
 

1 

 

Preprint; cite as Soft Matter 13 (2017) 8829-8848 

 

Adsorption Parameters and Phase Behaviour of Non-Ionic Surfactants 

at Liquid Interfaces 

 
Radomir Iliev Slavchov1,*, Ivan Boyanov Ivanov2 

 

1Department of Chemical Engineering and Biotechnology, Cambridge University, UK, CB3 0AS Cambridge, 

Philippa Fawcett Drive, West Site 

E-mail: ris26@cam.ac.uk 

2Laboratory of Chemical Physics and Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 

Sofia, Bulgaria 

E-mail:  ii@lcpe.uni-sofia.bg 

 

Abstract. A reasonable adsorption model is one that allows all adsorption parameters (adsorption 

constant, hard-disc area , attraction parameter ) of a surfactant at a liquid interface to be predicted 

accurately as function of molecular structure and medium conditions. However, the established 

adsorption models of van der Waals and Frumkin lead to inconsistencies, such as negative  at 

water|oil,  significantly larger than the crystallographic area of the molecule, and phase behaviour 

that contradicts the experimental observations. Several less popular models that are better suited for 

liquid interfaces are investigated. It is shown that the sticky disc model agrees with the observed 

adsorption behaviour of several homologous series of surfactants, both at water|air and water|oil 

interfaces. The area  is independent of the interface and agrees within 6% to what follows from 

collapse and crystallographic data. A model of the lateral attraction is proposed, from which it follows 

that  has strongly non-linear dependence on the hydrocarbon chain length, the area of the head group 

and the temperature. Using the model of , experimental data, and the law of corresponding states, the 

critical point of the adsorbed layer could be determined. Depending on the value of , the adsorption 

behaviour of the surfactants at liquid interfaces can be classified into distinct categories: cohesive or 

non-cohesive, based on their Boyle points (where  = 2), and sub-critical or super-critical, based on 

their critical points (where  = 38.1). 

Keywords: adsorption; non-ionic surfactant; steric repulsion; liquid expanded; 

attraction parameter. 

mailto:ris26@cam.ac.uk
mailto:ii@lcpe.uni-sofia.bg


2 

 

 

 

 

 

Graphical abstract 

 

1. Introduction 

The interest toward the relationship between surfactant structure and surface activity is constantly 

increasing [1-8]. A large amount of experimental data for the adsorption of surfactants at liquid surfaces, 

water|air (W|A) or water|oil (W|O), has been accumulated [1]. New techniques such as dynamic 

tensiometry, optical techniques, X-ray diffraction, etc., allowed better understanding of the properties of 

soluble surfactants [9-13]. This has been an impetus for new theoretical developments: novel 

mechanistic models of adsorption [14-18,6] were proposed, which are more suitable for liquid interfaces 

than the traditional models, based on Langmuir or Volmer isotherm. The adsorption parameters of these 

models were related to both surfactant structure and medium properties [6-8]. 

 The classical studies of adsorption dealt mostly with isotherms of insoluble surfactants (obtained 

with the Langmuir trough technique [19-21]) relating surface pressure S and area per molecule a. These 

works revealed the complex phase behaviour of the monolayers. The phase diagram and the empirical 

equations of state (EOS) found by these studies resemble the phase behaviour of normal 3-dimensional 

(3-D) matter [22]. Adam [22,19] noticed that in the region between the gaseous and the solid-like state 

of the insoluble monolayers, there is a state of intermediate compressibility, which was called “liquid 

expanded (LE) state”. Davies named the respective monolayers “cohesive” [23,24]. Langmuir concluded 

that the state of a LE monolayer is structureless, liquid-like [20]; direct evidence for that was later given 

[10]. The gaseous-LE phase transition was investigated in detail by Kim and Cannell [25], who 
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determined the critical point for undissociated pentadecanoic acid. 

 The main source of experimental information for the adsorption of soluble surfactants at liquid 

interfaces is the dependence of the interfacial tension on the surfactant bulk concentration C [1,21]. 

Tensiometric data for soluble monolayers are more difficult for interpretation than the S(a) isotherms 

for insoluble surfactants. Indeed, it is difficult to distinguish between 1st order phase transition from 

gaseous to liquid expanded monolayer (corresponding to a break of the 1st derivative of (C), cf. S10) 

and supercritical transition (corresponding to an inflection point) [5,6]. The techniques for direct 

observation of the surface phase transition, such as Brewster angle microscopy [26] and fluorescence 

microscopy [27], are harder to apply to soluble monolayers. Only recently the gaseous-to-LE transition 

was observed directly with soluble surfactants [9]. 

 The study of the adsorption of non-ionic surfactants at W|O interface was lagging behind W|A, since 

non-ionic surfactants are soluble in the oil phase. This makes Langmuir trough unusable (with few 

exceptions [28]). The adsorption is complicated by the accompanying processes of partitioning and 

surfactant association in the oil phase [29-32]. On the other hand, W|O is the more interesting interface 

in technology, as water-oil emulsions are wide-spread in petroleum [33,34] and food [34] industry. The 

adsorption of resins and asphaltenes at W|O is a key question in processes such as water flooding used 

to enhance oil recovery [34,35], and in water separation techniques [33]. In automotive engines, the 

lubricant is constantly diluted with water produced by the combustion process; the water-in-lubricant 

emulsion must be stabilized by the dispersants and detergents in the lubricant to decrease droplet size 

and avoid wear [36]. In fuel, even traces of water droplets have adverse effects on the operation of 

engines, causing corrosion [37], salty deposits [38] and increased risk of sparks [39]; water filters are 

present in the fuel delivery system to separate water droplets stabilized by non-ionic amphiphilic fuel 

components. 

 The most widely used approach in the theory of the adsorbed layers is based on the analysis of the 

famous van der Waals EOS (adapted from the theory of bulk phase equilibria, cf. e.g. Refs. [40,41]). Its 

main assumption is that there is a continuous transition between the two phases involved (gas and liquid), 

which can be described by a single EOS (a construction first proposed by Thomson [42]). We will refer 

to this approach as continual. This approach is usually used for soluble monolayers [1,5,14-16] (and 

rarely for insoluble). All of the most popular equations of state for soluble monolayers – van der Waals, 

Frumkin – are of the continual type. Another approach is to treat each phase which is stable under given 

conditions as a separate entity with an equation of state of its own. We call this approach partial. The 

partial EOS is generally assumed valid only in the interval between the two transition points confining 
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the respective phase state. This approach was used for defining the common EOS of insoluble 

monolayers [19,20,43]. 

 The constitutive relations of the adsorption layer involve a set of adsorption parameters, which are 

functions of the surfactant structure and the medium properties. The most important parameter is the 

adsorption constant Ka, related to the change of Gibbs energy of the molecule upon its transfer from the 

bulk of the solution to the interface. The other parameters are related to the lateral interactions between 

the molecules in the monolayer (actual area per molecule , attraction constant ). A key problem in the 

investigations of adsorption is the analysis of the dependence of these parameters on surfactant’s 

structure (length n of the alkyl chain, structure of the head, etc.), the interface type (W|A, W|O) and the 

medium properties (composition of the oil phase, temperature, etc.). 

 The adsorption constant Ka is by far the best studied adsorption parameter [44-47,24,6]. A useful 

theory of Ka was recently advanced by our group [46,7,8] which allows predicting the absolute value of 

Ka. The correct interpretation of the interaction parameters  and  turned out to be strongly dependent 

on the use of a correct adsorption isotherm for the analysis of experimental tensiometric data. The use 

of the EOS of Langmuir or Volmer (which are only qualitatively correct) allows some qualitative trends 

of the dependence of their  and  parameters on the conditions to be revealed, but the absolute values 

of the parameters cannot be reliably predicted [3,7]. In some cases, the use of unsuitable isotherm might 

even lead to inconsistent results [7]. A physically sensible model should be able not only to fit the 

experimental data, but all parameters involved should be related appropriately to molecular structure. It 

will be shown here that, if one uses EOS and adsorption isotherm with firm theortical basis, all 

adsorption parameters involved can be calculated by means of molecular models without adjustable 

parameters. 

 Our ultimate task here is to test the performance of several continual models against tensiometric 

data at both W|A and W|O interface, and to provide recipes allowing the prediction of all main 

macroscopic characteristics of a monolayer. This involves, first, the qualitative characteristics such as 

cohesive or non-cohesive, supercritical or subcritical behaviour; and second, the quantitative prediction 

of all involved adsorption parameters and their dependence on the surfactant structure and the medium 

conditions. In a companion paper, we will compare these results with those obtained by the lesser-known 

partial equations of state, which are better suited for long-chained surfactants at W|A. 

 We begin by presenting briefly in Sec. 1.1 the concept of cohesive and non-cohesive behaviour and 

formulating criteria for distinguishing between them. In Sec. 2.1 we review critically the basic models 

of the adsorbed layer (we call “adsorption model” the combination of EOS and adsorption isotherm), 
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including the unpopular but very reasonable hard disc model of Helfand, Frisch and Lebowitz [48] and 

the sticky disc model of Ivanov et al. [15,14,7]. Our theory of the adsorption constant Ka is presented in 

Sec. 2.2. A formula for the controversial attraction parameter  is derived in Sec. 2.3. Procedures for 

experimental determination (both direct and from fit by an experimental model) of the adsorption 

parameters Ka,  and  are developed (in Sec. 3), and applied to several several homologous series of 

wide-spread non-ionic amphiphiles: alcohols, acids (which are of interest as model degradation products 

of the autooxidation of diesel and lubicants [49]), N-alkylglycines (used as corrosion inhibitors in fuels 

and lubricants), and alkylphosphinoxides (which exhibit a pronounced transition from non-cohesive to 

cohesive behaviour with the increase of their chain length [8]). The phase behaviour of the adsorbtion 

layer is investigated in Sec. 3.6. 

 

1.1. Phenomenology of the effect of lateral intermolecular interaction on the 

adsorption behaviour: non-cohesive and cohesive monolayers 

The tensiometric data for various soluble surfactants at W|A and W|O interfaces can be divided into two 

classes: cohesive and non-cohesive isotherms [8]. Examples of those are given in Fig. 1 with the 

experimental dependence of the surface/interfacial pressure S on concentration C of decanol in the 

water phase for W|O and W|A interfaces (S ≡ 0 – , where 0 is the surface/interfacial tension of the 

pure interface). Solid circles stand for the W|O experimental data of Aveyard et al. [29-31] processed as 

described in S3. Empty circles and squares are data for W|A from Refs. [50-53]. 

 At W|O, the interfacial tension is a function of decanol concentration with monotonous 1st 

derivative; the S(C) isotherm begins with a linear (Henry’s) region at low concentration and then 

gradually bends with the increase of C, without inflection point – we call such behaviour non-cohesive. 

The isotherm is convex; the negative deviation from ideality is a sign of predominance of repulsive 

forces over lateral attraction between the molecules in the adsorption layer. 

 At W|A and low concentration of decanol, there is a Henry’s region where S is a linear function of 

C with zero intercept (Fig. 1, line “gaseous”). At certain concentration, the slope abruptly increases – 

we call this kink point of transition. The behaviour after the kink is also approximately linear, but with 

negative intercept (designated with coh in Fig. 1). At still higher concentrations the isotherm becomes 

convex similarly to that at W|O. We call such behaviour cohesive. The kink may indicate phase transition 

or a sharp supercritical transition between two phases, cf. S10. We will show in Sec. 3.6 that for all 

surfactants studied by us this transition is most likely supercritical. The region before the kink 
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corresponds to gaseous monolayer, while the features of the region after the kink are indicative of liquid 

expanded (LE) state [6,8]. The intercept coh for soluble surfactants is giving the so-called cohesive 

(spreading) pressure introduced by Langmuir [20,6,8] for insoluble monolayers. 

 The kink can be observed only if enough data are available at the lowest concentration in the gaseous 

region. Often, due to the absence of data in the Henry’s region, one has to use other criteria for 

distinguishing between cohesive and non-cohesive behaviour. A negative intercept of the initial portion 

of the S(C) curve after the kink is indicative of cohesive interaction – this can be used as a second 

criterion for existence of the LE state [8]. A third criterion is the value of the adsorption energy CH2 

of a –CH2– group. Since in the LE state the adsorbed molecules are in a oil-like environment, CH2 has 

the same value, 1.39×kBT, as for W|O interface, in contrast to the adsorption energy in the gaseous region 

which coincides with the known value of CH2 = 1.04×kBT for dilute adsorption layers at W|A [8]. 

 Usually, the S(C) isotherms at W|O are non-cohesive. W|A isotherms are cohesive, except for 

surfactants of short hydrophobic chain which behave non-cohesively even at W|A. 

 

Fig. 1. Comparison between the surface and interfacial pressure isotherms, S vs. decanol concentration C in 

water, at W|A and W|O interfaces. This surfactant behaves non-cohesively at W|O and cohesively at W|A. Data 

from Refs. [29-31,50-53] have been used. The W|O line is a quadratic fit with the virial expansion (6), cf. Sec. 

3.1 for details; the other lines are to guide the eye. 
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2. Adsorption models for surfactants at liquid interfaces 

 

2.1. Basic continual models of the adsorbed layer 

 

2.1.1. Hard-disc fluid 

As mentioned in Sec. 1.1, the deviation from ideality observed with the non-cohesive adsorption layers 

is due to the predominance of the repulsive forces over attraction. Therefore, one may expect that all 

main features of the non-cohesive behaviour will be grasped by a model based on two-dimensional hard 

disc fluid. A simple, nearly exact equation of state (EOS) of such fluid was derived by Helfand, Frisch 

and Lebowitz (HFL) [48]: 

  
2S

B/ / 1k T      (HFL),        (1) 

where  is adsorption,  is the actual area of the adsorbed molecule, kB is Boltzmann constant, T is 

temperature. From the EOS (1) and the Gibbs isotherm, dS = dS, one can obtain the dependence of 

the chemical potential S of the surfactant in the adsorbed layer on the adsorption : 

 S S S

0 B lnk T     ,   where  

      
2Sln ln 1 3 2 / 1          .       (2) 

Here S is the surface activity coefficient and0
S
 is the standard chemical potential of the surfactant at 

the interface. Eq. (2) was obtained by Buff and Stillinger who used it in their model of ions in the 

Helmholtz layer at an electrode surface (Eqs. 41&42 of Ref. [54]). The adsorption isotherm of a non-

ideal adsorption layer can be obtained by setting in (2) S = B, where B = 0
B
 + kBTlnC is the chemical 

potential of the surfactant in the bulk solution and0
B
 is the respective standard potential. This condition 

for equilibrium yields: 

 KaC = S,      where      B S

a 0 0 Bexp ( ) /K k T     .       (3) 

Here, Ka is the adsorption constant of the surfactant. Substituting S from Eq. (2) into Eq. (3), one obtains 

the HFL adsorption isotherm: 

 
 

 
a 2

3 2
exp

1 1
K C

 

 

 
  

   

.        (4) 

This isotherm was derived by Ivanov et al. [46]. For a non-ideal bulk solution, the concentration C in 
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Eqs. (3)-(4) must be replaced by the bulk activity of the surfactant, C, where  is the bulk activity 

coefficient. Eqs. (1)&(4) define parametrically (with parameter ) the surface pressure isotherm S(C) 

corresponding to the Helfand-Frisch-Lebowitz model. 

 Other equations of state for two-dimensional hard-disc fluid have been extensively used in the 

literature. The most popular are those of Langmuir (which is rigorously valid only for localized 

adsorption at solid surfaces [55,56]) and of Volmer (which is rigorously valid only for fluid of hard rods 

adsorbed on a line [57,58]): 

  S 1

B L L/ ln 1k T       (Langmuir); 

  S

B V/ / 1k T       (Volmer).       (5) 

When applied to 2-D fluid, these EOS account only approximately for the effect of the area parameter 

 on the adsorption behaviour, i.e. on the functions S() and S(). Comparison of these equations and 

their extensions for attracting particles (the EOS of Frumkin [59] and van der Waals [60,61]) with 

tensiometric data usually yield only the correct order of magnitude for the molecular areas of various 

surfactants [1,5]. However, the obtained values of the respective area parameters L and V differ from 

those obtained from molecular geometry or crystallographic data [7,8]. 

 The HFL model is particularly convenient for adsorption at W|O, where the lateral attraction 

between hydrocarbon chains is small [62,8] and can be usually disregarded. HFL model can be also used 

as a first approximation for non-cohesive isotherms at W|A [8], but since in this case the attractive forces 

are non-negligible, the value of the area  obtained with HFL is by few Å2 smaller than the one following 

from, e.g., crystallographic data [8]. 

 

2.1.2. Continual models involving lateral attraction 

The simplest model accounting for the lateral interaction in the adsorption layer is the virial expansion 

of the surface pressure isotherm S(C), which can be represented as 

  
2S

B a 2 a/ k T K C B K C    (virial expansion).      (6) 

Here B2 is the second virial coefficient. This equation follows from the standard virial expansion S/kBT 

=  + B22 and the corresponding adsorption isotherm1. According to Eq. (6), if B2 > 0 (repulsion is 

dominating), negative deviations from ideality in the SC) isotherm will occur (as in Fig. 1, W|O data). 

 The most widely used models taking into account the attractive interactions between the adsorbed 

molecules are the Frumkin and the two-dimensional van der Waals model2 (indexed “vdW” below). 
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Frumkin [59], Volmer and Mahnert [60] and later – de Boer [61] corrected empirically the hard-disc 

EOS (5), with the addition of an attractive term, –L2 to Langmuir’s and –V2 to Volmer’s EOS: 

  
S

2

L L L

B L

1
ln 1

k T


    


      (Frumkin); 

 
S

2

V V

B V1k T

 
  

 
 


  (vdW).       (7) 

Smith [63] did the same with the HFL EOS (1) to obtain: 

 
 

S
2

2

B 1k T

 



 


  (SIAL).       (8) 

Ivanov et al. [46] used Eq. (8) along with Gibbs isotherm, to derive the corresponding adsorption 

isotherm: 

 
 

 
a 2

3 2
exp 2

1 1
K C

 


 

 
  

   

.       (9) 

We refer to Eqs. (8)-(9) as to Smith-Ivanov-Ananthapadmanabhan-Lips (SIAL) model. 

 The correction of the hard-disc EOS for the attractive forces by the addition of a term of the type –

2 is valid for binary interactions (i.e. at low surface density [64]), but it is by no means justified for 

dense monolayers. A more consistent approach to the attractive part of the EOS was proposed by Ivanov 

et al. [15,14,7]. These authors were able to derive an exact equation of state for 1-D gas of hard rods 

with sticky attractive potential, which accounts correctly both for attraction and repulsion in the 1-D 

case at any surface coverage [14]. Ivanov et al. further extended their 1-D results to the 2-D case3 by 

deriving a new EOS in which a term for the intermolecular attraction, similar to that for the 1-D system, 

is combined with a repulsive factor /(1–)2 identical to HFL surface pressure [14]. The final result 

was the following 2-D EOS: 

 
   

S

2

B

12

1 2 11

R

k T R





 

 


  

 
 (SD),      (10) 

where R stands for the expression 

 
contact1 16 1 4

1 1
R

 
 

 
   

 
.       (11) 

Here contact is the contact parameter of the sticky potential, used by Ivanov et al. [15], which is related 

simply to the attraction parameter:  = 4contact [7]. By using the Gibbs adsorption isotherm, the 

corresponding isotherm was derived: 
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 

 

2 1/

a 2

4 32 2
exp

1 1 11
K C

R R



 

 

 


   

          

.     (12) 

Eqs. (10)-(12) will be referred to as sticky disc model (SD) below.  

 The SIAL and the SD models have the advantage to predict correctly the theoretical second virial 

coefficient, B2 = 2 –  (cf. Sec. 2.3 below). In addition to this, the SD model, Eqs. (10)-(12), has a 

value of the third virial coefficient that is nearly exact in comparison with that of a sticky disc 2-D fluid 

[15]. Comparison with experimental data for undissociated acids and alkylphosphineoxides has been 

made [15]. Eqs. (10)-(12) were generalized to the case of ionic surfactants, and compared to data for 

dodecylsulfate and dodecyltrimethylammonium salts [7]. 

 The EOS and the adsorption isotherms of the continual models discussed in this section are 

summarized in the S1, Table S1. 

 

2.2. The adsorption constant Ka 

The adsorption constant Ka was related to the surfactant structure and the parameters of the media 

(temperature, bulk compositions etc.) by Ivanov et al. [46,7,8] who proposed a model of the interaction 

free energy4 (z) of a surfactant molecule with the interface. The final formula for Ka reads: 

 a a a Bexp( / )K E k T ,          (13) 

where a is the adsorption length, and Ea is the adsorption free energy. For readers’ convenience, the 

derivation of this formula, together with a summary of the features of the model, is presented in S2. The 

result for the adsorption length reads: 

 
2 2a CH B CH/ 2Δl k T  ;          (14) 

here CH2 is the change of the free energy of a single –CH2– group upon its transfer from the 

hydrophobic phase to the water phase (CH2 > 0) and lCH2 is the length of a –CH2– group along the 

hydrophobic chain (lCH2 =1.26 Å [62,65]). The adsorption free energy stands for the expression: 

  
2 3a CH CH 0 head1 Δ Δ ΔE n          .       (14)

Here, (n 1)CH2 + CH3 is the contribution of the hydrophobic solvation of the surfactant’s linear 

hydrocarbon chain (n is the number of the carbon atoms in it, and CH3 is the transfer energy of a CH3 

group). The term –0 was introduced in Refs. [46,7,6]. It accounts for the fact that upon adsorption, 

the hydrocarbon chain penetrates the interface which leads to disappearance of a portion of pure 

interface of interfacial tension 0 and area  (close to the crystallographic area of the chain). Finally, 
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the empirical constant head encompasses several effects: (i) The interaction between the hydrophilic 

head group and the interface. (ii) Possible appearance of an induced dipole moment in the –CH2– group 

adjacent to the polar hydrophilic head, which acts oppositely to the hydrophobic effect and leads to 

immersion of the methylene group into the water phase (cf. chap. 3 of Ref. [65]). (iii) Changes in the 

internal degrees of freedom (vibration and internal rotation) of the molecule upon adsorption. The last 

effect is involved to a certain extent in the transfer energies CH2 and CH3: since we are using 

experimental values for them, it is probably accounted for implicitly in our model. The contribution of 

the factors (i-iii) to head will be analysed post-factum, by comparing theoretical results with the 

experimental data (Sec. 3.1).  

 The final result (13) for the adsorption constant, Ka = aexp(Ea/kBT), formally coincides with the 

widely used formula of Davies and Rideal [24]. They assumed, however, that a is the length of the 

hydrophobic chain (which is very different from Eq. (14)), and disregarded the contributions of CH3 

and the lost interface to Ea. Ivanov’s definition of the adsorption length a is similar to the one occurring 

in the theory of adsorption of spherical molecules at solid interfaces [56] in the sense that it involves 

only factors related to the kinetic energy (translation and rotation) of the adsorbed molecules.  

 

2.3. The attraction parameter  

A rigorous expression for the second virial coefficient B2 of 3-D fluid of hard spheres of radius R 

interacting with each other with an attractive potential uattr(r) is given by Eq. 5.3 in Ref. [66]. Modifying 

this expression for the case of interacting hard discs, one obtains: 

  B/

2

0

π e 1 d 2
u k T

B r r  



     ,        (15) 

where r is the distance between two particles, and  = R2. The dimensionless quantity  in Eq. (15) 

stands for the integral: 

  attr B/

2

2

1
e 1 d

u k T

R

r r
R





  .         (16) 

It is known in the literature as attraction parameter [1]. The 2 term in Eq. (15) is the repulsive hard-

disc part of the virial coefficient. Since Eq. (15) is an exact result of the statistical thermodynamics, any 

EOS based on hard discs models must be concordant with it. However, the expansions of the most 

popular Frumkin and van der Waals Eqs. (7) lead to different results [7], namely: 
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  S 2

B L L L/ / 2 ...k T          (Frumkin)   and 

  S 2

B V V V/ ...k T          (vdW),   i.e. 

 B2 = L/2 – LL   and   B2 = V – VV.        (17) 

Following the classical statistical derivation of the 3-dimensional van der Waals EOS (§76 of Landau 

and Lifshitz [64]), one can relate the L,V and L,V parameters of Frumkin and the 2-dimensional van der 

Waals EOS (7) to the actual area  and the actual attraction parameter (16). This is usually done by 

setting equal separately the repulsive (hard-disc) and the attractive components of Eqs. (15)&(17): 

 L = 4;      L = /4;  (Frumkin) 

 V = 2;      V = /2.  (vdW)        (18) 

According to Eqs. (18), the areas V and L differ from the real area of the molecule  and the same is 

valid for the attraction parameters (cf. also [63]). As pointed out by Landau and Lifshitz, the relations 

(18) are conditions for interpolation [64] but this interpolation is not unique. Indeed, instead of Eq. (18)

, most authors assume that the values of V or L, determined experimentally by using the respective 

EOS, are equal to the true geometrical area  = R2 of the molecule (e.g. Refs. [1,2,4,5]). However, if 

one assumes that L =  or V = , then a different definition is needed also for L and V instead of Eq. 

(18). They must be defined so that the respective EOS yield the correct value of B2 given by Eq. (15). 

Hence, setting B2 from Eq. (15) equal to B2 from Eqs. (17), one obtains: 

 L = ;      L =  – 3/2   (Frumkin); 

 V = ;      V =  – 1  (vdW).        (19) 

Therefore, if L =  or V =  is assumed, the values of L and V turn out to be significantly lower 

(even negative) than the correct respective value of  following from the definition (16). To the best of 

our knowledge, Eq. (19) has not been derived before. We will discuss it briefly, since it is important for 

the understanding of the physical meaning of the values of the parameters L and V obtained in the 

literature. The problems stemming from the definition (19) of V and L are best illustrated by the 

consideration of the adsorption of non-ionic surfactants at W|O interfaces. Such systems must exhibit 

little or no lateral attraction, i.e. uattr ≈ 0 [62]. According to Eq. (16), the true attraction parameter must 

then be  ≈ 0. However, it follows from Eqs. (19) that the value  = 0 corresponds to L = 3/2 and V 

= 1. For the similar case of weakly interacting non-cohesive surfactants at W|A, the EOS of Frumkin 

and van der Waals must also lead to negative values of L and V, while the true attraction parameter is 

small positive. This fact explains the “confusing” reports of some authors about negative values of L 
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and V of some short-chain surfactants (e.g., Refs. [2,4], tables 3.6,3.8&3.10 of Ref. [1], etc.). 

 Another important problem with the interpretation of the parameters of the EOS is that some authors 

[47], working with Frumkin or van der Waals EOS, use simultaneously Eqs. (18) and (19): for example, 

they assume that the area L or V is the actual area (as in Eq. (19)) but define the attraction parameter 

as V = /2 as it is according to Eq. (18), which is not legitimate. 

 Further discussion on the relation between V, L and the real area  can be found in Refs. [46,7,67]. 

Briefly, it was shown by Ivanov et al. [46,7] that the results (18) (L = 4 and V = 2) are correct only 

at  → 0, while the relations L = V = , cf. Eqs. (19), are reached only at  → 1/. 

 Eq. (16) allows the calculation of  provided that uattr(r) is known. A first approximation for uattr(r) 

was proposed in Ref. [46], based on the following assumptions: (i) At r > 2R, the adsorbed molecules 

interact with attractive London interaction, which is the sum of the London potentials –LCH2/|r1 – r2|
6 

between the –CH2– groups composing the hydrocarbon chain; r1 and r2 are the vector-positions of two 

–CH2– groups and LCH2 = 4.24×10–78 m6J [62] is the respective London constant. (ii) The molecules are 

perpendicular to the interface. (iii) Water molecules are not involved in the interaction. (iv) The effect 

of the orientation of the C–C and C–H bonds on London’s interaction [66] is neglected. The tails of the 

surfactant molecules were modelled as lines of uniform linear molecular density lCH2. Under these 

assumptions, uattr(r) is the total interaction between the two hydrophobic tails; it is given by: 

 

 

CH CH2 2
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attr 3 2 5 2 2 222
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1 2
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u r
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 

  ,  (20) 

where z1 and z2 are the vertical coordinates of the interacting –CH2– groups. Similar model was used by 

Israelashvili for the computation of the heat of sublimation of alkanes (sec. 6.2 in Ref. [62]). 

 To calculate , one substitutes into its definition (16) the expression (20) for uattr. To facilitate the 

calculation, it is convenient to change the integration variable by setting r = nlCH2 r
~
. The result is: 

  
2

5

2 /π

1
3arctan

π 1, exp 1 d
4
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r rT r r
Tr


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
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 ,      (21) 

where the dimensionless temperature and area are defined as: 

 
2 2

4 6

CH B CH/T n l k T L ,     
2

2 2

CH/ n l  .        (22) 

The integration of Eq. (21) is performed numerically and the results for  as a function of  and n are 

presented in Fig. 2. In Ref. [15], the expression (21) was used for surfactants with relatively large head 
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groups. For this case, the exponent under the integral can be expanded into series up to the linear term. 

This leads to an analytical formula for  [15]. However, even for short chain lengths, the linear expansion 

deviates significantly from the exact result (21) – this is demonstrated in S5. Therefore, when comparing 

the model for  with experimental data, we will use only the exact Eq. (21). 

 Smith [63] used a different approach to calculate . He represented the hydrophobic chains as stacks 

of n small cylinders of length lCH2 and assumed that each of them interacts only with its closest neighbour 

from the adjacent molecule. He considered the hydrophilic head group and the terminal –CH3 as being 

equivalent to one –CH2– each; in other words, he assumed that  

 (n) = (n+1)1.            (23) 

He used the value 1 = 0.49, obtained from the experimental second virial coefficient of CH4 [63]. The 

expression (23) for  was used also by Kralchevsky et al. [68,5], but they determined the value of 1 

from the experimental data as a fitting parameter. A more realistic variant of this linear dependence of 

 on n would allow for intercept 0  1: 

 (n) = 0 + 1n.            (24) 

The intercept 0 takes explicitly into account the head group and the terminal –CH3 group. 

 

Fig. 2. The attraction parameter  vs. the number of carbon atoms n in the surfactant hydrophobic chain, 

calculated by numerical integration of Eq. (21), at various values of the actual area per molecule  (at 25ºC). 

The areas 16.5, 18 and 28.2 Å2 correspond to CnH2n+1OH, Cn–1H2n–1COOH and CnH2n+1Me2PO, respectively. 
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3. Determination of the adsorption parameters from experimental data 

A fitting procedure with several free parameters may force the model curve to pass well through the 

experimental points but the obtained values of the parameters may be erroneous, even unphysical. In 

fact, all models formulated in Sec. 2.1 involve many approximations and consequently, no perfect 

coincidence of the theoretical predictions with tensiometric data should be expected. In addition, we 

found that although authors claim uncertainty of ±0.3 mN/m or less for S, comparison of data by 

different authors will rarely show coincidence with accuracy better than ±1 mN/m, and often it is about 

±2-3 mN/m. Reasons are: impurities, slow adsorption and need for extrapolation toward equilibrium, 

systematic experimental deviations are typical for all common techniques; calibration-related deviations 

are possible. Therefore we consider dispersion 1 mN/m adequate and consider further optimization 

ungrounded considering the current quality of the experimental tensiometry. In our interpretation of the 

experiment, we will take care to minimize the errors in the values of the adsorption parameter via two 

routes: (i) whenever data for several homologues are available, we will fit them simultaneously, instead 

of fitting data for each surfactant separately (as in Ref. [5]); (ii) in any case in which we are able to give 

plausible value, even approximated to 5-10%, of a parameter involved in our models, we will use this 

value instead of optimizing it. We will consider the most important parameter, the adsorption constant, 

separately in Sec. 3.1, where the parameters of our model of Ka, Eqs. (13)-(14), are determined, largely 

from independent sources (data for solubility, partitioning, etc.). In Sec. 3.3-3.5, we demonstrate how 

the findings for Ka, together with crystallographic & collapse data for  and the theoretical results for  

can be used to predict the adsorption behaviour of many amphiphiles at W|O and W|A interfaces. 

 

3.1. Direct determination of the adsorption constant Ka 

We will now summarize briefly the results from Ref. [8] for the adsorption constant determined via a 

polynomial fit with the virial expansion (6) over the initial region of the surface tension isotherm. This 

approach has the advantage of being model independent – that is why we call it direct approach. The 

method was used previously [8] to determine Ka of 50 non-ionic amphiphiles, which allowed us to draw 

the boundary line between the cohesive and non-cohesive surfactants. The findings presented here differ 

from those in Ref. [8] in several respects: some new data sources are used; the procedure has been 

improved; an error in the values of the partition coefficients has been corrected5. In this section, the data 

for strongly cohesive monolayers are disregarded for brevity (they will be treated in Sec. 3.5 with more 
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advanced models). The details about the data handling are presented in the S3. 

 A typical regression with Eq. (6) is illustrated in Fig. 1 with decanol at W|O. The virial fit of the 

data involves two parameters – the adsorption constant Ka and the second virial coefficient B2. However, 

since B2 is obtained with rather high dispersion, only the values of Ka will be discussed. The results are 

presented in Fig. 3 as lnKa vs. n for four homologous series: at W|O – for fatty alcohols and acids, and 

at W|A – for N-n-alkyl-N,N-dimethylglycines (CnH2n+1Me2N
+CH2COO–) and short chain length 

homologues of n-alkyldimethylphosphine oxides (CnH2n+1Me2PO). The W|O data of Aveyard refer to 

oil-soluble alcohols [29]; we calculated the respective concentration of the alcohol in the aqueous 

solution (Fig. 1) by using the data for the partition coefficients5 [30] and the tetramerisation equilibrium 

of the alcohol in the alkane phase [31], as described in the S3. The tensiometric data for W|A are taken 

from various sources (cf. Table 1 for the complete list). Data for butanoic and pentanoic acids at 

water|benzene (W|B) at 35ºC by Chatterjee and Chattoraj [69] is also processed (Table 1). 

 

Fig. 3. Dependence of the logarithm of the adsorption constant lnKa on the chain length n: results from fit of 

tensiometric data with the virial expansion of S(C), Eq. (6). The lines represent the theoretical lnKa(n) 

dependence (25) with fixed slopes: CH2/kBT = 1.39 for W|O and 1.04 for W|A data; the values of the intercept 

lnKa0 and the sources for the tensiometric data used to obtain Ka are given in Table 1. 

 For the interpretation of the data in Fig. 3, we represent the theoretical expression (13)-(14) for Ka 
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as: 

 
2a a0 CH Bln ln Δ /K K n k T  .         (25) 

Here, lnKa0 is the intercept of the lines in Fig. 3 – it is given by6: 

  
3 2a0 a CH CH 0 head Bln ln Δ Δ Δ /K k T          ,      (26) 

where a is given by Eq. (14). Eq. (25) is a form of Traube’s rule [44]. 

 Comparison of these equations with the Ka data requires the knowledge of the parameters in Eq. 

(26). The value of the length per methylene group lCH2 = 1.26 Å follows from the geometry of the 

hydrocarbon chain [65]. We assume that the area  of the interface disappearing during the adsorption 

of the surfactant molecule is close to the crystallographic area of the hydrocarbon chain. Crystallographic 

data for solid alkanes [70,71] and data for the area of collapse in Langmuir trough of insoluble alcohols 

[63,72] yield average area  of 18.2±0.4 Å2. The interfacial tension 0 of the pure water|alkane 

interfaces in the experiments of Aveyard and Briscoe [29] was 53±0.5 mN/m. For adsorption of non-

cohesive surfactants at the W|A surface at 25˚C, the value 0 = 72.2 mN/m must be used, and for 

water|benzene at 35˚C, 0 = 32 mN/m. Thus, the contribution of the term –0 to the adsorption energy 

is of the order of –2-3×kBT, which is by no means negligible. The value of the first term in Eq. (26), 

standing for the adsorption thickness, at W|O is ln(a/[m])= 23.8. Note that this is far smaller than the 

common assumption that a ≈ nlCH2 [24], which for, e.g., decanol is about 13 Å, or ln(a/[m])= 20.5, by 

about +3 larger than the correct value. 

 The most important parameter in Eqs. (25)-(26) is CH2. Even a small error in the value of CH2 

can have significant effect on the adsorption constant since Ka is proportional to exp(nCH2/kBT). The 

experimental value of CH2 vary within few percent from author to author [62,1,19,20,24,44,73]. We 

analysed a large number of experimental data for the adsorption constants of ionic [7] and non-ionic 

surfactants [8], partition coefficients (cf. Eq. (45)) and solubility data of homologous series of alkanes 

(considered in S4) and reached the conclusion that the best values are CH2/kBT = 1.39±0.03 for transfer 

of –CH2– from oil to water, and CH2/kBT = 1.04±0.06 for transfer from air to water. The transfer energy 

CH3 for the terminal –CH3 group can also be estimated from the data [73] for solubility of alkanes in 

water – from the analysis in S4, we found the value CH3/kBT = 2.75±0.07. This is close to the value 

2.79 following from a geometrical model used previously by us [46], but disagrees with the often cited 

number CH3/kBT = 3.55 [65]. 
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Table 1. Experimental intercepts ln(Ka0/[m]) determined
 
directly from the linear dependences lnKa vs. n for 

different homologous series and ln(Ka0/[m]) calculated from the fit with the SD model. 

surfactanta 
range 

of n 

inter-

face 

(C) 

data was 

from 

Refs. 

2CH

B

Δ

k T


 

Directly calculated SD modelb 

ln(Ka0/[m]) 

c

head

B

Δ

k T



 

ln(Ka0/[m]) 

c

head

B

Δ

k T



 

CnH2n+1OH 8÷18 W|O 29 1.39 
21.26 

±0.09 
1.2 21.1d 1.1 

Cn–1H2n–1COOH 4÷5 W|B 69f 1.39 22.4±0.1 ~0g 22.3d +0.1g 

CnH2n+1Me2PO 7÷11 W|A 2,81-83 1.04 20.2±0.4 0.9 20.0d  0.7 

CnH2n+1Me2N+CH2COO–
 8÷16 W|A 93,94,83e 1.04 21.7±0.15 2.4 –21.6d 2.3 

a Cf. S1 for the surfactants’ names. b Results from the fit over all data with Eqs. (10)-(12) of SD, cf. Sec. 3.3&3.4 

below. c Calculated using Eq. (27). d Results from Table 2. e Data for pH = 7 (the compound is in its zwitterionic 

form). f Only data for high adsorption is taken into account, where the dissociation degree is less than 3%. g 

Calculated with the correction –CH2/kBT, according to footnote 6. 

 

 The experimental value of the intercept lnKa0 was determined directly from the data for several 

members of a homologous series, Fig. 3. From the comparison of this value of lnKa0 with the theoretical 

expression (26), one can determine the value of the empirical correction head: 

    
3 2head B a0 a CH CH 0 BΔ / ln / Δ Δ /k T K k T         .     (27) 

The results for lnKa0 and the quantity head for the four homologous series studied are presented in 

Table 1. For the purpose of comparison, the respective results obtained from the fit of the same 

tensiometric data with the sticky disc model of Ivanov et al. (cf. Sec. 3.3-3.5 for details) are also given. 

The following remarks can be made about these data [8]. 

 (i) The slope of the experimental line lnKa vs. n of surfactants at W|O (alcohols in Fig. 3 and acids 

in Table 1) is CH2/kBT = 1.39 whereas for surfactants at W|A (glycines and short-chained 

phosphineoxides in Fig. 3) this slope is CH2/kBT = 1.04, as expected. 

 (ii) For alcohols at W|O, head is of the order of CH2 (cf. Table 1), as if one methylene group 

remains immersed in the water phase rather than in the hydrophobic phase. This throws some light on 

the origin of the parameter head in Eq. (26). It was suggested long ago that one methylene group 

adjacent to the hydrophilic-lyophilic centre behaves as a hydrophilic entity due to the influence of the 

adjacent polar group (Chap. 3 and Eq. 6-4 of Tanford [65]; see also [74,75]). Our result seems to agree 

with this hypothesis. The negative values (0.9 and 2.4) obtained for head/kBT of CnH2n+1Me2PO and 
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CnH2n+1Me2N
+CH2COO– at W|A also confirms this conclusion, as the two CH3 groups attached to the 

P or N atoms do not contribute to the adsorption energy, i.e. they do not behave as hydrophobic entities 

as well. The more negative value head/kBT = 2.4 for glycines at W|A is likely related to the large 

dipole moment of the Me2N
+CH2COO– group and the respective repulsive image force between the 

dipole and the surface. Finally, for acids at water|benzene we obtained head ≈ 0. This is probably due 

to the relatively low polarity of the >C=O group compared to –OH group: if the >C=O group is not polar 

enough to polarize the adjacent CH2 group, no partial immersion of the hydrophobic chain should be 

expected. 

 Our model of the adsorption constant Ka is confirmed by the following findings: (i) the good linearity 

of the dependence lnKa vs. n with the correct slopes CH2/kBT = 1.39 for adsorption on W|O and 

CH2/kBT = 1.04 for adsorption on W|A. (ii) The coincidence of the experimental values of the intercept 

lnKa0 with the theoretical ones, Eq. (26), adjusted for the immersion of one methylene group into the 

water phase. (iii) A further proof is the temperature dependence of the adsorption constant in the LE 

phase of heptanol predicted by Eqs. (25)-(26) – it was shown in Ref. [8] that it agrees with the 

experimental data of Vochten and Petre [76]. (iv) Eqs. (25)-(26) were successfully used in Ref. [7] to 

interpret the effect of the nature of the oil phase on the adsorption constant of ionic surfactants. This 

gives us enough confidence to consider below the theoretical Eqs. (25)-(26) for Ka as proven.  

 

3.2. Treatment of the experimental data with a theoretical adsorption model 

We will now apply a more detailed approach to the tensiometric data considered in the previous section. 

First, data for the entire concentration range will be used. Second, the fit will be performed with the 

theoretical equations of state and adsorption isotherms presented in Sec. 2.1 in order to determine all 

basic adsorption parameters (Ka,  & ). We follow the regression procedure used by Danov et al. [5] 

which permits significant decrease of the number of free parameters involved. In addition, for most 

parameters we use independent experimental data or theoretical results. For the adsorption constant, the 

linear dependence of lnKa on n and the value of its slope are known from the results of Sec. 3.1. The area 

 is expected to be independent of n and it can be determined from the collapse area of insoluble 

monolayers. Finally, the value of  at any n can be calculated from Eq. (21). 

 In our approach, the regression with the theoretical surface pressure S
th is over the data for an entire 

homologous series of surfactants. Therefore, the table of experimental values has three columns: n and 

Ci vs. S
n,i, and it depends on a set of molecular parameters of the whole homologous series such as Ka0, 
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CH2,  etc. that do not change with n. The merit function is therefore given by: 
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,     (28) 

where the total number of experimental points N = Nn for the whole homologous series is greatly 

increased compared to the ones of single homologue, Nn, which increases the reliability of the results. 

 

3.3. Water|oil interface 

The adsorption at W|O interfaces is easier for analysis because it allows an important simplification, 

namely, using the assumption that the attractive parameter  is small, even negligible [62]. This allows 

us to compare the various ways of interpreting the experimental data and to choose the most efficient 

procedure. We fit simultaneously all N = 129 data points from Ref. [29] for alcohols of different carbon 

numbers n (unlike Sec. 3.1, where only data for dilute adsorption layers were used and every interfacial 

pressure isotherm was fitted separately). 

 Let us first consider the HFL model, which is appropriate for W|O interface since  ≈ 0. The merit 

function is given by Eq. (28), where S
th(Ci,n;Ka0,CH2,) is defined by Eqs. (1)&(4) of HFL, together 

with Eq. (25) for the dependence of the adsorption constant Ka on n. Thus, instead of using 2 parameters 

(Ka & ) for every homologue, which makes 12 parameters altogether for the 6 alcohols studied by 

Aveyard and Briscoe, we use only 3 parameters (Ka0, CH2 & ) for the whole series. In addition, we 

know with good accuracy [7,8] that CH2 = 1.39×kBT (cf. Sec. 3.1). We can also determine the actual 

molecular area  from crystallographic data for solid alkanes [70,71] and from the area of collapse of 

insoluble monolayers of alcohols [63,72]: these data yield average area per molecule of  = 18.2±0.4 

Å2. This value must be corrected by a packing factor: for hexagonal packing,  must be divided by 1.10 

(which is the ratio between the area of a hexagon and the inscribed circle) to obtain the actual area  = 

16.5±0.4 Å2 of the hard disc [8,77]. In this way, a single parameter is left, Ka0, for the whole data set. 
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Fig. 4. Interfacial pressure S vs. logarithm of the scaled surfactant concentration, ln[C×exp(nCH2/kBT)]. Data 

for oil-soluble fatty alcohols (chain length n = 8-18) at W|O interface, where the oil is normal alkane 

with chain length nA = 8-16; T = 20˚C. C is surfactant concentration in the water phase recalculated 

from the data of Aveyard and Briscoe [29] as described in S3. The data points for all CnH2n+1OH 

homologues fall on a single curve, which confirms the scaling behaviour predicted by Eq. (29). The line 

is calculated with the HFL model, Eqs. (29)&(1), with a single fitting parameter, Ka0
 
= 7.97Å. 

 The decrease of the number of free parameters from 12 to 1 can be illustrated in the following 

manner. We insert the expression (25) for Ka into HFL adsorption isotherm (4) to obtain: 
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According to this equation, if one plots  (or S) against C×exp(nCH2/kBT), the resulting curves for all 

homologues must coincide since none of the remaining parameters is function of n. It is so indeed as 

shown in Fig. 4, where all data points fall on a single curve. The 1-parametric fit of the data with HFL 

model, Eqs. (29)&(1), is also shown in Fig. 4; the value of the fitting parameter is ln(Ka0/[m]) = –

20.95±0.1. 

 Let us now compare this result to those obtained by alternative models – comparison is given in 

Table S3 in S6. Rows {1-2} of Table S3 compare the fitting parameters found with two variants of the 

HFL regression: a 2-parametric fit with adjustable Ka0 and  and a 1-parametric fit with adjustable Ka0 

( is fixed to 16.5 Å2). The 2-parametric fit yields smaller standard deviation dev = 0.40 mN/m, but  

is unreasonably small, 14.2 Å2. On the other side, the use of a 1-parametric fit with fixed  = 16.5 Å2 

increases the deviation to dev = 0.49 mN/m. The unreasonably low value of  in the former case and the 

larger deviation in the latter suggest that there is probably a problem with the HFL model. We blamed 
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the neglected lateral attraction in HFL model for the problem. To check this hypothesis, we assumed 

that there is a lateral attraction leading to positive value of the attraction parameter  at the W|O interface. 

Besides, the fact that the points in Fig. 4 for all homologues lay on the same master curve suggests that 

the respective value of  must be independent of the hydrophobic chain length n. We used fixed values 

for the transfer energy CH2 = 1.39×kBT and the area  = 16.5 Å2 and two free parameters, Ka0 and . 

We minimized the respective merit function dev2(Ka0,) = [S
n,i

S
th(Ci,n;Ka0,)]2/(N1), where the 

theoretical surface pressure S
th is the one following from the SD model, Eqs. (10)-(12). The deviation 

obtained with this regression model is 0.4 mN/m (the same as that for the 2-parametric model of HFL, 

cf. rows {2&5} in Table S3). Since  is independent of n, the obtained value  = 0.332 probably refers 

to the attractive hydrophobic interaction [65,78] only between the –CH2– groups adjacent to the polar 

head group, which remain immersed in the water phase (cf. comment (ii) below Eq. (27)). 

 The results from the fit of the tensiometric data for alcohols at W|O with the models of Volmer and 

Langmuir (no attraction, Eqs. (5)), are shown in rows {3-4} in Table S3. The 2-parametric fits with these 

models yield practically the same mean deviation and the same value of Ka0 as HFL. Therefore, the only 

parameter which can be used to distinguish between the three models is the actual area . With Volmer’s 

model it is V = 24.4 Å2. This value is too high – about 50% larger than 16.5 Å2 following from 

collapse/crystallographic area of the molecule. If the relation (18) between V and the true geometrical 

area  is valid, then  = V / 2 = 12.2 Å2, which is again unrealistic (it is 25% smaller than the expected 

value 16.5 Å2). Therefore, even though the mean deviation of Volmer’s model is in fact slightly smaller 

than the one of HFL model, the accuracy of this model is dubious. The situation is worse with 

Langmuir’s model, giving L = 39 Å2 (or  = 9.8 Å2 according to Eq. (18)). 

 We can instead use van der Waals and Frumkin models, Eqs. (7), with L = 1.5 and V = 1. As 

discussed in Sec. 2.3, these values correspond to the absence of attraction (i.e. to  = 0, cf. Eq. (19)) so 

in principle, with these particular values of L and V, van der Waals and Frumkin are better models of 

a hard-disc 2-D fluid than Volmer’s and Langmuir’s. The 2-parametric fits with these EOS yield the 

same deviation, 0.4 mN/m, as all other 2-parametric models, rows {6-7} in Table S3. The obtained 

values V = 18.2 Å2 and L = 21.0 Å2 are indeed close to the actual area  = 16.5 Å2, which proves the 

validity of the conditions (19). Yet, one must not forget that Eqs. (19) are merely a way to approximate 

a HFL-based EOS with Frumkin or van der Waals formulas (7), and it is obviously better to use directly 

HFL model instead. 
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Table 2. Adsorption parameters of various homologous series of surfactants at W|O and W|A interfaces, 

obtained by the minimization of a merit function of the type of Eq. (28) using the sticky disc model (10)-(12). 

homologous series interface ln(Ka0/[m]) i  [Å2]  devmN/m

CnH2n+1OH a water|alkane -21.1 16.5j 0.332 0.40 

Cn-1H2n-1COOH b water|benzene -22.3 18.0j 1.60 0.4 

C13H27Me2PO c water|hexane -22.5 28.2k ≈ 0 1.1 

CnH2n+1OH (non-coh.) d 

W|A 

-20.1 
16.5j Eq. (21)l 

0.88 

CnH2n+1OH (all) e -20.4 1.44 

Cn-1H2n-1COOH (non-coh.) d -20.4 
18j Eq. (21)l 

0.57 

Cn-1H2n-1COOH (all) e -20.2 0.93 

CnH2n+1Me2PO (non-coh) f -20.0 28.2 
Eq. (21)l 

0.98 

CnH2n+1Me2PO (all) g -19.7 29j 2.0 

CnH2n+1Me2N+CH2COO–  (all) h -21.6 30.2 2.31 1.1 

a Alcohols are with chain length n = 8÷18 (even n only), oil phase is alkane with nA = 8÷16; T = 20˚C. b 

Butanoic and pentanoic acid; T = 35˚C (cf. S8). c Data for single homologue (n = 13) are available; T = 20˚C (cf. 

S8). d Only data for the non-cohesive homologues (n = 3÷4) are considered, average T = 21˚C. e The data for all 

homologues (n = 3÷10) are considered, average T = 21˚C. f n = 7÷11, average T = 23.5˚C. g n = 7÷16, T = 

23.5˚C. h n = 8÷16, average T = 20˚C. i The transfer energy in the expression (25) for the adsorption constant is 

fixed to CH2 = 1.39×kBT for W|O data and to CH2 = 1.04×kBT for W|A data. j Value of the area, calculated 

from data for the crystallographic and collapse area of alcohols and acids. k The value is fixed to the one 

obtained by fit of the tensiometric data for non-cohesive phosphineoxides at W|A. l Fixed to the value predicted 

by the nonlinear Eq. (21). Note that the expression (21) for  involves  as a parameter; this was accounted for 

in the optimization procedure.  

 

 Some additional analysis is carried out in S7, which shows that any optimization involving both  

and  as free parameters is unable to give their values with satisfying accuracy. Therefore, we consider 

the results from the 2-parametric SD model with free Ka0 and  as more reliable than, e.g., a 3-parametric 

SD model with free Ka0,  and . 

 We verified the obtained results for CnH2n+1OH also by analysing in S8 the interfacial tension data 

from Ref. [79] for a water-soluble alcohol (butanol) adsorbed at water|dodecane interface. The available 

data for acids and tridecyldimethylphosphineoxide at the water|oil interface [80] have also been analysed 

with the 2-parametric SD model in S8. The area parameter  was fixed in both cases. To calculate  of 
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acids, we used the data for the collapse area of several insoluble long-chained homologues [63,20,19,43]. 

The average value of these data is 19.8±0.8 Å2, which is close to the crystallographic area 20.5 Å2 quoted 

by Langmuir [20]. Using the correction factor for close packing 1.10, we find for the actual area  = 

18.0±0.8 Å2. For C13H27Me2PO, we used the result  = 28.2 Å2 obtained from the fit of the data for the 

non-cohesive homologues at W|A (cf. Sec. 3.4 below). Two parameters, Ka0 and , of the two surfactant 

series are determined from the regression, cf. Table 2. The attraction parameter of C13H27Me2PO is close 

to zero, which is perhaps due to the larger area per molecule of this surfactant (the distance between the 

interacting neighbours is larger compared to the alcohols). For acids, we obtained  = 1.6; this value 

may be erroneous, since the data for the two acids refer to concentrated aqueous solutions (~200 mM), 

where the bulk activity coefficient probably starts to play a role – we neglected this effect due to the 

absence of data. The regressions are illustrated in S8. 

 Our overall conclusion is that the EOS of Frumkin and van der Waals might be useful for qualitative 

analysis when comparing the values of the adsorption parameters of several surfactants (e.g., relative 

values of the actual areas  or linear dependence of lnKa on n), but the absolute values of  and  might 

be wrong – this may lead to erroneous physical conclusions, such as repulsion instead of attraction. 

 

3.4. Non-cohesive surfactants at the water|air surface  

We turn now to the adsorption at W|A of non-cohesive non-ionic surfactants. Three homologous series 

have been analysed: the zwitterionic CnH2n+1Me2P
+O–, alcohols CnH2n+1OH and acids Cn-1H2n-1COOH 

(at conditions where less than 2-3% of the adsorbed acid is dissociated). For the CnH2n+1Me2PO 

homologues, we used tensiometric data from Refs. [2,81-83]. Collapse areas are available for insoluble 

long-chained CnH2n+1Me2PO [84,2]: the average value which we calculated from these data is 

31.9±0.5Å2. With the correction factor 1.10 for the close packing, it leads to  = 29.0 Å2. Based on the 

criteria summarized in Sec. 1.1, homologues with n ≤ 11 behave non-cohesively, and those with n ≥ 12 

behave cohesively (undecyldimethylphosphineoxide is at the boundary of both behaviours). In this 

section, only the non-cohesive ones will be analysed. 

 W|A surface tension data for all alcohol homologues from propanol to decanol are available [1,50-

53,76,83,85-87], at average temperature of 21±1˚C. They point out at cohesive behaviour, except for n 

= 3-4 – therefore, in this section, only the propanol and butanol are considered. The tensiometric data 

for n = 3-4 are for quite concentrated solutions, since these molecules are not very surface active. 

Therefore, the ideal solution approximation is invalid for them. We calculated the activity of propanol 
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in Addison experiments [85] using the data for the activity coefficient C3H7OH from Ref. [88], which we 

interpolated with the formula lnC3H7OH = –5.48∙vwC + 9.20∙(vwC)2, where vw is the molar volume of 

water. The tensiometric data for very concentrated solutions of butanol were disregarded, since we found 

no reliable information for their activity coefficients. The area per molecule is assumed to be 16.5 Å2, 

as in Sec. 3.3. 

 The data for carboxylic acids at low pH and average temperature 21±1˚C [17,86,89-92] were dealt 

with similarly. In fact, the tensiometric curves of alcohols and acids of the same carbon number n lay 

close to each other. Only the propanoic and butanoic acids behave non-cohesively and were considered 

in the current section. The hard-disc area is set to 18.0 Å2, cf. Sec. 3.3. 

 Various models and procedures (based on those described in Sec. 3.2) have been used to fit the 

whole set of data for all homologues in a given homologous series simultaneously. For all surfactants at 

W|A, we used fixed values of the transfer energy CH2 = 1.04×kBT, as determined in Sec. 3.1 and Refs. 

[8,7]. Representative results are given in Table S4 in S6. The tensiometric data from various authors 

differ by about 1-3 mN/m, which is the reason for the relatively large mean deviations (compared to 

those for alcohols at W|O in Table S3). The most important results from the fits of these data are 

discussed in the following paragraphs. 

 

Fig. 5. Surface pressure S vs. concentration C of the non-cohesive homologues of CnH2n+1Me2PO at W|A. 

Comparison with the continual SD model with two fitting parameters (Ka0 = 21.2 Å and  = 28.2 Å2). 

 (i) The SD model for the non-cohesive CnH2n+1Me2PO. In the case of surfactants at W|Athe 
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hydrocarbon chain attraction increase with n, and  must be calculated via Eq. (21). Eqs. (10)-(12) of 

the SD theory, along with the theoretical expressions Eq. (21) for  and Eq. (25) for Ka define a model 

with only two free parameters: Ka0 and . The fits were performed over all data for all homologues 

simultaneously (a 3-dimensional mathematical surface S(C,n)), as explained in Sec. 3.2. The results are 

visualized in Fig. 5, where the theoretically obtained curves S vs. C for each n are compared with the 

experimental data. The determined value of the actual area of CnH2n+1Me2PO is  = 28.2 Å2. It differs 

from the one calculated above from the collapse or crystallographic areas, 29 Å2, by less than 3%. Note 

that the values of  in this model are very sensitive to the values of  because of the strong dependence 

of  on , cf. Eq. (21) and Fig. 2 – nonetheless, the deviation of the model from the experimental data 

is small (row {2} in Table S4), which makes the obtained result for  even more trustworthy. We further 

made the model 1-parametric by setting the value of  equal to the one determined from the collapse 

areas. The deviation from the experimental data is nearly the same, rows {1-2} in Table S4. The 

determined value of the intercept ln(Ka0/[m]) is -19.9/-20.0, close to -20.2 obtained in Sec. 3.1 directly 

by using virial expansion for the initial region of the surface tension isotherm (cf. Table 1). The values 

of  will be discussed in Sec. 3.5 below. 

 We tried to fit the CnH2n+1Me2PO data by using the SD model together with the linear dependence 

 = 1(n+1), Eq. (23), with 1 = 0.49 as suggested by Smith [63], instead of the integral (21). The result 

is shown in row {3} in Table S4 – the obtained deviation is too high. Therefore, one concludes that SD 

model is compatible only with the non-linear formula (21). 

 (ii) SIAL model for the non-cohesive CnH2n+1Me2PO. We tried to use the SIAL model with the 

theoretical  from Eq. (21). It led, however, to too high deviations from the tensiometric data (standard 

deviation 1.6 mN/m if fixed value  = 29 Å2 is used). Instead, we then attempted Smith’s formula (23) 

for (n), with the fixed value proposed by him [63], 1 = 0.49 (row {5} in Table S4). This leaves only 

one free parameter, Ka0, to be determined from the whole set of data for the phosphineoxide homologues. 

The deviation is still too high (1.7 mN/m). We carried out also 3-parametric fits with SIAL model,  

being given by Eq. (24), (n) = 0 + 1n. The results are 0 = -0.08, 1 = 0.346 and lnKa0 = -20.5 (row 

{6} in Table S4). The deviation is comparable to the one of the SD model (although the latter model is 

2 parametric, rows {2&6} in Table S4). 

 (iii) Van der Waals and Frumkin models for the non-cohesive CnH2n+1Me2PO. Previous analysis 

of the models of van der Waals [5] and Frumkin [1,5] showed that the attraction parameter  depends 

linearly on n according to Eq. (23), similarly to what we found with SIAL model. This linear dependence 
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contradicts the integral formula (21). The 4-parametric models of van der Waals and Frumkin (with 

parameters Ka0, , 0, 1) yields ln(Ka0 /[m]) = -19.9 and -19.8 respectively (rows {8-9} in Table S4), in 

agreement with the results from the SD and SIAL. The obtained area parameters are, however, too high: 

V = 33.0 and L = 43.4 Å2 for the two models, which is respectively by 14% and 50% larger than the 

value following from the areas determined from the collapse of insoluble monolayers. The values 

obtained for 1 (0.273 and 0.206 for vdW and Frumkin) are small compared to the value 0.49 proposed 

by Smith. 

 (iv) The data for the non-cohesive CnH2n+1OH and Cn-1H2n-1COOH were fitted with the SD 

model, where Eqs. (21) and (25) were assumed valid for  and Ka respectively. We also fixed the value 

of the area per molecule to the one following from crystallographic and collapse data. This leaves a 

single parameter in the optimization procedure: lnKa0. Its value is -20.1±0.1 for alcohols and -20.4±0.1 

for acids, Table 2. The value for acids so found can be compared with the theoretical one following from 

Eq. (26), namely, ln(Ka0/[m]) = -20.3 + head/kBT (cf. also footnote 5). The comparison reveals that the 

term head = -0.1×kBT is almost negligible, i.e. there is no immersion of the hydrophobic chain. This 

confirms what we previously found with acids at W|benzene in Table 1. On the other hand, for alcohols 

head = -0.8×kBT, which suggests that the -CH2- group next to the polar group remains immersed, as 

with the alcohols at W|O in Table 1. 

 As a summary of this section, we again confirm the unreliability of the results from Frumkin and 

van der Waals models not only for W|O, but this time for W|A surface as well. These models yield values 

of the adsorption constant concordant with those obtained with the direct approach in Sec. 3.1; however, 

the values of the areas V,L are too high, and the attraction parameters V,L show no clear correlation to 

molecular characteristics. SIAL model leads to the expected crystallographic/collapse values of , but 

is incompatible with the non-linear formula (21) for (n). It agrees with the experiment only if the linear 

dependence (24) for (n) is used instead, but then the respective parameters 0 and 1 again cannot be 

related to the molecular characteristics. Only the SD model exhibits no obvious flaws: it agrees well 

with the tensiometric data, it leads to the expected values of , and it agrees also with the predicted 

dependence (21) for (n). 

 

 

 

3.5. Continual approach for cohesive surfactants 
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The data for both non-cohesive and cohesive soluble surfactants are commonly interpreted in the 

literature by using the continual models from Sec. 2.1.2 which is not always justified. That is why in 

Sec. 3.4 we used only data for the non-cohesive acids, alcohols and phosphineoxides. Now we will deal 

with the whole series, including both short-chained non-cohesive and long-chained cohesive 

homologues (using the same set of known parameters, CH2,  and , as in Sec. 3.4.). However, the 

results from this section must be considered with caution. The result we will obtain now will be used in 

a subsequent publication to demonstrate that the partial approach has clear advantages over the continual 

one with strongly cohesive surfactants. 

    
Fig. 6. Surface pressure S vs. decimal logarithm of concentration of homologous series of non-ionic surfactants 

at W|A. a. Cn–1H2n–1COOH – fit with the sticky disc model, Eqs. (10)-(12), with a single fitting parameter: Ka0 = 

16.7 Å (we take  = 18 Å2 and values of (n) calculated from Eq. (21)). b. CnH2n+1OH – fit with the SIAL 

model, Eqs. (8)-(9), with 3 fitting parameters: Ka0 = 11 Å and  = 0.86 + 0.56n. The data refers to both cohesive 

(n = 5-10) and non-cohesive (n = 3-4) adsorption layers. 

 (i) The SD model, Eqs. (10)-(12), along with the theoretical expression Eq. (21) for , were used 

with a single free parameter, Ka0 (Table 2). Not surprisingly, the obtained value of the fitting parameter 

Ka0 is unchanged compared to the one following from non-cohesive homologues only. The results for 

the acids are visualized in Fig. 6a, where the theoretically obtained curves S vs. lgC for each n are 

compared with the experimental data. One sees that the SD continual model works relatively well even 

for cohesive surfactants. It fails only with the higher homologues near the kink between the gaseous and 

LE phases (cf. the acids with n > 7 in Fig. 6a). This could be expected since the SD model does not 
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predict phase transitions, whereas the highest homologues of the acids and the alcohols are rather close 

to the critical point of the phase transition gaseous-LE, cf. Sec. 3.6 below. The high deviation for 

alcohols (Table 2) is due to the same problem. The deviation from SD model obtained for all 

phosphineoxides (cohesive+non-cohesive) is worse than the deviation for the non-cohesive homologues 

alone (compare rows {1&4} of Table S4). This high deviation is, in fact, due only to the two highest 

homologues, which do not follow SD model at all. 

 We tested the SD model also with two adjustable parameters, by leaving free the actual area  and 

Ka0 (rows {15,22&2} of Table S4). The obtained  values for Cn–1H2n–1COOH, CnH2n+1OH and 

CnH2n+1Me2PO at W|A (only non-cohesive homologues for the latter) were 18.1, 17.3 and 28.2 Å2 

respectively. They differ by less than 6% from the ones calculated from the collapse or crystallographic 

areas (18, 16.5 and 29 Å2 – the same values which worked for W|O as well, Sec. 3.3). 

 The attraction parameters  for all homologues of the acids and alcohols were calculated from Eq. 

(21) using the value of  obtained from the crystallographic area – their values are given in Table 3. For 

CnH2n+1Me2PO, we found that the area  = 28.2 Å2, obtained from the 2-parametric fit of the non-

cohesive homologues leads to better results than the value 29 Å2 that follows from collapse areas. An 

important feature of the values of  in Table 3 is the correlation between the cohesive/non-cohesive 

behaviour and the Boyle point of the homologous series. The Boyle point is the boundary at which 

attraction starts to prevail over repulsion. This corresponds to B2 = 0, or from Eq. (15), to  = 2; when  

> 2, the S(C) dependence following from Eqs. (10)-(12) has a characteristic inflection. Judging from 

the -values in Table 3, C5H11COOH, C4H9OH and C12H25Me2PO are very close to their Boyle points. 

All shorter homologues are non-cohesive (above their Boyle temperature). All longer homologues are 

cohesive (below their Boyle temperature). This is an additional criterion for cohesive or non-cohesive 

behaviour of the adsorption layer besides those formulated in Sec. 1.1 and Ref. [8]. 

 (ii) SIAL model. As already observed with the non-cohesive phosphineoxides, the SIAL model is 

incompatible with the theoretical non-linear (n) dependence from Eq. (21). Hence, we used SIAL in 

combination with Smith’s formula (23) for , with the fixed value 1 = 0.49 proposed by him [63], rows 

{16&23} in Table S4. This leaves only one free parameter, Ka0, to be determined from the whole set of 

data for a given homologous series. While the result for the deviation for acids is satisfactory, for 

alcohols it is not. 

 We carried out also 3-parametric fits with SIAL,  being given by Eq. (24), (n) = 0 + 1n (rows 

{7,17&24} in Table S4). The results for 1 of CnH2n+1OH, Cn-1H2n-1COOH and CnH2n+1Me2PO are 0.56, 
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0.46 and 0.38 respectively (while according to Smith’s model, 1 must be the same for all series). The 

deviations are low – the comparison with the experimental data for alcohols is illustrated in Fig. 6b. 

However, there is no correlation between cohesive behaviour and SIAL’s -values, Table 3 – the 

experimentally observed transition from non-cohesive to cohesive behaviour occurs at different values 

of  (3.75, 3.64 and 4.46 for acids, alcohols and phosphineoxides respectively). 

Table 3. Values of  used for the fits with SD and SIAL models (calculated with Eq. (21) and Eq. (24), 

respectively).  

 
Cn–1H2n–1COOH 

21ºC,i = 18 Å2 

CnH2n+1OH 

21ºC,i = 16.5 Å2 

CnH2n+1Me2PO 

23.5ºC,ii=28.2Å2 

n 
,

SDiii 

,
SIALiv 

,
SDiii 

,
SIALiv 

,
SDiii 

,
SIALiv 

3 nc0.75 2.82 nc1.01 2.53   

4 nc1.32 3.29 nc1.80 3.08   

5 2.06c 3.75 2.89c 3.64   

6 3.00c 4.21 4.35c 4.20   

7 4.18c 4.67 6.32c 4.75 nc0.83 2.56 

8 5.68c 5.13 9.01c 5.31 nc1.03 2.94 

9 7.59c 5.59 12.7c 5.87pt nc1.26 3.32 

10 10.06c 6.05pt 18.0c 6.43pt nc1.49 3.69 

11 13.3e  25.5e  nc1.75 4.07 

12 17.5e  36.2e  2.02c 4.45 

13 23.1e  52.0e,pt  2.31c 4.82 

14 30.6e    2.62c 5.20 

15 40.8e,pt    2.95c 5.58 

16     3.30c 5.96pt 

nc Surfactants with non-cohesive behaviour at W|A, cf. Sec. 1.1. c Surfactant with cohesive behaviour at W|A. pt 

Surfactants below their critical point displaying a phase transition according to the analysis by the law of 

corresponding states (SD columns) or calculated from SIAL model (SIAL columns), see Sec. 3.6. e Values are 

extrapolated (not based on experimental data for the respective homologue). i Area following from 

crystallographic data and collapse of insoluble monolayers. ii Area obtained as a fitting parameter from the data 

for the non-cohesive C13H27Me2PO in Table 2. iii Eq. (21). iv Eq. (24) with 0 and 1 from rows {7,17&24} in 

Table S4. 

 (iii) Van der Waals and Frumkin models were tested together with Eq. (24), V(n) = 0 + 1n 

(due to their incompatibility with Eq. (21)). Hence, we utilized the van der Waals model with four free 

parameters: Ka0, , 0 and 1. The obtained area parameter is V = 22.5 and 20.9 Å2 for acids and alcohols 

at W|A. The values obtained for 1 (0.35 and 0.39 for Cn-1H2n-1COOH and CnH2n+1OH, cf. rows {18&25} 

in Table S4) do not agree well with the value 1 = 0.49 of Smith. The results obtained from our fits can 

be compared to those of Danov et al. [68,5,47], who also used van der Waals model but used a different 
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set of experimental data and a more complex dependence Ka(n). They obtained 1 = 0.238 and 0.304 for 

acids and alcohols respectively, which is lower than our values 0.35 and 0.39. Their results for the areas 

(V = 22.6 and 20.9 Å2) are practically equivalent to what we obtained, but this is 25% higher than the 

respective values following from the crystallographically determined or collapse areas. 

 The Frumkin model exhibits problems similar to those of van der Waals model. We obtained areas 

L that are extremely high (28.8 and 31.0 Å2 for Cn-1H2n-1COOH and CnH2n+1OH), and the values of 1 

are too low (0.26 for both surfactants, rows {19&26} in Table S4). These values are quite similar to 

those obtained by Fainerman et al. [1] – for acids they found lnKa = 20.5+1.06n,  = 30 Å2, L = 0.45 

+ 0.23n (following from the data for n < 12 in their table 3.4). For alcohols, from table 3.1 in Ref. [1] 

we get lnKa = 20.5+1.10n,  = 28 Å2, L = 0.36 + 0.20n. These numbers suggest that Frumkin model 

is even less appropriate than van der Waals for analysing surface tension data. 

 In addition, neither vdW nor Frumkin models yield values of  correlated to cohesive and non-

cohesive behaviour (the experimentally observed transition for acids, alcohols and phosphineoxides 

occurs at V = 1.3, 1.5, 0.8 and L = 0.3, 2.3, 0.1 respectively). Finally, unlike SD model, neither vdW 

nor Frumkin models yield similar values of  at W|A and W|O interface: for example, fits with free area 

parameter yield  = 17.2,V = 24.2,L = 35.1 Å2 for alcohols at W|O, rows {8,10,11} in Table S3, 

while, for alcohol at W|A,  = 17.3, V = 20.9,L = 31.0 Å2, rows {22,25,26} in Table S4; i.e., only 

SD’s hard-disc area  does not depend on the interface. 

 To summarize, the application of the continual models to cohesive surfactants yields accurate results 

for surfactants of relatively short chain length. The SD model agrees well with the experiment with 

attraction parameter  calculated from the non-linear equation (21). It is found that all surfactants which 

are, according to SD model and Eq. (21), above their Boyle temperatures ( < 2) behave non-cohesively 

and vice versa. 

 For completeness, we also investigated the data for the zwitterionic CnH2n+1Me2N
+CH2COO– from 

Refs. [93,94,83] (n = 8-16) which we discussed in Sec. 3.1. The results point at weakly cohesive 

behaviour with values of  dominated by the lateral attraction between the head groups. This interesting 

situation is analyzed in S9. 

 

3.6. Phase behaviour of the cohesive monolayers 

A feature of the continual EOS (7)-(8) of Frumkin, van der Waals and SIAL is that they predict the 
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existence of two phases – gaseous and liquid, provided that  is larger than certain critical value, cr. To 

analyse the phase behaviour predicted by these models, we follow Maxwell’s construction for the 3-D 

van der Waals EOS (cf. Refs. [40,95] for a detailed exposition). The critical point of EOS (8) is 

determined from the condition that the critical state corresponds to a horizontal inflection of S(), i.e. 

the equations ∂S(; )/∂ = 0 and ∂2S(; )/∂2 = 0 are fulfilled there. These two conditions are solved 

for  and  to yield the characteristics of the critical state according to SIAL model: cr = 5.84 andcr = 

0.215/. Substituting these values into Eqs. (8)&(9), we obtain the critical surface pressure and bulk 

surfactant concentration: S
cr = 0.0789kBT/; Ccr = 0.0545/Ka. These values are compared in Table 4 

with the respective results obtained from van der Waals model [5] and Frumkin EOS (7). 

 The critical value of  can be reached by changing either the temperature or the structure of the 

surfactant, as it follows from Eq. (21). At low enough temperatures or for long-chained homologues 

where  > cr, the EOS (8) predicts the existence of 3 regions in the S() dependence, divided by two 

extrema (as the SIAL curve with  = 6.66 in Fig. 7a). The region between the extrema corresponds to 

unstable states of the fluid (the mechanical condition for stability, ∂S/∂ > 0, is violated). On the left 

hand side of the minimum, a stable state of high density exist – within the continual approach, this is the 

LE state of the adsorption layer. On the right hand side of the maximum, a state of low density exists – 

this is the gaseous state. The horizontal line of curve with  = 6.66 in Fig. 7a connecting the two stable 

branches depicts the equilibrium transition from gaseous to LE state. It connects the coexistence points, 

located at the coexistence (binodal, or Clausius-Clapeyron) curve [40]. SIAL’s binodal in Fig. 7a was 

calculated with the conditions for mechanical and chemical equilibrium,S(G,) = S(LE,) and 

S(G,)G = S(LE,)LE. At high temperatures or short chain-lengths where  < cr, the 2-D fluid 

becomes supercritical, and gaseous-liquid phase transition is absent (like the SIAL curve with  = 3 in 

Fig. 7a). 

 Let us compare now these results with experimental data. The meticulous study of Kim and Cannell 

[25] of the phase transition gaseous-to-LE state of the insoluble C14H29COOH at pH = 2 can be analysed 

based on the principle of corresponding states and our formula (21) for . Kim and Cannell were able to 

find with good precision the critical point (Tcr, cr, 
S
cr) of the pentadecanoic acid. By using the value  

= 18.0 Å2 for the actual area per acid molecule, we obtained from their results the dimensionless critical 

parameters cr = 0.075 and S
cr/kBTcr = 0.0076. In addition, from their critical temperature Tcr = 

26.15˚C and our Eq. (21) for  (with n = 15 and  = 18.0 Å2) we were able to estimate the respective 

critical value of the attraction parameter, cr = 38.1. This result is extremely sensitive to the value of the 
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actual area: its uncertainty range ( = 18.0±0.8 Å2) corresponds to cr between 26 and 61. 

Table 4. Critical parameters of the continual adsorption models from Sec. 2.1.2 – comparison with the 

experimental findings of Kim and Cannell for C14H29COOH [25]. 

 cr cr S
cr Ccr 

SIAL cr = 5.84 0.215/ 0.0789×kBT/ 0.0545/Ka 

vdW V,cr = 3.375 0.333/V 0.125×kBT/V 0.0869/VKa 

Frumkin L,cr = 2 0.5/L 0.193×kBT/L 0.135/LKa 

experiment acr = 38.1 0.075/ 0.0076×kBT/ – 

aThe critical attraction parameter is calculated from the experimental critical temperature Tcr = 26.15 [25] via 

Eq. (21). 

           

Fig. 7. Phase transition from gaseous to LE state of the monolayer. a. S(1/) diagram of the continual SIAL 

EOS (8) at different values of the attraction parameter  (axes are non-dimensionalized for convenience). The 

lowest value  = 3 corresponds to weakly cohesive isotherm, while  = 6.66 correspond to a strongly cohesive 

EOS with phase transition. The critical EOS is with  = 5.84, and passes through the critical point. b. 

Experimental data by Kim and Cannell for insoluble C14H29COOH at different temperatures. The value  = 18 

Å2 is used to make the axes dimensionless. From each temperature, the respective  is calculated from Eq. (21). 

The comparison between the two figures suggests that while SIAL model gives a qualitatively correct picture, it 

predicts critical point very far away from the experimental one (SIAL’s cr, 
S
cr/kBTcr and cr differ by 

~1000% from the experimental values).

 According to the law of corresponding states [56], the value cr = 38.1 must be the same for any 

monolayer of non-ionic surfactants, provided that there are no strong specific interactions between the 

head groups. This fact allows us to calculate the critical temperature of any surfactant of simple polar 

head group, as long as its actual area  is known. Thus, by solving with respect to T the nonlinear 
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algebraic equation (T; n,) = cr, where the function (T) is given by Eq. (21) and cr = 38.1, one 

obtains Tcr as a function of the chain length n. Using the values  = 18.0, 16.5 and 28.2 Å2 for the acids, 

the alcohols and the phosphineoxides respectively, one finds the following critical temperatures: 

 (i) Acids: Tcr(tetradecanoic acid) = 3.8˚C; Tcr(pentadecanoic acid) = 26.3˚C; Tcr(hexadecanoic acid) 

= 49˚C. 

 (ii) Alcohols: Tcr(dodecanol) = 17˚C, Tcr(tridecanol) = 45˚C, Tcr(pentadecanol) = 101˚C. 

 (iii) Phosphineoxides are supercritical for any realistic value of T for all n < 20, e.g., 

Tcr(hexadecyldimethylphosphineoxide) = -170˚C. 

According to these results, all soluble surfactants investigated in this work form supercritical 

monolayers at W|A. 

 The above experimental results are compared in Table 4 to the theoretical critical parameters 

following from the models of SIAL, Frumkin and van der Waals. It is seen that all three adsorption 

models overestimate cr and S
cr/kBTcr with respect to those recalculated from the data of Kim and 

Cannell [25]. The theoretical critical values closest to the experimental ones are expectedly those of the 

SIAL model. However, even they are much higher than the experimental ones – for example, the 

theoretical cr of SIAL is about 3 times higher, and S
cris 10 times higher than the respective experimental 

values. As shown in Table 3 (superscript pt), the SIAL model predicts the existence of a phase transition 

with nonanol, decanol, decanoic acid and hexadecyldimethylphosphineoxide (for that reason, the 

theoretical S(C) dependence predicted by SIAL for nonanol and decanol in Fig. 6b exhibit a small 

spinodal knot near the gaseous-LE transition region, cf. also S10). According to vdW model (which 

leads to V,cr = 3.375) and the results for the V(n) dependence from rows {18&25} in Table S4, the first 

homologue displaying phase transition should be C10H21OH from the alkanols and C10H21COOH from 

the acids (Danov and Kralchevsky [68,5,47] obtained similar results). Frumkin model (L,cr = 2) predicts 

that C5H11OH and C12H25COOH should be below their critical points. It is unlikely that such phase 

transition exists in reality – our results for Tcr suggest that it is improbable that any homologue shorter 

than undecanol or tridecanoic acid is subcritical at any attainable temperature. All phosphineoxides, no 

matter what their chain lengths are, are supercritical. 

 The analysis from this section leads to the conclusion that the transitions from gaseous to LE state 

for all surfactants investigated in Sec. 3.2, 3.4 & 3.5  are supercritical. Therefore, the predictions of the 

continual models of SIAL, Frumkin and van der Waals for the phase behaviour of these surfactants are 

probably erroneous. Unlike SIAL model, the new EOS (10) of the SD model has no extrema, spinodal 

region or critical point. Rigorously, it can be used only for supercritical fluid. Indeed, the results for Tcr 
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above suggest that this is the case with the surfactants investigated in this work. 

 

4. Summary and conclusions 

We formulated in Sec. 1.1 several criteria to distinguish between non-cohesive and cohesive behaviour 

of adsorbed monolayers. In the former case the experimental dependence of the surface pressure S on 

concentration C is a function with monotonous 1st derivative – this is observed at water|oil and with short 

chained surfactants at water|air. The cohesive behaviour is characterized by a kink of the S(C) isotherm 

in the transition region between gaseous and liquid expanded state of the monolayer and by a negative 

intercept coh of the LE region (Fig. 1). In Sec. 3.5 we found another criterion for cohesiveness: the 

surfactant form cohesive monolayer at W|A when it is below its Boyle temperature. 

 Four continual models involving lateral attraction have been compared in detail – the common 

models of Frumkin and van der Waals and the newer SIAL and sticky disc models. Our analysis in Sec. 

2.3 of the models of Frumkin and van der Waals, Eqs. (7), revealed important shortcomings of these 

theories. It was shown that the respective areas per molecule (L and V) and the attraction parameters 

(L and V) these models lead to, are not uniquely defined and are usually very different from the real  

and . In some cases Frumkin and vdW models lead to confusing results such as negative value of the 

attractive parameter [1,2,4]. The situation is improved with the SIAL model (8)-(9) – since it is based 

on the almost exact EOS of HFL [48], it yields correct values of the area per molecule. In these three 

models the attraction between the adsorbed molecules is accounted for by the addition of an attractive 

term –2 into the EOS. Such terms are valid only for binary interactions (i.e. at low surface density) 

and lead to poor values of the attraction parameter . A more consistent approach to the attractive part 

of the EOS is the one of Ivanov et al. [15,14,7] who derived a new EOS and adsorption isotherm, Eqs. 

(10)-(12), in which a term for the intermolecular attraction is combined with a repulsive factor /(1–

)2 identical to HFL’s surface pressure. Since the attractive term is based on the sticky potential theory 

of Baxter [96] we call this model sticky disk (SD) model.  

 The most important criterion for the validity of the adsorption models is the consistency of the values 

of the adsorption parameters involved – for the continual model, these are the interaction parameters  

and  and the adsorption constant Ka. We reviewed the models relating these parameters to the molecular 

characteristics of the surfactant. 

 The hard-disc area  can be determined independently from the collapse area of insoluble 
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monolayers or from crystallographic data (with a correction for the packing constant). We have shown 

that SD model performs well at both W|O and W|A interface with precisely the same value of  (Table 

2), which is not the case with the vdW and Frumkin models. 

 To account for the effect of the length n of the interacting molecules on the attraction parameter 

 at W|A, Smith [63] and Kralchevsky et al. [68,5] assumed that  is a linear function of n. A more 

realistic molecular model of  was proposed in Ref. [15] and was developed further in Sec. 2.3 here. 

The adsorbed molecules were modelled as lines of uniform linear molecular density lCH2 interacting 

with each other with attractive London potential, leading to Eq. (21) for . As demonstrated in Fig. 2, 

the resulting function (n) is far from being linear. We demonstrated another success of the SD model – 

unlike any other model tested here, it agrees quantitatively with the data for alcohols, acids and 

phosphineoxids at W|A if Eq. (21) is used to calculate . 

 The analysis of the adsorption constant Ka in Sec. 2.2 is based on the model of Ivanov et al. 

[46,7,8]. Although the final expression (13) for Ka is formally identical with that of Davies and Rideal 

[24], the two models are rather different: Davies and Rideal assumed  that the adsorption thickness a is 

the length of the hydrophobic chain (which is much larger than our value a = 0.45 Å from Eq. (14)), 

and missed the contribution 0 of the lost interface to the adsorption energy Ea  (it is of the order of 

2-3×kBT, which is by no means negligible). The two “errors” compensate each other to a certain extent, 

which explains the apparent success of some authors [24,5] using Davies and Rideal model. The model 

of Ka from Sec. 2.2 was confirmed by the results in Sec. 3.1. These are: the linearity of the dependence 

lnKa vs. n; the correct slopes CH2/kBT = 1.39 of lnKa vs. n for adsorption at W|O and CH2/kBT = 1.04 

for adsorption at W|A (that follow from independent sources); the coincidence of the experimental values 

of the intercept lnKa0 with the theoretical ones, Eq. (26) (if corrected for the immersion in water of the 

terminal –CH2– group polarized by the adjacent polar head group). 

 We further analysed the shortcomings of each of the tested adsorption models, by considering 

tensiometric data for several homologous series of surfactants at W|O. The data for W|O are easier for 

interpretation since we have shown that  is small and independent of n (Fig. 4). We compared the four 

models with data for alcohols at W|O using three fitting parameters (Ka0,  and ). The results (rows {8-

11} in Table S3) lead to the following main conclusions: (i) The deviations of all 3-parametric models 

are exactly the same, and all models yield almost the same value for the adsorption constant Ka0, very 

close to the one directly determined in Sec. 3.1. (ii) The SD model yields values of  and  closest to 

the benchmark values, while the models of van der Waals and Frumkin give considerably larger values 
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of , and negative values of  (as can be expected from Eqs. (19)). A general conclusion from the poor 

results but with small deviation obtained with van der Waals and Frumkin models is that the small 

deviation is by no means a firm criterion for good fit. 

 The data for both non-cohesive and cohesive surfactants at W|A can be interpreted in the continual 

approach (Sec. 3). However, we found that while the continual models are well suited for non-cohesive 

data they fail with strongly cohesive surfactants. The SD and SIAL models applied to data for 

CnH2n+1Me2PO, CnH2n+1OH and Cn–1H2n–1COOH exhibit good accuracy and lead to areas  which differ 

from the collapse or crystallographic areas by less than 6%. However, while the SD model agrees also 

with the theoretical formula (21) for (n), SIAL model does not. Eq. (21) is shown to be inappropriate 

for surfactants with strong head group-specific lateral interaction (such as the glycines in S9). We found 

a correlation between the cohesive/non-cohesive behaviour and the Boyle point of the SD isotherms, 

which corresponds to  = 2 (cf. Table 3) – the long chain homologues, which are below their Boyle 

temperature, are cohesive. No such correlation was found with the SIAL isotherms. The fits of W|A data 

with the van der Waals and Frumkin models yield again inaccurate results for the interaction parameters 

 and . 

 Finally, we investigated the phase behaviour of the investigated surfactants at W|A (Sec. 3.6). The 

continual EOS of SIAL, vdW and Frumkin predict the existence of gaseous-LE phase transition and a 

critical point for several long-chained soluble surfactants (in contrast, the SD model exhibits no phase 

transition). The critical parameters predicted by these models are, however, very different from the ones 

determined from the experimental data by Kim and Cannell [25] for the insoluble surfactant 

C14H29COOH at pH = 2. Based on their experimental data and on the principle of corresponding states, 

as well as on our formula for , Eq. (21), we were able to calculate the critical value of the attraction 

parameter, cr = 38.1. By solving with respect to T the nonlinear algebraic equation (T; n,) = 38.1, 

one obtains Tcr as a function of the chain length n and the area . Thus we found the critical temperatures 

of several acids, alcohols and phosphineoxides. All soluble surfactants, investigated in this work, were 

shown in this way to form supercritical monolayers at W|A (above their critical temperatures). Therefore, 

as far as these surfactants are concerned, the lack of a phase transition in the continual SD model is not 

a defect. 

 To conclude: the continual SD model is suitable for soluble non-cohesive monolayers and the short-

chained cohesive surfactants in a given series. The most important advantage of SD model is that it is 

the only one to be consistent – all adsorption parameters involved can be accurately predicted as 

functions of the surfactant structure and medium conditions. The results of it are given in Table 2, which 
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is a very practical and remarkably compact summary of the experimental data for more than 30 

surfactants at both W|A and W|O by numerous researchers. Together with Eqs. (10)-(12) of the SD 

model and Eqs. (25) for Ka and (21) for , it can be used to predict  and  with accuracy approaching 

the experimental one. The SD model fails with strongly cohesive films, especially near the transition 

point. In a companion paper, we will investigate the other theoretical approach for the description of 

cohesive monolayers – we will show that the partial approach is highly efficient for the LE region of 

cohesive surfactants, both soluble and insoluble.  
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6. Notes and references 

1 This is done in two steps: first, Gibbs isotherm is used to find the respective series of the adsorption isotherm 

(C), and second, the obtained (C) series is substituted into the S() virial expansion and the resulting series is 

truncated to the order of C2, which leads to Eq. (6). 

2 The vdW EOS was originally proposed by Volmer and Mahnert [60], but it is called 2-D van der Waals model 

since it is formally equivalent with the famous 3-D van der Waals equation of state. 

3 The exact 2-D sticky disc fluid model predicts an unphysical singularity of the equation of state [18], i.e. it is in 

principle impossible to find an exact EOS for such fluid. 

4 Note that in our previous works [46,7,8], we used the symbol u for the transfer energy of the surfactant from 

water to oil. Here we prefer the more suitable denotation , since the transfer energy is free Gibbs (not internal) 

energy. The transfer energy  is, in fact, mainly of entropic origin [65,8]. 

5 In Ref. [8], we had no access to Aveyard and Mitchell’s original work and used another source [97] which cited 

Aveyard and Mitchell’s Kp values. Due to a technical error in this source, the Kp values there are several times 

larger than the original data. For this reason, the data for W|O in the present Fig. 1 and Fig. 3 are shifted by a 

constant compared to those in fig. 2&5 in Ref. [8]. The experimental value of the intercept lnKa0 for alcohols at 

W|O in table 1 in Ref. [8] is also incorrect – it must be –21.3. 
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6 Note that for acids, Cn-1H2n-1COOH, the number of carbon atoms n includes also the one of the carboxylic group. 

Thus, when acids are considered, one must add an additional term, –CH2/kBT, in the right hand side of the 

expression (26) for lnKa0. 
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S1. List of symbols and abbreviations 

B2  second virial coefficient 

C  surfactant concentration in the bulk 

Ea  adsorption free energy 

kB  Boltzmann constant 

Ka  Henry’s adsorption constant ( →
C→0 KaC)  

LCH2  London constant for two –CH2– groups interacting through air 

lCH2  length per –CH2– group (1.26 Å) 

n  number of carbon atoms in the hydrocarbon chain of a surfactant 

T  temperature 

z  Cartesian coordinate 

 

  actual area of a molecule

  attraction parameter 

  ∂/∂n in Smith’s linear equation for (n) 

  surfactant adsorption 

  activity coefficient

a   adsorption length 
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CH2 free energy for transfer of –CH2– from the hydrophobic phase to water 

  chemical potential 

0  standard chemical potential 

  surface/interfacial tension 

  interfacial tension of the pure interface in the absence of surfactant 

coh  cohesive pressure 

S  surface pressure, 0 – 

 

B  bulk 

cr  parameter of the critical point 

EOS equation of state 

HFL Helfand-Frisch-Lebowitz model, Eqs. (1)&(4)

L  parameter of the Langmuir and Frumkin models 

LE  liquid expanded state of the adsorption layer 

S  surface 

SIAL Smith-Ivanov-Ananthapadmanabhan-Lips model, Eqs. (8)-(9) 

SD  sticky disc model, Eqs. (10)-(12) 

V  parameter of the Volmer, vdW and Langmuir-Volmer LE models 

vdW 2-dimensional van der Waals model, Eq. (7) 

W|A water-air interface 

W|O water-oil interface 

 

–CH2– methylene group 

–CH3 methyl group 

CnH2n+1OH  alkan-1-ol 

Cn–1H2n–1COOH alkanoic acid 

CnH2n+1Me2PO  n-alkyl dimethyl phosphine oxides 

CnH2n+1Me2N
+CH2COO– N-n-alkyl-N,N-dimethylglycine 
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Table S1. Equations of state and surface activity coefficients (adsorption isotherms) of various adsorption 

models. 

 

 

Continual models 

 

model S/kBT (EOS) lnS (adsorption isotherm KaC = S) 

Henry 
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S2. The adsorption constant Ka 

In this section, the adsorption constant Ka will be related to the surfactant structure and the parameters 

of the media (temperature, bulk compositions etc.) through a model proposed by Ivanov et al. [46,7,8] 

for the interaction free energy (z) of a surfactant molecule with the interface. The main contributions 

to (z) which were taken into account in this model are summarized below. 

 a) Contribution of the hydrophobic solvation of surfactant’s linear hydrocarbon chain. The 

adsorption of a surfactant molecule from the water phase to the interface is due mostly to the hydrophobic 

effect [65,62], i.e. to the change of the free energy of the hydrophobic tail upon its transfer from the 

hydrophobic phase to the water phase. Let this transfer energy per single –CH2– group be CH2 (CH2 

> 0). We will denote the length of a –CH2– group along the hydrophobic chain by lCH2 (lCH2 =1.26 Å 

[62,65]) and the number of the carbon atoms in the hydrocarbon chain by n (therefore, the total chain 

length, including the –CH3 end, is close to nlCH2). We will use the symbol z for the distance between the 

interface and the “hydrophilic-lyophilic centre” of the surfactant, which is the point where the 

hydrophilic head and the hydrophobic chain are connected [75,65]. For simplicity, we assume that the 

surfactant molecule remains perpendicular to the interface during the adsorption process. Then, if z < 

nlCH2, a portion of the surfactant hydrocarbon chain of length nlCH2 – z will be immersed into the 

hydrophobic phase. This corresponds to a free energy change –(n – z/lCH2)CH2 upon transfer of a 

molecule from the bulk to a distance z from the interface [46]. The result is, however, not entirely correct, 

since the end –CH3 group has different area and adsorption energy from a –CH2– group. We account for 

this by introducing in the energy –(n – z/lCH2)CH2 a correction term CH3 – CH2 equal to the extra 

adsorption energy of the methyl group with respect to a –CH2–. This yields [46]: 

 
 

3 2 2 2

2

CH CH CH CH

h

CH

Δ 1 / Δ , ;
Δ ( )

0, .

n z l z nl
z

z nl

 


    
 



      (30) 

 b) Contribution of the disappearing interfacial area. Upon adsorption, the hydrocarbon chain 

penetrates the interface, and a portion of the interface is replaced by the chain [46,7,6]. If the cross-

sectional area of the chain is , then the contribution of this replacement to the adsorption energy is 

equal to –0, where 0 is the interfacial tension of the pure interface. Assuming that this energy is 

gained at the moment of contact between the hydrocarbon chain and the interface (at z = nlCH2), we can 

write the corresponding potential profile  as [46]: 
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2
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0 CH

CH

, ;
Δ ( )

0, .

z nl
z

z nl


 


 
 



         (31) 

The significance of this term for the dependence of the adsorption constant Ka at W|O interface on the 

nature of the oil phase is discussed in Ref. [7]. The linear dependence of lnKa on 0 was confirmed there 

by using data of Rehfeld [98] for the adsorption isotherms of the ionic surfactant sodium dodecylsulfate 

on various W|O interfaces which allow determination of Ka as a function of 0 only. The term 0 has 

a large contribution to the enthalpy of adsorption, and therefore, determines to a large extent the 

temperature dependence of Ka (figure 8 in Ref. [8]). 

 c) Contribution of rotation. In order to estimate the contribution of the rotational degrees of 

freedom of the adsorbed molecule to the adsorption constant Ka, let us first calculate the partition 

functions for the initial (in the bulk) and the final (at the surface) states. For simplicity we assume that 

the molecule rotates as a solid stick of inertial moment I. The Hamiltonian of a freely rotating stick in 

spherical (r,,) coordinates is [56]: 

  2 2 2/ sin / 2H p p I    .         (32) 

Here p and pare the respective momenta of the stick. This Hamiltonian corresponds to bulk partition 

function (Eq. 8-27 of Hill [56]): 

 B

π 2π

/B 2 2

rot B2

0 0

1
e d d d d 8π /

H k T
q p p k TI h

h
  

 



 

     ,      (33) 

where h is Planck constant. For a surfactant molecule at the interface, we assume that this rotation is 

again free but restricted to the semi-space z < 0. This yields for the surface partition function qS
rot: 

 B

π/2 2π

/S 2 2

rot B2

0 0

1
e d d d d 4π /

H k T
q p p k TI h

h
  

 



 

     .      (34) 

It follows from Eqs. (33)&(34) that when the molecule is far from the interface, the free energy of 

rotation is: 

  
2

2 2

rot CH B B( ) ln 4π /f z nl k T k TI h   ,        (35) 

and when it is precisely at z = 0, 

  2 2

rot B B( 0) ln 2π /f z k T k TI h   .        (36) 

Upon transfer to z = 0, the surfactant molecule is losing total rotational free energy frot(z = 0) =  

frot(z = 0) – frot(z > nlCH2) = kBTln2. The local shape of frot(z) in the interval nlCH2 > z > 0 is relatively 

unimportant for the final result for Ka, except for too short-chained surfactants. Therefore, for the sake 
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of simplicity, similarly to Eqs. (30)&(31), we approximate frot with a simple step-function: 

 
2

2

B CH

rot

CH

ln 2, ;
Δ

0, .

k T z nl

z nl



 



         (37) 

The difference between frot and rot is disregarded. 

 d) Contribution of the hydration of the head group. We assume that the head group cannot be 

dehydrated and desorbed into the hydrophobic phase. This is equivalent to a hard-wall potential: (z) 

= ∞ at z < 0. 

 е) Other contributions. There are other factors, which also contribute to the adsorption energy: (i) 

The interaction between the hydrophilic head group and the interface at z > 0; (ii) Appearance of an 

induced dipole moment involving the –CH2– group adjacent to the polar hydrophilic head, which acts 

oppositely to the hydrophobic effect and leads to immersion of the methylene group into the water phase 

(cf. chap. 3 of Ref. [65]). (iii) Changes in the internal degrees of freedom (vibration and internal rotation) 

of the molecule upon adsorption. The latter effect is involved to a certain extent in the transfer energy 

nCH2 of the surfactant chain from the hydrophobic phase to the water and since we are using 

experimental values for CH2, it is probably accounted for implicitly in our model. (iv) The 

approximated nature of our equations for the contributions a-d) can also affect the final result for the 

adsorption energy. Since the effects (i-iv) are still not well-understood, we account for them by adding 

to the total adsorption energy of the surfactant an empirical constant head encompassing all of them – 

its contribution will be analysed post-factum, by comparing theoretical results with the experimental 

data (Sec. 3.1). 

 Combining Eqs. (30),(31)&(37) with the contributions d) and e), one obtains for (z): 

 
2 2 2

2

a B CH CH CH

CH

, 0;

Δ ( ) ln 2 Δ / , ;

0, .

z

z E k T z l z nl

z nl

 

  


    




      (38) 

Here the adsorption free energy Ea stands for the expression: 

  
2 3a CH CH 0 head1 Δ Δ ΔE n          .       (39) 

Eq. (38) is illustrated in Fig. S1. 
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Fig. S1. Interaction potential (z) between a surfactant molecule and the interface as a function of the distance 

z between the surfactant hydrophilic-lyophilic centre and the interface, cf. Eq. (38). According to the model, at 

distance z > nlCH2, there is no significant interaction. At z = nlCH2, energy is gained due to the disappearance of 

clean water surface of area , and the transfer energy of the –CH3 group, cf. Eq. (31). At shorter distances, 

there is a linear dependence of  on z related to the energy of transfer nCH2 of the hydrocarbon chain from 

water to the hydrophobic phase, see Eq. (30). 

 Let us now consider an ideal surfactant solution of concentration C. The local chemical potential 

(z) of a molecule at a distance z from the interface is: 

 B S

0 B( ) ln ( ) Δ ( )z k T C z z     .        (40) 

Here, CS(z) is the local concentration of surfactant near the surface. From the condition (z) = B =  

0
B
 + kBTlnCfor chemical equilibrium, the Boltzmann distribution of the surfactant molecules follows: 

 S

B( ) exp( Δ ( ) / )C z C z k T  .         (41) 

Inserting this distribution into Gibbs definition of adsorption, one obtains Henry’s adsorption isotherm: 

  S

a

0

( ) dC z C z K C


   ,         (42) 

where the adsorption constant of the surfactant Ka is defined as: 

  a B

0

exp( Δ ( ) / ) 1 dK z k T z


   .        (43) 

It follows from this derivation that Henry’s isotherm (42) is valid if the surface-molecule interaction 

potential (z) is independent on C(z), which is the case of dilute adsorption layer. Inserting the 
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expression (38) for (z) into the definition (43) of Ka and performing the integration, one obtains: 

  
a CH CHCH 2 22

CH B2 a B a BB 2

2

2

Δ /

Δ /CH B / /

a CH a

CH0

1
e 1 d e 1 e e

2 2Δ

E z lnl

n k TE k T E k Tk T
l k T

K z nl











 
      
 
 

 ,  (44) 

i.e. Eq (13). The pre-exponential factor a has the dimension of length and we call it the adsorption 

length. Our definition (14) of a is similar to the one in the theory of adsorption of spherical molecules 

[56] in the sense that it involves only factors related to the kinetic energy of the adsorbed molecules. Eq. 

(13) is determining also the value of 0
S
 in Eq. (2): 0

S
 = 0

B
 – kBTlnKa =0

B
 – Ea – kBTlna, cf. also Eq. 

(3). 

 

S3. Details about the processing of tensiometric data  

Here we describe the procedures for processing the experimental tensiometric data and determining the 

values of the adsorption constants of non-ionic surfactants within the direct approach (Sec. 3.1). Within 

the direct approach, this is done by fitting the initial region of the experimental surface pressure 

isotherms with the virial expansion (6) of S(C). 

 Let us consider first the adsorption at W|O. Aveyard and Briscoe [29] represented their data for 

interfacial tension  of fatty alcohols at W|O as a function of the alcohol concentration CO in the oil 

phase. In order to compare these data with results for W|A (where the surfactant is in the water phase), 

we recalculate the corresponding concentration C in water by using experimental data for the partition 

coefficient of the alcohols [30] and for the alcohol’s tetramerisation constant in the alkane phase [31]. 

Aveyard and Mitchell [30] studied the partitioning of alcohols (of chain length n from 4 to 7) between 

water and various alkanes (subscript A; their carbon number nA vary from 8 to 16). They found that the 

partition coefficient in dilute solution, Kp = CO/C, depends on the chain lengths both of the surfactant 

and the alkane. Their data for Kp followed the linear regression model (cf. footnote 5 in the main text): 

 
2p p0 A A B CH Bln ln / Δ /K K n k T n k T    .       (45) 

From numerous independent experimental data, we previously found that CH2 = 1.39×kBT [8] (see also 

the S4). By fitting the data of Aveyard and Mitchell [30] with Eq. (45), we determined A = 0.057×kBT 

and lnKp0 = –7.05. These values differ from those of Aveyard and Mitchell [30] by a few percents since 

they used three fitting parameters (CH2 was considered unknown) instead of our two (fixed CH2 = 

1.39×kBT). 
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 In order to calculate the surfactant concentration C in water from the experimental values of CO, we 

used the relation C = OCO/Kp. The activity coefficient O in the oil phase was calculated by solving the 

equation CO = OCO+4K1,4(OCO)4, where K1,4 = 780 M–3 [31,8] is the tetramerisation constant of the 

alcohol in the oil phase. 

 In Sec. 3.1, we used the virial equation (6) to fit the tensiometric data and determine the adsorption 

constant Ka of the alcohols (in Ref. [8], we used instead the HFL model (1), as in Sec. 3.3). We 

considered only the experimental data of Aveyard and Briscoe which correspond to S < 10 mN/m (the 

first 5-15 points) – in this region, the effect of the ternary interactions can be disregarded so that Eq. (6) 

is valid (in contrast to the analysis of the complete adsorption models in Sec. 3.3, where all data points 

available are taken into account). The fit involves two parameters – the adsorption constant Ka and the 

second virial coefficient B2. However, since B2 is obtained with rather high dispersion, only the values 

of Ka are of interest and are discussed in the main text. The results are presented in Fig. 3 as lnKa vs. n; 

the regression is illustrated in Fig. 1. The data in Fig. 3 refer to alkane phase varying from octane to 

hexadecane; unlike the partition coefficient Kp the adsorption constant Ka from water to W|O interface, 

within the experimental error, seems independent on the length nA of the alkane molecule. This suggests 

that the term –AnA in Eq. (45) for Kp is related mostly to the state of OH in the oil phase. 

 Similar fitting procedure with the virial expansion Eq. (6) has been used with the data for non-

cohesive surfactants at W|A (N-n-alkyl-N,N-dimethylglycine, CnH2n+1Me2N
+CH2COO–, and short chain 

length homologues of n-alkyl dimethyl phosphine oxides, CnH2n+1Me2PO) and W|O  

(Cn-1H2n-1COOH with n = 4 and 5). The results for Ka so obtained are presented in Fig. 3 and Table 1.  
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S4. Calculation of the transfer energy CH3
 of the methyl group 

In this supplement, we determine the value of the transfer energy CH3 of a methyl group from oil to 

water from the data of Abraham for the solubilities in water of alkanes of different chain lengths nA 

(Tables 2 and 3 of Ref. [73]). For the chemical potential of an alkane molecule in the water and alkane 

phases we use the expressions (cf. Eq. 19-16 of Hill [56]): 

 
W
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0 B O
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lnk T

v
   .       (46) 

Here vW and vO are molar volumes of water in the water phase and of alkane molecule in the alkane 

phase respectively; xW is molar part of the saturated water solution of alkane; xW/vW = CW is the molar 

concentration of alkane in the water. The standard chemical potentials 0
W

 and 0
O
 involve, first, all 

internal degrees of freedom of the surfactant molecule, and second, the interaction energy of the 

molecule with its surroundings (cf. Eq. 19-5 of Hill [56]). Eqs. (46) lead to the following expression for 

the equilibrium solubility xW: 
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Assuming that the contributions of the –CH2– and –CH3 groups are additive (i.e.0
W

  0
O
 =  

2CH3 + (nA  2)CH2), we can rewrite Eq. (47) as follows: 
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Here CH2 = 1.39×kBT and vW = 18.1 mL/mol; experimental values for xW and vO are given in Table S2, 

together with the values of CH3 calculated from Eq. (48). 

 Tanford [74] did not account for the entropic term ln(vW/vO) in Eq (48), which is not negligible – it 

is of the order of 1-2 kBT and depends on nA through the molar volume vO. Consequently, he obtained 

different values both for CH2 and for CH3 (his 1.49 vs. our 1.39×kBT and his 3.55 vs. our 2.75×kBT 

respectively). The average value for the transfer energy CH3 for the alkanes in Table S2 is 2.75×kBT, 

in agreement with the estimate of Ivanov et al. [46]. 
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Table S2. Calculation of the transfer energyCH3 of a –CH3 from oil to water phase from Eq. (48). 

n a lnxW b vO [mL/mol] CH3/kBT 

5 -11.5 115 2.77 

6 -13.1 132 2.8 

7 -14.4 147 2.71 

8 -16.1 162 2.78 

9 -17.7 179 2.85 

10 -18.9 194 2.71 

12 -21.7 227 2.65 

average:                                                             2.75±0.07 

a Data for solubility xW of liquid alkanes taken from Abraham [73]; b Data for vO from Refs. [99,100]. 

 

 

 

S5. The attraction parameter  

 In Ref. [15], the expression (21) was used for surfactants with relatively large head groups. For this 

case, the exponent under the integral can be expanded into series up to the linear term. This leads to an 

analytical formula for  [15]: 

 2 2
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1/25/2
CH CH

5/2 1/2

CH B

ππ
arctan

32 2

nL nl

l k T


 
 .        (49) 

Even for short chain lengths, Eq. (49) deviates significantly from the exact result (21), cf. Fig. S2. The 

deviations become larger with the increase of n, especially for surfactants of small actual molecular area 

. Therefore, when the model for  is compared with experimental data, we have used the exact result 

(21) only. 

 In Fig. S3, the interaction parameter of alcohol films at W|A following from the processing of the 

experimental data with the SD or the SIAL adsorption models are compared, as functions of the chain 

length n. The SD model works only if the non-linear dependence (21) is used, while the accuracy of 

SIAL is acceptable only if combined with the linear Eq. (24). 
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Fig. S2. The attraction parameter  vs. the hard-disc area  of the surfactant, calculated by numerical integration 

of Eq. (21), at various hydrocarbon chain lengths (from n = 6 to n = 16; black lines are even values of n, red are 

odd; 25ºC). Dashed line is () at n = 6 calculated according to the linearized formula  – it is seen that its 

accuracy is insufficient. 

 

Fig. S3. Attraction parameter  of alcohols (from propanol to decanol) at W|A according to the results from SD 

and SIAL models. SD model agrees with the tensiometric data for alcohols only in combination with the non-

linear model (21) for . Due to the different approach towards the lateral attraction, SIAL model agrees with the 

tensiometric data only if the linear dependence is used:  = 0.86 + 0.56n, see Eq. (24). The combined use of the 

SD model with Eq. (24), and also of the SIAL model with Eq. (21), strongly disagree with the experiment.  
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S6. Comparison of various models and fitting procedures against 

tensiometric data 

 Table S3 (for alcohols at W|O) and Table S4 (for various amphiphiles at W|A) compare all 

considered model to tensiometric data for whole homologous series of surfactants. The free parameters 

of the homologous series are determined via the optimization of merit functions similar to Eq. (28). The 

most important results are discussed in the main text, Sec. 3.3-3.5; those calculated for completeness 

and for further reference to the parameter values are discussed briefly here and in S8-S10. 

 An important from practical viewpoint test is the comparison between all models from Sec. 2.1.2 

under the same conditions – 3 free parameters, Ka0,  and . The results are given in rows {8-11} in 

Table S2. As benchmarks we will use the area  = 16.5 Å2 following from crystallographic & collapse 

data, the “direct” value of lnKa0 = 21.3 from Table 1, and  = 0.332 obtained with the 2-parametric fit 

of the SD model, which we consider as reliable. The results lead to the following conclusions: (i) the 

deviations of all 3-parametric models in rows {8-11} are exactly the same. (ii) All models yield almost 

the same value for the adsorption constant Ka0, very close to the one directly determined in Sec. 3.1. This 

is due to the fact that the initial slope of the S(C) curve (the Henry region) is model-independent. (iii) 

The SD model yields values of  and  closest to the benchmark values. (iv) The model of SIAL also 

gives a value of  close to 16.5 Å2 but slightly higher  than SD. (v) The models of van der Waals and 

Frumkin give considerably larger values of  (better for vdW), and negative values of  as can be 

expected from Eqs. (19). 
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Table S3. Adsorption parameters of CnH2n+1OH at W|O interfaces,  

obtained by the minimization of a merit function of the type of Eq. (28). 

CnH2n+1OH 

at water|alkanea 
ln(Ka0/[m]) 

V, L 

[Å2] 
,  V,  L 

dev

mN/m

one-parametric fit 

{1} HFL -20.95 16.5b 0 0.49 

two-parametric fits 

{2} HFL -21.1 14.2 0 0.40 

{3} Volmer -21.2 24.4 0 0.39 

{4} Langmuir -21.25 39.0 0 0.40 

{5} SD -21.1 16.5b 0.332 0.40 

{6} vdW -21.0 18.2 -1c 0.40 

{7} Frumkin -21.0 21.0 -3/2c 0.41 

three-parametric fits 

{8} SD -21.1 17.2 0.437 0.39 

{9} SIAL -21.2 15.8 0.556 0.39 

{10} vdW -21.2 24.2 -0.032 0.39 

{11} Frumkin -21.1 35.1 -0.297 0.39 

For each model, the assumed fixed values of the parameters are underlined. The transfer energy in the 

expression (25) for the adsorption constant is fixed to CH2 = 1.39×kBT for all models. The equations defining 

the adsorption models (first column) are listed in S1. a Alcohols are with chain length n = 8÷18 (even n only), 

oil phase is alkane with nA = 8÷16; T = 20˚C. b Value of the area, calculated from data for the crystallographic 

and collapse area of alcohols. c In accordance with Eqs (19), the fixed values L = -3/2 and V = -1 correspond 

to the lack of attraction ( = 0). 
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Table S4. Adsorption parameters of CnH2n+1OH, Cn–1H2n–1COOH, CnH2n+1Me2PO and CnH2n+1Me2N+CH2COO– 

at W|A, obtained by minimization of a merit function of the type of Eq. (28).  

model 
num. free 

parameters 
range of na ln(Ka0/[m])b 

, V, L 

 [Å2] 
, V, L

dev

mM/m

CnH2n+1Me2P+O– at W|A,   n = 7-16,   average T = 23.5˚C 

{1} SD 1 7-11/non-coh -19.9 29c Eq. (21)d 1.0 

{2} SD 2 7-11/non-coh -20.0 28.2 Eq. (21)d 0.98 

{3} SD 2 7-11/non-coh -21.0 29c 0.49(n+1)e 1.7 

{4} SD 1 7-16/all -19.7 29c Eq. (21)d 2.0 

{5} SIAL 1 7-11/non-coh -20.5 29c 0.49(n+1)e 1.7 

{6} SIAL 3 7-11/non-coh -20.5 29c -0.08+0.35n 1.0 

{7} SIAL 3 7-16/all -20.6 29c -0.08+0.38n 1.3 

{8} vdW 4 7-11/non-coh -19.9 33.0 -2.46+0.273n 0.91 

{9} Frumkin 4 7-11/non-coh -19.8 43.4 -2.41+0.206n 0.93 

CnH2n+1Me2N+CH2COO– at W|A,   n = 8-16,   average T = 20˚C 

{10} SD 2 8-16/non-coh -21.3 31.0 Eq. (21)d 1.8 

{11} SD 3 8-16/non-coh -21.6 30.2 2.31 1.1 

{12} SIAL 4 8-16/non-coh -21.55 23.4 1.93 + 0n 1.1 

Cn–1H2n–1COOH at W|A,   n = 3-10,   average T = 21˚C 

{13} SD 1 3-4/non-coh -20.4 18c Eq. (21)d 0.57 

{14} SD 1  3-10/all -20.2 18c Eq. (21)d 0.93 

{15} SD 2 3-10/all -20.2 18.2 Eq. (21)d 0.92 

{16} SIAL 1 3-10/all -20.4 18c (n +1)0.49e 0.94 

{17} SIAL 3 3-10/all -20.7 18c 1.44 + 0.46n 0.78 

{18} vdW 4 3-10/all -20.4 22.55 -0.47+0.35n 0.63 

{19} Frumkin 4 3-10/all -20.1 28.8 -1.0 + 0.26n 0.70 

CnH2n+1OH at W|A,   n = 3-10,   T = 21˚C 

{20} SD 2 3-4/non-coh -20.1 16.5c Eq. (21)d 0.88 

{21} SD 1 3-10/all -20.4 16.5c Eq. (21)d 1.44 

{22} SD 2 3-10/all -20.1 17.3 Eq. (21)d 1.06 

{23} SIAL 1 3-10/all -20.1 16.5c (n +1)0.49e 1.5 

{24} SIAL 3 3-10/all -20.6 16.5c 0.86 + 0.56n 0.95 

{25} vdW 4 3-10/all -20.3 20.9 -0.48+ 0.39n 1.1 

{26} Frumkin 4 3-10/all -21.6 31.0 0.97+ 0.26n 1.6 

For each model, the assumed fixed values of the parameters are underlined. The equations defining the 

adsorption models (first column) are listed in S1. a Data either only for non-cohesive or for all (cohesive and 

non-cohesive) homologues are used. b For W|A, we use fixed value of the transfer energy CH2 = 1.04×kBT. c 

Fixed value of  calculated from the crystallographic and/or collapse areas. d Fixed to the value predicted by the 

nonlinear Eq. (21). Note that the expression (21) for  involves  as a parameter; this was accounted for in the 

optimization procedure. e Fixed value of 1 = 0.49 taken from Smith [63]. 
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S7. Analysis of the dispersion of the SD model as a function of the interaction 

parameters  and  

The two interaction parameters  and  affect the surface pressure isotherm in similar manner and in 

result they cannot be determined from tensiometric data with good accuracy in most cases. This is valid 

for all models from Sec. 2.1.2. To illustrate the problem, we will consider the deviation of the SD model, 

Eqs. (10)-(12), from the data for oil-soluble alcohols (Eq. (28) and row {8} from Table S3). We fixed 

ln(Ka0/[m]) to its best value, 21.14, and then analysed the merit function dev(,). This function has a 

minimum at  = 17.2 Å2 and  = 0.437; the optimal value of dev is 0.392 mN/m. It turns out, however, 

that the minimum of dev(,) is rather flat. The deviation is within 1% of the optimal value for any  

between 0 and 1 and  between 14 and 21 Å2, provided that they are related between each other as  = 

0.13  1.8 (Fig. S4). This problem is a significant source of errors, especially if data for each 

homologue is fitted separately. Therefore, fits with both  and  being left as adjustable parameters must 

be avoided. This means, for example, that the result for  from row {5} in Table S3 (2-parametric SD 

model with free Ka0 and ) is far more reliable than the one in row {8} (3-parametric SD model with 

free Ka0,  and ). 

 

Fig. S4. Standard deviation of the SD model compared to the tensiometric data for oil-soluble alcohols (n = 

8÷18) at the W|O interface as a function of  and . Fixed value ln(Ka0/[m]) = 21.14 is used. It is seen that any 

value of  between 0 and 1 and any  between 14 and 21 Å2 can give deviation below 0.396 mN/m (the global 

minimum is by 1% smaller; any set of adsorption parameters falling inside the ellipse has dev < 0.396 mN/m). 
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S8. Adsorption of the water-soluble non-ionic surfactants at the W|O 

interface 

        

 

Fig. S5. Interfacial pressure S vs. concentration C in the water of several water-soluble surfactants at W|O.  

a. Butanol at water|dodecane, T = 20˚C. Red points: data from Ref. [79]; blue line: SD model with no fitting 

parameters (the values of the long-chained oil-soluble alcohols from Table 2 were used). b. Butanoic and 

pentanoic acid at water|benzene, 35ºC. Red points: data from Ref. [69]; blue lines: SD model with Ka0 = 2.00 Å 

and  = 1.56. c. Tridecyldimethylphosphineoxide at water|hexane, 20ºC. Red points: data from Ref. [80]; blue 

lines: SD model with Ka0 = 1.63 Å and  ≈ 0. 
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 The findings presented in Sec. 3.3 were about oil-soluble alcohols. In order to verify the obtained 

results, we analysed also the interfacial tension data for a water-soluble alcohol. To the best of our 

knowledge, only data for butanol, adsorbed at water|dodecane interface are available [79]. We used the 

SD model with fixed values of the actual area per molecule,  = 16.5 Å, and  = 0.332; the adsorption 

constant is Ka = Ka0exp(nCH2/kBT) = 0.169 m following from the value ln(Ka0/[m]) = -21.14 (Table 

2). The predicted surface tension isotherm is in good agreement with the experimental data, Fig. S5a. 

The small positive deviation of the data is probably due to the non-ideality of the aqueous butanol 

solution, and perhaps the inaccuracy of Eq. (45) for Kp (which can shift the lnKa0 values determined for 

the oil-soluble surfactants in Table 2 by an additive constant). 

 The tensiometric data for butanoic and pentanoic acids at the water|benzene (W|B) interface were 

processed with the 2-parametric SD model ( is assumed independent of n and lnKa is assumed to follow 

Eq. (25) with CH2 = 1.39×kBT as with alcohols at W|O, cf. Sec. 3.3). The result is illustrated in Fig. 

S5b. Data for a single homologue of the phosphineoxides at W|O is available – it is fitted with the SD 

model in Fig. S5c. The results are discussed in Sec. 3.3. 

 

S9. Application of the adsorption models to data for N-alkyl-N,N-

dimethylglycines at W|A 

 All homologues of the zwitterionic CnH2n+1Me2N
+CH2COO– at W|A from Refs. [93,94,83] (n = 8-

16) point at weakly cohesive behaviour, suggesting that  is close to 2 (cf. Sec. 3.5). Unfortunately, we 

found no reliable data for the area per molecule of these surfactants. In addition, the data showed 

significant disagreement with both Eq. (21) and Eq. (23) for . This is evident from the high deviation 

of the SD model with  fixed to the predictions of Eq. (21) (1.8 mN/m, cf. row {10} in Table S4). A 4-

parametric fit with SIAL model with assumed linear (n) dependence (Eqs. (8),(9)&(24) with parameters 

Ka0, , 0 and 1) yields 1 = 0, which means essentially that the attraction parameter  is almost 

independent of n (row {12} in Table S4). We performed two more tests of this result. The first one was 

to set  = const in the SD model for all CnH2n+1Me2N
+CH2COO– homologues. This yields a relatively 

low deviation of 1.1 mN/m and area per molecule close to that of CnH2n+1Me2PO (row {11} in Table 

S4). The second test is following from the fact that if  is not strongly dependant on n, then scaling 

behaviour similar to the one shown in Fig. 4 for the alcohols at W|O can be expected. Indeed, the SD 
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isotherm (12) can be written as: 
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which is similar to Eq. (29). Provided that  is independent of n, Eq. (50) suggests that if S is plotted 

against C×exp(nCH2/kBT), where the value CH2/kBT = 1.04 for W|A is used, data for all homologues 

must fall on a single master curve. This is demonstrated in Fig. S6. Only the most long-chained 

homologues deviate from the theoretical line predicted by the SD model with constant . 

   

Fig. S6.  Surface pressure S vs. scaled concentration of N-alkyl-N,N-dimethylglycines at W|A (n = 8-16, T = 

20˚C). Data for all homologues fall on a single master curve when plotted in S vs. ln[C×exp(nCH2/kBT)] 

coordinates (with CH2/kBT = 1.04), in agreement with Eq. (50). The line is calculated via the SD model, Eqs. 

(10)-(12), with Ka0 = 4.33 Å,  = 30.2 Å2 and  = 2.31 (Table 2). The scaling demonstrates that  is independent 

of n. This fact can be explained with the strong electrostatic attraction between the head groups (illustrated with 

a red arrow between the positively charged N- and the negatively charged O-atoms in the picture on the right) – 

seemingly, this interaction dominates over the van der Waals attraction between the hydrocarbon chains. 

 A possible explanation of the observed little or no dependence of  on n is the following one. Due 

to the high area per molecule, the attraction between the hydrophobic chains is relatively small, cf. Fig. 

2. On the other hand, a very strong electrostatic attraction is possible between the head groups, illustrated 

in Fig. S6 with a red arrow. If the latter interaction is prevailing (which seems to be true for all 

homologues with the exception of those with the longest chains),  will indeed depend only on the head 

group.   
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S10. Phase transition in the continual approach – the S(C) isotherm 

In this Supplement, the phase behaviour predicted by the SIAL model will be considered in some detail. 

 The set of extremum points of Eq. (8) for S() at any value of  corresponds to the spinodal curve 

of this EOS, i.e. the spinodal is defined with the condition for extremum, ∂S(;)/∂ = 0. Substituting 

here the expression (8) for S of the SIAL model and solving, we can find the relation between  and  

defining the spinodal: 
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Substituting  with spinodal in the EOS (8), we obtain the spinodal curve in S vs. coordinates: 
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The spinodal curve is plotted in Fig. S7a. Below the spinodal curve, no stable phase exists (the 

mechanical condition for stability, ∂S()/∂ > 0, is violated). Between the spinodal and the binodal, 

only metastable gaseous (on the right of the spinodal) and LE (on the left) phases exist; normally, these 

metastable phases must pass through a phase transition, forming a heterogeneous film. 

 To represent the spinodal in S vs. C coordinates, we substitute Eq. (51) into SIAL adsorption 

isotherm (9): 
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Eqs. (52)-(53) define parametrically the spinodal in S vs. C (with parameter ). The result is shown 

in Fig. S7b-d (red dash-dot line). The cusp of the spinodal corresponds to the coordinates of the critical 

point. 

 The SIAL model gives no analytical expression for the binodal curve. The binodal in Fig. S7a is the 

numerical solution of the conditions for mechanical and chemical equilibrium between the gaseous and 

the LE phase, S(G;) = S(LE;) and S(G;)G = S(LE;)LE, where the functions S and S are 

given by Eqs. (8) and by SIAL’s surface activity coefficient, 
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compare to Eq. (2). The equilibrium conditions are solved for G and LE for each  > cr. The obtained 
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G and LE are then substituted in Eqs. (8) and (9) to calculate S
binodal and Cbinodal corresponding to the 

binodal curve (at the binodal, it follows from the condition for chemical equilibrium that CG = CLE ≡ 

Cbinodal and from the mechanical equilibrium that S,G = S,LE ≡ S
binodal). The result is plotted in Fig. S7a 

(S
binodal vs. 1/G at  < cr and S

binodal vs. 1/LE at  > cr) and Fig. S7b-d (blue dotted line, S
binodal vs. 

Cbinodal). The coexistence curve in S vs. C coordinates has no two branches and it ends at the critical 

point. 

 

 

Fig. S7. a. Phase diagram in S vs. 1/ coordinates (suitably made dimensionless) according to SIAL model, 

including the spinodal. Below the spinodal stands the truly unstable 2-D fluid. Between the spinodal and the 

binodal are the metastable gaseous and LE phases. b-d. Phase diagram in S vs. C coordinates (suitably made 

dimensionless) for a supercritical, critical and subcritical adsorption layers. Above the critical , the S(C) curve 

has a characteristic intersection point with itself. The intersection point is falling on the binodal and corresponds 

to the gaseous-LE phase transition. The two cusps falling on the spinodal mark the boundaries of the stable 

gaseous and LE phase. The branch connecting the two cusps correspond to the unstable state of the layer 

(corresponding to the part of the S(1/) below the spinodal in a). 
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