Modelling and Design of Graphene-based THz Devices

by

Liang Yang

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

School of Electronic Engineering and Computer Science
Queen Mary University of London
United Kingdom

November 2018
TO MY PARENTS
Abstract

In recent years, terahertz (THz) frequency band has gained great interest of researchers in a number of fields due to attractive THz applications such as wireless communications, remote sensing and imaging. Graphene, a two-dimensional carbon material with extraordinary properties in the THz spectrum, has been considered as a promising candidate for novel THz devices to achieve these valuable applications. As related modelling methods are indispensable, this thesis summarises my PhD work on the development of novel numerical methods for graphene-based THz devices.

In the THz spectrum, both electrostatic bias and magnetostatic bias can change the conductivity of graphene. A finite-difference time-domain (FDTD) modelling based on auxiliary element method is proposed for the tunable linear responses of graphene. Moreover, graphene has nonlinear responses under strong THz radiation. A novel FDTD method, which is based on a $J - E$ characteristic formula, is proposed for modelling the nonlinear electrodynamic responses of graphene in the THz spectrum. FDTD results of linear responses are in agreement with theoretical and measurement results in the published literature. Nonlinear FDTD results successfully demonstrate nonlinear phenomena including odd-harmonic generations and frequency-mixing effects. The proposed FDTD modelling methods can be used as full-wave design tools for graphene-based devices.

In addition, the FDTD modelling methods are utilised in the design of electrically tunable graphene-based reflectarray antennas and magnetically tunable graphene-based reflectors. Regarding the tunable reflectors, their performance has been experimentally explored and discussed. In addition, a modified equivalent circuit modelling is developed to extract the parameters of graphene from measurement data.
Acknowledgments

Foremost, I want to express my sincere gratitude to my primary supervisor Prof. Yang Hao. His guidance and continuous support have encouraged me to go through the four-year research in London. I am also particularly grateful to my second supervisor Dr. Khalid Z. Rajab and independent assessor Dr. Akram Alomainy for proofreading of my stage reports and valuable comments on my research. Additionally, I appreciate the funding provided by the China Scholarship Council (CSC).

I would like to thank Dr. Anestis Katsounaros, Dr. Oleksandr Sushko, Dr. Max Munoz Torrico, Dr. Luigi La Spada, Dr. Henry Giddens, Dr. Jing Tian, Dr. Darryl Smith and Dr. Hangfeng Zhang for the research work we did together, and thank the help from Dr. Jingbo Wu at University of Cambridge and the cooperation provided by Prof. Alexey B. Kuzmenko and Dr. Jean-Marie Pomerol at University of Geneva. Moreover, I would like to give my thanks to other colleagues in our Antenna & Electromagnetics Research Group for valuable discussions, especially Dr. Hai Lin, Dr. Hongyu Shi, Dr. Yangjie Liu, Dr. Qiao Cheng, Dr. Biyi Wu, Dr. Jiefu Zhang, Dr. Menglin Chen and Mr. Dingliang Wen. I also would like to thank the rest of the group members for the positive working atmosphere we created together.

As the part of my life in London, I am very fortunate to acquire many friends: Dr. Min Zhou, Dr. Rui Zhang, Dr. Li Cheng, Dr. Ke Yang, Dr. Kang Liu, Dr. Jia Ran, Mr. Wanlin Li, Dr. Baiyang Liu, Mr. Yujie Liu, Mr. Hongchen Chu and Mr. Su Wei. It is friendships that enrich the memory of the last four years.

Finally and very importantly, thanks and appreciations must go to my parents. Their most profound love and unconditional support have always motivated me.
Table of Contents

Abstract

Acknowledgments

Table of Contents

List of Figures

List of Tables

List of Abbreviations

1 Introduction

1.1 The Terahertz Region

1.1.1 Definition

1.1.2 Examples of Terahertz Applications

1.2 Numerical Modelling Techniques in Electromagnetics

1.2.1 Finite Element Method

1.2.2 Method of Moments

1.2.3 Finite-Difference Time-Domain Method

1.3 Objectives of the Thesis

1.4 Outline of the Thesis

References
2 Background of Graphene

2.1 Fabrication Methods .. 16
 2.1.1 Mechanical Exfoliation 17
 2.1.2 Epitaxial Growth 18
 2.1.3 Chemical Vapour Deposition 19

2.2 Electrons in Graphene 21
 2.2.1 Electron Density 21
 2.2.2 Electron Mobility 24
 2.2.3 Electron Relaxation Time 25

2.3 Linear Response of Graphene 26
 2.3.1 Isotropic Conductivity 26
 2.3.2 Anisotropic Conductivity 29
 2.3.3 Faraday and Kerr Rotation 30

2.4 Non-linear Response of Graphene 31
 2.4.1 Theories on the Nonlinearity of Graphene 32
 2.4.2 Experimental Observation of the Nonlinearity of Graphene 36

2.5 Graphene Plasmonics 36
 2.5.1 Patterned Graphene 37
 2.5.2 Continuous Graphene with Grating Structure 38

2.6 Graphene-based THz Devices 39
 2.6.1 Graphene-based Salisbury Screen 39
 2.6.2 Graphene-based Antenna 40

2.7 Summary .. 41

References ... 43

3 Finite-Difference Time-Domain Modelling on Linearity of Graphene 58

3.1 Introduction .. 58

3.2 The state-of-the-art of FDTD Modelling on Linear Response of Graphene 59
 3.2.1 FDTD Modelling on the 2D Nature of Graphene 59
3.2.2 FDTD Modelling on the Linear Conductivity of Graphene ... 61
3.3 Proposed FDTD Modelling on Linear Response of Graphene ... 61
3.4 Simulation Results and Validation 67
 3.4.1 Case One: Tunable Transmission through Graphene 68
 3.4.2 Case Two: Faraday and Kerr Rotation of Graphene 68
 3.4.3 Case Three: Graphene-based Salisbury Screen 71
3.5 Summary .. 73
References .. 75

4 Finite-Difference Time-Domain Modelling on Nonlinearity of Graphene 79
 4.1 Introduction .. 79
 4.2 The state-of-the-art of FDTD Modelling on Nonlinear Properties of Material 80
 4.3 Proposed FDTD Modelling on Nonlinear Response of Graphene 82
 4.4 The Newton-Raphson Method 86
 4.5 Simulation Results and Validation 88
 4.5.1 Case One: Odd-harmonic Generation 89
 4.5.2 Case Two: Frequency-mixing Effect 92
 4.6 Summary .. 94
References ... 95

5 Graphene-based Reflector under Magnetostatic Bias 98
 5.1 Introduction .. 98
 5.2 Sample Fabrication .. 99
 5.3 FDTD Modelling and Equivalent Circuit Model 100
 5.3.1 The Conductivity of Bilayer CVD Graphene 100
 5.3.2 The Permittivity of Glass Substrate 101
 5.3.3 The Permittivity of ITO Ground 102
 5.3.4 The Setup of FDTD Modelling 104
 5.3.5 Equivalent Circuit Model 105
 5.3.6 The Validation of the ECM 107
5.4 Measurement Setup and Results 107
5.5 Further Discussion ... 110
5.6 Summary .. 112
References ... 113

6 Graphene-based Reflectarray Antennas 118
6.1 Introduction ... 118
6.2 Graphene-based Reflectarray Antenna using Graphene Patch Array . . 119
 6.2.1 Unit Cell Design .. 120
 6.2.2 Radiation Pattern .. 122
 6.2.3 Further Discussion .. 122
6.3 Graphene-based Reflectarray Antenna using Continuous Graphene Sheet . 125
 6.3.1 Unit Cell Design .. 125
 6.3.2 Binary Reflection .. 127
 6.3.3 Further Discussion .. 129
6.4 Summary .. 130
References ... 131

7 Conclusion and Future Work ... 134
7.1 Conclusion .. 134
7.2 Future Work ... 136

Appendix A Author’s publications 138
Appendix B FDTD Updating Equations Used for Glass and ITO 139
Appendix C Scanning Electron Microscope of ITO 141
Appendix D Raw Measurement Data 142
Appendix E Plane-wave Excitation Used in Chapter 6 144
List of Figures

2.1 A schematic of the two production approaches of graphene. The top-down approach uses natural graphite to obtain graphene. And the bottom-up approach uses carbon atoms to synthesise graphene [10]. 16

2.2 (a) A schematic of mechanical exfoliation using Scotch tapes to produce graphene (adapted from [17]). (b) Scotch tapes add forces on a thin graphite flake to cleave a graphene sheet (adapted from [12]) 17

2.3 A schematic of epitaxial growth graphene using silicon carbide (adapted from [20]). Silicon atoms leave the surface of silicon carbide at high temperature in a vacuum environment. The left carbon atoms form graphene. 18

2.4 A schematic of CVD graphene. Carbon atoms decomposed from hydrocarbon gas form graphene on transition metals acting as substrates (adapted from [27]). 19

2.5 Fermi-Dirac distribution at temperature 150 K, 300 K and 600 K. With the increment of energy level ϵ, occupation probability of electrons decrease. The probability of electrons occupying the level of chemical potential is 50%. 22

2.6 Carrier densities calculated by the integration equation (2.2) and its simplified equation (2.3) under the condition $|\mu_c| \gg k_B T$. At the room temperature 300 K ($k_B T = 0.0259$ eV), the results of two equations show good consistency. 23
2.7 Carrier density induced by gate voltage. Graphene is treated as intrinsic with $V_{CNP} = 0$. The cases of quartz (SiO_2) insulator and alumina (Al_2O_3) insulator are plotted in the figure. The thickness of both insulator is set as 300 nm. The relative permittivity of SiO_2 (Al_2O_3) is 3.9 (8.9).

2.8 Band diagrams: n-type (n-dope) graphene with purple parts representing the energy levels occupied by electrons [75].

2.9 Linear conductivity of graphene. Formula 1 considers the effect interband transitions. Formula 2 does not consider the effect interband transitions. For all cases, $T = 300$ K; for the case 1, $\mu_c = 0.2$ eV, $\Gamma = 5$ meV; for the case 2, $\mu_c = 0.2$ eV, $\Gamma = 10$ meV; for the case 3, $\mu_c = 0.4$ eV, $\Gamma = 5$ meV.

2.10 Cyclotron frequencies with different chemical potentials. The strength of magnetic bias B_0 is in a range from 0.5 T to 3.0 T.

2.11 A schematic of the Faraday rotation angle θ_F and the Kerr rotation angle θ_K of graphene under magnetostatic bias B_0. Due to the Faraday (Kerr) effect, the linear polarisation of incidence becomes the elliptical polarisation of transmission (reflection). The rotation angle is defined as the angle between the polarisation direction of original incidence and the main axis of elliptical polarisation.

2.12 Qualitative understanding: Electric field, induced current and its expansion showing the odd-harmonic generation.

2.13 The intraband third-order dimensionless conductivity contributing to third-harmonic generations with $\gamma = 0.1$.

2.14 The intraband third-order dimensionless conductivity contributing to absorption saturation with $\gamma = 0.1$.

2.15 Requirement on electric field amplitude for various chemical potentials. In the yellow region, the amplitude is not high enough.
3.1 A graphene sheet lies in the xy-plane. To remove the Dirac-Delta function from updating equations, a spatial integration is taken from $-\Delta z/2$ to $\Delta z/2$ around the graphene sheet.

3.2 Real part and imaginary part surface conductivity of graphene. The CR frequencies are 2.4 THz, 4.8 THz and 7.2 THz ($T = 300$ K, $\mu_c = 0.2$ eV and $\tau = 0.4$ ps).

3.3 Total transmission coefficient of graphene. The comparison of FDTD simulation results (solid lines) and equivalent circuit model [30] results (symbols) is shown in the figure. Different chemical potentials and magnetic biasing are used.

3.4 Faraday rotations of a suspended graphene. FDTD results (solid lines) are compared with theoretical results (symbols) below 10 THz.

3.5 Kerr rotations of a suspended graphene. FDTD results (solid lines) are compared with theoretical results (symbols) below 10 THz.

3.6 The schematic diagram of graphene-based Salisbury screen: (a) single-layer Salisbury screen (b) three-layer Salisbury screen. The grey, blue and yellow colour represent graphene sheet, substrate and metal ground plane respectively.

3.7 Comparison between the results of equivalent circuit model (ECM) [34] and the results of FDTD for the graphene-based Salisbury screen. In FDTD simulations, the cell size takes values from 40 μm, 4 μm, 0.4 μm and 0.04 μm. When the cell size equals to 0.4 μm, the numerical result converges to the ECM result.

3.8 Reflection coefficient (dB) of graphene-based Salisbury screen. FDTD results are compared with measurement results published in [34]. N represents the layer number of Salisbury screens.
4.1 Yee cells in FDTD with a graphene sheet in $x-y$ plane. The Yee cell where the graphene sheet exists is filled with light colour. Red (blue) arrows represent electric (magnetic) fields. Δx, Δy and Δz are cell sizes in the three directions.

4.2 The normalised spectral power of two incident signals S_1 and S_2. The inset is the temporal amplitudes of S_1, S_2 and $S_1 + S_2$, which are normalised to E_0.

4.3 The normalised spectral power of the transmitted wave which demonstrates odd harmonic generation. The incidence has a 2 THz central frequency. The generated fundamental, third and fifth harmonics are emphasised by the red colour with darkness representing their strength. Various chemical potentials of graphene are taken into account.

4.4 The spectral amplitudes of third-harmonic generation at 6 THz and fifth-harmonic generation at 10 THz under three incidences with different values of E_0: 40 kV/cm, 50 kV/cm and 60 kV/cm.

4.5 The spectral amplitudes of transmitted signal through graphene for frequency-mixing effect. The incidence consists of two signals with central frequency at $f_{c1} = 2$ THz and $f_{c2} = 3$ THz, which is anticipated to generate third-order intermodulation harmonics (i.e. 1 THz, 4 THz, 7 THz and 8 THz) and other high-order harmonics due to mixing effect. Without loss of generality, odd-harmonic generations, such as 6 THz, 9 THz and 10 THz, have also been shown in the figure. Chemical potential of graphene is tuned from 0.05 eV to 0.3 eV with the step 0.05 eV.

5.1 Graphene-based reflector. The top reflective surface is stacked-bilayer graphene. The thickness of quartz glass substrate is 0.14 mm. The ground reflector is the ITO film.

5.2 The complex relative permittivity of glass substrate is fitted by the Debye model with 4 poles.
5.3 The values of ω_p and τ in the reference [26], represented by red circle, are fitted as functions of ITO thickness. The values of the sample, represented by blue rhombus, are obtained from the fitted curves.

5.4 Calculated complex relative permittivity of ITO film.

5.5 Equivalent circuit model for the graphene-based reflector.

5.6 Comparison on reflection coefficients ordained from FDTD and ECM. Magnetic bias takes the value of 0 T, 2 T, 4 T and 6 T.

5.7 The schematic diagram of the measurement setup. A grid-wire gold polarizer is used to convert randomly polarised light generated by Globar light source to linear polarised light. The linear polarised light passes through a Michelson interferometer configuration and illuminates a graphene-based reflector. The reflection from the sample is detected by a He-cooled bolometer detector. The detector and source are tilted by $\theta_1 = \theta_2 = 2.5^\circ$. The static magnetic biasing field B_0 in the direction vertical to the sample is generated by a split-coil superconducting magnet, which is not drawn in the diagram.

5.8 Intensity modulation depth. Measurement results are plotted in dots and the fitting results from ECM are plotted in solid lines. Three values of magnetostatic bias are taken: 2 T, 4 T and 6 T. It can be seen that lower spectrum has larger modulation depth. In the case of 6 T, 15% modulation depth at lower spectrum can be obtained around 3 THz.

5.9 Intensity modulation depth (IMD) vs. magnetostatic bias (B_0) at 2.5-6 THz. Chemical potential μ_c is 0.1 eV. B_0 is swept from 0 to 6 T. As B_0 is increased, the tunability increases.

5.10 Intensity modulation depth (IMD) vs. chemical potential (μ_c) at 2.5 - 6 THz. Magnetostatic bias B_0 is 6 T. μ_c is swept from 0.1 to 0.4 eV. As μ_c is decreased, the tunability generated by magnetostatic bias increases.

5.11 Figure-of-merit of Kerr rotation vs. chemical potential for $B_0 = 6$ T.
6.1 Schematic of a graphene reflectarray with graphene patches.

6.2 (a) A phase-versus-potential design curve for a unit-cell of graphene-based reflectarray antenna. (b) A potential-versus-S_{11} design curve for a unit-cell of graphene-based reflectarray antenna.

6.3 Radiation pattern ($\theta = 40^\circ$ and $\phi = 45^\circ$). (a) The graphene-based reflectarray consisting of 200×200 unit cells (b) The graphene-based reflectarray consisting of 400×400 unit cells.

6.4 UV plot of the graphene-based reflectarray consisting of 400×400 unit cells ($\theta = 20^\circ$ and $\phi = 40^\circ$) (a) each element owns assumed identical reflection coefficient (b) each element owns the actual reflection coefficient as shown in the figure 6.2.

6.5 (a) Schematic of the reconfigurable graphene reflectarray unit cell. The dimensions of the unit cell are as follows, $a = 2.4 \ \mu m$, $b = 1.6 \ \mu m$, $c = 0.76 \ \mu m$, $g = 0.08 \ \mu m$, $w = 0.1 \ \mu m$, $C_x = 2 \ \mu m$ and $C_y = 3 \ \mu m$. The inner tooth length (L) is varied in different unit cells. (b) Diagram of the 6-element super unit cell showing different inner tooth length. The dimensions of the inner tooth length are as follows, $L_1 = 0.1 \ \mu m$, $L_2 = 1.3 \ \mu m$, $L_3 = 1.5 \ \mu m$, $L_4 = 1.6 \ \mu m$, $L_5 = 1.8 \ \mu m$, and $L_6 = 2.1 \ \mu m$.

6.6 The E_y component of electric field reflected from the array surface for graphene chemical potential of 0.1 (a) and 0.9 (b) eV at 32 THz. The pink dash line represents the reflectarray surface.

C.1 The scanning electron microscope image of the ITO film with 772.7 nm thickness.

D.1 Absolute reflection intensity of graphene-based sample used in FTIR measurement.

D.2 Absolute reflection intensity of gold mirror used as reference in FTIR measurement.
E.1 The plane-wave excitation with the absence of structures in FDTD simulations
List of Tables

4-A Optimised Chemical Potentials for Odd-harmonic Generation 93
4-B Frequency Components in Frequency-mixing Effect 94
5-A Parameters Used in the Debye Model of Glass Substrate 102
6-A The Unit Cell Performance on the Graphene Sheet with $\mu_e = 0.1$ eV 127
6-B The Unit Cell Performance on the Graphene Sheet with $\mu_e = 0.9$ eV 127
6-C Graphene Properties Used in FDTD Modelling 128
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Two-Dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three-Dimensional</td>
</tr>
<tr>
<td>ADI-FDTD</td>
<td>Alternating Direction Implicit Finite-Difference Time-Domain</td>
</tr>
<tr>
<td>BEM</td>
<td>Boundary Element Method</td>
</tr>
<tr>
<td>CFL</td>
<td>Courant–Friedrich–Levy</td>
</tr>
<tr>
<td>CPML</td>
<td>Convolutional Perfectly Matched Layer</td>
</tr>
<tr>
<td>CR</td>
<td>Cyclotron Resonance</td>
</tr>
<tr>
<td>CVD</td>
<td>Chemical Vapour Disposition</td>
</tr>
<tr>
<td>ECM</td>
<td>Equivalent Circuit Modelling</td>
</tr>
<tr>
<td>EFIE</td>
<td>Electric Field Integral Equation</td>
</tr>
<tr>
<td>EM</td>
<td>Electromagnetic</td>
</tr>
<tr>
<td>FDM</td>
<td>Finite-Difference Method</td>
</tr>
<tr>
<td>FDTD</td>
<td>Finite-Difference Time-Domain</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Method</td>
</tr>
<tr>
<td>FHG</td>
<td>Fifth-order Harmonic Generation</td>
</tr>
<tr>
<td>FOM</td>
<td>Figure-of-Merit</td>
</tr>
<tr>
<td>FR</td>
<td>Faraday Rotation</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier-Transform Infrared</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>GMP</td>
<td>Graphene Magnetoplasmon</td>
</tr>
<tr>
<td>h-BN</td>
<td>Hexagonal Boron Nitride</td>
</tr>
<tr>
<td>HIE-FDTD</td>
<td>Hybrid Implicit-Explicit Finite-Difference Time-Domain</td>
</tr>
<tr>
<td>IMD</td>
<td>Intensity Modulation Depth</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>ITO</td>
<td>Indium Tin Oxide</td>
</tr>
<tr>
<td>KR</td>
<td>Kerr Rotation</td>
</tr>
<tr>
<td>LOD-FDTD</td>
<td>Locally One-Dimensional Finite-Difference Time-Domain</td>
</tr>
<tr>
<td>MFIE</td>
<td>Magnetic Field Integral Equation</td>
</tr>
<tr>
<td>MoM</td>
<td>Method of Moments</td>
</tr>
<tr>
<td>PBC</td>
<td>Periodic Boundary Condition</td>
</tr>
<tr>
<td>PEC</td>
<td>Perfect Electric Conductor</td>
</tr>
<tr>
<td>PML</td>
<td>Perfect Match Layer</td>
</tr>
<tr>
<td>PMMA</td>
<td>Polymethyl Methacrylate</td>
</tr>
<tr>
<td>RTA</td>
<td>Relaxation Time Approximation</td>
</tr>
<tr>
<td>SBC</td>
<td>Surface Boundary Condition</td>
</tr>
<tr>
<td>SIBC</td>
<td>Surface Impedance Boundary Condition</td>
</tr>
<tr>
<td>SPP</td>
<td>Surface Plasmon Polariton</td>
</tr>
<tr>
<td>SRR</td>
<td>Split-Ring Resonator</td>
</tr>
<tr>
<td>STM</td>
<td>Scanning Tunnelling Microscopy</td>
</tr>
<tr>
<td>TF/SF</td>
<td>Total Field/Scattered Field</td>
</tr>
<tr>
<td>THG</td>
<td>Third-order Harmonic Generation</td>
</tr>
<tr>
<td>THz</td>
<td>Terahertz</td>
</tr>
<tr>
<td>UHV</td>
<td>Ultra-High Vacuum</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

The terahertz (THz) region, broadly defined as 0.1-30 THz (from 3 mm to 10 µm), has gained interest of researchers due to its unique spectral properties [1]. For example, in astronomy, the THz emission and absorption spectrum of molecules have been used for space exploration [2]. In medicine and security, THz radiation has been used for human body imaging [3] with lower health risks compared to X-ray radiation [4]. Moreover, THz radiation provides carrier frequencies higher than those used in current commercial wireless communication systems and has also been used to increase channel capacities for short-range ultra-broadband communication [5]. Various promising applications have made the THz region a growing research topic in the last decades [6].

The useful applications mentioned above require the support of investigations on material properties that are important for THz devices [7]. Researchers interested in the THz region have investigated properties of materials with different dimensions. In terms of traditional three-dimensional materials, such as silica [8] and gold [9], their permittivity and conductivity have been characterised at the THz spectrum. Moreover, a set of two-dimensional (2D) materials, discovered in recent years, such as graphene [10], phosphorene [11], borophene [12], silicene [13], transition-metal dichalcogenides [14] have also been investigated.
Among these novel 2D materials, graphene has triggered research in different fields due to its unique mechanical, thermal and electromagnetic (EM) [15] properties. It is necessary to propose numerical modelling techniques accounting for these properties to assist detailed device designs.

In this chapter, the THz region is introduced with its definition and many examples of its applications. Then, three numerical modelling methods that are popular in electromagnetics are introduced. The background of graphene deserves a separate chapter as provided in chapter 2.

1.1 The Terahertz Region

In this section, the terahertz region used in this thesis is clearly defined, and examples of THz applications are introduced.

1.1.1 Definition

In 2002, the spectrum ranging from 0.3 THz and 30 THz was proposed as the “terahertz gap” due to the lack of devices working as sources or detectors [16]. Three years later, the THz gap was defined as the spectrum in the region from 0.1–10 THz, with wavelengths from 3 mm to 30 µm [17]. According to the interest of researchers from different communities, the definition of the THz gap has varied over the past 16 years. However, the definition has been within the range of 0.1 THz and 30 THz in most situations. In this thesis, the THz region is defined as 0.1–30 THz due to the properties of graphene and graphene-based devices which are studied in the following chapters.
1.1.2 Examples of Terahertz Applications

The THz spectrum has inspired researchers to explore many exciting applications due to its close relation to daily life [18–20], such as imaging and wireless communications.

1.1.2.1 Terahertz Imaging

A great interest in the imaging by THz techniques has emerged due to the two advantages of THz radiation. The first one is the relatively low photon energy which avoids ionising effects on biological tissues [21]. The second one is the unique biological and chemical information provided by THz radiation [22]. In recent years, sensitive graphene-based THz emitters [23] and detectors [24] have been proposed, which promise applications for fast imaging of macroscopic samples [25].

In the medical field, tissues have different refractive index and absorption coefficients [26]. Tissue images can be obtained by processing the variations in reflection [27] or transmission [28]. Imaging resolution of several hundred nanometers has been achieved at the THz spectrum [29]. However, the absorption by water is an unavoidable issue of THz imaging, which limits the penetration depth of THz waves in moist tissues. The clinically prepared thin tissue samples are required for the imaging of the inside of many tissues [30].

In the security field, explosives, weapons and drugs have unique spectral “fingerprints” in the THz range [3]. Even though the energy of THz radiation is not high, it still has the ability to penetrate cloth and papers [31] which are opaque in the visible region. The remote imaging of concealed dangers is essential to critical security places. But, due to the absorption by the human body, it is a challenge for THz imaging to detect the dangers which are surgically implanted into the human body.
1.1.2.2 Terahertz Wireless Communications

The most fundamental motivation encouraging investigations on THz wireless communications are the requirements on broader bandwidth compared to wireless communication systems using millimetre waves [32].

In the last decade, the capabilities of THz wireless links have been demonstrated, such as a 12.5-Gbit/s data rate at 0.3 THz over 0.5-m distance [33] and a 100-Gbit/s data rate at 0.2 THz over 20-m distance [34]. The data rate of THz wireless links is much higher than the 4G Long Term Evolution-Advanced system, which is the current commercial wireless system with the date rate of 50–100 Mbit/s [35]. However, as can be seen from these examples, the primary challenge for THz links is the short communication distance.

In order to increase the communication distance, the THz windows with lower atmospheric absorption can be used to reduce the free-space losses [36], and high output power of THz transmitters is also required. Silicon germanium technologies, gallium nitride technologies and complementary metal-oxide-semiconductor technologies have all been investigated to improve THz band transceivers [37]. In addition, graphene-based antennas have been expected to play a potential role in THz transceivers [38].

1.2 Numerical Modelling Techniques in Electromagnetics

Numerical modelling techniques used in electromagnetics are powerful tools for the analysis of complex electromagnetic problems. These techniques can benefit designs of graphene-based devices as well. Three numerical modelling techniques with advantages and limitations are briefly reviewed in this section.
Chapter 1. Introduction

1.2.1 Finite Element Method

The finite element method (FEM) has been applied for solving multi-disciplinary engineering problems including fluid mechanics, solid mechanics, heat transfer and electromagnetics [39].

The FEM modelling subdivides the entire modelled domain into subdomains, i.e. elements. In two-dimensional FEM modelling, the elements can be rectangular, triangular and quadrilateral. In three-dimensional FEM modelling, tetrahedral, triangular prisms and rectangular bricks are employed to represent structure geometries. Such shapes of FEM elements provide the advantage on modelling structures with irregular geometries and capturing local effects. After the domain discretisation, interpolation functions, i.e. basis functions, are selected for elements. Usually, interpolation functions are first, second or higher order polynomials. Then, a system of equations is formulated by using either the Ritz variational method or the Galerkin method [40]. With related boundary conditions, the equation system can be solved using linear algebra techniques.

Broadband properties are essential for structures in electromagnetics. In this case, the traditional frequency-domain FEM is very time-consuming because the equation system needs to be solved at isolated frequencies. Fast frequency sweep can be employed to reduce the simulation time [41]. Even though time-domain FEM has been proposed, the equation system has to be solved at each time step [42].

1.2.2 Method of Moments

The method of moments (MoM) is a numerical method of solving a system of linear integral equations across several industries. The problems in electromagnetics can be expressed as the electric field integral equation (EFIE) or the magnetic field integral equation (MFIE) [43]. Essentially, MoM is the boundary element method (BEM), which is commonly known as MoM in electromagnetics [44].
In MoM, the unknown electric field or magnetic field is expended as a sum of basis functions with unknown coefficients. A linear equation system can be obtained by enforcing boundary conditions. The EFIE enforces the boundary condition on the electric field, and the MFIE enforces the boundary condition on the magnetic field. The Galerkin testing can be used to calculate the unknown coefficients [45].

To some extent, the procedure of MoM is similar to FEM. However, MoM is based on integral equations, and FEM is based on differential equations. Another difference is that MoM only needs to discretise the surface of the scatter or antenna because electromagnetic sources are the quantities of interest in MoM [46]. The less domain discretisation is an advantage compared to FEM which requires the entire domain to be discretised. However, the computing resource required by arbitrary large structures is a limitation to MoM.

1.2.3 Finite-Difference Time-Domain Method

The finite-difference time-domain (FDTD) method is a time-domain version of the finite-difference method (FDM) which uses finite differences to approximate the derivatives for solving differential equations. FDM is more suitable for time-domain implementation with comparison to FEM and MoM [47]. The latter two methods are usually considered as frequency-domain methods.

The basic FDTD method uses central-difference approximations to calculate the space and time derivatives of Maxwell’s curl equations. Its modelling space is represented by interleaved cubical cells of discrete points containing electric fields or magnetic fields [48]. The electric and magnetic fields are updated at different time steps by using a leapfrog algorithm until the desired result is obtained. The size of its time step depends on the size of cells due to numerical stability issues [49]. The frequency-dispersive constitutive parameters of materials, which described by the Debye model, the Lorentz model or the Drude model, can be straightforwardly formulated in the time domain [50]. Arbitrary
frequency-dispersive media can employ the Padé approximation theory for broadband simulations [51].

As a time-domain method, the FDTD method has inherent modelling capabilities in simulations of broadband and nonlinear material properties [52]. Because this thesis mainly discusses the broadband linear and nonlinear THz responses of graphene, the FDTD method is chosen in the following chapters.

1.3 Objectives of the Thesis

The primary objectives of this thesis are presented as below:

1. Derive the formulation for FDTD modelling on the linear and nonlinear responses of graphene. Regarding the linear response of graphene, the existing FDTD modelling has taken into account the isotropic conductivity of graphene which is tunable by the gate voltage. The FDTD modelling can also be used for the anisotropic conductivity of graphene under magnetostatic bias. In this thesis, a new FDTD modelling on the anisotropic conductivity is implemented. Not only the transmission coefficient but also the polarisation variation are studied in the modelling method. Moreover, a novel FDTD modelling on the nonlinear response of graphene under strong EM radiation is proposed, which demonstrates the more accurate nonlinear phenomenon than existing FDTD modelling.

2. Explore the performance of graphene-based reflectors with magnetostatic tunability. The magnetostatic tunability of the graphene-based reflectors has not been reported in details under linearly polarised radiation at the room temperature. The proposed FDTD method models the full-wave performance of the reflector including the reflection coefficient and the Kerr rotation. Moreover, a modified equivalent circuit model is used to extract the parameters of graphene samples used in measurements.

3. Explore and design graphene-based reflectarray antennas. With the
consideration of free-space losses, the designs of graphene-based reflectarray antennas are explored at the spectrum with low atmosphere absorption. The unit-cell performance is simulated by proposed FDTD modelling methods. Their FDTD simulation results successfully demonstrate voltage-gate induced tunability in reflections which lead to tunable radiation patterns synthesised by traditional array theories.

1.4 Outline of the Thesis

The outline of the thesis is summarised as follows.

- **Chapter 2** covers the background of graphene including fabrication methods, electronic properties, linear/nonlinear response, graphene plasmonics and a brief introduction of some graphene-based THz devices.

- **Chapter 3** presents the FDTD modelling on linear response of graphene. The state-of-the-art is reviewed. An FDTD modelling based on the auxiliary element is proposed. FDTD results are compared with theoretical results and some measurement results.

- **Chapter 4** presents the FDTD modelling on nonlinear response of graphene. The state-of-the-art FDTD modelling on nonlinear materials is reviewed. An FDTD modelling based on a $J - E$ characteristic formula is proposed. FDTD results successfully demonstrate expected odd-harmonic generations and frequency-mixing effects.

- **Chapter 5** describes the modelling, fabrication and measurement of a magnetically tunable graphene-based reflector under linear polarised incidence at room temperature. The measured reflection intensity is presented and discussed. The variation of the polarised direction of EM waves is discussed according to full-wave simulations.

- **Chapter 6** describes the designs of graphene-based reflectarray antennas. Two designs respectively based on the graphene path array and the continuous graphene with metal metasurface are presented. The details of unit-cell design and tuneable radiation
patterns are also presented.

Chapter 7 presents the conclusion of the thesis and some thoughts for future work.
Chapter 1. Introduction

References

Chapter 1. Introduction

Chapter 2

Background of Graphene

In 2010, the Nobel Prize in physics was awarded to the breakthrough work on graphene [1] which is a two-dimensional (2D) carbon material consisting of a monolayer of carbon atoms tightly packed into a 2D honeycomb lattice [2]. However, the first experimentally discovered graphene is just on the scale of several sub-micrometre, and its homogeneity is poor [3]. Thus, efforts have been devoted to achieving fabrication methods for producing large-area and high-quality graphene [4]. Meanwhile, related methods of graphene characterisation, providing vivid images of graphene, have also been investigated [5].

The discovery of graphene boosts not only theoretical study but also experimental validations of its material properties [6]. As a semi-metal material, one of the attractive properties of graphene is its unique conductivity which can be controlled by external voltage bias [7] or magnetostatic bias [8]. Both the understanding of graphene features and the improved fabrication methods producing high-quality graphene provide opportunities for the arising of graphene-based devices which can manipulate electromagnetic (EM) waves at the THz spectrum [9].

This chapter provides the background of graphene which includes fabrication methods, electronic properties, linear responses, nonlinear responses and graphene plasmonics. Moreover, two kinds of graphene-based devices closely related with following chapters
are also introduced.

2.1 Fabrication Methods

The production approaches of graphene can be categorised into the top-down approach and the bottom-up approach (Figure 2.1) [10].

![Figure 2.1: A schematic of the two production approaches of graphene. The top-down approach uses natural graphite to obtain graphene. And the bottom-up approach uses carbon atoms to synthesise graphene [10].](image)

The top-down approach generally refers to the graphene preparation from bulk graphite, which is a natural carbon material consisting of stacked layers of graphene sheets [11]. Various exfoliation mechanisms can be utilised to overcome the van der Waals force between adjacent graphene sheets, such as mechanical exfoliation [12], electrochemical exfoliation [13], liquid-phase exfoliation [14], and exfoliation and reduction of graphite oxide [15]. Except for mechanical exfoliation, the other three kinds of exfoliation mechanisms suffer from not only small sample sizes but also uncontrolled quantity which has a significant impact on graphene properties. The bottom-up approach, mainly consisting of chemical vapour deposition and epitaxial growth, means the synthesis of graphene from alternative gases containing carbon atoms [16].

In this section, three approaches with the capability of producing high-quality graphene are introduced.
2.1.1 Mechanical Exfoliation

The discovery work of graphene in 2004 [3] makes the mechanical exfoliation method well-known in the world because it is this method that gave rise to the existence of graphene.

Its mechanical mechanism is to break the attraction force (i.e. the van der Waals force) between adjacent graphene sheets in natural graphite by using a nominal force. A schematic of mechanical exfoliation using Scotch tape to cleave a thin graphite flake is shown in Figure 2.2.

![Figure 2.2: (a) A schematic of mechanical exfoliation using Scotch tapes to produce graphene (adapted from [17]). (b) Scotch tapes add forces on a thin graphite flake to cleave a graphene sheet (adapted from [12])](a) (b)

It is very difficult to obtain a one-atom-thick carbon material (i.e. graphene) from the initial exfoliation, with each subsequent exfoliation making the graphite flake thinner. Thus, the procedure will be repeated until a monolayer graphene is obtained. The unpredictability of the “Scotch tape” method makes it labour-intensive [18]. To save human labour, many researchers have proposed a home-designed exfoliation machine with electric motors [19]. However, the small size of graphene produced by mechanical exfoliation is a disadvantage for large-area applications.
2.1.2 Epitaxial Growth

Epitaxial growth can also synthesise large-area and good-quality graphene. Its schematic is shown in Figure 2.3.

![Figure 2.3: A schematic of epitaxial growth graphene using silicon carbide (adapted from [20]). Silicon atoms leave the surface of silicon carbide at high temperature in a vacuum environment. The left carbon atoms form graphene.](image)

In epitaxial growth, the mainly used C-source material is silicon carbide (SiC) which is a semiconductor consisting of silicon atoms and carbon atoms. The mechanism of epitaxial growth can go back to the graphitisation of SiC in 1962 by sublimating Si atoms in a high-temperature vacuum environment [21]. A refined method has been proposed to grow graphene on the surface of SiC substrate at a high temperature (1100 °C) in ultra-high vacuum (UHV) [22]. The carbon atoms left on the SiC surface during the process of graphitisation form graphene. The produced graphene layer has a strong interaction with its SiC substrate which makes it difficult for transferring graphene to another substrate. Fortunately, SiC, as a good insulating material, can satisfy the requirement of some electronic devices or circuits. Moreover, it is noticed that SiC can have different microstructure. Thus, 4H-SiC [23] and 6H-SiC [24] are frequently used for graphene synthesis due to their similar hexagonal phase to the atom arrangement of graphene.
Chapter 2. Background of Graphene

2.1.3 Chemical Vapour Deposition

Chemical vapour deposition (CVD) method has been successfully utilised for graphene synthesis since 2008 [25]. During the last decade, efforts have been made to improve its capability. Nowadays, CVD has been considered as the most popular method of large-area graphene synthesis at a relatively low price. Moreover, the synthesised graphene can be easily transferred to different substrates. A large amount of CVD graphene applications have emerged [26]. A schematic of CVD graphene is shown in Figure 2.4.

Figure 2.4: A schematic of CVD graphene. Carbon atoms decomposed from hydrocarbon gas form graphene on transition metals acting as substrates (adapted from [27]).

The CVD method firstly involves the decomposition of hydrocarbon gas, such as methane (CH$_4$), ethylene (C$_2$H$_4$) and acetylene (C$_2$H$_2$), over transition metals [26] [28]. The transition metals act as not only substrates but also catalysts that can reduce the temperature of the reactions [29]. For example, the temperature in thermal decomposition can be reduced from 1200 °C to 900 °C by using a copper substrate [30]. There are different options of transition metals such as nickel (Ni) [31], copper (Cu) [32], palladium (Pd) [33], ruthenium (Ru) [34], iridium (Ir) [35], platinum (Pt) [36] and cobalt (Co) [37]. Among these transition metals, Ni and Cu are low-cost metals adopted widely in CVD methods [26]. However, the growth mechanisms on Ni and Cu are different because the carbon solubility of Ni is much higher than Cu. It has been shown that only a small amount of carbon atoms are dissolved in Cu in high-concentration hydrocarbon gas with the long growth time [38].

The mechanism of Ni-based CVD is known as a segregation process [39]. In the
first step, Ni film is annealed at 900–1000 °C in protection atmosphere Ar/H₂. Then the carbon atoms decomposed from hydrocarbon gas are dissolved into Ni film which becomes a solid solution of carbon atoms. The Ni-C solid solution is cooled down in protection gas to diffuse carbon atoms out. Finally, diffused carbon atoms form graphene films on the surface of Ni substrate. Both the cooling rate and the defects in the Ni substrate can affect the quality of synthesised graphene. Defects can generate multilayer graphene on several micron sizes which reduces the homogeneity of monolayer graphene over the entire surface of Ni substrate.

In contrast to Ni-based CVD, Cu-based CVD, a surface reaction process, is different because the small number of dissolved carbon atoms in the Cu substrate can be ignored [40]. The surface of copper is usually oxidised, so the first step of Cu-based CVD is to remove the copper-oxide layer by annealing in a hydrogen atmosphere. The annealing process brings two benefits: the increased grain and reduced defects on the Cu surface. Then the decomposed carbon atoms form self-limiting mono-layer graphene islands over the surface of Cu substrate. As the increment of growth time, the size of graphene islands becomes larger, and eventually, the islands form a continuous graphene film. By controlling growth parameters, various shapes of graphene film such as hexagonal [41], rectangular [42] and flower shape [43] have been fabricated. However, the initial graphene islands have different lattice orientations. Moreover, the different thermal expansion coefficient of graphene islands and Cu can lead to the generation of wrinkles over the graphene films.

Among the three approaches introduced in this section, the CVD method would be the most suitable one for applications that require transferring large-area, good-quality graphene. In chapter 5, graphene-based reflectors with CVD graphene were measured and discussed at THz frequencies. Moreover, CVD graphene is also suitable for the potential fabrication of graphene-based reflectarray antennas discussed in chapter 6.
2.2 Electrons in Graphene

Ambipolar electric field effects of graphene indicate that graphene has two types of charge carriers: electrons (the n-type carrier) and holes (the p-type carrier) [44].

The carrier density of graphene can be tuned by changing the gate voltage applied to graphene. Except for the electrical doping through gate voltage, the carrier density can also be influenced by doping of chemical species which can be categorised into elemental doping and molecular doping [45]. In elemental doping, many carbons in graphene are substituted by nitrogen atoms and boron atoms which lead to n-type doped and p-type doped graphene respectively [46]. In molecular doping, the coverage of ammonia and water vapour leads to n-type doped and p-type doped graphene respectively [47, 48]. Moreover, it is noticed that experimental results of graphene with high charge carrier density $n > 10^{12} \text{ cm}^{-2}$ can be well described as a system with a single carrier type [49].

This section mainly introduces the properties of electrons in graphene such as density, mobility and relaxation time.

2.2.1 Electron Density

Electrons in graphene behave like massless Dirac Fermions [50]. The Fermions include nano-scale particles characterised by their half-integer spin. Their distribution over energy levels in a system can be described by Fermi-Dirac distribution function (i.e. Fermi function) [51]

$$ f_d(\epsilon) = \left(e^{(\epsilon - \mu_e)/k_B T} + 1 \right)^{-1} \tag{2.1} $$

where ϵ is the energy level, T is the temperature, k_B is Boltzmann’s constant and μ_e is the chemical potential which is a temperature-dependent variable. At absolute zero temperature ($T = 0 \text{ K}$), the chemical potential is referred to as the Fermi level and no states above it are filled. At higher temperature, electrons gradually transit between completely filled states and completely empty states [52]. The result of Fermi func-
tion is the probability that an electron can occupy the energy level ϵ. The probability distributions of electrons at different temperatures are plotted in Figure 2.5.

Figure 2.5: Fermi-Dirac distribution at temperature 150 K, 300 K and 600 K. With the increment of energy level ϵ, occupation probability of electrons decrease. The probability of electrons occupying the level of chemical potential is 50%.

From the viewpoint of energy levels, the electron density n of graphene can be calculated by the equation read as [53][54]

$$n = \frac{2}{\pi \hbar^2 v_F^2} \int_0^\infty \sigma [f_d(\sigma) - f_d(\sigma + 2\mu_c)]d\sigma$$

(2.2)

where $v_F = 1.0 \times 10^6$ m/s is the Fermi velocity, \hbar is the reduced Planck’s constant, μ_c is the chemical potential, ϵ is the energy level of electrons and $f_d(\epsilon)$ is Fermi-Dirac distribution function expressed as equation (2.1).

If the chemical potential is much larger than the thermal energy $|\mu_c| \gg k_BT$, equation (2.2) can be simplified as [55][56]

$$n = \frac{\mu_c}{\pi \hbar^2 v_F^2}.$$

(2.3)

The comparison of equation (2.2) and equation (2.3) is plotted in Figure 2.6, which demonstrates good agreement with each other at the room temperature.
When a gate voltage is applied to graphene, the density of gate-voltage induced electrons can be described by the equation read as [57]

\[n = C_{gate}(V_G - V_{CNP})/e \]

(2.4)

where \(C_{gate} = \epsilon_{insulator}/t_{insulator} \) is the gate capacitance per unit area, \(\epsilon_{insulator} \) is the permittivity of insulator, \(t_{insulator} \) is the thickness of insulator beneath graphene, \(V_G \) is the applied gate voltage, \(V_{CNP} \) is the charge neutral point voltage and \(e \) is the charge of an electron. Note that \(V_{CNP} \) can be shifted away from zero gate voltage due to chemical doping [58]. With the assumption \(V_{CNP} = 0 \) V, the gate-voltage induced carrier densities of graphene on quartz and alumina insulators are shown in Figure 2.7. According to the experimental data in [50], the maximum gate voltage is chosen as 100 V in Figure 2.7.
Figure 2.7: Carrier density induced by gate voltage. Graphene is treated as intrinsic with \(V_{CNP} = 0 \). The cases of quartz (SiO\(_2\)) insulator and alumina (Al\(_2\)O\(_3\)) insulator are plotted in the figure. The thickness of both insulator is set as 300 nm. The relative permittivity of SiO\(_2\) (Al\(_2\)O\(_3\)) is 3.9 (8.9).

2.2.2 Electron Mobility

The electron mobility of graphene characterises how quickly an electron, pulled by an electric field, can move through a graphene sheet. The high carrier mobility of graphene has been considered as an advantage in transistor designs [59].

In suspended graphene, a mobility of 200,000 cm\(^2\)(Vs\(^{-1}\)) has been reported for low carrier densities \(5 \times 10^{11} \) cm\(^{-2}\) at low temperature [60, 61]. However, at the room temperature, the increased resistivity reduces the mobility to 120,000 cm\(^2\)(Vs\(^{-1}\)) [62]. The increased resistivity can also originate from the edge state of graphene ribbon [63] and metal contacts of voltage-gate structures [64, 65]. With considerations on resistivity and gate voltage, the mobility of graphene can be calculated as [57, 66]

\[
\mu = \frac{1}{nep} \tag{2.5}
\]

where \(n \) is the gate-induced electron density expressed as equation (2.4) and \(\rho \) is the
Moreover, substrates also have effects on the mobility of graphene [67]. For graphene sheets on SiO$_2$ substrates, electron scattering mechanisms further reduce the mobility to 40,000 cm2(Vs)$^{-1}$ [68]. In comparison to SiO$_2$, the mobility of graphene on hexagonal boron nitride (h-BN) substrate is an order of magnitude better [66, 69]. From the point of view of scattering mechanisms, the mobility can also be given by [55, 70]

$$\mu = \frac{lev_F}{\mu_c} = \frac{e\tau v_F^2}{\mu_c} = \frac{e\nu_F^2}{\Gamma \mu_c}$$

(2.6)

where $l = v_F \tau$ is the distance of free path of electrons, $v_F = 1.0 \times 10^6$ m/s is the Fermi velocity, $\tau = 1/\Gamma$ is the relaxation time of electrons, Γ is the scattering rate of electrons and μ_c is the chemical potential.

2.2.3 Electron Relaxation Time

The relaxation time τ describes the time between two scattering events during the process of electron movement. It plays a fundamental role in studying graphene and its conductivity.

There are mainly three different scattering mechanisms in graphene, i.e. the longitudinal acoustic phonon scattering rate τ_{ac}^{-1}, the impurity scattering rate τ_{imp}^{-1} and the surface optical phonon scattering rate τ_{ph}^{-1} [71]. The total scattering rate, which is the inverse of the relaxation time τ, is written as

$$\tau^{-1} = \tau_{ac}^{-1} + \tau_{imp}^{-1} + \tau_{ph}^{-1}.$$

(2.7)

If $\mu_c \gg k_B T$, an effective relaxation time τ_{eff} measured from dc conductivity is a good approximation to fit experimental data [72, 73], which is also known as relaxation-time approximation (RTA) [74].
2.3 Linear Response of Graphene

The linear response of graphene can be characterised by its conductivity. When THz waves illuminate graphene, the effects of intraband transitions dominate conductivity, which follows the form of the Drude model. Moreover, graphene under magnetic bias exhibits the anisotropic conductivity expressed by a two-dimensional tensor. The details of related conductivity equations are provided in this section.

2.3.1 Isotropic Conductivity

Graphene’s electronic band structure is shown in Figure 2.8 [75]. Its valence band and conduction band connect with each other. Only the electrons in its conduction band contribute to conductivity. When electromagnetic waves illuminate graphene, electrons absorb the energy of EM waves and transit from lower energy states to higher energy states. Thus, the conductivity of graphene has two contributions: intraband transitions and interband transitions.

![Figure 2.8: Band diagrams: n-type (n-dope) graphene with purple parts representing the energy levels occupied by electrons [75].](image)

The conductivity of graphene can be calculated according to the Kubo formula, and
its equation is shown as below \[[54] \]

\[
\sigma(\omega) = \frac{je^2(\omega - 2j\Gamma)}{\pi\hbar^2} \times \left[\frac{1}{(\omega - j2\Gamma)^2} \int_{0}^{\infty} \varepsilon \left(\frac{\partial f_d(\varepsilon)}{\partial \varepsilon} - \frac{\partial f_d(-\varepsilon)}{\partial \varepsilon} \right) d\varepsilon \right. \\
\left. - \int_{0}^{\infty} \frac{f_d(-\varepsilon) - f_d(\varepsilon)}{(\omega - j2\Gamma)^2 - 4(\varepsilon/\hbar)^2} d\varepsilon \right]
\]

(2.8)

where the first term, named as intraband conductivity \(\sigma(\omega)_{\text{intra}} \), is the results of intraband electron transitions and the second term, which originates from interband electron transitions, is named as interband conductivity \(\sigma(\omega)_{\text{inter}} \).

The intraband conductivity follows the Drude model and can be expressed as

\[
\sigma(\omega)_{\text{intra}} = -\frac{je^2k_BT}{\pi\hbar^2(\omega - j2\Gamma)} \left(\frac{\mu_c}{k_BT} + 2 \ln \left(e^{-\frac{\mu_c}{k_BT}} + 1 \right) \right)
\]

(2.9)

where \(e \) is the charge of an electron, \(k_B \) is the Boltzmann constant, \(\hbar \) is the reduced Planck constant, \(T \) is temperature, \(\mu_c \) is chemical potential and \(\Gamma \) is an effective scattering rate.

For \(|\mu_c|, h\omega \gg k_BT \), the interband conductivity can be approximated as

\[
\sigma(\omega)_{\text{inter}} \approx \frac{je^2}{4\pi\hbar} \ln \left(\frac{2|\mu_c| - (\omega - j2\Gamma)\hbar}{2|\mu_c| + (\omega - j2\Gamma)\hbar} \right).
\]

(2.10)

The interband transition (i.e. electron transition from valence band to conduction band) cannot happen until the EM energy is larger than two-times chemical potential \[[76] \].

At terahertz (THz) frequencies, which range from 0.3 THz (1 mm) and 30 THz (10 \(\mu \)m) \[[77] \], the conductivity has a Drude-like frequency dependence \[[6] \]. The effects of interband electron transitions can be ignored for the graphene with typical values of chemical potential as shown in Figure 2.9.

Except for the Kubo formula, the intraband conductivity of graphene \(\sigma(\omega)_{\text{intra}} \) can also be analysed by Boltzmann transport theories and expressed as \[[73] \]

\[
\sigma(\omega)_{\text{intra}} = \frac{D}{\pi(j\omega + \Gamma)} = \frac{D\tau}{\pi(j\omega\tau + 1)} = \sigma_0 \frac{1}{1 + j\omega\tau}
\]

(2.11)
Figure 2.9: Linear conductivity of graphene. Formula 1 consider the effect of interband transitions. Formula 2 does not consider the effect of interband transitions. For all cases, $T = 300 \, K$; for the case 1, $\mu_c = 0.2 \, eV$, $\Gamma = 5 \, meV$; for the case 2, $\mu_c = 0.2 \, eV$, $\Gamma = 10 \, meV$; for the case 3, $\mu_c = 0.4 \, eV$, $\Gamma = 5 \, meV$.

where ω is the angular frequency, Γ is the scattering rate, $\tau = 1/\Gamma$ is the relaxation time, $D = (v_F e^2/h)\sqrt{\pi|n|}$ is the Drude weight, $v_F = 1.0\times10^6 \, m/s$ is the Fermi velocity, e is the charge of an electron, h is the reduced Plank’s constant, n is the electron density and $\sigma_0 = D\tau/\pi$ is the dc conductivity.

The comparison between measured the dc conductivity σ_0 and the fitted Drude weight D of graphene can be found in [73]. Only the ratio of D and Γ can be determined from the dc conductivity. To know the value of D separately, the value of the carrier density n or the value of the chemical potential μ_c will be required. One of the methods to determine the value of μ_c is to measure the forbidden energy at infrared (IR) spectrum where interband electron transitions dominate.
2.3.2 Anisotropic Conductivity

When graphene is under magnetic bias, the conductivity of graphene can be described by a 2×2 tensor read as

$$
\sigma = \begin{bmatrix}
\sigma_{xx} & \sigma_{xy} \\
\sigma_{yx} & \sigma_{yy}
\end{bmatrix} = \begin{bmatrix}
\sigma_d & \sigma_o \\
-\sigma_o & \sigma_d
\end{bmatrix}.
$$

(2.12)

For THz, with the assumption $\mu_c \gg L$, where $L = v_F\sqrt{2\epsilon eB_0}$ is the Landau level, electron transitions crossing the chemical potential μ_c have the highest possibilities and σ_{xx} and σ_{yx} follow the Drude model read as $[78]$

$$
\sigma_{xx}(\omega, B_0) = \sigma_d = \sigma_0 \frac{1 + j\omega\tau}{(\omega_c\tau)^2 + (1 + j\omega\tau)^2}
$$

(2.13)

$$
\sigma_{yx}(\omega, B_0) = \sigma_o = \sigma_0 \frac{\omega_c\tau}{(\omega_c\tau)^2 + (1 + j\omega\tau)^2}
$$

(2.14)

where $\sigma_0 = \frac{2e^2}{\pi\hbar^2}k_BT \ln \left(2 \cosh \frac{\mu_c}{2k_BT} \right)$ is the dc conductivity, e is the charge of an electron, k_B is the Boltzmann constant, \hbar is the reduced Planck constant, T is temperature, μ_c is chemical potential, τ is the relaxation time and

$$
\omega_c \approx \frac{L^2}{2\hbar\mu_c} = \frac{eB_0v_F^2}{\mu_c}
$$

(2.15)

is the cyclotron frequency.

The electrons rotating at the cyclotron frequency ω_c will absorb the energy of external electromagnetic waves if $\omega \approx \omega_c$, where ω is the radiation frequency. The width of the cyclotron-resonance (CR) absorption line is usually determined by the scattering rate of electrons $[79]$. In the equation (2.15), ω_c has a directly proportional relation with the strength of magnetic bias B_0, but an inversely proportional relation with μ_c, which is shown in Figure 2.10.
2.3.3 Faraday and Kerr Rotation

Faraday rotation (FR), discovered by Michael Faraday, is a physical phenomenon linking light and magnetism. He observed that the polarization of light was rotated when an external magnetic field was induced in the same direction as the path of light. This phenomenon is known as the FR or Faraday effect, which originates from the cyclotron effect. Because polarization is one of the fundamental properties of EM waves, the Faraday rotation has been observed at the THz spectrum. In addition, the Faraday effect can be considered as an analog of the dc Hall effect.

Under a static magnetic field, the off-diagonal conductivity of graphene σ_o, which has been expressed in equation (2.14), is non-zero [80]. Therefore, if THz radiation polarising in the x-direction illuminates this graphene, the polarization of transmitted THz radiation will be rotated away from the x-direction, which is the FR of graphene, as shown in Figure 2.11. The change of the sign is because the FR angle is closely related to the real part of odd-diagonal conductivity σ_o, which changes the sign around the cyclotron frequency [81]. At the THz spectrum, the FR angle has been measured, which presents a positive sign at low frequencies and a negative sign at high frequencies [82].

Figure 2.10: Cyclotron frequencies with different chemical potentials. The strength of magnetic bias B_0 is in a range from 0.5 T to 3.0 T
Incidence

Transmission Reflection

$-\theta_K$ θ_K

B_0

Figure 2.11: A schematic of the Faraday rotation angle θ_F and the Kerr rotation angle θ_K of graphene under magnetostatic bias B_0. Due to the Faraday (Kerr) effect, the linear polarisation of incidence becomes the elliptical polarisation of transmission (reflection). The rotation angle is defined as the angle between the polarisation direction of original incidence and the main axis of elliptical polarisation.

In addition, the polarisation is also rotated in reflected THz radiation from graphene under magnetostatic bias, which is known as the Kerr rotation (KR) of graphene [83], as shown in Figure 2.11. The measurement on KR of graphene also demonstrated that signs of the KR angle change at the THz spectrum [84]. The sign change is due to the fact that of the KR of graphene mainly depends on the real part of σ_o [85].

2.4 Non-linear Response of Graphene

At the illumination of strong THz waves, graphene exhibits nonlinear response. In this section, the origin of the nonlinearity of graphene is firstly introduced from the aspect of currents. Then, the conductivity of absorption saturation and the conductivity of third-harmonic generation are introduced. Finally, experimental work on the nonlinearity of graphene is summarised.
2.4.1 Theories on the Nonlinearity of Graphene

The energy band structure of graphene has a linear dispersion relation $\epsilon_p = v_F p$ near its Dirac points [86], which provides a qualitative understanding of the nonlinear nature in graphene. According to the Newton equation of motion $\frac{dp}{dt} = -e E_x(t)$ and the relation of velocity v and momentum p i.e. $v = \partial \epsilon_p/\partial p$, the induced ac current in graphene under the illumination of electric field $E_x(t) = \cos \omega t$ can be expressed as [87]

$$j_x(t) = en_s v_F \text{sgn}(\sin \omega t)$$

$$= en_s v_F \frac{4}{\pi} \left(\sin \omega t + \frac{1}{3} \sin 3 \omega t + \frac{1}{5} \sin 5 \omega t + \ldots \right)$$

(2.16)

where e is the charge of an electron, n_s is the density of electron and v_F is the Fermi velocity. It can be found out that the current $j_x(t)$ is a sign function with its expansion indicating the effects of frequency multiplication as shown in Figure 2.12. The expansion terms only consist of odd-harmonic generations because the centrosymmetric character of a flat graphene forbids the even-harmonic generations [88].

![Figure 2.12: Qualitative understanding: Electric field, induced current and its expansion showing the odd-harmonic generation.](image)

However, the simple qualitative understanding discussed above does not take into account the Fermi distribution of electrons in graphene. By using the kinetic Boltzmann
theory, an exact response of graphene with electrons at different energy levels can be expressed as \[[89] \]

\[
j(t) = -\frac{g_s g_v \epsilon v_F}{(2\pi\hbar)} \int \frac{p dp}{p} F_0(p - p_0(t))
\]

(2.17)

where \(g_s = g_v = 2 \) are the spin and valley degeneracies in graphene, \(v_F \) is Fermi velocity, \(F_0(p) = 1 + \exp\{[(Vp - \mu_c)/T]\}^{-1} \) is the Fermi-Driac function and \(p \) is momentum.

The nonlinearity of graphene originates from its surface currents which is different from traditional materials with nonlinear electric susceptibility \(\chi^{(2)}, \chi^{(3)} \) describing the nonlinear response to EM waves. The nonlinearity of graphene can be characterised by its electric conductivity. The third-order conductivity of graphene with resonant behaviour at THz has been proposed in \[90 \] to analyse various nonlinear phenomena. The nonlinear conductivity of graphene for the phenomenon of third-harmonic generation and absorption saturation is discussed below. Two dimensionless parameters are introduced

\[
\Omega = \frac{\hbar \omega}{|\mu_c|}, \quad \gamma = \frac{\hbar \Gamma}{|\mu_c|}.
\]

(2.18)

In terms of the third-harmonic generation, the induced current polarised in the x-direction, can be written as \[90 \]

\[
J_x^{(3)}(3\omega) = \frac{1}{8} \times \sigma^{(3)}_{xxx}(\omega, \omega, \omega) E_x^3(\omega)
\]

\[
= \frac{1}{8} \times \sigma_0^{(3)} \sigma_{xxx}^{(3)}(\Omega, \Omega, \Omega) \times E_x^3(\omega)
\]

(2.19)

where \(J_x^{(3)}(3\omega) \) is the induced third-order current in the unit of A/m, \(E_x(\omega) = E_0 e^{j\omega t} \) is the illumination, \(\sigma^{(3)}_{xxx}(\omega, \omega, \omega) = \sigma_0^{(3)} \sigma_{xxx}^{(3)}(\Omega, \Omega, \Omega) \) is the intraband contribution from conductivity in the unit of S·m²/V², \(\sigma_0^{(3)} = (e^4 \hbar v_F^2)/(4\pi\mu_c^4) \) and

\[
\sigma_{xxx}^{(3)}(\Omega, \Omega, \Omega) = \frac{3}{(j\Omega + \gamma)(2j\Omega + \gamma)(3j\Omega + \gamma)}
\]

(2.20)

is a third-order dimensionless conductivity as plotted in Figure 2.13
In terms of absorption saturation, the induced current at the frequency ω of incident wave $E_0 e^{j \omega t}$ can be expressed as [90]

$$J^{(3)}_x(\omega) = \frac{1}{8} E_0^3 \left(\sigma^{(3)}_{xxxx}(\omega, \omega, -\omega) + \sigma^{(3)}_{xxxx}(\omega, -\omega, \omega) + \sigma^{(3)}_{xxxx}(-\omega, \omega, \omega) \right) e^{j \omega t}$$

$$= \frac{3}{8} E_0^3 \sigma^{(3)}_0 \left(S^{(3)}_{xxxx}(\Omega, -\Omega, -\Omega) + S^{(3)}_{xxxx}(\Omega, -\Omega, \Omega) + S^{(3)}_{xxxx}(-\Omega, \Omega, \Omega) \right) e^{j \omega t}$$

(2.21)

where the dimensionless conductivity $S^{(3)}_{xxxx}(\Omega, \Omega, -\Omega)$, $S^{(3)}_{xxxx}(\Omega, -\Omega, \Omega)$ and $S^{(3)}_{xxxx}(-\Omega, \Omega, \Omega)$ are expressed as

$$S^{(3)}_{xxxx}(\Omega, \Omega, -\Omega) = \frac{-1}{(j \Omega + \gamma)^2(2j \Omega + \gamma)} ,$$

(2.22a)

$$S^{(3)}_{xxxx}(\Omega, -\Omega, \Omega) = \frac{-1}{\gamma(j \Omega + \gamma)^2} ,$$

(2.22b)

$$S^{(3)}_{xxxx}(-\Omega, \Omega, \Omega) = \frac{-1}{\gamma(-j \Omega + \gamma)(j \Omega + \gamma)} .$$

(2.22c)

The total effect of these three dimensionless conductivity is plotted in Figure 2.14.

It has been predicted in [91] that a THz field with a peak value of 1 kV/cm is capable of inducing third-order harmonic generation (THG) on monolayer graphene at room temperature. Moveover, the strength of electric fields for graphene to exhibit
nonlinearity depends on the carrier density of graphene:

\[E(V/cm) \geq 300 \times n_s(10^{11} \text{cm}^2), \tag{2.23} \]

which is plotted in Figure 2.15.

As shown in Figure 2.15, higher chemical potential requires larger electric field amplitude. The amplitude of generated third-order harmonic can be tuned by varying the
Fermi level of graphene with bias voltage [92]. To maximise the THG, the optimised relation between incident field amplitudes and Fermi levels has been discussed in [93]. Further enhancement can also be achieved by utilising appropriate graphene-dielectric-metal structures [94].

2.4.2 Experimental Observation of the Nonlinearity of Graphene

The development of strong THz sources has enabled experimental investigations on the nonlinearity of graphene. In recent years, THz field pulses with peak electric fields between 0.2 and 120 kV/cm have been used [95–102].

Experimental results have demonstrated that the CVD-grown graphene under the strong THz radiation has higher transmission compared to the graphene at lower field strength [95, 96]. It has been explained that the higher THz-induced transparency arises from the reduced conductivity due to saturable effects of current and increased intraband scattering rate in graphene [97]. The field-strength dependent behaviour indicates the existence of nonlinearity in graphene.

However, the carrier-carrier scattering limits harmonic generation in an experiment using the epitaxial multi-layer graphene [98]. With the considerations of scattering, it has been demonstrated that suspended graphene has stronger nonlinearity [99]. In other measurements, the odd-harmonic generation of graphene has been verified experimentally using a 45-layer graphene sample [100]. There are also observations on harmonic generations of graphene at millimetre wave range [101] and optical range [102].

2.5 Graphene Plasmonics

Surface plasmons are electromagnetic waves propagating along the boundary surface of a metal and a dielectric. The propagation of surface plasmons are accompanied by collective oscillations of surface charges in metals. The resembled oscillations, which
have been known as graphene plasmons, exist in the electrons confined on the surface of graphene [74]. At the THz spectrum, the unique electronic properties of graphene have made graphene plasmons different from the surface plasmons in metals and motivated a rapid progress in the field of graphene plasmonics [103].

Due to the mismatch on wavevector, free-space terahertz radiation cannot couple to plasmon excitations in homogeneous graphene sheets. In the experiments of graphene with natural nanoscale inhomogeneities, substrate terraces and wrinkles can generate intrinsic graphene plasmons [104]. However, graphene plasmon resonances originating from the nanoscale inhomogeneities cannot be tuned over a broad terahertz frequency range. To tackle this issue, engineered graphene structures in sub-wavelength have been used, such as patterned graphene and continuous graphene with grating structures.

2.5.1 Patterned Graphene

Experiments have demonstrated that THz radiation can strongly couple to plasmons in patterned graphene [105–110].

Graphene ribbons, as the simplest form of engineered graphene structure, were initially proposed in 2011 to excite graphene plasmons at the THz frequencies [105]. The experiments demonstrated that plasmon excitations of graphene ribbons can be controlled through changing ribbon width and electrostatic doping. The enhanced THz absorption indicates the strong coupling between terahertz radiation and graphene plasmons. By cutting the ribbons, an optimised geometry of graphene cut-wires has shown an enhancement of up to 50% in the absorption of THz radiation [106].

Other geometries, such as graphene disks [107], graphene anti-dots [108] and graphene rings [109], have also been investigated. Compared to graphene disks, the resonance frequencies of graphene anti-dots can be more easily tuned by the gate voltage [108]. Moreover, graphene rings have demonstrated two plasmon modes because each graphene ring consists of a graphene disc and a smaller graphene anti-dot. In addition, two plasmon
modes have also be observed from graphene disks under magnetostatic bias where the plasmon modes are split into an edge mode and a bulk mode \([110]\).

According to the above experimental work, the frequencies of plasmon modes of patterned graphene can be tuned by changing the aspects followed as (i) the geometry of engineered graphene structure, (ii) the value of gate voltage and (iii) the strength of magnetostatic bias.

2.5.2 Continuous Graphene with Grating Structure

Grating structures, which have been widely used in optics to compensate wavevector mismatches, have also been adopted to excite plasmonics in continuous graphene. Different from plasmonic oscillations bounded by patterned graphene, a continuous graphene with grating structures can support the propagation of plasmonic waves.

Theoretical analysis has shown that the periodic silicon diffractive grating structure in a square-wave shape can excite the highly confined plasmonic waves in monolayer graphene films \([111]\). The resonant frequency is mainly determined by the period of the grating. As the period decreases, the resonant frequency shifts to higher frequencies. Further experimental work not only confirmed the theoretical analysis but also demonstrated that the surface plasmon polaritons (SPPs) propagating through monolayer graphene can be tuned by applying a gate voltage \([112]\). To apply the gate voltage, a dielectric spacer was deposited between the graphene layer and silicon diffractive grating structure. However, the square-wave shaped grating is a one-dimensional structure, therefore only the electric field polarising in the direction perpendicular to the grating lines can achieve the phase-matching effect \([113]\).

Except for dielectric grating structures, the grating structures made of metal, such as gold and silver, have also been investigated. The comparison between dielectric grating and metallic grating has shown that the height of metallic grating has less effect on SPPs than the height of dielectric grating because the EM waves penetrate more into
the dielectric grating [114]. For metal–graphene plasmon resonance, the width of metallic grating is the main effect on resonance frequency [115].

2.6 Graphene-based THz Devices

The interesting properties of graphene have been adopted for various graphene devices. In this section, two kinds of graphene-based devices, which are closely related with the thesis, are introduced on their recent years’ development.

2.6.1 Graphene-based Salisbury Screen

Salisbury screen, which is a sandwich structure consisting of a resistive sheet, a dielectric layer and a ground plane, can be used to control the reflection of electromagnetic waves from conducting material [116]. There is a 180° phase difference in incident waves and reflected waves, so they cancel each other to obtain absorption performance. The absorption spectrum depends on the thickness of the substrate, which makes it a single-band absorber. Graphene has been used as the resistive sheet of Salisbury screen at the THz spectrum [117]. Its figure-of-merit includes absorption efficiency, bandwidth, sensitivity to polarisation and bandwidth.

In order to achieve multi-band absorption, stacked multi-layer structures can be used [118]. The similar principle has been adopted in a multi-layer graphene-based absorber [119]. However, its thickness is increased. Except for continuous graphene, designs based on graphene metasurface can obtain broadband absorption by exciting resonance modes [120–122]. Plasmonic resonance modes can also be excited in hybrid graphene-metal structures [123, 124] and also in graphene ribbons [125]. Its absorption performance can also be explained from the aspect of impedance match of circuit models [126]. Metamaterials have been used as substrates for the impedance match [127, 128].

When magnetostatic bias is applied to graphene, the anisotropic conductivity of
graphene provides nonreciprocal features which make the device sensitive to right-hand and left-hand polarised waves [129]. Fundamental limits of some special cases have been proposed in [130]. Later a near optimal non-reciprocal isolator has been demonstrated [84]. The anisotropic response actually is the results of the Faraday effect in graphene. However, its effect is more obvious at the low THz spectrum. By using metasurface, the Faraday effect at the higher THz can be enhanced and reduce the requirement of the strength of magnetostatic bias [131].

2.6.2 Graphene-based Antenna

An antenna is a transitional structure between electromagnetic waves propagating in free space and currents oscillating in materials. It can be used to radiate or receive EM waves. In history, the first antenna was demonstrated by Heinrich Hertz in 1888 [132]. During the development of more than a century, the antenna has become a specific research field, and various antenna types have been proposed. According to their geometrical characteristic, antennas can be classified into wire antennas, aperture antennas, microstrip antennas, array antennas, reflector antennas and lens antennas [133]. Each type of antenna has its radiation characteristics. However, there are many common parameters used as figure-of-merit such as directivity, gain, bandwidth and radiation efficiency [134]. In recent years, graphene has been considered as a promising material in antenna investigation [135].

Surface plasmon polariton (SPP) waves, confined EM waves, have been theoretically and experimentally proved its existence in graphene [105, 136]. This fact inspires the researchers to bring the concept of plasmonic antennas used in optics [137, 138] to graphene application at the THz spectrum [139]. The SPP modes of graphene patch antennas have been analytically studied which demonstrate the capability on antenna minimisation [140]. The termination of graphene patch antenna works as mirrors for SPP waves, which means that the resonance behaviour in scattered waves can be described by Fabry–Pérot model [141]. When graphene patch is coupled with a well-matched feeding
line (i.e. very small return loss), the radiation efficiency is as low as 15% due to the dissipation losses of graphene [142]. The challenge of low radiation efficiency also occurs in other antenna designs such as the dipole antenna with 10% radiation efficiency [143, 144] and a leaky-wave antenna with about 15% radiation efficiency [145]. However, electronic beam scanning of the leaky wave antenna is a potential advantage [145]. The balance between radiation efficiency and tunability need to be considered for these graphene-based plasmonic resonance antenna [146, 147]. It is noticed that their metal counterparts also face the issue of radiation efficiency of electrically small antennas [148]. Minimised metal-graphene hybrid antennas have been demonstrated with 10% radiation efficiency [149, 150].

Another exciting type of antennas is a reflectarray antenna. The reflectarray antenna is a device using the phase distribution to reform the radiation source to be the desired beam in the far field. Graphene-based unit cells have been proposed to provide the phase distribution [151]. The phase variation of unit cells is the achieved by tuning the complex conductivity of graphene. The performance of graphene-based reflectarray has demonstrated a similar gain to its gold counterpart [152]. Except for graphene with particular geometries, arrays of metal antennas deposited on a graphene sheet have been demonstrated working in an ON or OFF state [153].

2.7 Summary

In the last decade, the requirements on large-area and high-quality graphene have motivated researchers to improve the production approaches of graphene. Mechanical exfoliation, chemical vapour deposition and epitaxial growth have demonstrated outstanding performance among various production approaches. Benefiting from the development of graphene fabrication, THz devices manipulating electromagnetic waves have begun to take the advantages of the peculiar conductivity of graphene which can be controlled by electrostatic bias and magnetostatic bias. The properties of electrons such as carrier
density, mobility and relaxation time can affect graphene’s conductivity. At the THz spectrum, graphene’s linear conductivity can be described by the Drude model. The carrier density determines the Drude weight and the relaxation time influences the value of the Drude peak. The carrier mobility as a parameter linking the carrier density and relaxation time indicates the quality of graphene. Under the illumination of strong THz waves, the carrier density and relaxation time also decide graphene’s nonlinear responses such as the absorption saturation and the third-harmonic generation.
Chapter 2. Background of Graphene

References

Chapter 2. Background of Graphene

2015.

Chapter 2. Background of Graphene

[44] A. K. Geim and K. S. Novoselov, “The rise of graphene,” in *Nanoscience and
Chapter 2. Background of Graphene

Chapter 2. Background of Graphene

2016.

Chapter 2. Background of Graphene

absorber based on graphene,” *Optics Express*, vol. 21, no. 20, pp. 23803–23811, 2013.

[148] C. Pfeiffer, “Upper bounds on the radiation efficiency of electrically small anten-

Chapter 3

Finite-Difference Time-Domain Modelling on Linearity of Graphene

3.1 Introduction

In recent years, applications of graphene attract great interest among researchers due to its extraordinary electronic properties [1]. Externally applied voltage [2], magnetic biasing [3] and sample geometry [4] all can change the electronic properties of graphene. These facts make graphene a candidate for performance tunable devices, such as graphene-based electromagnetic (EM) devices, governed by the Maxwell’s equations [5].

Theoretical and experimental work on the conductivity of graphene have paved the way for the design of novel THz devices manipulating EM waves [6]. To support the design of EM devices, numerical modelling has always been considered as an important tool. If a closed-form solution to Maxwell equations cannot be obtained, numerical modelling methods are indispensable for analysis of device performance.
Chapter 3. Finite-Difference Time-Domain Modelling on Linearity of Graphene

The background of FDTD modelling on the linear response of graphene is reviewed in this chapter. An FDTD modelling method based on the auxiliary element approach has been proposed. The simulation results demonstrate good agreement with theoretical and experimental results published in the literature. The proposed modelling methods are expected to support the design of graphene-based devices which can manipulate EM waves.

3.2 The state-of-the-art of FDTD Modelling on Linear Response of Graphene

Researchers have proposed several methods to model graphene-based structures. In this section, a review is provided from two aspects on modelling: the two-dimensional nature of graphene and the linear conductivity of graphene.

3.2.1 FDTD Modelling on the 2D Nature of Graphene

Graphene, consisting of a mono-layer carbon atoms, is a two-dimensional material. However, traditional materials considered in FDTD modelling are three-dimensional materials. Due to the 2D nature, the sheet conductivity of graphene is in the unit of Siemens (S) rather than the volumetric conductivity in the unit of Siemens/metre (S/m). Thus, the first issue related to FDTD modelling on graphene is how to deal with its nature of 2D properties. Several solutions to this issue have been proposed.

Many researchers have modelled the graphene by associating its surface conductivity with the volumetric counterpart which is locally averaged in the FDTD grid [7] through a subcell dispersive formulation [8]. The graphene with an averaged frequency-dispersive conductivity can be treated as an electrically thin dispersive material. The influence of subcell with dispersive conductivity on perfectly matched layers and periodic boundary conditions have been discussed in [9] and [10] respectively. It is noticed that the thickness
of graphene in the FDTD simulations equals to the subcell size. In [10], the Yee cell size is set as the $\lambda_{\text{min}}/20$ where λ_{min} is the lowest wavelength, and the portion taken by subcell is 0.1. Thus, in simulations, the thickness of graphene is larger than the actual thickness of graphene. As a result, FDTD simulation results do not match with theoretical calculation using Dyadic Green’s functions in [11] for incident angle larger than 75 degree.

Graphene can also be modelled as an infinitely thin sheet by using Surface Boundary Condition (SBC) [12] or Surface Impedance Boundary Condition (SIBC) [13]. In the SBC method, backward and forward difference schemes are implemented in the Yee cells around graphene. These two schemes have different accuracy compared to the central difference scheme which is normally adopted in FDTD algorithm [14]. In the SIBC method, the surface impedance needs to be approximated as a sum of partial fractions by using fitting techniques even though a simple Drude model can well describe the intraband conductivity.

Another way to deal with the surface conductivity of graphene is to use Dirac-Delta function [15]. An advantage of this method is that it is easy to implement the algorithm with normal FDTD updating schemes. However, in the updating equations, current terms are divided by the Yee-cell size, which actually means that volumetric current terms are used in the updating equation. This feature leads to the requirement on fine mesh. To increase simulation efficiency limited by fine mesh, the locally one-dimensional finite-difference time-domain (LOD-FDTD) method was applied in [16, 17] and the alternating direction implicit finite-difference time-domain (ADI-FDTD) method was applied in [18]. Moreover, hybrid implicit-explicit finite-difference time-domain (HIE-FDTD) methods have been proposed as well [19–21].
3.2.2 FDTD Modelling on the Linear Conductivity of Graphene

The linear response of graphene has two contributions: intraband conductivity and interband conductivity.

The formula of intraband conductivity of graphene is in the Drude form in the frequency domain. There are several approaches to convert the frequency-dispersive intraband conductivity into time-domain updating equations of FDTD modelling [22]. When magnetic bias is applied to the graphene sheet, a matrix exponential method has been proposed to take anisotropic conductivity of graphene into account [15].

The equation describing the interband conductivity of graphene is logarithmic making it difficult to directly be coupled into the updating equations of FDTD. However, some researchers have used fitting techniques to approximate the equation with suitable formulas written in Lorentz terms [23], complex conjugate terms [24] or other rational terms [25]. The number of fitting items depends on the bandwidth in simulations.

3.3 Proposed FDTD Modelling on Linear Response of Graphene

In this section, details of proposed FDTD modelling on linear response of graphene are provided. The proposed modelling method is based on the auxiliary element method and the Dirac-Delta function.

Consider a free standing graphene sheet in the $x-y$ plane, as shown in Figure 3.1, the current distributions of graphene only exists on its surface without normal components. Thus, the surface conductivity of graphene can be described by a 2D conductivity tensor. In FDTD modelling, we use the conductivity tensor to describe the anisotropic surface conductivity of graphene. The anisotropic conductivity is generated by the gyrotropic
Figure 3.1: A graphene sheet lies in the xy-plane. To remove the Dirac-Delta function from updating equations, a spatial integration is taken from $-\Delta z/2$ to $\Delta z/2$ around the graphene sheet.

effect of electrons under static magnetic field. The conductivity tensor is expressed as

$$\sigma(\omega) = \begin{bmatrix} \sigma_{xx}(\omega) & \sigma_{xy}(\omega) \\ \sigma_{yx}(\omega) & \sigma_{yy}(\omega) \end{bmatrix} = \begin{bmatrix} \sigma_d(\omega) & -\sigma_o(\omega) \\ \sigma_o(\omega) & \sigma_d(\omega) \end{bmatrix}$$

(3.1)

where the diagonal element $\sigma_d(\omega)$ and the off-diagonal element $\sigma_o(\omega)$ are equation and respectively. However, only the intraband conductivity is taken into account. It can be found that the conductivity tensor is consistent with the equation which the graphene is not biased as shown in Figure 3.2.

In the frequency domain, the relation between surface currents and electric fields is read as

$$\begin{bmatrix} J_x(\omega) \\ J_y(\omega) \end{bmatrix} = \begin{bmatrix} \sigma_d(\omega) & -\sigma_o(\omega) \\ \sigma_o(\omega) & \sigma_d(\omega) \end{bmatrix} \begin{bmatrix} E_x(\omega) \\ E_y(\omega) \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_d(\omega)E_x(\omega) - \sigma_o(\omega)E_y(\omega) \\ \sigma_o(\omega)E_x(\omega) + \sigma_d(\omega)E_y(\omega) \end{bmatrix}$$

(3.2)
Figure 3.2: Real part and imaginary part surface conductivity of graphene. The CR frequencies are 2.4 THz, 4.8 THz and 7.2 THz ($T = 300$ K, $\mu_c = 0.2$ eV and $\tau = 0.4$ ps).

Four auxiliary elements are taken as

$$M_i(\omega) = \sigma_d(\omega)E_i(\omega), \text{ where } i = x \text{ or } y$$ \hspace{1cm} (3.3)

$$N_i(\omega) = \sigma_o(\omega)E_i(\omega), \text{ where } i = x \text{ or } y$$ \hspace{1cm} (3.4)

Explicitly, their frequency-domain and time-domain relations among surface currents
and auxiliary elements are expressed by the following four equations

\[J_x(\omega) = M_x(\omega) - N_y(\omega) \tag{3.5} \]

\[J_y(\omega) = N_x(\omega) + M_y(\omega) \tag{3.6} \]

\[J_x^{n+0.5} = M_x^{n+0.5} - N_y^{n+0.5} \tag{3.7} \]

\[J_y^{n+0.5} = N_x^{n+0.5} + M_y^{n+0.5} \tag{3.8} \]

Based on the relations above, equation (3.3) can be written as

\[M_i(\omega) = \sigma_d(\omega)E_i(\omega) = \sigma_0 \frac{1 + j\omega\tau}{(\omega_c)^2 + (1 + j\omega\tau)^2}E_i(\omega), \tag{3.9} \]

then we can obtain

\[[(\omega_c\tau)^2 + 1 + 2\tau j\omega + \tau^2(j\omega)^2]M_i(\omega) = \sigma_0(1 + j\omega\tau)E_i(\omega). \tag{3.10} \]

Taking \(a = \omega_c\tau \) for convenience, the frequency domain equation can be converted to the time domain equation as such:

\[(a^2 + 1)M_i(t) + 2\tau \frac{\partial M_i(t)}{\partial t} + \tau^2 \frac{\partial^2 M_i(t)}{\partial^2 t} = \sigma_0 E_i(t) + \sigma_0\tau \frac{\partial E_i(t)}{\partial t}. \tag{3.11} \]

By applying the time-domain difference approximation to equation (3.11) at the time step \(t = n - 0.5 \), we can obtain

\[(a^2 + 1)M_i^{n-0.5} + 2\tau \times \frac{1}{2} \left(\frac{M_i^{n+0.5} - M_i^{n-0.5}}{\Delta t} + \frac{M_i^{n-0.5} - M_i^{n-1.5}}{\Delta t} \right) + \tau^2 \times \frac{M_i^{n+0.5} - 2M_i^{n-0.5} + M_i^{n-1.5}}{\Delta t^2} = \sigma_0 \times \frac{E_i^n + E_i^{n-1}}{2} + \sigma_0\tau \times \frac{E_i^n - E_i^{n-1}}{\Delta t}. \tag{3.12} \]
Thus, the updating equation for the auxiliary element M_i is written as

\[
\left(\frac{\tau}{\Delta t} + \frac{\tau^2}{\Delta t^2}\right) M_i^{n+0.5} = \left(\frac{\sigma_0}{2} + \frac{\sigma_0\tau}{\Delta t}\right) E_i^n + \left(\frac{\sigma_0}{2} - \frac{\sigma_0\tau}{\Delta t}\right) E_i^{n-1} - \left(1 + a^2 - \frac{2\tau^2}{\Delta t^2}\right) \nonumber
\]

\[
+ \left(\frac{\tau}{\Delta t} - \frac{\tau^2}{\Delta t^2}\right) M_i^{n-1.5}.
\]

In terms of the auxiliary element N_i, similar procedures as M_i can be taken to obtain the updating equations of N_i, which are shown from equation (3.14) to equation (3.18).

\[
N_i(\omega) = \sigma_0(\omega) E_i(\omega) = \sigma_0 \frac{\omega_c \tau}{(\omega_c \tau)^2 + (1 + j\omega \tau)^2} E_i(\omega)
\]

\[
\left[a^2 + 1 + 2\tau j\omega + \tau^2 (j\omega)^2\right] N_i(\omega) = \sigma_0 a E_i(\omega)
\]

\[
(a^2 + 1) N_i(t) + 2\tau \frac{\partial N_i(t)}{\partial t} + \tau^2 \frac{\partial^2 N_i(t)}{\partial t^2} = \sigma_0 a E_i(t)
\]

\[
(a^2 + 1) N_i^{n-0.5} + 2\tau \times \frac{1}{2} \left(\frac{N_i^{n+0.5} - N_i^{n-0.5}}{\Delta t} + \frac{N_i^{n-0.5} - N_i^{n-1.5}}{\Delta t}\right)
\]

\[
+ \tau^2 \times \frac{N_i^{n+0.5} - 2N_i^{n-0.5} + N_i^{n-1.5}}{\Delta t^2} = \sigma_0 a \times \frac{E_i^n + E_i^{n-1}}{2}
\]

\[
\left(\frac{\tau}{\Delta t} + \frac{\tau^2}{\Delta t^2}\right) N_i^{n+0.5} = \frac{\sigma_0 a}{2} E_i^n + \frac{\sigma_0 a}{2} \sigma_0 a E_i^{n-1} - \left(1 + a^2 - \frac{2\tau^2}{\Delta t^2}\right) N_i^{n-0.5}
\]

\[
+ \left(\frac{\tau}{\Delta t} - \frac{\tau^2}{\Delta t^2}\right) N_i^{n-1.5}
\]

Updating equations for M_x, M_y, N_x and N_y are summarised by the following four equations

\[
M_x^{n+0.5}(i, j, k) = C_{me}[E_x^n(i, j, k) + E_x^n(i - 1, j, k)]
\]

\[
+ C_{mep}[E_x^{n-1}(i, j, k) + E_x^{n-1}(i - 1, j, k)] - C_{mm}M_x^{n-0.5}(i, j, k)
\]

\[
+ C_{mmp}M_x^{n-1.5}(i, j, k)
\]
\[M_y^{n+0.5}(i, j, k) = C_{me}[E_y^n(i, j, k) + E_y^n(i, j - 1, k)] \]
\[+ C_{mep}[E_y^{n-1}(i, j, k) + E_y^{n-1}(i, j - 1, k)] - C_{mm}M_y^{n-0.5}(i, j, k) \]
\[+ C_{mmp}M_y^{n-1.5}(i, j, k) \]

\[N_y^{n+0.5}(i, j, k) = C_{ne}[E_y^n(i, j, k) + E_y^n(i, j - 1, k) + E_y^{n-1}(i, j, k) + E_y^{n-1}(i, j - 1, k)] \]
\[- C_{nn}N_y^{n-0.5}(i, j, k) + C_{nnp}N_y^{n-1.5}(i, j, k) \]

(3.20)

\[M_x^{n+0.5}(i, j, k) = C_{me}[E_x^n(i, j, k) + E_x^n(i - 1, j, k) + E_x^{n-1}(i, j, k) + E_x^{n-1}(i - 1, j, k)] \]
\[- C_{nm}M_x^{n-0.5}(i, j, k) + C_{nmp}M_x^{n-1.5}(i, j, k) \]

(3.21)

\[N_x^{n+0.5}(i, j, k) = C_{ne}[E_x^n(i, j, k) + E_x^n(i - 1, j, k) + E_x^{n-1}(i, j, k) + E_x^{n-1}(i - 1, j, k)] \]
\[- C_{nn}N_x^{n-0.5}(i, j, k) + C_{nnp}N_x^{n-1.5}(i, j, k) \]

(3.22)

where \(C_{me} = \sigma_0 b(\Delta t + 2\tau)/(4\Delta t) \), \(C_{mep} = \sigma_0 b(\Delta t - 2\tau)/(4\Delta t) \), \(C_{ne} = \sigma_0 ab/4 \), \(C_{mm} = C_{nm} = b(1 + a^2 - 2\tau^2/\Delta t^2) \), \(C_{mmp} = C_{nnp} = \tau b(\Delta t - \tau)/\Delta t^2 \) and \(b = \Delta^2/(\tau \Delta t + \tau^2) \).

Using the Dirac-Delta function to represent the 2D dimension of graphene in Maxwell equation, we can obtain

\[
\frac{E_x^{n+1}(i, j, k) - E_x^n(i, j, k)}{\Delta t} = \frac{1}{\epsilon_x} \left(\frac{H_y^{n+0.5}(i, j, k) - H_y^{n+0.5}(i, j - 1, k)}{\Delta y} \right)
- \frac{H_y^{n+0.5}(i, j, k) - H_y^{n+0.5}(i, j, k - 1)}{\Delta z}
- \frac{J_{2Dx}^{n+0.5}(i, j)\delta(z - k_0) + J_{2Dx}^{n+0.5}(i + 1, j)}{2\Delta z} \times \delta(z - k_0)
\]

(3.23)

To eliminate the Dirac-Delta function, we need to take the integration along the
direction perpendicular to the surface of graphene [26]

\[
\int_{k_0 - \Delta z}^{k_0 + \Delta z} \frac{E_x^{n+1}(i, j, k) - E_x^n(i, j, k)}{\Delta t} \, dz
\]

\[
= \int_{k_0 - \Delta z}^{k_0 + \Delta z} \left[\frac{1}{\varepsilon_x} \left(\frac{H_x^{n+0.5}(i, j, k) - H_x^{n+0.5}(i, j - 1, k)}{\Delta y} \right) - \frac{H_y^{n+0.5}(i, j, k) - H_y^{n+0.5}(i, j, k - 1)}{\Delta z} - \frac{j_{2Dx}^{n+0.5}(i, j) \delta(z - k_0) + j_{2Dx}^{n+0.5}(i + 1, j) \times \delta(z - k_0)}{2\Delta z} \right] \, dz
\]

(3.24)

Finally, the updating equations for electric fields are expressed as

\[
\frac{E_x^{n+1}(i, j, k) - E_x^n(i, j, k)}{\Delta t} = \frac{1}{\varepsilon_x} \left(\frac{H_x^{n+0.5}(i, j, k) - H_x^{n+0.5}(i, j - 1, k)}{\Delta y} \right) - \frac{H_y^{n+0.5}(i, j, k) - H_y^{n+0.5}(i, j, k - 1)}{\Delta z} - \frac{j_{2Dx}^{n+0.5}(i, j, k_0) + j_{2Dx}^{n+0.5}(i + 1, j, k_0)}{2\Delta z}
\]

(3.25)

\[
\frac{E_y^{n+1}(i, j, k_0) - E_y^n(i, j, k_0)}{\Delta t} = \frac{1}{\varepsilon_x} \left(\frac{H_x^{n+0.5}(i, j, k_0) - H_x^{n+0.5}(i, j, k_0 - 1)}{\Delta z} \right) - \frac{H_z^{n+0.5}(i, j, k_0) - H_z^{n+0.5}(i - 1, j, k_0)}{\Delta x} - \frac{j_{2Dy}^{n+0.5}(i, j, k_0) + j_{2Dy}^{n+0.5}(i + 1, j, k_0)}{2\Delta z}
\]

(3.26)

The updating equations of magnetic fields follow normal FDTD updating equations.

3.4 Simulation Results and Validation

The proposed method is used to simulate three different scenarios. Simulation results are compared with theoretical or measurement results.
3.4.1 Case One: Tunable Transmission through Graphene

To validate the proposed FDTD method, a suspended graphene in the \(x-y \) plane is simulated. The graphene is characterised by \(T = 300 \) K and \(\tau = 0.7 \) ps. In the simulation space, conventional cubic Yee cells with \(d = 3 \) nm are employed. Periodic boundary conditions [27] are used in the \(x \)- and \(y \)-direction to treat the graphene as an infinite sheet. A normal incident plane wave with a Gaussian pulse is excited by a total field/scattered field boundary [28]. Perfect matched layer absorbs waves propagating in the \(z \)-direction. The size of time step is set by Courant–Friedrich–Levy stability [29].

In simulations, the total transmission coefficient is computed by

\[
T = \frac{\sqrt{|E_{x,\text{tran}}(f)|^2 + |E_{y,\text{tran}}(f)|^2}}{|E_{\text{inc}}(f)|} \tag{3.27}
\]

where \(E_{x,\text{tran}}(f) \), \(E_{y,\text{tran}}(f) \) and \(E_{\text{inc}}(f) \) are frequency-domain values representing \(x \)-component of transmitted fields, \(y \)-component of transmitted fields and incidence fields respectively. The frequency-domain values are converted from time-domain ones by the Fourier transformation.

Figure 3.3 shows the total transmission coefficient with different chemical potentials and magnetic biases. The FDTD simulation results are compared with theoretical results from the equivalent circuit model proposed in [30]. As shown in Figure 3.3, results obtained from the two methods have good agreement with each other.

3.4.2 Case Two: Faraday and Kerr Rotation of Graphene

In simulations, the FDTD boundary conditions are similar to those presented in section 3.4.1. Plane waves polarised in \(x \)-direction propagates in \(z \)-direction. To calculate the polarisation rotation angles of Faraday effect in FDTD simulations, the following
The equation is used

\[\theta_F(\omega) = \arctan \left[\frac{E_{y,\text{trans}}(\omega)}{E_{x,\text{trans}}(\omega)} \right]_{\text{real}} \]

(3.28)

where the “real” means the real part of a complex Faraday rotation angle, \(E_{x,\text{trans}}(\omega) \) is the \(x \)-component of the transmission and \(E_{y,\text{trans}}(\omega) \) is the \(y \)-component of the transmission.

In Figure 3.4, Faraday rotations calculated by the FDTD method are compared with the results obtained from the theoretical formula expressed as [31]

\[\theta_F(\omega) = \frac{1}{2} \arg \left[\frac{2 + Z_0 \sigma_+ (\omega)}{2 + Z_0 \sigma_- (\omega)} \right] \]

(3.29)

where \(Z_0 = 377 \, \Omega \) is the free-space impedance and \(\sigma_+ (\omega) = \sigma_{xx}(\omega) \mp j \sigma_{xy}(\omega) \) is the conductivity for the right (+) and left (-) circularly polarised EM waves.

At the low-THz regime, a uniform graphene layer has shown that the Faraday rotation angle is giant for a single monoatomic layer [32]. The rotation angle decrease with the increment of frequency and the performance of Faraday rotation is, therefore, weaker at
the higher THz regime. Its low-THz characteristic is due to the fact that the Drude peak of graphene conductivity appears in the low-THz regime. By using a patterned graphene layer, giant Faraday rotation has been achieved up to 6 THz \[33\]. The drawback is that gaps among patterns decrease the whole coverage area of graphene, and the highest rotation angle at the higher THz regime is lower than the rotation angle of a uniform graphene at the low-THz regime. Thus, the obtainable rotation angle is reduced on the whole THz regime.

The angle of Kerr rotations in FDTD simulations is calculated by

$$\theta_K(\omega) = \arctan \left[\frac{E_{y,\text{refl}}(\omega)}{E_{x,\text{refl}}(\omega)} \right]_{\text{real}}$$

(3.30)

where the “real” means the real part of a complex Kerr rotation angle, $E_{x,\text{refl}}(\omega)$ is the x-component of the reflection and $E_{y,\text{refl}}(\omega)$ is the y-component of the reflection.

In Figure 3.5, Kerr rotations calculated by the FDTD method are also compared with...
the results obtained from the theoretical formula expressed as [31]

$$\theta_K(\omega) = -\frac{1}{2} \arg \left[\frac{r_-}{r_+} \right]$$ \hspace{1cm} (3.31)

where $r_\pm = -Z_0\sigma_\pm/(2 + Z_0\sigma_\mp)$ is the complex reflection coefficient for the right (+) and left (-) circularly polarised EM waves.

3.4.3 Case Three: Graphene-based Salisbury Screen

FDTD simulations of Salisbury Screen are compared with measurement results presented in [34]. Figure 3.6 shows the structures of single-layer Salisbury screen and multi-player Salisbury screen. Each dielectric layer has a thickness of 1.3 mm and a relative permittivity of 3.8. PEC is used to simulate a metal sheet with very high conductivity.

All graphene sheets are assumed to have the same parameters: $T= 300 \text{ K}$, $\Gamma= 5 \text{ meV}$ and $\mu_e = 0.15 \text{ eV}$. Because the Dirac-Delta function has been used to represent the thickness of graphene in the updating equation (3.23), the currents terms in the updating
equations (3.23) and (3.23) act as effective volumetric current terms. In order to satisfy the 2D property of graphene, the FDTD simulations require the Yee cell size which is sufficiently small for the frequency range of interest. In Figure 3.7, the comparison between ECM results and FDTD results demonstrates that the cell size 0.4 μm can be used from 90 GHz to 190 GHz. In the simulation space, uniform cubic Yee cells with \(\Delta x = \Delta y = \Delta z = 0.4 \) μm are employed.

Figure 3.7: Comparison between the results of equivalent circuit model (ECM) [34] and the results of FDTD for the graphene-based Salisbury screen. In FDTD simulations, the cell size takes values from 40 μm, 4 μm, 0.4 μm and 0.04 μm. When the cell size equals to 0.4 μm, the numerical result converges to the ECM result.
In the x- and y-direction, PBCs are used to model the infinite dimension in these directions because normal incidence was used in measurement. In the z-direction, 8-cell CPML is employed [35]. The Total Field/Scattered Field (TF/SF) boundary [28] is implemented in the upper simulation space to generate a normal incidence with a Gaussian pulse. Due to the limitation of Courant–Friedrich–Levy (CFL) stability, the time step is set to be 0.7 fs. FDTD results are compared with the measurement results [34], as illustrated in Figure 3.8. In FDTD simulations, material parameters are taken from the ECM parameters used in [34]. However, Figure 3.8 shows that the peaks of simulation results shift away from experimental results. In Salisbury screen, the resonance frequencies are determined by the thickness of dielectric spacers. The shift could originate from the difference between the ECM parameters and the real thickness of each dielectric spacer in the measurement of [34] due to fabrication errors.

![Figure 3.8](image)

Figure 3.8: Reflection coefficient (dB) of graphene-based Salisbury screen. FDTD results are compared with measurement results published in [34]. N represents the layer number of Salisbury screens.

3.5 Summary

In this chapter, an FDTD modelling method based on the auxiliary element approach has been proposed, and the details of updating equations have been provided. In the
derivation of updating equations, the Dirac-Delta function has been eliminated by the spatial integral around a Yee cell, which leads to finer mesh to represent graphene as a thin film. The proposed method has been used to simulate different scenarios. The simulation results have been compared with theoretical results including transmission, reflection, Faraday rotation and Kerr rotation. Various parameters of graphene have been considered. Moreover, the simulation results of graphene-based Salisbury screens demonstrate good agreement with experimental results published in the literature. It is expected that the proposed modelling method can be used for other graphene-based structures.
References

Chapter 4

Finite-Difference Time-Domain Modelling on Nonlinearity of Graphene

This chapter firstly provides the background of FDTD modelling on nonlinear materials. The challenge of modelling on the nonlinearity of graphene is pointed out. To deal with the challenge, a novel modelling method is proposed to simulate the terahertz (THz) nonlinearity of graphene under strong THz radiation. The updating equation is directly obtained from the $J - E$ characteristic formula, hence the explicit expression of graphene conductivity is not required and the complex time-domain convolution is also avoided. The excitation of odd-order harmonics is successfully demonstrated, and the frequency mixing of two THz signals is also presented.

4.1 Introduction

The band structure of graphene exhibits a linear energy dispersion relation near its Dirac points \cite{1}. This linear band structure can theoretically lead to the suppression...
of ac electric current in graphene and hence results in the generation of odd harmonics under strong THz radiation [2]. It has been predicted in [3] that a THz field with a peak value of 1 kV/cm is capable of inducing third-order harmonic generation (THG) on monolayer graphene at room temperature. The amplitude of generated third-order harmonic can be tuned by varying the Fermi level of graphene with bias voltage [4]. To maximise THG, the optimised relation between incident field amplitudes and Fermi levels has been discussed in [5]. Further enhancement can also be achieved by utilising appropriate graphene-dielectric-metal structures [6]. The third-order conductivity of graphene with resonant behavior at the THz spectrum has been proposed in [7] to analyse various nonlinear phenomena. As isolated graphene is a centrosymmetric material, the even-order harmonic generation is forbidden, leaving only odd-order harmonic excitations [8]. In addition, the effects of magnetic bias on the nonlinearity of graphene are also investigated [9]. In terms of experiments, high THz field excitations with peak electric fields between 0.2 and 63 kV/cm have been used to explore the nonlinear properties of graphene. The odd-harmonic generation of graphene has been verified experimentally using a 45-layer graphene sample [10]. Moreover, the nonlinear transmission enhancement of photoexcited monolayer graphene has also been reported in [11], enabling the realisation of graphene-based tunable nonlinear devices.

4.2 The state-of-the-art of FDTD Modelling on Nonlinear Properties of Material

FDTD modelling on the non-linearity of graphene is a relatively new topic. To model graphene that has a frequency-dependent conductivity at THz, complex time-domain convolution is required in their FDTD updating equations. Recently, an FDTD method for modelling the THz nonlinearity of graphene was also proposed. The nonlinearity of graphene is represented as a time-domain instantaneous conductivity \(\sigma(t) = \frac{J(t)}{E(t)} \), however, resulting in even-order harmonic excitation in their simulation results [12]. In
addition, many FDTD methods for simulating magnetic and electric nonlinearities of other materials have been discussed [13–17].

The magnetic nonlinearity is modeled through updating magnetic fields with a differential permeability derived from the $B - H$ characteristic formula [13].

\[
d\mu(H) = \frac{\partial B}{\partial H} = \mu_m + B_s \exp \left(-\frac{|H|}{H_c}\right)/H_c
\]

(4.1)

where $\mu_m = 1.67 \times 10^{-4}$ H/m, $B_s = 1.53$ T, and $H_c = 120$ A/m. Although this approach has been successfully implemented to simulate the pulse propagation through nonlinear magnetic sheets, the fine mesh required by the geometric details of magnetic sheets leads to very small time steps [14].

In terms of electric nonlinearity, it involves three-times convolutions [15]

\[
P_{NL}(x, t) = \epsilon_0 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \chi^{(3)}(t - t_1, t - t_2, t - t_3)
\]

\[
\times E(x, t_1)E(x, t_2)E(x, t_3)dt_1dt_2dt_3
\]

(4.2)

Under the Born-Oppenheimer approximation [18], a single time convolution approach has been used to analyze both Kerr and Raman interactions [19]

\[
P_{NL}(x, t) = \epsilon_0 \chi^{(3)}E(x, t)
\]

\[
\times \int_{-\infty}^{\infty} [\alpha \delta(t - t') + (1 - \alpha)g_R(t - t')]E^2(x, t')dt'
\]

(4.3)

where $\chi^{(3)}$ is the nonlinear coefficient, $\delta(t)$ models Kerr nonresonant transitions and $g_R(t) = \left[(\tau_1^2 + \tau_2^2)/\tau_1\tau_2^2\right]e^{t/\tau_2} \sin(t/\tau_1)$ models transient Raman scattering, and α parameter rises the relative strengths of the Kerr and Raman interactions. As this model considers the case of non-resonant third-order processes [16], it is only suitable for optical spectra where graphene does not exhibit resonant nonlinear behaviour [20]. Using high order FDTD linear response and nonlinear response can be simulated at the same time [17]. In addition, the numerical simulation of anisotropic materials with frequency-independent
nonlinear constants has been discussed in [20] as well.

4.3 Proposed FDTD Modelling on Nonlinear Response of Graphene

In this section, details of proposed FDTD modelling on non-linearity are provided. The modelling method successfully demonstrates odd-harmonic generations and frequency-mixing effects in the nonlinear response of graphene.

In the FDTD modelling, the non-linearity of graphene is expressed by a $J - E$ characteristic formula describing the surface current of graphene $J_s(t)$ induced by the strong electric field $E(t)$ at THz frequency.

Assuming the thermal energy is much less than the chemical potential of graphene $(k_B T \ll \mu_c)$, the $J - E$ characteristic formula of graphene derived from the quasi-classical kinetic theory, which ignores the interband transitions, can be expressed as [2]

$$J_s(t) = \frac{e v_F p_F^2 P(t)}{\pi \hbar^2 \sqrt{1 + P^2(t)}} G(Q(t))$$ \hspace{1cm} (4.4)

where e is the charge of an electron, v_F is the Fermi velocity of graphene, $p_F = \mu_c / v_F$ is the Fermi momentum, μ_c is the chemical potential, $P(t) = e A(t) / p_F$ is a dimensionless vector variable, $P(t)$ is the magnitude of $P(t)$, i.e. $P(t) = |P(t)|$, $A(t) = \int_0^t E(t') dt'$ is a vector potential depending on electric fields, $E(t)$ is the in-plane electric field, \hbar is the reduced Planck constant and $G(Q(t))$ can be approximated as

$$G(Q(t)) \approx 1 + \frac{3}{32} Q^2(t) + \frac{35}{1024} Q^4(t)$$ \hspace{1cm} (4.5)

where $Q(t) = 2P(t)/(1 + P^2(t))$. Compared to the work [21, 22] where only the first expansion term has been used, the equation (4.5) owns better accuracy by taking the second expansion term $Q^2(t)$ and the third expansion term $Q^4(t)$.
Figure 4.1: Yee cells in FDTD with a graphene sheet in $x - y$ plane. The Yee cell where the graphene sheet exists is filled with light colour. Red (blue) arrows represent electric (magnetic) fields. Δx, Δy and Δz are cell sizes in the three directions.

Figure 4.1 shows the Yee cells used in FDTD modelling of a continuous graphene oriented in the $x-y$ plane. In the modelling, the two-dimensional surface current of graphene is given by $J_s(t)\delta(z)$, where $\delta(z)$ is the Dirac delta function. The time-domain Maxwell’s equation including the surface current can be expressed as

$$\varepsilon \frac{\partial E(t)}{\partial t} = \nabla \times H(t) - J_s(t)\delta(z - z_0)$$

where ε is the average permittivity of materials surrounding graphene and z_0 representing the position of graphene.

By taking the difference between time step n and $n+1$ on the $E_x(t; i, j, k)$ component, the following updating equation can be obtained

$$E_x^{n+1}(i, j, k) = E_x^n(i, j, k) + \frac{\Delta t}{\varepsilon} \left[\frac{H_z^{n+0.5}(i, j + 0.5, k) - H_z^{n+0.5}(i, j - 0.5, k)}{\Delta y} \right.$$

$$- \frac{H_y^{n+0.5}(i, j, k + 0.5) - H_y^{n+0.5}(i, j, k - 0.5)}{\Delta z} - J_{sx}^{n+0.5}(i, j, k)\delta(z - z_0) \left] \right.$$
where \((i, j, k)\) represent the position index of a field variable, \(\Delta t\) is the time step and \(n\) is a non-negative integer representing the number of time step. The \(\delta(z - z_0)\) can be removed by taking spatial integration both sides of equation \((4.7)\) from \(z_0 - \Delta z/2\) to \(z_0 + \Delta z/2\) [23], and the updating equation can be written as

\[
E_{x}^{n+1}(i, j, k) = E_{x}^{n}(i, j, k) + \frac{\Delta t}{\varepsilon} \left[\frac{H_{z}^{n+0.5}(i, j + 0.5, k) - H_{z}^{n+0.5}(i, j - 0.5, k)}{\Delta y} - \frac{H_{y}^{n+0.5}(i, j, k + 0.5) - H_{y}^{n+0.5}(i, j, k - 0.5)}{\Delta z} \right. \\
- \frac{J_{n+0.5}^{sx}(i, j, k)}{\Delta z} \left. \right],
\]

where magnetic field components (i.e. \(H_{y}\) and \(H_{z}\)) follow the normal FDTD updating equations and the expression of \(J_{x}^{n+0.5}(i, j, k)\) is given by

\[
J_{x}^{n+0.5}(i, j, k) = \frac{e v F}{\pi h^2} \times \sqrt{1 + \left(\frac{2 P_{x}^{n+0.5}(i, j, k)}{P_{x}^{n+0.5}(i, j, k) + 1} \right)^2} \\
\times \left[1 + \frac{3}{32} \left(\frac{2 P_{x}^{n+0.5}(i, j, k)}{1 + \left(\frac{2 P_{x}^{n+0.5}(i, j, k)}{P_{x}^{n+0.5}(i, j, k) + 1} \right)^2} \right)^2 + \frac{35}{1024} \left(\frac{2 P_{x}^{n+0.5}(i, j, k)}{1 + \left(\frac{2 P_{x}^{n+0.5}(i, j, k)}{P_{x}^{n+0.5}(i, j, k) + 1} \right)^2} \right)^4 \right].
\]

By assuming that the incident plane wave is linearly polarised with the electric field in the \(x\)-direction and the magnetic field in the \(y\)-direction, a simplified scenario of \(P(t) = P_x(t)\) can be obtained. According to the definitions used in equation \((4.4)\), \(P_{x}^{n+0.5}\) is calculated as

\[
P_{x}^{n+0.5} = \frac{e}{p F} A_{x}^{n+0.5} = \frac{e}{p F} \int_{0.5 \Delta t}^{(n+0.5) \Delta t} E_{x}(t') dt' = \frac{e}{p F} \Delta t \sum_{m=0.5}^{n+0.5} E_{x}^{m}
\]

where \(m\) represents a half-integer step time.
It is noted that equation (4.10) requires electric fields at half-integer time steps. However, the values of electric fields are only calculated at integer time steps in equation (4.8). To deal with this issue, the information of electric fields at half-integer time steps is required.

Electric fields at half-integer time steps can be approximated as the average value of its nearest two integer time steps, and the summation term $\sum_{m=0}^{n+0.5} E_x^m$ in equation (4.10) can be expressed as

$$\sum_{m=0}^{n+0.5} E_x^m = \frac{1}{2} \left(\sum_{m=0}^{n} E_x^m + \sum_{m=1}^{n+1} E_x^m \right).$$ (4.11)

If the auxiliary element B^n_x is defined as

$$B^n_x = \sum_{m=0}^{n} E_x^m,$$ (4.12)

then it is easy to achieve the following updating equation by substituting equation (4.12) into (4.11)

$$B^{n+1}_x = B^n_x + E^{n+1}_x.$$ (4.13)

According to equations (4.11), (4.12) and (4.13), the updating equation of $P^{n+0.5}_x$ can be written as

$$P^{n+0.5}_x = \frac{e \Delta t}{2 \rho_F} \left(2B^n_x + E^{n+1}_x \right).$$ (4.14)

Finally, by substituting equation (4.9) into equation (4.8), the updating equation of E_x can be expressed as
\[E_x^{n+1}(i, j, k) = E_x^n(i, j, k) \]
\[+ \frac{\Delta t}{\varepsilon} \left[\frac{H_z^{n+0.5}(i, j + 0.5, k) - H_z^{n+0.5}(i, j - 0.5, k)}{\Delta y} \right. \]
\[- \left. \frac{H_y^{n+0.5}(i, j, k + 0.5) - H_y^{n+0.5}(i, j, k - 0.5)}{\Delta z} \right] \]
\[- \frac{\Delta t}{\varepsilon \Delta z} \frac{e V_F P_F^2}{\pi h^2} \times \frac{P_x^{n+0.5}(i, j, k)}{\sqrt{1 + (P_x^{n+0.5}(i, j, k))^2}} \]
\[\times \left[1 + \frac{3}{32} \left(\frac{2P_x^{n+0.5}(i, j, k)}{1 + (P_x^{n+0.5}(i, j, k))^2} \right)^2 \right. \]
\[+ \left. \frac{35}{1024} \left(\frac{2P_x^{n+0.5}(i, j, k)}{1 + (P_x^{n+0.5}(i, j, k))^2} \right)^4 \right]. \]

However, it is noticed that the updating equation (4.14) of \(P_x^{n+0.5} \) includes the unknown electric field component \(E_x^{n+1} \). Thus, to solve the updating equation (4.15), the Newton-Raphson method is adopted, which is explained in the next section.

4.4 The Newton-Raphson Method

In this section, the explanations and details of the Newton-Raphson method used in this chapter are provided.

The Newton-Raphson method, also known as the Newton’s method, is a numerical method for finding approximations to the roots of real-valued functions [24]. The features of continuity and real values of time-domain Maxwell’s equations makes the Newton’s method suitable for the related root-finding problems.

Suppose that a function \(f(x) \) has a derivation \(f'(x) \) where \(x \) is a real number and \(x_0 \) is a initial guess for a root of \(f(x) \), then a better root \(x_1 \) can be calculated as

\[x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \]
Chapter 4. Finite-Difference Time-Domain Modelling on Nonlinearity of Graphene

Such process is repeated as

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

(4.17)

where n represents the iteration time, until the desired accuracy of $f(x_{n+1})$ is obtained.

The equation (4.15) can be written as

$$f(E_x^{n+1}(i,j,k)) = E_x^n(i,j,k)$$

$$+ \Delta t \frac{H_z^{n+0.5}(i,j,0.5,k) - H_z^{n+0.5}(i,j,0.5,k)}{\Delta y}$$

$$- \frac{H_y^{n+0.5}(i,j,k + 0.5) - H_y^{n+0.5}(i,j,k - 0.5)}{\Delta z}$$

$$- E_x^{n+1}(i,j,k) - \frac{\Delta t}{\varepsilon} \frac{\varepsilon \nu F P_F^2}{\pi \hbar^2} \times \frac{P_x^{n+0.5}(i,j,k)}{\sqrt{1 + (P_x^{n+0.5}(i,j,k))^2}}$$

$$\times \left[1 + \frac{3}{32} \left(\frac{2P_x^{n+0.5}(i,j,k)}{1 + (P_x^{n+0.5}(i,j,k))^2} \right)^2
+ \frac{35}{1024} \left(\frac{2P_x^{n+0.5}(i,j,k)}{1 + (P_x^{n+0.5}(i,j,k))^2} \right)^4 \right]$$

$$= 0$$

(4.18)

which is a root-searching problem of the unknown electric component $E_x^{n+1}(i,j,k)$.

For convenience, $E_x^{n+1}(i,j,k)$ is defined as x, i.e. $E_x^{n+1}(i,j,k) = x$. To obtain the expression of $f'(x)$, many symbols are defined as follows

$$M = E_x^n(i,j,k)$$

$$+ \Delta t \frac{H_z^{n+0.5}(i,j,0.5,k) - H_z^{n+0.5}(i,j,0.5,k)}{\Delta y}$$

$$- \frac{H_y^{n+0.5}(i,j,k + 0.5) - H_y^{n+0.5}(i,j,k - 0.5)}{\Delta z}$$

(4.19)

which is the fields independent on x,

$$C = \frac{\Delta t \varepsilon \nu F P_F^2}{\pi \hbar^2}$$

(4.20)
which is the coefficient of current term, and

\[J = \frac{P(64 + 280P^2 + 467P^4 + 280P^6 + 64P^8)}{64(1 + P^2)^{9/2}} \] (4.21)

is the current term where \(P = D(2q + x) \) with \(D \) representing \(0.5 \times e\Delta t/p_F \) and \(q \) representing \(B_z^n \).

The equation (4.18) is rewritten as

\[f(x) = M - x - C \times J. \] (4.22)

With the assistance of a commercial software Mathematica, the \(f'(x) \) can be expressed as

\[
\begin{align*}
\frac{\partial f}{\partial x} &= -1 + \frac{CD^3(2q + x)^2}{16(1 + D^2(2q + x)^2)^{11/2}} \times \left[-12 - 47D^2(2q + x)^2
ight. \\
& \quad + 47D^4(2q + x)^4 + 12D^6(2q + x)^6 \\
& \quad + \left. \frac{CD^3(2q + x)^2}{(1 + D^2(2q + x)^2)^{3/2}} \times \left[1 + \frac{35D^4(2q + x)^4}{64(1 + D^2(2q + x)^2)^4} + \frac{3D^2(2q + x)^2}{8(1 + D^2(2q + x)^2)^2} \right] \times \frac{CD}{\sqrt{1 + D^2(2q + x)^2}} \times \left[1 + \frac{35D^4(2q + x)^4}{64(1 + D^2(2q + x)^2)^4} \right. \\
& \quad + \left. \frac{3D^2(2q + x)^2}{8(1 + D^2(2q + x)^2)^2} \right]. \end{align*}
\] (4.23)

The initial guess of root is set as the value of previous electric field \(E_n^x(i, j, k) \) and the process of root searching repeats until an accuracy of \(10^{-8} \) is obtained.

4.5 Simulation Results and Validation

Because odd-harmonic generation and frequency-mixing effect are two important nonlinear phenomena, the proposed FDTD modelling method is used to simulate the nonlinear response of graphene on these two phenomena.
In the simulations, a continuous graphene layer, as shown in Figure 4.1, is modelled with periodic boundary conditions in x- and y-directions to analyse the nonlinearity of large-area graphene. Perfectly matched layers are employed in the propagation (z) direction of incident waves. For simplicity, it is assumed that graphene is suspended in air.

The dimensions of Yee cells are set as $\Delta x = \Delta y = \Delta z = 0.1 \, \mu m$ corresponding to $1/250$ of the wavelength of highest simulation frequency (12 THz). This small cell size is capable of providing converged simulation results and the time step is defined according to Courant’s stability condition as

$$
\Delta t \leq \frac{1}{c \sqrt{\left(\frac{1}{(\Delta x)^2}\right)^2 + \left(\frac{1}{(\Delta y)^2}\right)^2 + \left(\frac{1}{(\Delta z)^2}\right)^2}}.
$$

(4.24)

Uniform plane waves with normal incidence in the z-direction are used in simulations. In the simulation of odd-harmonic generation, a sine-modulated Gaussian signal $S_1(t)$ is used as the incident signal. An additional sine-modulated Gaussian signal $S_2(t)$ at a different frequency is used in the simulation of frequency-mixing effect. The two sine-modulated Gaussian signals $S_{1,2}(t)$ are expressed as

$$
S_{1,2}(t) = E_0 \sin (2\pi f_{c1,2}(t - t_0)) e^{-\left(\frac{t-t_0}{\tau}\right)^2}
$$

(4.25)

where E_0 is the temporal peak of the Gaussian pulse, $f_{c1,2}$ are the carrier frequencies ($f_{c1} = 2 \, \text{THz}$ and $f_{c2} = 3 \, \text{THz}$), $t_0 = 4.8 \, \text{ps}$ and $\tau = 1 \, \text{ps}$. Figure 4.2 presents the two signals in both frequency and time domains.

4.5.1 Case One: Odd-harmonic Generation

For the simulations of odd-harmonic generation, the plane wave consisting of only $S_1(t)$ is used. Due to the odd harmonic generation, the primary 2 THz component should not be exclusively excited; the higher-order 6 THz and 10 THz components are also expected
Figure 4.2: The normalised spectral power of two incident signals S_1 and S_2. The inset is the temporal amplitudes of S_1, S_2 and $S_1 + S_2$, which are normalised to E_0.

in the transmitted spectrum.
The power spectrum of the transmitted waves, plotted in Figure 4.3, is defined as

\[P_{dBc} = 20 \log_{10} \frac{E_{trans}(\omega)}{E_{inc}(2\text{THz})} \] (4.26)

where \(E_{trans}(\omega) \) is the amplitude of transmitted waves and \(E_{inc}(2\text{THz}) \) is the amplitude of incident waves at the carrier frequency 2 THz. The power spectrum clearly shows the generation of the third and the fifth harmonics.

Figure 4.3: The normalised spectral power of the transmitted wave which demonstrates odd harmonic generation. The incidence has a 2 THz central frequency. The generated fundamental, third and fifth harmonics are emphasised by the red colour with darkness representing their strength. Various chemical potentials of graphene are taken into account.

Figure 4.4 shows the spectral amplitudes of the third-order (6 THz) and fifth-order (10 THz) harmonics against the chemical potential of graphene under various incident signal strengths. It can be found that there are optimised chemical potentials for THG and fifth-order harmonic generations (FHG) which vary with the strength of the incident signals, as summarised in Table 4-A.
4.5.2 Case Two: Frequency-mixing Effect

Another nonlinear phenomenon, the frequency-mixing effect, is also demonstrated with the proposed FDTD simulation. Two linearly x–polarised plane waves, as shown in Figure 4.2, are used to explore the frequency-mixing effect. The two incident signals are
Chapter 4. Finite-Difference Time-Domain Modelling on Nonlinearity of Graphene

Table 4-A: Optimised Chemical Potentials for Odd-harmonic Generation

<table>
<thead>
<tr>
<th>E_0 (kV/cm)</th>
<th>μ(meV) in THG</th>
<th>μ(meV) in FHG</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>148</td>
<td>106</td>
</tr>
<tr>
<td>50</td>
<td>172</td>
<td>124</td>
</tr>
<tr>
<td>60</td>
<td>195</td>
<td>140</td>
</tr>
</tbody>
</table>

Figure 4.5: The spectral amplitudes of transmitted signal through graphene for frequency-mixing effect. The incidence consists of two signals with central frequency at $f_{c1} = 2$ THz and $f_{c2} = 3$ THz, which is anticipated to generate third-order intermodulation harmonics (i.e. 1 THz, 4 THz, 7 THz and 8 THz) and other high-order harmonics due to mixing effect. Without loss of generality, odd-harmonic generations, such as 6 THz, 9 THz and 10 THz, have also been shown in the figure. Chemical potential of graphene is tuned from 0.05 eV to 0.3 eV with the step 0.05 eV.

As graphene is a centrosymmetric material, the second order response in graphene is absent. In the third order, under THz radiation consisting of two signals with central frequency f_{c1} and f_{c2} respectively, THz transmission through graphene should have the following resultant Fourier harmonics: f_{c1}, f_{c2}, $3f_{c1}$, $3f_{c2}$, $2f_{c1} \pm f_{c2}$ and $2f_{c2} \pm f_{c1}$ which are clearly shown in Figure 4.5. Meanwhile, other high-order harmonics due to mixing effects can also be seen in Figure 4.5. In addition, the frequency components indicated...
by dashed arrows in Figure 4.5 are summarised in Table 4-B.

<table>
<thead>
<tr>
<th>Frequency component</th>
<th>Expression</th>
<th>Value (THz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central frequency</td>
<td>f_{c1}</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>f_{c2}</td>
<td>3</td>
</tr>
<tr>
<td>Third-order harmonic</td>
<td>$3f_{c1}$</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>$3f_{c2}$</td>
<td>9</td>
</tr>
<tr>
<td>Fifth-order harmonic</td>
<td>$5f_{c1}$</td>
<td>10</td>
</tr>
<tr>
<td>Third-order intermodulation harmonic</td>
<td>$2f_{c1} - f_{c2}$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$2f_{c2} - f_{c1}$</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>$2f_{c1} + f_{c2}$</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>$2f_{c2} + f_{c2}$</td>
<td>8</td>
</tr>
</tbody>
</table>

4.6 Summary

The background of FDTD modeling on nonlinear material is reviewed in this chapter. A novel FDTD modelling method has been proposed to model the nonlinear electrodynamic properties of graphene at THz frequencies. FDTD results successfully demonstrate odd-harmonic generations as well as frequency-mixing effects in wave transmission through graphene. The effects of chemical potential are also investigated. The proposed modelling methods are expected to support the design of graphene-based devices.
References

Chapter 5

Graphene-based Reflector under Magnetostatic Bias

In the terahertz spectrum, the 2D material graphene owns diagonal and Hall conductivities in the presence of a magnetic field. These peculiar properties provide graphene-based structures with magnetically tunable response to electromagnetic waves. In this chapter, the absolute reflection intensity was measured for a graphene-based reflector illuminated by linearly polarised incident waves at room temperature, which demonstrated the intensity modulation depth (IMD) under different magnetostatic bias by up to 15%. Experimental data were fitted and analysed by a modified equivalent circuit model. In addition, as an important phenomenon of graphene’s gyrotropic response, Kerr rotation is discussed according to results achieved from full-wave simulations.

5.1 Introduction

At the terahertz (THz) spectrum, graphene exhibits nonreciprocal and gyrotropic responses due to graphene magnetoplasmons (GMPs) [1–4]. This can be characterised by the anisotropic conductivity with a two-dimensional tensor derived from Kubo formula [5].
The electrostatic tunable conductivity and carrier-density-dependent cyclotron mass of graphene make it different from conventional gyromagnetic materials. In recent years, applications in health, security, astronomy and communication operating in the THz spectrum have begun to emerge [6]. Graphene has shown potential to be employed in novel magneto-optical devices for THz applications [7]. To provide a roadmap for various graphene-based modulators and non-reciprocal devices, researchers have proposed fundamental limits to estimate their optimal performance [8].

In terms of nonreciprocal performance at THz spectrum, graphene-based isolators, demonstrating up to 20 dB isolation, have been experimentally demonstrated for circularly polarized wave incidence [9]. Tunable isolation performance can be achieved by changing the carrier density of graphene [10]. Moreover, the gyrotropic properties of GMPs have also been demonstrated for Faraday rotations (FRs) at room temperature [11]. The FR angle can be enhanced through the effects of Fabry–Pérot resonances [12]. However, the tradeoff between the FR angle and the transmission coefficient needs to be considered in such enhancement [13]. Except for the FRs, Kerr rotations (KRs) in reflected waves from graphene have also been measured at low temperature (5K) [14]. It is noticed that graphene’s conductivity is temperature-dependent with higher resistivity at higher temperature [15, 16]. However, related applications of GMPs on reflection configuration under linearly polarised illuminations at room temperature have not been reported in great detail.

5.2 Sample Fabrication

The schematic view of a bi-layer graphene-based reflector presented in this work is shown in Figure 5.1. The sample was provided by Dr Jingbo Wu at University of Cambridge. Monolayer graphene was grown on Cu foil (99.8% purity) by chemical vapour deposition (CVD) [17]. Once the Cu foil was loaded into the tube furnace (Graphene Square), it was annealed in H\textsubscript{2} (flow: 20 sccm) at 940 °C for 30 minutes. After annealing, a
uniform layer of graphene was grown on the Cu surface using a mixture of CH$_4$ and H$_2$ (flow: 4.6 and 20 sccm) for 30 minutes while keeping the temperature at 940 °C. Graphene was then transferred onto the glass/indium tin oxide (ITO) substrate with thickness $h = 0.14$ mm by wet transfer [18]. Ammonium persulfate solution was used for the chemical etching of Cu and polymethyl methacrylate (PMMA) was used as a sacrificial layer to support graphene during the etching process. After transfer, PMMA was dissolved in acetone. The transfer process was repeated once for the transfer of the second graphene layer onto glass/ITO substrate.

5.3 FDTD Modelling and Equivalent Circuit Model

FDTD modelling method proposed in chapter 3 is used to obtain full-wave simulation results especially on the Kerr rotation performance, which can also be regarded as the reflection version of Faraday rotation. Moreover, a modified equivalent circuit model is derived to extract parameters of graphene’s conductivity,

5.3.1 The Conductivity of Bilayer CVD Graphene

The conductivity of two-stacked monolayer CVD graphene (i.e. bilayer CVD graphene) can be 2-10 times larger than monolayer graphene when positioned on a glass substrate,
as the top layer of the bilayer graphene does not make contact with the underlying substrate [19]. Thus, assuming the interaction between each layer is weak, the conductivity tensor σ_b characterising the bilayer graphene in the $x - y$ plane can be expressed as

$$
\sigma_b = N \times \sigma_m = N \times \begin{bmatrix}
\sigma_{xx} & \sigma_{xy} \\
\sigma_{yx} & \sigma_{yy}
\end{bmatrix} = N \times \begin{bmatrix}
\sigma_d & \sigma_o \\
-\sigma_o & \sigma_d
\end{bmatrix}
$$

where N is a value within the range of 2 to 10 representing the increment of overall conductivity compared with monolayer graphene and σ_d (σ_o) is the diagonal (off-diagonal) element in the conductivity tensor σ_m of monolayer graphene. At room temperature σ_d and σ_o can be expressed respectively as [20, 21]

$$
\begin{align*}
\sigma_d &= \frac{-j2D}{\pi} \times \frac{\omega - j\Gamma}{(\omega - j\Gamma)^2 - \omega_c^2} \\
\sigma_o &= \frac{2D}{\pi} \times \frac{\omega_c}{(\omega - j\Gamma)^2 - \omega_c^2}
\end{align*}
$$

where $D = \frac{e^2|\mu_c|}{\hbar^2}$ is the plasmon spectral weight, e is the charge of an electron, \hbar is the reduced Plank’s constant, μ_c is the chemical potential, Γ is the effective scattering rate of electrons, $\omega_c = \frac{eB_0v_F^2}{\mu_c}$ is the cyclotron frequency, B_0 is the strength of the static magnetic field and $v_F = 1.0 \times 10^6$ m/s is the Fermi velocity.

5.3.2 The Permittivity of Glass Substrate

According the literature [22], the relative permittivity of glass substrate takes the value of $4.5 - j0.45$ from 2.5 to 6 THz. To use FDTD method model the complex permittivity, the permittivity is fitted by the Debye model with P poles expressed as [23]

$$
\epsilon(\omega) = \epsilon_{\infty} + \sum_{p=1}^{P} \frac{\Delta \epsilon_p}{1 + j\omega \tau_p}
$$

where $\epsilon_{\infty} = 2.53$ is the infinite frequency permittivity, τ_p is the relaxation time of the p^{th} Debye pole and $\Delta \epsilon_p$ is the change in relative permittivity of the p^{th} Debye pole.
Table 5-A: Parameters Used in the Debye Model of Glass Substrate

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \varepsilon_p$</td>
<td>16985.2</td>
<td>6.60488</td>
<td>-34.7034</td>
<td>30.1338</td>
</tr>
<tr>
<td>τ_p (s)</td>
<td>3.789e-9</td>
<td>2.105e-14</td>
<td>1.5245e-14</td>
<td>1.34e-14</td>
</tr>
</tbody>
</table>

Figure 5.2 shows that a four-pole Debye model can fit the permittivity well, and related fitting parameters are summarised in Table 5-A. The FDTD updating equations of glass substrate [24] are provided in the appendix B.

![Figure 5.2: The complex relative permittivity of glass substrate is fitted by the Debye model with 4 poles.](image)

5.3.3 The Permittivity of ITO Ground

The complex permittivity of ITO can be expressed as the Drude model taking into account both bound electrons and conduction band electrons [25]

$$
\varepsilon(\omega) = \varepsilon_{\infty} \frac{\omega_p^2}{\omega^2 - j\omega\tau^{-1}}
$$

(5.4)

where $\varepsilon_{\infty} = 4$ is the infinite frequency permittivity, ω_p is the plasma frequency and τ is the relaxation time.
Chapter 5. Graphene-based Reflector under Magnetostatic Bias

Figure 5.3: The values of ω_p and τ in the reference [26], represented by red circle, are fitted as functions of ITO thickness. The values of the sample, represented by blue rhombus, are obtained from the fitted curves.

The experimental work in [26] has demonstrated that the parameters of ITO films from 189 nm to 962 nm are dependent on the thickness. The scanning electron microscope (SEM) image in the appendix C shows that the thickness of ITO used in our samples is about 770 nm. The $\omega_p = 1913$ rad \cdot THz and $\tau = 6.58$ fs are obtained from the curve fitting as demonstrated in Figure 5.3.
Figure 5.4 shows the relative permittivity used for the ITO film. In addition, the FDTD updating equations of ITO can be derived from the equation (5.4) by the auxiliary differential equation method [27] as provided in the appendix B.

![Relative permittivity graph]

Figure 5.4: Calculated complex relative permittivity of ITO film

5.3.4 The Setup of FDTD Modelling

The FDTD modelling method, which has been proposed in chapter 3, is used to implement the conductivity tensor expressed as the equation (5.1) and the equation (5.2). The structure shown in Figure 5.1 is treated as infinite in the x- and y-directions, thus PBCs are employed in these two directions [28]. CPMLs are employed in the z-direction as absorbing boundaries to terminate simulation domains [29]. The TF/SF boundary is used to generate the x-polarised plane waves propagating in the z-direction [30]. Uniform cubic Yee cells with $\Delta x = \Delta y = \Delta z = 60$ nm are employed. The size of time step $\Delta t = 0.05$ fs is set due to the Courant–Friedrich–Levy stability with a courant factor 0.9.

The calculation of Kerr rotation follows the equation (3.30). The reflection coefficient is calculated by

$$R = \frac{\sqrt{|E_{x,refl}(\omega)|^2 + |E_{y,refl}(\omega)|^2}}{|E_{inc}(\omega)|} \quad (5.5)$$
where $E_{x,\text{refl}}(\omega)$, $E_{y,\text{refl}}(\omega)$ and $E_{\text{inc}}(\omega)$ are frequency-domain values representing x-component of transmitted fields, y-component of reflected fields and incidence fields respectively.

5.3.5 Equivalent Circuit Model

In terms of a continuous isotropic graphene sheet, its ECM can be described by a series R-L circuit. The admittance of the R-L circuit equals to the surface conductivity of graphene [31]. The work in [32] has adopted this method to explain the performance of graphene-based absorbers. In comparison with the R-L circuit model, finite graphene with specific geometries owns an extra capacitance element to characterise resonance behaviours. The ECM of graphene patch has been proposed in [33] which is based on a quasi-static approximation [34]. Even through the approximation works well with perfect electric conductor [35, 36], the imperfect conductivity of graphene makes ECM results inaccuracy [37]. Due to the lack of close-form formulas, researchers have proposed numerical approaches to obtain the admittance of graphene-based structures, such as ribbon arrays [38, 39], patch arrays [40] and disk arrays [41].

By using two coupled voltage-control current generators, a close-form formula has been proposed for a continuous graphene sheet under magnetic bias to calculate wave transmission through anisotropic graphene [42]. According to this model, a modified ECM, as shown in Figure 5.5, is utilised to calculate the reflection performance of graphene-based reflector. In the modified ECMs, the glass substrate is described by its characteristic admittance Y_d and propagation constant γ_d which are calculated according to published data in literature [22]. The ground ITO film is modelled as an equivalent sheet admittance Y_{ITO} [26].

The coupling relation between the voltage V_1 and V_2 in Figure 5.5 can be expressed as

$$V_2Y_{bo} = \left(\frac{Y_{bo}^2}{Y_0 + Y_{bd} + Y_{sub}} \right) V_1 \quad (5.6)$$
where $Y_{bd} = N \times \sigma_d$ ($Y_{bo} = N \times \sigma_o$) is diagonal (off-diagonal) admittance of the bilayer graphene, $Y_0 \approx 1/377$ S is the intrinsic admittance of free space and Y_{sub} is the input admittance of substrate expressed as

$$Y_{sub} = Y_d \times \frac{Y_{ITO} + Y_d \tanh(\gamma_d h)}{Y_d + Y_{ITO} \tanh(\gamma_d h)}.$$ \hspace{1cm} (5.7)

According to Eqs.(5.2)(5.6) and (5.7), the sample input admittance Y_{sample} in Figure 5.5 can be written as

$$Y_{sample} = Y_{bd} + Y_{sub} + \frac{Y_{bo}^2}{Y_0 + Y_{bd} + Y_{sub}}.$$ \hspace{1cm} (5.8)

Finally, the reflection coefficient of the graphene-based reflector is defined as

$$R_{ECM} = \frac{Y_0 - Y_{sample}}{Y_0 + Y_{sample}}.$$ \hspace{1cm} (5.9)
5.3.6 The Validation of the ECM

The ECM is used to extract graphene parameters by fitting techniques. To validate the ECM, the reflection coefficients ordained from FDTD and ECM are compared in Figure 5.6. The parameters of graphene are randomly set as \(N = 7, \mu_c = 0.2 \text{ eV} \) and \(\Gamma = 140 \text{ meV} \). Figure 5.6 demonstrates that the models can well describe the reflection of the graphene-based structure as shown in Figure 5.1.

![Figure 5.6: Comparison on reflection coefficients ordained from FDTD and ECM. Magnetic bias takes the value of 0 T, 2 T, 4 T and 6 T.](image)

5.4 Measurement Setup and Results

In the measurements, a Fourier-transform infrared spectroscopy (FTIR) setup with magnetostatic bias was employed as shown in Figure 5.7. The measurements were performed with the help from Dr Jean-Marie Pomerol and Prof. Alexey B. Kuzmenko at University of Geneva.

A Michelson interferometer is adapted for the FTIR setup. The light is collimated and directed to a beam splitter. Ideally 50% of the light is refracted towards the fixed
Figure 5.7: The schematic diagram of the measurement setup. A grid-wire gold polarizer is used to convert randomly polarised light generated by Globar light source to linear polarised light. The linear polarised light passes through a Michelson interferometer configuration and illuminates a graphene-based reflector. The reflection from the sample is detected by a He-cooled bolometer detector. The detector and source are tilted by $\theta_1 = \theta_2 = 2.5^\circ$. The static magnetic biasing field B_0 in the direction vertical to the sample is generated by a split-coil superconducting magnet, which is not drawn in the diagram.

mirror and 50% is transmitted towards the moving mirror. Light is reflected from the two mirrors back to the beam splitter and some fraction of the original light passes into the sample compartment. The difference in optical path length between the two arms to the interferometer is known as the retardation. An interferogram is obtained by varying the retardation and recording the signal from the detector for various values of the retardation. The form of the interferogram when no sample is present depends on factors such as the variation of source intensity and splitter efficiency with wavelength. When a sample is present, the background interferogram is modulated by the presence of the sample.

Linear incidence was generated by a randomly polarised Globar light source with a grid-wire gold polariser positioned in front of it. The incidence illuminated the sample through a Michelson interferometer configuration. The spectrum was swept from 2.5 THz to 6 THz. The absolute intensity of reflection I_R from the sample was measured
by a He-cooled bolometer detector. The detector and source were tilted by 2.5 degrees from the normal to allow for the positioning of both instruments. Considering the fact that the angles were quite small, the experimental results can be treated as the reflection of a normal incidence. A split-coil superconducting magnet at low temperature generated a static magnetic bias in the direction vertical to the sample which was at room temperature.

Figure 5.8: Intensity modulation depth. Measurement results are plotted in dots and the fitting results from ECM are plotted in solid lines. Three values of magnetostatic bias are taken: 2 T, 4 T and 6 T. It can be seen that lower spectrum has larger modulation depth. In the case of 6 T, 15% modulation depth at lower spectrum can be obtained around 3 THz.

To demonstrate the intensity variation induced by the statically magnetic bias, the intensity modulation depth (IMD) can be calculated as $1 - \frac{I_R(B_0 \neq 0)}{I_R(B_0 = 0)}$. However, the formula, $1 - \frac{I_R(B_0 \neq 0)/I_{ref}(B_0 \neq 0)}{I_R(B_0 = 0)/I_{ref}(B_0 = 0)}$, which divides by the reflection intensity of a gold mirror $I_{ref}(B_0)$ as a reference measured under the same experimental conditions, is taken to remove any variation in the measurement system due to the generation of the magnetic field. The experimental results of IMD
based on the formula mentioned above are shown in Figure 5.8. The spectra in Figure 5.8 do not clearly show Fabry–Pérot resonance behaviour due to the loss of the substrate. However, the tunability of graphene and the effect on the IMD is still visible from the measured data.

In the ECM, the IMD is defined as

\[
IMD_{ECM} = 1 - \frac{R_{ECM}^2(B_0 \neq 0)}{R_{ECM}^2(B_0 = 0)}
\]

(5.10)

where \(R_{ECM}\) has been defined in the equation (5.9).

The experimental results are fitted according to the ECM. The relevant ECM parameters are as follows: \(N = 8\), \(\mu_c = 0.21\) eV and \(\Gamma = 50\) meV, corresponding to the mobility of 3923 cm\(^2\)(V-s)\(^{-1}\)[43]. This is consistent with the mobility of graphene (4050 cm\(^2\)(V-s)) fabricated with the same method [17]. It can be found that the variation of IMD in Figure 5.8 is larger at lower frequencies, consistent with the fact that Dirac fermions in continuous graphene have stronger magneto response at lower THz frequencies. At around 3 THz, a 15% IMD was measured with \(B_0 = 6\) T.

5.5 Further Discussion

As shown in Figure 5.9, the IMD increases with the increase of magnetostatic bias. According to Eq. (5.2), the magneto-conductivity of graphene is affected by \(B_0\) through the cyclotron frequency \(\omega_c\). Because \(B_0\) and \(\mu_c\) plays inverse roles on the value of \(\omega_c\), the MD can be increased by reducing \(\mu_c\). Figure 5.10 shows the IMD obtained with ECM for \(\mu_c = 0.1 - 0.4\) eV and \(B_0 = 6\) T. It can be found that higher IMD can be achieved with lower chemical potential. The maximum IMD of 69% is achieved at \(\mu_c = 0.1\) eV. Although the reflector is demonstrated under \(B_0 = 6\) T. The required magnetostatic bias is expected to be reduced utilising patterned graphene [44]. The work is useful for potential graphene-based applications at room temperature.
Figure 5.9: Intensity modulation depth (IMD) vs. magnetostatic bias (B_0) at 2.5-6 THz. Chemical potential μ_c is 0.1 eV. B_0 is swept from 0 to 6 T. As B_0 is increased, the tunability increases.

Figure 5.10: Intensity modulation depth (IMD) vs. chemical potential (μ_c) at 2.5 - 6 THz. Magnetostatic bias B_0 is 6 T. μ_c is swept from 0.1 to 0.4 eV. As μ_c is decreased, the tunability generated by magnetostatic bias increases.

The Kerr rotation caused by magnetostatic response of graphene in the structure can be obtained from FDTD simulations as mentioned in the section 5.3.4. The figure-of-merit (FOM) of Kerr rotation can be defined as $\theta \sqrt{R}$, where θ is the Kerr rotation angle...
and R is the reflection coefficient[45] and the calculation results are plotted in Figure 5.11 for $B_0 = 6$ T. It is easy to see the highest FOM is achieved with $\mu_c = 0.15$ eV at 2.875 THz. However, the corresponding IMD, as shown in Figure 5.10, is only 40%. Hence, the maximum IMD and FOM cannot be obtained at the same time.

5.6 Summary

In this chapter, the reflection performance of a graphene-based reflector under magnetostatic bias at room temperature is presented. The measurement results show the maximum variation of 15\% in IMD when tuning the magnetostatic bias. In order to analyse the reflection performance, a modified ECM in its closed form was derived, and it was shown how the tunability of graphene under magnetostatic bias is highly dependent on the chemical potential. However, further investigations on substrate loss and Kerr rotation are required in the future work.
References

Chapter 5. Graphene-based Reflector under Magnetostatic Bias

Chapter 6

Graphene-based Reflectarray Antennas

In this chapter, two graphene enabled reflectarray antennas are presented. The first one is based on the phase distribution on reflecting surfaces [1], where the phase variation is achieved by tuning the chemical potential of graphene patches. The second one is based on the generalised Snell’s Law [2], where the phase gradient of the EM surface is achieved by an aperiodic array of split-ring resonator (SRR) structures.

6.1 Introduction

In recent years, infrared (IR) spectrum has gained the interest of a number of industries for applications such as wireless communications, imaging and remote sensing [3, 4]. Many of these systems require beam steering so as to increase communication capacity and minimise the interference from other sources. One way to achieve beam steering of EM radiation is through a reflective surface with a spatial phase distribution, otherwise known as a reflectarray antenna [5].
The 2D material graphene, possesses a chemical-potential-dependent complex conductivity which can be tuned under electrostatic bias [6, 7]. This unique property has motivated researchers to investigate various graphene-based applications [8]. Moreover, at mid-IR spectrum, graphene exhibits low-loss plasmonic-like complex surface conductivity [9], which provides great potential on novel tunable mid-IR reflectarray antennas.

6.2 Graphene-based Reflectarray Antenna using Graphene Patch Array

Reflectarray antennas have been investigated by the research community for applications at frequencies spanning microwaves to optics [2, 10, 11].

Ideally, the unit-cell elements of a reflectarray antenna should be capable to cover a full phase-variation region of 360°. However, at IR spectrum, loss effects of metal and dielectric can restrict the phase variation to a narrow range in some cases [12]. By using low-loss materials at IR spectrum, the design of gold square-patch elements has been able to obtain 292° phase shift at 28.3 THz [13]. A reflection efficiency has been achieved as high as 92% [14].

Moreover, graphene plasmonic structures have also been exploited to manipulate the phase variation at the vicinity of the resonant frequency. Graphene ring structures [15] and graphene nanoribbons with engineered sizes have been investigated to produce a spatially varying reflection phase profile [16]. However, the phase variation of these designs depends on the physical dimensions of the unit cell elements, which cannot be dynamically tuned after fabrication. This issues can potentially be solved by using electrical tuning of the conductivity of graphene plasmonic structure [17]. In this section, the concept of a graphene patch array is presented.
6.2.1 Unit Cell Design

The unit cell of the proposed antenna array consists of a square graphene patch, a SiO$_2$ substrate and a metallic ground plane, as shown in Figure 6.1. Similar concept has been used at low THz [18]. According to the results of the parameter sweep, the selected unit cell working at 24.5 THz has x-y dimensions of $0.1 \times 0.1 \mu m^2$. By changing the chemical potential of the graphene patch ($0.08 \times 0.08 \mu m^2$), the reflection phase of the unit cell can be modified. The thickness of substrate is $0.8 \mu m$.

In the FDTD simulations, the graphene patch is modelled by the method proposed in chapter 3. Graphene’s relaxation time is set as 0.1 ps. A unit cell of the structure shown in Figure 6.1 is simulated with PBCs in the x- and y-directions. CPMLs are employed in the z-direction as absorbing boundaries to terminate simulation domains. The TF/SF boundary is used to generate the x-polarised plane waves propagating in the z-direction. Uniform cubic Yee cells with $\Delta x = \Delta y = \Delta z = 3$ nm are employed. The size of time step $\Delta t = 0.005$ fs is set. Reflection amplitude and phase of the unit cell as a function of graphene’s chemical potential at 24.5 THz are plotted in Figure 6.2. The
resonant behaviour at 0.5 eV chemical potential leads to a sharp phase change. Thus, the unwrapped phase is plotted in Figure 6.2(a) to show to a continuous curve.

![Graphene-based Reflectarray Antennas](image)

Figure 6.2: (a) A phase-versus-potential design curve for a unit-cell of graphene-based reflectarray antenna. (b) A potential-versus-S_{11} design curve for a unit-cell of graphene-based reflectarray antenna.
6.2.2 Radiation Pattern

If the reflection coefficient of each element is identical, the phase shift between the elements in \(x \)-direction and \(y \)-direction need to satisfy [19]

\[
\begin{align*}
\beta_x &= -kd_x \sin \theta \cos \phi \\
\beta_y &= -kd_y \sin \theta \sin \phi
\end{align*}
\]

(6.1a) (6.1b)

where \(k \) is the wave number, \(d_x \) is the space between the elements in the \(x \)-direction, \(d_y \) is the space between the elements in the \(y \)-direction, \(\theta \) is the angle between the main beam and the \(x \)-axis, and \(\phi \) is the angle between the main beam and the \(z \)-axis.

The far-field radiation patterns of an array of spatially distributed unit cell elements can be computed using the array theory approach [19]. The unit-cell far field pattern is calculated from the numerical simulations by considering the scattered fields in all directions above the array surface. The total radiation pattern, shown in Figure 6.3, is computed for an array of \(200 \times 200 \) elements and an array of \(400 \times 400 \) elements. The increment of element number enhance the antenna’s directivity.

In addition, the UV plots of an array of \(400 \times 400 \) elements are shown in Figure 6.4. It is assumed that the reflection coefficient of each element is identical in Figure 6.4(a). The main beam directs to the desired direction well. However, it can be seen from Figure 6.2(b) that the reflection coefficient varies for the elements with chemical potentials between 0.4 eV and 0.6 eV. Taking the actual amplitude of reflection into account, Figure 6.4(b) demonstrates that the non-uniform reflection strength can shift away the direction of main beam.

6.2.3 Further Discussion

The nano-scaled graphene meta-surface requires a large number of graphene nano-patch resonators. By tuning the chemical potential of graphene resonators, the reflectarray is
Figure 6.3: Radiation pattern ($\theta = 40^\circ$ and $\phi = 45^\circ$). (a) The graphene-based reflectarray consisting of 200×200 unit cells (b) The graphene-based reflectarray consisting of 400×400 unit cells
Figure 6.4: UV plot of the graphene-based reflectarray consisting of 400×400 unit cells ($\theta = 20^\circ$ and $\phi = 40^\circ$) (a) each element owns assumed identical reflection coefficient (b) each element owns the actual reflection coefficient as shown in the figure 6.2

able to steer an incident light beam towards different directions. However, this design requires nano-scale patterning of a large number of graphene nano-patches, which is difficult to achieve in practice. Moreover, the design require an extremely complex
voltage-bias system because each graphene patch own a unique chemical potential.

6.3 Graphene-based Reflectarray Antenna using Continuous Graphene Sheet

An electromagnetic surface with a reconfigurable phase gradient is able to steer reflected light in multiple directions. A planar array of near-resonant electromagnetic structures can be engineered to reflect an incoming beam of light to a given angle according to the Snell’s Law \[\frac{d\Phi}{dx} = \sin \theta \times \frac{2\pi}{\lambda} \] where \(d\Phi \) represents the phase difference between elements, \(dx \) is the dimension of a single element in the \(x \)-direction, and \(\theta \) is the angle of the reflected beam of light with respect to the incident wave. By utilising tunable conductivity properties of graphene, a reconfigurable phase gradient surface has been designed where the direction of the reflected light can be controlled.

6.3.1 Unit Cell Design

The unit cell of the proposed antenna array consists of a near-resonant split-ring metallic structure deposited onto a continuous layer of graphene. Figure 6.5 (a) shows the structure of the unit cell, which consists of a continuous graphene sheet deposited onto a \(\text{SiO}_2 \) substrate with \(\epsilon_r = 3 \) at the relevant wavelengths [20, 21], which is backed by a metallic ground plane. A split-ring resonator structure is patterned onto the graphene layer, and the inner tooth length \((L) \) is varied across the \(x \)-dimension of the array. The design dimensions of the SRR structure are well within the limitations of modern photolithographic techniques [20]. These SRR structures have been previously used
Figure 6.5: (a) Schematic of the reconfigurable graphene reflectarray unit cell. The dimensions of the unit cell are as follows, $a = 2.4 \, \mu m$, $b = 1.6 \, \mu m$, $c = 0.76 \, \mu m$, $g = 0.08 \, \mu m$, $w = 0.1 \, \mu m$, $C_x = 2 \, \mu m$ and $C_y = 3 \, \mu m$. The inner tooth length (L) is varied in different unit cells. (b) Diagram of the 6-element super unit cell showing different inner tooth length. The dimensions of the inner tooth length are as follows, $L_1 = 0.1 \, \mu m$, $L_2 = 1.3 \, \mu m$, $L_3 = 1.5 \, \mu m$, $L_4 = 1.6 \, \mu m$, $L_5 = 1.8 \, \mu m$ and $L_6 = 2.1 \, \mu m$

to design a phase-gradient meta-surface as a spoof plasmon polariton coupler in the microwave range [22], and provide a simple means of controlling the reflection phase when illuminated with an incident light source.

In order to obtain a constant phase gradient across the surface of the reflectarray, the inner tooth length of the split-ring is varied as shown in Figure 6.5(b). By changing the chemical potential of the graphene layer, the reflection phase of the unit cell can be modified. By carefully selecting the inner tooth length of each unit cell at the
Table 6-A: The Unit Cell Performance on the Graphene Sheet with $\mu_c = 0.1$ eV

<table>
<thead>
<tr>
<th>Unit cell number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflection phase (degree)</td>
<td>0</td>
<td>-60</td>
<td>-120</td>
<td>-180</td>
<td>-240</td>
<td>-300</td>
</tr>
<tr>
<td>Reflection amplitude</td>
<td>0.97</td>
<td>0.91</td>
<td>0.7</td>
<td>0.59</td>
<td>0.66</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Table 6-B: The Unit Cell Performance on the Graphene Sheet with $\mu_c = 0.9$ eV

<table>
<thead>
<tr>
<th>Unit cell number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflection phase (degree)</td>
<td>-41</td>
<td>-40</td>
<td>-40</td>
<td>-50</td>
<td>-55</td>
<td>-59</td>
</tr>
<tr>
<td>Reflection amplitude</td>
<td>0.65</td>
<td>0.75</td>
<td>0.68</td>
<td>0.65</td>
<td>0.68</td>
<td>0.57</td>
</tr>
</tbody>
</table>

desired frequency of operation, the phase gradient of the whole surface can be switched between two distinct states by tuning the graphene chemical potential. As a result, a binary reflection array enabled by a continuous graphene monolayer can be realised. The reflection phase and amplitude are summarised in Table 6-A and Table 6-B. From the equation (6.2), it can be determined that, in order to reflect a 32 THz incident wave to an angle of 50°, a phase shift 60° between adjacent elements on the reflective surface is required and this can be achieved with 6 adjacent unit cells.

When the graphene layer is biased with $\mu_c = 0.1$ eV, the reflection phase of the unit cell is strongly dependent on the value of L. As the tooth length is increased from 0.1 μm to 2.1 μm the reflection phase varies by almost 300°. The amplitude of the reflection coefficient varies between 0.97 and 0.59, with the minimum at a tooth length of 1.6 μm, due to resonant effects of the metallic split-ring structure. When the μ_c is increased to 0.9 eV, the reflection amplitude varies between 0.57 and 0.75.

6.3.2 Binary Reflection

In FDTD simulations, a plane wave with linearly polarised electric fields in the y-direction, as shown in Figure E.1, is employed to illuminate the structure. Unit cells have been designed to work at 32 THz. Graphene sheet is modelled by the method proposed in chapter 3. Parameters of the graphene sheet are summarised in Table 6-C. A typical
Table 6-C: Graphene Properties Used in FDTD Modelling

<table>
<thead>
<tr>
<th>Property</th>
<th>μ_e (eV)</th>
<th>0.1</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relaxation time (τ) (ps)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Electron mobility (cm2/Vs)</td>
<td>1×10^4</td>
<td>1.1×10^3</td>
<td></td>
</tr>
<tr>
<td>σ_s ($\times 10^{-5}$ S) at 32 THz</td>
<td>$1.578 - 2.688i$</td>
<td>$2.603 - 52.281i$</td>
<td></td>
</tr>
</tbody>
</table>

relaxation time of $\tau = 0.1$ ps is assumed, and the chemical potential, μ_e is varied between 0.1 and 0.9 eV to achieve the required phase gradient modification.

As can be seen from Table 6-C, the imaginary part of surface conductivity of the graphene sheet is significantly increased when the chemical potential is increased from 0.1 eV to 0.9 eV. This has the effect of altering the impedance created by the capacitance between the inner-teeth of the SRR structure, shifting the resonant frequency away from the operational frequency of 32 THz. This phenomenon allows us to design an array with two chemical potential which can generate required phase gradient profiles in order to achieve the binary reflection effect.

The binary reflection can be confirmed through the FDTD simulations. The reflected field is obtained by eliminate the background incidence from the total filed. Figure 6.6 shows the reflected E_y field from the array surface for the two previously mentioned μ_e values, normalised to the maximum value which occurs when $\mu_e = 0.1$ eV. It can clearly be seen that the direction of the E_y field switches when the chemical potential is switched. When the chemical potential is equal to 0.9 eV, the maximum normalised field strength is at about 0.7, which is in good agreement with the reflection coefficient results obtained from the single unit cell simulations shown in Table 6-B. However, the wave front is not as flat as ideal, which should blame the effects of the uneven amplitude and phase distribution of unit cells.
Figure 6.6: The E_y component of electric field reflected from the array surface for graphene chemical potential of 0.1 (a) and 0.9 (b) eV at 32 THz. The pink dash line represents the reflectarray surface.

6.3.3 Further Discussion

The novelty of this design lies in the utilization of a continuous single graphene sheet on which the SRR structures are deposited. The simplicity of the design and size of the features are suitable for applying common fabrication techniques such as chemical vapour disposition (CVD) and electron beam photo-lithography. By tuning the chem-
ical potential of graphene sheet through electrostatic biasing, binary-state reflection is obtained.

The proposed reconfigurable reflectarray structure does not have the ideal reflection phase and amplitude characteristics that are typically required in optimal array designs. The initial array was designed with the intention that a constant phase gradient could be achieved across the surface for two different states, and that an even amplitude distribution could be achieved, ideally close to unity. In practice, dynamically tuning between 0.1 eV and 0.9 eV would be difficult to achieve, requiring large electric fields.

6.4 Summary

In this chapter, we have proposed two designs for graphene-enabled reconfigurable reflectarray antennas operating in the mid-infrared spectrum. The first structure is based on an array of graphene patch. The second one utilises a continuous graphene sheet with an aperiodic array of near-resonant metallic split-ring structures. By tuning the chemical potential of the graphene, both structures are able to change the reflection phase of unit cells to achieve required phase distribution on the reflective surface. The proposed designs open up the possibility of novel applications at mid-infrared wavelength in imaging and communications.
References

Chapter 7

Conclusion and Future Work

In this chapter, the work presented in this thesis is summarised, and a few ideas for the future research are also proposed.

7.1 Conclusion

This section summarises the main work in each chapter and the main contributions of the thesis.

Chapter 1 introduces two important concepts in the thesis: the THz spectrum and numerical modelling methods.

Chapter 2 provides the background of graphene including fabrication, electronic properties, plasmonics and devices.

Chapter 3 depicts the FDTD modelling on linear response of graphene. An FDTD method based on the auxiliary element is proposed. The validation work compares FDTD results with theoretical and experimental results from different aspects such as transmission coefficient, reflection coefficient, Faraday rotation and Kerr rotation. The comparison demonstrates a good agreement. The modelling method is suitable for
graphene-based structures with both electrostatic bias and magnetostatic bias.

Chapter 4 depicts the FDTD modelling on the nonlinear response of graphene. An FDTD method based on \(J - E \) characteristics is proposed. The modelling method demonstrates simulation results on odd-harmonic generations and frequency-mixing effects. The modelling work numerically investigated the effects of chemical potential on the nonlinearity of graphene. The results of parameter sweeps indicate the existence of the optimised chemical potential for nonlinear response of graphene.

Chapter 5 describes the work on a magnetically tunable graphene-based reflector under linear polarised incidence at room temperature. The details of modelling, fabrication and measurement are provided. The experimental results mainly focus on the variation in reflection intensity. The effects of chemical potential, magnetostatic bias and Kerr rotation are discussed via numerical modelling. Numerical investigation demonstrates that graphene with lower chemical potential can be used to increase the tunability of magnetostatic bias.

Chapter 6 describes the work on two graphene-based reflectarray antennas. Their performance is numerically investigated. The first structure is a graphene patch array, which theoretically, the reflective surface can realise various phase distribution. However, the non-uniform distribution of the reflection amplitude shifts the main beam away from the desired direction. The second one is based on a continuous graphene sheet with an array of metallic split-ring structures. By tuning the chemical potential of the continuous graphene, two states of reflection can be obtained. Due to the fixed physical dimensions of split-ring structures, its phase distribution cannot be as flexible as the graphene patch array.

The main contributions of this thesis are summarised as below:

1. A novel FDTD method based on auxiliary element method has been proposed for tunable linear responses of graphene. FDTD results are compared with theoretical results and measurement results from published literature. In addition, a novel FDTD
method has also been proposed for the nonlinear electrodynamic responses of graphene at terahertz frequencies. Simulation results demonstrate nonlinear phenomena in wave transmission through graphene. The proposed modelling methods can be used to design graphene-based devices.

2. Graphene-based reflectors with magnetostatic bias are explored under linear polarised illumination at room temperature. An ECM has been modified and validated with full-wave simulations in order to extract the parameters of graphene used in measurements. Experimental results demonstrate a maximum intensity variation of 15% at the magnetostatic bias of 6 T. The work also numerically studies the reflection variation and the Kerr rotation.

3. Two designs of graphene-based reflectarray antennas with electrostatic tunability are numerically investigated. The reflection performance is analysed from the aspects of amplitude distribution and phase distribution. The work demonstrates the direction on potential optimised designs.

7.2 Future Work

Based on the work presented in this thesis, the following aspects are proposed as the potential for further research:

1. The FDTD method on graphene nonlinearity proposed in the thesis can demonstrate the nonlinear phenomenon of graphene. However, there is still a lack of qualitative comparison with experimental data. Thus, it is necessary that there will be more work on the validation of the proposed nonlinear modelling method.

2. The tunability of graphene-based reflectors in chapter 5 depends on the high strength of magnetostatic bias. The required strength is expected to be reduced by employing graphene metasurfaces which can enhance the anisotropic response of graphene.
3. The first design of reflectarray antennas suffers from non-uniform amplitude distribution and complex voltage-bias network. The second design of reflectarray antennas can avoid these problems. However, the phase distribution is not flexible enough to support multi-state reflection. Optimised designs are expected to deal with these issues.

4. The experimental work in the literature has shown the frequency-dispersive relaxation time of graphene encapsulated in h-BN materials. The existing FDTD modelling methods have not taken this aspect into account. It is necessary to extend the capability of FDTD modelling to cover the frequency-dispersive relaxation time.
Appendix A

Author’s publications

Journal papers

Conference papers

Appendix B

FDTD Updating Equations Used for Glass and ITO

In the FDTD modelling, the glass and ITO have been described as fourth-pole Debye medium and Drude medium respectively.

The Ampere’s law in the frequency domain can be expressed for the pth-pole Debye medium as

$$\nabla \times \mathbf{H} = \varepsilon_0 \left(\varepsilon_\infty + \sum_{p=1}^{P} \frac{\Delta \varepsilon_p}{1 + j\omega \tau_p} \right) j\omega \mathbf{E}. \quad (B.1)$$

Let the polarisation current with the pth-pole defined as

$$\mathbf{J}_p = \varepsilon_0 \Delta \varepsilon_p \left(\frac{j\omega}{1 + j\omega \tau_p} \right) \mathbf{E}. \quad (B.2)$$

The updating equation of time-domain electric filed of glass can be expressed as

$$\mathbf{E}^{n+1} = \mathbf{E}^n + \left(\frac{2\Delta t}{2\varepsilon_0 \varepsilon_\infty + \sum_{p=1}^{P} \beta_p} \right) \cdot \left[\nabla \times \mathbf{H}^{n+1/2} - \frac{1}{2} \sum_{p=1}^{P} (1 + \kappa_p) \mathbf{J}_p^n \right] \quad (B.3)$$

where $\kappa_p = (2\tau_p - \Delta t)/(2\tau_p + \Delta t)$, $\beta_p = (\varepsilon_0 \Delta \varepsilon_p \Delta t)/(\tau_p + 0.5\Delta t)$ and $\mathbf{J}_p^n = k_p \mathbf{J}_p^{n-1} +$
\(\beta_p (E^n - E^{n-1}) / \Delta t \)

The Ampere’s law in the frequency domain can be expressed for the Drude medium as

\[
\nabla \times H = \varepsilon_0 \left(\varepsilon_{\infty} - \frac{\omega_p^2}{\omega^2 - j\omega\tau^{-1}} \right) j\omega E. \tag{B.4}
\]

Let the polarisation current of Lorentz medium defined as

\[
J = \left(\frac{-\varepsilon_0 \omega_p^2 j\omega}{\omega^2 - j\omega\tau^{-1}} \right) E. \tag{B.5}
\]

The updating equation of time-domain electric filed of ITO can be expressed as

\[
E^{n+1} = \left(\frac{2\varepsilon_0 \varepsilon_{\infty} - \Delta t \beta}{2\varepsilon_0 \varepsilon_{\infty} + \Delta t \beta} \right) E^n + \left(\frac{2\Delta t}{2\varepsilon_0 \varepsilon_{\infty} + \Delta t \beta} \right) \cdot \left[\nabla \times H^{n+1/2} - \frac{1}{2} k J^n \right] \tag{B.6}
\]

where \(k = (2\tau - \Delta t)/(2\tau + \Delta t), \beta = (\varepsilon_0 \omega_p^2 \Delta t)/(2\tau + \Delta t) \) and \(J^n = kJ^{n-1} + \beta(E^n + E^{n-1}) / \Delta t \).
Appendix C

Scanning Electron Microscope of ITO

In the literature, as discussed in chapter 5, the parameters of an ITO film depend on its thickness. With the help of Dr. Hangfeng Zhang at QMUL, the thickness of the ITO film in the sample has been obtained from the scanning electron microscope image shown in Figure C.1.

![Figure C.1: The scanning electron microscope image of the ITO film with 772.7 nm thickness.](image-url)
Appendix D

Raw Measurement Data

In this appendix, the raw data of magnetostatic measurement in chapter 5 is shown in Figure D.1 and Figure D.2. The variation of reflection intensity of the graphene-based sample in Figure D.1 is small. With the considerations of any variation in the measurement system due to the generation of the magnetic field, a gold mirror was used as reference. The data of the reference sample in Figure D.2 indicates that the system variation can be ignored.

![Reflection Intensity Graph](image)

Figure D.1: Absolute reflection intensity of graphene-based sample used in FTIR measurement.

142
Figure D.2: Absolute reflection intensity of gold mirror used as reference in FTIR measurement.
Appendix E

Plane-wave Excitation Used in Chapter 6

In this appendix, the image of plane-wave excitation used in FDTD simulations to illuminate reflectarray structures is provided, as shown in Figure E.1.

Figure E.1: The plane-wave excitation with the absence of structures in FDTD simulations