burst frequency, defined
as βf = kon [49, 50], for varying initial conditions and different thresholds in Fig.4.
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1FIG. 4: Variation of MFPT and standard deviation of FPT are shown for varying mean burst size, β (= k1/koff ) (a) for
different values of mean initial mRNA numbers drawn from normal distribution and fixed threshold nc = 30. (b) for different
threshold values and initial mRNA x = 0. The parameter values are kd = 0.01, kon = 5, koff = 2 . Variation of MFPT and
standard deviation of FPT are shown for varying mean burst frequency, βf (= kon) (c) for different values of mean initial
mRNAs drawn from normal distribution and fixed threshold nc = 30 and k1 = 20 (d) for different threshold values and initial
mRNA number x = 0. Numerical averages are computed over 104 realizations.

III. PERIODICALLY MODULATED TRANSCRIPTION RATE

In this section we consider periodically driven transcription rate and calculate the dependence of the MFPT on the
phase and the time period of the transcription rate.

A. Sinusoidal transcription rate

First we consider the case where transcription rate is modulated as

kt(t) = k1 + k2sin
(2πt

τ
+ φ

)
, (28)

where k1, k2 are constants, τ is the time period, φ is the phase of transcription rate. All cells in the population
experience identical extrinsic modulation kt(t) and the FPT distribution for the sinusoidal transcription rate is given
by:

f(x0, T ) =
1√

2πH2(T )

[
e
− (H1(T )+x0−nce

kdT )2

2H2(T )

(
d

dT

(
H1(T ) + x0 − ncekdT

)
− (H1(T ) + x0 − ncekdT )

2H2(T )

dH2

dT

)
− e−

(H1(T )+x0)2

2H2(T )

(
d

dT

(
H1(T ) + x0

)
− (H1(T ) + x0)

2H2(T )

dH2

dT

)]
(29)
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where the time-dependent functions depend on transcription rate Eq. (28)

H1(t) =

∫ t

0

kt(t
′)ekdt

′
dt′ (30)

H2(t) =

∫ t

0

kt(t
′)e2kdt

′
dt′. (31)

Now if we consider initial value of mRNA, x0 to be 0 and kd << 1, then we will get

H1(t) ' H2(t) = k1t−
k2τ

2π

[
cos
(2πt

τ
+ φ

)
− cos(φ)

]
≡ H(t). (32)

Now if we define k(t) as

k(t) =
2π

τ
H(t) =

2k1πt

τ
− k2

[
cos
(2πt

τ
+ φ

)
− cos(φ)

]
, (33)

then the form of FPT distribution will be given as follow

f(T ) =
kt(T )

2

√
1

τk(T )
e−

(k(T )−2πnc/τ)
2

4πk(T )/τ . (34)

The approximate FPT distribution, f(T ), and the FPT distribution obtained from Gillespie simulation is shown
in Fig.5(a) for fixed values of the parameters φ, τ , nc, k1, k2. We numerically estimate the MFPT and the standard
deviation from the FPT distribution given in Eq.(29) and compare with stochastic simulation results. The variation of
the MFPT with the time period, τ , is shown in Fig.5(b) for two different values of threshold, nc while the modulation
phase, φ = 0. The dependence on the threshold is obvious as setting a higher cutoff needs more mRNAs to be
produced requiring more time but an important observation is that the MFPT show a minimum for φ = 0. If the
phase of the transcription rate is varied the behavior of MFPT with time period changes and is shown in Fig.5(c).
The non-trivial dependence of MFPT on the phase and the time period and occurrence of extremal values prompts
us to represent MFPT as 3D surface as in Fig.5(d) indicating the existence of a global extremal value. Consideration
of sinusoidal transcription rate is an idealization and to establish the robustness of the above mentioned feature in a
slightly more realistic scenario we introduce noise in the time-dependent transcription rate as

kt(t) = k1 + k2sin
(2πt

τ
+ φ

)
+ ξ (35)

where ξ is some random noise drawn from an uniform distribution. We show µT (τ, φ) in Appendix Fig.A for different
values of noise strength ξ. The results indicate that the qualitative behavior of µT (τ, φ) remains unchanged with the
existence of global minimum robust to fluctuations.

B. Square wave transcription rate

Now we consider a periodic signal in the form of a square wave

kt(t) =

{
a (0− φ) ≤ t ≤ τ

2 (1− φ)

b τ
2 (1− φ) ≤ t ≤ τ

2 (2− φ).
(36)

Schematic diagram of kt(t) is shown in Fig.6(a) illustrating the phase φ and the time-period τ and here also kt(t) is
an extrinsic modulation affecting all cells in the population. The minimum value a shows there can be some basal
transcription and b is the maximum transcription rate. For square wave transcription rate kt(t) is not differentiable at
all time and we can not explicitly calculate FPT distribution and show the numerical data obtained from stochastic
simulation in Fig.6(b). Simulation results show minimum with respect to time period for phase of the signal, φ < 1
Fig. 6(c),(d). However, unlike sinusoidal modulation there is no maximum in MFPT for phase φ ∼ 1.
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FIG. 5: FPT for sinusoidal transcription rate. (a) Results of the stochastic simulation algorithm (SSA) are shown with FPT
in Eq. 29. The histogram was obtained from 105 realizations. The parameter values are φ = 0, nc = 75, k1 = 11, k2 =
4, kd = 0.005, τ = 50. (b) Variation of MFPT with τ obtained from numerical simulation (dotted plot) and enumeration
from Eq. (29) (solid line) are shown for two cutoff values, (blue: nc = 60) and (green: nc = 80). The parameter values are
φ = 0, k1 = 11, k2 = 4, kd = 0.005. Numerical averages are computed over 104 realizations. (c) MFPT vs. τ for different φ. (d)
Numerically estimated µT with respect to φ and τ .

IV. DISCUSSION

We have calculated the first passage time distribution for stochastic gene regulation modeled as birth-death process.
An approximate expression of the FPT distribution of a population of cells and its moments are obtained for BD
process with the generalization that the reaction rates are time-dependent. The MFPT obtained for the usual BD
process (time-independent rates) behaves as µT = nc/k1 and is easily understandable as follows: higher transcription
rate k1 implies increased production of mRNAs and higher probability of reaching a fixed threshold, nc. Again, the
time required for the mRNAs to attain a higher threshold will be proportionately more. In the context of recent
studies of gene-regulation in single cells, it is meaningful to investigate FPT statistics for such systems showing bursty
mRNA dynamics [7]. The ON-OFF model is a simple model capturing the mRNA burstiness and we demonstrate
that the mean evolution of a population of ON-OFF cells is equivalent to a BD process with effective time-dependent
rates. We show that our method is easily applicable for ON-OFF model and confirm that the MFPT is inversely
proportional to mean mRNA burst size, β = k1/koff [32]. Approximate FPT distributions are calculated for ON-OFF
models where initial distribution of mRNA numbers are Gaussian with arbitrary mean levels and threshold levels and
the results are compared with numerical simulations performed by stochastic Gillespie algorithm.



10

a b

3 4 5 6 7
0

0.02

0.04

0.06

0.08

FPT, T

F
P

T
 d

is
t
r
ib

u
t
io

n
, 
f
(
T

)

 

 

simulation

c

10 20 30 40 50 60

10

20

30

40

50

Time period, τ

µ
T

n
c

= 30

n
c

= 60

d

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

Time period, τ

µ
T

φ = 0
φ = 1/4
φ = 1/2
φ = 3/4
φ = 1

1
FIG. 6: (a) Schematic diagram of square wave transcription rate, kt whose time period is τ and amplitude is (b− a) shown for
different phases, φ. (b) FPT distribution from SSA averaged over 105 realizations. Parameter values a = 1, b = 7, nc = 30, τ =
40, φ = 1, kd = 0.05. (c) Variation of MFPT with τ obtained from SSA shown for two cutoff values, (blue: nc = 30) and (green:
nc = 50) and φ = 0. (d) Variation of MFPT with τ for different φ for fixed nc = 30.

The analysis of stochastic gene regulation with time-dependent transcription rates is important to understand and
model the effects of the noisy cellular environment [22]. In earlier studies, it has been demonstrated that in the
presence of periodically modulated environmental fluctuations the process of transcription acts as a low-pass filter
with definite fitness advantage [51, 52]. We find that the MFPT has non-trivial dependence on the phase and the
period of the modulated transcription rates. For small phase, φ ≈ 0, as time period, τ , of periodic modulation is
increased the MFPT shows a non-monotonic dependence having a distinct minimum. For small τ within one cycle
of variation of transcription rates, the system does not yield enough mRNAs to reach the threshold, hence MFPT
is high. In the large τ limit the transcriptional process behaves as a RC filter [21, 51], once mRNA level is low
(discharged) the system has to wait longer to reach the desired mRNA level (charging). However, the behavior is
opposite in the case of φ = π showing a distinct maximum at an intermediate value of τ . But for square wave
modulation varying phase shifts introduce only a minimum in MFPT with respect to time period. Unlike the case of
periodic modulation in the case of square wave for φ = 1 the transcription rate is constantly in upstate disallowing
any relaxation and MFPT attains a low value for large τ . Systematically varying the phase and the time period we
obtain the landscape of MFPT indicating that suitable modulation of upstream/downstream pathways can precisely
regulate gene transcription. The recent advancements in single-molecule observations of RNA in living cells [37] and
the ability to optically control genetic circuits [38] make our results relevant in designing optimal performance of
genetic regulatory circuits. Recent experiments analyze the causal link between the stability of mRNAs and mRNA
concentration as the post-transcriptional mechanism of controlling gene expression [53]. Studying first passage time
to reach a particular mRNA concentration helps us to understand the optimum time for having stable mRNAs and
potentially opens a way to understand the regulation of gene expression.

Author Contributions: KB,MS,AS,AG designed the project. KB, AG performed the majority of the analysis
and wrote the paper.
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APPENDIX

A. ON-OFF MODEL : EFFECTIVE TRANSCRIPTION RATE

Reaction mechanism for birth-death model is

D
kt−→ D +M (A-1)

M
kd−→ φ (A-2)

Rate equation of mRNA for this model is

dM

dt
= kt(t)− kdM (A-3)

We assume that DNA is always in active state and concentration of DNA is one.
Reaction mechanism for ON-OFF model is

Doff
kon−−→ Don (A-4)

Don
koff−−−→ Doff (A-5)

Don
k1−→ Don +M (A-6)

M
kd−→ φ (A-7)

Rate equation for this model will be

dDon

dt
= kon − (kon + koff )Don (A-8)

dM

dt
= k1Don − kdM (A-9)

where (Don +Doff ) = 1 and if we solve for Don then we will get

Don(t) = D0e
−(kon+koff )t +

kon
kon + koff

[
1− e−(kon+koff )t

]
. (A-10)

So effectively rate equation for mRNA for ON-OFF model is

dM

dt
= D0k1e

−(kon+koff )t +
k1kon

kon + koff

[
1− e−(kon+koff )t

]
− kdM. (A-11)

If we compare Eq. (A-3) with Eq. (A-11) we obtain

kt(t) = D0k1e
−(kon+koff )t +

k1kon
kon + koff

[
1− e−(kon+koff )t

]
. (A-12)

B. ROBUSTNESS OF MFPT FOR SINUSOIDAL MODULATION AND NOISE

To see whether the qualitative behavior of µT (τ, φ) remains unchanged in presence of any fluctuating environment,
we add amplitude fluctuation into the sinusoidal transcription rate:

kt(t) = k1 + k2 sin
(2πt

τ
+ φ

)
+ ξ (B-13)

where ξ ∈ U(0, σ) is noise drawn from an uniform distribution. For this type of fluctuating signal µT (τ, φ) is shown
in Fig.A for different additive noise strengths σ. Since the intrinsic transcriptional parameters are kept constant, the
noise of the mRNAs are constant at σM = 100. Higher noise reduces the MFPT but retains the generic feature of
MFPT dependence on time-period and phase.
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