The Synergistic Effect of Bone Graft Substitute Architecture and Mechanical Environment on hMSCs Responses *in vitro*

Feng Yang

Supervisors: Dr Karin A. Hing and Dr Simon C.F. Rawlinson

Submitted in partial fulfilment of the requirements of the Degree of Doctor of Philosophy

School of Engineering and Material Science
Queen Mary University of London
December 2018
Statement of Originality

I, Feng Yang, confirm that the research included within this thesis is my own work or that where it has been carried out in collaboration with, or supported by others, that this is duly acknowledged below, and my contribution indicated. Previously published material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original and does not to the best of my knowledge break any UK law, infringe any third party’s copyright or other Intellectual Property Right, or contain any confidential material.

I accept that the College has the right to use plagiarism detection software to check the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a degree by this or any other university.

The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author.

Signature:

Date:
Acknowledgements

I would like to sincerely thank my supervisors, Dr Karin A. Hing and Dr Simon C.F. Rawlinson for giving me a wonderful opportunity to be part of the research group. This research would not have been possible without their support, advice and guidance throughout my PhD.

My gratitude also goes to all members of the Hing group, past and present, who are my colleagues as well as friends of mine. Special thanks to Dr Krystelle Mafina for helping me with materials characterisation training, Dr Navinderpal Kaur Chana for teaching me foundation of cell culture and perfusion system, Dinara Ikramova for sharing the lab bench and excitements at day and night together.

I would like to express my gratitude to Dr Stephen Thorpe, Dr Clare Thompson and Dr Estell Collin for teaching me molecular biology techniques and for helpful discussion. Many thanks to the people I worked with in Baxter Inc for providing me with biomaterials and helping me with characterisation equipment. I further would like to thank our wonderful SEMS lab management and technician team for their technical support.

Finally, a very special thanks to my family and friends, especially my parents and my husband Adam, for their endless love, support and encouragement.
Abstract

Porous silicate substituted hydroxyapatite (SiHA) as synthetic bone graft substitute (BGS) shows excellent bone repair in vivo. It is accepted that the mechanical environment to which cells are exposed regulates cellular differentiation. One mechanism by which BGS architecture may regulate bone formation could be through influencing the shear stress distribution of interstitial fluid. The aim of this study was to investigate the combined influence of BGS architecture and fluid shear environment on human mesenchymal stem cells (hMSCs) responses.

hMSCs were cultured on SiHA BGS with defined porosity. A 3D in-house perfusion bioreactor system was established, and two shear stress profiles were applied in this study: 1) continuous basal perfusion rate (BPR) at 0.07 ml/min; 2) BPR with a period of high perfusion rate (pHPR) every day at 2.5 ml/min. The cytoskeleton of hMSCs was reorganized under perfusion conditions compared with under static condition. Shear stress induced both ERK1/2 and pEKR1/2 translocation from the cytoplasm to nucleus. hMSCs cultured in BPR profile differentiated towards osteogenic lineage, while pHPR induced hMSCs to differentiate towards chondrogenic lineage. Gene expression of osx, sox9, runx2 and col ii was not dependent on BGS micro-porosity under static condition. However, the expression of osteogenic transcription factor osx increased significantly with increasing BGS micro-porosity under BPR condition, whereas the expression of chondrogenic markers like sox9, runx2 and col ii decreased with increasing BGS micro-porosity under pHPR condition after 3 days.

Nifedipine was used to block L-type voltage-sensitive Ca^{2+} channel (VSCC) activity. The translocation of ERK1/2 and pEKR1/2 from the cytoplasm to nucleus was found to be dependent on L-type VSCCs. Both BPR induced osteogenic differentiation and pHPR induced chondrogenic differentiation were found to be modulated by L-type VSCCs. The findings of this PhD thesis demonstrate that the future evaluation of porous BGS bioactivity should be conducted under carefully selected perfusion conditions, and the results of this thesis suggest that chondrogenic markers should also be used as one of the indicators for BGS performance in addition to conventional osteogenic markers, as early chondrogenic activity may denote the onset of osteochondral bone formation. This would also argue for longer term culture to
further monitor cell fate and the development of any extracellular matrix (ECM) produced.
Table of Contents

Statement of Originality ... I

Acknowledgements .. II

Abstract ... III

Table of Contents .. V

List of Abbreviations and Symbols .. X

List of Figures .. XII

List of Tables .. XIX

Chapter 1 Review of the Literature .. 1

1.1 Bone Composition and Structure ... 1
 1.1.1 Bone Cells .. 1
 1.1.2 Bone Matrix ... 2
 1.1.3 Bone Structures ... 4

1.2 Bone Mechanobiology .. 5
 1.2.1 Mechanically Responsive Bone Cells ... 5
 1.2.2 Candidate Mechanoreceptors .. 7
 1.2.3 Intracellular Signalling Pathways ... 11

1.3 Bone Formation and Bone Healing ... 12

1.4 Bone Grafting and Evaluation of Synthetic BGS Performance .. 15
 1.4.1 Cells Used in Evaluation of Synthetic BGS Performance .. 18

1.5 Bioreactors .. 19
 1.5.1 Spinner Flask Bioreactor .. 19
 1.5.2 Rotating Wall Bioreactor ... 20
 1.5.3 Perfusion Bioreactor ... 21

1.6 Aims and Objectives .. 36
Chapter 2 Materials and Methods ... 38

2.1 SiHA Granules Synthesis ... 38

2.2 Materials Characterization .. 39

 2.2.1 X-ray Diffraction (XRD) ... 39

 2.2.2 Density and Total Porosity Measurement .. 40

 2.2.3 Micro-Porosity Measurement .. 40

2.3 Cell Culture Models .. 41

 2.3.1 MG-63 Osteoblast Cell Line Culture ... 41

 2.3.2 Human Bone Marrow Derived MSCs Culture .. 41

2.4 Perfusion Bioreactor System ... 42

2.5 DNA Quantification .. 43

2.6 Specific ALP Activity Assay ... 44

2.7 Alizarin Red S Staining .. 45

2.8 Immunofluorescence Methods .. 46

2.9 Western Blotting ... 47

 2.9.1 Cell Lysate Preparation .. 47

 2.9.2 Total Protein Quantification .. 48

 2.9.3 Electrophoretic Separation of Proteins ... 48

 2.9.4 Immunoblotting and Band Quantification .. 49

2.10 Quantitative Gene Expression ... 49

 2.10.1 RNA Isolation .. 49

 2.10.2 cDNA Synthesis .. 50

 2.10.3 Primer Design .. 51

 2.10.4 Quantitative Real Time Polymerase Chain Reaction (qPCR) 51

2.11 Cell Morphology Characterization Using SEM ... 53

Chapter 3 Validation of an in vitro 3D Bioreactor for Application of Perfusion and
Compression on Cells Cultured on SiHA BGS Granules 55

3.1 Introduction .. 55

VI
3.2 Method...56
 3.2.1 Seeding Investigation ..56
 3.2.2 MG63 Cell Differentiation ..58
 3.2.3 Perfusion and Compression Bioreactor ...58

3.3 Results ...61
 3.3.1 Seeding Investigation ..61
 3.3.2 3D Bioreactor System ...64
 3.3.3 MG63 Cells Differentiation ..68

3.4 Discussion ..69

3.5 Conclusion ...76

Chapter 4 Structural Guidance of 3D SiHA BGS on hMSCs Proliferation and
Differentiation ...77

4.1 Introduction ..77

4.2 Materials and Methods ...79

4.3 Results ...80
 4.3.1 BGS Characterisation ...80
 4.3.2 DNA and specific ALP Activity of hMSCs on BGS with Equivalent Levels of
 Total Porosity and Different Micro-porosities in Different Culture Medium83
 4.3.3 DNA and specific ALP Activity of hMSCs on BGS with Equivalent Levels of
 Micro-porosity and Different Total Porosities in Different Culture Medium87

4.4 Discussion ..90

4.5 Conclusion ...92

Chapter 5 Synergistic Effect of BGS Micro-porosity and Perfusion Culture on
Differentiation of Human Mesenchymal Stem Cells (hMSCs)93

5.1 Introduction ..93

5.2 Materials and Methods ...95

5.3 Results ...97
Chapter 6 L-type Voltage Sensitive Calcium Channels (VSCCs) Modulate Fluid Shear Stress Induced Differentiation of hMSCs Cultured on 3D SiHA BGS

6.1 Introduction ... 129
6.2 Materials and Methods ... 132
6.3 Results .. 132
 6.3.1 Cytoskeleton Organisation ... 132
 6.3.2 Total DNA and Specific ALP Activity .. 135
 6.3.3 ERK Distribution .. 137
 6.3.4 Western Blot ... 140
 6.3.5 Relative Gene Expression .. 141
6.4 Discussion ... 155
6.5 Conclusion ... 158

Chapter 7 Conclusions and Future Work .. 159
7.1 Conclusions .. 159
7.2 Future Work .. 161

Appendix 1: DNA and specific ALP activity of hMSCs in 24 well-plates (5000 cells/well) after 7 days .. 163

Appendix 2: Cell culture and molecular analysis chemicals used in this PhD research. .. 163
References .. 166
List of Abbreviations and Symbols

Key abbreviations and symbols used in this PhD thesis are defined here. Some less frequently used ones are defined in the main body of the text.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>3 dimensional</td>
</tr>
<tr>
<td>ALP</td>
<td>alkaline phosphatase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>BCP</td>
<td>biphasic calcium phosphate</td>
</tr>
<tr>
<td>BGS</td>
<td>Bone graft substitute</td>
</tr>
<tr>
<td>BM</td>
<td>basic cell culture medium</td>
</tr>
<tr>
<td>BMO</td>
<td>BM supplemented with osteogenic induction medium</td>
</tr>
<tr>
<td>BMP</td>
<td>bone morphogenetic protein</td>
</tr>
<tr>
<td>β-TCP</td>
<td>β-tricalcium phosphate</td>
</tr>
<tr>
<td>BPR</td>
<td>basal perfusion rate</td>
</tr>
<tr>
<td>BPR + C</td>
<td>basal perfusion rate with one hour daily cyclic compression</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>BSP</td>
<td>bone sialoprotein</td>
</tr>
<tr>
<td>Ca^{2+}</td>
<td>calcium ions</td>
</tr>
<tr>
<td>CO_{2}</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>COL I</td>
<td>type 1 collagen</td>
</tr>
<tr>
<td>COL II</td>
<td>type 2 collagen</td>
</tr>
<tr>
<td>COX-2</td>
<td>cyclooxgenase-2</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DMP1</td>
<td>dentin matrix acidic phosphoprotein</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>ERK</td>
<td>extracellular signal-regulated kinase</td>
</tr>
<tr>
<td>FAK</td>
<td>focal adhesion kinase</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>GAPDH</td>
<td>glyceraldehyde 3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>HA</td>
<td>hydroxyapatite</td>
</tr>
<tr>
<td>hMSCs</td>
<td>human mesenchymal stem cells</td>
</tr>
<tr>
<td>IF</td>
<td>immunofluorescence</td>
</tr>
<tr>
<td>MC3T3-E1</td>
<td>mouse calvaria osteoblastic cells</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen-activated protein kinase</td>
</tr>
<tr>
<td>myoD</td>
<td>myoblast determination protein</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>MG63</td>
<td>human osteosarcoma cells</td>
</tr>
<tr>
<td>MSCs</td>
<td>mesenchymal stem cells</td>
</tr>
<tr>
<td>OC</td>
<td>osteocalcin</td>
</tr>
<tr>
<td>ON</td>
<td>osteonectin</td>
</tr>
<tr>
<td>OPN</td>
<td>osteopontin</td>
</tr>
<tr>
<td>OSX</td>
<td>osterix</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>pERK</td>
<td>phosphorylated ERK</td>
</tr>
<tr>
<td>PGE2</td>
<td>prostaglandin E2</td>
</tr>
<tr>
<td>PM</td>
<td>MSC growth medium 2 from PromoCell</td>
</tr>
<tr>
<td>PMO</td>
<td>PM supplemented with osteogenic induction medium</td>
</tr>
<tr>
<td>RUNX2</td>
<td>runt-related transcription factor 2</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscope</td>
</tr>
<tr>
<td>SiHA</td>
<td>silicate substituted hydroxyapatite</td>
</tr>
<tr>
<td>SOX9</td>
<td>SRY-box 9</td>
</tr>
<tr>
<td>TBS</td>
<td>tris buffered saline</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
<tr>
<td>VSCC</td>
<td>voltage-sensitive calcium channel</td>
</tr>
<tr>
<td>WB</td>
<td>western blot</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1-1 Bone structure diagram showing cortical osteons and trabeculae bone. (Marieb and Hoehn, 2007) ... 4
Figure 1-2 Diagram of bone healing process. ... 13
Figure 1-3 Flow diagram of the current PhD research. ... 37
Figure 2-1 Schematic diagram of Bragg's Law... 39
Figure 2-2 (a) Schematic diagram of flow to waste perfusion and compression system. (b) schematic diagram of recirculating perfusion bioreactor system. ... 43
Figure 2-3 Calibration curve for DNA concentration... 44
Figure 2-4 Calibration curve for ALP concentration... 45
Figure 3-1 Diagram of seeding cells on to construct and incubate for 2 hours in incubator. 57
Figure 3-2 (a) Schematic diagram of flow to waste perfusion and compression system. (b) Schematic showing assembly parts of loading model (Chana, 2015). ... 60
Figure 3-3 The effect of (a) volume and (b) cell density of cell suspension on DNA amount of attached MG63 cells on SiHA-22 after 2 hours. (c) The effect of attachment time on DNA amount of attached MG63 cells on SiHA-22 granules. (d) The effect of seeding density on DNA amount of attached MG63 cells on SiHA-22 for 7 days. Results are presented as mean ± standard deviation (n>=3). Statistical analysis was performed by one-way ANOVA followed by Tukey’s post-hoc multiple comparison with 95% confidence intervals (a, b, and c), or two-way ANOVA followed by Bonferroni post-tests (d). *p < 0.05, **p < 0.01 and ***p < 0.001. ... 61
Figure 3-4 The effect of initial cell seeding number, i.e (a, c, e, g) 0.5 million of MG63 cells and (b, d, f, h) 1 million of MG63 cells on cell numbers and cell morphology (white arrow) on SiHA-22 BGS granules after (a, b) 1 day, (c, d) 3 days, (e, f) 5 days and (g, h) 7 days, visualized by SEM. 63
Figure 3-5 (a) DNA amount and (b) Specific ALP activity of MG63 cells cultured on SiHA-22 BGS under static condition, basal perfusion rate (BPR), basal perfusion rate with one hour daily cyclic compression (BPR + C) after 3 days. Statistical analysis was performed by one-way ANOVA followed by Tukey’s post-hoc multiple comparison with 95% confidence intervals. *p < 0.05, **p < 0.01 and ***p < 0.001. ... 64
Figure 3-6 The gene expression of runx2, col i and opn of MG63 cells cultured on SiHA-22 BGS under static condition, basal perfusion rate (BPR), basal perfusion rate with one hour daily cyclic compression (BPR + C) after 3 days. Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01 and ***p < 0.001. ... 65
Figure 3-7 Cell populations under scanning electron microscopy (SEM). (a) 3 days of static culture, (b) 3 days of basal perfusion rate (BPR) culture, (c) 3 days of basal perfusion rate with one hour daily cyclic compression (BPR + C) culture. ... 66
Figure 3-8 Runx2 expression (a, c, e) and nuclei (b, d, f) examined by immunofluorescence and confocal microscopy. (a, b) 3 days of static culture, (c, d) 3 days of basal perfusion rate (BPR) culture, (e, f) 3 days of basal perfusion rate with one hour daily cyclic compression (BPR + C) culture. ...67

Figure 3-9 Specific ALP activity of MG63 cells (0.1 million cells/well in 24 well-plate) after 3, 7, 14, 25 and 38 days of incubation in 24 well plates in basic cell culture medium. Statistical analysis was performed by one-way ANOVA followed by Tukey’s post-hoc multiple comparison with 95% confidence intervals. *p < 0.05, **p < 0.01 and ***p < 0.001. ...68

Figure 3-10 Specific ALP activity of MG63 cells (0.1 million cells/well in 24 well-plate) after 25 and 38 days of incubation in 24 well plates in basic cell culture medium (BM) or BM supplemented with osteogenic induction medium (BMO). ..69

Figure 4-1 Macro-pore structure (a) and micro-pore structure (b) of SiHA-14; macro-pore structure (c) and micro-pore structure (d) of SiHA-22; macro-pore structure (e) and micro-pore structure (f) of SiHA-28. ..81

Figure 4-2 XRD patterns of SiHA-14, SiHA-22 and SiHA-28 BGS. ...81

Figure 4-3 Macro-pore structure (a) and micro-pore structure (b) of SiHA60; macro-pore structure (c) and micro-pore structure (d) of SiHA70; macro-pore structure (e) and micro-pore structure (f) of SiHA80. ..82

Figure 4-4 XRD patterns of SiHA60, SiHA70 and SiHA80 BGS. ...83

Figure 4-5 DNA content of hMSCs on different BGS cultured in (a) PM, (b) PMO, (c) BM and (d) BMO medium. Results are presented as mean ± standard deviation (n>=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between SiHA-14, SiHA-22 and SiHA-28. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between D3, D7 and D10. ..85

Figure 4-6 Specific ALP activity of hMSCs on BGS cultured in (a) PM, (b) PMO, (c) BM and (d) BMO medium. Results are presented as mean ± standard deviation (n>=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between SiHA-14, SiHA-22 and SiHA-28. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between D3, D7 and D10. ..86

Figure 4-7 DNA content of hMSCs on BGS cultured in (a) PM, (b) PMO, (c) BM and (d) BMO medium. Results are presented as mean ± standard deviation (n>=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between SiHA60, SiHA70 and SiHA80. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between D3, D7 and D10. ..88

Figure 4-8 Specific ALP activity of hMSCs on BGS cultured in (a) PM, (b) PMO, (c) BM and (d) BMO medium. Results are presented as mean ± standard deviation (n>=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between SiHA60, SiHA70 and SiHA80. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between D3, D7 and D10. ..90
Figure 5-1 Schematic diagram of recirculating perfusion bioreactor system. ... 96

Figure 5-2 At day 3, actin organisation in hMSCs on SiHA-14, SiHA-22 and SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. (a) The actin cytoskeleton was labelled with Alexa 488 conjugated phalloidin (green) and nuclei were counterstained with DAPI (blue). Scale bar represents 50 µm. (b) Quantitative analysis of cell area by Image J. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS... 98

Figure 5-3 At day 7, actin organisation in hMSCs on SiHA-14, SiHA-22 and SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. (a) The actin cytoskeleton was labelled with Alexa 488 conjugated phalloidin (green) and nuclei were counterstained with DAPI (blue). Scale bar represents 50 µm. (b) Quantitative analysis of cell area by Image J. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS. .. 99

Figure 5-4 Total DNA production of hMSCs on SiHA-14, SiHA-22 and SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions at (a) day 3 and (b) day 7. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS.. 101

Figure 5-5 Specific ALP activity of hMSCs on SiHA-14, SiHA-22 and SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions at (a) day 3 and (b) day 7. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS. +++p < 0.001, comparison between SiHA-14, SiHA-22 and SiHA-28 under each culture condition. .. 102

Figure 5-6 ERK1/2 distribution in hMSCs on SiHA-14, SiHA-22 and SiHA-28 BGS under static condition after 3 days. ERK1/2 was labelled using an antibody against at ERK1/2 (red), and nuclei were counterstained with DAPI (blue), scale bar represents 50 µm. White arrow showed ERK1/2 localised exclusively in the cytoplasm. ... 103

Figure 5-7 ERK1/2 distribution in hMSCs on SiHA-14, SiHA-22 and SiHA-28 BGS under basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions after 3 days. ERK1/2 was labelled using an antibody against at ERK1/2 (red), and nuclei were counterstained with DAPI.
(blue), scale bar represents 50 µm. Yellow arrow showed ERK1/2 was accumulated in nuclear.

Figure 5-8 pERK1/2 distribution in hMSCs on SiHA-14, SiHA-22 and SiHA-28 BGS under static condition after 3 days. pERK1/2 was labelled using an antibody against at pERK1/2 (red), and nuclei were counterstained with DAPI (blue), scale bar represents 50 µm. White arrow showed ERK1/2 localised exclusively in the cytoplasm.

Figure 5-9 pERK1/2 distribution in hMSCs on SiHA-14, SiHA-22 and SiHA-28 BGS under basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions after 3 days. pERK1/2 was labelled using an antibody against at pERK1/2 (red), and nuclei were counterstained with DAPI (blue), scale bar represents 50 µm. Yellow arrow showed pERK1/2 was accumulated in nuclear.

Figure 5-10 (a) At day 3, the phosphorylation of ERK1/2 (pERK1/2) and ERK protein expression on SiHA-14, SiHA-22 and SiHA-28 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. (b) Quantitative analysis of pERK1/2 expression. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS.

Figure 5-11 (a) At day 7, the phosphorylation of ERK1/2 (pERK1/2) and ERK protein expression on SiHA-14, SiHA-22 and SiHA-28 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. (b) Quantitative analysis of pERK1/2 expression. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between SiHA-14, SiHA-22 and SiHA-28 under each culture condition.

Figure 5-12 Expression of osx and alp genes in hMSCs cultured on SiHA-14, SiHA-22 and SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions after 3 and 7 days. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between SiHA-14, SiHA-22 and SiHA-28 under each culture condition.

Figure 5-13 Expression of bmp2, col i and dmp1 genes in hMSCs cultured on SiHA-14, SiHA-22 and SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions after 3 and 7 days. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a
period of high perfusion rate (pHPR) for each BGS. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between SiHA-14, SiHA-22 and SiHA-28 under each culture condition.

Figure 5-14 Expression of sox9, runx2 and col ii genes in hMSCs cultured on SiHA-14, SiHA-22 and SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions after 3 and 7 days. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between SiHA-14, SiHA-22 and SiHA-28 under each culture condition.

Figure 5-15 The gene expression of myoD in hMSCs cultured on SiHA-14, SiHA-22 and SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions after 3 and 7 days. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between SiHA-14, SiHA-22 and SiHA-28 under each culture condition.

Figure 5-16 Expression of integrin α1, integrin α5 and integrin β1 genes in hMSCs cultured on SiHA-14, SiHA-22 and SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions after 3 and 7 days. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between SiHA-14, SiHA-22 and SiHA-28 under each culture condition.

Figure 6-1 Influence of nifedipine on actin organisation in hMSCs on SiHA-14 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. The actin cytoskeleton was labelled with Alexa 488 conjugated phalloidin (green) and nuclei were counterstained with DAPI (blue). Scale bar represents 50 μm. .. 133

Figure 6-2 Influence of nifedipine on actin organisation in hMSCs on SiHA-28 under static basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. The actin cytoskeleton was labelled with Alexa 488 conjugated phalloidin (green) and nuclei were counterstained with DAPI (blue). Scale bar represents 50 μm. .. 134

Figure 6-3 Influence of nifedipine on cellular size of hMSCs on (a) SiHA-14 and (b) SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, ++p < 0.01, +++p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR). 135

Figure 6-4 Total DNA content of hMSCs on (a) SiHA-14 and (b) SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. Results are presented
as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. ***p < 0.001, the comparison between control group and nifedipine group. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR). ..136

Figure 6-5 Specific ALP activity of hMSCs on (a) SiHA-14 and (b) SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. Results are presented as mean ± standard deviation (n=3). Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, comparison between control group and nifedipine group. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR). $$$$p < 0.001, comparison between SiHA-14 and SiHA-28............................137

Figure 6-6 Influence of nifedipine on ERK1/2 distribution in hMSCs on SiHA-14 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. ERK1/2 was labelled using an antibody against at ERK1/2 (red), and nuclei were counterstained with DAPI (blue), scale bar represents 50 µm. White arrow showed ERK1/2 localised exclusively in the cytoplasm, yellow arrow showed ERK1/2 was accumulated in nuclear, green arrow showed ERK1/2 was homogeneously distributed in both cytoplasm and nuclear..138

Figure 6-7 Influence of nifedipine on ERK1/2 distribution in hMSCs on SiHA-28 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. ERK1/2 was labelled using an antibody against at ERK1/2 (red), and nuclei were counterstained with DAPI (blue), scale bar represents 50 µm. White arrow showed ERK1/2 localised exclusively in the cytoplasm, yellow arrow showed ERK1/2 was accumulated in nuclear, green arrow showed ERK1/2 was homogeneously distributed in both cytoplasm and nuclear..139

Figure 6-8 (a) Influence of nifedipine on pERK1/2 protein expression on SiHA-14 and SiHA-28 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. (b)(c) Quantitative analysis of pERK1/2 expression. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05 comparison between control group and nifedipine. ++p < 0.01, +++p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR)...140

Figure 6-9 Influence of nifedipine on expression of osx and alp genes in hMSCs cultured on SiHA-14 and SiHA-28 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. **p < 0.01, ***p < 0.001, comparison between control group and nifedipine group. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR). $$$$p < 0.001, comparison between SiHA-14 and SiHA-28.................................143
Figure 6-10 Influence of nifedipine on expression of $bmp2$, $col\ i$, and $dmp1$ in hMSCs cultured on SiHA-14 and SiHA-28 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. **p < 0.01, ***p < 0.001, comparison between control group and nifedipine group. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR). $p < 0.01, $$$p < 0.001, comparison between SiHA-14 and SiHA-28.

Figure 6-11 Influence of nifedipine on expression of chondrogenic gene markers in hMSCs cultured on SiHA-14 and SiHA-28 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between control group and nifedipine group. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR). $p < 0.05, $$$p < 0.001, comparison between SiHA-14 and SiHA-28.

Figure 6-12 Influence of nifedipine on gene expression of $myoD$ in hMSCs cultured on SiHA-14 and SiHA-28 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. ***p < 0.001, comparison between control group and nifedipine group. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR). $p < 0.05, $$$p < 0.001, comparison between SiHA-14 and SiHA-28.

Figure 6-13 Influence of nifedipine on gene expression of integrin subunits in hMSCs cultured on SiHA-14 and SiHA-28 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between control group and nifedipine group. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR). $p < 0.05, $$$p < 0.001, comparison between SiHA-14 and SiHA-28.
List of Tables

Table 1-1 In vitro studies utilizing perfusion bioreactors ... 24
Table 2-1 Parameters of foaming process to produce different SiHA granules 38
Table 2-2 Components of basic cell culture medium (BM) for cell culture in T-75 flasks in CO₂ atmosphere. .. 41
Table 2-3 Primary antibodies used in this thesis .. 47
Table 2-4 Secondary antibodies used in this thesis .. 47
Table 2-5 BSA standard solution preparation ... 48
Table 2-6 Human primers for PCR ... 51
Table 3-1 Cell number and suspension volume of seeding investigation experiment 56
Table 3-2 Components of perfusion culture medium in CO₂ atmosphere .. 59
Table 3-3 Perfusion and mechanical loading of cell-seeded BGS: models and effects 73
Table 4-1 Designed total porosity and micro-porosity of SiHA BGS .. 79
Table 4-2 The actual micro-porosity of BGS SiHA-14, SiHA-22 and SiHA-28 .. 80
Table 4-3 The actual total porosity of BGS SiHA60, SiHA70 and SiHA80 .. 82
Table 6-1 Cell culture medium in control group and nifedipine group in CO₂ atmosphere 132
Chapter 1 Review of the Literature

1.1 Bone Composition and Structure

Bone is a highly organized tissue that has four major functions: maintain blood calcium levels, support skeletal haematopoiesis, provide mechanical support for soft tissue and provide protection to internal organs. It is important to understand the fundamental characteristics of bone composition and bone structure to develop and evaluate synthetic bone graft substitute (BGS) materials for clinical use.

1.1.1 Bone Cells

The bone cells make up 10% of the total volume of bone. There are three major types of cells: osteoblasts, osteocytes and osteoclasts in bone and they are responsible for the bone formation, bone maintenance and bone remodelling.

Osteoblasts originate from mesenchymal stem cells. Active osteoblasts have a cuboidal morphology and are found on the surface of new bone. Osteoblasts accomplish their bone formation function through three stages: synthesis of collagen, matrix maturation and matrix mineralization. During the proliferation of osteoblasts, matrix proteins, especially type I collagen are deposited onto the bone surface to form unmineralised matrix termed osteoid. This is followed by the precipitation of inorganic minerals forming the mineralized bone matrix. After the formation of bone matrix, some osteoblasts are entombed in the bone and subsequently differentiate into osteocytes or transform into resting, or quiescent osteoblasts and become bone-lining cells if not buried.

Osteocytes are the end cell phenotype in the osteoblastic lineage, constituting the most abundant cell type of bone. Although osteocytes lie within lacunae in mineralized tissue, they have long dendritic extensions through which they can communicate with other osteocytes or osteoblasts. It is the communication that enables osteocytes to perform the role of modulating the exchange of mineral ions, the supply of oxygen and nutrients throughout the bone. Another function of osteocytes is mechanotransduction, potentially because they are well placed to sense the magnitude and direction of mechanical forces within the tissue. It is well
documented that osteocytes are responsive to mechanical forces both in vivo and in vitro (Lanyon, 1993).

Osteoclasts are derived from the hematopoietic macrophage/monocyte lineage. The main function of osteoclasts is to resorb bone. The capacity of osteoclasts to resorb bone depends on their ability to synthesise a series of electrolytes and degradative enzymes (Teitelbaum, 2007). Once attached to bone, osteoclasts create an isolated microenvironment between itself and the bone surface. Osteoclasts secreted hydrogen ions via H⁺-ATPase proton pumps and chloride channels to lower the pH to as low as 4.5 within the isolated environment. The acidity within the degradative space resorbs the mineral phase exposing the organic matrix of bone, which is subsequently degraded by cathepsin K (Saftig et al., 1998).

1.1.2 Bone Matrix

Bone matrix consists of both an organic component and an inorganic component, resulting in a well-engineered composite structure which delivers the mechanical strength and toughness of bone with a relatively low density.

The organic component of bone matrix is primarily constituted of collagenous proteins (85 - 90%). Type I collagen is the major collagenous protein found in bone. Type I collagen is a unique triple helical molecule, which is made up of three parallel polypeptide chains. These triple helices assemble to form fibrils. Fibrils then combine with other molecules, such as proteoglycans, to form fibril bundles and fibres, which then assemble with each other and form bone tissue (Varma et al., 2016).

The remain 10 - 15% of organic component consists of non-collagenous proteins. Several non-collagenous proteins, including osteonectin (ON), osteopontin (OPN), bone sialoprotein (BSP) and osteocalcin (OC), serve crucial functions in matrix organization and bone mineralization. Osteonectin plays a key role in bone by initiating formation of mineral, as it binds collagen I to form a complex, which in turn act as nucleator of hydroxyapatite formation (Termine et al., 1981). Osteonectin was also found to support bone remodelling, regulate cell proliferation and cell-matrix interaction (Delany et al., 2000). Osteopontin is a multifunctional protein. On one hand, as an extracellular matrix component, it can regulate mineral crystal formation
and growth. On the other hand, it is involved in physiological and pathological processes including cell proliferation, migration, survival and inflammation (Sodek et al., 2000). Bone sialoprotein acts as a hydroxyapatite nucleator, and its secretion regulated precisely during the initiation of mineralization (Hunter and Goldberg, 1993). Because of its restricted secretion, bone sialoprotein provides a valuable marker for osteogenic differentiation and bone formation (Ganss et al., 1999). Osteocalcin is the most abundant non-collagenous protein of bone extracellular matrix. Osteocalcin is known to limit bone formation by regulating mineral crystals’ growth and controlling the size of growing crystals (Ducy et al., 1996; Hoang et al., 2003). Osteocalcin also plays a role in bone remodelling through cell signalling and the recruitment of osteoblasts and osteoclasts, which have active roles in bone deposition and resorption, respectively (Bodine and Komm, 1999; Chenu et al., 1994).

Apart from these bone extracellular matrix related proteins, another group of non-collagenous proteins are the growth factors, including the transforming growth factor-β family, insulin like growth factor-1, insulin like growth factor-2 and the bone morphogenic proteins. These growth factors play a crucial rule in cellular growth, differentiation, survival, and cell cycle progression (Lawrence, 1996; Jones and Clemmons, 1995; Bragdon et al., 2011).

The inorganic component of bone, known as bone mineral, accounts for ~60-70% dry weight of bone (LeGeros, 2002). Bone mineral has a similar crystallographic structure to hydroxyapatite, \(\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2 \), but is a multi-substituted form, with cations such as Mg, Na, Mn, Zn substituted for Ca and ionic groups such as CO\(_3\) substitute for PO\(_4\) and OH. High resolution AFM studies find that the bone crystals are very small, with widths and lengths ranging from 30 to 200 nm (Hassenkam et al., 2004). Non-stoichiometry and small size of the crystals were believed to give inorganic component the solubility needed for resorption of the bone by osteoclasts, which is compulsory for the continuous remodelling and repair of bone (Olszta et al., 2007). The mineral phase of bone, as stiff and brittle reinforcement of the organic matrix, strongly influences the stiffness of bone. By comparing the moduli and fracture strain of the matrix component of bone (mineral: 135 GPa and 0.1%, collagen: 1 GPa and 10% respectively) with that of bone (10-25 GPa and 1-1.5%), it can be seen that bone
achieves a compromise, making bone stiff (like mineral) but also tough (like collagen) (Wainwright et al., 1982; Fratzl et al., 2004).

1.1.3 Bone Structures
Bone exists mainly in two structural types, cortical bone and trabecular bone, on a macrostructure level depending on the location and function of the osseous tissue. Cortical bone and trabecular bone have the same matrix composition and ultrastructure, but they have different porosity and microstructure which gives them different mechanical properties.

Cortical bone is dense (porosity 5-10%), constituting the diaphysis of adult long bones and the external surfaces of flat bones. It provides maximum resistance to torsion and bending. Cortical bone is composed of cortical osteons, also known as a Haversian system, which is the fundamental unit of compact bone (Figure 1-1).
typical Haversian system is cylindrical in shape and runs parallel to the long axis of the diaphysis. At the centre of a Haversian system is the Haversian canal, which is surrounded by 4-20 concentric lamellae. The Haversian canal contains blood vessels, nerves, loose connective tissue and interstitial fluid. Each osteon connects with other osteons, the marrow cavity, and the periosteum through perpendicular or oblique canals namely the Volkmann’s canal.

Cancellous bone or trabecular bone is the spongy, porous (porosity 50-90%) type of bone found at the ends of long bones, i.e. epiphysis (Figure 1-1). The matrix forms struts called trabeculae which enclose a three-dimensional, interconnected porous space. The pores are filled with bone marrow which contains blood, and therefore the nutrients needed by the bone cells inside the trabeculae as well as on the surface of trabeculae. The trabecular macrostructure is typically oriented depends on the load distribution, which gives its anisotropy mechanical properties (Keaveny et al., 2001).

1.2 Bone Mechanobiology

Cells in the human body are constantly exposed to a variety of mechanical forces through the actions of muscle forces, gravity, blood flow and other physical processes. It is well recognized that cells can sense and respond to mechanical forces, it can integrate and analyse this information and change its morphology, dynamics, behaviour and fate. The interactions between cells and mechanical forces are critical to the development and functionality of various tissues and organs of the body. For example, bone changes its shape, density and stiffness when its mechanical loading conditions are altered (Turner and Pavalko, 1998; Mullender et al., 2004). Mechanobiology is a multi-disciplinary field that encompasses biology, biophysics and bioengineering, which focuses on how cells sense mechanical signals and translate mechanical signals into a cellular response.

1.2.1 Mechanically Responsive Bone Cells

The mechanical response of bone cells including osteocytes, osteoblasts, MSCs, osteoclasts, have all been documented. Osteocytes are pervasively distributed throughout bone and connected through a network of canaliculi, so they are well
placed to sense the magnitude and direction of mechanical force within the tissue (Rubin et al., 2006). Osteocytes are indeed able to respond to a period of 6 min intermittent compressive load that varied sinusoidally from 0 to 600 N at 1 Hz in vivo as shown by increased number of cells displaying glucose 6-phosphate dehydrogenase (G6PD) activity (Skerry et al., 1989). Forearm compression loading at 2.25 N, which represents a global strain of 2250 µƐ for 100 cycles at 2 Hz, of mice showed the rapid activation of β-catenin through the early release of prostaglandin in osteocytes (Lara-Castillo et al., 2015). It is likely that these signals that orchestrate bone homeostasis by regulating both bone-forming osteoblasts and bone-resorbing osteoclasts (Lanyon, 1992; Nakashima, 2011; Baron and Rawadi, 2007).

Many studies have demonstrated osteoblasts are mechanoresponsive both in vitro and in vivo. Osteoblasts respond to intermittent strain (majority of the cells on the plate received less than 5000 micro strain, three cycles per min for 1, 2, and 4 days) as shown by increased transcription and secretion of matrix proteins, including type I collagen, osteopontin, osteocalcin (Harter et al., 1995). Osteoblastic like cells on polyurethane (PU) open cell foam BGS exposing to short bouts of cyclic compressive loading using a sine wave at 1 Hz, 5% strain also has a strong rise in mineralised matrix production (Sittichockechaiwut et al., 2009). Osteoblasts in intact rat tibiae demonstrated the expression of cyclooxygenase (COX)-1 and COX-2 after subjected to 300 cycles of bending or sham loading at 2 Hz with an applied load of 65 N (Forwood et al., 1998). Osteoblastic cell lines were observed to respond to cyclic strains (500 – 5000 µƐ) at 1 Hz and produced nitric oxide (NO) and prostaglandin (Smalt et al., 1997).

MSCs share the hematopoietic niche with blood stem cells and respond to the mechanical environment of the marrow by altering output of differentiated cell types (David et al., 2007; Sen et al., 2008). MSCs subjected to oscillatory fluid flow for 2 hours at 1 Hz with peak shear stress of 10 dyn/cm² exhibited increased proliferation and increased gene expression of osteogenic markers (Li et al., 2004). It has been demonstrated that various forms of mechanical forces can regulate MSCs fate. For example, sinusoidal fluid flow for 1 hour at 1 Hz with peak shear stress of 10 dyn/cm² has been proved to upregulate the expression of transcription factors involved in
differentiation into osteogenic lineage (Arnsdorf et al., 2009). While both sinusoidal compressive loading with 10% magnitude at 1 Hz for 4 hours and intermittent hydrostatic pressure of 0.1, 1 or 10 MPa at 1 Hz for 4 hour/day have been found to enhance chondrogenesis of MSCs as evidenced by increases in sox9 expression, type II collagen and aggrecan gene expression (Huang, 2004; Miyanishi et al., 2006).

Mechanical control of osteoclast function occurs typically through regulation of osteoclast recruitment, which is achieved by regulation of osteoclastogenesis via soluble signals. Rubin et al. have shown that dynamic mechanical strain can decrease osteoclast formation by around 50% in primary marrow cultures through a decrease in RANKL mRNA expression (Rubin et al., 1999; Rubin et al., 2002). Kim et al. also reported that oscillatory fluid flow induced decreased osteoclasts formation in a co-culture system of MSCs and osteoclast precursors by decreasing the RANKL/OPG mRNA ratio (Chi Hyun Kim et al., 2006).

1.2.2 Candidate Mechanoreceptors

The ability of cells to sense the mechanical forces from the environment requires that mechanoreceptors either directly contact with the extracellular space, or that a mechanoreceptor can distinguish changes in a physical intermediary such as pressure or fluid shear on the plasma membrane (Thompson et al., 2012).

1.2.2.1 Integrin

Integrins contain heterodimers of non-covalently associated α and β subunits. Each subunit has a large ECM domain, a single membrane-spanning helix, and usually a short unstructured cytoplasmic domain (Campbell and Humphries, 2011). On the ECM domain, integrins bind to a specific amino acid sequence (RGD ligand) found from ECM proteins like OPN and fibronectin. On the cytoplasmic domain, integrins associate with the peripheral domains of the cytoskeleton and a range of accessory proteins, including vinculin, paxillin, talin and α-actinin to form large, highly dynamic multiprotein complexes. The binding of extracellular ligands to integrins may initiate intracellular signalling events (outside-in signalling), while modification of intracellular domains also regulates the binding affinity of extracellular receptors (inside-out signalling).
Mechanical forces can alter the conformation of integrin-associated proteins, which could affect the exposure of binding sites, consequently modulating the recruitment of additional components. Integrins, together with a range of associated signalling proteins (for example kinases, phosphates), respond to mechanical forces by initiating a cascade of events. Such cascades include the activation of phosphorylation and G-protein mediated pathways, which result in local alterations in cytoskeletal dynamics. These, in turn, lead to alterations in cell shape, transcriptional regulation or other cellular behaviours (Geiger et al., 2009).

Integrins have a primary role in sensing the environmental signals. Numerous studies that have been summarized in a series of reviews (Bershadsky et al., 2006; Delon and Brown, 2007) show that integrin-based molecular complexes are involved in the sensing and processing of mechanical stimuli, such as fluid shear stress and substrate stretching. Integrins have been demonstrated as mechanoreceptors in a variety of cells including osteocytes, osteoblasts, mesenchymal stem cells and chondrocytes (Aderem, 1992; Mobasher et al., 2002; Klein-Nulend et al., 2013; Liyue Liu et al., 2012). For example, integrin β1 plays predominant roles in shear induced signalling and gene expression in osteoblast like cells (Lee et al., 2008). Integrin β1 play important roles in triggering the outside-in signalling and condensing precartilage during chondrogenesis of MSCs (Raghothaman et al., 2014; Jin et al., 2007; Zhang et al., 2015). Mechanical stimulation and nanotopography led to significant upregulation of gene expression for integrin α1, as well as runx2 in osteoblast like cells (Prodanov et al., 2010).

1.2.2.2 Cell Cytoskeleton
The cell cytoskeleton is an interconnected network of filamentous polymers and regulatory proteins, by which cells can resist deformation, transport intracellular cargo and change shape during movement (Fletcher and Mullins, 2010). The interconnected and viscoelastic nature of the cytoskeleton together with its interaction with extracellular environment via receptor-ligand complexes is suited to the detection and transmission of mechanical signals to biochemical signals (Janmey, 1998). Fluid shear stress has been demonstrated to induce reorganization of actin filament into contractile stress fibres in osteoblasts (Pavalko et al., 1998). While
inhibition of actin stress fibre development altered the response of osteoblasts to fluid shear stress (McGarry et al., 2005).

1.2.2.3 Plasma Membrane Structure
The plasma membrane provides cells with a stable internal environment. Plasma membrane lipid rafts are known to have a significant role in the signalling facilitation system. Lipid rafts are highly organized and dynamic assemblies of cholesterol and sphingolipid. This structure creates a complex association of signalling molecules, including GTP-binding proteins, kinases, and calcium. The accumulation of these molecules in one location gives lipid rafts the capability to spread signals to downstream targets rapidly and specifically (Rizzo et al., 1998). Lipid rafts have been demonstrated to be essential for responding to hydrostatic pressure and fluid shear stress and activation of ERK1/2 in osteoblasts (Ferraro et al., 2004). Apart from lipid rafts, mechanical forces also have other effects on the plasma membrane, such as generating strong strain and inducing conformational changes, thus altering protein binding and cell structure.

1.2.2.4 Cell-Cell Connections
Cadherins are a family of integral membrane glycoproteins, composed of a long extracellular domain, a single-pass transmembrane domain, and a small, intracellular tail. A widespread view for many years was that cadherin-based adhesion involved a single binding interface between the cadherin extracellular domains. This adhesive connection intrinsically conveys mechanical information to cells by resisting mechanical forces. The intracellular domain anchors the cadherins to the cytoskeleton by associating with a variety of protein complexes, including β-catenin, α-catenin and vinculin. Therefore, cadherins act as mechanoreceptor that senses fluctuations in tensile force owing to dynamic cytoskeletal deformation. In osteoblasts, the intracellular domain of cadherins associates with β-catenin. Fluid shear stress decreased this association, which result in an increase in the cytoplasmic pool of β-catenin. The increase in unbound β-catenin in conjunction with the activation of glycogen synthase kinase 3 beta (GSK3β) induced by shear stress has been proposed as a potential upstream regulator of β-catenin nuclear translocation (Norvell et al., 2004).
Gap junctions are membrane-spanning channels, composed of connexin subunits, that allow rapid and direct diffusion of small molecules (< 1 kDa), such as ionized calcium, from the one cell to another cell (Genetos et al., 2007). Gap junction intercellular communication has been demonstrated as a mechanoreceptor in response to fluid flow (Alford et al., 2003).

1.2.2.5 Primary Cilia
Primary cilia are microtubule-based organelles that project from the cell surface. As the cilia bends in response to fluid flow, increased tension on the membrane result in opening of mechanosensitive ion channels, such as an influx of intracellular Ca\(^{2+}\), causing membrane depolarization and activation of auditory nerve fibres (Ingber, 2006). There is evidence that primary cilia deflection is required for fluid shear stress induced osteogenic responses (Malone et al., 2007). Damage or removal of primary cilia of osteoblasts have been shown to inhibit oscillatory fluid flow (OFF)-induced PGE\(_2\) release and mineral deposition (Delaine-Smith et al., 2014).

1.2.2.6 Ion Channels
Bone cells express several different ion channels involved in mechanosensitive pathways, including stretch-active cation channels, voltage-sensitive calcium channels (VSCC), and transient receptor potential (TRP) channels. The application of different forms of mechanical forces have been shown to activate different mechanosensitive ion channels. Oscillatory fluid flow was shown to induce intracellular Ca\(^{2+}\) mobilization via the Inositol trisphosphate (IP3) pathway and the L-type VSCC (You et al., 2001). Membrane stretch induced intracellular Ca\(^{2+}\) mobilization via T-type VSCC, which regulates downstream adenosine triphosphate (ATP) release and ERK1/2 activation (Thompson et al., 2011). Fluid shear stress increased intracellular Ca\(^{2+}\) mobilization via mechanosensitive cation-selective channel and L-type VSCC, which together with a resultant release of ATP was found to activate the ERK1/2 phosphorylation (Liu et al., 2008).
1.2.3 Intracellular Signalling Pathways

1.2.3.1 Kinase Activation

Mitogen activated protein kinase (MAPK) is a family of serine/threonine protein kinases including Extracellular Signal-regulated Kinase (ERK1/2), c-Jun N-terminal Kinase (JNK) and p38 kinase. Many studies have shown that ERK1/2 is activated by fluid shear in both osteoblasts and MSCs (Liu et al., 2008; Glossop and Cartmell, 2009). The MAPK members have been demonstrated to be essential in cell growth, differentiation and apoptosis. For example, the activation of ERK1/2 is necessary for mechanical strain induced positive bone remodelling by inhibiting osteoclastic potential of bone marrow stromal cells (Rubin et al., 2002).

Focal adhesion kinase (FAK) is a non-receptor cytoplasmic protein tyrosine kinase (PTK), which is concentrated near focal adhesions. FAK interacts with various signalling proteins, including Src family PTKs, phosphatidylinositol 3-kinases (PI3K), Shc, Grb2 and paxillin. This enables FAK to function within a network of integrin-stimulated signalling pathways resulting in the activation of downstream targets such as the MAPK cascades (Schlaepfer et al., 1999). The fluid flow induced activation of FAK has been demonstrated to be critical for activation of ERK1/2 and JNK, and for the shear stress induced expression of c-fos, COX-2, OPN, and PGE2 release (Young et al., 2009; Wang et al., 2011).

1.2.3.2 β-Catenin

β-catenin plays a significant role in bone mass regulation (Case and Rubin, 2010). Studies have shown that loading activates the β-catenin signalling pathway both in vitro (Sunters et al., 2010; Case et al., 2011) and in vivo (Robinson et al., 2006; Lara-Castillo et al., 2015). Researchers have demonstrated that activation of β-catenin in response to load through the prostaglandin, and protein kinase (Akt) signalling pathways (Kamel et al., 2010). It has been shown that uniform biaxial strain through focal adhesion induced mammalian target of rapamycin complex 2 (mTORC2) activation and phosphorylation of Akt, which caused the inactivation of GSK3β (Case et al., 2011). The inactivation of GSK3β then resulted in the preservation of β-catenin by protecting it from degradation (Sen et al., 2009). Preserved β-catenin is believed
to target genes like runt-related transcription factor 2 (runx2), osterix (osx) and oc, to promote osteoblast differentiation of MSCs (Day et al., 2005).

1.2.3.3 GTPases
GTPases are a large family of enzymes that bind and hydrolyse guanosine triphosphate (GTP), in turn switching on a variety of physiological processes. Studies have indicated that Rho family of GTPases were activated in response to oscillatory fluid flow (Arnsdorf et al., 2009), which in turn regulated cell shape via its effects on ROCK-mediated cytoskeletal tension, and guiding MSCs differentiation into the osteogenic lineage (McBeath et al., 2004; Xu et al., 2012).

1.2.3.4 Calcium Signalling
A rapid increase in intracellular calcium ([Ca\(^{2+}\)]i) levels is the earliest detected response in mechanically stimulated bone cells (Rawlinson et al., 1996). Intracellular Ca\(^{2+}\) mobilization was initiated by variety of mechanical forces, including membrane stretch (Walker et al., 2000), oscillatory flow (You et al., 2001) and steady flow (Liu et al., 2008). Intracellular Ca\(^{2+}\) mobilization subsequently initiated downstream signalling including ATP, prostaglandin (Genetos et al., 2005), MAPK (You et al., 2001; Katz et al., 2006), c-fos, COX-2, (Chen et al., 2000) and matrix protein production (Walker et al., 2000). For example, it has been demonstrated that intracellular Ca\(^{2+}\) mobilization through the L-type VSCC in response to shear stress was compulsory for ATP release, which in turn mediated prostaglandin release (Genetos et al., 2005).

Bone mechanobiology is a complicated area. A significant amount of research has been conducted to investigate bone mechanical signalling pathways. Bone grafts could potentially function through interacting with local mechanical environment, however, aside from the complexity of deconvolution of the multiple pathways involved, there are ethical considerations and high costs to study in vivo. Therefore, there is a clear need to develop an in vitro system to study mechano-biologic responses to changes in BGS structure and chemistry.

1.3 Bone Formation and Bone Healing
Intramembranous and endochondral ossification are two mechanisms through which bone formation occurs. Both processes start with stem cell proliferation and
condensation. During intramembranous ossification, condensed MSCs differentiate directly into osteoblasts and secrete organic matrix, after which the crystal apatite deposits. This process mainly forms flat bones, like craniofacial skeleton. Long bones are formed by endochondral ossification, during which MSCs first differentiate into chondrocytes and form the initial cartilage templates. Chondrocytes in the centre of these cartilage templates further differentiate into hypertrophic chondrocytes and form cartilage. The hypertrophic cartilage is then invaded by blood vessels and eventually replaced by bone and marrow.

Bone healing is a regenerative process that is initiated in response to injury. The process of bone healing can be divided into four overlapping stages: hematoma formation and inflammation, soft callus formation, hard callus formation, and bone remodelling (Figure 1-2).

* Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Figure 1-2 Diagram of bone healing process.

Following damage to the bone, disruption of local soft tissue integrity, blood vessels and marrow structure leads to the formation of a hematoma, which encloses the fracture area. Hematoma acts as the scaffold in which a callous is developed in the later stages of bone repair. Removal of the hematoma significantly attenuates bone repair (Grundnes and Reikerås, 1993). The correct inflammation response is also essential for bone repair. The inflammatory response is associated with the secretion of several cytokines and growth factors, including interleukin-1 (IL-1), interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF)
and bone morphogenetic proteins (BMPs) (Mandracchia et al., 2001; Gerstenfeld, Cullinane, et al., 2003; Barnes et al., 1999; Cho et al., 2002). These cytokines and growth factors have important roles in bone healing. For example, TNF-α promotes the recruitment of mesenchymal stem cells (MSCs) and osteoclasts, and plays a regulatory role in bone healing (Gerstenfeld, Cho, et al., 2003). VEGF promotes angiogenesis, which is crucial for blood supply to the injury site and bone healing (Street et al., 2002).

The soft (cartilaginous) callus formation is an endochondral bone formation process. Release of the correct cytokines and growth factors aid the recruitment of mesenchymal stem cells (MSCs) from periosteum, endosteum, bone marrow and adjacent soft tissues, proliferation of MSCs and their differentiation into chondrocytes (Bigham-Sadegh and Oryan, 2015). Chondrocytes proliferate and synthesise cartilaginous matrix and then undergo hypertrophy, mineralizing the cartilaginous matrix before undergoing apoptosis (Schindeler et al., 2008). This cartilaginous callus provides initial stabilization of the fracture site. Meanwhile, the periosteum undergoes intramembranous ossification to create an external callus.

Hard callus formation represents the active period of osteogenesis process. The formation of new vascular structure is critical for formation of the hard callus, which increases oxygen tension in the local region necessary for osteoblasts differentiation (Schindeler et al., 2008). Osteoblasts have prominent levels of activity at this stage and form mineralized bone matrix. Soft cartilaginous callus is gradually replaced by new formed hard callus of woven bone, which is typically irregular and under-remodelled.

Bone remodelling begins with an initiation phase that includes recruitment of osteoclast precursors, osteoclast differentiation, formation of sealing zones beneath osteoclasts and bone tissue resorption in these zones. After the resorption phase is completed, osteoclasts undergo apoptosis whilst osteoblasts are recruited and begin to lay down new bone.

Mechanical factors have been demonstrated to modulate bone healing. For example, in a controlled metaphyseal fracture model in sheep, low interfragmentary strain led
to intramembranous bone formation, whereas higher strains additionally provoked endochondral ossification (Claes et al., 2011). The difference between remodelling in cortical bone and cancellous bone is that in cortical bone osteoclasts move along the length of a Haversian canal, progressively eroding away the whole osteon, whilst in cancellous bone, osteoclasts begin resorption at a designated surface of a piece of trabecular bone (Burr et al., 1985; Huiskes et al., 2000). Apart from fracture healing, healthy bone is also continuously remodelled, shaped and repaired, to maintain its structural integrity, strength and to fulfil its role in mineral homeostasis (Kular et al., 2012). The presence of microcracks in bone and the osteocyte apoptosis in these areas is currently considered a crucial driver of the remodelling response (Cardoso et al., 2009). Mechanical force is a key regulator of bone remodelling and therefore bone architecture (Carter, 1984; Lanyon, 1993; Jacobs et al., 2010).

Spontaneous fracture healing is the natural way for bone to regenerate. However, for critical-sized defects, bone fails to self-repair which leads to musculoskeletal disorders. This is the situation where surgical intervention is required via application of graft materials or metal implants.

1.4 Bone Grafting and Evaluation of Synthetic BGS Performance

Bone grafting, a surgical procedure, involves transplantation of a bone tissue from patient’s own body, bone tissue from another individual or species, a natural substitute or synthetic substitute to augment and regenerate bones that are lost due to a disease or injury. Although autograft accounts for the largest proportion of the global BGS market to date, its requirement of double incision and the post-surgery pain on both sites have drawn increasing interests of scientists and manufactures in synthetic BGS. The world market of BGS is expected to reach over $5031 million by the end of 2027, and this market is projected to grow at a compound annual growth rate of ~ 6.52% during the period of 2017 – 2027 due to aging population (IndustryToday, 2017). There are several types of BGS, including autologous graft, allogenous grafts and synthetic bone graft.

Autologous grafts, or autografts are bones harvested from the patient and transplanted to injured site. It is considered as the “gold standard” by clinicians and
accounts for the largest market of the global BGS so far. The advantage of autografts includes minimal risk of immunogenic response, osteoinductive and osteoconductive abilities (Cypher and Grossman, 1996; Giannoudis et al., 2005). However, autografts can result in donor site morbidity (Silber et al., 2003) and their availability is limited by the limited volume of bone that can be harvested from the donor site. Although autograft accounts for the largest market of the global BGS so far, its requirement of double incision and the post-surgery pain on both sites have drawn increasing interests of scientists and manufactures in synthetic BGS.

Allogeneous grafts, or allografts, represents bone harvested from one individual and transplanted into another individual of the same species. Xenografts represents bone harvested from one individual and transplanted into another individual of a distinct species. Although allografts and xenografts are natural bone tissue, having risk of immunogenic response together with reduced osteoinductive ability make them less attractive choices.

Synthetic BGS have gained increasing interest in bone repair. They are available in different forms and materials, including calcium phosphates (Gauthier et al., 1998), Bioglass (Jones, 2015), polymers (Thomson et al., 1996) and their combination (Sang-Soo Kim et al., 2006). The ideal BGS must satisfy a series of strict demands: appropriate surface chemistries encouraging cell adhesion, proliferation and differentiation; appropriate levels and sizes of porosity allow for cell migration; promoting biological processes such as the production of extracellular matrix and vascularisation; good mechanical properties; and a degradation rate that matches the regeneration rate of natural tissue (Lannutti et al., 2007).

Porous hydroxyapatite (HA) has a close resemblance to the composition of bone mineral and has been suggested as promising BGS (Hing et al., 2002). Silicon is crucial for bone growth and development because collagen and proteoglycans are crosslinked by it, and silicon has also been show to act in the bone mineralisation process (Pietak et al., 2007). The incorporation of silicon into HA BGS induced several changes: release of soluble silica species, increased negative surface charge and higher solubility (Porter et al., 2003; Hing et al., 2006). These changes are important to enhance the osteoconductivity of hydroxyapatite by improving cell adhesion,
because the adhesion is highly dependent on composition, microstructure, wettability and surface charge of the material. Silicate substituted hydroxyapatite (SiHA) has demonstrated earlier organised collagen fibrils formation and more apatite crystallites at the bone-implant surface than pure HA in vivo, suggesting the promoted bone remodelling process (Porter et al., 2004). Ovine defect model also showed significantly higher percentage of bone ingrowth and bone coverage for SiHA than pure HA, indicating the incorporation of silicon highly improves the bioactivity of hydroxyapatite (Patel et al., 2005). Experiment results validated the response of healing response to Si level and suggest the optimal bone healing is obtained when SiHA is substituted with 0.8 wt% Si (Hing et al., 2006).

Pore structure (such as macro-pore size, macro-porosity, interconnectivity of macro-pores, micro-porosity (the volume fraction of micro-pores in the struts of porous BGS)) has been demonstrated to have a strong impact on bone ingrowth in vivo (Mastrogiacomo et al., 2006; Hing et al., 2004; Hing et al., 2005; Campion et al., 2011; Coathup et al., 2012). For example, in vivo study of hydroxyapatite (HA) BGS with different macro-pore structure has demonstrated that macro-porosity and pore interconnection of the BGS influenced the amount of deposited bone and kinetics of bone formation (Mastrogiacomo et al., 2006). Increased levels of micro-porosity in HA BGS was found to facilitate earlier neovascularization (Hing et al., 2004), thicker trabeculae of new bone (Hing et al., 2005), and a greater volume of bone formation (Coathup et al., 2012) in vivo. One explanation that micro-pore structure promoted BGS performance is micro-pores allow cellular infiltration, which increases biological fixation and thereby results in improved mechanical interlock between the cells and the surface of the substrate (Bignon et al., 2003; Annaz et al., 2004a). However, many in vitro studies were carried on BGS discs under static condition (Marra et al., 1999; Liao et al., 2004; Ghorbani et al., 2015). Under these conditions, some BGS still perform quite good and it may be possible to screen for variation in chemistry or structure. But it is unknown that how/even if the cellular response to a BGS disc under static condition in vitro translates to the bone formation response to porous BGS in vivo.
1.4.1 Cells Used in Evaluation of Synthetic BGS Performance

Osteoblasts are an obvious choice for evaluation of synthetic BGS performance, because of their capacity to synthesise bone-specific proteins and deposit mineralized matrix. Many studies have used osteoblasts combined with various of BGS and demonstrated bone nodule formation in vitro, new bone formation in vivo and favourable healing efficacy (Xynos et al., 2000; Wang et al., 2014). However, the disadvantage associated with osteoblasts is that they have relatively limited proliferative capacity and short lifespans. Immortalized osteoblast cell lines, like MG63, SaOs2, MC3T3-E1, are often used in evaluating the performance of BGS because of their ease of access and repeatability. The osteoblast cell lines have some features of osteoblasts, however it is clear that these cells do not fully reflect the behaviour of primary osteoblasts and must be used with caution. For example, by characterizing osteosarcoma cell line MG-63, Saos-2 in comparison to primary human osteoblasts, Pautke found that no ALP activity could be detected in MG-63 cells (Pautke et al., 2004). Czekanska also observed that the maximum level of ALP activity of MG-63 by day 28, was ~ 26 fold lower compared to human osteoblasts at the same point, while both SaOs2 and MG-63 cells demonstrated a higher proliferation rate than human osteoblasts (Czekanska et al., 2014).

MSCs have been considered as attractive choice for evaluating BGS performance because of their high proliferation and multipotent differentiation capability. Bone repair process in vivo is initiated by MSCs recruitment, differentiation into chondrocytes and cartilaginous intermediate formation (Phinney and Prockop, 2007). The capacity of MSCs to repair skeletal defects has been proven in animal tests, and subsequently in human patients with osteogenesis imperfecta (Horwitz et al., 2002). Minimal criteria for the characterization of MSCs were defined by the International Society of Cellular Therapy position statement: plastic-adherent; having the potential to differentiate into chondrogenic, osteogenic and adipogenic lineage in vitro; positive expression for CD105, CD73, CD90 surface markers; and negative expression for CD14, CD19, CD34, CD45 and HLA-DR surface markers (Dominici et al., 2006). MSCs reside in a diverse host of tissues throughout the adult organism, including bone marrow, adipose tissue, periosteum, skeletal muscle, synovium membrane,
blood and dental pulp. Currently, bone marrow derived MSCs and adipose tissue derived MSCs are considered as the most accessible source of MSCs. Their bone regenerative capacity has been demonstrated in vivo (Cowan et al., 2004; Karageorgiou and Kaplan, 2005).

1.5 Bioreactors

Mechanical forces are known to affect cellular behaviour, including morphology, proliferation, differentiation into specific lineages, and functions. Therefore, mechanical forces play important roles in bone healing (Lanyon and Rubin, 1984; Lanyon, 1993; Robling et al., 2002; Boerckel et al., 2012). However, studies of in vitro BGS efficacy evaluation and mechanism investigation have been traditionally carried out in a static environment which does not represent the mechanical environment that cells are exposed to in vivo. Researchers have designed a variety of bioreactors to apply mechanical force while evaluating the performance of BGS. The physiologic relevant mechanical forces are usually divided into three main categories: shear stress, compressive stress and strain. Several researchers hypothesized that flow of interstitial fluid is the most probable way of informing bone cells about mechanical loading (Knothe Tate et al., 1998; Sikavitsas et al., 2001). There are mainly three types of bioreactors: spinner flask bioreactor, rotating wall bioreactor and perfusion bioreactor that are used to apply mechanical forces to cell cultured on BGS.

1.5.1 Spinner Flask Bioreactor

Spinner flask bioreactor composes of a media reservoir, a stir bar or other stirring mechanism that stirs the media, side arms through which BGS and media can be removed and usually gas exchange system. BGS are typically suspended from the top of the flask using needle like apparatus. In spinner flask bioreactor, convective transport of nutrients to the BGS brings increased concentrations of oxygen to the BGS compared to diffusional transport of nutrients in static culture. Cells on the surface of the BGS are also exposed to shear stress which could enhance osteogenic differentiation.

One of the earliest studies using spinner flask reported that spinner flask demonstrated a 60% increased proliferation after 7 days, 2.4 times higher alkaline
phosphatase (ALP) activity after 14 days, 3.5 times OC secretion after 18 days of rat marrow stromal osteoblasts seeded on poly (D, L-lactic-co-glycolic acid) (PLGA) porous BGS compared to static culture. However cell growth and mineralization were limited to the outside of the BGS because of limited nutrient transport in internal BGS (Sikavitsas et al., 2002). Another study also observed when human bone marrow MSCs were cultured on collagen BGS for 5 weeks in spinner flask, bone formation only happens in the peripheral region of the BGS (Meinel et al., 2004). Research has demonstrated that spinner flask could reveal the influence of BGS structure on cellular behaviour. For example, 200 µm pore coralline hydroxyapatite exhibited faster rate of osteogenic differentiation than did the 500 µm pore, whereas 500 µm pore coralline hydroxyapatite BGS exhibited increased proliferation rate in spinner flask (Mygind et al., 2007). A study reported that the extent of proliferation and osteogenic differentiation become higher at increased stir rate, which indicated increased shear stress affects the osteoblastic differentiation of rat MSCs in the study (Ichinohe et al., 2008). Human adipose derived stem cells (ADSCs) cultured on cancellous BGS in spinner flask bioreactors showed enhanced osteogenic differentiation compared to static environment (Song et al., 2014). Human ADSCs combined with cartilage biomimetic BGS, chitosan/gelatin hybrid hydrogel, in spinner flask bioreactors showed enhanced proliferation and chondrogenic differentiation compared to static environment (Song et al., 2015).

1.5.2 Rotating Wall Bioreactor
Rotating wall bioreactors are composed of two concentric cylinders, an inner cylinder that is stationary and allows gas exchange and an outer cylinder that rotates. The space between the two cylinders is filled with culture media which hosts cell seeded BGS. BGS can move freely in the media, cells on the surface of the BGS are exposed to shear stress caused by the centrifugal forces of the outer cylinder balance with gravity (Godara et al., 2008). It was first designed to aid high-density, three-dimensional cell cultures (Schwarz et al., 1992). Many studies have used rotating wall bioreactor and achieved promoted cell behaviour in vitro. For example, osteoblasts in a rotating wall bioreactor have been reported to achieve rapid proliferation, increased ALP activity and differentiation (Song et al., 2006). Co-culture MSCs with
MSC-derived endothelial cells (ECs) within a porous BGS using a rotating wall bioreactor generated bone tissue containing vascular-like structures (Nishi et al., 2013). Primary articular chondrocytes cultured in rotating wall bioreactor were able to overcome the limited proliferation and their tendency to dedifferentiate in static culture (Mellor et al., 2014). Other studies have showed rotating wall bioreactors to be relatively less effective. When rat primary calvarial cells were cultured on the BGS in rotating wall bioreactor for 7 days, osteoblasts showed significantly increased mineralized matrix formation, ALP activity, oc expression and opn expression but no influence on cell proliferation (Yu et al., 2004). Rotating wall bioreactor culture yielded similar cell density, but had the lowest levels of ALP activity whereas those cultured in the perfusion system or in a spinner flask demonstrated enhanced ALP activity compared to those cultured statically (Goldstein et al., 2001). Human mesenchymal stem cells and rat marrow stromal cells were also observed to have lower ALP activity and OC secretion in rotating wall bioreactor than in spinner flask bioreactor and static condition (Sikavitsas et al., 2002; Tzu Wei Wang et al., 2009). The limited cell proliferation in rotating wall bioreactors compared with spinner flask bioreactor could be due to collisions of BGS with the wall of bioreactor while moving or the low shear stresses on cells in the bioreactor.

1.5.3 Perfusion Bioreactor

Spinner flask bioreactor and rotating wall bioreactor have shown effectiveness in some instances; however, perfusion bioreactors have shown greater positive effects on osteoblastic differentiation due to direct perfusion of nutrients through BGS and ability to stimulate the cells with greater shear stresses (Yeatts and Fisher, 2011). Perfusion bioreactors typically comprises of a cartridge which houses the cell seeded BGS, a medium reservoir, a tubing system and a pump. Cartridge must be carefully designed to tightly fit the BGS which must be highly porous, so that medium can be perfused directly through the pores of the BGS, instead of around the BGS. Many perfusion bioreactors have been developed and used in in vitro studies (Table 1-1).

Table 1-1 showed that in a critical evaluation of 39 papers, it was clear that perfusion culture could promote cell expansion, differentiation to osteogenic phenotype, and mineralized matrix compared to static culture. Much of the work has been completed.
to investigate how BGS materials, cell type, flow rate and flow mode used in a perfusion bioreactor system influence the outcome of cell expansion and development of phenotype. 48.7% of the studies (19/39) used polymer BGS and 30.8% of the studies (12/39) used calcium phosphate BGS in perfusion bioreactor. Apart from polymer and calcium phosphate, researchers also used titanium fibre mesh, composite and decellularized trabecular BGS in perfusion bioreactor.

Mainly MSCs or osteoblasts have been used in perfusion bioreactor studies. Most (66.7%) of the studies (26/39) used MSCs from different species, like human, rat and sheep in perfusion bioreactor. Osteoblasts or osteoblastic cells (11/39) were the second favourite choice (28.2%) of cells in perfusion bioreactor. Apart from MSCs and osteoblasts, there was one study that used human adipose stem cells and one study that used stromal vascular fraction cells in perfusion bioreactor.

Most of the perfusion rate (38/39) was from 0.01 ml/min to 4 ml/min, apart from one study that used 10 ml/min. However, shear stress is not only depending on flow rate, but also other parameters like BGS pore size, BGS diameter and BGS porosity. Flow rate should be used with caution when comparing the shear stress across different studies. Flow rate was demonstrated to have a dose effect on ALP activity, cell number and mineralized matrix, when rat MSCs were cultured on titanium fibre mesh BGS (Bancroft et al., 2002). When hMSCs on decellularized bovine trabecular bone were cultured in perfusion bioreactor at 400 μm/s flow velocity, radically increased cell numbers and the amount of bone proteins and minerals compared to flow velocity of 100 μm/s (Grayson et al., 2008). hMSCs on polylactic glycolic acid (PLGA) BGS showed induced osteogenic differentiation at 0.5 ml/min but not at 0.2 ml/min (Yang et al., 2010).

Apart from flow rate, studies have compared the different influence of steady flow and dynamic flow on osteogenic differentiation. Oscillatory perfusion has demonstrated increased ALP activity of MC3T3-E1 (mouse osteoblastic cells) on β-TCP ceramic BGS compared with continuous unidirectional flow. Similarly, when MC3T3-E1 osteoblastic cells on collagen-glycosaminoglycan were subjected to continuous unidirectional flow, pulsatile flow or oscillatory flow, although all three types of flow configuration demonstrated increased cyclooxygenase-2 (COX-2),
prostaglandin E2 (PGE2) expression and OPN production, dynamic flow was found to be more stimulatory than continuous unidirectional flow (Jaasma and O’Brien, 2008). Studies have demonstrated that perfusion bioreactor is a feasible *in vitro* system to mechanically stimulate cells cultured on 3D BGS, and cells are responsive to shear stress generated by flow in a perfusion bioreactor. However, studies focusing on cellular responses to BGS parameters such as porosity, pore size, stiffness were still conducted in a static environment which does not represent the mechanical environment that cells are exposed to *in vivo*. Therefore, the current study intends to investigate the cellular responses to SiHA BGS structure in a mechanical environment using perfusion bioreactor. Based on perfusion configurations from literatures, MSCs or osteoblast, and perfusion rate between 0.01 ml/min and 4 ml/min was used.
<table>
<thead>
<tr>
<th>Reference</th>
<th>BGS types</th>
<th>Cell types</th>
<th>Flow regimen</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Goldstein et al., 2001)</td>
<td>Poly (DL-lactic-co-glycolic acid) (PLGA) foam discs</td>
<td>Rat osteoblastic cells from marrow issue</td>
<td>Continuous unidirectional flow, 0.03 ml/s (0.34 dyn/cm²)</td>
<td>No difference in cell number and OC activity; higher ALP activity</td>
</tr>
<tr>
<td>(Bancroft et al., 2002)</td>
<td>Titanium fibre mesh</td>
<td>Rat MSCs</td>
<td>Continuous unidirectional flow, 0.3, 1, 3 ml/min (< 1 dyn/cm²)</td>
<td>Increased mineralized matrix, ALP activity, cell number; dose effect</td>
</tr>
<tr>
<td>(Sikavitsas et al., 2003)</td>
<td>Titanium fibre mesh</td>
<td>Rat MSCs</td>
<td>Continuous unidirectional flow, 0.3 ml/min, culture medium has different viscosity</td>
<td>Increased mineralized matrix, ALP activity; dose effect</td>
</tr>
<tr>
<td>(Cartmell et al., 2003)</td>
<td>Hydrated human trabecular bone</td>
<td>MC3T3-E1 osteoblastic cells</td>
<td>Continuous unidirectional flow, 0.01, 0.1, 0.2, and 1.0 mL/min</td>
<td>Increased cell proliferation at 0.01 mL/min; increased runx2, oc, alp expression at 0.2 ml/min</td>
</tr>
</tbody>
</table>
Table 1-1 cont.

<table>
<thead>
<tr>
<th>Reference</th>
<th>BGS types</th>
<th>Cell types</th>
<th>Flow regimen</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Meinel et al., 2004)</td>
<td>Collagen discs</td>
<td>hMSCs</td>
<td>Continuous unidirectional flow, 0.2 ml/min (35 µm/s)</td>
<td>Higher ALP activity, bone rods formation in the direction of flow distributed throughout the construct</td>
</tr>
<tr>
<td>(Wang et al., 2003)</td>
<td>β-tricalcium phosphate</td>
<td>Rat MSCs</td>
<td>Continuous unidirectional flow, 2 ml/h</td>
<td>Higher ALP activity, OC content both in vitro and in vivo, increased bone formation in vivo</td>
</tr>
<tr>
<td>(Sikavitsas et al., 2005)</td>
<td>Poly (L-lactic acid) (PLLA)</td>
<td>Rat MSCs</td>
<td>Continuous unidirectional flow, 0.6 ml/min</td>
<td>Increased matrix deposition, proliferation, ALP activity</td>
</tr>
<tr>
<td>(Fassina et al., 2005)</td>
<td>Polyurethane foam</td>
<td>SAOS-2 osteoblastic cells</td>
<td>Continuous unidirectional flow, 3 ml/min</td>
<td>Increased proliferation, OPN, OC, decorin and COL I secretion, calcium deposition</td>
</tr>
<tr>
<td>Reference</td>
<td>BGS types</td>
<td>Cell types</td>
<td>Flow regimen</td>
<td>Observation</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(Vance et al., 2005)</td>
<td>Silicon-stabilized tricalcium phosphate and hydroxyapatite</td>
<td>MC3T3-E1 osteoblastic cells</td>
<td>Continuous unidirectional flow, 0.025 ml/min; Oscillatory flow, 4 ml/min, 1 Hz, 30 min once daily</td>
<td>Enhanced PGE2 release; oscillatory flow further enhanced PGE2 release</td>
</tr>
<tr>
<td>(Zhao and Ma, 2005)</td>
<td>Poly(ethylene-terephthalate) (PET)</td>
<td>hMSCs</td>
<td>Continuous unidirectional flow, 0.2 ml/min</td>
<td>Higher cell number, more even cell distribution, maintained multipotential differentiation of hMSCs</td>
</tr>
<tr>
<td>(Porter et al., 2007)</td>
<td>Polycaprolactone (PCL)</td>
<td>Rat MSCs</td>
<td>Continuous unidirectional flow, 0.2 ml/min</td>
<td>Increased mineralized matrix</td>
</tr>
<tr>
<td>(Manuela E Gomes et al., 2006)</td>
<td>Corn starch and polycaprolactone (PCL)</td>
<td>Rat MSCs</td>
<td>Continuous unidirectional flow, 0.3 ml/min, 1 ml/min</td>
<td>Enhanced cell differentiation</td>
</tr>
<tr>
<td>Reference</td>
<td>BGS types</td>
<td>Cell types</td>
<td>Flow regimen</td>
<td>Observation</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>(Janssen et al., 2006)</td>
<td>Biphasic calcium phosphate (OsSatura™, IsoTis, The Netherlands), 10 cc of granules Ø 2 ~ 6 mm</td>
<td>Goat MSCs</td>
<td>Continuous unidirectional flow, 4 ml/min</td>
<td>Homogeneous and viable cell layer, dense layer of extracellular matrix, abundant de novo bone formation after 6 weeks implantation</td>
</tr>
<tr>
<td>(Holtorf, Jansen, et al., 2005)</td>
<td>Titanium fibre mesh</td>
<td>Rat MSCs</td>
<td>Continuous unidirectional flow, 0.3 ml/min first day, then 1 ml/min</td>
<td>Increased mineralization, cellularity, ALP activity, OPN secretion even in the absence of dexamethasone; further enhanced by dexamethasone</td>
</tr>
<tr>
<td>(Holtorf, Sheffield, et al., 2005)</td>
<td>60% hydroxyapatite/40% β-tricalcium phosphate</td>
<td>Rat MSCs</td>
<td>Continuous unidirectional flow, 0.3 ml/min first day, then 1 ml/min</td>
<td>Increased cell number, ALP activity, OPN secretion</td>
</tr>
</tbody>
</table>
Table 1-1 cont.

<table>
<thead>
<tr>
<th>Reference</th>
<th>BGS types</th>
<th>Cell types</th>
<th>Flow regimen</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Zhao et al., 2007)</td>
<td>Poly (ethylene terephthalate) (PET)</td>
<td>hMSCs</td>
<td>Continuous unidirectional flow, 0.1 ml/min, 1.5 ml/min</td>
<td>1.4 times higher proliferation, more fibronectin secretion at 0.1 ml/min; upregulated ALP activity and calcium matrix deposition at 1.5 ml/min</td>
</tr>
<tr>
<td>(Grayson et al., 2008)</td>
<td>Decellularized bovine trabecular bone</td>
<td>hMSCs</td>
<td>Continuous unidirectional flow, 100 µm/s, 400 µm/s</td>
<td>Flow at 400 µm/s radically improved cell numbers, cell distribution, bone minerals and proteins</td>
</tr>
<tr>
<td>(Jaasma and O’Brien, 2008)</td>
<td>Collagen-glycosaminoglycan osteoblastic cells</td>
<td>MC3T3-E1</td>
<td>Continuous unidirectional flow, 1 ml/min (~235 µm/s), 0.05 ml/min (~11.8 µm/s); Pulsatile flow, 0 - 1.0 mL/min (peak-to-peak), 2 Hz; Oscillatory flow, 1 mL/min (peak-to-peak), 1 Hz</td>
<td>All types of flow showed increased COX-2 expression, PGE2 expression, OPN production; dynamic fluid flow was more stimulatory than steady fluid flow during long term culture.</td>
</tr>
</tbody>
</table>

(All observations were compared with static culture)
<table>
<thead>
<tr>
<th>Reference</th>
<th>BGS types</th>
<th>Cell types</th>
<th>Flow regimen</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Jaasma et al., 2008)</td>
<td>Collagen-glycosaminoglycan GAG</td>
<td>MC3T3-E1 osteoblastic cells</td>
<td>Continuous unidirectional flow, 0.1 - 2 ml/min; Pulsatile flow, 0 - 1 mL/min (peak-to-peak), 2 Hz; Oscillatory flow, 1 mL/min (peak-to-peak), 1 Hz.</td>
<td>All types of flow showed decreased cell number and increased PGE2</td>
</tr>
<tr>
<td>(Du et al., 2008)</td>
<td>β-tricalcium phosphate</td>
<td>MC3T3-E1 osteoblastic cells</td>
<td>Oscillatory perfusion, 0.5 ml/min (0.04 dyn/cm²), 1/60 Hz</td>
<td>Higher seeding efficiency, homogeneous cell distribution, ALP activity, cellularity</td>
</tr>
<tr>
<td>(Du et al., 2009)</td>
<td>β-tricalcium phosphate</td>
<td>MC3T3-E1 osteoblastic cells</td>
<td>Continuous unidirectional flow, 1 ml/min; Oscillatory perfusion, 0.5 ml/min, 1 ml/min</td>
<td>Increased cell number; oscillatory let to increased ALP activity</td>
</tr>
<tr>
<td>Reference</td>
<td>BGS types</td>
<td>Cell types</td>
<td>Flow regimen</td>
<td>Observation</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>(Xu et al., 2008)</td>
<td>β-tricalcium phosphate</td>
<td>Sheep MSCs</td>
<td>Continuous unidirectional flow, 3 ml/min (~0.0029-0.027 Pa)</td>
<td>Increased proliferation, non-homogenous cell proliferation rate and cell coverage</td>
</tr>
<tr>
<td>(Yang et al., 2010)</td>
<td>Polylactic glycolic acid (PLGA)</td>
<td>hMSCs or hMSCs transduced with human telomerase catalytic subunit (hTERT) gene</td>
<td>Continuous unidirectional flow, 0.2 ml/min for 9 days and then 0.5 ml/min for 7, 14, 21, 28 days</td>
<td>Homogeneous seeding, Increased viability, proliferation, Induced osteogenic differentiation at 0.5 ml/min</td>
</tr>
<tr>
<td>(da Silva et al., 2010)</td>
<td>Hydroxyapatite (HA) and silicate substituted HA (SiHA) dense tablets</td>
<td>SaOs-2 osteoblastic cells</td>
<td>Continuous unidirectional flow, through BGS surface, 2 ml/min</td>
<td>Increased cell number and ALP activity on both BGS; faster adhesion process, longer and thinner focal adhesions on SiHA</td>
</tr>
<tr>
<td>Reference</td>
<td>BGS types</td>
<td>Cell types</td>
<td>Flow regimen</td>
<td>Observation</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>------------</td>
<td>-----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>(Janssen et al., 2010)</td>
<td>Biphasic calcium phosphate</td>
<td>hMSCs</td>
<td>Continuous unidirectional flow, 4 ml/min (108 µm/s)</td>
<td>Homogeneous and viable cell layer, dense layer of extracellular matrix; no difference in osteogenic markers compared with static culture; abundant de novo bone formation but no difference compared with static culture</td>
</tr>
<tr>
<td></td>
<td>(OsSatura™, IsoTis, The Netherlands), 10 cc of granules Ø 2 ~ 6 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Bjerre et al., 2011)</td>
<td>HA Pro Osteon®</td>
<td>hMSCs</td>
<td>Continuous unidirectional flow, 0.1 ml/min</td>
<td>Decreased vitality, proliferation and differentiation</td>
</tr>
<tr>
<td>(Yu et al., 2012)</td>
<td>Polycaprolactone (PCL) /hydrogel</td>
<td>Rat MSCs</td>
<td>Continuous unidirectional flow, 0.6 ml/min</td>
<td>Increased proliferation, opn, oc, and bsp expression</td>
</tr>
</tbody>
</table>
Table 1-1 cont.

<table>
<thead>
<tr>
<th>Reference</th>
<th>BGS types</th>
<th>Cell types</th>
<th>Flow regimen</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Barron et al., 2012)</td>
<td>Calcium phosphate</td>
<td>MC3T3-E1 osteoblastic cells coculture with mouse microvascular endothelial cells (EOMA)</td>
<td>Continuous bidirectional flow, 0.075 mL/min</td>
<td>Downregulated vegf and opn expression at early timepoints; Increased alp and oc expression at day 7; Increased cell number, cell/matrix area coverage, angiogenic activity at day 14</td>
</tr>
</tbody>
</table>
| (Kim and Ma, 2012) | Poly (ethylene terephthalate) (PET) | hMSCs | Continuous unidirectional flow at BGS surface (PF), 0.2 ml/min; Continuous unidirectional flow through bone graft substitute (TF), 0.2 ml/min | PF: retained ECM protein, and mitogenic growth factors, preserve hMSCs proliferation
TF: induced osteogenic differentiation, higher ALP, calcium deposition, osteogenic markers |
Table 1-1 cont.

<table>
<thead>
<tr>
<th>Reference</th>
<th>BGS types</th>
<th>Cell types</th>
<th>Flow regimen</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Pisanti et al., 2012)</td>
<td>Poly (L-Lactic acid)</td>
<td>hMSCs</td>
<td>Continuous unidirectional flow, 0.3 ml/min</td>
<td>Increased ALP activity, bmp2 expression</td>
</tr>
<tr>
<td>(Correia et al., 2013)</td>
<td>Silk fibroin disk</td>
<td>Human adipose stem cells</td>
<td>Steady perfusion, continuous unidirectional flow at 400 µm/s for 5 weeks; Dynamic perfusion, continuous unidirectional flow at 400 µm/s for 2 weeks, followed by 3 weeks pulsatile flow, velocity fluctuating between 400 and 1200 µm/s at 0.5 Hz</td>
<td>Dynamic perfusion group showed increased opn expression, PGE2 synthase expression, OPN, BSP, COL I protein deposition and mineral deposition compared with steady perfusion group</td>
</tr>
<tr>
<td>Reference</td>
<td>BGS types</td>
<td>Cell types</td>
<td>Flow regimen</td>
<td>Observation</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>(Yeatts et al., 2014)</td>
<td>Poly (lactic-co-glycolic acid)/polycaprolactone (PLGA/PCL)</td>
<td>hMSCs</td>
<td>Continuous unidirectional flow, 1 ml/min 10 days then in vivo implantation</td>
<td>Increased new bone area, bone regeneration</td>
</tr>
<tr>
<td>(Wang et al., 2014)</td>
<td>β-tricalcium phosphate</td>
<td>Rabbit osteoblasts</td>
<td>Continuous unidirectional flow, 0.5 ml/min for day, followed by 2 ml/min</td>
<td>Increased cell viability, ALP activity; better bone formation, compression strength in vivo</td>
</tr>
<tr>
<td>(Filipowska et al., 2016)</td>
<td>Gelatin-coated polyurethane (PU) disc</td>
<td>hMSCs</td>
<td>Continuous unidirectional flow, 2.5 ml/min</td>
<td>Increased oc, ocn, bsp and bmp2 expression</td>
</tr>
<tr>
<td>(Tang et al., 2017)</td>
<td>polyurethane</td>
<td>Rat MSCs</td>
<td>Continuous unidirectional flow, 10 ml/min</td>
<td>Increased viability, proliferation, type I and III procollagen, equilibrium modulus</td>
</tr>
<tr>
<td>Reference</td>
<td>BGS types</td>
<td>Cell types</td>
<td>Flow regimen</td>
<td>Observation</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------------------</td>
<td>-------------------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>(Ismail et al., 2017)</td>
<td>Porous HA (Engipore)</td>
<td>Stromal vascular fraction (SVF) cells</td>
<td>Oscillating perfusion, 1 ml/min</td>
<td>Accelerated initial vascularization, Increased bone formation</td>
</tr>
<tr>
<td>(Mitra et al., 2017)</td>
<td>PLG/HA composite disk</td>
<td>hMSCs</td>
<td>Continuous bidirectional perfusion 3 ml/min</td>
<td>Increased proliferation, Ca, OC content, neovascularization globally. Great bone volume fraction, bone mineral density, tissue ingrowth, collagen density after perfusion culture 14 days than 1 or 7 days</td>
</tr>
<tr>
<td>(Chen et al., 2017)</td>
<td>Collagen/HA</td>
<td>Rat MSCs</td>
<td>Oscillatory perfusion, 1 ml/min, 1/60 Hz</td>
<td>Increased viability, cell distribution uniformity, ECM, COL I secretion and mineral deposition, osteogenic differentiation</td>
</tr>
<tr>
<td>(Vetsch et al., 2017)</td>
<td>Silk fibroin</td>
<td>hMSCs</td>
<td>Continuous unidirectional flow, 0.001 m/s, 0.061 m/s</td>
<td>Increased metabolic activity, DNA; Increased ECM formation, osteogenic differentiation at 0.061 m/s; decreased ECM formation, osteogenic differentiation at 0.001 m/s</td>
</tr>
</tbody>
</table>
1.6 Aims and Objectives

A substantial number of BGS materials have been developed for clinical use, and some of them claim to be osteoinductive. Various theories have been proposed to explain the claimed osteoinductivity, such as response to modulation of local mechanical environment, cells response to bone graft surface roughness, increased bone graft surface area, increased ion exchange, or increased nutrient transfer due to increased pore connectivity. Bone mechanosensitivity has been extensively acknowledged, and mechanical stimulus have been shown to significantly influence cellular behaviour. However, so far, studies of in vitro BGS efficacy evaluation and mechanism investigation were traditionally carried out in a static environment which does not represent the environment that cells are exposed to in vivo. Therefore, there is a clear need to develop a dynamic in vitro system, which includes mechanical perturbation, in order to investigate how BGS work and further develop smart BGS materials.

The hypothesis of this thesis is that synthetic bone graft architecture has an influence on osteogenic cell responses through its interaction with local mechanical environment. Therefore, to investigate the response of osteogenic cell responses to BGS macrostructure and microstructure, a test system should expose the cell seeded BGS to (i) direct strain and local fluid shear (ii) a local fluid shear in isolation (iii) a specific pattern/level of fluid shear.

The aims of this PhD research were to incorporate these mechanical forces in a 3D bioreactor system, examine the influence of BGS architecture on cell responses to probe the mechanism behind the excellent clinical performance of hierarchical porosity in SiHA BGS.

The flow diagram of this PhD research can be seen in Figure 1-3. This PhD thesis is composed of 7 chapters. Chapter 1 opens with studies in the literature about bone composition and structure, bone mechanobiology, bone healing, BGS and bioreactors. Chapter 2 describes the experimental procedures used in this PhD for the synthesis and characterization of SiHA BGS, cell culture model, 3D bioreactor
system and cellular response characterization. In Chapter 3, an *in vitro* 3D bioreactor system for application of direct strain and local fluid shear on cell-seeded SiHA BGS granules was validated. Parameters of seeding cells on SiHA BGS granules in the perfusion chamber were optimized. The response of osteoblastic-like MG63 cells to mechanical stimulation was investigated. In Chapter 4, SiHA granules consisting of equivalent levels of total porosity but various levels of micro-porosity, and SiHA granules consisting of equivalent levels of micro-porosity but various levels of total porosity were synthesised and characterised. The structural guidance of SiHA granules on human mesenchymal stem cells (hMSCs) proliferation and differentiation in static environment were examined. In Chapter 5, hMSCs were cultured on SiHA granules with defined micro-porosity in a static, basal perfusion rate (BPR) or a period of high perfusion rate (pHPR) environment. The synergistic effect of BGS micro-porosity and shear stress on responses of hMSCs was studied. In Chapter 6, the modulation of L-type voltage-sensitive calcium channels (VSCCs) on fluid shear stress induced differentiation of hMSCs cultured on 3D SiHA BGS was investigated. Chapter 7 describes the conclusions about the work in this PhD thesis, and future perspectives on BGS and 3D bioreactor systems.

Figure 1-3 Flow diagram of the current PhD research.
2.1 SiHA Granules Synthesis

SiHA has been successfully used as bone filler in clinic in the form of granules which are easy to shape to fit the defect size (Harshavardhana and Noordeen, 2015). Macro-porosity (the bulk of the pore fractions) and micro-porosity (fraction of porosity within the BGS body) (Hing et al., 2005) of BGS play important roles in bioactivity of SiHA BGS. SiHA granules with different macro-porosities and micro-porosities were synthesised and their bioactivities were evaluated in in vitro experiments.

Dried silicate substituted hydroxyapatite (SiHA) precipitate cakes containing 0.8 wt% silicon were provided by Baxter Inc. They were crushed into small pieces, using a pestle and mortar and passed through a 1 cm sieve. The small pieces were disc-milled and then calcined at 700 °C for 4 hours to reduce any moisture.

Table 2-1 Parameters of foaming process to produce different SiHA granules.

<table>
<thead>
<tr>
<th></th>
<th>SiHA-14</th>
<th>SiHA-22</th>
<th>SiHA-28</th>
<th>SiHA-70</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiHA powder (g)</td>
<td>560 ± 1</td>
<td>560 ± 1</td>
<td>490 ± 1</td>
<td>730 ± 1</td>
</tr>
<tr>
<td>Deionized water (g)</td>
<td>867 ± 2</td>
<td>867 ± 2</td>
<td>805 ± 2</td>
<td>1087 ± 2</td>
</tr>
<tr>
<td>Milling media (g)</td>
<td>4254 ± 5</td>
<td>4254 ± 5</td>
<td>4454 ± 5</td>
<td>5625 ± 5</td>
</tr>
<tr>
<td>First ball milling time (min)</td>
<td>90 ± 1</td>
<td>65 ± 1</td>
<td>10 ± 1</td>
<td>90 ± 1</td>
</tr>
<tr>
<td>PVA (g)</td>
<td>130 ± 1</td>
<td>130 ± 1</td>
<td>240 ± 1</td>
<td>170 ± 1</td>
</tr>
</tbody>
</table>

Calcined SiHA power was used to produce the different porous granules samples. Different amount of SiHA power, deionized water (Table 2-1) were added in a milling pot and mixed into a paste. Milling media (ceramic milling balls) were added to this paste (Table 2-1) and then the pot was sealed using nuts and bolts to avoid leaking. The whole container was ball milled firstly at a rate of 270 rpm onto a ball mill machine for the different time (Table 2-1). Polyvinyl alcohol (PVA) was dissolved in double distilled water and used as binder solution. When the first ball mill finished, the pot was opened and PVA (Table 2-1) was added into the pot, which was sealed,
and ball milled for a further 3 hours. After 3 hours, the foam was sieved to remove all milling media and then transferred to plastic moulds and dried at 40 - 50 °C for 48 hours (Genlab, drying cabinet). Once dried, the foam was demoulded and sintered at 1250 °C in a (Lenton, AWF) for 4 hours. Large pieces of sintered SiHA foam were collected for total porosity and micro-porosity quantification and the rest of sintered SiHA foam was gently crushed and sieved using 2 mm and 1 mm sieves to achieve 1-2 mm diameter SiHA granule fraction, which were used in cell culture experiments in the current thesis.

2.2 Materials Characterization

2.2.1 X-ray Diffraction (XRD)

XRD was used for determining the crystal structure of SiHA samples. The fundamental principle of XRD is that every crystal structure has unique atomic spacing and inter-planar spacing. Monochromatic X-ray is generated and directed toward the sample, when wavelength of the incident X-ray (\(\lambda \)), angle of incidence (\(\theta \)) and crystal inter-planar spacing (\(d \)) satisfy Bragg’s Law (\(n \lambda = 2dsin\theta \), \(n \) is the “order” of reflection), the interaction of the incident rays with the sample produces constructive interference and a diffracted ray (Figure 2-1). During scanning, sample and detector are rotated, so X-ray is irradiated with a range of \(2\theta \) angles, the intensity of reflected X-ray is recorded, converted to spectra and compared with reference patterns, in order to identify or verify the nature of the phases present in the sample.

![Figure 2-1 Schematic diagram of Bragg's Law.](image-url)
Small SiHA granules (φ<1 mm) were used to obtain XRD patterns using a XPERT-Pro diffractometer (Philips). The monochromatic Cu-Ka radiation was operated at a voltage of 45 KV and 40 mA, and the data were acquired at a 2θ of 20° to 40° with a step size of 0.02° at 2.5 s per step. Phases were identified by comparing the obtained diffraction patterns with International Committee for Diffraction Data (ICDD) file cards 9-432, 37-1497, 25-1137, 9-348 and 9-169 for HA, calcium oxide (CaO), tetracalcium phosphate (Ca$_4$(PO$_4$)$_2$O), α and β-tricalcium phosphate (Ca$_3$(PO$_4$)$_2$) respectively.

2.2.2 Density and Total Porosity Measurement

The total porosity and apparent porosity were measured by water saturation method based on Archimedes’ principle. SiHA pieces were weighed in a dry condition three times (W$_{dry}$), and then were placed in boiling deionised water for 60 mins to ensure all open pores were filled with water. Sample were allowed to cool before being weighed three times while submerged in deionised water at known temperature (W$_{sub}$). Then they were taken out of the water and weighed while saturated with water (W$_{sat}$). The apparent density (taking into account of both open pores and closed pores), the real density (taking into account only closed pores) and the total porosity can be calculated using the following equations, of which \(\rho_{H_2O} \) is the density of deionised water at the measurement temperature, and an accepted value(Akao et al., 1981) of 3.156 g/cm3 was used for the theoretical apatite density (\(\rho_{HA} \)).

\[
\rho_{\text{apparent}} = \frac{W_{\text{dry}}}{W_{\text{sat}}-W_{\text{sub}}} \cdot \rho_{H_2O} \quad \text{Equation 1.1}
\]

\[
\rho_{\text{real}} = \frac{W_{\text{dry}}}{W_{\text{dry}}-W_{\text{sub}}} \cdot \rho_{H_2O} \quad \text{Equation 1.2}
\]

\[
\text{Total Porosity} = \left(1 - \frac{\rho_{\text{apparent}}}{\rho_{HA}}\right) \cdot 100\% \quad \text{Equation 1.3}
\]

2.2.3 Micro-Porosity Measurement

Micro-porosity of SiHA BGS was analysed using quantitative metallography methods (Hing et al., 1999). SiHA samples were embedded in resin (EpoFix, Struers), polished, coated with gold using sputter coater and imaged with secondary electron imaging.
using scanning electron microscope (SEM) (FEI inspect F) at 300× magnification. Six images for each sample were taken and analysed to quantify the micro-porosity (number of pixels under and above an optically set threshold values of grey tones) in microporous regions by NIS element image analysis software (Nikon).

2.3 Cell Culture Models

Appendix 2 lists the supplier and CatLog number of all cell culture and molecular analysis chemicals used in this PhD study. Some key chemicals are also defined in the main body of the text.

2.3.1 MG-63 Osteoblast Cell Line Culture

Cryopreserved human MG-63 cells were seeded at a density of 4000 cells/cm² in T-75 flasks in basic cell culture medium (BM) (Table 2-2) at 37 °C in a humidified incubator with 5% CO₂.

<table>
<thead>
<tr>
<th>Component</th>
<th>Supplier</th>
<th>CatLog number</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>High glucose Dulbecco's</td>
<td>Sigma</td>
<td>D6429</td>
<td>15 ml</td>
</tr>
<tr>
<td>Modified Eagles Medium (DMEM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(contains NaHCO₃ buffer)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fetal bovine serum (FBS)</td>
<td>Sigma</td>
<td>F9665</td>
<td>1.5 ml</td>
</tr>
<tr>
<td>Penicillin-Streptomycin</td>
<td>Sigma</td>
<td>P4333</td>
<td>150 μl</td>
</tr>
</tbody>
</table>

Table 2-2 Components of basic cell culture medium (BM) for cell culture in T-75 flasks in CO₂ atmosphere.

Culture medium was replaced every two to three days. 70% to 90% confluent cells were detached by trypsin-EDTA solution and were subcultured at a density of 4000 cells/cm² in T-75 flasks in 15 ml basic cell culture medium. Passage 4-5 of MG-63 cells were used in the study.

2.3.2 Human Bone Marrow Derived MSCs Culture

Cryopreserved human bone marrow derived mesenchymal stem cells (hMSCs) (PromoCell, Lot: 4032003.2.) were seeded at a density of 4000 cells/cm² in T-75 flasks in 15 ml MSC growth medium 2 (PromoCell) at 37 °C in a humidified incubator with 5% CO₂. Culture medium was replaced every two to three days. 70% to 90% confluent
cells were detached by Accutase solution, which contains proteolytic and collagenolytic enzymes, and is a gentle alternative cell detachment solution to trypsin. hMSCs were then subcultured at a density of 4000 cells/cm² in T-75 flasks in 15 ml MSC growth medium 2. Passage 4-5 of hMSCs were used in the experiment.

2.4 Perfusion Bioreactor System

Cell seeded BGS were subjected to flow induced shear stress using an in-house 3D perfusion bioreactor system (Figure 2-2). The perfusion bioreactor system consists independent chambers and each chamber (diameter: 8 mm; height: 16 mm) accommodates one construct (i.e. cells were seeded on 0.47 ± 0.03 g of BGS granules packed in the chamber). Culture medium from the reservoir was perfused through the constructs vertically in a bottom-to-top direction using a peristaltic pump (IPC Iamatec, VWR). Experiments could be performed in both media flow to waste and recirculating configurations. The details of cell culture media used varied with cell type and experiment and are included in each chapter.
Figure 2.2 (a) Schematic diagram of flow to waste perfusion and compression system. (b) Schematic diagram of recirculating perfusion bioreactor system.

2.5 DNA Quantification

Total DNA was quantified by using a Quant-it PicoGreen dsDNA Assay kit (Invitrogen, UK). The PicoGreen dsDNA reagent is an ultrasensitive fluorescent nucleic acid stain for quantifying double-stranded DNA (dsDNA) in solution. Therefore, it is a very good indicator of DNA levels in specific samples.

Medium from each sample was aspirated and the BGS were then washed three times with phosphate buffered saline (PBS) and submerged into 1 ml of 0.05% Triton TX for cell lysis. Cell lysates were collected, frozen at -80 °C and then thawed for 3 cycles, sonicated for 5 minutes and centrifuged at 4 °C at 12000 rpm for 15 mins. The
resultant supernatant solutions from each construct were then collected for DNA quantification. The DNA quantification kit provided a 100 µg/ml lambda DNA solution which was diluted 50-fold in premade Tris-HCl EDTA (TE) buffer (1 ml 200 mM Tris-HCl, 20 mM EDTA, pH 7.5, mixed with 19 ml distilled DNAse-free water) to make a 2 µg/ml stock solution of dsDNA in TE buffer. The 2 µg/ml dsDNA stock solution was then 2-fold serial diluted for 8 times to make standards.

![Calibration curve for DNA concentration.](image)

100 µl of each standard or sample supernatant was then incubated with 100 µl of PicoGreen working solution (dilute concentrated PicoGreen DMSO solution 200-fold in TE buffer). Then the plate was incubated for 2 to 5 mins at room temperature and the fluorescence was read at excitation and emission wavelength of 480 nm and 592 nm respectively using plate reader (BMG LABTECH, FLUOstar OPTIMA). A standard curve of fluorescence versus DNA concentration was generated using standards, and DNA concentration from unknown samples was calculated from the DNA standard curve (Figure 2-3).

2.6 Specific ALP Activity Assay

ALP activity was quantified by using a highly sensitive colorimetric ALP Assay Kit (Abcam). The kit uses p-nitro phenyl phosphate (pNPP) as a phosphatase substrate which turns yellow (λmax = 405 nm) when dephosphorylated by ALP enzyme.

Medium from each sample was aspirated and BGS granules were then washed three times with ice cold PBS and submerged into 1 ml of ice-cold alkaline phosphatase
assay buffer from the kit for cell lysis. Cell lysates were frozen at -80 °C and then thawed for 3 cycles, sonicated for 5 minutes, centrifuged at 4 °C at 12000 rpm for 15 mins and the supernatant was used to test ALP activity. 10 mM 4-nitrophenol (4NP) (Sigma) was diluted 10 times to make 1 mM 4NP, and then 2-fold serial diluted for 8 times to make standards.

![Figure 2-4 Calibration curve for ALP concentration.](image)

80 μl of each standard or supernatant was then incubated with 50 μl of 5.4 mM pNPP buffer (2 p-nitro phenyl phosphate (pNPP) tablets dissolved in 5.4 ml of assay buffer) in clear 96 well-plate at 37 °C for 40 mins. The reaction was stopped using 20 μl of sodium hydroxide, and the final absorbance was read at 405 nm using a microplate reader (BMG LABTECH, SPECTROstar). A standard curve of absorbance versus 4NP concentration was generated using standards, and 4NP dephosphorylated by ALP from unknown samples were calculated from the standard curve (Figure 2-4). Specific ALP activity was calculated by the equation below.

\[
\text{Specific ALP activity} = \frac{4\text{NP dephosphorylated by ALP from unknown sample (nmol)}}{\text{sample supernatant volume (ml)} \times \text{reaction time (min)} \times \text{DNA (μg)}}
\]

2.7 Alizarin Red S Staining

2 g Alizarin Red S (Sigma) was dissolved in 100 ml of ddH₂O and pH was adjusted to 4.1-4.3 with HCL or NH₄OH. The solution was then filtered through 0.22 μm membrane and stored at 4 °C in dark. Medium from each 24 wells was aspirated, and
cells were gently washed with 1 ml PBS. 1 ml 4% (w/v) formaldehyde in PBS was applied to the cells and incubated for 1 hour at room temperature. This was followed by aspirating formaldehyde solution and cells were washed with 1 ml of ddH₂O twice. 1 ml of freshly made Alizarin Red S solution was added to each well and incubated at room temperature for 45 mins in dark. After incubation, Alizarin Red S solution was removed and cells in each well were washed 5 times with 1 ml ddH₂O. 1 ml PBS was applied to each well after washing. Osteoblasts with extracellular calcium deposits are bright orange-red colour while undifferentiated osteoblasts without extracellular show slight red colour.

2.8 Immunofluorescence Methods

Prior to fixation, the cell culture medium was removed and the BGS granules with cells were briefly washed with PBS, and then cells on BGS were immediately fixed in 4% (w/v) paraformaldehyde in PBS solution at room temperature for 10 min. BGS granules with cells were washed three times for 5 min in PBS then cells on BGS were permeabilised with 100% methanol at -20 °C for 10 mins and rinsed with PBS. Cells on BGS were blocked in blocking buffer (PBS with 5% (v/v) fetal bovine serum and 0.3% triton) for 1 hour to reduce non-specific antibody interactions. The steps described above were all conducted at room temperature.

Cells on BGS were incubated with primary antibody at 4 °C overnight in staining buffer (PBS with 1% (w/v) bovine serum albumin (BSA) and 0.3% triton at a suitable concentration (Table 2-3). Cells on BGS were then washed three times for 5 min in PBS then incubated for 2 hours with species-specific fluorescent secondary antibodies at room temperature (Table 2-4). Following this, cells on BGS were incubated with 5 μl methanolic alexa fluor 488 phalloidin (Thermo Fisher Scientific, UK) stock solution into 500 μl PBS at room temperature for 30 min to label F-actin then washed three times for 5 min in PBS. Cells on BGS were further incubated with 1 μl of 1 mg/ml diamidino-2-phenylindole (DAPI) stock solution (Thermo Fisher Scientific) into 1 ml of PBS at room temperature for 5 min to label cell nuclei then washed three times for 5 min. Cells on BGS were imaged using a Zeiss LSM510 laser scanning confocal microscope, with 30-50 z-sections taken through the cells at 1.5 μm intervals. Maximum projections of z-stacks were processed by the Zeiss ZEN
software. Quantification of the nucleus and cellular size were performed using Image J software.

Table 2-3 Primary antibodies used in this thesis.

<table>
<thead>
<tr>
<th>Target</th>
<th>Species</th>
<th>Supplier</th>
<th>Catalog number</th>
<th>Use</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUNX2</td>
<td>Mouse</td>
<td>Abcam</td>
<td>ab76956</td>
<td>IF</td>
<td>1:100</td>
</tr>
<tr>
<td>ERK1/2</td>
<td>Rabbit</td>
<td>Cell Signalling Technology</td>
<td>mAb #4695</td>
<td>IF</td>
<td>1:500</td>
</tr>
<tr>
<td>pERK1/2</td>
<td>Rabbit</td>
<td>Cell Signalling Technology</td>
<td>mAb #4370</td>
<td>IF</td>
<td>1:200</td>
</tr>
<tr>
<td>ERK1/2</td>
<td>Rabbit</td>
<td>Cell Signalling Technology</td>
<td>mAb #4695</td>
<td>WB</td>
<td>1:1000</td>
</tr>
<tr>
<td>pERK1/2</td>
<td>Rabbit</td>
<td>Cell Signalling Technology</td>
<td>mAb #4370</td>
<td>WB</td>
<td>1:2000</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Mouse</td>
<td>Abcam</td>
<td>ab9484</td>
<td>WB</td>
<td>1:2000</td>
</tr>
</tbody>
</table>

Table 2-4 Secondary antibodies used in this thesis.

<table>
<thead>
<tr>
<th>Target</th>
<th>Supplier</th>
<th>Catalog number</th>
<th>Use</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexa Fluor 647 goat anti-mouse</td>
<td>Abcam</td>
<td>ab150119</td>
<td>IF</td>
<td>1:500</td>
</tr>
<tr>
<td>Alexa Fluor 594 donkey anti-rabbit</td>
<td>Abcam</td>
<td>ab150064</td>
<td>IF</td>
<td>1:200</td>
</tr>
<tr>
<td>IRDye® 680RD goat anti-mouse</td>
<td>Licor</td>
<td>P/N 925-68070</td>
<td>WB</td>
<td>1:15000</td>
</tr>
<tr>
<td>IRDye® 800CW donkey anti-rabbit</td>
<td>Licor</td>
<td>P/N 925-32213</td>
<td>WB</td>
<td>1:15000</td>
</tr>
</tbody>
</table>

2.9 Western Blotting

2.9.1 Cell Lysate Preparation

Prior to lysis, cells attached to BGS granules were washed three times with ice cold PBS. Cells from each sample were then lysed in ice cold 500 µl RIPA lysis extraction buffer supplemented with 1% (v/v) Halt protease and phosphatase inhibitor cocktail (Life Technology), incubated on ice for 15 min, sonicated for 30 s to increase the yield, and then centrifuged at 14000 rpm at 4 °C for 15 min. The supernatant was collected either immediately subjected to total protein quantification or stored at -20 °C for later use.
2.9.2 Total Protein Quantification

Total protein was quantified by using pierce BCA protein assay kit (Thermo Fisher Scientific). In an alkaline environment, Cu$^{2+}$ in the reagent is reduced to Cu$^{1+}$ which chelates with protein to form a light blue complex, then bicinchoninic acid (BCA) reacts with the Cu$^{1+}$ and forms an intense purple-coloured complex which exhibits a strong linear absorbance at 562 nm. The intensity of absorbance at 562 nm increases with protein concentration. 2 mg/ml bovine serum albumin (BSA) stock from the kit and lysis buffer were used to make standards as listed in Table 2-5.

Table 2-5 BSA standard solution preparation.

<table>
<thead>
<tr>
<th>Standard</th>
<th>BSA (µg/mL)</th>
<th>Vol 2 mg/mL BSA (µL)</th>
<th>Vol lysis buffer (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>STD1</td>
<td>20</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td>STD2</td>
<td>100</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>STD3</td>
<td>250</td>
<td>12.5</td>
<td>87.5</td>
</tr>
<tr>
<td>STD4</td>
<td>500</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>STD5</td>
<td>900</td>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>STD6</td>
<td>1,400</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>STD7</td>
<td>2,000</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

10 µl of protein supernatant from each sample or each standard was incubated with 200 µl of working solution (made with 50 parts of reagent A and 1 part of reagent B) in triplicate in wells of a clear 96 well-plate. The plated was mixed thoroughly on a plate shaker for 30 s and then incubated at 37 ºC for 30 min. After allowing the plate to cool down to room temperature, the absorbance was measured at 562 nm using a plate reader (BMG LABTECH, SPECTROstar). A standard curve of absorbance versus protein concentration was generated using standards, and protein concentration from unknown samples was determined from the protein standard curve.

2.9.3 Electrophoretic Separation of Proteins

Lysis buffer was used to dilute samples to get same protein concentration (20 µg/50 µl) for each, according to the protein concentration of each cell lysate as measured.
using BCA. Loading buffer was made by mixing 900 μl of Leammli 4* concentrate and 100 μl of reduction reagent mercaptoethonal. 45 μl diluted protein sample was then mixed with 15 μl loading buffer, heat denatured by heating in a heat block at 100 °C for 5 min, and then chilled on ice.

Chilled samples were centrifuged down, mixed, and 50 μl cell lysate and loading buffer mix was loaded to each well and run on 4 - 20% Mini-PROTEAN® TGX™ Precast Protein Gels in tris/glycine/SDS running buffer at 150 mV for 1 hour. Pre-stained, strep-tagged recombinant proteins (10 - 250 kD) standards were run alongside the samples.

2.9.4 Immunoblotting and Band Quantification

Following electrophoresis, the gels were transferred to low-auto fluorescence PVDF membrane by semi-dry transfer method using a Trans-Blot Turbo transfer system and Trans-blot SD semi-dry transfer cell (Biorad, UK). A single gel was transferred at 2.5A, 25 V for 3 min for, but when two gels were transferred, the time was extended to 5 min.

Following transfer, membranes were blocked with 15 ml 5% (w/v) BSA in tris buffered saline (TBS) for 1 hr at room temperature. After blocking, membranes were incubated with the appropriate primary antibodies overnight at 4 °C (Table 2-3). Following this, membranes were washed three times for 5 min in TBS with 1% (v/v) tween20 (TBST), and then incubated with the appropriate species-specific infra-red secondary antibodies (Table 2-4) in 5% (w/v) BSA in TBS for 1 hr at room temperature. This was followed by two 5 min washes in TBST and one final wash in TBS. Membranes were imaged using the Licor Odyssey infrared scanner and densitometry was performed using Image J software to quantify band intensity.

2.10 Quantitative Gene Expression

2.10.1 RNA Isolation

BGS samples with attached cells were rinsed three times with ice cold PBS, and then lysed in 1 ml of tri-reagent (Life Technology). The cell lysate was collected and either immediately subjected to RNA isolation or stored at -80 °C for later use. 0.2 ml pure
chloroform was added to each sample, and then centrifuged to separate the upper aqueous RNA phase. The RNA phase was purified using RNeasy Mini Kit (QIAGEN). Briefly, total RNA binds to the column and the remaining lysate which passes through the column upon centrifugation (12000 rpm for 15 s) was discarded. Following this, the bound RNA was washed once with 700 µl RW1 buffer, twice with 500 µl buffer RPE, and then centrifuged in a fresh collection tube to remove any remaining RPE buffer. The column was then transferred to a clean collection tube and the RNA was eluted in 30 µl of RNase free water.

The purity of RNA was determined using the Nanodrop ND-1000 spectrophotometer (LabTech). Pure RNA exhibits an A260/280 absorbance ratio of 2.0. Also RNA content of the sample can be quantified by measuring the absorbance of the samples at 260 nM, and an absorbance of 1 unit at 260 nm corresponds to 40 µg/ml of RNA.

2.10.2 cDNA Synthesis

The process comprises two steps 1) RNA denature: 1 µl of random primer was mixed with 4 µl of RNA template, denatured at 70 °C and then chilled on ice for 5 min. 2) Reverse transcription: reverse transcription reaction mix was prepared according to reaction 1, and then combined with 5 µl of denatured RNA and primer mix from step 1. Following this it was annealed in a heat block at 25 °C for 5 min, extended at 42 °C for 60 min and then reverse transcriptase was inactivated at 70 °C for 15 min.

Reaction 1:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoScript 5* reaction buffer</td>
<td>4 µl</td>
</tr>
<tr>
<td>MgCl2 (25 mM)</td>
<td>2.4 µl</td>
</tr>
<tr>
<td>PCR Nucleotide Mix (10 mM)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Recombinant RNasin ribonuclease inhibitor</td>
<td>1 µl</td>
</tr>
<tr>
<td>GoScript reverse transcriptase</td>
<td>1 µl</td>
</tr>
<tr>
<td>RNeasy free water</td>
<td>5.6 µl</td>
</tr>
<tr>
<td>Final Volume</td>
<td>15 µl</td>
</tr>
</tbody>
</table>
2.10.3 Primer Design

Primers were designed based on the sequences published in GenBank using Primer-BLAST tool and synthesised in Sigma. Sequence information for primers used in this thesis are shown in Table 2-6.

Table 2-6 Human primers for PCR.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward primer sequence (5’-3’)</th>
<th>Reverse primer sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>osx</td>
<td>F- GAGTGGAAACAGGAGTGGAGC</td>
<td>R- GCTTGTAAAGGGGGCTGGAT</td>
</tr>
<tr>
<td>alp</td>
<td>F- CCGTGGAACACTCTATCTTTGG</td>
<td>R- GCCATACAGGATGGCAGTGA</td>
</tr>
<tr>
<td>bmp2</td>
<td>F- GACGGACTGCGGTCTCCTAAAG</td>
<td>R- CTGACCTGAGTGCTGCTGACATAC</td>
</tr>
<tr>
<td>col i</td>
<td>F- CCCCCAGGCTCTGAAGGT</td>
<td>R- CACCAGCAATACCCAGACAGCA</td>
</tr>
<tr>
<td>dmp1</td>
<td>F- AGCATCCTGCTCATGTTTCTTTT</td>
<td>R- GAGCCAAATGACCCCTTCCCATT</td>
</tr>
<tr>
<td>runx2</td>
<td>F- AGGCAAGAGTGGTCACCTTGAG</td>
<td>R- CCTGGGCTGCTGAATCTGAC</td>
</tr>
<tr>
<td>sox9</td>
<td>F- AAGGGCTACGACTGGACGCT</td>
<td>R- AGATGTGCGTCTGCTCCGT</td>
</tr>
<tr>
<td>col ii</td>
<td>F- GTGTCACGGCCAGGGATGTC</td>
<td>R- GCAAGAGGACAGTGCAGTG</td>
</tr>
<tr>
<td>myoD</td>
<td>F- GGTCCCTCGCGCCAAAAGAT</td>
<td>R- CAGTTTCTCCGCCCTCCTAC</td>
</tr>
<tr>
<td>Integrin α1</td>
<td>F- CGCTGCTGCTATCCTCAA</td>
<td>R- GGCCAAACTACGGAGAACCA</td>
</tr>
<tr>
<td>Integrin α5</td>
<td>F- CCTATGAGGCTAGCCTCGG</td>
<td>R- GGTGCAATGCTCCCGTAA</td>
</tr>
<tr>
<td>Integrin β1</td>
<td>F- GCCGCAGGAAAGATGAAT</td>
<td>R- TCGAAAACCAACTGCTGTG</td>
</tr>
<tr>
<td>gapdh</td>
<td>F- GATCATCAGCATAAGCTCC</td>
<td>R- ATCAGCCACAGTTCCC</td>
</tr>
</tbody>
</table>

2.10.4 Quantitative Real Time Polymerase Chain Reaction (qPCR)

Levels of gene expression were measured by qPCR and was conducted using SYBR Green dye-based assay. SYBR Green dye is a fluorescent DNA binding dye that preferentially binds to double-stranded DNA (dsDNA). It has an excitation and emission wavelength of 494 nm and 521 nm, respectively. Excitation of DNA-bound SYBR Green dye produces a much stronger fluorescent signal compared to unbound dye. The fluorescence signal (at 521 nm) of DNA-bound SYBR Green dye is monitored during the annealing and extension phases of the qPCR reaction. The threshold of the qPCR reaction is the level of the fluorescence signal that reflects a statistically significant increase over the calculated baseline signal. It is set to distinguish relevant
amplification signal from the background. The threshold cycle (Ct) is the cycle number at which the fluorescent signal of the reaction crosses the threshold.

qPCR was conducted on an Applied Biosystem Quantstudio 6 Flex Real-Time PCR system (Thermo Fisher Scientific) and analysed using Quantstudio Real-Time PCR software. Gene expression as quantified according to the comparative quantification algorithms \(\Delta \Delta \text{Ct} \) method, which compares the gene of interest (GOI) from experimental samples with both a calibrator (i.e. untreated or control sample) and glyceraldehyde 3-phosphate dehydrogenase (\(\text{gapdh} \)) as a house keeping (hk) gene. \(\text{gapdh} \) is one of the most commonly used housekeeping gene with the assumption that it remains constant in the cells. With this method, \(\text{Ct}_{\text{GOI}} \) in both experimental sample (s) and calibrator (c) are adjusted in relation to \(\text{Ct}_{\text{hk}} \) from the two samples. The resulting \(\Delta \Delta \text{Ct} \) value is incorporated to determine the fold change in expression.

\[
\text{Fold change} = 2^{\Delta \Delta \text{Ct}}
\]

\[
\Delta \Delta \text{Ct} = \Delta \text{Ct}_{\text{sample}} - \Delta \text{Ct}_{\text{calibrator}}
\]

\[
\Delta \text{Ct}_{\text{sample}} = \text{Ct}_{\text{GOI}}^s - \text{Ct}_{\text{hk}}^s
\]

\[
\Delta \text{Ct}_{\text{calibrator}} = \text{Ct}_{\text{GOI}}^c - \text{Ct}_{\text{hk}}^c
\]

The KAPA SYBR FAST Universal qPCR master mix (Sigma, UK) containing SYBR Green dye and passive reference dye ROX was used for qPCR. For QuantStudio System, low ROX from the kit was used to normalise for non-PCR-related fluctuations in fluorescence signal. PCR reactions were performed according to reaction 2. Reactions were performed on cDNA generated from 4 \(\mu \)g RNA and were diluted 1:10 so that each reaction contained at least 10 ng of the original RNA. A sample containing nuclease-free water instead of template cDNA, the ‘no template control’ (NTC) is also run for each GOI to distinguish between actual gene expression and background contamination. All samples are run in triplicate to minimise pipetting error and a mean Ct value is obtained for each experimental replicate.
Reaction 2:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>cDNA</td>
<td>1 μl</td>
</tr>
<tr>
<td>Low ROX (100*)</td>
<td>0.1 μl</td>
</tr>
<tr>
<td>KAPA master mix</td>
<td>5 μl</td>
</tr>
<tr>
<td>Primer (10 μM)</td>
<td>1 μl</td>
</tr>
<tr>
<td>RNeasy free water</td>
<td>2.9 μl</td>
</tr>
<tr>
<td>Final Volume</td>
<td>10 μl</td>
</tr>
</tbody>
</table>

PCR reactions were performed according to the following process: firstly, the initial template was denatured into single-stranded DNA and polymerases were activated at 95 °C for 3 min. Secondly, there were 40 cycles of amplification which includes 3 steps: 1) dsDNA was denatured to single-strands DNA at 95 °C for 10 s. 2) Primers attach to the specific location of template cDNA at a lower temperature (3 to 5 degrees lower than melting temperature of primers) for 20 s. 3) A new strand of DNA was made by the KAPA SYBR DNA polymerase from the KAPA SYBR master mix at 72 °C for 30 s. At last, dissociation step was conducted by denaturing all the components at 95 °C for 1 min, annealing at 55 °C for 30 s and then gradually increasing temperature to 95 °C while monitoring the fluorescence to generate a dissociation curve.

While SYBR Green dye-based assay has the advantage of being more cost effective than other probe-based assays, its main drawback is less of specificity. Because SYBR Green dye binds to any amplified dsDNA product, regardless of target or non-target, and all such signals are summed, producing the amplification plot. It therefore requires primers to be accurately designed to only amplify the specific region of interest. Also, it is important to perform the dissociation analysis. By analysing the first derivative of the dissociation curve (a peak), homogeneity of the PCR product can be assessed, when combined with other information such as data from NTC sample, the specificity of the PCR reaction can be evaluated.

2.11 Cell Morphology Characterization Using SEM

Cell seeded BGS granules were chilled on ice for 30 min and then primarily fixed in 1 ml of 1.5% glutaraldehyde buffered in 0.1 M sodium cacodylate (PH 7.2 - PH 7.4) and
incubated overnight at 4 °C. The primarily fixed granules are stained in 1% osmium tetroxide buffered in 0.1 M sodium cacodylate and incubated for 1 h at room temperature. The samples were then washed (5 mins, 3 times) with 0.1 M sodium cacodylate, incubated in 1% tannic acid dissolved in 0.05 M sodium cacodylate for 30 mins at room temperature and then washed (5 mins, 3 times) with 0.1 M sodium cacodylate. The granules were then dehydrated by washing (5 mins, twice) in a graded series of ethanol (20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 96%) and followed by a final wash in 100% ethanol (10 mins, twice). Samples were then immersed in hexamethyldisilazane (HMDS) for 10 mins and air-dried. Finally, the samples were mounted on SEM stubs, coated with gold using sputter coater and then observed with secondary electron imaging at an accelerating voltage of 5 KV and a working distance around 10 mm using field emission (FE) scanning electron microscope.
Chapter 3 Validation of an in vitro 3D Bioreactor for Application of Perfusion and Compression on Cells Cultured on SiHA BGS Granules

3.1 Introduction

Porous silicate substituted hydroxyapatite (SiHA) BGS have demonstrated excellent biocompatibility in vivo (Patel et al., 2002; Hing et al., 2006), particularly SiHA BGS granules which have the advantage of handling in clinic use. It has been shown that pore structure is critical to BGS performance in vivo (Hing et al., 2004; Hing et al., 2005; Campion et al., 2011; Coathup et al., 2012).

Cell seeding is generally performed under static conditions by inoculating cell suspensions onto BGS. Gravity action and capillary forces generated by porous BGS then encourage cell penetration within the BGS (Polak et al., 2013). Seeding cells onto BGS determines the initial cell number in the BGS, as well as their spatial distribution throughout the matrix. Therefore, seeding cells onto a BGS represents a crucial step, which is known to influence cellular viability, proliferation, migration, phenotypic expression and functionality of engineered tissues (Holy et al., 2000; Burg et al., 2000; Qi et al., 2004; Yang et al., 2010). The first aim of the current study concerned investigation of the seeding parameters, include cell density, cell suspension volume and incubation period for SiHA BGS granules to achieve optimal seeding.

It is well known that mechanical loading plays an important role in bone remodelling and fracture healing (Lanyon and Rubin, 1984; Lanyon, 1993; Robling et al., 2002; Boerckel et al., 2012). Several researchers have hypothesized that flow of interstitial fluid is the most probable way of informing bone cells about mechanical loading (Knothe Tate et al., 1998; Sikavitsas et al., 2001). In BGS, fluid flow (shear stress) has been shown to enhance mineralized matrix deposition of marrow stromal osteoblasts (Bancroft et al., 2002; Sikavitsas et al., 2005; Porter et al., 2007; Chen et al., 2017), and benefit osteogenesis and bone formation in vivo (Wang et al., 2003). While shear stress has been extensively used to mechanically stimulate cells in 3D
BGS, mechanically stimulation from compression should also be considered, as compression generated BGS deformations was sufficient to regulate gene expression of cells (Hazenbiller et al., 2017). Several studies have used specially designed bioreactor systems to apply shear and compression at the same time (Bolgen et al., 2008; Jagodzinski et al., 2008; David et al., 2008; Appelman et al., 2009; Baas et al., 2010; C X Liu et al., 2012). Some of these bioreactors were developed and marketed by Bose® (Cartmell et al., 2011) and Zetos® (Davies et al., 2006; David et al., 2008), which were initially developed for the culture of natural tissues like bone or cartilage, and were not fully adaptable to stimulate cells seeded on SiHA BGS granules. Therefore, the second aim of this study was to develop a bioreactor that enables cell-seeded SiHA BGS granules to be exposed to both shear stress and compression stress. Then cellular response to variation of BGS porosity can be investigated in the bioreactor.

3.2 Method

3.2.1 Seeding Investigation

Irregularly shaped SiHA granules (φ: 1-2 mm) were synthesised using a slip foaming technique, as described in Chapter 2.1, which enabled independent control of the level of total porosity and the level of micro-porosity (Hing and Bonfield, 2000). SiHA granules with total porosity of 80.9 ± 1.9% and micro-porosity of 21.5 ± 1.4% (SiHA-22) were used in all in vitro experiment in this chapter. A volume of 1 cm3 (0.47 ± 0.03 g) of SiHA-22 BGS granules were gently packed in a silicone tube and sandwiched with a thin porous mesh, which retained granules in the tube and allowed cell culture medium to be perfused through the BGS. Two groups of cell suspension with different cell densities were prepared (Table 3-1):

| Table 3-1 Cell number and suspension volume of seeding investigation experiment. |
|---|---|
| Cell Number (106 cells) | 1) | 0.2 | 0.08 | 0.1 | 0.175 | 0.25 | 0.5 | 1 |
| Suspension Volume (µl) | 2) | 500 | 400 | 500 | 600 | 700 | 500 |
1) 0.2 million of human osteoblast like cell line MG63 cells were suspended in 400, 500, 600 or 700 μl of basic cell culture medium (BM) (high glucose Dulbecco’s modified Eagle Medium (DMEM) with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin, as per Table 2-2);

2) 0.08, 0.1, 0.175, 0.25, 0.5 or 1 million of MG63 cells were suspended in 500 μl of basic cell culture medium (BM, as per Table 2-2).

Prepared MG63 cell suspensions were divided into two equal volumes and each was pipetted onto each construct from both ends and allowed to attach for 2 hours under static condition at 37 °C in a humidified incubator with 5% CO₂ (Figure 3-1). After 2 hours of attachment, BGS granules were transferred from silicone tubes to 24 well-plates, rinsed three times with PBS to wash out the unattached cells and submerged into 1 ml of 0.05% Triton TX for cell lysis. Cell lysates were frozen at -80 °C and then thawed at room temperature for 3 cycles, sonicated for 5 minutes, centrifuged at 4 °C at 12000 rpm for 15 mins. The resultant supernatant solutions from each BGS were then collected for DNA quantification as described in Chapter 2.5.

![Figure 3-1 Diagram of seeding cells on to construct and incubate for 2 hours in incubator.](image)

To visualize cell morphology on BGS with increasing lengths of time, BGS seeded with 0.5 and 1 million cells in 500 μl of cell suspension were incubated in cell culture medium for up to 7 days after 2 hours of attachment, media was changed every other day. After 1, 3, 5 and 7 days, 3 samples from each group were used to quantify DNA, another 2 samples from each group were used for Scanning Electron Microscopy (SEM) visualization. BGS were transferred from the silicon sample tubes to 24 well-
plates, chilled at 4 °C for 30 minutes, fixed, stained, dehydrated and visualized as described in Chapter 2.11.

3.2.2 MG63 Cell Differentiation

0.1 million MG63 cells in 1 ml basic cell culture medium were seeded in 24 well plates and incubated at 37 °C in a humidified incubator with 5% CO₂. After one day the culture medium was replaced with either basic cell culture medium (BM, as per Table 2-2) or BM enriched with osteogenic supplements (0.1 μM dexamethasone, 0.05 mM ascorbic acid and 10 mM β-glycerophosphate (Sigma-Aldrich)) (BMO). The medium was changed every 2 days thereafter. After 3, 7, 14, 25 and 38 days of incubation, total DNA amount and specific ALP activity of MG63 were quantified as described in Chapter 2.5 and 2.6. After 25 and 38 days of incubation, MG63 cells were fixed and extracellular calcium deposit was stained by using Alizarin Red S as described in Chapter 2.7.

3.2.3 Perfusion and Compression Bioreactor

Cell seeded BGS were subjected to mechanical stimulation using an in-house 3D perfusion bioreactor system (Figure 3-2). The perfusion bioreactor system consists of 6 independent chambers and each chamber (diameter: 8 mm; height: 16 mm) accommodates one construct (i.e. cells were seeded on 0.47 ± 0.03 g of BGS granules packed in the chamber). Perfusion culture medium (Table 3-2) from 6 individual reservoirs was perfused through the constructs vertically in a bottom-to-top direction using a multichannel peristaltic pump (IPC Iamatec, VWR). The bioreactor system was designed to be able to be incorporated into Bose ElectroForce 5500 Load Frame System to allow compression and perfusion at the same time. MG63 cell seeded SiHA-22 BGS granules were cultured under 3 different conditions:

1) Static culture in 24 well-plate;

2) continuous BASAL PERFUSION RATE (BPR) at 0.07 ml/min flow rate in flow to waste configuration as per Figure 3-2;

3) BASAL PERFUSION RATE + one hour daily cyclic COMPRESSION (BPR + C) of 5000 με at 1 HZ rate in flow to waste configuration as per Figure 3-2.
After 3 days of culture, total DNA, specific ALP activity, and the gene expression of *runx2, col i* and *opn* of MG63 cells on the BGS were quantified as described in Chapter 2.5, 2.6, and 2.10. MG63 on BGS were visualized using Scanning Electron Microscopy (SEM) as described in Chapter 2.11, and RUNX2 distribution was visualized as described in Chapter 2.8.

Table 3-2 Components of perfusion culture medium in CO₂ atmosphere.

<table>
<thead>
<tr>
<th>Component</th>
<th>Supplier</th>
<th>Catalog number</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>High glucose Dulbecco's Modified Eagles Medium (DMEM) (without NaHCO₃ buffer)</td>
<td>Sigma</td>
<td>D7777</td>
<td>1 g</td>
</tr>
<tr>
<td>Ultra-pure water</td>
<td>QMUL lab</td>
<td>N/A</td>
<td>870 ml</td>
</tr>
<tr>
<td>Fetal bovine serum (FBS)</td>
<td>Sigma</td>
<td>F9665</td>
<td>100 ml</td>
</tr>
<tr>
<td>HEPES Solution</td>
<td>Sigma</td>
<td>H0887</td>
<td>20 ml</td>
</tr>
<tr>
<td>Penicillin-Streptomycin</td>
<td>Sigma</td>
<td>P4333</td>
<td>10 ml</td>
</tr>
</tbody>
</table>
Figure 3-2 (a) Schematic diagram of flow to waste perfusion and compression system. (b) Schematic showing assembly parts of loading model (Chana, 2015).
3.3 Results

3.3.1 Seeding Investigation

Figure 3-3 The effect of (a) volume and (b) cell density of cell suspension on DNA amount of attached MG63 cells on SiHA-22 after 2 hours. (c) The effect of attachment time on DNA amount of attached MG63 cells on SiHA-22 granules. (d) The effect of seeding density on DNA amount of attached MG 63 cells on SiHA-22 for 7 days. Results are presented as mean ± standard deviation (n>=3). Statistical analysis was performed by one-way ANOVA followed by Tukey's post-hoc multiple comparison with 95% confidence intervals (a, b, and c), or two-way ANOVA followed by Bonferroni post-tests(d). *p < 0.05, **p < 0.01 and ***p < 0.001.

The quantity of total DNA from the BGS was assumed to be proportional to the number of cells on the BGS. So total DNA production was quantified to evaluate the number of cells attached on the BGS. As can be seen in Figure 3-3(a), when 0.2 million MG63 cells were suspended into different volume of cell culture medium, seeded on BGS and incubated for 2 hours, the number of cells attached on BGS was not dependent on the volume of cell suspension. As can be seen in Figure 3-3(b), in 500 µl of cell suspension, the number of attached MG63 cells on BGS increased
significantly with increasing cell density and seeding 1 million MG63 cells generated the highest number of MG63 cells attached on BGS after 2 hours. As can be seen in Figure 3-3(c), attachment time had a positive effect on the attachment of MG63 cells on BGS. There was a trend that the number of attached cells increased with increasing attachment time until 8 hours then dropped after 8 hours. However, it was interesting to note that there was no significant difference in the number of attached cells from 2 - 4, 4 - 6 and 6 - 8 hours of attachment, and standard deviation were large at 6, 8 or 24 hours. There was no significant difference in the number of attached cells between 2 hours and 24 hours of attachment, while a significant difference was detected between 2 hours and 8 hours. As can be seen in Figure 3-3(d), when 1 million MG63 cells (500 µl cell suspension, at a concentration of 2×10^6 cells/ml) were seeded on SiHA-22 BGS and incubated for 7 days, MG63 cells attachment and proliferation on SiHA-22 BGS was significantly higher compared with 0.5 million MG63 cells (500 µl cell suspension, at a concentration of 1×10^6 cells/ml) seeded on BGS, irrespective of the time points. There was a trend that the number of MG63 cells on SiHA BGS increased with time, for both initial seeding number of 0.5 million and 1 million MG63 cells.

As can be seen in Figure 3-4, there were more cells observed on the BGS for initial seeding number of 1 million cells compared with initial seeding number of 0.5 million cells at any time point. There was a trend that the number of cells increased with time throughout 7 days of incubation, irrespective the initial number of cells seeded on the BGS. These observations were consistent with the result of DNA quantification.
Figure 3-4 The effect of initial cell seeding number, i.e (a, c, e, g) 0.5 million of MG63 cells and (b, d, f, h) 1 million of MG63 cells on cell numbers and cell morphology (white arrow) on SiHA-22 BGS granules after (a, b) 1 day, (c, d) 3 days, (e, f) 5 days and (g, h) 7 days, visualized by SEM.
3.3.2 3D Bioreactor System

As can be seen in Figure 3-5, both continuous basal perfusion rate (BPR) and basal perfusion rate + compression (BPR + C) significantly increased the DNA amount of MG63 cells on the BGS compared with static condition. The specific ALP activity of MG63 cells was higher under static condition compared with BPR and BPR + C, however, there was no significant difference of specific ALP activity between culture conditions.

![Figure 3-5](image)

Figure 3-5 (a) DNA amount and (b) Specific ALP activity of MG63 cells cultured on SiHA-22 BGS under static condition, basal perfusion rate (BPR), basal perfusion rate with one hour daily cyclic compression (BPR + C) after 3 days. Statistical analysis was performed by one-way ANOVA followed by Tukey's post-hoc multiple comparison with 95% confidence intervals. *p < 0.05, **p < 0.01 and ***p < 0.001.

As can be seen in Figure 3-6, the expression of runt-related transcription factor 2 (runx2) was significantly increased by BPR + C compared with static culture. The expression of type I collagen (col i) was significantly higher under BPR than both static culture and BPR + C conditions. The expression of osteopontin (opn) was significantly higher under BPR + C than both static culture and BPR, with the expression of opn being significantly higher under static than BPR.
Figure 3-6 The gene expression of *runx2*, *col i* and *opn* of MG63 cells cultured on SiHA-22 BGS under static condition, basal perfusion rate (BPR), basal perfusion rate with one hour daily cyclic compression (BPR + C) after 3 days. Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01 and ***p < 0.001.
Figure 3-7 Cell populations under scanning electron microscopy (SEM). (a) 3 days of static culture, (b) 3 days of basal perfusion rate (BPR) culture, (c) 3 days of basal perfusion rate with one hour daily cyclic compression (BPR + C) culture.

From SEM images, the cell population was higher under basal perfusion rate (BPR) compared with static culture, with cell population being the highest under basal perfusion rate + compression (BPR + C), as can be seen in Figure 3-7.
RUNX2 was observed to have a very faint expression, and BPR culture showed a stronger signal of RUNX2 than static culture (Figure 3-8(a, c)). RUNX2 was demonstrated to be more concentrated under BPR + C than BPR.
3.3.3 MG63 Cells Differentiation

As can be seen in Figure 3-9, the specific ALP activity of MG63 cells under static culture condition was very low between day 3 and day 14, and it increased significantly from day 25.

![Bar chart showing specific ALP activity over time](image)

Figure 3-9 Specific ALP activity of MG63 cells (0.1 million cells/well in 24 well-plate) after 3, 7, 14, 25 and 38 days of incubation in 24 well plates in basic cell culture medium. Statistical analysis was performed by one-way ANOVA followed by Tukey’s post-hoc multiple comparison with 95% confidence intervals. *p < 0.05, **p < 0.01 and ***p < 0.001.

The specific ALP activity of MG63 cells was not dependent on the supplement of osteogenic induction medium at both day 25 and day 38, which can be seen in Figure 3-10 (a). As can be seen in Figure 3-10 (b), there was small amount of extracellular calcium deposits after both 25 days and 38 days in basic cell culture medium. The extracellular calcium deposition was higher in osteogenic medium compared with basic medium.
Specific ALP activity of MG63 cells (0.1 million cells/well in 24 well-plate) after 25 and 38 days of incubation in 24 well plates in basic cell culture medium (BM) or BM supplemented with osteogenic induction medium (BMO).

3.4 Discussion

It is important that enough cells are seeded onto a BGS, so cells can colonise the materials surface and interact with each other to proliferate and differentiate. Absolute cell number and ECM deposition have been shown to be significantly larger in high initial seeding density groups than their low initial seeding density control groups (Limin Wang et al., 2009). However, high initial seeding densities might have negative repercussions on nutrient availability, cellular metabolism, and cell viability (Issa et al., 2011). Therefore, it is crucial to optimize initial seeding density to achieve optimal cell attachment and growth. When conducting seeding investigation, it should also be borne in mind that once seeded the BGS granules need be compatible with a 3D bioreactor system.
A previous study has shown that seeding cells on to SiHA-22 BGS granules in a 24 well-plate first, allowing to attach for 2 hours and then transferring the granules into perfusion chamber was a very abrasive approach which led to a substantial degree of cell injury (Chana, 2015). However, seeding cells directly onto SiHA-22 BGS granules packed in the perfusion chamber and then allowing cells to attach for 2 hours was able to support cell proliferation, and the highest seeding cell number tested i.e. 0.112 million cells (700 µl of cell suspension at a concentration of 1.6×10^5 cells/ml) provided the most supportive environment for cell proliferation after 3 days (Chana, 2015). Considering the large specific surface $(0.26 \pm 0.05 \, m^2/g)$ area of the porous SiHA-22 BGS, it is worth investigating if increased initial seeding cell numbers could further increase cell attachment and proliferation. The experimental results demonstrated that increasing the initial number of seeding cells significantly increased absolute number of cells attached on the BGS. Initial seeding number of 1 million cells (500 µl of cell suspension at a concentration of 2×10^6 cells/ml) could continuously proliferate over 7 days. This suggests that porous SiHA-22 BGS was able to provide enough surface for cells to attach and the porous structure was beneficial for nutrient transfer and encourage cell colonisation. Seeding density in excess of 2×10^6 cells/ml may be suitable, however practical difficulties encountered in when working with cells at higher concentration prohibited this and a concentration of 2×10^6 cells/ml were used for each construct (0.47 ± 0.03 g of SiHA granules) for all of the further experiments.

The volume of cell suspension and attachment time should also be carefully considered when seeding cells directly onto BGS granules packed in the perfusion chamber. Limited volume of cell suspension cannot cover all BGS granules, while too much cell suspension cannot be held by the BGS granules, which makes the actual cell number seeding on the BGS uncontrollable. The results of the current study indicated when same number of cells were in cell suspension, the number of attached cells was not dependent on cell suspension volume. As handling 600 µl and 700 µl of cell suspension had a higher risk of overflowing the chamber when conducting the experiments, 500 µl of cell suspension was chosen for practical reasons. Interestingly, prolonging the attachment time (2 hours) for another 2 hours
or 4 hours did not significantly increase cell attachment, which indicated that 2 hours of attachment time was sufficient for cells to attach on SiHA-22 BGS granules. Although 8 hours of attachment time led to significantly higher number of attached cells compared with 2 hours of attachment, standard deviation was large suggesting a degree of variability. Moreover, it was not possible to finish the sample preparation and bioreactor construction continuously in a day. Therefore, it was decided that, for later experiments, 2 hours of attachment time would be used.

The response of osteoblastic cell to mechanical stimulation has been widely studied using various forms of load application. It is well established that a perfusion-based bioreactor is the most efficient culture system in terms of nutrient transport homogenization, waste elimination, cell distribution, cell growth and differentiation (Szpalski et al., 2013). A great number of studies has proven that cell proliferation was stimulated by perfusion (Bancroft et al., 2002; Sikavitsas et al., 2005). Bioreactor systems for applying mechanical loading and shear stress at the same time have also shown beneficial effects of mechanical loading on proliferation, osteogenic differentiation and mineral matrix deposition (Table 3-3). In this current study, MG63 osteoblast-like cells seeded on 3D SiHA-22 BGS granules responded to changes in mechanical environment. Basal perfusion rate (BPR) was proven to promote MG63 cells proliferation compared with static culture. Basal perfusion rate + compression (BPR + C) further improved the proliferation compared with basal perfusion rate (BPR) condition. However, perfusion through BGS requires a tight fit between construct chamber and tubing, which creates friction resistance for compression and results in the compression force on BGS granules cannot be quantified.

It is well accepted that osteoblast differentiation can be characterized by specific ALP activity, osteogenic genes expression like runx2, opn, oc and col i, and in vitro mineralization capacity. RUNX2 transcription factor is a key regulator of osteoblast differentiation and bone formation (Harada and Rodan, 2003). OPN is a glycosylated bone phosphoprotein secreted during osteogenesis, before the onset of mineralization. BPR + C led to concentrated distribution of RUNX2, upregulated runx2 expression and upregulated opn expression, agreeing with previous research that mechanical loading and shear stress supported osteogenic differentiation
(Jagodzinski et al., 2008; David et al., 2008). BPR upregulated \textit{col i} expression, agreeing with previous research (Fassina et al., 2005). While BPR downregulated the expression of \textit{opn} after 3 days, which is contradictory to previous studies (Holtorf, Jansen, et al., 2005; Jaasma and O’Brien, 2008). A Long-term study will need to be carried out to confirm the stimulatory effect of perfusion.
Table 3-3 Perfusion and mechanical loading of cell-seeded BGS: models and effects.

<table>
<thead>
<tr>
<th>Reference</th>
<th>BGS</th>
<th>Cell type</th>
<th>Perfusion</th>
<th>Compression</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Bolgen et al., 2008)</td>
<td>Cryogel, 2-hydroxyethyl methacrylate (HEMA)–lactate–dextran, cylindric (Ø = 8 mm, H = 4 mm)</td>
<td>MG63</td>
<td>Continuous 0.1 ml/min</td>
<td>1.5% strain, 1Hz, 1 h daily for 2 weeks</td>
<td>Perfusion + compression: increased cell ingrowth, ECM, ALP activity</td>
</tr>
<tr>
<td>(Jagodzinski et al., 2008)</td>
<td>bovine acellular matrix, Tutobone® discs, cylinder (Ø = 20 mm, H = 4 mm)</td>
<td>hMSCs</td>
<td>Continuous 10 ml/min</td>
<td>10% strain, 0.5Hz, (24h, 1, 2, and 3 weeks)</td>
<td>Perfusion: increased proliferation, runx2 expression, OC content; Perfusion + compression: increased proliferation, runx2 expression Further increase OC content</td>
</tr>
<tr>
<td>(David et al., 2008)</td>
<td>Bovine cancellous bone, cylinder (Ø = 10 mm, H = 5 mm)</td>
<td>Bone cells in bovine cancellous bone</td>
<td>Continuous 10 µl/min</td>
<td>0.4% strain, 1 Hz, 300 cycles daily for 3 weeks</td>
<td>Perfusion + compression: increased osteoblast differentiation, trabecula, Young’s Modulus, ultimate force</td>
</tr>
<tr>
<td>(Appelman et al., 2009)</td>
<td>PEG-Proteoglycan (PP), PEG-Fibrinogen (PF), PEG-Albumin (PA), and PEG BGS</td>
<td>Primary articular chondrocytes</td>
<td>Not mentioned</td>
<td>1 day of free swelling, then 15% strain, 1 Hz, 3 times for 1 hr on and 2 hrs off each day for 27 days stimulation</td>
<td>Increased BGS compressive modulus</td>
</tr>
<tr>
<td>(Baas et al., 2010)</td>
<td>Poly (l-lactic acid) porous BGS, porosity: 90%</td>
<td>Primary rat bone cells</td>
<td>Continuous 0.1 ml/min</td>
<td>1.5% strain, 1 Hz, 3 times for 1 hr on and 2 hrs off per day for 28 days</td>
<td>Perfusion + compression: increased mineralized nodules, average of absolute principal strain at nodule sites</td>
</tr>
<tr>
<td>Material</td>
<td>Pore size: 250 - 350 µm, cylinder (Ø = 9 mm, H = 4 mm)</td>
<td>hMSC</td>
<td>Continuous 10 ml/min</td>
<td>10% strain, 0.5 Hz, 4 times/day, 2 h/time with 4 hours of rest; 1 time/day, 8 h/time 24 h, 1 week and 2 weeks</td>
<td>Perfusion: increased proliferation, type III procollagen synthesis Perfusion + on-off compression: increased proliferation, equilibrium modulus, type I procollagen</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
<td>----------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(C X Liu et al., 2012) polyurethane (PU)-based meniscus BGS (Actifit®), pore size 150 - 355 µm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In previous studies, most of in vitro mechanical stimulation has shown to increase ALP activity, however, there are studies report various effects of mechanical stimulation on ALP activity. For example, rat marrow stromal cells and osteoblastic cells stimulated by flow induced shear stress were observed to have significantly increased ALP activity compared with static culture (Goldstein et al., 2001; Sikavitsas et al., 2003; Sikavitsas et al., 2005; Bancroft et al., 2002; Holtorf, Sheffield, et al., 2005). Du et al observed that the specific ALP activity of MC3T3-E1 cells did not differ significantly between the unidirectional perfusion culture and the static culture, and was significantly higher in the oscillatory flow perfusion group than in the unidirectional flow perfusion group (Du et al., 2009). Rat calvarial osteoblasts subjected to fluid flow expressed lower alp mRNA especially under pulsatile fluid flow (Roelofsen et al., 1995). In the current study, specific ALP activity was not dependent on perfusion or compression, and the specific ALP activity of MG63 cells on SiHA-22 BGS granules was several magnitude lower than the specific ALP activity of rat osteoblastic cells from marrow tissue or osteoblast-like MC3T3-E1 cells reported in previous studies (Goldstein et al., 2001; Du et al., 2008). Although MG63 osteosarcoma cells have some features of osteoblasts, they differ in proliferation kinetics and differentiation. The differentiation ability of MG63 cells, particularly specific ALP activity and mineralization were then investigated. The results of current study showed that the specific ALP activity of MG63 cells was very low and it did not increase until 25 days of culture. No extracellular calcium deposition by MG63 cells was observed.

By performing a systematic comparison of MG-63, HOS TE85 and human bone derived cells, Clover observed that the ALP activity of MG-63 cells was significantly lower than human bone derived cells after 4 days under both basal condition and 1,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃) administration (Clover and Gowen, 1994). Pautke found that no ALP activity could be detected in MG-63 cells (Pautke et al., 2004). Czekanska also observed that the maximum level of ALP activity of MG-63 by day 28, was ~ 26 fold lower compared to human osteoblasts at the same point (Czekanska et al., 2014). MG63 cells formed a cell layer with evident nodules after 14 days of culture, however, no calcium deposition within the extracellular matrix was
seen during 28 days of culture. These results together indicated that cell lines could be useful for specific studies, but cell lines do not reflect the behaviour of primary cells and must be used with caution. MG63 cells were not a very good model in investigating the differentiation of cells induced by mechanical stimulation or osteoconductivity of BGS. Mesenchymal stem cells (MSCs) are mechanosensitive and mechanotransduction in MSCs has been proved to induce trabecular bone formation (Curtis et al., 2018). Human bone marrow derived mesenchymal stem cells (hMSCs) have been widely used in investigating the cellular response to mechanical stimulation (Meinel et al., 2004; Grayson et al., 2008), and hMSCs based therapy has emerged as a novel branch regenerative medicine, with more than 500 registered clinical trials worldwide in the last 10 years (Bunpetch et al., 2017). Therefore, hMSCs were characterized and used in subsequent in vitro experiment.

3.5 Conclusion

The work in this chapter optimized the seeding parameters for seeding MG63 cells onto SiHA BGS granules in the perfusion chamber of a 3D bioreactor system, which is the first and crucial step for cells growth in a mechanical stimulation environment. A 3D bioreactor system which allow the application of shear stress and compression at the same time was built, and MG63 cells have been found to respond to both shear stress and mechanical loading in terms of proliferation and gene expression. However, a 3D bioreactor system that can precisely control compression force on BGS granules should be designed and used for future work. Cellular differentiation, particularly specific ALP activity is an important indicator in investigating the cellular response to mechanical stimulation. However, MG63 cells were found to have very low specific ALP activity, and it was not dependent on the environment such as mechanical stimulation, chemical stimulation and culture period. Therefore, hMSCs were used in subsequent in vitro experiment, considering their differentiation ability, response to the environment and potential clinical applications.
Chapter 4 Structural Guidance of 3D SiHA BGS on hMSCs Proliferation and Differentiation

4.1 Introduction

Using three dimensional BGS for the treatment of bone repair is a rapidly emerging field (Langer and Vacanti, 1993; Service, 2000; Hutmacher et al., 2007; Shahrezaie et al., 2018). So far, highly porous bioceramics represent the standard for generating osteoconductive BGS (Gauthier et al., 1998; Boyde et al., 1999; Chang et al., 2000; Marcacci et al., 2007; Sweedy et al., 2018), as interconnected macro-pores (>100 µm) are necessary for blood vessels invasion and bone matrix deposition in empty space. Macro-pore size, macro-porosity (the volume fraction of macro-pores) and the interconnectivity of macro-pores have been demonstrated to have a strong impact on bone ingrowth. For example, an in vivo study of hydroxyapatite (HA) BGS with identical microstructure but different macro-pore structure has demonstrated that macro-porosity and pore interconnection of the BGS influenced the amount of deposited bone and kinetics of bone formation (Mastrogiacomo et al., 2006). Based on early work (Hulbert et al., 1970), it is widely believed that interconnected size of pores larger than 100 µm are necessary due to cell size, migration requirements and nutrient transport. The recommended macro-pore size is larger than 300 µm to achieve enhanced new bone formation (Gauthier et al., 1998; Kuboki et al., 2001; Karageorgiou and Kaplan, 2005). Although high macro-porosity BGS has the potential to facilitate bone ingrowth, it should be borne in mind that increasing porosity decreases mechanical properties, so the two have to be carefully balanced.

Incorporation of micro-pores (<30 µm), in the struts or walls of macro-porous BGS has been demonstrated to improve osteoblast anchorage and attachment on HA BGS surface at the early time points in vitro experiments (Annaz et al., 2004b). Increased levels of micro-porosity (the volume fraction of micro-pores) in HA BGS was found to facilitate earlier neovascularization (Hing et al., 2004), thicker trabeculae of new bone (Hing et al., 2005), and a greater volume of bone formation (Coathup et al., 2012) in vivo. One explanation that micro-pore structure promoted BGS performance is that micro-pores allow cellular infiltration, which increases biological fixation and
thereby results in improved mechanical interlock between the cells and the surface of the substrate (Bignon et al., 2003; Annaz et al., 2004a). Another mechanism that has been proposed recently is that micro-pores induced capillarity drive of cells, blood, or marrow components deep into the BGS pores and therefore enhance bone distribution in vivo (Rustom et al., 2016). This is in line with the findings from literature that micro-porosity of calcium phosphate-based BGS can result in multiscale osteointegration, and thus a composite material (Lan Levengood et al., 2010).

In the body, human mesenchymal stem cells (hMSCs) are known to migrate to a wound site and become incorporated into certain tissues and assist tissue repair or regeneration either through the secretion of chemokines or by differentiation into the mature native cell (Parekkadan and Milwid, 2010). hMSCs have the ability to differentiate towards the osteogenic lineage, so they have great potential for clinical applications for bone regeneration (Koç and Lazarus, 2001). The differentiation of hMSCs is likely to be initiated and directed by cues from the local microenvironment, such as soluble factors and topography of extracellular matrix. Therefore, the response of hMSCs to the geometric structure of a BGS is crucial to evaluate the osteoconductivity of that BGS. There are few studies investigating the effect of porosity on proliferation and osteogenic differentiation of hMSCs. Gomes found that a starch-based mesh BGS with 75% macro-porosity demonstrated significantly enhanced MSCs proliferation and higher specific ALP activity under perfusion condition compared with the BGS with 50% macro-porosity (Manuela E. Gomes et al., 2006). Kasten found that specific ALP activity of hMSCs was not dependent on the macro-porosity (Kasten et al., 2008). Presence of micro-pores in calcium phosphate BGS has been demonstrated to stimulate osteogenic differentiation of stem cells in vitro and bone formation in vivo, respectively (Yuan et al., 2010). Enhanced micro-porosity in silicate-substituted calcium phosphate has proven stimulate osteogenic differentiation of hMSCs (De Godoy et al., 2015).

Multiscale silicate substituted hydroxyapatite (SiHA) BGS, with both micro-pores and macro-pores, have excellent biocompatibility (Patel et al., 2002; Hing et al., 2006). However, the combined influence of micro-porosity and total porosity (the total
volume fraction of macro-pores and micro-pores) in SiHA BGS on hMSCs differentiation has not been investigated. The aim of this study was to synthesise and characterise a group of SiHA BGS with equivalent levels of total porosity, but different levels of micro-porosity and another group of SiHA BGS with equivalent levels of micro-porosity but different levels of total porosity. *In vitro* studies were performed to systematically investigate the influence of SiHA BGS structure on the proliferation and differentiation of hMSCs in different medium types and to choose the BGS structure and medium type in further perfusion study.

4.2 Materials and Methods

Irregularly shaped SiHA granules (φ: 1-2 mm) were synthesised using a slip foaming technique, as described in Chapter 2.1, which enabled independent control of the level of total porosity and the level of micro-porosity. 5 batches of SiHA granules were produced to enable investigation of changes in both total porosity and micro-porosity with designed porosity values as shown in Table 4-1.

Table 4-1 Designed total porosity and micro-porosity of SiHA BGS.

<table>
<thead>
<tr>
<th>Designed total porosity (%)</th>
<th>Designed micro-porosity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>10, ✔</td>
</tr>
<tr>
<td>70</td>
<td>20, ✔</td>
</tr>
<tr>
<td>80</td>
<td>30, ✔</td>
</tr>
</tbody>
</table>

1 million of hMSCs in a 500 µl cell suspension (concentration: 2×10^6 cells/ml) were seeded per 1 cm3 (0.47 ± 0.03 g) of SiHA BGS granules in 24 well-plates. After hMSCs had attached to BGS granules (2 hours), hMSCs were kept in static condition in 24 well-plates in 1.5 ml MSC growth medium 2 (PromoCell). After one day, the culture medium was replaced with one of 4 types of medium: 1) PM: MSC growth medium 2; 2) PMO: PM supplemented with osteogenic induction medium (0.1 µM dexamethasone, 0.05 mM ascorbic acid and 10 mM β-glycerophosphate (Sigma-Aldrich); 3) BM: basic cell culture medium (BM, as per Table 2-2) consisting of high glucose Dulbecco’s modified Eagle Medium (DMEM) with 10% fetal bovine serum
(FBS) and 1% penicillin-streptomycin (Sigma-Aldrich); 4) BMO: BM supplemented with osteogenic induction medium. The medium was changed every 2 days thereafter. After 3, 7, and 10 days of culture, total DNA amount and specific ALP activity of hMSCs from each BGS were tested as described in Chapter 2.5 and Chapter 2.6.

4.3 Results

4.3.1 BGS Characterisation

In the group of SiHA BGS with equivalent amount of total porosity (80.9 ± 1.9%), their actual micro-porosities were listed in Table 4-2. As depicted in Figure 4-1 (a), (c) and (e), BGS SiHA-14, SiHA-22 and SiHA-28 was found to have similar macro-pore structure, while the micro-pore volume fraction was varied significantly that SiHA-14 has nominal micro-porosity of 14% (Figure 4-1 (b)), SiHA-22 has nominal micro-porosity of 22% (Figure 4-1 (d)), and SiHA-28 has nominal micro-porosity of 28% (Figure 4-1 (f)). Phase purity of SiHA-14, SiHA-22 and SiHA-28 after sintering were verified using X-ray diffractometry (Figure 4-2).

Table 4-2 The actual micro-porosity of BGS SiHA-14, SiHA-22 and SiHA-28.

<table>
<thead>
<tr>
<th></th>
<th>SiHA-14 (%)</th>
<th>SiHA-22 (%)</th>
<th>SiHA-28 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-porosity</td>
<td>13.5 ± 0.7</td>
<td>22.4 ± 0.5</td>
<td>28.2 ± 2.7</td>
</tr>
</tbody>
</table>
Figure 4-1 Macro-pore structure (a) and micro-pore structure (b) of SiHA-14; macro-pore structure (c) and micro-pore structure (d) of SiHA-22; macro-pore structure (e) and micro-pore structure (f) of SiHA-28.

Figure 4-2 XRD patterns of SiHA-14, SiHA-22 and SiHA-28 BGS.
In the group of SiHA BGS with equivalent amount of micro-porosity (21.5 ± 1.4%), their total porosities were listed in Table 4-3. As can be seen in Figure 4-3 (b), (d) and (f), BGS SiHA60, SiHA70 and SiHA80 was found to have similar micro-pore structure, while the macro-pore volume fraction varied (Figure 4-3 (a), (c) and (e)), which results in the total porosity varied that SiHA60 has nominal total porosity of 60%, SiHA70 has nominal total porosity of 70% and SiHA80 has nominal total porosity of 80%. Phase purity of SiHA60, SiHA70 and SiHA80 after sintering were verified using X-ray diffractometry (Figure 4-4).

Table 4-3 The actual total porosity of BGS SiHA60, SiHA70 and SiHA80.

<table>
<thead>
<tr>
<th></th>
<th>SiHA60 (%)</th>
<th>SiHA70 (%)</th>
<th>SiHA80 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total porosity</td>
<td>61.8 ± 1.7</td>
<td>70.8 ± 0.4</td>
<td>80.4 ± 0.5</td>
</tr>
</tbody>
</table>

![Figure 4-3](image-url) Macro-pore structure (a) and micro-pore structure (b) of SiHA60; macro-pore structure (c) and micro-pore structure (d) of SiHA70; macro-pore structure (e) and micro-pore structure (f) of SiHA80.
4.3.2 DNA and specific ALP Activity of hMSCs on BGS with Equivalent Levels of Total Porosity and Different Micro-porosities in Different Culture Medium

To evaluate hMSCs proliferation on BGS with different micro-porosity, total DNA of hMSCs from cell lysate was quantified. As can be seen in Figure 4-5 (a), in PM medium, at day 3, the DNA content was significantly lower on SiHA-28 as compared to SiHA-14 and SiHA-22, while at day 7 and day 10, there was no significant difference in DNA content on all three types of BGS irrespective of micro-porosity. In PM medium, the DNA content of hMSCs increased significantly from day 3 to day 7 on SiHA-28 BGS, and there was no significant difference in DNA compared with day 7 to day 3 on both SiHA-14 and SiHA-22. In PM medium, at day 10, the DNA content of hMSCs was found to be significantly higher compared with day 3 on SiHA-22 and SiHA-28, but not SiHA-14 BGS.

As can be seen in Figure 4-5 (b), in PMO medium, at day 3, the DNA content was significantly lower on SiHA-28 compared with SiHA-14, while at day 7 and day 10, there was no significant difference in DNA content on all three types of BGS irrespective of micro-porosity. In PMO medium, there was no significant difference
in DNA content at day 7 compared with day 3 on all three types of BGS irrespective of BGS micro-porosity. In PMO medium, the DNA content of hMSCs increased significantly from day 7 to day 10 on both SiHA-22 and SiHA-28 BGS, but not SiHA-14 BGS. In PMO medium, at day 10, the DNA content of hMSCs was significantly higher compared with day 3 on SiHA-28 BGS, and there was no significant difference in DNA compared with day 10 to day 3 on SiHA-14 BGS and SiHA-22 BGS.

As can be seen in Figure 4-5 (c), in BM medium, at day 3, the DNA content was significantly lower on SiHA-28 compared with SiHA-14 and SiHA-22, while at day 7 and day 10, there was no significant difference in DNA content on all three types of BGS irrespective of micro-porosity. In BM medium, there was no significant difference in DNA content found at any of the time points, irrespective of BGS micro-porosity.

As can be seen in Figure 4-5 (d), in BMO medium, at day 3, the DNA content was significantly lower on SiHA-28 compared with SiHA-14 and SiHA-22, while at day 7 and day 10, there was no significant difference in DNA content on all three types of BGS irrespective of micro-porosity. In BMO medium, the DNA content of hMSCs on SiHA-14 BGS was found to be significantly decreased at both day 7 and day 10 compared with day 3. In contrast, in BMO medium, there was significant increase in DNA content from day 7 to day 10 on SiHA-28 BGS.
Figure 4-5 DNA content of hMSCs on different BGS cultured in (a) PM, (b) PMO, (c) BM and (d) BMO medium. Results are presented as mean ± standard deviation (n>=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between SiHA-14, SiHA-22 and SiHA-28. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between D3, D7 and D10.

Specific ALP activity is an early marker of osteoblast differentiation towards osteoblastic phenotype. To investigate the response of hMSCs differentiation to BGS micro-porosity in different culture medium, specific ALP activity from cell lysate at day 3, day 7 and day 10 were tested and normalized by DNA content. As can be seen in Figure 4-6 (a), in PM medium, the specific ALP activity was not found to be responsive to BGS micro-porosity at any of the three time points. In PM medium, the specific ALP activity of hMSCs increased significantly from day 3 to day 7, and then further increased significantly from day 7 to day 10, with specific ALP activity being the highest at day 10 on any of the three types of BGS.

As can be seen in Figure 4-6 (b), in PMO medium, the specific ALP activity was not found to be responsive to BGS micro-porosity at both day 3 and day 7, whereas at day 10, specific ALP activity increased significantly with increasing BGS micro-porosity. In PMO medium, the specific ALP activity of hMSCs was found to be
significantly higher at both day 7 and day 10 compared with day 3, irrespective of the BGS micro-porosity. In PMO medium, the specific ALP activity of hMSCs was found to be significantly higher at day 10 compared with day 7 on both SiHA-22 and SiHA-28, but not SiHA-14 BGS.

![Figure 4-6 Specific ALP activity of hMSCs on BGS cultured in (a) PM, (b) PMO, (c) BM and (d) BMO medium. Results are presented as mean ± standard deviation (n>=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between SiHA-14, SiHA-22 and SiHA-28. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between D3, D7 and D10.]

As can be seen in Figure 4-6 (c), in BM medium, the specific ALP activity was not found to be dependent on BGS micro-porosity at any of the three time points. In BM medium, the specific ALP activity was also found not to be dependent on culture period on any of the three types of BGS.

As can be seen in Figure 4-6 (d), in BMO medium, the specific ALP activity was not found to be responsive to BGS micro-porosity at both day 3 and day 7, whereas at day 10, specific ALP activity was significantly higher on both SiHA-22 and SiHA-28 as
compared to SiHA-14 BGS. In BMO medium, the specific ALP activity of hMSCs was found to be significantly higher at both day 7 and day 10 compared with day 3 irrespective of the BGS micro-porosity. In BMO medium, the specific ALP activity of hMSCs was found to be significantly higher at day 10 compared with day 7 on both SiHA-22 and SiHA-28, but not SiHA-14 BGS.

4.3.3 DNA and specific ALP Activity of hMSCs on BGS with Equivalent Levels of Micro-porosity and Different Total Porosities in Different Culture Medium

In PM medium, at both day 3 and day 7, DNA content of hMSCs was not found to be dependent on BGS total porosity (i.e. SiHA60, SiHA70 and SiHA80), whereas at day 10, the DNA content was significantly higher on SiHA80 BGS than SiHA60 BGS, as can be seen in Figure 4-7 (a). In PM medium, the DNA content of hMSCs increased significantly from day 3 to day 7 on SiHA70 and SiHA80, but not SiHA60 BGS. In PM medium, the DNA content of hMSCs was significantly higher at day 10 compared with day 3 on SiHA80 BGS, and there was no significant difference in DNA content at day 10 compared with day 3 on SiHA60 and SiHA70 BGS.
Figure 4-7 DNA content of hMSCs on BGS cultured in (a) PM, (b) PMO, (c) BM and (d) BMO medium. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between SiHA60, SiHA70 and SiHA80. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between D3, D7 and D10.

As can be seen in Figure 4-7 (b), in PMO medium, at both day 3 and day 7, DNA content of hMSCs was not found to be dependent on BGS total porosity, whereas at day 10, the DNA content was significantly higher on SiHA80 BGS than SiHA60 and SiHA70 BGS. In PMO medium, there was no significant difference in DNA content from day 3 to day 7, or from day 7 to day 10 irrespective of BGS total porosity. In PMO medium, the DNA content of hMSCs was significantly higher at day 10 compared with day 3 on SiHA80 BGS, however, DNA content of hMSCs was not significantly different at day 10 compared with day 3 on SiHA60 and SiHA70 BGS.

As can be seen in Figure 4-7 (c) and (d), in both BM and BMO medium, the DNA content of hMSCs was not dependent on BGS total porosity at any of the three time points.

As can be seen in Figure 4-8 (a), in PM medium, the specific ALP activity was not found to be dependent on BGS total porosity at any of the three time points. In PM medium, the specific ALP activity of hMSCs increased significantly from day 3 to day
7, and then further increased significantly from day 7 to day 10, with specific ALP activity being the highest at day 10 on any of the three types of BGS.

As can be seen in Figure 4-8 (b), in PMO medium, at day 3, the specific ALP activity was not found to be dependent on BGS total porosity, whereas at both day 7 and day 10, the specific ALP activity was significantly higher on SiHA80 compared with SiHA60 and SiHA70 BGS. In PMO medium, the specific ALP activity of hMSCs increased significantly from day 3 to day 7, and then further increased significantly from day 7 to day 10, with specific ALP activity being the highest at day 10 on any of the three types of BGS.

As can be seen in Figure 4-8 (c), in BM medium, the specific ALP activity was not found to be dependent on BGS total porosity at any of the three time points. In BM medium, the specific ALP activity of hMSCs increased significantly from day 3 to day 7, on SiHA60 and SiHA70, but not SiHA80 BGS. In BM medium, there was no significant difference in specific ALP activity at day 10 compared with day 7 irrespective BGS total porosity. In BM medium, the specific ALP activity of hMSCs was significantly higher at day 10 compared with day 3 on SiHA22 BGS, however, there was no significant difference in specific ALP activity of hMSCs at day 10 compared with day 3 on SiHA60 and SiHA70 BGS.

As can be seen in Figure 4-8 (d), in BMO medium, at both day 3 and day 7, the specific ALP activity was not found to be dependent on BGS total porosity, however at day 10, the specific ALP activity of hMSCs was significantly higher on SiHA-70 and SiHA80 BGS than SiHA60 BGS. In BMO medium, the specific ALP activity of hMSCs was found to be significantly higher at day 7 and day 10 compared with day 3 irrespective of the BGS total porosity. In BMO medium, the specific ALP activity of hMSCs was found to be significantly higher at day 10 compared with day 7 on both SiHA70 and SiHA80, but not SiHA60 BGS.
4.4 Discussion

Cell behaviour is directly affected by the BGS architecture, which provides cues that influence the specific integrin-ligand interactions between cells and the surroundings and thereby influence cell proliferation or direct cell differentiation (Murphy et al., 2010; Loh and Choong, 2013). SiHA BGS with equivalent levels of total porosity, micro-porosity level altered hMSCs proliferation at day 3, where DNA content was significantly higher on SiHA-14 as compared to SiHA-28, in all of the four types of culture medium. Ma et al. also observed that the initial cell proliferation rate in the low porosity matrix was greater than those in the high porosity matrix (Ma et al., 2000). One possible explanation is that SiHA-14 BGS has a greater number of small size of micro-pores (< 5 µm) compared with SiHA-28 BGS, which provided a more
suitable substrate for cell anchorage and attachment, leading to earlier hMSCs proliferation. This hypothesis is supported by previous study that an affinity was observed between the fidopillia of human osteoblasts-like cells and micro-pores *in vitro* (Annaz *et al*., 2004b), and MC3TE-E1 cells were observed to attach and grow into micro-pores in the inner surface (Li *et al*., 2005), respectively. However, at day 7 and day 10, hMSCs were not dependent on BGS with different micro-porosities, indicating that the micro-porosity level in SiHA BGS did not have an impact on late stage cell proliferation.

At both day 3 and day 7, the specific ALP activity of hMSCs was not altered by micro-porosity irrespective of the types of culture medium. However, at day 10, in PMO and BMO medium, BGS with high micro-porosity (SiHA-22 and SiHA-28) supported significantly increased levels of specific ALP activity in hMSCs as compared to the SiHA-14 BGS about 22%. This finding demonstrated that SiHA BGS with higher levels of micro-porosity had a greater potential to support hMSCs differentiation than those with lower levels of micro-porosity, but this needs a longer culture period and osteogenic supplements in the culture medium. It is possible that increasing the permeability of struts within the porous BGS increased physical accessibility of nutrients to support proliferation and differentiation. Higher surface area in SiHA BGS with higher levels of micro-porosity may also increase the osteogenic protein binding capacity and therefore increase the osteogenic differentiation capacity. It is worth mentioning that, in BM medium, the specific ALP activity of hMSCs did not increase significantly through the 10 days of culture, whereas in PM medium, the specific ALP activity of hMSCs increased significantly from day 3 to day 7 and from day 7 to day 10 irrespective of the levels of micro-porosity of SiHA BGS, which indicated that there might be some growth factors in PM medium that enhance hMSCs osteogenic differentiation. Unfortunately, the manufactures would not divulge the component of PM medium.

At both day 3 and day 7, DNA content of hMSCs was not found to be responsive to the total porosities of SiHA BGS irrespective the types of culture medium, whereas at day 10, in both PM and PMO medium, DNA content of hMSCs was significantly higher on SiHA80 BGS compared with SiHA60 BGS. This may be due to the fact that there
was greater number of macro-pores in SiHA80 BGS compared with SiHA60 BGS, also, macro-pores and pore interconnection in SiHA80 are likely to be bigger, which facilitated nutrient transportation and thereby increased hMSCs proliferation. This observation is in line with previous study that the absolute volume of bone ingrowth was consistently higher on HA BGS with higher total porosity (Hing et al., 2002).

In both PM and BM medium, the specific ALP activity of hMSCs was not found to be responsive to BGS with different total porosities at any of the time points. However, in BMO medium, at day 10, the BGS with highest total porosity (SiHA80) was found to support significantly increased levels specific ALP activity in hMSCs compared with SiHA60, and in PMO medium, at both day 7 and day 10, SiHA80 was again found to support significantly increased levels of specific ALP activity of hMSCs as compared with SiHA60. The increased surface area or enhanced permeability due to greater levels of pore connectivity in SiHA80 BGS enhanced hMSCs proliferation and thereby advanced hMSCs proliferation and specific ALP activity.

4.5 Conclusion

Porosity influences cell spreading and cell ingrowth in BGS materials. SiHA BGS with equivalent level of total porosity but different levels of micro-porosities and SiHA BGS with equivalent level of micro-porosity but different levels of total porosities were synthesised, characterised and tested in vitro. All SiHA BGS types irrespective of micro-porosity and total porosity were found to be suitable for hMSCs to grow and differentiate. From all the combinations of micro-porosity and macro-porosity tested, it would appear that rapid cell attachment may be favoured on surfaces with lower levels of micro-porosity (SiHA-14). However, hMSCs growth and differentiation were supported by BGS with greater levels of micro-porosity (SiHA-22 and SiHA-28) and the highest levels of total porosity (SiHA80) in osteogenic supplemented culture medium. The response of hMSCs differentiation to BGS micro-porosity was found in osteogenic medium, especially PMO. To investigate the response of hMSCs differentiation to BGS structure and mechanical forces, hMSCs were cultured on BGS with different micro-porosity in PMO medium in perfusion bioreactor.
Chapter 5 Synergistic Effect of BGS Micro-porosity and Perfusion Culture on Differentiation of Human Mesenchymal Stem Cells (hMSCs)

5.1 Introduction

Synthetic hydroxyapatite (HA) bone substitutes have been increasingly used in bone repair due to their excellent biocompatibility (Bowen et al., 1989; Yoshikawa et al., 1996; Chu et al., 2002; Woodard et al., 2007; Tripathi and Basu, 2012; Xia et al., 2016). Silicate substituted hydroxyapatite (SiHA) has proven to be particularly promising due to accelerated bone apposition, higher bone ingrowth and bone coverage on SiHA as compared to HA (Patel et al., 2002; Hing et al., 2006). There have been numerous studies conducted to investigate the effect of the parameters of geometric structure of BGS on bone repair, including pore size, total porosity, micro-porosity, and pore shape (Hing et al., 2002; Mastrogiacomo et al., 2006; Sweedy et al., 2018). Specifically, increasing micro-porosity has been shown to support bone-like apatite precipitation, encourage early neovascularization and increase absolute new bone volume (Hing et al., 2005; Campion et al., 2013; Campion et al., 2011; Coathup et al., 2012).

It is well known that mechanical loading plays an important role in bone remodelling and fracture healing (Lanyon and Rubin, 1984; Lanyon, 1993; Robling et al., 2002; Boerckel et al., 2012). For example, compression loading of bone during walking results in non-uniform strains macroscopically. The associated pressure differences within the interconnected canalicular network cause interstitial fluid flow, which imparts shear stresses on the cells (Hillsley and Frangos, 1994). As a result, essential cellular functions and BGS properties that present in vivo are missing by using traditional static culture method. Perfusion culture that mimics the concept of mechanical loading has been widely used to improve viability, cell distribution, differentiation, matrix synthesis and functionality of tissue engineered constructs (Bancroft et al., 2002; Wang et al., 2003; Braccini et al., 2005; Papadimitropoulos et al., 2014). It also has the advantage of bridging the gap between static culture and in
vivo test with respect to evaluating the bioactivity of the BGS under more relevant physiological conditions.

The cylindrical pore model approach of Goldstein et al. (Goldstein et al., 2001) has been widely used to estimate the shear stress (τ_w) on cells seeded on the BGS (μ: the viscosity of the culture medium, d: the mean pore size of the BGS, and V_m: mean velocity through the pores).

$$\tau_w = \frac{8\mu V_m}{d}$$

Assuming flow was distributed uniformly across the BGS surface with diameter, the mean velocity (V_m) through the pores can be calculated based on flow rate Q, diameter of BGS D, and porosity of BGS ϕ.

$$V_m = \frac{Q}{\phi \pi (\frac{D}{2})^2}$$

This model is a massive over simplification, but it is the best compromise that is available so far. Compatible shear stress values calculated based on this model (0.001 - 1 dyn/cm²) have been reported and been demonstrated to activate osteogenic differentiation in 3D perfusion culture systems (Goldstein et al., 2001; Bancroft et al., 2002; Gomes et al., 2003; Sikavitsas et al., 2005; Li et al., 2009; Vance et al., 2005; McCoy and O’Brien, 2010) based on increased ALP activity (Goldstein et al., 2001; Bancroft et al., 2002; Sikavitsas et al., 2005), PGE2 release (Vance et al., 2005), or mineralized matrix deposition (Bancroft et al., 2002; Gomes et al., 2003; Sikavitsas et al., 2005; Li et al., 2009). The shear stress value calculated based on this model were also in line with shear stress estimated by computational fluid dynamics (CFD) models on the BGS surfaces, which was found to induce osteogenic differentiation (Zhao et al., 2015; Stephens et al., 2007; Vetsch et al., 2017). In the current study, continuous BASAL PERFUSION RATE (BPR) at 0.07 ml/min flow rate was chosen to generate shear stress value of 0.0088 dyn/cm² (μ: 0.01 dyn * s/cm², d: 265 µm, D: 8 mm and ϕ: 80%). BPR with a period of HIGH PERFUSION RATE (pHPR) every day at 2.5 ml/min flow rate was chosen to generate shear stress value of 0.31 dyn/cm² (μ: 0.01 dyn * s/cm², d: 265 µm, D: 8 mm and ϕ: 80%).
Although both micro-porosity of BGS and shear stress are both involved in bone functional adaption and they have only been investigated independently. The combined effect of these two cues has not yet to be studied. The aim of this study here was to investigate the synergistic effects of micro-porosity and perfusion on hMSCs proliferation, cytoskeleton organisation, ERK1/2 signalling pathway activation and differentiation.

5.2 Materials and Methods

Irregularly shaped SiHA granules (ϕ: 1-2 mm) consisting of same total porosity (80.9 ± 1.9%), but different levels of micro-porosity: 13.5 ± 0.7% & 22.4 ± 0.5% & 28.4 ± 2.7% (SiHA-14 & SiHA-22 & SiHA-28) were synthesised as described in Chapter 2.1 in Baxter Inc (Elstree, London) and tested in in vitro experiments.

1 million of hMSCs in 500 µl cell suspension (concentration: 2 × 10^6 cells/ml) were seeded per 1 cm³ (0.47 ± 0.03 g) of SiHA BGS granules. After hMSCs had attached to BGS granules (2 hours), granules were kept under static condition in 24 well-plates in 1.5 ml medium or moved to a recirculating perfusion bioreactor system consisting of 16 independent chambers (Figure 5-1) (as described in Chapter 2.4) for further incubation. MSC growth medium 2 (PromoCell) from the reservoir was perfused through the constructs vertically in a bottom-to-top direction using a peristaltic pump (IPC lamatec, VWR). Two perfusion profiles were applied: 1) continuous BASAL PERFUSION RATE (BPR) at 0.7 ml/min flow rate; 2) BPR with a period (one hour daily) of HIGH PERFUSION RATE (pHPR) at 2.5 ml/min flow rate in recirculating configuration as in Figure 5-1.
Figure 5-1 Schematic diagram of recirculating perfusion bioreactor system.

In Chapter 4, the response of hMSCs differentiation to BGS micro-porosity was found in osteogenic medium, but not basic cell culture medium. Previous study also proved that flow perfusion culture alone induces osteogenic differentiation of MSCs, while osteogenic medium enhanced its response to perfusion (Holtorf, Jansen, et al., 2005). To clearly show the response of hMSCs differentiation to BGS micro-porosity and perfusion, and to better understand the synergistic effect of BGS micro-porosity and perfusion culture, in this study, after cells attached on BGS for a short period (24 hours), the MSC growth medium 2 was supplemented with osteogenic medium (0.1 µM dexamethasone, 0.05 mM ascorbic acid and 10 mM β-glycerophosphate) (Sigma-Aldrich). 1.5 ml medium was used for each BGS under static condition and culture medium was exchanged every 2 days thereafter. 100 ml medium was recirculated for each BGS during 7 days of perfusion culture, and the bottle of medium was vented in normoxic atmosphere.

After 3 or 7 days, hMSCs on the BGS were fixed, cytoskeleton organization was made visible as described in Chapter 2.8. hMSCs on the BGS were lysised, DNA and specific ALP activity, ERK1/2 and phosphorylated ERK (pERK1/2) distribution and production, gene expression for osteogenic differentiation markers (osx, alp, bmp2, col i, dmp1), chondrogenic differentiation markers (sox9, runx2, col ii), myogenic differentiation markers (myoD) and integrin subunits (integrin α1, integrin α5, integrin β1) were tested as described in Chapter 2.10.
5.3 Results

5.3.1 Cytoskeleton Organisation

Actin cytoskeleton was made visible to determine if the presence or absence of fluid shear stress results in cytoskeletal reorganisation after culturing for 3 days (Figure 5-2 (a)) and 7 days (Figure 5-3 (a)) on different BGS. At both day 3 and day 7, there was no observable difference in cytoskeleton organisation of hMSCs irrespective of whether they were cultured on SiHA-14, SiHA-22 or SiHA-28 BGS in static environment. Under basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) culture conditions, there were also no significant difference in actin organisation with different BGS types. However, significant difference in actin organisation was observed to respond to change in culture condition from static to dynamic culture.
Figure 5-2 At day 3, actin organisation in hMSCs on SiHA-14, SiHA-22 and SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. (a) The actin cytoskeleton was labelled with Alexa 488 conjugated phalloidin (green) and nuclei were counterstained with DAPI (blue). Scale bar represents 50 µm. (b) Quantitative analysis of cell area by Image J. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS.
Figure 5-3 At day 7, actin organisation in hMSCs on SiHA-14, SiHA-22 and SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. (a) The actin cytoskeleton was labelled with Alexa 488 conjugated phalloidin (green) and nuclei were counterstained with DAPI (blue). Scale bar represents 50 µm. (b) Quantitative analysis of cell area by Image J. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS.
It is noticeable that majority hMSCs were spread on BGS under static culture condition, while most hMSCs were found to have relatively less spread cytoskeleton under basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. This is confirmed by the quantification of the average cellular size, as shown in Figure 5-2 (b), which demonstrated that at day 3, cell area was significantly larger when cultured in a static environment than cultured in basal perfusion rate (BPR) or a period of high perfusion rate (pHPR) environment irrespective of BGS types. At day 7, cell area was larger when cultured in a static environment than cultured in basal perfusion rate (BPR) or a period of high perfusion rate (pHPR) environment on SiHA-14, whereas cell area was significantly larger when cultured in a static environment than cultured in basal perfusion rate (BPR) or a period of high perfusion rate (pHPR) environment on SiHA-22 and SiHA-28. There was no significant difference in cell area irrespective of whether they were cultured under basal perfusion rate (BPR) condition or a period of high perfusion rate (pHPR) condition irrespective of BGS types.

5.3.2 Total DNA Quantity

The quantity of total DNA from the BGS was assumed to be proportional to the number of cells on the BGS. So total increases in DNA was quantified to reflect cellular proliferation. As can be seen in Figure 5-4 (a), at day 3, cell proliferation was not dependent on culture conditions on any of the 3 BGS types. Also, total DNA production was not responsive to the BGS micro-porosity under any of the culture conditions.

Total DNA production did not change with time in static environment, whereas, at day 7, it was around 1.2 times higher in basal perfusion rate (BPR) and 1.4 times higher in a period of high perfusion rate (pHPR) environment respectively (Figure 5-4 (b)) compared with day 3. As a result, the DNA content of BGS cultured under perfusion conditions was significantly higher than under static culture condition at day 7. A period of high perfusion rate (pHPR) increased cell proliferation to a greater extent than basal perfusion rate (BPR), although there was no significant difference in total DNA quantity when culturing under basal perfusion rate (BPR) or a period of high perfusion rate (pHPR).
Figure 5-4 Total DNA production of hMSCs on SiHA-14, SiHA-22 and SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions at (a) day 3 and (b) day 7. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS.

5.3.3 Specific ALP Activity

Specific ALP activity is an early marker of bone marrow stromal cells differentiating towards the osteoblastic phenotype. So, ALP activity normalized by µg DNA (specific ALP activity) was measured to evaluate osteogenic differentiation of hMSCs on different samples after 3 and 7 days. In Figure 5-5 (a), at day 3, specific ALP activity of hMSCs was significantly greater under static culture condition than under basal perfusion rate (BPR) condition on SiHA-14 BGS. The specific ALP activity of hMSCs was significantly lower under a period of high perfusion rate (pHPR) than both static and basal perfusion rate (BPR) conditions on SiHA-28 BGS. The specific ALP activity was not found to be dependent on BGS micro-porosity under both static and a period of high perfusion rate (pHPR) conditions. However, under basal perfusion rate (BPR) condition, the specific ALP activity of hMSCs was significantly higher on SiHA-22 and SiHA-28 than SiHA-14 BGS.

After 7 days, specific ALP activity of hMSCs was significantly lower under basal perfusion rate (BPR) than both static and a period of high perfusion rate (pHPR) conditions irrespective of BGS types, as shown in Figure 5-5 (b). At day 7, on both SiHA-22 and SiHA-28 BGS, specific ALP activity was significantly higher under a period of high perfusion rate (pHPR) than static condition. The specific ALP activity was not dependent on BGS micro-porosity under both static and basal perfusion rate (BPR) conditions. However, under a period of high perfusion rate (pHPR) condition, specific
ALP activity of hMSCs was significantly lower on SiHA-14 compared with on both SiHA-22 and SiHA-28 BGS.

![Graph showing ALP activity on different BGS](image)

Figure 5-5 Specific ALP activity of hMSCs on SiHA-14, SiHA-22 and SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions at (a) day 3 and (b) day 7. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS. +++p < 0.001, comparison between SiHA-14, SiHA-22 and SiHA-28 under each culture condition.

5.3.4 ERK and pERK Nuclear Translocation

When hMSCs seeded BGS were cultured under static condition for 3 days, in some of hMSCs, ERK1/2 localised exclusively in the cytoplasm, while for other hMSCs, ERK1/2 homogeneously distributed in both cytoplasm and nucleus, as can be seen in Figure 5-6. However, when hMSCs seeded BGS were cultured under basal perfusion rate (BPR) or a period of high perfusion rate (pHPR) conditions, strong nuclear accumulation of ERK1/2 was detected, as can be seen in Figure 5-7. Under each isolated culture condition of static, basal perfusion rate (BPR) or a period of high perfusion rate (pHPR), ERK1/2 distribution did not appear to vary on the three types of BGS. Interestingly, pERK was found to have the same pattern with ERK, as can be seen in Figure 5-8 and Figure 5-9, i.e. pERK also located at nucleus when hMSCs seeded BGS were cultured in the basal perfusion rate (BPR) or a period of high perfusion rate (pHPR) environment rather than in static environment.
Figure 5-6 ERK1/2 distribution in hMSCs on SiHA-14, SiHA-22 and SiHA-28 BGS under static condition after 3 days. ERK1/2 was labelled using an antibody against at ERK1/2 (red), and nuclei were counterstained with DAPI (blue), scale bar represents 50 µm. White arrows showed ERK1/2 localised exclusively in the cytoplasm.
Figure 5-7 ERK1/2 distribution in hMSCs on SiHA-14, SiHA-22 and SiHA-28 BGS under basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions after 3 days. ERK1/2 was labelled using an antibody against at ERK1/2 (red), and nuclei were counterstained with DAPI (blue), scale bar represents 50 µm. Yellow arrow showed ERK1/2 was accumulated in nuclear.
Figure 5-8 pERK1/2 distribution in hMSCs on SiHA-14, SiHA-22 and SiHA-28 BGS under static condition after 3 days. pERK1/2 was labelled using an antibody against at pERK1/2 (red), and nuclei were counterstained with DAPI (blue), scale bar represents 50 µm. White arrow showed ERK1/2 localised exclusively in the cytoplasm.
Figure 5-9 pERK1/2 distribution in hMSCs on SiHA-14, SiHA-22 and SiHA-28 BGS under basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions after 3 days. pERK1/2 was labelled using an antibody against pERK1/2 (red), and nuclei were counterstained with DAPI (blue), scale bar represents 50 µm. Yellow arrow showed pERK1/2 was accumulated in nuclear.
5.3.5 ERK Phosphorylation Levels

The phosphorylation status of ERK1/2 was examined by Western blot and normalised by total ERK1/2 expression. As can be seen in Figure 5-10(b), at day 3, on SiHA-14 and SiHA-22, pERK1/2 in hMSCs was found to be significantly lower under basal perfusion rate (BPR), compared with both static condition and a period of high perfusion rate (pHPR) condition. On SiHA-28, the phosphorylation of ERK1/2 in hMSCs was significantly higher under a period of high perfusion rate (pHPR) compared with both static and basal perfusion rate (BPR) conditions. The phosphorylation of EKR1/2 at day 3 has the similar pattern of the specific ALP activity at day 7, which implies EKR1/2 is part of the upstream signalling of hMSCs differentiation.

After 7 days, the phosphorylation of ERK1/2 in hMSCs was significantly higher under static culture than basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) on SiHA-14, as shown in Figure 5-11 (b). On BGS SiHA-28, the phosphorylation of ERK1/2 in hMSCs was not dependent on culture conditions. It is worth mentioning that the phosphorylation of ERK1/2 in hMSCs was significantly higher on SiHA-14 than on SiHA-22 and SiHA-28 under static condition, while it increased with increasing in BGS micro-porosity under basal perfusion rate (BPR) condition.
Figure 5-10 (a) At day 3, the phosphorylation of ERK1/2 (pERK1/2) and ERK protein expression on SiHA-14, SiHA-22 and SiHA-28 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. (b) Quantitative analysis of pERK1/2 expression. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS.
Figure 5-11 (a) At day 7, the phosphorylation of ERK1/2 (pERK1/2) and ERK protein expression on SiHA-14, SiHA-22 and SiHA-28 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. (b) Quantitative analysis of pERK1/2 expression. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between SiHA-14, SiHA-22 and SiHA-28 under each culture condition.

5.3.6 Relative Gene Expression

5.3.6.1 Expression of Osteogenic Gene Markers

mRNA levels of osteogenic markers: osterix (osx), alkaline phosphatase (alp), bone morphogenetic protein 2 (bmp2), collagen I (col i) and dentin matrix acidic phosphoprotein (dmp1) of hMSCs were measured by quantitative real-time PCR to evaluate how BGS micro-porosity and shear stress influences the expression of markers of osteogenic differentiation. osx is a transcription factor that has been demonstrated to be critical for osteoblast differentiation and bone formation (Nakashima et al., 2002; Tu et al., 2006). At day 3, the expression of osx was
significantly higher when BGS were cultured under basal perfusion rate (BPR) than both a period of high perfusion rate (pHPR) and static conditions, with osx expression under static condition being significantly lower than under a period of high perfusion rate (pHPR) condition, irrespective of BGS types (Figure 5-12 (a)). At day 3, under basal perfusion rate (BPR) condition, osx gene expression increased significantly with increasing in BGS micro-porosity. At day 7, there was no significant difference in osx gene expression with time under static condition irrespective of BGS types, whereas there was a significant decrease in osx expression under basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions, compared with day 3 (Figure 5-12 (a) and (b)). The decrease under basal perfusion rate (BPR) condition was more prominent on SiHA-22 and SiHA-28 than on SiHA-14. However, at day 7, the expression of osx was still significantly higher under basal perfusion rate (BPR) than both static and a period of high perfusion rate (pHPR) conditions on any of the 3 BGS types.

ALP is a transient early marker of bone marrow stromal cells differentiating towards the osteoblastic phenotype (Datta et al., 2005). At day 3, on both SiHA-14 and SiHA-28, alp gene expression was significantly higher under static condition than either type of perfusion conditions, while on SiHA-22, alp gene expression was significantly higher under basal perfusion rate (BPR) than both static and a period of high perfusion rate (pHPR) conditions (Figure 5-12(c)). At day 3, alp gene expression was significantly higher on SiHA-22 BGS than SiHA-14 and SiHA-28 BGS under basal perfusion rate (BPR) condition. alp gene expression tended to increase with time from day 3 to day 7 under all conditions. At day 7, alp gene expression was significantly higher under static condition compared with basal perfusion rate (BPR) condition on SiHA-14 BGS, whereas it was significantly higher under basal perfusion rate (BPR) than both static and a period of high perfusion rate (pHPR) conditions on SiHA-22 BGS, as can be seen in Figure 5-12 (d). At day 7, under basal perfusion rate (BPR), alp gene expression was found to be significantly higher on SiHA-22 BGS than both SiHA-14 and SiHA-28 BGS. Specific ALP activity at day 7 (in section 5.3.3) did not match with gene expression of alp at day 7. One possible explanation is that specific ALP activity reaches the highest levels under a period of high perfusion rate (pHPR)
at day 7, but it is ready to decrease after day 7 according its gene expression levels at day 7. Arpornmaeklong also found that ALP activity increased to reach the highest levels then decreased during osteogenic differentiation (Arpornmaeklong et al., 2009).

Figure 5-12 Expression of *osx* and *alp* genes in hMSCs cultured on SiHA-14, SiHA-22 and SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions after 3 and 7 days. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between SiHA-14, SiHA-22 and SiHA-28 under each culture condition.

BMP2 plays a critical role in bone formation and regeneration (Reddi, 1998). The short-term expression of *bmp2* was demonstrated to be necessary and sufficient for osteochondral differentiation of MSCs *in vivo* (Noel et al., 2008). At day 3, both basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) facilitated the expression of *bmp2*, as compared to static culture on SiHA-22 and SiHA-28 BGS (Figure 5-13 (a)). With increasing in BGS micro-porosity, expression of *bmp2* decreased irrespective of culture conditions. Interestingly, expression of *bmp2*
decreased with time from day 3 to day 7 irrespective of culture conditions, as shown in Figure 5-13 (b). The decrease in *bmp2* expression was less marked under basal perfusion rate (BPR), with *bmp2* expression under basal perfusion rate (BPR) condition being consistently the highest at day 7, and there no longer being any response in *bmp2* expression to BGS micro-porosity under any of 3 culture conditions used in this study.

col i has been reported to be expressed early during the commitment to the osteoblastic phenotype (Rodan and Noda, 1991). At day 3, the gene expression of *col i* was significantly higher under basal perfusion rate (BPR) than both static and a period of high perfusion rate (pHPR) conditions for both SiHA-14 and SiHA-22 BGS, while it was the highest under a period of high perfusion rate (pHPR) on SiHA-28 BGS. At day 3, *col i* gene expression was found to be significantly lower on SiHA-28 than on SiHA-14 and SiHA-22 under basal perfusion rate (BPR), as can be seen in Figure 5-13 (c). The expression of *col i* was found to have an obvious decrease with time from day 3 to day 7 under a period of high perfusion rate (pHPR) condition irrespective of BGS types. At day 7, expression of *col i* (Figure 5-13 (d)) was the highest under basal perfusion rate (BPR) than static and a period of high perfusion rate (pHPR) irrespective of BGS types. At day 7, the pattern of *col i* expression was similar to day 3, with the expression of *col i* was found to be significantly lower on SiHA-28 than on SiHA-14 under basal perfusion rate (BPR).

dmp1 has been found to be highly expressed in osteocytes and can be classed as a pro-osteogenic factor (Kalajzic et al., 2004). At both day 3 and day 7, the expression of *dmp1* was significantly higher under basal perfusion rate (BPR) than both static and a period of high perfusion rate (pHPR) conditions irrespective of BGS types, as can be seen in Figure 5-13 (e) and (f). *dmp1* expression was not found to be responsive to micro-porosity of BGS at either time point or under any of 3 culture conditions used in this study.
Figure 5.13 Expression of *bmp2*, *col i* and *dm* genes in hMSCs cultured on SiHA-14, SiHA-22 and SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions after 3 and 7 days. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between SiHA-14, SiHA-22 and SiHA-28 under each culture condition.

5.3.6.2 Expression of Chondrogenic Gene Markers

SRY-box 9 (*sox9*) and runt-related transcription factor 2 (*runx2*) have been identified as important transcriptional regulators of early and late chondrogenic differentiation, respectively (Karsenty, 2008). At day 3, basal perfusion rate (BPR) significantly increased the expression of *sox9* compared with static culture, and a period of high...
perfusion rate (pHPR) increased it even further irrespective of BGS types, as can be seen in Figure 5-14 (a). At day 3, sox9 expression was significantly lower on SiHA-28 than on SiHA-22 under a period of high perfusion rate (pHPR) condition. From day 3 to day 7, the expression of sox9 increased under basal perfusion rate (BPR) condition, while it decreased under static and a period of high perfusion rate (pHPR) conditions. At day 7, sox9 expression was found to be significantly higher under either type of perfusion culture conditions than under static condition irrespective of BGS types. At day 7, expression of sox9 was not found to be responsive to micro-porosity of BGS irrespective of culture conditions.

At day 3, there was no significant difference in runx2 expression when culturing under static or basal perfusion rate (BPR), while in comparison with static and basal perfusion rate (BPR), a period of high perfusion rate (pHPR) enhanced expression of runx2 significantly irrespective of BGS types, as can be seen in Figure 5-14 (c). At day 3, under a period of high perfusion rate (pHPR), runx2 expression was significantly lower on SiHA-28 than both on SiHA-14 and SiHA-22. But there was no response of runx2 expression to BGS micro-porosity under static or basal perfusion rate (BPR) conditions. Under static condition there was no significant difference in expression of runx2 with time, in contrast, under either type of perfusion conditions, it increased significantly from day 3 to day 7 (Figure 5-14 (d)). As a result, at day 7, runx2 expression was significantly higher under a period of high perfusion rate (pHPR) as compared to static and basal perfusion rate (BPR) conditions, with runx2 expression under basal perfusion rate (BPR) being higher than static condition. At day 7, under a period of high perfusion rate (pHPR) condition, the expression of runx2 was higher on SiHA-22 BGS than on SiHA-14 and SiHA-28 at day 7.

Collagen II (COL II) is the major structural component of cartilage, so it is one of the commonly used markers of chondrogenesis (Ng et al., 1997). At day 3, there was no significant difference between static and basal perfusion rate (BPR) on any of the three BGS types. At day 3, there was significant increase in the expression of col ii under a period of high perfusion rate (pHPR) as compared static condition on SiHA-14, SiHA-22 and SiHA-28, Figure 5-14 (e). At day 3, col ii expression was found to be higher under a period of high perfusion rate (pHPR) as compared to basal perfusion
rate (BPR) on SiHA-14 and SiHA-22 BGS. At day 3, under a period of high perfusion rate (pHPR), the expression of col ii was found to be significantly lower on SiHA-28 than on either SiHA-14 or SiHA-22. At day 7, col ii expression was found to be significantly higher under a period of high perfusion rate (pHPR) condition as compared to static condition on any of the three BGS types. At day 7, col ii expression was found to be significantly higher under a period of high perfusion rate (pHPR) as compared to basal perfusion rate (BPR) on SiHA-14 and SiHA-28. col ii expression was not found to be responsive to micro-porosity of BGS at day 7 under any of 3 culture conditions used in this study.
Figure 5.14 Expression of sox9, runx2 and col ii genes in hMSCs cultured on SiHA-14, SiHA-22 and SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions after 3 and 7 days. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between SiHA-14, SiHA-22 and SiHA-28 under each culture condition.

5.3.6.3 Expression of Myogenic Gene Marker

Myoblast determination protein (myoD) is a myogenic transcriptional regulatory factor that activate a number of muscle-specific structural genes and transcription factors to drive myogenesis (Rao et al., 2006). On day 3, there was no significant difference in myoD expression under basal perfusion rate (BPR) compared with static
culture irrespective of BGS types. At day 3, the expression of *myoD* was found to be significantly lower under a period of high perfusion rate (pHPR) than under either static or basal perfusion rate (BPR) conditions on SiHA-14 and SiHA-22, Figure 5-15 (a). At day 3, under both static and basal perfusion rate (BPR) conditions, the expression of *myoD* was significantly lower on SiHA-28 than on SiHA-14.

Figure 5-15 The gene expression of *myoD* in hMSCs cultured on SiHA-14, SiHA-22 and SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions after 3 and 7 days. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS. +p < 0.05, ++p < 0.01, comparison between SiHA-14, SiHA-22 and SiHA-28 under each culture condition.

By day 7, the expression of *myoD* was found to be significantly decreased (Figure 5-15 (b)) compared with day 3, regardless of BGS micro-porosity and culture condition. At day 7, *myoD* expression was found to be significantly lower under a period of high perfusion rate (pHPR) as compared to static condition on SiHA-14. At day 7, the expression of *myoD* was significantly higher under basal perfusion rate (BPR) condition than either static or a period of high perfusion rate (pHPR) conditions on SiHA-22 and SiHA-28. At day 7, under static condition, *myoD* expression was significantly higher under on SiHA-14 than on SiHA-28. At day 7, under basal perfusion rate (BPR), there was a significant increase in *myoD* expression when hMSCs were cultured on either SiHA-22 or SiHA-28 compared with SiHA-14.

5.3.6.4 Expression of Integrin Subunits
At day 3, either type of perfusion culture significantly increased *integrin α1* expression compared with static culture when hMSCs were cultured on SiHA-22 and
SiHA-28 BGS, Figure 5-16 (a). For SiHA-14 BGS, basal perfusion rate (BPR) significantly increased the integrin $\alpha1$ expression as compared to static culture and a period of high perfusion rate (pHPR). At day 3, under static condition, higher micro porosity (SiHA-22 or SiHA-28) suppressed integrin $\alpha1$ expression compared with SiHA-14, whereas under either type of perfusion conditions, there was no obvious difference in expression of integrin $\alpha1$ with respect to BGS micro-porosity. By day 7, integrin $\alpha1$ expression under basal perfusion rate (BPR) condition was significantly higher as compared to static and a period of high perfusion rate (pHPR) on SiHA-14 and SiHA-28 BGS, as can be seen in Figure 5-16 (b). At day 7, on BGS SiHA-22, integrin $\alpha1$ expression was significantly higher on either type of perfusion conditions than static condition. At day 7, under basal perfusion rate (BPR) condition, the expression of integrin $\alpha1$ was found to be significantly higher on SiHA-28 than on SiHA-14, whereas, under a period of high perfusion rate (pHPR), the expression of integrin $\alpha1$ was significantly higher on SiHA-22 compared with on SiHA-14.

At day 3, basal perfusion rate (BPR) significantly increased integrin $\alpha5$ expression compared with static culture, and a period of high perfusion rate (pHPR) further increased integrin $\alpha5$ expression significantly irrespective of BGS types, Figure 5-16 (c). At day 3, under basal perfusion rate (BPR) condition, the expression of integrin $\alpha5$ was significantly higher on SiHA-28 than on SiHA-14, however, under a period of high perfusion rate (pHPR) condition, integrin $\alpha5$ expression was found to be significantly lower on SiHA-28 than SiHA-14 and SiHA-22. By day 7, the expression of integrin $\alpha5$ significantly decreased (Figure 5-16 (d)) under a period of high perfusion rate (pHPR) compared with day 3 on SiHA-14 and SiHA-22. At day 7, under a period of high perfusion rate (pHPR) condition, the expression of integrin $\alpha5$ was significantly higher compared with static condition on any of the three BGS types, and the expression of integrin $\alpha5$ was also significantly higher compared with basal perfusion rate (BPR) on SiHA-28. At day 7, under a period of high perfusion rate (pHPR), the expression of integrin $\alpha5$ increased significantly on SiHA-28 compared with both SiHA-14 and SiHA-22. At day 3, there was no significant difference in the expression of integrin $\beta1$ when comparing basal perfusion rate (BPR) with static culture condition, while a period of high perfusion rate (pHPR) significantly increased
integrin $\beta 1$ expression compared with static culture irrespective of BGS types, as shown in Figure 5-16 (e). At day 3, integrin $\beta 1$ expression was significantly higher under a period of high perfusion rate (pHPR) than basal perfusion rate (BPR) condition on both SiHA-14 and SiHA-22 BGS. At day 3, under static and basal perfusion rate (BPR) conditions, there was no response to BGS type in expression of integrin $\beta 1$, however, under a period of high perfusion rate (pHPR) condition, expression of integrin $\beta 1$ was downregulated on SiHA-28 than on SiHA-14 and SiHA-22. By day 7, the expression of integrin $\beta 1$ did not vary significantly compared with day 3 under static and basal perfusion rate (BPR) conditions, while it increased significantly under a period of high perfusion rate (pHPR) on SiHA-22 and SiHA-22 compared with day 3 (Figure 5-16 (f)). At day 7, under static and basal perfusion rate (BPR) conditions, the expression of integrin $\beta 1$ was not dependent on BGS micro-porosity, while under a period of high perfusion rate (pHPR), the expression of integrin $\beta 1$ was significantly higher on SiHA-22 than SiHA-28, which is in turn significantly higher than on SiHA-14.
Figure 5-16 Expression of integrin α1, integrin α5 and integrin β1 genes in hMSCs cultured on SiHA-14, SiHA-22 and SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions after 3 and 7 days. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) for each BGS. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between SiHA-14, SiHA-22 and SiHA-28 under each culture condition.

5.4 Discussion

In this study, SiHA BGS granules with different micro-porosities were seeded with hMSCs then cultured in static, basal perfusion rate (BPR) or a period of high perfusion rate (pHPR) environment. Responses of hMSCs, for example proliferation,
cytoskeleton organisation, integrin activation and differentiation, were analysed to investigate the synergistic effect of BGS geometry (micro-porosity) and perfusion.

The cytoskeleton is composed of a network of microfilaments and microtubules that link extracellular matrix to the cell nucleus and could play an important role in sensing mechanical forces and transforming mechanical forces into biochemical signals. Actin filamentous network is highly dynamic, and it can rearrange in response to mechanical stimulation, substrate stiffness or topography (Pavalko et al., 1998; Lee et al., 2015; Park et al., 2011). To investigate the synergistic effect of micro-structure of BGS and shear stress on cytoskeleton organisation, F-actin of hMSCs cultured on SiHA-14, SiHA-22 and SiHA-28 BGS at different condition was studied in vitro and shown in Figure 5-2 (a). Cytoskeleton responded to both basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) culture. Cytoskeleton was found to be less spread under both basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions, i.e. when cells differentiate to osteogenic lineage or chondrogenic lineage, compared with under static condition. Similar findings were also reported in the literature that cells become more rounded, when the expression of chondrogenic markers (sox9 and col ii) are upregulated (Zhang et al., 2006). Under In vivo condition, osteoblasts were also found to adopt a cuboidal morphology when actively secreting matrix (Franz-Odendaal et al., 2006).

Cell proliferation is crucial for bone tissue regeneration. However, traditional static culture may lead to the death of seeded cells on 3D BGS, due to limited nutrients and oxygen transport (Volkmer et al., 2008; Yeatts and Fisher, 2011). This can be overcome by using dynamic 3D perfusion bioreactors with constant replacement of fresh medium. In this study, at day 3, there was no significant difference in hMSCs proliferation irrespective of culture conditions on any of the three types of BGS. However, at day 7, either type of perfusion conditions was found to significantly increase hMSCs proliferation, especially a period of high perfusion rate (pHPR), which provides more efficient nutrients and oxygen exchange as well as increased shear stress.

The mitogen-activated protein kinase (MAPK) pathways have been found to respond to various extracellular stimuli and control a large number of fundamental cellular
processes including cell survival, growth, proliferation, differentiation, motility, stress response and apoptosis. ERK1/2 is one of the members of MAP Kinase, which has been widely recognised as a latent integrin-related pathway and can facilitate osteogenic differentiation of hMSCs in response to mechanical stimulation (Liu et al., 2011; Ward Jr. et al., 2007; Liu et al., 2009). However, the role of ERK appears to be more complex in chondrogenesis. Some researchers reported that ERK signalling represses chondrogenesis (Yoon et al., 2000; Appleton et al., 2010), whereas others demonstrated the requirement of ERK activation for induction of the chondrogenic master gene sox9 or precartilage condensation in the early stage of chondrogenesis (Zhang et al., 2014; Li et al., 2010; Murakami et al., 2000).

In order to execute its functions, MAP kinase was required to translocate into the nucleus, where MAP kinase phosphorylates a large number of substrates (Roskoski, 2012; Plotnikov et al., 2011; Brunet et al., 1999). Studies have demonstrated that ERK1/2 was localized in the cytoplasm of resting cells due to interaction with anchoring proteins. Following stimulation, most ERK1/2 molecules were observed to enter the nucleus rapidly (in 15 min), and remain there persistently (Lenormand et al., 1993). The main activity of ERK1/2 in the nucleus is to regulate transcription factors, which can in turn induce various physiological processes. In this study, both ERK1/2 and pEKR1/2 were mostly located in the nucleus under both basal perfusion rate (BPR) and a period of high perfusion rate (pHPR). One explanation may be that ERK1/2 translocated from the cytoplasm to nucleus in response to shear stress and phosphorylated in nucleus. It is worth mentioning that, at day 3, the phosphorylated ERK1/2 amount was significantly lower under basal perfusion rate (BPR) condition compared with under static condition. However, pERK1/2 was mostly observed in the nucleus, indicating that it could regulate transcription factors more efficiently than static culture.

The significant upregulation of osx expression under basal perfusion rate (BPR) suggested that it can induce osteogenic differentiation of hMSCs. The enhancement of alp, bmp2, dmp1 and col i expression under basal perfusion rate (BPR) condition consolidated the differentiation towards the osteogenic lineage. In this study, when hMSCs seeded BGS were subjected to a period of high perfusion rate (pHPR), the
expression of osteogenic markers was lower compared with basal perfusion rate (BPR). This demonstrated that a period of high perfusion rate (pHPR) diminished the advantage of basal perfusion rate (BPR) in terms of osteogenic differentiation. However, the expression of certain osteogenic genes, like osx and bmp2, and specific ALP activity were higher compared with static culture. This demonstrated that a period of high perfusion rate (pHPR) could still support osteogenic differentiation to some extent. Taken together, these findings agree with previous research that, in 3D perfusion culture bioreactor, shear stress in the range of 0.001 – 1 dyn/cm² generated by flow induces osteogenic differentiation (Bancroft et al., 2002; Gomes et al., 2003; Sikavitsas et al., 2005; Li et al., 2009; Vance et al., 2005; McCoy and O’Brien, 2010). In this study, although hMSCs seeded BGS were cultured in osteogenic medium, it is surprising to notice that a period of high perfusion rate (pHPR) significantly increased the expression of chondrogenic markers, like sox9, runx2 and col ii, throughout 7 days of culture compared with static condition. Interestingly, cyclic tensile strain was also proved to play a role in directing both intramembranous and endochondral ossification of mesenchymal stem cells (Carroll et al., 2017).

In a previous study, continuous flow rate of 0.1 ml/min was demonstrated to favour chondrogenic potential of goat MSCs on 3D biodegradable polymeric BGS (Gonçalves et al., 2011). Another study showed decreased chondrogenic gene expression and matrix production of pellet hMSCs mounted in porous BGS that were exposed to a 1.22 ml/min flow (Kock et al., 2014). Although the flow rate of 1.22 ml/min is more than 10 times higher compared to flow rate of 0.1 ml/min, shear stress is affected by the dimension of flow chamber and structure of the BGS, as well as flow rate. So, the interference of shear stress level and chondrogenic differentiation cannot be concluded by comparing directly the levels of flow rate between previous studies using different experimental setups. Basal perfusion rate (BPR) culture also elevated the expression of chondrogenic gene markers compared static condition. This finding suggested that in a 3D perfusion environment, higher shear stress enhanced chondrogenic differentiation, and this finding is in line with a previous study that, rabbit chondrocytes cultured in a 3D bioreactor at increased flow rate (0.8 ml/min)
were found to have significantly higher production of chondrogenic markers, like glycosaminoglycan (GAG) and matrix deposition, compared with chondrocytes that were cultured at low flow rate (0.05 ml/min) (Dror et al., 1996). The models that are used in shear stress evaluation in 3D perfusion culture were different from that are used in monolayer cell culture models. The quantified shear stress value in monolayer cell culture is usually 2 to 4 orders of magnitude higher. For example, in monolayer cell culture model, Yourek et al. and Juhasz et al. found that the shear stresses of 9 dyn/cm² and 50 dyn/cm² could enhance osteogenic and chondrogenic differentiation, respectively (Yourek et al., 2010; Juhász et al., 2014). The evidence of higher shear stress induced chondrogenic differentiation from previous studies was in chondrogenic media. The current study showed that higher shear stress induced chondrogenic differentiation in osteogenic medium for the first time. It is widely accepted that hypoxia can promote chondrogenesis. However, it is unlikely that the perfusion conditions in the current study cause or change hypoxia, because the bottle of medium was vented in normoxic atmosphere.

The findings in this study reveal a clear dependence of hMSCs response on perfusion flow rate: hMSCs cultured in basal perfusion rate (BPR) environment differentiate towards the osteogenic lineage, while a period of high perfusion rate (pHPR) induces hMSCs differentiate towards the chondrogenic lineage. This may explain the results that low strain led to the intramembranous bone formation, whereas higher strain additionally provoked endochondral ossification with respect to fracture healing in trabecular metaphyseal bone (Claes et al., 2011). The first stage of endochondral ossification is the aggregation of MSCs to form cellular aggregates, after which the cells undergo chondrogenic differentiation to form the cartilaginous template (Mackie et al., 2008), and mechanical stimuli have been found to have an important effect on the rate of endochondral ossification during this early stage (Lacroix and Prendergast, 2002; Isaksson et al., 2006; Lacroix et al., 2002). In a SiCaP bone substitute graft materials used in an in vivo ectopic model, bone formation were observed by both intramembranous and endochondral ossification, often within close proximity to one another, illustrated differences in the local mechanical environment (Chan et al., 2012). The findings in this study may explain the possible
mechanism for this observation, with the different pathways of bone formation potentially illustrating differences in the local mechanical environment. Mechanical stimulus was distributed differently in BGS, and areas that receive low level of stimulus form bone by intramembranous ossification, while areas that receive excessive mechanical stimulus form bone by endochondral ossification. Rough surface causes a higher shear pressure gradient and leads to the early transition from laminar to turbulent flow, therefore SiHA-28 has a higher possibility to create turbulent flow. However, its unknown whether micro-porosity creates local turbulent flow and how micro-porosity affects shear stress, as the transition from laminar to turbulent flow also depends on flow rate, friction factor of the surface and dimension of the micro-pores. A previous study demonstrated that chondrogenic priming of hMSCs could improve vessel invasion within bioengineered constructs (Farrell et al., 2009). Therefore, this finding also demonstrated a possible approach in tissue engineering in terms of controlling shear stress to optimize hMSCs chondrogenic differentiation and achieve bone regeneration.

It has been postulated that MSCs commit to myogenic lineage when cultured on relatively soft muscle-like substrates, and to osteogenic lineage when cultured on rigid bone-like substrates (Engler et al., 2006; Pek et al., 2010). The expression of myoD on SiHA BGS under static culture decreased with time significantly possibly due to the high stiffness of SiHA dominantly induce osteogenic differentiation over myogenic differentiation. The effect of perfusion on myogenesis was also investigated in this study. At day 3, there was no significant difference in myogenic differentiation of hMSCs under basal perfusion rate (BPR) compared with static culture. At both day 3 and day 7, a period of high perfusion rate (pHPR) significantly suppressed myogenic differentiation of hMSCs compared with static culture, as demonstrated by the downregulation of myoD expression.

Integrins play important roles in adhesion, cell survival, regulating matrix metabolism and responding to mechanical stimuli (Desgrosellier and Cheresh, 2010; Kasten et al., 2010; Lee et al., 2015). Previous study demonstrated that integrin β1 plays predominant roles in shear induced signalling and gene expression in osteoblast like cells (Lee et al., 2008). Yan also showed that the knockdown of integrin β1 led to the
inhibition of ERK activity and cell proliferation (Yan et al., 2012). The mechanism proposed was that integrin β1 in hMSCs acts as mechanoreceptors, which can activate signalling proteins such as focal adhesion kinase (FAK), and then activate the MAP kinase pathway (Friedland et al., 2009; Young et al., 2009; Lal et al., 2007; Pommerenke et al., 2002; Yang et al., 2014). On the other hand, fluid shear stress has been demonstrated to upregulate the expression of integrin β1 and this upregulation depended on FSS activated ERK1/2 (Liyue Liu et al., 2012). In this study, the gene expression of integrin β1 was upregulated up to 4 times during “chondrogenesis” under a period of high perfusion rate (pHPR). This finding strengthened previous research that β1 integrins play important roles in triggering the outside-in signalling and condensing precartilage during chondrogenesis of MSCs (Raghothaman et al., 2014; Jin et al., 2007; Zhang et al., 2015), and blocking β1 integrins with blocking antibodies abolished proteoglycan synthesis response to mechanical stimuli (Chai et al., 2010).

α integrins were widely recognised to be involved in stem cell lineage specification. This study demonstrated that integrin α5 increased significantly while chondrogenic gene markers were upregulated under a period of high perfusion rate (pHPR), which is in line with previous research showing that the level of integrin α5 increased during the early stage of chondrogenic differentiation (Jin et al., 2007; Chang et al., 2009). Combing the upregulation of integrin β1 under a period of high perfusion rate (pHPR) condition, these results agreeing with previous research that the fibronectin receptor (integrin α5β1) was expressed and rose during chondrogenic differentiation of MSCs (Goessler et al., 2008). Results from this study also indicate that the expression of integrin α5 was upregulated significantly while the expression of osteogenic markers was enhanced under basal perfusion rate (BPR). However, there are conflicting results in the literature regarding the role of integrin α5 in osteogenesis. Some studies have reported that integrin α5 was downregulated during osteogenesis (Chen et al., 2016; Lu and Zreiqat, 2010); whereas others have suggested that integrin α5 was upregulated during osteogenesis (Frith et al., 2012) and downregulated with shRNA blocking osteogenic differentiation (Hamidouche et al., 2009).
The expression profile of integrin α1 was different to integrin α5, i.e. it was upregulated to a great extent during osteogenesis under basal perfusion rate (BPR). This is in line with findings from previous research that combined effects of mechanical stimulation and nanotopography led to significant upregulation of gene expression for integrin α1, as well as runx2 in osteoblast like cells (Prodanov et al., 2010). Previous research also demonstrated that COL I receptor integrin α1β1 played important roles in promoting osteogenesis, and it was consistently enhanced following BMP-2 treatment induced osteoblast differentiation (Jikko et al., 1999; Salasznyk et al., 2004).

Under static condition, hMSCs proliferation, cytoskeleton reorganisation, specific ALP activity, and most of the differentiation markers like osx, alp, col i, dmp1, sox9, runx2 and col ii were not found to be responsive to BGS with different micro-porosities. On the contrary, when basal perfusion rate (BPR) was introduced to cell culture, at day 3, specific ALP activity and expression of osx were found to be significantly higher on BGS with higher micro-porosities like SiHA-22 and SiHA-28, compared with SiHA-14. At day 7, the phosphorylation of ERK1/2, and the expression of myoD were also significantly higher on BGS SiHA-22 and SiHA-28, compared with SiHA-14 under basal perfusion rate (BPR). At both day 3 and day 7, the expression of alp was found to be significantly higher on BGS SiHA-22 than both BGS SiHA-14 and SiHA-28 under basal perfusion rate (BPR).

Under a period of high perfusion rate (pHPR), the expression of markers and integrin subunits related to chondrogenic differentiation were also found to be responsive to micro-porosity of BGS. For example, at day 3, the expression of runx2, col ii, integrin α5 and integrin β1 were found to be significantly higher on SiHA-14 and SiHA-22, compared with SiHA-28 under a period of high perfusion rate (pHPR). At day D7, the expression of runx2 and integrin β1 was significantly higher on SiHA-22, compared with SiHA-14 and SiHA-28 under a period of high perfusion rate (pHPR). This demonstrates that traditional static culture is not enough to screen BGS with different micro-porosities. Basal perfusion rate (BPR) was not only able to induce osteogenic differentiation, but also screen the osteoconduction capability of BGS with different micro-porosities. A period of high perfusion rate (pHPR) was not only
able to induce chondrogenic differentiation, but also screen the chondroconduction capability of BGS with different micro-porosities.

5.5 Conclusion

In summary, results in this study have demonstrated a strong interaction between perfusion shear stress and BGS micro-porosity, with perfusion culture facilitated proliferation, activated signalling pathways and being able to differentiate the bioactivity of BGS in vitro even with a small geometric difference. Furthermore, this study showed a clear dependence of hMSCs fate on the perfusion flow rate applied. Basal perfusion rate (BPR) led to upregulation of osteogenic differentiation markers, whereas a period of high perfusion rate (pHPR) induced upregulation of chondrogenic differentiation markers. Therefore, these findings provide valuable guidance for the future research and design of testing protocols in terms of investigating the behaviour of hMSCs towards different lineage commitment in combination with different BGS structures and chemistries.
Chapter 6 L-type Voltage Sensitive Calcium Channels (VSCCs) Modulate Fluid Shear Stress Induced Differentiation of hMSCs Cultured on 3D SiHA BGS

6.1 Introduction

Mechanical stimuli have been reported to produce a variety of biological signals in bone cells, and one of the earliest events was the activation of calcium channels. Under physiological conditions, Ca\(^{2+}\) concentrations are reported to be 20,000 - 100,000 times higher in the extracellular space than in the cell cytoplasm (around 100 nM) (Clapham, 2007; Matta et al., 2015; Demaurex and Nunes, 2016). With the activation of calcium channels, intracellular calcium ([Ca\(^{2+}\)]\(i\)) levels increase rapidly. For example, rat calvarial bone cells subjected to a hydrostatic pressure (6.9 x 10^4 dyn/cm\(^2\), 1 Hz) were observed to have a significant increase in the concentration of [Ca\(^{2+}\)]\(i\) after 25 s from the onset of mechanical strain (Brighton et al., 1996). By monitoring flow induced [Ca\(^{2+}\)]\(i\) changes in intact bone of embryonic chicks, researchers have also proved that the percentage of responsive cells was increased in both osteoblasts and osteocytes under flow compared with static condition (Ishihara et al., 2013).

L-type voltage-sensitive calcium channels (VSCCs) are one of the best characterized type of calcium channel. Much study has been conducted investigating the participation of L-type VSCCs in responding to mechanical load by using L-type VSCCs inhibitor, like nifedipine. For example, researchers have reported L-type VSCCs mediate load-induced bone formation *in vivo* (Li et al., 2002; Li et al., 2003), and they are critical components actively involved in the early long bone skeletal development (Shao et al., 2005).

The early response of rat osteoblasts to bone loading was found to be associated with L-type VSCCs (Rawlinson et al., 1996). Whereas the responsiveness of L-type VSCCs to loading is conflicting in osteocytes. Rawlinson reported osteocytes’ response to bone loading did not involve ion channels dependent on nifedipine (Rawlinson et al., 1996), however, Miyauchi found that hypotonic stretch induced
rapid \([\text{Ca}^{2+}]_i\) increase in isolated osteocytes, which required the expression of L-type \(\text{Ca}^{2+}\) channel subunit \(\alpha_{1C}\) (Miyauchi et al., 2000). One possible reason of these conflicting results is that osteocytes were cultured in different environments, i.e. in situ in bone loading experiment (Rawlinson et al., 1996), or isolated osteocytes stimulated by hypotonic stretch (Miyauchi et al., 2000). This suggests that experiment should be carefully evaluated when conducting comparison between different findings. Only a few studies have been conducted to investigate the presence or function of L-type VSsCCs in MSCs. Li demonstrated that L-type VSsCCs were presented in a small portion of undifferentiated rat MSCs (Li et al., 2006). Wen reported that L-type VSsCCs play a crucial role in the proliferation, expression of osteogenic markers in rat MSCs (Wen et al., 2012). Kearney demonstrated that L-type VSsCCs coupled tensile strains of 7.5% or greater activated calpain and JNK, which lead to apoptosis of rat MSCs through DNA fragmentation (Kearney et al., 2008).

Application of stretch via an expandable membrane resulted in immediate increase in \([\text{Ca}^{2+}]_i\) in rat femur-derived osteoblast cells, which in turn modulated the increased production of OPN and OC proteins. Presence of nifedipine, L-type VSsCCs blocker, blocked increases in \([\text{Ca}^{2+}]_i\) and these matrix proteins production (Walker et al., 2000).

However, there are conflicting results in the literature regarding involvement of L-type VSsCCs in response to fluid flow. Oscillatory fluid flow (20 to -20 dyn/cm\(^2\), 1 Hz, 2 h) was found to induce \([\text{Ca}^{2+}]_i\) mobilization within 1 min, then p38 and ERK1/2 activation and \(\text{opn}\) mRNA upregulation in MC3T3-E1 cells, with L-type VSsCCs playing an important role in this process (You et al., 2001). Liu reported that steady fluid flow (12 dyn/cm\(^2\), 30 min) also induced ERK1/2 phosphorylation in MC3T3-E1 cells, which was dependent on L-type VSsCCs activation and ATP release (Liu et al., 2008). However, Chen demonstrated that MC3T3-E1 cells responded to steady fluid flow (12 dyn/cm\(^2\), 1 h) by showing \([\text{Ca}^{2+}]_i\) increase within 20 s of onset, cytoskeletal reorganisation and \(c\)-fos and \(\text{COX-2}\) activation, but these responses were independent of L-type VSsCCs (Chen et al., 2000). This may indicate that steady flow (12 dyn/cm\(^2\)) or oscillatory fluid flow (20 to -20 dyn/cm\(^2\)) induced L-type VSsCCs play an important role in MAP kinase activation, but L-type VSsCCs were not involved in steady flow (12 dyn/cm\(^2\)) induced cytoskeletal reorganisation. Ryder found that
steady fluid shear (12 dyn/cm² or 25 dyn/cm², 3 min) induced [Ca²⁺]ᵢ increase in MC3T3-E1 cells, but it was independent of L-type VSCCs, although in the same study, L-type VSCCs were found to be involved in parathyroid hormone (PTH) enhanced the [Ca²⁺]ᵢ response to shear (Ryder and Duncan, 2001). It should be borne in mind that all of these studies investigating the involvement of L-type VSCCs in response to fluid flow were conducted in monolayer cell culture model, and shear stress in these studies (12 - 25 dyn/cm²) are several magnitudes higher than the shear stress (0.001 - 1 dyn/cm²) in 3D bioreactor system that have been reported to be able to activate signalling pathways and osteogenic differentiation (Goldstein et al., 2001; Bancroft et al., 2002; Gomes et al., 2003; Sikavitsas et al., 2005; Li et al., 2009; Vance et al., 2005; McCoy and O'Brien, 2010). It has not been investigated how L-type VSCCs regulate shear stress induced biological signals in a 3D perfusion culture model.

Findings in a previous chapter (Chapter 5) demonstrated that fluid flow induced expression of osteogenic differentiation or chondrogenic differentiation markers of hMSCs cultured on SiHA BGS was dependent on the flow profile and micro-porosity of SiHA BGS. The aim of this study was to investigate the role of L-type VSCCs in these processes.
6.2 Materials and Methods

hMSCs seeded on either SiHA-14 or SiHA-28 BGS granules were cultured under static condition, basal perfusion rate (BPR) or a period of high perfusion rate (pHPR) as described in Chapter 5.2, hereafter cited as “control group”, or in control medium supplemented with 10 µM nifedipine for 3 days, hereafter cited as “nifedipine group”. 100 ml medium was recirculated for each BGS during 3 days of perfusion culture, and the bottle of medium was vented in normoxic atmosphere. Composition of cell culture medium can be seen in Table 6-1. All analytical methods are same for control group and nifedipine group, which can be seen in Chapter 5, and all data are from 3 days of culture.

Table 6-1 Cell culture medium in control group and nifedipine group in CO₂ atmosphere.

<table>
<thead>
<tr>
<th></th>
<th>Control group</th>
<th>Nifedipine group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>PM</td>
<td>PM + 10 µM nifedipine</td>
</tr>
<tr>
<td>Day 2 - Day 3</td>
<td>PMO</td>
<td>PMO + 10 µM nifedipine</td>
</tr>
</tbody>
</table>

* PM and PMO are defined in Chapter 4.2.

6.3 Results

6.3.1 Cytoskeleton Organisation

Changes in actin cytoskeleton were monitored to determine if L-type VSCCs mediated the shear stress induced cytoskeletal organisation on SiHA-14 (Figure 6-1) and SiHA-28 (Figure 6-2) BGS. The presence of nifedipine was not found to change the cytoskeleton of hMSCs noticeably compared with control group on both SiHA-14 and SiHA-28 BGS, irrespective the culture conditions. This was confirmed by the quantification of the average cellular size, as shown in Figure 6-3, which demonstrated that the presence of nifedipine did not change cellular size significantly compared with control group on both SiHA-14 (Figure 6-3 (a)) and SiHA-28 BGS (Figure 6-3 (b)), irrespective of culture conditions. On SiHA-14, cell area was significantly larger when cultured in a static environment compared with cultured in a period of high perfusion rate (pHPR) environment in control group. However, there was no significant difference in cell area on SiHA-14 in nifedipine group, irrespective the culture conditions. On SiHA-28, cell area was significantly larger when cultured in
a static environment than cultured in basal perfusion rate (BPR) or a period of high perfusion rate (pHPR) environment in both control group and nifedipine group.

SiHA-14

Figure 6-1 Influence of nifedipine on actin organisation in hMSCs on SiHA-14 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. The actin cytoskeleton was labelled with Alexa 488 conjugated phalloidin (green) and nuclei were counterstained with DAPI (blue). Scale bar represents 50 µm.
Figure 6-2 Influence of nifedipine on actin organisation in hMSCs on SiHA-28 under static basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. The actin cytoskeleton was labelled with Alexa 488 conjugated phalloidin (green) and nuclei were counterstained with DAPI (blue). Scale bar represents 50 µm.
Influence of nifedipine on cellular size of hMSCs on (a) SiHA-14 and (b) SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR).

6.3.2 Total DNA and Specific ALP Activity

Total DNA was quantified to determine whether L-type VSCCs modulated cellular proliferation on SiHA BGS. As can be seen in Figure 6-4 (a), on SiHA-14, under static culture and basal perfusion rate (BPR) conditions, total DNA production was not significantly influenced by adding nifedipine into medium, however, under a period of high perfusion rate (pHPR) condition, total DNA production increased significantly with the presence of nifedipine compared with control group. On BGS SiHA-14, total DNA production was not responsive to culture conditions in control group. However, with the presence of nifedipine, total DNA production was significantly higher when BGS were cultured under a period of high perfusion rate (pHPR) condition compared with under basal perfusion rate (BPR) and static condition, with total DNA production under basal perfusion rate (BPR) condition being significantly higher than under static condition. Figure 6-4 (b) showed adding nifedipine into medium did not affect total DNA on SiHA-28 BGS under any culture conditions. On SiHA-28, total DNA production was found to be significantly higher under both basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions compared with static condition, irrespective whether nifedipine was added into medium. In both control group and nifedipine group, total DNA production was not found to be dependent on BGS micro-porosity, irrespective of culture condition.
Figure 6-4 Total DNA content of hMSCs on (a) SiHA-14 and (b) SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. ***p < 0.001, the comparison between control group and nifedipine group. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR).

ALP activity was measured and normalized by total DNA content (i.e. specific ALP activity) to examine how L-type VSCCs mediated the specific ALP activity of hMSCs on SiHA BGS. As can be seen in Figure 6-5 (a), on SiHA-14 BGS, specific ALP activity was not found to be dependent on the presence of nifedipine irrespective of culture conditions. On SiHA-14 BGS, specific ALP activity was found to be significantly higher under static condition than both basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions, irrespective whether nifedipine was added into medium.

As can be seen in Figure 6-5 (b), on SiHA-28, under basal perfusion rate (BPR) condition, specific ALP activity was significantly decreased by adding nifedipine into medium compared with control group. On SiHA-28, under static and a period of high perfusion rate (pHPR) conditions, specific ALP activity was reduced with the presence of nifedipine in medium compared with control group. When SiHA-28 BGS was incubated in control medium, specific ALP activity was significantly lower under a period of high perfusion rate (pHPR) condition than static condition, however, with the presence of nifedipine, specific ALP activity was not found to be dependent on culture conditions.

As can be seen in Figure 6-5, in control medium, under basal perfusion rate (BPR) condition, specific ALP activity increased significantly on SiHA-28 compared with
SiHA-14, whereas under static condition and a period of high perfusion rate (pHPR) condition, specific ALP activity was not responsive to BGS type. When nifedipine was added into medium, specific ALP activity was not found to be responsive to BGS micro-porosity irrespective of culture conditions.

![Figure 6-5](image)

Figure 6-5 Specific ALP activity of hMSCs on (a) SiHA-14 and (b) SiHA-28 BGS under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. Results are presented as mean ± standard deviation (n=3). Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, comparison between control group and nifedipine group. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR). $$$p < 0.001, comparison between SiHA-14 and SiHA-28.

6.3.3 ERK Distribution

ERK1/2 distribution followed similar pattern on SiHA-14 (Figure 6-6) and SiHA-28 (Figure 6-7) BGS. In control medium, ERK1/2 localised mostly in the cytoplasm (showed by white arrows in Figure 6-6 and Figure 6-7) under static condition, whereas strong nuclear accumulation of ERK1/2 was detected under both basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions (showed by yellow arrows in Figure 6-6 and Figure 6-7). However, with the addition of L-type VSCCs blocker nifedipine in medium, ERK1/2 was found to be homogeneously distributed in both cytoplasm and nucleus, irrespective of culture conditions (showed by green arrows in Figure 6-6 and Figure 6-7).
Figure 6-6 Influence of nifedipine on ERK1/2 distribution in hMSCs on SiHA-14 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. ERK1/2 was labelled using an antibody against ERK1/2 (red), and nuclei were counterstained with DAPI (blue), scale bar represents 50 µm. White arrow showed ERK1/2 localised exclusively in the cytoplasm, yellow arrow showed ERK1/2 was accumulated in nuclear, green arrow showed ERK1/2 was homogeneously distributed in both cytoplasm and nuclear.
Figure 6-7 Influence of nifedipine on ERK1/2 distribution in hMSCs on SiHA-28 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. ERK1/2 was labelled using an antibody against at ERK1/2 (red), and nuclei were counterstained with DAPI (blue), scale bar represents 50 µm. White arrow showed ERK1/2 localised exclusively in the cytoplasm, yellow arrow showed ERK1/2 was accumulated in nuclear, green arrow showed ERK1/2 was homogeneously distributed in both cytoplasm and nuclear.
6.3.4 Western Blot

Figure 6-8 (a) Influence of nifedipine on pERK1/2 protein expression on SiHA-14 and SiHA-28 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. (b)(c) Quantitative analysis of pERK1/2 expression. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05 comparison between control group and nifedipine. ++p < 0.01, +++p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR).

The phosphorylated ERK1/2 was tested and normalised by total ERK1/2 to evaluate if L-type VSCCs mediated ERK1/2 activation. As can be seen in Figure 6-8 (b), on BGS SiHA-14, under basal perfusion rate (BPR), the presence of nifedipine significantly increased phosphorylation of ERK1/2 compared with control group. On BGS SiHA-14, in control medium, the phosphorylation of ERK1/2 was found to be significantly lower under basal perfusion rate (BPR) condition than both static and a period of high perfusion rate (pHPR) conditions, however, with the presence of nifedipine in
medium, the phosphorylation of ERK1/2 was not found to be dependent on the culture conditions.

As can be seen in Figure 6-8 (c), on BGS SiHA-28, under basal perfusion rate (BPR) condition, the presence of nifedipine significantly increased phosphorylation of ERK1/2 compared with control group. On BGS SiHA-28, in control medium, the phosphorylation of ERK1/2 was found to be significantly higher under a period of high perfusion rate (pHPR) condition than both static and basal perfusion rate (BPR) conditions, however, with the addition of nifedipine into medium, the phosphorylation of ERK1/2 was not found to be dependent on the culture conditions. In both control group and nifedipine group, the phosphorylation of ERK1/2 was not found to be responsive to BGS micro-porosity irrespective of culture conditions.

6.3.5 Relative Gene Expression
6.3.5.1 Expression of Osteogenic Gene Markers
hMSCs seeded BGS were cultured in static, basal perfusion rate (BPR) or a period of high perfusion rate (pHPR) environment in control medium or in medium supplemented with nifedipine for 3 days, and mRNA levels of osterix (osx), alkaline phosphatase (alp), bone morphogenetic protein 2 (bmp2), type I collagen (col i) and dentin matrix acidic phosphoprotein (dmp1) were measured by quantitative real-time PCR. osx is a transcription factor that has been demonstrated to be critical for osteoblast differentiation and bone formation (Nakashima et al., 2002; Tu et al., 2006). As can be seen from Figure 6-9 (a) and (b), on both BGS SiHA-14 and BGS SiHA-28, blocking L-type VSCCs with nifedipine significantly downregulated the expression of osx under basal perfusion rate (BPR) condition compared with control group, while significantly upregulated the expression of osx under a period of high perfusion rate (pHPR) condition, compared with control group. On BGS SiHA-14, in control medium, the expression of osx was significantly higher under basal perfusion rate (BPR) condition compared with static and a period of high perfusion rate (pHPR) conditions, with the expression of osx under a period of high perfusion rate (pHPR) condition being significantly higher than static condition. On BGS SiHA-14, with the addition of nifedipine in medium, the expression of osx was significantly higher under either type of perfusion conditions compared with static condition. On BGS SiHA-28, in control
medium, the expression of osx was significantly higher under basal perfusion rate (BPR) condition than both static and a period of high perfusion rate (pHPR) conditions, with the expression of osx under a period of high perfusion rate (pHPR) condition being significantly higher than static condition. On BGS SiHA-28, when nifedipine was added into medium, the expression of osx was significantly higher under a period of high perfusion rate (pHPR) condition than both basal perfusion rate (BPR) and static conditions, with the expression of osx under basal perfusion rate (BPR) condition being significantly higher than static condition. In control medium, under basal perfusion rate (BPR) condition, the expression of osx was significantly upregulated on SiHA-28 compared with SiHA-14, whereas, the expression of osx was not found responsive to BGS micro-porosity under static and a period of high perfusion rate (pHPR) condition. With the presence of nifedipine, the expression of osx was not found to be responsive to BGS micro-porosity irrespective of culture conditions.

ALP is a transient early marker of bone marrow stromal cells differentiating towards the osteoblastic phenotype (Datta et al., 2005). On BGS SiHA-14, the addition of nifedipine into medium did not alter the expression of alp compared with control group, irrespective of culture conditions, as can be seen in Figure 6-9 (c). On BGS SiHA-14, the expression of alp was significantly higher under static condition than either type of perfusion conditions, irrespective whether nifedipine was added into medium. As can be seen in Figure 6-9 (d), on BGS SiHA-28, the expression of alp was significantly downregulated with the presence of nifedipine in the medium compared with control group under both static and basal perfusion rate (BPR) conditions, but not a period of high perfusion rate (pHPR) condition. On BGS SiHA-28, in control medium, the expression of alp was significantly higher under static condition than both basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions, whereas with the addition of nifedipine into medium, the expression of alp was significantly higher under both static and a period of high perfusion rate (pHPR) conditions compared with basal perfusion rate (BPR) condition. In control medium, the expression of alp was not found to be dependent on BGS micro-porosity irrespective of culture conditions. When medium was supplemented with nifedipine, under static condition, the expression of alp was found to be significantly
downregulated on SiHA-28 compared with SiHA-14, while under both basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions, the expression of *alp* was not found to be dependent on BGS micro-porosity.

Figure 6-9 Influence of nifedipine on expression of *osx* and *alp* genes in hMSCs cultured on SiHA-14 and SiHA-28 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. **p < 0.01, ***p < 0.001, comparison between control group and nifedipine group. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR). $$$p < 0.001, comparison between SiHA-14 and SiHA-28.

BMP2 plays a critical role in bone formation and regeneration (Reddi, 1998). On both BGS SiHA-14 and BGS SiHA-28, under a period of high perfusion rate (pHPR) condition, the expression of *bmp2* was significantly upregulated with the presence of nifedipine compared with control group, whereas under both static and basal perfusion rate (BPR) conditions, the expression of *bmp2* was not responsive to the addition of nifedipine into medium compared with control group, as can be seen in Figure 6-10.
(a) and (b). On BGS SiHA-14, in control medium, the expression of *bmp2* was significantly higher under either type of perfusion conditions compared with under static condition. On BGS SiHA-14, with the addition of nifedipine into medium, the expression of *bmp2* under a period of high perfusion rate (pHPR) condition was significantly higher than both static and basal perfusion rate (BPR) conditions. On BGS SiHA-28, in control medium, the expression of *bmp2* was not found to be dependent on culture conditions, whereas when adding nifedipine into medium, the expression of *bmp2* was significantly higher under a period of high perfusion rate (pHPR) condition compared with both static and basal perfusion rate (BPR) conditions. In both control group and nifedipine group, under static condition, the expression of *bmp2* was significantly downregulated on SiHA-28 compared with SiHA-14, however, under either type of perfusion conditions, the expression of *bmp2* was not found to be responsive to BGS micro-porosity.

col i has been reported to be expressed early during the commitment to the osteoblastic phenotype (Rodan and Noda, 1991). On BGS SiHA-14, under basal perfusion rate (BPR) condition, the expression of *col i* was significantly downregulated with the presence of nifedipine in medium compared with control group, whereas under both static and a period of high perfusion rate (pHPR) conditions, the expression of *col i* was not dependent on the addition of nifedipine into medium compared with control group, as can be seen in Figure 6-10 (c). On BGS SiHA-14, in control medium, the expression of *col i* was significantly higher under basal perfusion rate (BPR) condition compared with both a period of high perfusion rate (pHPR) and static conditions, with the expression of *col i* under a period of high perfusion rate (pHPR) condition being significantly higher than under static condition. In medium supplemented with nifedipine, the expression of *col i* was not found to be dependent on culture conditions. On BGS SiHA-28, the expression of *col i* was not dependent on the presence of nifedipine compared with control group irrespective the culture conditions. On BGS SiHA-28, in control medium, the expression of *col i* was significantly higher under a period of high perfusion rate (pHPR) condition, compared with both basal perfusion rate (BPR) and static conditions, with the expression of *col i* under basal perfusion rate (BPR) being significantly higher than
static condition. On BGS SiHA-28, in medium supplemented with nifedipine, the expression of col i was significantly higher under either type of perfusion conditions compared with static condition. In control medium, under basal perfusion rate (BPR) condition, the expression of col i was significantly downregulated on SiHA-28 compared with SiHA-14, whereas under static and a period of high perfusion rate (pHPR) conditions, the expression of col i was not responsive to BGS micro-porosity. With the addition of nifedipine into medium, the expression of col i was not found to be responsive to BGS micro-porosity, irrespective of culture conditions.

dmp1 has been found to be highly expressed in osteocytes and can be classed as a pro-osteogenic factor (Kalajzic et al., 2004). On both BGS SiHA-14 and BGS SiHA-28, under basal perfusion rate (BPR) condition, the expression of dmp1 was significantly downregulated with the presence of nifedipine in medium compared with control group, whereas under both static and a period of high perfusion rate (pHPR) conditions, the expression of dmp1 was not responsive to the addition of nifedipine into medium compared with control group, as can be seen in Figure 6-10 (e) and (f). On BGS SiHA-14, the expression of dmp1 was found to be significantly higher under basal perfusion rate (BPR) condition than both static and a period of high perfusion rate (pHPR) conditions, irrespective whether nifedipine was added into culture medium. On BGS SiHA-28, in control medium, the expression of dmp1 was found to be significantly higher under basal perfusion rate (BPR) condition than both static and a period of high perfusion rate (pHPR) conditions, with the expression of dmp1 under a period of high perfusion rate (pHPR) being significantly higher than under static condition. On BGS SiHA-28, with the addition of nifedipine into medium, the expression of dmp1 was significantly higher under a period of high perfusion rate (pHPR) condition than under static condition. In control medium, the expression of dmp1 was not found to be dependent on BGS micro-porosity, irrespective of culture conditions. With the presence of nifedipine in medium, under basal perfusion rate (BPR) condition, the expression of dmp1 was significantly downregulated on SiHA-28 compared with SiHA-14, whereas under a period of high perfusion rate (pHPR) condition, the expression of dmp1 was significantly upregulated on SiHA-28 compared with SiHA-14.
Chapter 6

Figure 6-10 Influence of nifedipine on expression of bmp2, col i and dmp1 in hMSCs cultured on SiHA-14 and SiHA-28 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. **p < 0.01, ***p < 0.001, comparison between control group and nifedipine group. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR). $$$p < 0.01, $$$$p < 0.001, comparison between SiHA-14 and SiHA-28.
6.3.5.2 Expression of Chondrogenic Gene Markers

SRY-box 9 (sox9) and runt-related transcription factor 2 (runx2) have been identified as important transcriptional regulators of early and late stage chondrogenic differentiation, respectively (Karsenty, 2008). On BGS SiHA-14, the expression of sox9 was not dependent on the addition of nifedipine into medium, irrespective of culture conditions, as can be seen in Figure 6-11 (a). On BGS SiHA-14, in both control medium and medium with the presence of nifedipine, the expression of sox9 was significantly higher under a period of high perfusion rate (pHPR) condition compared with both basal perfusion rate (BPR) and static conditions, with the expression of sox9 under basal perfusion rate (BPR) being significantly higher than under static condition. On BGS SiHA-28, under a period of high perfusion rate (pHPR) condition, sox9 expression was significantly upregulated by the presence of nifedipine compared with control medium, whereas under both static and basal perfusion rate (BPR) conditions, sox9 expression was not dependent on the presence of nifedipine in medium compared with control medium, as can be seen in Figure 6-11 (b). On BGS SiHA-28, in control medium, sox9 expression was significantly higher under either type of perfusion conditions compared with static condition. On BGS SiHA-28, in medium supplemented with nifedipine, sox9 expression was significantly higher under a period of high perfusion rate (pHPR) condition compared with both basal perfusion rate (BPR) and static conditions, with sox9 expression under basal perfusion rate (BPR) condition being significantly higher than under static condition. In both control medium and medium supplemented with nifedipine, sox9 expression was not found to be dependent on BGS micro-porosity, irrespective of culture conditions.

On BGS SiHA-14, runx2 expression was significantly upregulated with the presence of nifedipine in medium compared with control medium under both basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions, but not static condition, as can be seen in Figure 6-11 (c). On BGS SiHA-14, in control medium, runx2 expression was significantly higher under a period of high perfusion rate (pHPR) condition than both basal perfusion rate (BPR) and static conditions. On BGS SiHA-14, with the addition of nifedipine into medium, runx2 expression was significantly higher under a period of high perfusion rate (pHPR) condition than both basal
perfusion rate (BPR) and static conditions, with runx2 expression under basal perfusion rate (BPR) being significantly higher than static condition. On BGS SiHA-28, under static and basal perfusion rate (BPR) conditions, the expression of runx2 was not dependent on the presence of nifedipine in medium, whereas under a period of high perfusion rate (pHPR), the expression of was significantly upregulated by the addition of nifedipine into medium compared with control medium, as can be seen in Figure 6-11 (d). On BGS SiHA-28, in control medium, the expression of runx2 was not dependent on culture conditions. On BGS SiHA-28, in medium supplemented with nifedipine, the expression of runx2 was significantly higher under a period of high perfusion rate (pHPR) condition than both basal perfusion rate (BPR) and static conditions, with the expression of runx2 under basal perfusion rate (BPR) condition being significantly higher than static condition. In control medium, under a period of high perfusion rate (pHPR) condition, runx2 expression was significantly downregulated on SiHA-28 compared with on SiHA-14, whereas under basal perfusion rate (BPR) and static conditions, runx2 expression was not responsive to the BGS micro-porosity. In medium supplemented with nifedipine, the expression of runx2 was not found to be dependent on BGS micro-porosity irrespective of culture conditions.
Figure 6-11 Influence of nifedipine on expression of chondrogenic gene markers in hMSCs cultured on SiHA-14 and SiHA-28 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between control group and nifedipine group. $p < 0.05, $$p < 0.01, $$$p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR). $p < 0.05, $$p < 0.01, $$$p < 0.001, comparison between SiHA-14 and SiHA-28.

Type II collagen (COL II) is the major structural component of cartilage, so it is one of the commonly used markers of chondrogenesis (Ng et al., 1997). On BGS SiHA-14, col ii expression was not responsive to the presence of nifedipine in medium irrespective
of culture conditions (Figure 6-11 (e)). On BGS SiHA-14, in both control medium and medium with the addition of nifedipine, the expression of col ii was significantly higher under a period of high perfusion rate (pHPR) condition than both static and basal perfusion rate (BPR) conditions. On BGS SiHA-28, under both static and basal perfusion rate (BPR) conditions, col ii expression was not responsive to the presence of nifedipine in medium, whereas under a period of high perfusion rate (pHPR) condition, col ii expression was significantly upregulated with the presence of nifedipine in medium compared with control medium (Figure 6-11 (f)). On BGS SiHA-28, in control medium, col ii expression was significantly higher under a period of high perfusion rate (pHPR) condition than under static condition, whereas in medium with the addition of nifedipine, col ii expression was significantly higher under a period of high perfusion rate (pHPR) condition than both basal perfusion rate (BPR) and static conditions. In control medium, under both static and a period of high perfusion rate (pHPR) conditions, the expression of col ii was significantly downregulated on SiHA-28 compared with on SiHA-14. In medium with the presence of nifedipine, the expression of col ii was not dependent on BGS micro-porosity irrespective of culture conditions.

6.3.5.3 Expression of Myogenic Gene Marker
Myoblast determination protein (myoD) is a myogenic transcriptional regulatory factor that activates a number of muscle-specific structural genes and transcription factors to drive myogenesis (Rao et al., 2006). As shown in Figure 6-12 (a), on SiHA-14 BGS, blocking L-type VSCCs with nifedipine significantly downregulated the gene expression of myoD compared with in control medium under both static and basal perfusion rate (BPR) conditions, but not under a period of high perfusion rate (pHPR) condition. On BGS SiHA-14, in control medium, the expression of myoD was significantly higher under both static and basal perfusion rate (BPR) conditions compared with under a period of high perfusion rate (pHPR) condition. On BGS SiHA-14, in medium supplemented with nifedipine, myoD expression was significantly higher under static condition than both basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. On BGS SiHA-28, under basal perfusion rate (BPR) condition, the expression of myoD was significantly downregulated by the
presence of nifedipine in the medium compared with control medium, whereas under both static and a period of high perfusion rate (pHPR) conditions, the expression of myoD was not dependent on the addition of nifedipine into medium, as can be seen in Figure 6-12 (b). On BGS SiHA-28, in control medium, myoD expression was significantly higher under basal perfusion rate (BPR) condition compared with under a period of high perfusion rate (pHPR) condition. On BGS SiHA-28, in medium with the addition of nifedipine, myoD expression was significantly higher under static condition compared than both basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. In control medium, the expression of myoD was significantly downregulated on BGS SiHA-28 than SiHA-14 under both static and basal perfusion rate (BPR) conditions, but not a period of high perfusion rate (pHPR) condition. In medium with the addition of nifedipine, the expression of myoD was not found to be dependent on BGS micro-porosity irrespective of culture conditions.

![Figure 6-12](image)

Figure 6-12 Influence of nifedipine on gene expression of myoD in hMSCs cultured on SiHA-14 and SiHA-28 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. ***p < 0.001, comparison between control group and nifedipine group. ++p < 0.01, +++p < 0.01, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR). $p < 0.05,$$$p < 0.01, comparison between SiHA-14 and SiHA-28.

6.3.5.4 Expression of Integrin Subunits

On BGS SiHA-14, the expression of integrin α1 was significantly downregulated under either type of perfusion conditions (Figure 6-13 (a)) by the presence of nifedipine in
culture medium compared with control medium. On BGS SiHA-14, in control medium, the expression of integrin α1 was significantly higher under basal perfusion rate (BPR) condition than both static and a period of high perfusion rate (pHPR) conditions, with integrin α1 expression under a period of high perfusion rate (pHPR) being significantly higher than under static condition. On BGS SiHA-14, with the presence of nifedipine in the medium, the expression of integrin α1 was significantly higher under a period of high perfusion rate (pHPR) than basal perfusion rate (BPR) condition. On BGS SiHA-28, under basal perfusion rate (BPR) condition, the expression of integrin α1 was significantly downregulated by the addition of nifedipine into medium, whereas under both static and a period of high perfusion rate (pHPR) conditions, the expression of integrin α1 was not responsive to the presence of nifedipine in the medium compared with control medium, as can be seen in Figure 6-13 (b). On BGS SiHA-28, in control medium, the expression of integrin α1 was significantly higher under either type of perfusion condition compared with under static condition. On BGS SiHA-28, in medium supplemented with nifedipine, the expression of integrin α1 was significantly higher under a period of high perfusion rate (pHPR) condition than both static and basal perfusion rate (BPR) conditions. In control medium, the expression of integrin α1 was significantly downregulated on SiHA-28 than SiHA-14 under static condition, but not either type of perfusion culture conditions. With the addition of nifedipine into medium, the expression of integrin α1 was not dependent on BGS micro-porosity irrespective of culture conditions.
Figure 6-13 Influence of nifedipine on gene expression of integrin subunits in hMSCs cultured on SiHA-14 and SiHA-28 under static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR) conditions. Results are presented as mean ± standard deviation (n=3). Statistical analysis was performed by two-way ANOVA followed by Bonferroni post-tests. *p < 0.05, **p < 0.01, ***p < 0.001, comparison between control group and nifedipine group. +p < 0.05, ++p < 0.01, +++p < 0.001, comparison between static, basal perfusion rate (BPR) and a period of high perfusion rate (pHPR). $p < 0.05, $$$p < 0.01, $$$$p < 0.001, comparison between SiHA-14 and SiHA-28.

On both BGS SiHA-14 and SiHA-28, the expression of integrin α5 increased significantly with the addition of nifedipine into medium compared with control medium under either type of perfusion culture conditions, as shown in Figure 6-13.
(c) and (d). On BGS SiHA-14, in both control medium and medium supplemented with nifedipine, the expression of integrin α5 was significantly higher under a period of high perfusion rate (pHPR) condition than both basal perfusion rate (BPR) and static conditions, with integrin α5 expression under basal perfusion rate (BPR) being significantly higher than under static condition. On BGS SiHA-28, in control medium, the expression of integrin α5 was significantly higher under either type of perfusion culture conditions compared with under static condition. On BGS SiHA-28, in medium supplemented with nifedipine, the expression of integrin α5 was significantly higher under a period of high perfusion rate (pHPR) condition than both basal perfusion rate (BPR) and static conditions, with integrin α5 expression under basal perfusion rate (BPR) being significantly higher than under static condition. In control medium, under basal perfusion rate (BPR) condition, the expression of integrin α5 was significantly upregulated on SiHA-28 compared with SiHA-14, whereas under a period of high perfusion rate (pHPR) condition, the expression of integrin α5 was significantly downregulated on SiHA-28 compared with SiHA-14. In medium with the presence of nifedipine, the expression of integrin α5 was not found to be dependent on BGS micro-porosity irrespective of culture conditions.

On BGS SiHA-14, presence of nifedipine in the medium downregulated the expression of integrin β1 compared with control medium under either type of perfusion conditions, but not static condition (Figure 6-13 (e)). On BGS SiHA-14, in both control medium and medium supplemented with nifedipine, the expression of integrin β1 was significantly higher under a period of high perfusion rate (pHPR) than both basal perfusion rate (BPR) and static conditions. On BGS SiHA-28, under a period of high perfusion rate (pHPR) condition, presence of nifedipine in the medium significantly upregulated the expression of integrin β1 compared with control medium, whereas under static and basal perfusion rate (BPR) conditions, the expression of integrin β1 was not dependent on the presence of nifedipine in the medium, as can be seen in Figure 6-13 (f). On BGS SiHA-28, in control medium, the expression of integrin β1 was not dependent on the culture conditions. On BGS SiHA-28, with the addition of nifedipine into medium, the expression of integrin β1 was significantly higher under a period of high perfusion rate (pHPR) condition than both
static and basal perfusion rate (BPR) conditions. In both control medium and medium with the presence of nifedipine, integrin β1 expression was not responsive to BGS micro-porosity under both static and basal perfusion rate (BPR) conditions. Under a period of high perfusion rate (pHPR) condition, in control medium, the expression of integrin β1 was downregulated on SiHA-28 than on SiHA-14, whereas in medium supplemented with nifedipine, the expression of integrin β1 was upregulated on SiHA-28 than on SiHA-14.

6.4 Discussion

In this study, SiHA BGS granules were seeded with hMSCs then cultured under static, basal perfusion rate (BPR) or a period of high perfusion rate (pHPR) conditions in control medium or medium supplemented with the L-type VSCCs blocker, nifedipine. Responses of hMSCs, i.e. cytoskeleton organisation, proliferation, specific ALP activity, ERK1/2 activation and expression of gene markers for differentiation were analysed to investigate the modulation by L-type VSCCs on shear stress induced differentiation of hMSCs.

The cytoskeleton has been well-recognised as a responder to mechanical stimuli, such as stretch (Xu et al., 2012), shear stress (Ajubi et al., 1996), hydrostatic pressure (Knight et al., 2006) and compression (Zhang et al., 2015). Current research agrees with previous results showing that, with the stimulation of fluid shear stress, cytoskeleton exhibited a less spread morphology and smaller cellular size compared with static culture. However, this process was independent of L-type VSCCs. This result agrees with previous findings demonstrating that flow activated stress fibre formation was dependent on [Ca$^{2+}$]i release, not extracellular Ca$^{2+}$ entry (Chen et al., 2000).

Proliferation and specific ALP activity of rat MSCs were reported to be significantly decreased after nifedipine treatment (Wen et al., 2012). However, in the current study, treatment with nifedipine was not observed to decrease either proliferation or specific ALP activity under static culture on both SiHA-14 and SiHA-28 BGS. One possible explanation is that hMSCs were cultured on SiHA BGS, instead of well-plates, in osteogenic medium, which maintained hMSCs proliferation and specific ALP
activity robustly and they were not dependent on L-type VSCCs. Previous research has reported that any enhanced proliferation by stretch in chicken chondrocytes was blocked by nifedipine treatment (Wu and Chen, 2000). In the current study, enhanced proliferation by shear stress was not observed to be blocked by nifedipine treatment, indicating that shear stress induced proliferation on SiHA BGS was independent of L-type VSCCs.

Interestingly, L-type VSCCs were demonstrated to be involved in the distribution of ERK1/2 in response to shear stress. Distribution of ERK1/2 was dependent on culture conditions and this dependence was blocked by adding nifedipine into culture medium. On both BGS SiHA-14 and SiHA-28, the production of pERK was significantly different under basal perfusion rate (BPR) compared with a period of high perfusion rate (pHPR) condition in control medium, and treatment with nifedipine inhibited this difference. This inhibition of response to different perfusion culture conditions by nifedipine treatment was also observed in the expression of genes like osx, col i and myoD. Previous studies also reported that L-type VSCCs were involved in the activation of the ERK phosphorylation (Dolmetsch et al., 2001; Nakayama et al., 2008). Findings in the current study agreed with previous research, indicating that L-type VSCCs play a role in modulating shear stress induced activation of ERK pathway of hMSCs on SiHA BGS.

Ca\(^{2+}\) is the most widely used second messenger in cell biology and calcium channels fulfil a lot of essential cell functions. One such function is the involvement in the regulation of gene expression (Barbado et al., 2009). The regulation of L-type VSCCs blocker, nifedipine, on the expression of osteogenic genes was similar on SiHA-14 and SiHA-28 BGS. Osteogenic gene makers like osx, bmp2, col i and dmp1 were significantly upregulated under basal perfusion rate (BPR) compared with under static condition. This upregulation was diminished by L-type VSCCs blocker, nifedipine, indicating that L-type VSCCs were compulsory in osteogenic differentiation induced by basal perfusion rate (BPR). This agreed with previous research reported that L-type VSCCs mediate load-induced bone formation (Li et al., 2003). Under a period of high perfusion rate (pHPR), the expression of some osteogenic genes, like alp, col i and dmp1 was not affected by the presence of
nifedipine in the medium, however, the expression of osx and bmp2 was upregulated by nifedipine treatment. These findings demonstrated that under a period of high perfusion rate (pHPR) condition, the regulation of L-type VSCCs on osteogenic differentiation was more complicated compared with under basal perfusion rate (BPR) condition, and different pathways might be involved in the regulation process. It is interesting to notice that integrin α1 expression followed the same pattern with osteogenic gene expression, i.e. it was upregulated under basal perfusion rate (BPR), and this upregulation was dependent on L-type VSCCs. Under a period of high perfusion rate (pHPR), the expression of integrin α1 was downregulated by nifedipine treatment on SiHA-14 but not SiHA-28, indicating that BGS SiHA-28 protected against the downregulation effect by the addition of nifedipine in medium.

The expression of chondrogenic gene markers like sox9, runx2 and col ii was not dependent on the blocking of L-type VSCCs by nifedipine under static condition. This finding was confirmed by previous research, in a high density chondrifying MSCs culture model, blocking L-type VSCCs did not interfere with the mRNA expression of sox9 (Fodor et al., 2013). Basal perfusion rate (BPR) upregulated chondrogenic gene markers as compared to static condition, and a period of high perfusion rate (pHPR) further increased their expression significantly. Under either type of perfusion culture conditions, the expression level of chondrogenic markers was further increased with the addition of nifedipine into medium, indicating that active L-type VSCCs regulates the extent of perfusion induced chondrogenic differentiation. It is unknown how silica enters hMSCs and whether blocking L-type VSCCs affects silica entering hMSCs. It is also unknown whether silica has a pro-chondrogenic effect when calcium is deficient. Shear stress induced chondrogenic differentiation and its regulation by L-type VSCCs has received little attention to date. The upregulation of an endochondral bone formation mediator (parathyroid hormone (PTH) related peptide) in rat chondrocyte by cyclic mechanical strain was found to be dependent on L-type VSCCs activation (Tanaka et al., 2005). It is understandable that the role of L-type VSCCs in shear stress induced chondrogenic differentiation was distinct from in cyclic mechanical strain induced chondrogenic differentiation. Integrin α5 was upregulated significantly while chondrogenic markers were upregulated significantly.
under a period of high perfusion rate (pHPR). Adding nifedipine into medium further enhanced expression of integrin α5, as well as chondrogenic markers under either type of perfusion culture conditions. These results indicated that integrin α5 was closely related to chondrogenesis process.

Under basal perfusion rate (BPR) condition, the expression of osx, col i and myoD was responsive to BGS micro-porosity. Under a period of high perfusion rate (pHPR) culture condition, the expression of runx2, col ii and integrin α5 was dependent on BGS micro-porosity. The response of these gene expression to BGS micro-porosity was blocked by adding L-type VSCCs nifedipine into medium, indicating that fully functional L-type VSCCs were necessary when evaluating BGS performance.

6.5 Conclusion

In summary, current research results have demonstrated that L-type VSCCs play important roles in activating ERK pathway and regulating flow activated hMSCs differentiation. Basal perfusion rate (BPR) induced osteogenic differentiation was dependent on L-type VSCCs. L-type VSCCs also regulated shear stress activated chondrogenic differentiation. Integrin subunits showed a strong preference in stem cell lineage specification. Integrin α1 was proved to be closely related to osteogenesis process, whereas integrin α5 was demonstrated to be more involved in chondrogenesis process.
Chapter 7 Conclusions and Future Work

7.1 Conclusions

Cells in the human body are exposed to shear stress and other mechanical forces, which are known to influence cellular response, bone regeneration and bone remodelling (Lanyon and Rubin, 1984; Boerckel et al., 2012). The evaluation of how cells response to BGS in a static environment usually cannot be translated to subsequent in vivo studies and clinical trials. Therefore, a 3D bioreactor that allows cell-seeded SiHA BGS granules to be applied with both shear stress and compression was built. A specific perfusion chamber which hosts BGS granules and can be fitted into the 3D bioreactor was designed, and parameters of seeding MG63 cells on BGS granules in this chamber were optimized. Results demonstrated that osteoblast-like cells on BGS was dependent on both shear stress and mechanical loading, showing different proliferation and gene expression profiles, which is in line with previous studies (Bancroft et al., 2002; Chen et al., 2017; Bolgen et al., 2008; David et al., 2008; C X Liu et al., 2012). However, after careful characterization, MG63 cells were found to lack the capacity to reflect the pattern of specific ALP activity demonstrated primary osteoblast cells, which is an important indicator in investigating the cellular response to mechanical stimulation. hMSCs were then characterized and used for the rest of the study. Perfusing cell culture medium through BGS requires tight fit between construct chamber and tubing, which creates friction resistance for compression and results in the compression force on BGS granules becoming unquantifiable. Therefore, perfusion in isolation with two different perfusion profiles was employed for the rest of the study.

The structure of BGS has been demonstrated to have a strong impact on cellular response and bone regeneration in vivo (Manuela E. Gomes et al., 2006; Hing et al., 2005; Campion et al., 2011; Coathup et al., 2012). SiHA BGS with defined total porosity and micro-porosity were synthesised and characterised. The proliferation and osteogenic differentiation of hMSCs on different BGS were preliminarily tested in a static environment. The composition and hierarchical structure of SiHA were found to be beneficial for the growth of hMSCs, however under static conditions the
structural differences between BGS did not have a significant influence on hMSCs at day 3. However, in culture medium with osteogenic supplements, SiHA BGS with high micro-porosity (SiHA-28) was demonstrated to be more beneficial in enhancing hMSCs proliferation and differentiation after 7 days. Therefore, it was decided to further investigate the response of hMSCs to variation in micro-porosity under perfusion conditions.

Two perfusion patterns were employed in the study, as perfusion parameters including flow type, magnitude, duration, insertion of rest periods were found to influence cell responses (Bancroft et al., 2002; Grayson et al., 2008; Yang et al., 2010; Jaasma and O’Brien, 2008). Results demonstrated that hMSCs on SiHA BGS were dependent on basal perfusion rate (BPR), showing significantly increased proliferation and osteogenic differentiation compared with static culture, with the involvement of cytoskeleton and ERK1/2 signalling pathway. The response of hMSCs was not consistently dependent on BGS micro-porosity under static condition. While basal perfusion rate (BPR) revealed the response of hMSCs to BGS micro-porosity, with the expression of osteogenic marker osx increased significantly with increasing BGS micro-porosity. On the other hand, a period of high perfusion rate (pHPR) significantly increased the gene expression of chondrogenic markers, and SiHA-22 was demonstrated to be more supportive in terms of chondrogenic markers expression compared with SiHA-14 and SiHA-28. Since perfusion condition is more relevant to physiological in vivo situation, the future evaluation of porous BGS bioactivity should be conducted under carefully selected perfusion conditions, and the results of this thesis suggest that chondrogenic markers should also be used as one of the indicators for BGS performance in addition to conventional osteogenic markers, as early chondrogenic activity may denote the onset of osteochondral bone formation. This would also argue for longer term culture to further monitor cell fate and the development of any ECM produced.

Many studies have demonstrated that L-type voltage-sensitive calcium channels (VSCCs) were activated in response to mechanical stimulation, which then initiate a variety of biological signals in bone cells and also mediate bone formation (Rawlinson et al., 1996; Li et al., 2002). The regulation of L-type VSCCs on shear stress induced
hMSCs response were also examined in this study. Results demonstrated that shear stress induced osteogenic and chondrogenic differentiation of hMSCs on SiHA BGS was modulated by L-type VSCCs, possibly through ERK1/2 signalling pathways. The results of this study underline the importance of evaluating BGS performance especially when investigating the mechanisms behind response to variation in BGS structure and chemistry under well understood perfusion conditions.

7.2 Future Work

Although it is encouraging that perfusion culture can result in improved differentiation and disclose the cellular response to small BGS architectural differences, this is only a small step towards a physiological-mimicking bioreactor system.

- Future work is required to prolong culturing period and investigate the effect of SiHA BGS micro-porosity on cell proliferation and differentiation under perfusion conditions at 14 days, 21 days and 28 days.
- Future work is required to investigate the effect of SiHA BGS macro-porosity on cell proliferation and differentiation under mechanical stimulated conditions.
- Inhibitors of ERK1/2 and cytoskeletal drugs can be used in the experiment to examine their role in the synergistic effect of perfusion and BGS structure on hMSCs response.
- Future work is required to simulate/investigate how micro-porosity affects type of flow, shear stress and strain field, which could contribute to explain the response of hMSCs to SiHA with different micro-porosity under perfusion condition.
- Future work is required to investigate the cellular response to HA and SiHA with equivalent structure under perfusion condition to study the role of silica on osteogenic and chondrogenic effect. Cellular response to HA and SiHA when L-type VSCC channels are blocked should also be investigated to examine the role of silica on osteogenic and chondrogenic effect when calcium is deficient.
• A more advanced bioreactor which can apply both compression and perfusion in an accurate manner should be developed.

• The final goal of bioreactor system is carrying out real time monitored, automated control over relevant parameters during the cultivation. Also, studies using bioreactor system should be preferably completed in conjunction with µCT scan and computational fluid dynamics (CFD) to characterise the fluid shear stress field. Then the fluid shear stress from studies using different BGS or flow with different configurations can be compared. A thorough network of studies of using bioreactors can be built, which will provide valuable guidance for tissue engineering in clinical practice.
Appendix 1: DNA and specific ALP activity of hMSCs in 24 well-plates (5000 cells/well) after 7 days

Appendix 2: Cell culture and molecular analysis chemicals used in this PhD research.

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Supplier</th>
<th>CatLog number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG-63 cell line human</td>
<td>Sigma</td>
<td>86051601</td>
</tr>
<tr>
<td>Dulbecco’s Phosphate Buffered Saline (PBS)</td>
<td>Sigma</td>
<td>D8537</td>
</tr>
<tr>
<td>Trypsin-EDTA solution</td>
<td>Sigma</td>
<td>T3824</td>
</tr>
<tr>
<td>High glucose Dulbecco’s</td>
<td>Sigma</td>
<td>D6429</td>
</tr>
<tr>
<td>Modified Eagles Medium (DMEM)</td>
<td>Sigma</td>
<td>D7777</td>
</tr>
<tr>
<td>(contains NaHCO₃ buffer)</td>
<td>Sigma</td>
<td></td>
</tr>
<tr>
<td>High glucose Dulbecco’s</td>
<td>Sigma</td>
<td></td>
</tr>
<tr>
<td>Modified Eagle’s Medium (DMEM)</td>
<td>Sigma</td>
<td></td>
</tr>
<tr>
<td>(without NaHCO₃ buffer)</td>
<td>Sigma</td>
<td></td>
</tr>
<tr>
<td>Fetal bovine serum (FBS)</td>
<td>Sigma</td>
<td>F9665</td>
</tr>
<tr>
<td>HEPES solution</td>
<td>Sigma</td>
<td>H0887</td>
</tr>
<tr>
<td>Penicillin-Streptomycin</td>
<td>Sigma</td>
<td>P4333</td>
</tr>
<tr>
<td>Human Mesenchymal Stem Cells from Bone Marrow (hMSC-BM), Lot: 4032003.2.</td>
<td>PromoCell</td>
<td>C-12974</td>
</tr>
<tr>
<td>Mesenchymal Stem Cell (MSC) Growth</td>
<td>PromoCell</td>
<td>C-28009</td>
</tr>
<tr>
<td>Medium 2</td>
<td>PromoCell</td>
<td>C-41310</td>
</tr>
<tr>
<td>Accutase-Solution</td>
<td>PromoCell</td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>Supplier</td>
<td>Catalog No.</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>Sigma</td>
<td>D4902</td>
</tr>
<tr>
<td>β-Glycerophosphate disodium salt hydrate</td>
<td>Sigma</td>
<td>G9422</td>
</tr>
<tr>
<td>L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate</td>
<td>Sigma</td>
<td>A8960</td>
</tr>
<tr>
<td>Bovine Serum Albumin</td>
<td>Sigma</td>
<td>A2058</td>
</tr>
<tr>
<td>Triton® X-100 (Polyethylene glycol tert-octylphenyl ether)</td>
<td>VWR</td>
<td>437002A</td>
</tr>
<tr>
<td>Quant iT PicoGreen dsDNA Assay Kit</td>
<td>Life Tech.</td>
<td>P11496</td>
</tr>
<tr>
<td>UltraPure™ DNase/RNase-Free Distilled Water</td>
<td>Life Tech.</td>
<td>10977035</td>
</tr>
<tr>
<td>Alkaline Phosphatase Assay Kit</td>
<td>Abcam</td>
<td>ab83369</td>
</tr>
<tr>
<td>4-Nitrophenol solution</td>
<td>Sigma</td>
<td>N7660</td>
</tr>
<tr>
<td>Alizarin Red S</td>
<td>Sigma</td>
<td>A5533</td>
</tr>
<tr>
<td>Paraformaldehyde solution, 4%(w/v) in PBS</td>
<td>Thermo Fisher Scientific</td>
<td>J19943</td>
</tr>
<tr>
<td>RIPA Lysis and Extraction Buffer</td>
<td>Life Tech.</td>
<td>89900</td>
</tr>
<tr>
<td>Halt™ Protease and Phosphatase Inhibitor</td>
<td>Life Tech.</td>
<td>78440</td>
</tr>
<tr>
<td>Pierce™ BCA Protein Assay Kit</td>
<td>Thermo Fisher Scientific</td>
<td>23227</td>
</tr>
<tr>
<td>4x Laemmli Sample Buffer</td>
<td>Bio Rad</td>
<td>1610747</td>
</tr>
<tr>
<td>2-Mercaptoethanol</td>
<td>Sigma</td>
<td>M6250</td>
</tr>
<tr>
<td>Precision Plus Protein™ WesternC™ Blotting Standards</td>
<td>Bio Rad</td>
<td>1610376</td>
</tr>
<tr>
<td>4–20% Mini-PROTEAN® TGX™ Precast Protein Gels</td>
<td>Bio Rad</td>
<td>4561094</td>
</tr>
<tr>
<td>Tris/Glycine/SDS</td>
<td>Bio Rad</td>
<td>1610732</td>
</tr>
<tr>
<td>Trans-Blot® Turbo™ RTA Mini LF PVDF Transfer Kit</td>
<td>Bio Rad</td>
<td>1704274</td>
</tr>
<tr>
<td>Tris Buffered Saline</td>
<td>Bio Rad</td>
<td>1706435</td>
</tr>
<tr>
<td>TWEEN® 20</td>
<td>Sigma</td>
<td>P2287</td>
</tr>
<tr>
<td>TRI Reagent® Solution</td>
<td>Life Tech.</td>
<td>AM9738</td>
</tr>
<tr>
<td>Chloroform, pure</td>
<td>Acros Org.</td>
<td>38376025</td>
</tr>
<tr>
<td>RNeasy Mini Kit</td>
<td>Qiagen</td>
<td>74104</td>
</tr>
<tr>
<td>Chemical Name</td>
<td>Manufacturer</td>
<td>Code</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------------</td>
<td>------------</td>
</tr>
<tr>
<td>GoScript™ Reverse Transcription System</td>
<td>Promega</td>
<td>A5000</td>
</tr>
<tr>
<td>KAPA SYBR® FAST</td>
<td>Sigma</td>
<td>KK4618</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>Sigma</td>
<td>N7634</td>
</tr>
<tr>
<td>Glutaraldehyde</td>
<td>Agar Scientific</td>
<td>AGR1011</td>
</tr>
<tr>
<td>Sodium cacodylate</td>
<td>Sigma</td>
<td>C0250</td>
</tr>
<tr>
<td>Osmium tetroxide</td>
<td>TAAB</td>
<td>O015/1</td>
</tr>
<tr>
<td>Tannic acid</td>
<td>Sigma</td>
<td>T0125</td>
</tr>
<tr>
<td>Ethyl alcohol</td>
<td>Sigma</td>
<td>459836</td>
</tr>
<tr>
<td>Hexamethyldisilazane</td>
<td>Sigma</td>
<td>52619</td>
</tr>
</tbody>
</table>
References

Baron, R., Rawadi, G. (2007) Targeting the Wnt/β-Catenin pathway to regulate bone

Carroll, S.F., Buckley, C.T., Kelly, D.J. (2017) Cyclic tensile strain can play a role in directing both intramembranous and endochondral ossification of mesenchymal stem cells. *Frontiers in Bioengineering and Biotechnology. 5*(November), 1–12.

Grayson, W.L., Bhumiratana, S., Cannizzaro, C., Chao, P.-H.G., Lennon, D.P., Caplan, A.I.,

Harshavardhana, N.S., Noordeen, M.H.H. (2015) Surgical results with the use of Silicated Calcium Phosphate (SiCaP) as bone graft substitute in Posterior Spinal Fusion (PSF) for Adolescent Idiopathic Scoliosis (AIS). *Scoliosis*. 10(1), 27.

Lacroix, D., Prendergast, P.J., Li, G., Marsh, D. (2002) Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Medical and
Biological Engineering and Computing. 40(1), 14–21.
Mechanically Induced Bone Formation In Vivo. *Journal of Bone and Mineral Research.* 17(10), 1795–1800.

Shao, Y., Alicknavitch, M., Farach-Carson, M.C. (2005) Expression of voltage sensitive calcium channel (VSCC) L-type Cav1.2 (α1C) and T-type Cav3.2 (α1H) subunits during mouse bone development. Developmental Dynamics. 234(1), 54–62.

