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Abstract

In this paper we study continuous-time two-player zero-sum optimal switching
games on a finite horizon. Using the theory of doubly reflected backward
stochastic differential equations (DRBSDE) with interconnected barriers, we
show that this game has a value and an equilibrium in the players’ switching
controls.
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1. Zero-sum optimal switching game

Optimal switching is a generalisation of optimal stopping which has various appli-
cations in economics and mathematical finance. It consists of one or more agents and
a system which they control by successively switching the system’s operational mode
according to a discrete set of choices. A typical example is the economic valuation of a
power plant which manages its fuel mix for electricity production. One can also think
of a trader who changes the composition of her portfolio according to the returns of
the assets. There are several works on optimal switching problems in continuous time,
and a survey of the literature identifies two main approaches used to analyse these
problems: an analytical approach using partial differential equations (PDEs) and a
probabilistic one.

Methods based on PDEs and associated variational inequalities appeared as early
as the 1970s, under the topic of impulsive control for diffusion processes (see [28] and
the references therein). A viscosity solutions approach to this type of PDE appeared
in the late 1980s to early 1990s (for instance, [31]) and is still the topic of active
research [23]. For example, the Hamilton-Jacobi-Bellman equation corresponding to
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the optimal switching problem for a diffusion process (Xt)t≥0 on a finite time horizon
[0, T ] is the following system of PDEs with obstacles depending on the solution (vi)i∈Γ1 ,
with Γ1 := {1, . . . ,m1}: ∀i ∈ Γ1


min

{
vi(s, x)−maxk∈Γ1−{i}[v

k(s, x)− gi,k(s, x)] ,(
−∂s − LX

)
(vi)(s, x)− f i(s, x)

}
= 0 ;

vi(T, x) = hi(x),

(1)

where: i) Γ1 is the set of available switching modes; ii) gi,k is the function which gives
the cost of switching from mode i to mode k; iii) f i and hi are the functions which give
respectively the instantaneous and terminal yield of the system when it is working in
mode i; and iv) LX is the infinitesimal generator associated with the diffusion process
X. If a sufficiently regular solution of the system (1) exists, then vi(s, x) is nothing
else but the optimal profit that can be generated by switching, with initial conditions
i for the system’s mode and x for the process X at time s ∈ [0, T ].

Probabilistic solution methods for optimal switching problems have been investi-
gated since the 1970s and 1980s in various degrees of generality (see [4, 26, 28, 34, 35]
for instance), and most of the recent research in this area has been a combination
of the martingale approach via Snell envelopes ([12, 24]) and the theory of backward
stochastic differential equations (BSDE) ([7, 14, 20]). The latter methods lead to the
study of the following system of reflected BSDEs with lower interconnected obstacles:
find adapted stochastic processes (Y i, Zi,Ki)i∈Γ1 , with Ki an increasing process,
satisfying: ∀i ∈ Γ1 and s ∈ [0, T ],

Y is = hi +
∫ T
s
f itdt−

∫ T
s
ZitdBt +Ki

T −Ki
s ;

Y is ≥ Lis(Y ) := maxk∈Γ1−{i}{Y ks − gi,ks };∫ T
s

(Y it − Lit(Y ))dKi
t = 0,

(2)

where hi, f i, and gi,k play the same role as above, but here they are not formulated as
functions: instead, hi is a random variable and f i, gi,k are stochastic processes. Similar
to the PDE system (1), the BSDE system (2) can concisely represent solutions to the
optimal switching problem and is investigated in several papers including [12, 20, 7, 17,
19]. For any i ∈ Γ1, Y is is then the system’s value (that is, its optimal yield in the sense
of expectation) when it starts from mode i at time s. On the other hand, this system
(2) allows for the construction of the optimal strategy (see e.g. [12, 20, 7, 17, 19] for
more details). All of the aforementioned references are concerned with single-person
optimisation problems. Multiple-person optimal switching problems in a continuous-
time stochastic setting, the topic under which the present work falls, have been studied
less frequently in the literature (there is related work for deterministic systems such as
[33, 32]). In the two-player zero-sum game of optimal switching, which is the setting
of the present work, there are works such as [30, 21, 11, 18] and related studies for
impulse control games [29, 10].

Let the finite, discrete sets Γk = {1, . . . ,mk}, k ∈ {1, 2} represent the operating
modes that player k can choose. Letting Γ = Γ1 × Γ2 denote the product space of
operating modes γ = (γ(1), γ(2)), having cardinality |Γ| = m = m1 ×m2, the following
costs and rewards are taken into account:
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• For (i, j) ∈ Γ, f i,j defines a running reward paid by player 2 to player 1 and hi,j

a terminal reward paid by player 2 to player 1, when player 1’s (resp. player 2’s)
active mode is i (resp. j).

• For i1, i2 ∈ Γ1, ĝi1,i2 defines a non-negative payment from player 1 to player 2
when the former switches from mode i1 to i2.

• For j1, j2 ∈ Γ2, ǧj1,j2 defines a non-negative payment from player 2 to player 1
when the former switches from mode j1 to j2.

For all (i, j) ∈ Γ and t ∈ [0, T ] we set ĝi,it = ǧj,jt = 0.
From the probabilistic point of view, since there are two players and their advantages

are antagonistic, the zero-sum switching game leads to the study of a system of reflected
BSDEs with inter-connected bilateral obstacles which is an extension of (2): For each
(i, j) ∈ Γ and s ∈ [0, T ] we should have: Y i,js = hi,j +

∫ T
s
f i,jt dt+Ki,j

T −Ki,j
s −

∫ T
s
Zi,jt dBt ;

Y i,js ≤ U i,js (Y ) and Y i,js ≥ Li,js (Y ) ;∫ T
s

(Y i,jt − U i,jt (Y ))dKi,j,−
t =

∫ T
s

(Li,jt (Y )− Y i,jt )dKi,j,+
t = 0,

(3)

where: i) Li,js (Y ) := maxk∈Γ1−{i}{Y k,js − ĝi,ks } ; ii) U i,js (Y ) := min`∈Γ2−{j}{Y i,`s + ǧj,`s }
; and iii) Ki,j = Ki,j,+ −Ki,j,− (Ki,j,± are increasing processes). While this system
is formulated precisely in Section 2, an intuitive interpretation is provided here.

Since the game is zero-sum we suppose that player 1 is the maximiser while player 2
is the minimiser. A system of processes (Y i,j , Zi,j ,Ki,j)(i,j)∈Γ is sought which may be

understood as follows. Firstly, Y i,jt is the value of the game played on the time interval
[t, T ] when the players begin at time t in mode (i, j). Secondly, Zi,jt is the volatility of
Y i,jt . Thirdly the term Ki,j

t −K
i,j
T captures, in the sense of expectation, the loss of yield

which would be caused by remaining in the state (i, j) over the time interval [t, T ]. Set
Y = (Y i,j)(i,j)∈Γ. Since player 1 may switch mode at any time, the process Li,j(Y )
provides a lower bound for Y i,j . Further, consider any time interval [t1, t2] ⊂ [0, T ] in
which Y i,j strictly exceeds this bound: then since there is no incentive for player 1 to
switch from mode i to any other mode, Ki,j should not increase on [t1, t2]. Symmetric
arguments apply to player 2. Therefore the processes (Y i,j , Zi,j ,Ki,j)(i,j)∈Γ should
verify (3).

System (3) is studied in rather few papers including [21, 11, 18]. In [21], the authors
have shown that a solution exists when ǧj,` and ĝi,k are constant. It is also studied
in [11] in a Markovian framework where, by combining techniques of PDEs and ones
of backward equations, the authors proved that system (3) has a unique solution (see
Theorem 2). Finally, more recently there is a paper by Hamadène-Mu [18], where it is
studied in a more general framework (see Theorem 1) and the authors have shown the
existence of a solution when the switching costs ǧj,` and ĝi,k are only Itô processes.

Concerning system (3), it is expected that Y i,js is the value of the zero-sum switching
game when the system starts from (i, j) ∈ Γ in the same way as Y is of system (2) is the
value of the control problem when the system starts from i ∈ Γ1. However this fact is
not obvious at all and proved only in some specific cases. Actually in [11], the authors
have shown when f i,j and hi,j are separated in the sense that for any (i, j) ∈ Γ,

f i,j = f̂ i + f̌ j and hi,j = ĥi + ȟj , then Y i,js is the value of the zero-sum switching
game. This latter assumption allows the game to be decomposed into two optimal
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switching problems which are simpler and decoupled, but limits the potential for
practical applications. The case of arbitrary f i,j , ǧj,`, ĝi,k and hi,j is still open and this
is the main objective of the present work. We prove without the separability assumption,
and this is the novelty of this paper, that a solution of system (3) provides the game’s
value. Furthermore, we derive equilibrium strategies for the players which adapt to
the opponent’s switching decisions and provide robust performance guarantees.

This paper is organised as follows. In Section 2, we introduce the zero-sum switching
game and provide some results related to the existence of a solution of system (3). In
Section 3, we show the main result, that Y i,j coincides with the value of the zero-sum
game. Moreover, we provide results on the existence of optimal strategies in the game.
For completeness, we also interpret our findings in the diffusion framework.

2. Probabilistic setup and notation

We follow closely the setup in [11], working on a finite horizon [0, T ] and filtered
probability space (Ω,F ,F,P) where F = (Ft)0≤t≤T is the usual completion of the
natural filtration of B = (Bt)0≤t≤T , a d-dimensional standard Brownian motion, where
d ≥ 1. Since our method of proof does not depend on the dimension d, without loss of
generality we assume henceforth that d = 1.

• Let T be the set of F-stopping times bounded above by T , and for a given ν ∈ T ,
Tν the set of all τ ∈ T satisfying τ ≥ ν a.s.

• For any sub-σ-algebra Fo of F , let Lp(Fo), 1 ≤ p < ∞, denote the set of p-
integrable Fo-measurable random variables, and set Lp := Lp(F).

• Let H2 be the set of F-progressively measurable processes w = (wt)0≤t≤T which
are dt⊗ dP-square integrable.

• Let S2 be the set of F-adapted processes w = (wt)0≤t≤T with paths that are
right-continuous with left limits satisfying,

sup
0≤t≤T

|wt| ∈ L2.

Let S2
c ⊂ S2 denote the subset of processes w ∈ S2 with continuous paths.

• Let K2 denote the set of F-adapted right-continuous with left limits processes K
of finite variation satisfying K0 = 0 and,∫ T

0

|dKt| ∈ L2,

where |dKt(ω)| is the total variation measure on [0, T ]. Let K2
c denote the subset

of processes K ∈ K2 with continuous paths.

Definition 1. Let Y be a right-continuous with left limits semi-martingale having
decomposition Yt = Y0 +Mt+Kt where M is a local martingale, K has finite variation,
and M0 = K0 = 0. Note that M is continuous due to the choice of filtration F (see
Lemma 14.5.2 of [9]). We say that Y is square-integrable and write Y ∈ W2 if

Y0 ∈ L2,M ∈ S2 and K ∈ K2.

If Y is continuous then we write Y ∈ W2
c .
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Let S2,m
c denote the m-product of S2

c . Similarly we define H2,m, L2,m, S2,m, K2,m,
. . . , for the m-products of the spaces H2, L2, S2, K2, and so on.

2.1. Costs, rewards, switching controls and solutions of system (3)

Let Γk = {1, . . . ,mk}, k ∈ {1, 2}, be a finite, discrete set representing the operating
modes that player k can choose. Let Γ = Γ1×Γ2 denote the product space of operating
modes γ = (γ(1), γ(2)), having cardinality |Γ| = m = m1 × m2. Next for (i, j) ∈ Γ,
i1, i2 ∈ Γ1 and j1, j2 ∈ Γ2, let f i,j be a process of H2, ĝi1,i2 , ǧj1,j2 are non-negative
processes of S2

c and finally hi,j a random variable belonging to L2(FT ). We also assume
that for all (i, j) ∈ Γ and t ∈ [0, T ] , ĝi,it = ǧj,jt = 0. As a matter of convention, for
players 1 and 2 we use the respective “hat” and “check” notation to distinguish objects
that are similar otherwise.

Definition 2. ForN ≥ 2 a loop in Γ of lengthN−1 is a sequence {(i1, j1), . . . , (iN , jN )}
of elements in Γ with N − 1 distinct members such that (iN , jN ) = (i1, j1) and either
iq+1 = iq or jq+1 = jq for any q = 1, . . . , N − 1.

We now present conditions under which a solution for system (3) exists. To begin
with, throughout this paper we make the following assumption.

Assumption 1. We impose the following conditions on the switching costs:

1. Consistency:

(a) For all sequences {i1, i2, i3} ∈ Γ1 and {j1, j2, j3} ∈ Γ2 with i1 6= i2, i2 6= i3
and j1 6= j2, j2 6= j3, we have for all t ∈ [0, T ], P-a.s.,

ĝi1,i3t < ĝi1,i2t + ĝi2,i3t and ǧj1,j3t < ǧj1,j2t + ǧj2,j3t . (4)

(b) For all (i, j) ∈ Γ we have, P-a.s.,

max
i1∈Γ1−{i}

{hi1,j − ĝi,i1T } ≤ h
i,j ≤ min

j1∈Γ2−{j}
{hi,j1 + ǧj,j1T }. (5)

2. Non-free loop property: For any loop {(i1, j1), . . . , (iN , jN )} in Γ we have for all
t ∈ [0, T ],

N−1∑
q=1

ϕq,q+1
t 6= 0 P-a.s., (6)

where ϕq,q+1
t = −ĝiq,iq+1

t 1{iq 6=iq+1} + ǧ
jq,jq+1

t 1{jq 6=jq+1}.

In Hamadène-Mu [18], the following result is obtained:

Theorem 1. Suppose that:

i) Assumption 1 holds;
ii) For any i1, i2 ∈ Γ1 and j1, j2 ∈ Γ2, ĝi1,i2 and ǧj1,j2 are Itô processes: for any
0 ≤ t ≤ T ,

ĝi1,i2(t) = ĝi1,i2(0) +

∫ t

0

b̂i1,i2s ds+

∫ t

0

φ̂i1,i2s dBs

and

ǧj1,j2(t) = ǧj1,j2(0) +

∫ t

0

b̌j1,j2s ds+

∫ t

0

φ̌j1,j2s dBs
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where b̂i1,i2 , b̌j1,j2 , φ̂i1,i2 and φ̌j1,j2 belong to H2 with E[sups≤T (|b̂i1,i2s |+ |b̌j1,j2s |)2] <∞
moreover.

Then there exists an m-tuple of processes (Y i,j , Zi,j ,Ki,j,+,Ki,j,−)(i,j)∈Γ, with Ki,j,±

increasing, such that Y i,j ∈ S2
c , Zi,j ∈ H2, Ki,j,± ∈ K2 and (Y i,j , Zi,j ,Ki,j,+ −

Ki,j,−)(i,j)∈Γ satisfies (3).

Remark 1. Under the consistency condition (4), it is more economical for the players
to switch directly from one state to another, rather than doing so via an intermediary
third state. If these conditions are not satisfied then, mathematically, there can be
issues related to the well-posedness of the system (3). Regarding condition (5), note
that it is a contradiction to require simultaneously that Y ij is continuous on [0, T ],
Y ijT = hi,j and maxi1∈Γ1−{i}(Y

i1,j
s − ĝi,i1s ) ≤ Y i,js ≤ minj1∈Γ2−{j}(Y

i,j
s + ǧj,j1s ) for any

s < T , without assuming (5). If this latter condition is not satisfied, Y i,j may not be
continuous and then the pair (α∗, β∗) of (20) may not exist.

We now highlight a result in [11] on the existence of a solution to system (3) when
the randomness is modelled by a diffusion process. Let Xs,x be the solution to the
following stochastic differential equation with initial condition (s, x) ∈ [0, T ]× Rk:∀t ∈ [s, T ], Xs,x

t = x+

∫ t

s

b(r,Xs,x
r )dr +

∫ t

s

φ(r,Xs,x
r )dBr ;

Xs,x
r = x, r ∈ [0, s].

(7)

where the functions b and φ are both continuous with values in Rk and Rk×1 respec-
tively, Lipschitz with respect to x uniformly in t. Next assume that

f i,jt = f̄ i,j(t,Xs,x
t ), hi,j = h̄i,j(Xs,x

T ), ĝi,kt = ˆ̄gi,k(t,Xs,x
t ), ǧj,`t = ˇ̄gj,`(t,Xs,x

t ). (8)

In this context, Assumption 1 is derived from the following structural conditions on
the functions f̄ i,j , h̄i,j , ˆ̄gi,k and ˇ̄gj,`:

Assumption 2.

1. Non-negativity: min
i1∈Γ1

ˆ̄gi,i1 ≥ 0 and min
j1∈Γ2

ˇ̄gj,j1 ≥ 0 for all i ∈ Γ1, j ∈ Γ2.

2. Consistency:

(a) For all sequences {i1, i2, i3} ∈ Γ1 and {j1, j2, j3} ∈ Γ2 with i1 6= i2, i2 6= i3
and j1 6= j2, j2 6= j3, we have for all t, x,{

ˆ̄gi1,i3(t, x) < ˆ̄gi1,i2(t, x) + ˆ̄gi2,i3(t, x),

ˇ̄gj1,j3(t, x) < ˇ̄gj1,j2(t, x) + ˇ̄gj2,j3(t, x).
(9)

(b) For all (i, j) ∈ Γ we have, for all x,

max
i1∈Γ1−{i}

{h̄i1,j(x)− ˆ̄gi,i1(T, x)} ≤ h̄i,j(x)

≤ min
j1∈Γ2−{j}

{h̄i,j1(x) + ˇ̄gj,j1(T, x)}
(10)
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3. Non-free loop property: For any loop {(i1, j1), . . . , (iN , jN )} in Γ we have for all
t, x,

N−1∑
q=1

ϕ̄q,q+1(t, x) 6= 0, (11)

where ϕ̄q,q+1(t, x) = −ˆ̄giq,iq+1(t, x)1{iq 6=iq+1} + ˇ̄gjq,jq+1(t, x)1{jq 6=jq+1}.

Theorem 2. (see [11].) In the Markovian setting (7)–(8), suppose that:

i) Assumption 2 holds;
ii) The functions ˇ̄gj,`, where j, ` ∈ Γ2, or ˆ̄gi,k, where i, k ∈ Γ1, are C1,2 and their
derivatives are of polynomial growth.

Then there exists an m-tuple of processes (Y i,j , Zi,j ,Ki,j,+,Ki,j,−)(i,j)∈Γ depending
on the initial condition (s, x) for Xs,x, such that Y i,j ∈ S2

c , Zi,j ∈ H2, Ki,j,± ∈ K2

(where Ki,j,± are increasing processes) and (Y i,j , Zi,j ,Ki,j,+ −Ki,j,−)(i,j)∈Γ satisfies
(3). Moreover, there also exist deterministic continuous functions with polynomial
growth (vi,j)(i,j)∈Γ such that for any (i, j) and t ∈ [0, T − s],

Y i,js+t = vi,j(s+ t,Xs,x
s+t)

and (vi,j)(i,j)∈Γ is the unique solution in viscosity sense of the following Hamilton-
Jacobi-Bellman system of PDEs with obstacles: For any (i, j) ∈ Γ and (s, x) ∈ [0, T ]×
Rk,

min
{
vi,j(s, x)− Li,j(v)(s, x) , max

{
vi,j(s, x)− U i,j(v)(s, x),(
−∂s − LX

)
(vi,j)(s, x)− f i,j(s, x)

}}
= 0 ;

vi,j(T, x) = hi,j(x),

(12)
where LX is the generator associated with Xs,x; and v = (vi,j)(i,j)∈Γ, Li,j(v) :=

maxk∈Γ1−{i}{vk,j − ĝi,k} and U i,j(v) := min`∈Γ2−{j}{vi,` + ǧj,`}.

2.1.1. Individual switching controls and strategies.

Definition 3. (Switching controls.) A control for player 1 is a sequence α = (σn, ξn)n≥0

such that,

1. for all n ≥ 0, σn ∈ T and is such that σn ≤ σn+1, P-a.s., and P({σn < T ∀n ≥
0}) = 0;

2. for all n ≥ 0, ξn is an Fσn-measurable Γ1-valued random variable;

3. for n ≥ 1, on {σn < T} we have σn < σn+1 and ξn 6= ξn−1, while on {σn = T}
we have ξn = ξn−1.

Let A denote the set of controls for player 1. The set B of controls β = (τn, ζn)n≥0 for

player 2, where the ζn are Γ2-valued, is defined analogously. Denoting by CαN the cost
of the first N ≥ 1 switches,

CαN :=

N∑
n=1

ĝξn−1,ξn
σn ,

note that the limit lim
N→∞

CαN is well defined.
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Remark 2. Under the consistency condition (5) of Assumption 1, which has also been
used previously in papers such as [11, 21], switching at time T provides no additional
benefit for either player. Consequently, it is without loss of generality that the definition
of controls excludes switching at time T . Furthermore, as Remark 1 explains, this
consistency condition ensures well-posedness of the system (3).

Definition 4. A control α ∈ A for player 1 is said to be square-integrable if,

lim
N→∞

CαN ∈ L2.

Let A denote the set of such controls. Similarly, the set B of square-integrable controls
for player 2 consists of those β ∈ B satisfying,

lim
N→∞

CβN ∈ L
2,

where

CβN :=

N∑
n=1

ǧζn−1,ζn
τn .

Definition 5. (Non-anticipative switching strategies.) Let s ∈ [0, T ] and ν ∈ Ts.
Two controls α1, α2 ∈ A with α1 =

(
σ1
n, ξ

1
n

)
n≥0

and α2 =
(
σ2
n, ξ

2
n

)
n≥0

are said to be

equivalent, denoting this by α1 ≡ α2, on [s, ν] if we have a.s.,

ξ1
01[σ1

0 ,σ
1
1 ](t) +

∑
n≥1

ξ1
n1(σ1

n,σ
1
n+1](t) = ξ2

01[σ2
0 ,σ

2
1 ](t) +

∑
n≥1

ξ2
n1(σ2

n,σ
2
n+1](t), s ≤ t ≤ ν.

A non-anticipative strategy for player 1 is a mapping α : B→ A such that:

• Non-anticipativity: for any s ∈ [0, T ], ν ∈ Ts, and β1, β2 ∈ B such that β1 ≡ β2

on [s, ν], we have α(β1) ≡ α(β2) on [s, ν].

• Square-integrability: for any β ∈ B we have α(β) ∈ A.

In a similar manner we define non-anticipative strategies for player 2. Let A and B
denote the set of non-anticipative strategies for players 1 and 2 respectively.

Definition 6. For s ∈ [0, T ] and i ∈ Γ1, let Ais denote the set of controls α ∈ A
satisfying ξ0 = i and σ0 = s. Similarly, define Bjs for s ∈ [0, T ] and j ∈ Γ2. Analogous
notation will be used below for other classes of controls, for example square-integrable
controls Ais, Bjs, and strategies A i

s , Bj
s .

2.1.2. Coupling of controls. We now define the coupling of two controls α ∈ A and
β ∈ B under the following assumption: player 1’s switch is implemented first if both
players decide to switch at the same instant.

Definition 7. Given controls α ∈ A and β ∈ B, define the coupling γ(α, β) = (ρn, γn)n≥0

where ρn ∈ T is defined by,
ρn = σrn ∧ τsn , (13)

with r0 = s0 = 0, r1 = s1 = 1 and for n ≥ 2,

rn = rn−1 + 1{σrn−1
≤ τsn−1

}, sn = sn−1 + 1{τsn−1
<σrn−1

},
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and γn is a Γ-valued random variable such that γ0 = (ξ0, ζ0) and for n ≥ 1,

γn =


(
ξrn , γ

(2)
n−1

)
, on {σrn ≤ τsn , σrn < T}(

γ
(1)
n−1, ζsn

)
, on {τsn < σrn}

γn−1, on {τsn = σrn = T}.
(14)

Define for all 0 ≤ t ≤ T ,

ut = γ01[ρ0,ρ1](t) +
∑
n≥1

γn1(ρn,ρn+1](t), (15)

where (ρn, ρn+1] = ∅ on {ρn = ρn+1}.
Note that the coupling γ(α, β) = (ρn, γn)n≥0 of the controls α ∈ Ais and β ∈ Bjs has

the following properties:

1. ρ0 = s and for all n ≥ 0 we have ρn ∈ T and ρn ≤ ρn+1 P-a.s., and P({ρn <
T ∀n ≥ 0}) = 0;

2. γ0 = (i, j) and for all n ≥ 0 the random variable γn is Fρn -measurable, Γ-valued
and γn+1 6= γn on {ρn+1 < T}.

Hereafter, we use notation such as fγ , where γ is an Γ-valued random variable, with

the interpretation fγ = f i,j on {γ = (i, j)}. Write C
γ(α,β)
N for the joint cumulative

cost of the first N switches,

C
γ(α,β)
N =

N∑
n=1

[
ĝ
γ
(1)
n−1,γ

(1)
n

ρn − ǧγ
(2)
n−1,γ

(2)
n

ρn

]
, N ≥ 1.

Definition 8. The coupling γ(α, β) = (ρn, γn)n≥0 of the controls α ∈ Ais and β ∈ Bjs
is said to be admissible, writing γ(α, β) ∈ Gi,js to indicate this, if supN≥1

∣∣Cγ(α,β)
N

∣∣ ∈ L2.

Note that for every α ∈ A and β ∈ B we have lim
N→∞

C
γ(α,β)
N = lim

N→∞
CαN − lim

N→∞
CβN .

Using the triangle inequality, we see that every pair of square-integrable controls (α, β),
α ∈ Ais and β ∈ Bjs, satisfies γ(α, β) ∈ Gi,js .

2.2. The zero-sum switching game

For the zero-sum game we assume that player 1 is the maximiser and define the
total reward from its perspective. Letting (s, i, j) ∈ [0, T )× Γ be the initial state and
recalling (15), we have

J i,js (γ(α, β)) = E

[∫ T

s

futt dt−
∞∑
n=1

[
ĝ
γ
(1)
n−1,γ

(1)
n

ρn − ǧγ
(2)
n−1,γ

(2)
n

ρn

]
+ huT

∣∣∣ Fs] ,
α ∈ Ais, β ∈ Bjs. (16)

The lower and upper values for this game, denoted respectively by V̌ i,js and V̂ i,js ,
are defined as follows: 

V̌ i,js := ess sup
α∈Ais

ess inf
β∈Bjs

J i,js (γ(α, β))

V̂ i,js := ess inf
β∈Bjs

ess sup
α∈Ais

J i,js (γ(α, β)).
(17)
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Note that V̌ i,js ≤ V̂ i,js a.s.

Definition 9. The game is said to have a value at (s, i, j) if

V̌ i,js = V̂ i,js a.s. (18)

The common value V i,js , when it exists, is referred to as the game’s solution at (s, i, j).
When s = T we formally set V̌ i,jT = V̂ i,jT = hi,j .

In this paper we construct a pair of controls (α∗, β∗) ∈ Ais×Bjs such that γ(α∗, β∗) ∈
Gi,js and the game has a value V i,js = J i,js (γ(α∗, β∗)) (see Theorem 3 below). Our result
is obtained by dynamic programming and the connection between doubly reflected
backward stochastic differential equations (DRBSDEs) with implicitly defined barriers
and zero-sum optimal stopping games. We also prove the existence of optimal non-
anticipative strategies α∗ ∈ A i

s and β∗ ∈ Bj
s which are robust in the sense that each

is a best response to the worst-case opponent.

3. A probabilistic verification theorem for the zero-sum game

Theorem 3 uses the system (3) to prove the existence of a value for the zero-sum
game. Recall thatm = |Γ| is the number of joint operating modes (i, j) ∈ Γ. For (i, j) ∈
Γ define the lower and upper switching operators, Li,j : S2,m

c → S2
c and U i,j : S2,m

c → S2
c

respectively, as follows: for Y ∈ S2,m
c ,

Li,j(Y ) = max
i1∈Γ1−{i}

{Y i1,j − ĝi,i1},

U i,j(Y ) = min
j1∈Γ2−{j}

{Y i,j1 + ǧj,j1}.
(19)

Let L : S2,m
c → S2,m

c and U : S2,m
c → S2,m

c be the operators defined, using matrix
notation, by L = (Li,j)(i,j)∈Γ and U = (U i,j)(i,j)∈Γ. The following definition formalises
the concept of a solution to (3).

Definition 10. A solution to the system of DRBSDEs with terminal value h ∈ L2,m(FT ),
driver f ∈ H2,m, and implicit barriers L and U , is a triple (Y ,Z,K) ∈ S2,m

c ×H2,m×
K2,m
c such that a.s. for all (i, j) ∈ Γ and all 0 ≤ s ≤ T ,

(i) Y i,js = hi,j +

∫ T

s

f i,jt dt+Ki,j
T −K

i,j
s −

∫ T

s

Zi,jt dBt ;

(ii) Y i,js ≤ U i,js (Y ) and Y i,js ≥ Li,js (Y ) ;

(iii)

∫ T

s

(Y i,jt − U i,jt (Y ))dKi,j,−
t =

∫ T

s

(Li,jt (Y )− Y i,jt )dKi,j,+
t = 0,

(3 revisited)

where Ki,j,+ and Ki,j,− are the increasing processes in the orthogonal decomposition
Ki,j := Ki,j,+ −Ki,j,−.

Note that for any solution to (3), the stochastic integral
∫ t

0
Zi,js dBs is well-defined,

and is a martingale belonging to S2
c (see Chapter 3 of [8]). Since we have provided

conditions, besides Assumptions 1 or 2, under which such a solution exists (see Theo-
rems 1 or 2), hereafter we work under Assumption 1 and assume that a solution to (3)
exists.
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Theorem 3. Suppose there exists a solution (Y ,Z,K) to the DRBSDE (3). For
every initial state (s, i, j) ∈ [0, T ]× Γ,

(i) Existence of value and optimal controls: the switching game has a value with,

Y i,js = V i,js = J i,js (γ(α∗, β∗)) a.s., (20)

where (α∗, β∗) ∈ Ais × Bjs are a pair of controls satisfying γ(α∗, β∗) ∈ Gi,js .

(ii) Existence of optimal strategies: there exist non-anticipative strategies α∗ ∈ A i
s

and β∗ ∈ Bj
s that are optimal in the robust sense:
ess inf
β∈Bjs

J i,js
(
γ(α∗(β), β)

)
= ess sup

α∈A i
s

ess inf
β∈Bjs

J i,js
(
γ(α(β), β)

)
ess sup
α∈Ais

J i,js
(
γ(α, β∗(α))

)
= ess inf

β∈Bj
s

ess sup
α∈Ais

J i,js
(
γ(α, β(α))

)
Furthermore, these robust values are equal to the game’s value,

ess sup
α∈A i

s

ess inf
β∈Bjs

J i,js
(
γ(α(β), β)

)
= V i,js = ess inf

β∈Bj
s

ess sup
α∈Ais

J i,js
(
γ(α, β(α))

)
.

This concept of robustness, which is well known in the optimal control and differ-
ential games literature [22, 1, 2], is natural in the context of zero-sum games [10].

Remark 3. Since the switching costs are non-negative we get the following type of
Mokobodski’s condition: there exists a system of processes w = {wi,j}(i,j)∈Γ belonging
to W2,m

c such that for all (i, j) ∈ Γ: for all 0 ≤ t ≤ T a.s.,

max
i1∈Γ1−{i}

{wi1,jt − ĝi,i1t } ≤ w
i,j
t ≤ min

j1∈Γ2−{j}
{wi,j1t + ǧj,j1t }. (21)

Indeed, by taking w to be the m-dimensional null process, w ≡ 0, it is easily verified
that w ∈ W2,m

c and (21) holds. Mokobodski’s condition (21) is an extension of that
typically assumed for single-agent switching problems in a variety of settings [5, 6, 14,
24], or for two-player Dynkin games or DRBSDEs [3, 16, 25, 27, 13], both of which are
special, somewhat degenerate, cases of the optimal switching game studied here.

Let us point out that for any solution (Y ,Z,K) to the DRBSDE (3), Y satisfies
Mokobodski’s condition (21) and, a posteriori, also belongs to W2,m

c . Condition (21)
can therefore be seen as a feasibility check for the inequality constraint (3)–(ii): there
exists at least one system of processes Y which satisfies (3)–(ii) within a suitable class
of candidates. Actually, we know from the results in [27] that well-posedness of (3) is
intricately linked to Mokobodski’s condition (21).

3.1. Proof of Theorem 3

The existence of a solution to the DRBSDE (3) is closely related to the existence of
both a value and a Nash equilibrium in the following Dynkin game (see for example
[16, 13, 15], and also [29] for the relation to impulse control games with delay).

Proposition 1. Suppose there exists a solution (Y ,Z,K) to the DRBSDE (3). Then
for all (s, i, j) ∈ [0, T ]× Γ a.s.:
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(a)

Y i,js = ess inf
τ∈Ts

ess sup
σ∈Ts

J i,js (σ, τ) = ess sup
σ∈Ts

ess inf
τ∈Ts

J i,js (σ, τ), (22)

where,

J i,js (σ, τ) := E
[∫ σ∧τ

s

f i,jt dt+ 1{τ<σ}U
i,j
τ (Y ) + 1{σ≤τ, σ<T}L

i,j
σ (Y )

∣∣∣ Fs]
+ E

[
hi,j1{σ=τ=T}

∣∣ Fs], (23)

and h, f , L and U are the data for (3) (see Definition 10).

(b) we have Y i,js = J i,js (σi,js , τ i,js ) where σi,js ∈ Ts and τ i,js ∈ Ts are stopping times
defined by, {

σi,js = inf{s ≤ t ≤ T : Y i,jt = Li,jt (Y )} ∧ T,
τ i,js = inf{s ≤ t ≤ T : Y i,jt = U i,jt (Y )} ∧ T,

(24)

and we use the convention that inf ∅ = +∞. Moreover,
(
σi,js , τ i,js

)
is a Nash equilibrium

for the Dynkin game,

J i,js (σ, τ i,js ) ≤ J i,js (σi,js , τ i,js ) ≤ J i,js (σi,js , τ) ∀σ ∈ Ts and τ ∈ Ts. (25)

Proof. Recalling the ordering (3)-(ii), the result follows from Proposition 2.2.1 of
[15], for example. �

We will use Proposition 1 and a dynamic programming argument to first establish
claim (i) of Theorem 3, then obtain (ii) as a corollary. Since (20) trivially holds when
s = T , let s ∈ [0, T ) and (i, j) ∈ Γ be arbitrary. Define a sequence (ρn, γn)n≥0 as
follows,

ρ0 = s, γ0 = (i, j) and for n ≥ 1, (26)

ρn = σγn−1
ρn−1

∧ τγn−1
ρn−1

, γn =


(
Lγn−1
ρn (Y ), γ

(2)
n−1

)
, on M+

n(
γ

(1)
n−1,U

γn−1
ρn (Y )

)
, on M−n

γn−1, otherwise

(27)

where σ
γn−1
ρn−1 and τ

γn−1
ρn−1 are defined using (24) above, Lγn−1

ρn and Uγn−1
ρn are obtained

from the switching selectors,
Li,jt (Y ) ∈ arg max

i1∈Γ1−{i}
{Y i1,jt − ĝi,i1t },

U i,jt (Y ) ∈ arg min
j1∈Γ2−{j}

{Y i,j1t + ǧj,j1t },
(28)

and for n ≥ 1, M+
n and M−n are the events,{

M+
n =

{
σ
γn−1
ρn−1 ≤ τ

γn−1
ρn−1 , σ

γn−1
ρn−1 < T

}
,

M−n =
{
τ
γn−1
ρn−1 < σ

γn−1
ρn−1

}
.
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Lemma 1. Under the conditions of Theorem 3 we have γ(α∗, β∗) ∈ Gi,js and Y i,js =
J i,js (γ(α∗, β∗)) a.s., where α∗ = (σ∗n, ξ

∗
n)n≥0 and β∗ = (τ∗n, ζ

∗
n)n≥0 are sequences defined

from (ρn, γn)n≥0 as follows,

σ∗0 = τ∗0 = s, (ξ∗0 , ζ
∗
0 ) = (i, j) and for n ≥ 1, (29){

σ∗n = inf{t ≥ σ∗n−1 : u
(1)
t 6= ξ∗n−1} ∧ T, ξ∗n = u

(1)
σ∗
n+,

τ∗n = inf{t ≥ τ∗n−1 : u
(2)
t 6= ζ∗n−1} ∧ T, ζ∗n = u

(2)
τ∗
n+,

(30)

where u is defined using (15).

Proof. We begin by establishing that α∗ ∈ Ais. The non-free loop property (6)
prevents accumulation of the switching times ρ∗n, in the sense that P({ρ∗n < T ∀n ≥
0}) = 0 (see, for example, [17, pp. 192–193]). Since σ∗n ≥ ρn for n ≥ 0, it follows that
P({σ∗n < T ∀n ≥ 0}) = 0. Also, the consistency property (4) ensures that it is not
optimal for a single player to switch twice at the same instant, so we have σ∗n < σ∗n+1

on {σ∗n < T} for n ≥ 1 (see [24] or [17]). By the construction of α∗, noting that u
(1)
σ∗
n+

is Fσ∗
n
-measurable since F is right-continuous, the remaining parts of Definition 3 are

satisfied, and α∗ ∈ Ais. Similarly β∗ ∈ Bjs.

We now prove that γ(α∗, β∗) ∈ Gi,js by proceeding in a similar manner to [17]. Using
(3)-(i) and (3)-(iii) together with the construction of ρ1 gives P-a.s.,

Y i,js =

∫ ρ1

s

f i,jt dt+ hi,j1{ρ1=T} + Y i,jρ1 1{ρ1<T} +

∫ ρ1

s

dKi,j,+
t −

∫ ρ1

s

dKi,j,−
t

−
∫ ρ1

s

Zi,jt dBt

=

∫ ρ1

s

f i,jt dt+ hi,j1{ρ1=T} + Y i,jρ1 1{ρ1<T} −
∫ ρ1

s

Zi,jt dBt.

By considering the first switch for either player we have

Y i,js =

∫ ρ1

s

f i,jt dt+ hi,j1{ρ1=T} +
(
Y
γ
(1)
1 ,j

σi,js
− ĝi,γ

(1)
1

σi,js

)
1{σi,js <T}1{σi,js ≤τ i,js }

+
(
Y
i,γ

(2)
1

τ i,js
+ ǧ

j,γ
(2)
1

τ i,js

)
1{τ i,js <σi,js } −

∫ ρ1

s

Zi,jt dBt

=

∫ ρ1

s

futt dt+ Y γ1ρ1 1{ρ1<T} + hγ01{ρ1=T} −
[
ĝ
γ
(1)
0 ,γ

(1)
1

ρ1 − ǧγ
(2)
0 ,γ

(2)
1

ρ1

]
−
∫ ρ1

s

Zutt dBt,

(to account for the event {ρ1 = T}, recall that ĝi,it = ǧj,jt = 0). Proceeding iteratively
for n = 1, . . . , N we obtain by substitution

Y i,js =

∫ ρN

s

futt dt+

N∑
n=1

hγn−11{ρn=T, ρn−1<T} −
N∑
n=1

[
ĝ
γ
(1)
n−1,γ

(1)
n

ρn − ǧγ
(2)
n−1,γ

(2)
n

ρn

]
+ Y γNρN 1{ρN<T} −

∫ ρN

s

Zutt dBt,

(31)
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from which we obtain

C
γ(α∗,β∗)
N = Y γNρN 1{ρN<T} − Y

i,j
s +

∫ ρN

s

futt dt+

N∑
n=1

hγn−11{ρn=T, ρn−1<T}

−
∫ ρN

s

Zutt dBt. (32)

Let Mu = (Mu
t )s≤t≤T denote the stochastic integral Mu

t =
∫ t
s
Zurr dBr, which is a

well-defined square-integrable martingale on [s, T ] [8]. Continuing from (32) we have
a.s.,

sup
N≥1

∣∣Cγ(α∗,β∗)
N

∣∣ ≤ ∫ T

s

|futt |dt+ max
(i,j)∈Γ

|hi,j |+ |Y i,js |+ max
(i,j)∈Γ

sup
s≤t≤T

|Y i,js |

+ sup
s≤t≤T

|Mu
t |. (33)

The right-hand side of (33) is a square-integrable random variable, thereby proving
γ(α∗, β∗) ∈ Gi,js .

It is now straightforward to prove Y i,js = J i,js (γ(α∗, β∗)) a.s. by taking condi-
tional expectations in (31) then passing to the limit N → ∞, which is justified since
γ(α∗, β∗) ∈ Gi,js ,

Y i,js = E

[∫ T

s

futt dt+ huT −
∞∑
n=1

[
ĝ
γ
(1)
n−1,γ

(1)
n

ρn − ǧγ
(2)
n−1,γ

(2)
n

ρn

] ∣∣∣ Fs]
= J i,js (γ(α∗, β∗)). (34)

�

For a given α = (σn, ξn)n≥0 ∈ Ais, let β∗(α) = (τn, ζn)n≥0 be the control for player 2
defined similarly to (29) with the sequence (ρn, γn)n≥0 constructed by,

ρ0 = s, γ0 = (i, j) and for n ≥ 1, (35)

ρn = σrn ∧ τγn−1
ρn−1

, γn =


(
ξrn , γ

(2)
n−1

)
, on M+

n(
γ

(1)
n−1,U

γn−1
ρn (Y )

)
, on M−n

γn−1, otherwise

(36)

where, reusing earlier notation, Uγn−1
ρn is obtained from (28), {rn}n≥0 is defined itera-

tively by r0 = 0, r1 = 1 and for n ≥ 2,

rn = rn−1 + 1{σrn−1
≤ τ

γn−2
ρn−2

},

and for n ≥ 1, M+
n and M−n are the events,{

M+
n = {σrn ≤ τ

γn−1
ρn−1 , σrn < T},

M−n = {τγn−1
ρn−1 < σrn}.

In an analogous manner using the lower switching selector L(Y ) in (28), for each β ∈ Bjs
we define α∗(β) ∈ Ajs for player 1. The following lemma points out key properties of
α∗ and β∗ utilised below to finish the proof of Theorem 3.
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Lemma 2.

(i) We have α∗ ∈ A i
s and β∗ ∈ Bj

s.

(ii) We have

ess sup
α∈Ais

J i,js
(
γ(α, β∗(α))

)
= Y i,js = ess inf

β∈Bjs
J i,js

(
γ(α∗(β), β)

)
. (37)

Proof.

Proof of (i): We only show β∗ ∈ Bj
s since the proof that α∗ ∈ A i

s follows by similar
arguments. Just as in the proof of Lemma 1, the construction of β∗(α) together with
the non-free loop and consistency properties are sufficient to establish that β∗(α) ∈ Bjs
for each α ∈ Ais. Moreover, β∗ satisfies the non-anticipative property in Definition 5
by construction. Let α ∈ Ais be given and let β∗(α) = β = (τn, ζn)n≥0 ∈ Bjs. To show
that this control is square-integrable we will proceed as in the proof of Lemma 1, to
obtain that a.s.,

Y i,js =

∫ ρ1

s

f i,jt dt+ hi,j1{ρ1=T} + Y i,jρ1 1{ρ1<T} +

∫ ρ1

s

dKi,j,+
t −

∫ ρ1

s

dKi,j,−
t

−
∫ ρ1

s

Zi,jt dBt

≥
∫ ρ1

s

futt dt+ hi,j1{ρ1=T} −
[
ĝ
i,γ

(1)
1

ρ1 − ǧj,γ
(2)
1

ρ1

]
+ Y γ1ρ1 1{ρ1<T} −

∫ ρ1

s

Zutt dBt,

where, in contrast to the proof of Lemma 1, here α is arbitrary and so γ
(1)
1 is not

necessarily optimal at time ρ1. This means the inequality Li,jρ1 (Y ) ≤ Y i,jρ1 must be

enforced and the non-negative term
∫ ρ1
s
dKi,j,+

t cannot be neglected. Proceeding
iteratively for n = 1, . . . , N it follows that

Y i,js ≥
∫ ρN

s

futt dt+
N∑
n=1

hγn−11{ρn=T, ρn−1<T} −
N∑
n=1

[
ĝ
γ
(1)
n−1,γ

(1)
n

ρn − ǧγ
(2)
n−1,γ

(2)
n

ρn

]
+ Y γNρN 1{ρN<T} −

∫ ρN

s

Zutt dBt, (38)

from which we obtain

N∑
n=1

ǧ
γ
(2)
n−1,γ

(2)
n

ρn ≤ −
∫ ρN

s

futt dt−
N∑
n=1

hγn−11{ρn=T, ρn−1<T} +

N∑
n=1

ĝ
γ
(1)
n−1,γ

(1)
n

ρn

+ Y i,js − Y γNρN 1{ρN<T} +

∫ ρN

s

Zutt dBt. (39)

We note that P({ρN < T ∀N ≥ 1}) = 0 and the limits as N → ∞ on both sides of
(39) are well defined. As the switching costs are non-negative we have

0 ≤
∑
n≥1

ǧζn−1,ζn
τn ≤ −

∫ T

s

futt dt− huT +
∑
n≥1

ĝξn−1,ξn
σn + Y i,js +

∫ T

s

Zutt dBt. (40)
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Since α ∈ Ais, Y i,j ∈ S2
c , hi,j ∈ L2(FT ), and f i,j , Zi,j belong to H2 for all (i, j) ∈ Γ,

the random variable on the right-hand side of (40) belongs to L2 and we conclude that
the control β is square-integrable.

Proof of (ii): We only show the first equality in (37) as the second follows via similar
arguments. We proceed by showing that for every α ∈ Ais we have,

Y i,js ≥ J i,js
(
γ(α, β∗(α))

)
. (41)

Taking conditional expectations in (38) above we get,

Y i,js ≥ E

[∫ ρN

s

futt dt+
N∑
n=1

hγn−11{ρn=T, ρn−1<T} −
N∑
n=1

[
ĝ
γ
(1)
n−1,γ

(1)
n

ρn − ǧγ
(2)
n−1,γ

(2)
n

ρn

] ∣∣∣ Fs]
+ E

[
Y γNρN 1{ρN<T}|Fs

]
. (42)

Using (i) above we have γ
(
α, β∗(α)

)
∈ Gi,js , so taking the limit N →∞ in (42) proves

the inequality (41).
Next, for each integer k ≥ 0 let α∗k denote the truncation of the control α∗ from

Lemma 1 to the first k switches: α∗k =
(
σ∗n, ξ

∗
n)0≤n≤k with (T, ξ∗k) appended. Then α∗k ∈

Ais for each k and J i,js
(
γ
(
α∗k, β

∗(α∗k)
))
→ J i,js

(
γ
(
α∗, β∗(α∗)

))
by the non-anticipative

properties of β∗ and as γ
(
α∗, β∗(α∗)

)
∈ Gi,js . The claim

ess sup
α∈Ais

J i,js
(
γ(α, β∗(α))

)
= Y i,js ,

is then proved by passing to the limit k →∞ in,

J i,js
(
γ
(
α∗k, β

∗(α∗k)
))
≤ ess sup

α∈Ais
J i,js

(
γ(α, β∗(α))

)
≤ Y i,js ,

and using Lemma 1. �

Proof of Theorem 3.

Proof of (i): By construction we have α∗ = α∗(β∗) and β∗ = β∗(α∗) so that, by
Lemma 1,

Y i,js = J i,js
(
γ(α∗, β∗)

)
= J i,js

(
γ(α∗(β∗), β∗)

)
= J i,js

(
γ(α∗, β∗(α∗))

)
, (43)

and by Lemma 2,

ess sup
α∈Ais

J i,js
(
γ(α, β∗(α))

)
= Y i,js = ess inf

β∈Bjs
J i,js

(
γ(α∗(β), β)

)
.

Since β∗(α) ∈ Bjs for every α ∈ Ais and α∗(β) ∈ Ais for every β ∈ Bjs, almost surely we
have,

V̂ i,js := ess inf
β∈Bjs

ess sup
α∈Ais

J i,js
(
γ(α, β)

)
≤ Y i,js ≤ ess sup

α∈Ais
ess inf
β∈Bjs

J i,js
(
γ(α, β)

)
=: V̌ i,js ,

which completes the proof since V̂ i,js ≥ V̌ i,js a.s.
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Proof of (ii): For all α ∈ A i
s we have a.s.,

ess inf
β∈Bjs

J i,js
(
γ(α(β), β)

)
≤ ess inf

β∈Bjs
ess sup
α∈Ais

J i,js
(
γ(α, β)

)
= Y i,js = ess inf

β∈Bjs
J i,js

(
γ(α∗(β), β)

)
,

and the corresponding statement for β∗ is proved analogously. Since α∗ ∈ A i
s and

β∗ ∈ Bj
s the proof is complete. �

Remark 4. In proving Theorem 3 we established the following. For players 1 and 2
respectively there exist non-anticipative strategies α∗ and β∗ as well as controls α∗ and
β∗ which satisfy the following,

• the controls α∗, β∗ and non-anticipative strategies α∗, β∗ are related by α∗ =
α∗(β∗) and β∗ = β∗(α∗);

• α∗ and β∗ are jointly admissible;

• when player 2 (the minimiser) uses the non-anticipative strategy β∗, then the
use of the control α∗ by player 1 (the maximiser) gives the maximum possible
value for the switching game over all controls α such that (α, β∗(α)) is jointly
admissible, including all square-integrable controls α;

• when player 1 uses the non-anticipative strategy α∗, then the use of the control
β∗ by player 2 gives the minimum possible value for the switching game over
all controls β such that (α∗(β), β) is jointly admissible, including all square-
integrable controls β;

• the strategies α∗ and β∗ are best responses in the robust sense [22, 1, 2].

Let us emphasise that α∗ is not necessarily a best response strategy in the sense,

J i,js
(
γ(α∗(β), β)

)
= ess sup

α∈Ais
J i,js

(
γ(α, β)

)
∀β ∈ Bjs,

and correspondingly for β∗. In the game with initial data (s, i, j), for player 1 we can
define a mapping α : Bjs → Ais such that for each β ∈ Bjs a.s.,

J i,js
(
γ(α(β), β)

)
≥ J i,js

(
γ(α, β)

)
a.s. ∀α ∈ Ais,

but this mapping is generally not non-anticipative since its output α(β) can depend on
the entire trajectory corresponding to the input β. For example, let β ∈ Bjs be a given
switching control for player 2. We denote by uβ the stochastic process that indicates
player 2’s current mode according to β,

uβt = ζ01[τ0,τ1](t) +
∑
n≥1

ζn1(τn,τn+1](t), t ∈ [s, T ].

For i ∈ Γ1 and t ∈ [s, T ], let f̃ it (β) = f
i,uβt
t denote the controllable part of player 1’s

instantaneous reward when player 2’s switching control β is given and fixed. Similarly,

let h̃is,T (β) := hi,u
β
T +

∑∞
n=1 ǧ

ζn−1,ζn
τn 1{τn≥s} denote the controllable part of player 1’s

terminal reward given player 2’s switching control β, and inclusive of the payments
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received from player 2’s switching costs ǧ
ζn−1,ζn
τn from time s onwards. With these

definitions we can evaluate a control α ∈ Ais for player 1 according to,

J̃ is(α;β) = E

[∫ T

s

f̃
uαt
t (β) dt−

∞∑
n=1

ĝξn−1,ξn
σn + h̃

uαT
s,T (β)

∣∣∣ Fs] , α ∈ Ais, (44)

and define the corresponding optimal value Ṽ is (β) = ess supα∈Ais J̃
i
s(α;β). Using the

results in [11, 24], we can prove the existence of an optimal control α∗ ∈ Ais for
this problem. The non-anticipativity issue arises from the dependence of (44) on the
expected future rewards due to player 2’s control β.
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