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Abstract. A foam film made of pure liquid can be stabilized by evaporation. This is 

demonstrated experimentally for water and alkane films formed in a Scheludko cell at controlled 

saturation of the ambient air. A mechanism of the stabilization is proposed – evaporation leads to 

a local decrease of the temperature in the centre of the film; the meniscus acts as a thermostat 

and maintains a higher temperature at the film periphery. The resulting temperature gradient 

brings about a surface tension gradient causing a stabilizing thermal Marangoni flow that carries 

fluid from the meniscus to the interior of the film. The film thickness is quasi-stationary and 

gradually decreases as the meniscus cools due to the evaporation. At a certain critical meniscus 

temperature, the film reaches a critical thickness at which the Marangoni effect can no longer 

counteract the combined action of the capillary pressure and the van der Waals attraction, and the 

film breaks. The lifetime of the film is estimated as a function of the film geometry and the 

experimental conditions (temperature, saturation, vapour pressure, capillary pressure). The 

theoretical and the experimental results for the lifetime and the critical thickness are in 

qualitative agreement for films at moderate saturation. 
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I.Introduction 

The drainage and stability of thin liquid films determine the properties of a broad range of 

objects, including foam, bakery yeast (Exerowa and Kruglyakov, 1998), cement (Du and 

Folliard, 2005), water-crude oil emulsions (Sullivan and Kilpatrick, 2002), and many others. The 

process of evaporation is known to influence the stability of these films. In particular, there are 

numerous studies on evaporating wetting films on solid substrates due to their importance for 

certain technological processes, such as fibre optic coating, semiconductor chip deposition 

(Danov et al., 1998), fuel atomization in engines (Baumgarten, 2006), etc. Evaporation interferes 

with these processes primarily by causing Marangoni flows (Baumgarten, 2006; Danov et al., 

1998; Sultan et al., 2005; Yiantsios and Higgins, 2006; Zuiderweg and Harmens, 1958). In 

contrast, the research on evaporating foam films is quite limited (Manev and Nguyen, 2005) and 

to our knowledge, only a handful of studies devote significant attention to evaporating thin films 

containing no surfactant, e.g. (Yaminsky et al., 2010a). The related problem for evaporation of 

sessile drops from pure liquids has been studied in greater depth (Chandramohan et al., 2016; Hu 

and Larson, 2006, 2005). 

 Evaporation has a twofold effect on the stability of thin films – by taking away heat and 

mass from the film, it brings about thermal Marangoni flows (driven by a temperature gradient) 

and Gibbs-Marangoni flows (driven by concentration gradients in multicomponent liquids). In 

the case of a wetting film, the solid substrate acts as a thermostat and reduces the magnitude of 

the thermal Marangoni effect. Due to the absence of this thermostating effect, it can be expected 

that the Marangoni flow is stronger in evaporating foam films. There are hints in the literature in 

support of this hypothesis. For example, Li et al. (Li et al., 2012) reported that bubbles formed 

from surfactant solutions burst under non-uniform evaporation. In their experiment, evaporation 

leads to a local thinning of the liquid films, as well as to a local increase of the surfactant 

concentration, resulting in a gradient of the surface tension . This gradient causes a Marangoni 

flux away from the thinner region of more intense evaporation and leads to the bursting of the 

bubble. In contrast, Manev et al. (Manev, 1975; Manev and Nguyen, 2005) studied evaporating 

foam films formed from surfactant solutions in a Scheludko cell and found no significant effect 
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of evaporation in these systems. Yaminsky et al. (Yaminsky, 2006; Yaminsky et al., 2010a, 

2010b) hypothesized that evaporation-driven Marangoni effects are the cause of the stabilization 

of the foam films they observed in a variety of experimental setups. Their surfactant-free films 

reacted particularly strongly to evaporation. Yaminsky (Yaminsky, 2006) reported that when a 

small air bubble attaches to the interface between air and a pure liquid containing no surfactant, 

its behaviour is dependent upon the saturation – if the air is saturated with vapour, the bubble 

coalesces immediately. Conversely, in an unsaturated environment, the air|liquid|air film formed 

upon contact between the bubble and the surface remains stable over an indefinite period of time. 

Another interesting phenomenon occurring in evaporating films free of surfactant was reported 

by Karakashev and co-authors (Karakashev et al., 2008). Contrary to expectations based on the 

Derjaguin-Landau-Verwey-Overbeek theory, their foam films exhibited significant stability 

(lifetime ~100 s) and a complex dynamic behaviour despite being formed from concentrated 

solutions of inorganic electrolytes. This anomalous stability was only displayed when the 

surrounding gas was undersaturated with respect to the vapour pressure of the salt solution 

(Karakashev et al., 2008). 

 These reports suggest that evaporation plays a key role in the stabilization of surfactant-free 

foam films against the capillary pressure-driven drainage and generated our interest in exploring 

this topic. The salt films studied by Karakashev et al. (Karakashev et al., 2008) are complex 

systems – the observed intensive fluxes must be affected by the evaporation-induced gradient of 

the electrolyte concentration and the effect of the electrolyte on surface tension (Slavchov and 

Novev, 2012). Evidently, evaporation-driven Gibbs-Marangoni flows are also present in 

surfactant solutions – for this reason, trace amounts of surfactant have a destabilizing effect on 

evaporating films of pure liquid (Yaminsky et al., 2010a). Instead of tackling the complicated 

problem of two-component films, in this study we explore the simpler case of an evaporating 

film comprised of pure liquid, where only the thermal Marangoni effect is present. 

 Even in this case, however, the behaviour of the film is influenced by many factors other 

than the relative saturation, complicating the interpretation of the experimental data. There is no 

consensus in the literature about the stability of pure water foam films even in the absence of 

evaporation (Peng and Chang, 2014) – while some authors state that they rupture instantly and 

even use this as a criterion for the purity of their experimental setup (Karakashev et al., 2008; 

Nguyen and Nguyen, 2010), others report stable films of this kind (Exerowa, 1969; Exerowa and 
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Kruglyakov, 1998; Yaminsky et al., 2010a). The reported lifetime of such films varies by orders 

of magnitude depending on the method used for their preparation. Karakashev and Firouzi 

(Karakashev and Firouzi, 2014) observed stable water films; however, they became unstable 

following a 200-fold flushing of the entire cell with water. In a saturated environment, after the 

flushing, pure water films were found to have a lifetime of ~5 s, reaching a thickness of ~30 nm 

before rupture. In an undersaturated environment, such films ruptured instantly. 

 Several studies report that the stability of pure water films is also dependent upon the 

approach velocity of the two water|air interfaces (Del Castillo et al., 2011; Firouzi and Nguyen, 

2014; Wang and Qu, 2012; Yaminsky, 2006; Yaminsky et al., 2010a, 2010b). In a saturated 

environment, if the velocity is above a certain critical value (35 m/s (Firouzi and Nguyen, 

2014), 200m/s (Yaminsky et al., 2010b) or less than 11 m/s (Wang and Qu, 2012)), the two 

surfaces coalesce instantly. Firouzi and Nguyen (Firouzi and Nguyen, 2014) found that films live 

for several seconds at an approach velocity of under 35 m/s. Yaminsky et al. reported a similar 

finding at both saturated (Yaminsky et al., 2010b) and undersaturated (Yaminsky et al., 2010a) 

conditions: for approach velocities between ~1 and ~100 m/s, the average lifetime of their films 

was about a minute, while below 1 m/s, it was of the order of hours. Numerous studies devoted 

to the coalescence of gas bubbles with the water|air interface show a similar dependence on the 

approach velocity (Del Castillo et al., 2011; Katsir and Marmur, 2014a, 2014b). The stability at 

low approach rates is attributed to electrostatic repulsion between the two interfaces (Katsir and 

Marmur, 2014b; Yaminsky et al., 2010b). It is not entirely clear what the cause for this 

electrostatic repulsion is or by what mechanism it is overcome at high approach rates. Finally, a 

persistent reason for contradicting reports is the presence of surface-active impurities. Such 

impurities generally stabilize films under saturated conditions; however, evaporating films made 

of pure liquid can in fact be destabilized by trace quantities of surfactants (Yaminsky et al., 

2010a). 

 The short review above demonstrates that, though it may not be entirely consistent, there is a 

body of evidence indicating that films formed from single-component liquids may be stabilized 

by evaporation. Our aim in this study is to clarify the question by (i) considering the possible 

mechanism of stabilization theoretically and (ii) investigating evaporating films experimentally 

under controlled saturation of the ambient air. The basic hypothesis we will test is that 

evaporation gives rise to a thermal Marangoni effect – an idea formulated by Yaminski et al. 



6 

 

(Yaminsky et al., 2010a). The model we will present in Section II generalizes the classical 

Maxwell-Langmuir-Fuchs theory (Fuchs, 1959) of the evaporation of a spherical droplet to an 

approximate geometry mimicking the biconcave droplet in the Scheludko cell (Sheludko, 1967); 

it can also be viewed as a thermal-Marangoni-effect-analogue of Marrucci’s theory of the 

stabilization of films by the Gibbs-Marangoni effect (Marrucci, 1969). For the purpose of testing 

the qualitative predictions of this model, we performed experiments with evaporating films made 

of pure water and alkanes under controlled saturation of the ambient air. The results are 

discussed in Section III. 

II.A model for the stability of an evaporating film 

The model we develop considers a disc-shaped foam film in contact with a ring-like meniscus. 

This mimics the common experimental setup for studying foam films – the Scheludko cell 

(Sheludko, 1967), Figure 1A, where the film is formed by withdrawing liquid from a biconcave 

drop situated in a glass capillary (film holder). The typical dimensions in this setup are Rc ~ 2 

mm for the radius of the capillary, Rf ~ 150 m for the film radius and h ~ 100 nm for the film 

thickness (for the reader’s convenience, all symbols and parameter values are tabulated in the 

supplement S1). The capillary is at a fixed position inside a container filled with air of controlled 

saturation, Figure 1B; the container is a cylinder of radius Rcont ~ 1 cm and height Lcont ~ 9 cm. 

For all experiments, it is fulfilled that h << Rf << Rc < Rcont. In most cases, the observed films are 

approximately plane-parallel – the thickness of the film zone is homogeneous, resulting in 

homogeneous colour, Figure 1C. 

 The evaporation gives rise to several conjugated processes in this system: 

 (i) as evaporation is endothermic, it causes a local temperature drop to develop within the 

thin film. The temperature of the meniscus is affected to a lesser degree because both the 

relatively large amount of liquid in it and the glass wall that is in contact with it exert a 

thermostating effect. This produces a radial temperature gradient, ∇T, in the film. 

 (ii) The temperature gradient ∇T, in turn, leads to a surface tension gradient, ∇, which is 

the driving force for an influx of liquid from the meniscus towards the film, i.e., for a stabilizing 

Marangoni flow. 
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 (iii) The stabilizing force ∇ acts against three destabilizing factors: the evaporative mass 

flux, the capillary pressure and the attractive disjoining pressure, all of which take away liquid 

from the film. The thermal Marangoni effect slows down the thinning of the film and may 

eventually lead to the establishment of a stationary film thickness similar to the one caused by 

the Gibbs-Marangoni effect in Marrucci’s theory of coalescence (Marrucci, 1969). 

 

Figure 1. Scheme of a foam film formed in a Scheludko cell. A. A disc-shaped film is in contact with a 

biconcave meniscus that sticks to the wall of a capillary of inner radius Rc ~ 2 mm. The pressure pm in the 

meniscus is lower than the atmospheric p0 by the capillary pressure 2m/Rc, еq. (2), which causes drainage 

of the film. B. The capillary is fixed via a glass tube at height of ~1 cm inside a container (cylinder of 

radius Rcont ~ 1 cm and height Lcont ~ 9 cm), the bottom of which is covered by a layer of ‘atmostating 

liquid’ maintaining constant humidity. The container was normally sealed, but in some cases it was 

opened to expose the film to the humidity of the laboratory. C. Image of a typical aqueous film and its 

periphery (focussed on the film zone). The colour corresponds to homogeneous thickness of about h = 

110 nm; the film radius is Rf = 200 m. 

 A water droplet in dry air is, from Fuchs’s eq. 6.6 (Fuchs, 1959), cooler than its environment 

by ~20 K once a steady state is reached. A similar temperature difference must occur between 

the fluid in the meniscus and the ambient gas. The difference between the meniscus and the 

centre of the film is much smaller (~0.1 K, as will be shown below), yet it is large enough to 

cause a considerable Marangoni flow, since the surfactant-free liquid surface is highly mobile. 
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1. Hydrodynamics 

A disc-shaped plane-parallel film in contact with a biconcave droplet (Figure 1) drains under the 

action of the capillary pressure and – for sufficiently thin films – surface forces. As h << Rf, the 

lubrication approximation is applicable to the flow within the film (Reynolds, 1886). In addition, 

the capillary flow approximation can be used as Re ~ 10-9. 

 Most practically observed foam films contain at least trace quantities of surfactants, which 

lead to nearly complete tangential immobilization of the liquid surface (vr|z=h/2 = 0) and film 

drainage according to the Reynolds law (Radoëv et al., 1974; Sheludko, 1967). In contrast, the 

films we study consist of a single-component liquid and have free mobile surfaces. Therefore, 

both the normal and tangential velocities can be non-zero at the surfaces of the film, 

 vr|z=±h/2 = Vr(r)      and      vz|z=±h/2 = Vz,        (1) 

where Vz is independent of r. The pressure pm in the meniscus is lower than p0 in the gas phase: 

 
m 0 m c2 /p p R  ,         (2) 

where m is the tension of the surface of the meniscus. Since Rf << Rc, the meniscus (which has 

the shape of a nodoid) is almost spherical and the capillary pressure is pc = 2m/Rc to a good 

approximation (Sheludko, 1967). The capillary pressure drives the drainage of the film, which is 

counteracted by the Marangoni effect dictated by the evaporation-induced surface tension 

gradient d/dr. The latter exerts a tangential force at the film surface, which is balanced by the 

rz-component of the viscous stress tensor (Levich, 1962; Radoëv et al., 1974): 

 
/2

d

d

r

z h

v

r z










,          (3) 

where  is the viscosity of the liquid. The gradient d/dr originates from the difference between 

the heat capacities of the meniscus and the film, which results into different cooling rates of the 

two regions and, therefore, a temperature gradient ∇TL in the film. For a liquid far from its 

critical temperature, the dependence of  on TL is linear (Palit, 1956): 

  S

m

L

mr s T r T        ,        (4) 

where TL(r) is the temperature profile in the film, sS = ∂/∂T is the surface entropy of the liquid, 

Tm is the temperature of the meniscus. 
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 Using the above relations as boundary conditions for the Navier-Stokes equations, the 

tangential and normal velocities vr and vz, the pressure distribution p(r) and the radial surface 

velocity Vr of the film can be expressed with TL(r) and Vz: 

 

2 24 d
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8 d
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h z p
v V r
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    ,        (5) 
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
.         (8) 

these expressions are derived in S2; the derivation is similar to that for other film drainage 

problems, see e.g. (Radoëv et al., 1974). 

2. Heat and mass transfer 

The evaporation of the biconcave droplet causes cooling of the liquid in the film and the 

meniscus. However, the meniscus remains warmer due to the thermostating effect of both the 

large quantity of liquid there and the glass holder. The resulting temperature gradient is 

controlled by the balance between the heat lost due to evaporation and the heat flux Q through 

the gas phase (we show in S3.5 that the heat flux through the liquid is negligible). 

 We assume that the temperature Tm of the meniscus is homogeneous, whereas the 

temperature of the film is a quadratic function of r. Thus, the difference between the temperature 

of the surface and the ambient air, T(r) = TL – T∞, , obeys 

 
 2 2

m f

m

Δ , film surface;
Δ 2

Δ , meniscus surface.

rrT
T r R

T

T


 

 



      (9) 

Here, Tm = Tm – T∞  is the difference in temperature between the meniscus and the surrounding 

gas, and Trr is a coefficient which we will determine later on. The assumption that T(r) is 

analogous to the parabolic approximation for the profile of the temperature inside an evaporating 

spherical droplet (e.g., (Dombrovsky and Sazhin, 2003; Snegirev, 2013)) and is implicitly or 

explicitly used for many problems for thin film drainage problems that involve Gibbs- and 
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electro-Marangoni effects – e.g., the integration with respect to r of eqs. 25a-b in (Valkovska and 

Danov, 2001) leads to parabolic profiles of the adsorption and the electrical potential in the film. 

It can be expected that a better approximation of the T profile (a 4th-order polynomial) will lead 

to corrections of O(h2/Rf
2
) in the results for the fluxes that follow. 

 We assume that the vapour concentration at the surface of the liquid follows the temperature 

profile (9) via the Clausius-Clapeyron equation, 

 
o

S e

L L o

e

1 1
exp

p h
C

RT R T T

  
    

   
 ,       (10) 

where p○ = 101325 Pa is the standard pressure; Te
○
 is the temperature of boiling of the liquid at 

p○; he is its heat of evaporation, and R is the gas constant. We now substitute TL with Tm + T(r), 

where T = ½Trr(r
2 – R f

2
) is the temperature difference between the film and the meniscus, see 

eq. (9). Since T << Tm, we can expand eq. (10) in a series, which yields:  

 
 2 2 2

S m f

m

Δ O(δ ), film surface;
Δ 2

Δ , meniscus surface.

rrC
C r R T

C

C


  

 



    (11) 

Here, we used the symbols 

 CS = CS  C;   Cm = Ceq  C;       (12) 
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1 1
exp

p h
C

RT R T T

  
    

   
,        (13) 

 e
eq

m m

1 rr
rr

h T
C C

RT T

 
  
 

.          (14) 

where Ceq is the Clausius-Clapeyron vapour concentration for the temperature of the meniscus, 

and Crr is a quantity analogous to Trr – the coefficient of the second-degree term of the 

concentration profile CS(r) at the surface of the film. C∞ is the ambient vapour concentration far 

from the biconcave droplet, which is related to the relative saturation x as: 

 eq m eq0/ ( ) /x C C T T C C     .        (15) 

Note that x is defined with respect to Ceq0, the equilibrium vapour concentration at the ambient 

temperature. 

 The evaporating meniscus acts as a vapour source and a heat sink perturbing the 

concentration and temperature profile from the homogeneous distribution, i.e., it leads to the 
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formation of diffusion and thermal boundary layers. The characteristic length of these layers is of 

the order of the size of the biconcave droplet, Rc ~ 2 mm, as in the problem for an evaporating 

spherical drop (Fuchs, 1959). This complicates the model because one must consider the 

concentration and temperature profiles outside the glass capillary and explains why Manev 

(Manev, 2013) found that the position of the holder within the container influences the process of 

evaporation. An exact model would require a detailed consideration of the geometry of the 

holder and the container; such a model would yield a result specific to the construction of the cell 

and to the shape of the meniscus and will be of little value in terms of generality. Instead of 

adopting such a treatment, we will use dimensional analysis to obtain a general dependence of 

the mass flux from the film to the environment (J) and the heat flux from the air towards the film 

(Q) on all relevant parameters. In S3&4, we formulate a crude model of the geometry of the 

system, which allows the missing numerical factors in this dependence to be estimated. 

Naturally, this approach restricts the validity of the final results for the fluxes to only a correct 

order of magnitude. 

 Let us first apply dimensional analysis in order to derive the total diffusion flux J through 

the film surfaces. According to eq. (11), the vapour concentration near the film region is 

perturbed by two additive effects: Cm due to the cooling of the biconcave droplet as a whole 

and ½Crr (r
2 Rf

2
), due to the additional cooling of the film region. The concentration gradient 

due to the cooling of the biconcave droplet drives a diffusive flux of density jc proportional to the 

concentration difference between the meniscus and the surrounding air (Cm, see eq. (12)) 

divided by the characteristic length (the size of the droplet, ~Rc) of the respective diffusion layer: 

 jc ~ DCm/Rc,           (16) 

where D is the diffusion coefficient of the vapours. As for the second perturbation in the film 

region, it generates a flux jf proportional to the concentration difference between the vapours 

above the colder film and those above the warmer meniscus divided by the characteristic length 

of the perturbation, the film radius Rf, i.e., jf ~ D(CS|r=0  CS|r=Rf)/Rf, From eq. (11) it follows that 

CS|r=0  CS|r=Rf~ CrrRf
2
, which leads to 

 jf ~ DRfCrr.            (17)  

Combining eqs. (17) and (16), we arrive at an expression for the total mass outflux through the 

surface of the film: 
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J R j j DR K R C K

R

 
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 
.      (18) 

Here, K1 and K2 are dimensionless coefficients of value specific to the precise geometry of the 

system. In S3&4 we estimate those coefficients based on an approximate model of the system. 

The final result for J reads 

  2

f f m

c

8 π
2 2 Δ

3
rrJ DR R C C

R

 
    

 
;       (19) 

J is defined as the total positive diffusive flux through both surfaces of the film. Note that our 

solution to the considered problem neglects the presence of a Knudsen layer and the convective 

diffusion – we analyse the limitations of these approximations in S5 and 6, respectively; in 

particular, we show that the convective diffusion is significant for highly volatile liquids, e.g. 

hexane. 

 The respective heat flux Q from the air through the surfaces of the film is, by analogy with 

eq. (19) is 

  2

f f m

c

8 π
2 2

3
rrQ R R T T

R


 
    

 
,       (20) 

where  is the thermal conductivity of the air. As with the mass transfer problem, we neglect the 

Fuchs layer and the convective terms in the heat transfer equation, cf. S5 and 6. The heat transfer 

via radiation is also neglected − by analogy with the case of an evaporating droplet (Fuchs, 

1959), this assumption should hold true for the film radii that we consider in this paper (~100 

m). We have also neglected the term ∂T/∂t in the heat equation; in S3, we show that this is 

justified for films of h < 1 m. 

3. Heat balance 

The approximate nature of our solution to the heat and mass transfer problems does not permit a 

local form of the heat balance to be used for our problem. Consequently, in order to determine 

the unknown coefficient Trr in the temperature profile (9), we will employ an integral heat 

balance for the film. This approach is widely used in the literature for the force balance in thin 

films – e.g., the Reynolds law for thin film drainage is obtained through an integral mechanical 

balance that substitutes the local Young-Laplace equation as the latter cannot be fulfilled if the 
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film is assumed to be plane-parallel (Ivanov and Dimitrov, 1974). The integral heat balance 

states that the total heat consumption rate due to evaporation, heJ, is compensated by the integral 

heat influx Q through the air: 

 heJ = Q,           (21) 

Substituting here the relations (19) and (20), together with eq. (14) for Crr, we obtain an equation 

for Trr. Solving it gives the result 

 

m
m

m e

e mf c eq

m e eq

0.69

1
rr

T
C

T h D
T

h TR R C

RT h DC






 



 

.       (22) 

The term proportional to Tm in the numerator can in principle nullify Trr – that is, there exists a 

temperature difference between the meniscus and the ambient air, Tm = heDCm/, such that 

the temperature drop in the film and the associated Marangoni effect vanish. Thus, once the 

meniscus becomes cold enough, the thin films can no longer be stabilized by the evaporation. 

4. The cooling of the meniscus 

The time dependence of the temperature of the meniscus Tm follows from the heat balance for 

the glass capillary and the liquid in the meniscus. This balance involves the heat flux Qm coming 

from the air through both surfaces of the meniscus and the respective evaporative flux Jm. 

Applying dimensional analysis as done for J above, one can show that Qm  RcTm. The 

numerical coefficient in this relation is estimated in S5: 

 m c m4.57 ΔQ R T  .         (23) 

The mass transfer problem leads to a similar expression for the diffusive flux Jm through the 

surfaces of the meniscus: 

 m c m4.57 ΔJ DR C .         (24) 

We make the additional assumption that at all times, there is thermal equilibrium between the 

meniscus and the glass of the capillary. In this approximation, the rate of change of Tm is 

determined by the rate of heat loss due to evaporation (heJm), and the rate at which heat is gained 

from the gas phase (Qm): 

  m
m e m c m e m

d
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d
p

T
C Q h J R T h D C

t
       ,     (25) 
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where Cp is the sum of the heat capacities of the liquid and the part of the glass holder in direct 

contact with the fluid. Its value is estimated in S8 – for water and a borosilicate capillary of 

diameter Rc = 2 mm and wall thickness dglass = 1 mm, Cp ≈ 0.18 J/K.  

 The right-hand side of eq. (25) can become zero, which means that a stationary temperature 

difference between the meniscus and the air (Tm,st) will be reached eventually, as in the case of 

a spherical droplet (Fuchs, 1959). This stationary temperature decreases with the decrease of the 

ambient relative saturation x. To analyse the dependence of Tm,st on x, we set the right-hand 

side of eq. (25) to zero and rearrange it using eqs. (12)-(13): 
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, (26) 

where we used that, by definition, x = C/Ceq0. Instead of the dependence Tm,st(x), this result 

determines the inverse function, x(Tm,st); it is plotted in Fig S8. According to eq. (26), for the 

experimentally relevant undersaturations, a water meniscus is colder than the ambient air by -10 

K at the stationary state. The stationary temperature difference predicted by the equation above is 

precisely the value at which the numerator in eq. (22) for Trr becomes zero – that is, when the 

temperature drop in the meniscus reaches Tm,st, the Marangoni effect disappears. However, as 

we will show next, the films become unstable even before Trr reaches zero. 

 The dependence of Tm on time at a given saturation x follows from the heat balance (25): 
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where as an initial condition we have used that at t = 0, the temperature of the meniscus is equal 

to that of the surrounding air. The integral (27) is not analytical due to the complicated 

dependence of Cm on Tm, see eqs. (12)-(13). In S8, we use a series expansion to obtain an 

analytical expression valid for small Tm and for x close to 1. 

5. Drainage and stability of an evaporating film.  

Having derived the expression (22) for Trr, we can now explicitly determine the drainage 

velocity of the film. In order to do so, we will formulate an integral balance of the forces acting 

in the normal direction, by analogy with the derivation of the Reynolds law for drainage of films 

of tangentially immobile surfaces (Reynolds, 1886). The integral approach is necessary because 
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our model states in advance that the studied film is plane-parallel (based on the experiment, 

Figure 1C), thereby making the local form of the normal force balance inapplicable (Ivanov and 

Dimitrov, 1974). Employing a local boundary condition would be tantamount to solving the 

Young-Laplace equation for the film shape (Manev et al., 1997; Tsekov and Ruckenstein, 1994), 

and goes beyond the aims of our study. The integral normal force balance states that the total 

force acting on the film in normal direction is zero, 

 
f

0

0 /2

2π ( ) 2 d 0

R

z

z h

v
p p r r r

z
 



 
    

 
 .       (28) 

The balance includes the pressure p0 in the gas, the hydrodynamic pressure p(r), the viscous 

force in the liquid, 2∂vz/∂z, and the disjoining pressure  (the surface forces) in the film. 

Vapour recoil force can be neglected for the low to moderate evaporation rates we consider 

(Oron et al., 1997). 

 The precise nature of the surface forces acting in films formed from pure liquids is unclear. 

We assume that the main contribution to  is the van der Waals h3 attraction, 

  = vdW = AH/6h3,           (29) 

while the surface charge of the pure liquid and the respective electrostatic disjoining pressure el 

(Sheludko, 1967) are neglected. However, there is evidence that el is a significant factor for the 

stability of pure water films (Exerowa and Kruglyakov, 1998; Yaminsky et al., 2010b) , and the 

surface of pure water is, in fact, charged (Kolarov et al., 1993; Stubenrauch and Klitzing, 2003). 

We have two reasons for leaving the question of el aside. First, the experimentally observed 

evaporating saline films in (Karakashev et al., 2008) exhibit considerable stability at electrolyte 

concentrations of over 1 M, where electrostatic forces are completely screened – this means that 

even if el contributes to the stabilization, there must be another, dynamic stabilizing factor. Our 

second reason is that, for pure water films, the precise dependence of el on the film thickness h 

is unknown. In particular, it is unlikely that el follows the DLVO theory, the least reason being 

that the ionic strength of pure water (107 M) corresponds to a Debye length and an average 

distance between two ions that are greater than the experimentally observed h, which violates the 

assumptions under which the DLVO formula is derived, see Derjaguin (Derjaguin, 1986). In 

addition, there is no satisfactory explanation of the origin of the surface charge that produces the 

repulsion – for example, it seems rather far-fetched that hydroxide ions could adsorb at the 
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air|water interface with an adsorption energy of the order of 20×kBT (reported in (Marinova et al., 

1996)), i.e., comparable to that of sodium dodecyl sulfate (Slavchov et al., 2014). Nevertheless, 

we performed the whole analysis with the inclusion of the DLVO expression for el in S7. 

However, in view of the arguments stated above, we are sceptical towards its reliability and in 

the following sections we only consider the van der Waals term (29) in the disjoining pressure. 

In the worst case, the neglect of el makes our model applicable for non-aqueous films only, as 

there is little evidence of surface charge at the oil surface. It should be pointed out however, that 

eq. (29) itself is approximate for it neglects the retardation effect – the latter is known to be 

important for oil films (Israelachvili, 2011; Scheludko et al., 1965). 

 Substituting the expressions (7),(2),(9),(6),(8) and (29) for p(r), pm, T(r), vz, Vr and  in the 

force balance (28), we obtain an explicit equation for Vz. Its solution reads: 
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,  (30)  

where we used that h/Rf << 1. With knowledge of the drainage velocity Vz, we can proceed with 

the analysis of the film drainage velocity dh/dt, which follows from the mass balance of the 

liquid in the film:  
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where vL is the molar volume of the liquid. The first term in eq. (31) reflects the loss of fluid 

caused by evaporation and the term 2Vz quantifies the normal volume flux density towards the 

two surfaces of the film. According to eq. (30), there are three factors that influence Vz – the first 

term (Trr) is due to the Marangoni effect, which causes liquid to flow from the meniscus to the 

film, while the second (m/Rc) and the third (AH) describe the flow of liquid outward of the 

film due to the capillary pressure and the disjoining pressure, respectively. For water films of Rf 

= 150 m in contact with a thermostated meniscus with the parameters specified in S1, we obtain 

the following estimates: vLJ/Rf
2
 ~ 108 m/s for the diffusive term (using eq. (19)), R

f

2
sSTrr/ ~ 

102 m/s for the term due to the Marangoni flux, hm/Rc ~ 102 m/s for the capillary pressure 

term and AH/12h2 ~ 105 m/s for the one caused by the van der Waals attraction. Thus, 

somewhat contrary to what one might intuitively expect, the mass loss due to evaporation has a 

minor impact on the rate of thinning dh/dt. A similar result has been obtained for an evaporating 
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sessile droplet (Tsoumpas et al., 2015). The evolution of the film is thus predominantly 

controlled by the Marangoni flux, the disjoining and the capillary pressure. 

 One can use eq. (31) to derive the dependence of h on t – the result is discussed in S6. The 

characteristic time for reaching the stationary thickness of the film is predicted to be of the order 

of 106 s. Here, we analyse only the stationary state itself. Setting the right-hand side of eq. (31) 

to zero and rearranging, we arrive at the following equation for the stationary thickness: 

 
2

cr

2

cr 2 2

h h k

h h
  ,          (32) 

where the symbols k and hcr stand for 
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There are two physically meaningful solutions to eq. (32) for the stationary thickness, 
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where i is the imaginary unit and the coefficient a is defined as 

 3 354 6 81 3a k k      .        (36) 

Note that a can be complex and hst2 can have real values. Note also that the solutions (35) are 

quasistationary, as they depend on the coefficient Trr, which depends on the temperature of the 

meniscus (see eq. (22)), and it is therefore a function of time. 

6. The limiting case of a thermostated meniscus.  

Let us first consider the limiting case in which the temperature of the meniscus is equal to the 

ambient one (Tm = 0). Under this assumption, the thicknesses hst1 and hst2 (35) correspond to a 

true stationary state, rather than a quasistationary one. The solutions (35) are plotted in Figure 2 

– this is the stability diagram of pure water films in contact with thermostated meniscus. The 

first stationary solution hst1 gives the stable branch of the diagram, i.e., for any initial thickness h0 
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of the film for which h0 > hst2, it is expected that h(t→) = hst1. Once the film reaches the stable 

thickness hst1, it remains stationary as long as the meniscus does not cool down. The branch hst2 

of eq. (35) corresponds to an unstable stationary state. A film of initial thickness h0 = hst2 + , 

where  is a positive perturbation, will thicken until the stable branch is reached (h = hst1), while 

if h0 is smaller than hst2, the film is expected to drain until rupture (S6, Figure S.2). Our eq. (32) 

and Figure 2 are analogous to Marrucci’s eq. 16 and fig. 2 (Marrucci, 1969) that represent a 

similar balance between the concentration-driven Marangoni effect, the capillary pressure and 

the van der Waals force. 

 The mass balance (32) only permits a stationary state if the relative saturation x is below a 

certain critical value, xcr0, i.e., if the evaporation is intense enough. This critical value 

corresponds to the maximum of x as a function of hst. There, the film thickness is precisely equal 

to the critical value hcr from eq. (34), see Figure 2; this must be the smallest observable thickness 

of the film (for water, it is hcr = 40.1 nm, see S1 for the parameter values). Substituting h = hcr in 

eq. (32), we obtain that the respective critical value of k is 3. Eq. (33) then leads to the critical 

value of Trr for a thermostated meniscus: 
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Equating the right-hand side of eq. (37) with that of (22), using the definitions (12) and (15) and 

solving for x, we obtain the sought value of the critical saturation for a thermostated meniscus: 
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At relative saturations x greater than xcr0 (91% for pure water films of Rf = 150 m), no 

stationary thickness exists because the evaporation-driven Marangoni flow is too weak to 

maintain the stationary state. At x < xcr0, the stable stationary film thickness hst1 is given by eq. 

(35). Our critical relative saturation is analogous to the critical concentration occurring in 

Marrucci’s coalescence model (Marrucci, 1969). 
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Figure 2. Stationary thickness hst of a wate film as a function of the relative saturation: a stability diagram 

for a thermostated meniscus, eqs. (35). A stable stationary thickness hst1 (solid line), exists for humidities 

lower than the critical value xcr0. The branch hst2 (dashed line) is unstable, i.e., a film of initial thickness h0 

> hst2 thickens to hst1, while if h0 < hst2, the film drains until rupture. All films are unstable at x > xcr0. At x 

= xcr0 (dotted vertical line), the quasistationary film thickness is equal to hcr (dashdot line). 

7. Evaporating thin film in contact with a cold meniscus  

The assumption that the meniscus is thermostated leads to the conclusion that evaporating thin 

water films have an infinite lifetime at x < xcr0, which contradicts the experimental data we have 

gathered (see Section III). This contradiction is resolved when the cooling of the meniscus is 

accounted for. Let us therefore consider the time dependence of the thickness of a film in contact 

with a meniscus that cools down following eq. (27). The quasi-stationary film thickness depends 

on time through Tm. We plot parametrically the stable branch of eq. (35), hst1(Tm), against 

t(Tm) from eq. (27) at several values of the relative saturation; the resulting curves are shown in 

Figure 3. As the meniscus gradually cools down (Fig. S7), the film remains in a quasistationary 

state, but its thickness decreases according to eq. (35) in unison with the drop in Tm. The thinning 

process continues until the film reaches the critical thickness (34), whereupon rupture occurs. It 

is evident from Figure 3 that the expected lifetime of pure water films strongly depends on the 

relative humidity of the gas in the Scheludko cell – at x > xcr0, no stationary state is possible; for 

x < xcr0, the quasistationary thickness decreases from an initial value of the order of ~100-250 nm 

to hcr over a time period of  ~ 100 s. 
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Figure 3. Quastistationary film thickness hst of an evaporating water film in contact with a non-

thermostated meniscus as a function of time t for various values of the relative saturation x, at a film 

radius Rf = 150 m. The plot is parametric, using hst1(Tm) from eq. (35) and t(Tm) from eq. (27). The 

films thin down to the critical thickness hcr = 40.1 nm (eq. (34), dotted line), whereupon they are predicted 

to rupture. See S1 for the values of the parameters. 

 We now turn to the dependence of the lifetime  of the film on the saturation x, which can be 

obtained via another parametric plot. The critical value of k corresponding to hst1 = hcr following 

from eq. (32) is kcr = 3; we substitute this value in eq. (33) and solve it for x: 
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This equation generalizes eq. (38); above the critical humidity xcr, films in contact with a cold 

meniscus of temperature Tm are predicted to be unstable. To find the film lifetime , we 

substitute eqs. (12)-(13) in eq. (27) for t(Tm) (using C = xCeq0); then, we substitute x with its 

critical value (39). The result is  as function of Tm. Plotting it parametrically against xcr(Tm) 

from eq. (39) gives us the sought dependence x Figure 4A. 

 One can infer from eq. (39) that xcr grows with Rf, i.e., the stability of the evaporating film is 

dependent on its radius. We can rewrite eq. (39) as: 

 

e m

1/3 1/3 2/3
m e eqc H m

f S

eq0m m

eq e eq

1

3.27
Δ

1

h T

RT h DCR A
R

Cs T T
x

C h DC







 



 

.      (40) 



21 

 

According to this formula, films of different radii break at a different value of the temperature Tm 

of the meniscus, and therefore, have different lifetimes. This is illustrated in Figure 4B, where 

Rf(Tm) is plotted parametrically against t(Tm), eqs. (40) and (27), for x = 45%. At this 

saturation, quasistationary films are expected only for Rf above a critical value Rf,cr =  

Rf(Tm=0). For a water film formed in a capillary with Rc = 2 mm, Rf,cr is equal to 25 m, see S1 

for details on the parameters of the system. 

  

Figure 4. A. Expected lifetime  of quastistationary water films of radius Rf = 150 m as a function of the 

relative saturation x of the ambient gas – parametric plot of t(Tm) vs. xcr(Tm), eqs. (27) and (39). No 

stationary state is possible at x > xcr0 = 91% (eq. (38)). For x < xcr0 (dashed line), the film lifetime 

coincides with the time  required for the temperature Tm of the meniscus to decrease to the critical value 

that follows from eq. (39). B. Lifetime  of water films as a function of the film radius Rf at x = 45% – 

parametric plot of Rf(Tm) against t(Tm), eqs. (40) and (27). Stationary films are predicted to exist only 

for Rf > Rf,cr ≈ 25 m. See S1 for the parameter values. 

 The quasistationary approach we use in this section, in which the thickness is a function of 

time, but dh/dt is still equal to 0, is applicable because of the different timescales of the two 

processes taking place in the system. The cooling of the meniscus is slow and lasts for minutes, 

see Fig. S7; in contrast, the drainage of the film from its initial thickness to the quasistationary 

one occurs over timescales of Rc/0 ~ 105 s (S6). A similar situation was discussed by 

Marrucci (Marrucci, 1969) for his bubble coalescence problem, where the quasistationary foam 

film thickness is controlled by a slow diffusion process. 

A B 
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III.Experimental observations of evaporating foam films 

 The existing data on evaporating films from pure liquids (outlined in the Introduction) are 

scarce and contradictory, and do not allow the confirmation or rejection of the mechanism of 

stabilization proposed above. Therefore, we performed our own experimental tests of the 

predicted trends. For this purpose, we chose to investigate pure aqueous films under controlled 

moderate humidity x, as well as films formed from various pure alkanes. The evaporating alkane 

films are of practical relevance as a model for fuel and lubricant films occurring in the cylinders 

of internal combustion engines (Baumgarten, 2006). In addition, alkane films have certain 

advantages over aqueous from an experimental point of view, outlined below. 

1. Materials and methods 

 We used a version of the Scheludko cell identical to the one described in (Kosior et al., 

2014). For the convenience of the reader, its basic components are presented in Figure 1. Two 

capillaries of different radii (Rc = 2 and 2.3 mm) and wall thicknesses (dglass ~ 1 and 0.5 mm, 

respectively) were used in order to test the reproducibility of the results. The capillaries were 

fixed inside a container of radius ~1 cm and height ~9 cm, which was enclosed by a thermostat 

(HAAKE K10). The films were formed from a biconcave drop situated in the capillary (Figure 

1A) by withdrawing liquid with a micropump (Hamilton). Observations of the films were made 

with an inverted optical microscope (Carl Zeiss Axiovert 200 MAT) connected to a camera 

(Hitachi HV-D20); the film thickness was determined interferometrically (Sheludko, 1967). 

Several dozens of films were formed for each loading of the apparatus; each run like this lasted 

for several hours. Runs were repeated up to three times to test the reproducibility. 

 Aqueous films were formed from triply distilled water. For comparison, we tested also 

HPLC water, but the results were less reproducible. Following Manev (Manev, 1975), the 

humidity in the container was maintained (atmostated) by placing on the bottom of the sealed 

container a certain amount (~400 L) of atmostating solution – concentrated MgCl2 in triply 

distilled water (Figure 1B). The solutions used were of concentration 1.60 and 4.93 mol/kg, 

corresponding to 90 and 45% relative humidity, respectively (Robinson and Stokes, 1959). 

Experiments under saturated conditions, with ~400 L of pure water as the atmostating liquid, 

were also performed. 
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 Hydrocarbon films were formed from hexane, nonane and hexadecane (Fluka), either with 

the container open to the ambient air (corresponding to zero vapour concentration, x = 0), or with 

the container sealed and 600-800 L of the hydrocarbon placed on its bottom (maintaining 

saturated conditions, x = 1). 

 The observed films were normally circular and plane-parallel (Figure 1C), but with 

exceptions. We investigated films of different sizes – the experimental setup provides the 

opportunity to monitor the film radius with accuracy of 5 m and to control it manually with 

good precision. Once the film was formed, its radius remained constant during the whole 

drainage process until rupture, with the exception of the first several films in a run. The latter 

often expanded or shrunk significantly, perhaps in relation to highly undersaturated conditions – 

the atmostating liquid and the gas only equilibrate after several minutes. For each film, the 

rupture thickness hcr and the film radius Rf were measured; for several of them, the whole h(t) 

curve was recorded. Within a single run, the film stability exhibited a dependence on the time 

tload between the loading of the cell (the moment of the hermetic sealing of the container after the 

cell is loaded with fluid and the bottom of the container is loaded with atmostating liquid) and 

the formation of the film, so this parameter was also monitored. 

 Most atmostated film experiments were performed with the container sealed. Measurements 

were also performed with an open container and films exposed to the ambient humidity in the 

laboratory. This option was used as a qualitative test of the effect of abrupt changes in the 

humidity on the stability of the films. 

 A number of experimental factors complicate the interpretation of the results obtained with 

the setup described above. One is the long time scale for reaching the stationary vapour pressure 

inside the container – it is of the order of ~ L
2
cont/D ~ 5 min (Lcont – height of the container, ~ 9 

cm; D – diffusion coefficient of water molecules in air, 2.6×105 m2/s). Due to that, the first 1-3 

films of each run drain under saturation between that in the laboratory (humidity 45-65%) and 

the one set by the atmostating liquid. A related issue is that each film was formed in the cloud of 

vapours left after the previous one ruptured.  

 A second problem is the possible presence of surface-active contaminations, which can 

drastically affect the behaviour of the films we study. Even a very low concentration of surface-

active impurities will cause a solutal Marangoni effect strong enough to counteract the thermal 

Marangoni effect discussed here. Hu and Larson (Hu and Larson, 2005) have demonstrated that 
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for an evaporating sessile drop, an adsorption as low as one molecule per 3000 nm2 can 

effectively suppress the Marangoni flow. In another paper (Hu and Larson, 2006), Hu and 

Larson observed that the Marangoni flow pattern in an evaporating sessile droplet is accurately 

predicted by their theory for octane droplets, but for water, the experimental Marangoni flow is 

much weaker than expected, due to contaminants at the water surface (Hu and Larson, 2006). 

The impurities present in the alkane, on the other hand, are unlikely to have a significant affinity 

to the oil|air interface. To avoid contaminants, we used triply distilled water, and after each set of 

experiments, we lavishly washed the measuring cell and cleaned it in an oven at high 

temperature. 

 A third factor that introduces uncertainty into the interpretation of our experimental data on 

water films is the presence of CO2, whose dissolution in water introduces hydrogen carbonate 

and carbonate ions that allegedly charge the surface (Katsir and Marmur, 2014b) – this problem 

is also eliminated with the hydrocarbon films. 

 The validity of our model is restricted not only by these experimental complications, but 

also by our approximate treatment of the studied system, particularly the simplified model for the 

surface forces (29) and the approximate values of the numerical coefficients and Cp in eqs. (19)-

(20)&(23)-(25) (estimated for geometry of the system that only roughly matches the real one). 

Moreover, at high evaporation rates, non-linear effects related to convective transport and inertia 

are likely to be present. Therefore, we do not expect quantitative agreement between theory and 

experiment – we seek only qualitative correspondence, in terms of similar trends in response to 

variation of the experimental conditions and similar orders of magnitude of the relevant 

quantities (hcr, , Rf,cr etc.). 

2. Aqueous films 

 In an undersaturated environment, the observed film lifetimes varied considerably with the 

time after cell loading (tload). Typically, each successive film would live shorter than the 

preceding one, provided that their radii were similar – this behaviour is illustrated in Figure 5a. 

In contrast, no significant changes with tload were observed under saturated conditions. The 

decrease of the lifetime between two consecutive films was more pronounced when the period 

between the formations of the two films was shorter, and when the films are formed at higher 

undersaturation. The films were also morphologically different depending on tload: at low loading 
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times, films were not plane-parallel upon formation; at large tload, the films had approximately 

homogeneous thickness at their formation (Figure 6A&B). The observed trend with tload can be 

explained with the fact that the formation of several consecutive evaporating films leads to a 

significant cooling of the glass holder. The meniscus, the glass capillary and probably the 

supporting glass tube are progressively colder at the formation of each next film and the time 

between the formations of two films is insufficient for them to relax to the ambient temperature 

T. If the initial temperature of the meniscus is lower than T, then the lifetime of the film will 

be decreased (see S8). 

  

Figure 5. Dependence of the lifetime  of water films during one run on the time tload after loading the cell. 

A. 90% humidity. Diagonal crosses indicate films that rupture instantly. B. 45% humidity. The first 3 

films indicated with “+” were ruptured manually ten minutes after formation. 

 100% humidity. Stable, thick films were formed in saturated atmosphere (Figure 1C), in 

agreement with many previous reports (Exerowa, 1969; Yaminsky et al., 2010a) and contrary to 

what our model predicts. The films drained until reaching a plateau thickness of h(t→) = 60-

110 nm and did not rupture on the timescale of the experiment. Even though the experiments 

lasted for several hours, there was no change of film stability with the passing of time after cell 

loading. By a small manual change of the pump pressure, the films could be forced to drain – a 

black spot formed and grew until at a certain point the film ruptured (Figure 6C). This behaviour 

is indicative of the existence of a weak barrier for the drainage. 
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 The first two films formed right after the cell loading, while the air in the container was still 

not completely saturated, had a finite lifetime (50 and 90 s), and their radii shrunk significantly 

(from 100 to 50 m). 

 

Figure 6. Representative images of the observed films. A. Water film, x = 90%, high loading time, Rf = 

250 m; A1 – initial state, A2 – seconds before rupture. B. Water film, x = 90%, low loading time, Rf = 

250 m; B1 – initial state, B2 – seconds before rupture. C. Water film, x = 100%, black dot observed 

immediately before breakage. D. Nonane film, x = 100%, Rf ~ 100 m, lived for 50 s. 

 90% humidity. Using eq. (40) with Tm = 0, we can calculate that the model predicts no 

stable films at Rf below 125 m. However, we observed films of Rf = 50-100 m exhibiting 

lifetimes of 10-50 s, depending on Rf and tload (Figure 5a). For the films of radius Rf = 150 and 

250 m, the model predicts lifetimes of 37 and 145 s, respectively. These values agree in order 

of magnitude with the experimentally measured range of 20-70 s for Rf = 150 m and 20-300 s 

for Rf = 250 m (the lifetimes still depend on tload). The expected increase of the lifetime with the 

size of the films is confirmed – it is clearly seen in Figure 5A (22.3±0.3○C, Rc = 2 mm). Large 

films lived longer at all loading times – for example, at tload ~ 180 min, films of radius 40-200 

m drained for 5-35 s, respectively. 

 The films ruptured at a critical value of the thickness that varied in the range hcr = 26-48 nm, 

in qualitative agreement with the value 40 nm predicted by our model, eq. (34). The observed hcr, 

however, depended on tload – the first few films ruptured at 26-30 nm, while those at tload = 250 

min ruptured at 40-48 nm. 
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 The very first film was extremely stable and lived for 5 min before we ruptured it manually 

– the most probable reason for its stability is that the container was not yet atmostated at the time 

when the film was formed (tload = 17 min), i.e., x was less than 90% and evaporation was more 

intense than it was for the following films. 

 Unstable films that ruptured immediately after formation were observed after tload = 250 min, 

and the frequency of their occurrence increased with tload. At tload > 300 min, we could no longer 

observe films smaller than Rf = 50 m, which suggests that conditions at which Rf,cr is above  

50 m had been reached by that point. 

 45% humidity. All films (formed at 22.0±0.3○C, Rc = 2.3 mm) were very stable and lived 

much longer than the films at x = 90% – lifetimes were of the order of 10 min, as illustrated in 

Figure 5B. This confirms qualitatively our theoretical prediction that lifetime increases with 

undersaturation, see Figure 4. The theoretical values of  (~140 s for Rf = 50 m, ~300 s for Rf = 

100 m) agree in order of magnitude with the experimental ones (~s. Let us remark 

that under such low humidities one of the approximations we used in our model fails: eq. (27)

predicts that at t ~ 500 s, the meniscus temperature drops by 7 K, and at such large temperature 

differences, the series expansion of the boundary condition (10) is inaccurate. In addition, these 

films were not plane parallel. 

3. Hydrocarbon films 

 n-Hexane films. Both for saturated conditions (x = 1) and for zero ambient concentration  

(x = 0), all films ruptured instantly. In contrast, at x = 0, our theory predicts the existence of 

quasistationary hexane films with a lifetime of  ~ 700 s for Rf = 200 m. The discrepancy is 

likely due to hexane’s high volatility (vapour pressure 19.9 kPa), which could lead to failure of 

the approximations of our theoretical model. Our calculations, which the reader can find in S6, 

show that convective mass transport, disregarded in our model, is not negligible for C6H14 – the 

mass transfer Péclet number, which measures the relative importance of convective diffusion, 

reaches values of ~0.1 for hexane and just 10-3-10-2 for all other studied liquids.  

 n-Nonane. Saturated atmosphere, x = 1. It can be expected that such films would break 

immediately in the absence of a repulsive disjoining pressure, but instead, they were stable for 

tens of seconds – an experimental run is illustrated in Figure 4. For more details on the behaviour 

of non-evaporating nonane films, see S9. 
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 We employed different methods of perturbing the nonane films formed in a saturated 

environment. We first tried to perturb the liquid-vapour equilibrium by raising the temperature of 

the thermostat from 21 to 30○C (“cell heated” region in Figure 7). This was expected to result in 

a temporary undersaturation in the container which, according to the theoretical results in Section 

II, should in turn result in an increased stability of the film. Indeed, the first film formed after the 

temperature increase was very stable and lived for 210 s. In the following minutes, the film 

lifetime decreased back to the values we observed for all non-evaporating nonane films (50-60 

s), which suggests that by that time, the air in the container was already saturated with respect to 

the new temperature. We then changed the saturation more drastically by opening the container 

towards the air in the laboratory (“cell opened” region in Figure 7A). For this case, we expect a 

gradient of the vapour pressure to arise inside the container, starting from complete saturation 

near the surface of the atmostating solution and reaching zero saturation at the container 

entrance. Assuming that the gradient is constant (C is a linear function of z) and that the 

meniscus is located at height of approximately 15% from the height Lcont of the container, one 

can estimate that after the cell is opened, the relative saturation in the vicinity of the film is 

~85%. Therefore, the opening of the container should increase the film lifetime. This was indeed 

observed – all films formed after the cell was opened lived for ~140 s, significantly more than 

those formed in a saturated environment. 

 Open cell, x ≈ 0. Fifteen films of various sizes were formed in an open cell in the absence of 

atmostating liquid. Their behaviour was dependent on tload (Figure S9) – the first five films 

expanded considerably after formation from Rf = 50 m initially to 80-180 m just before 

rupture. The radius of all films formed 40 min after loading was stable, and Rf was either ~50, 

100 or 150 m. Their respective lifetimes were  ~ 20, 35 and 45 s – thus, in qualitative 

agreement with our theory (see Figure 4B), lifetime increased with Rf. However, the 

experimental increase is relatively small compared to the theoretical: the model predicts that 

films with Rf = 50 m do not reach a quasistationary state, and for Rf = 100 and 150 m, the 

theoretical  is 14 and 230 s, respectively.  

 Interestingly, the films formed at x = 0 were less stable than those formed at intermediate 

saturations (x ≈ 85% for films formed in the presence of atmostating liquid but in an open cell, 

see above), suggesting a non-monotonous dependence of the stability on x, in contrast with the 

predictions of our theory. 
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Figure 7. Lifetime  of nonane films formed during one experimental run vs. time after loading the cell, 

tload (21○C, Rc = 2 mm, non-evaporating films in saturated environment). After 270 min, the system was 

heated to 30○C – this resulted in a temporary decrease of the relative saturation and an increased stability 

of the film formed immediately afterwards. After 400 min, the container was opened towards the air in 

the laboratory, which also decreased the saturation and increased  of all films formed thereafter. 

 The evolution of the film thickness h(t) is compared to the theoretical one for a film of Rf ~ 

125 m at 21oC in Fig. S10. The film drained from ~260 to 40 nm, whereupon it ruptured. The 

theoretical h(t) was calculated as explained in Section II. Qualitative agreement between theory 

and experiment was observed, although the quantitative differences are significant. The critical 

thickness at which the films ruptured was ~42.9 nm This is 30% less than the theoretical value 

following from eq. (34), 60.3 nm. The observed drainage rate is faster than the theoretical by a 

factor of about 5, which is reasonably good agreement in view of the major approximations 

employed in the calculation of the numerical coefficients in eqs. (19)-(20), (23)-(24) and (27). 

 n-Hexadecane. Experiments were performed under unsaturated conditions only (x ~ 0). 

Instant rupture was observed in all cases. This is in agreement with the predictions of our theory 

– from eq. (38) it follows that the non-volatile hexadecane films are unstable over the whole 

experimental range of Rf. 
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IV.Conclusions 

 We have proposed a mechanism for the stabilization of evaporating foam films made of 

pure liquid, and gathered experimental evidence of its validity. Our theory explains the 

observed stability with the existence of a quasi-stationary state sustained by the evaporation-

driven thermal Marangoni flow. The evaporation of fluid causes a local temperature drop in the 

film region and therefore an increase in the surface tension , which brings about a Marangoni 

flux from the meniscus towards the film. The predicted spatial variation of  across the film is 

relatively small ( ~ Trrs
SRf

2
/2 ~ 103-102 mN/m difference between the centre and the 

meniscus), but it is sufficient to stabilize a film formed from a pure liquid because its surfaces 

are tangentially mobile. 

 The experimentally observed decrease of the film thickness h with time is explained with the 

evolution of the quasi-stationary state that follows the slow cooling down of the meniscus due to 

the evaporation (similar to Marrucci’s theory (Marrucci, 1969) where the slow diffusion plays 

the same role). Once the meniscus reaches a certain critical temperature Tm,cr, the Marangoni 

effect can no longer counteract the attractive van der Waals force and the capillary pressure, 

leading to film rupture at the critical thickness hcr. The lifetime of the film is the time needed for 

the meniscus to cool down to Tm,cr. 

 We were able to confirm experimentally several qualitative predictions of our theory, as 

follows. 

 (i) According to our model, films formed under lower ambient saturation, i.e., more intense 

evaporation, have an enhanced stability (Figure 4). This assertion is supported by a number of 

observations: 

 - the comparison between water films at x = 45% and 90% shows that lowering the humidity 

in the container indeed stabilizes the films – the lifetime is an order of magnitude longer at x = 

45%, in agreement with the theoretical estimate; 

 - the comparison of the volatile nonane films vs. the non-volatile hexadecane films (both at x 

= 0) shows that the evaporating nonane films are quite stable, while the non-evaporating 

hexadecane films rupture upon formation; 

 - perturbing the liquid-vapour equilibrium by raising the temperature or by opening the 

container leads to faster evaporation and more stable nonane films, Figure 7; 
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 - the increased stability of the first film formed during each run in the case of water films at 

x = 90% can be explained with the air in the container still being undersaturated (the complete 

saturation requires several minutes); 

 - the expected trend of  vs. x. has been observed by other authors – according to 

Karakashev and Firouzi (Karakashev and Firouzi, 2014), pure water films break upon formation 

at 97% humidity and live for several seconds at x = 78-88%. 

 (ii) The model predicts that films of greater radii have longer lifetimes, see Figure 4B, which 

is confirmed for most evaporating water and nonane films, Figure 5 and Figure S9. The 

experimental and the theoretical trends of the dependence  vs. Rf are in adequate agreement. 

The theory predicts that films of size smaller than a certain critical value Rf,cr must be unstable. 

With water films at 90%, we found some evidence for the existence of Rf,cr – under these 

conditions we observed many unstable films that rupture immediately upon formation and no 

films with a radius of less than 100 m were stable after tload = 300 min, see Figure 5A. 

 (iii) The model predicts the existence of a critical thickness hcr of film rupture, at which the 

thermal Marangoni mechanism of stabilization ceases to act, eq. (34). The experimentally 

measured hcr of water and nonane compare adequately with the theoretical value. The model also 

gives an approximate expression for the evolution of the film thickness with time which is in 

qualitative agreement with the experimental one (although the observed rate of thinning is faster 

than the theoretical, Fig. S10). 

 Some of these observations can be explained with other hypothetical stabilizing 

mechanisms, but not the combination of them. For example, the assumption for the existence of 

electrostatic repulsion can lead to a critical thickness of rupture similar to that in the Scheludko-

Vrij (Radoev et al., 1983; Vrij, 1966) mechanism of film rupture through the occurrence of 

capillary waves; it, however, cannot explain the effect of the abrupt changes of the saturation on 

the film stability, nor the trend of the dependence of the lifetime  on the film radius Rf. The 

presence of impurities (Yaminsky et al., 2010a) and dissolved and dissociated CO2 (Katsir and 

Marmur, 2014b) may in part explain the behaviour of water films, but not that of alkane films. 

We can therefore say that the phenomena summarized in (i-iii) above have their simplest 

possible explanation in the evaporation-driven thermal Marangoni effect. 

 Yet, it must not be overlooked that several of our observations do not align with the 

theoretical predictions. Nearly all of these points of disagreement could be traced to the 
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unanswered question of why pure non-evaporating films are stable. We obtained the following 

experimental results that give useful hints about the nature of this stabilization: 

 (i) We consistently obtained aqueous films that were stable in a saturated atmosphere, thus 

confirming the results of Exerowa (Exerowa, 1969) and Yaminsky et al. (Yaminsky et al., 

2010a). These films drained until they reached a stable thickness ~100 nm and had a lifetime 

longer than 30 min. This stability is indicative of the presence of an additional force, probably of 

electrostatic nature (Yaminsky et al., 2010b). 

 (ii) We consistently obtained non-evaporating nonane films of relatively high stability (of 

the order of tens of seconds). In contrast, our hexane films and Yaminsky’s (Yaminsky, 2006) n-

pentane films were unstable in a saturated atmosphere. It is puzzling that films from short- and 

long-chained alkanes behave differently in saturated atmosphere; it is also puzzling that water 

films are stable for hours while nonane films break after a minute. With nonane films, there is a 

clear dependence of film lifetime on film radius – larger films live longer. 

 (iii) We observed that non-evaporating films are typically more stable than slowly 

evaporating films. Water films formed after the complete saturation of the container (x = 100%, 

tload > 9 min) had indefinitely long lifetimes, while the first films formed before saturation lived 

for 40-50 s, and films at x = 90% humidity lived for about a minute. Introducing a low rate of 

evaporation also noticeably destabilized the nonane films. These experimental findings 

contradict our theory. Another prediction that is at odds with the data is that we expect no stable 

films at low evaporation rates and humidities above a certain critical value xcr0 (eq. (38) and 

Figure 4). 

 These discrepancies are not surprising in view of the fact that our model neglects the 

electrostatic repulsion under all circumstances and therefore incorrectly predicts that pure non-

evaporating films should rupture immediately. However, devising an accurate model of the 

electrostatic disjoining pressure in a pure liquid is a challenging task that goes well beyond the 

aims of our current study. The double layer in our water films is of a very sparse structure – the 

concentration of ions in pure water corresponds to one ion per 300×300 nm2 for a film of 

thickness 100 nm. The characteristic distances of the electrostatic interaction are the Debye 

length and the average distance between two ions – for pure water, both are of the order of 

hundreds of nanometres, more than the film thickness. Electric double layers of such sparse 

structure have not, to our knowledge, been investigated, and may give rise to various peculiar 
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effects – for example, the time required for the formation of the sparse double layer is of the 

order of LD
2
/Dion ~ 0.1 ms for water, and much more for alkanes. A fast dynamic phenomenon 

such as a capillary wave or the formation of a foam film will be able to perturb this structure – 

and perhaps decrease the repulsion. In view of these comments, our tentative hypothesis about 

the observed discrepancies between theory and experiment is that low evaporation rates decrease 

film stability due to an unclear mechanism of perturbation of the structure of the sparse electric 

double layer in the film, leading to suppression of the electrostatic repulsion that stabilizes the 

non-evaporating films. Further increase of the evaporation leads to stabilization, in accordance 

with our theory. 

 The study presented here is a first step towards the explanation of a family of similar 

phenomena, such as: the stability of evaporating films formed from concentrated electrolyte 

solutions (Karakashev et al., 2008); the destabilization of evaporating films by small amounts of 

non-volatile surfactants (Yaminsky et al., 2010a); the stability of evaporating films containing 

volatile surface-active agents (e.g., the dynamic stabilization of evaporating films formed from 

aqueous butanol solutions indicated by an unpublished experimental study of ours). Naturally, 

additional complications are expected in these systems because all of them involve conjugated 

thermal and solutal Marangoni effects. Phenomena of practical importance such as the 

occurrence of reflux in the injector nozzle after the injection event (Wang, 2012) are probably 

driven by a combination of such effects. 
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1. List of symbols from the main text and values of the parameters 

a 

coefficient appearing in the solutions for hst for a cold meniscus, 

3 354 6 81 3a k k      

AH Hamaker constant [J] 

C vapour concentration [mol/m3] 

C∞ vapour concentration in the ambient air [mol/m3] 

Ceq0 

equilibrium vapour concentration at temperature T of the ambient air, 

o

e
eq0 o

e

1 1
exp

p h
C

RT R T T 

  
    

   

[mol/m3] 

Ceq

equilibrium vapour concentration in the meniscus region for a cold meniscus 

0

e
eq o

m m e

1 1
exp

p h
C

RT R T T

  
    

   
 

[mol/m3] 

CS 

vapour concentration at the surface of the liquid,  

o
S e

L L o

e

1 1
exp

p h
C

RT R T T

  
    

   

[mol/m3] 

C deviation of the local vapour concentration from C∞, C = C  C∞ [mol/m3] 

Cm value of C at Rf < r < Rc for the case of a cold meniscus [mol/m3] 

CS deviation of the vapour concentration at the surface from C∞, CS = CS  C [mol/m3] 

Crr 
second derivative of the model concentration profile for the liquid with respect to r 

[mol/m5] 

Cp total heat capacity of the system meniscus-capillary [J/K] 

D diffusion coefficient [m2/s] 

dglass thickness of the glass capillary of the Sheludko cell [m] 

h film thickness [m] 

hcr critical film thickness [m] 

hst stationary/quasistationary film thickness [m] 

he enthalpy of evaporation of the liquid [J/mol] 
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J diffusive flux through both surfaces of the film [mol/s] 

jc 
density of the mass flux caused by the concentration difference between the region in 

contact with the meniscus and the surrounding air [mol·s-1·m-2] 

jf 
density of the mass flux caused by the concentration difference between the region in 

contact with the film and that in contact with the meniscus  [mol·s-1·m-2] 

Jm diffusive flux through both surfaces of the meniscus [mol/s] 

k constant appearing in the form (33) of the mass balance, k = Rf
2
Rcs

STrr/2hcrm 

p pressure profile in the fluid [Pa] 

p0 pressure of the ambient gas [Pa] 

po standard pressure, po = 101325 [Pa] 

pc capillary pressure, pc = 2m/Rc [Pa] 

pm pressure of the fluid in the meniscus, 
f

m 0 m c2 /  [Pa]
r R

p p p R


    

Q heat flux from the air through both surfaces of the film [J/s] 

Qm heat flux from the air through both surfaces of the meniscus [J/s] 

r radial cylindrical coordinate [m] 

R gas constant [J·mol-1·K-1] 

Rf film radius [m] 

Rc cell radius [m] 

sS surface entropy of the liquid [J·K-1·m-2] 

t time [s] 

T temperature profile for the gas phase [K] 

T∞ temperature of the ambient gas [K] 

T profile of the temperature difference in the air, T = T – T∞ [K] 

Te
o
 boiling temperature of the liquid at po [K] 

TL temperature profile for the liquid phase [K] 

T temperature difference between film and meniscus, T = TL(0 < r < Rf) –
 Tm [K] 

Tm temperature of the liquid in the meniscus, Tm = TL(Rf) [K] 
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Tm 
difference between the temperature of the meniscus and the ambient gas,  

Tm = Tm – T∞  [K] 

Tm, cr 
critical temperature difference between the temperature of the meniscus and the 

ambient gas at which the film breaks [K] 

Trr 
second derivative of the model temperature profile for the liquid with respect to r 

[K/m2] 

Trr0,cr critical value of Trr for a thermostated meniscus [K/m2] 

v velocity vector field [m/s] 

vr radial component of the velocity [m/s] 

Vr radial component of the velocity at the surface of the film Vz = vz(z=h/2) [m/s] 

vz vertical component of the velocity [m/s] 

Vz vertical component of the velocity at the surface of the film, Vr = vr(z=h/2) [m/s] 

x relative saturation of the ambient gas, x = C/Ceq 

xcr0 critical value of the relative saturation for thermostated meniscus 

xcr critical value of the relative saturation for a cold meniscus 

z vertical coordinate [m] 

 viscosity of the liquid [Pa·s] 

L heat conductivity of the liquid phase [W·m-1·K-1] 

 heat conductivity of the gas phase [W·m-1·K-1] 

vdW van der Waals disjoining pressure [Pa] 

(r) surface tension profile of the liquid [N/m] 

m surface tension of the liquid in the meniscus [N/m] 

L thermal diffusivity of the liquid phase [m2/s] 

 thermal diffusivity of the gas phase [m2/s] 

 density of the liquid [kg/m3] 

 

 Table 1 lists the typical values of the parameters that we have used in our calculations; it 

also gives the numerical values of the most important quantities for the studied systems in the 

case of a thermostated meniscus. These quantities are given only for the single most commonly 

encountered value of Rf, Rc and x. 
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Table 1. Values of the parameters used for the calculations cited throughout the text. The choice of 

relative saturation for water films (x = 45%) coincides with the lowest value in our experiments, see 

Section 3.2 of the main text; all calculations are for a thermostated meniscus (Tm = 0). For more details 

on the entries marked with an asterisk, consult S6. 

 Water Hexane Nonane Hexadecane 

Rf [m] 1.5×10-4 

Rc [m] 2×10-3 

dglass [m] 1×10-3 

h (stable stationary 

value) [m] 
3.47×10-7 2.63×10-6 1.32×10-7 none 

T∞   [K] 298.15 

po [Pa] 101325 

Te

o [K] 373.15 (Lide, 2005) 341.88 (Lide, 2005) 423.97 (Lide, 2005) 560.01 (Lide, 2005) 

AH [J]
4.38×10-20 (Visser, 

1972) 

2.76×10-20 (Butt and 

Kappl, 2010) 

4.66×10-20 

(Drummond and 

Chan, 1997) 

5.2×10-20 

(Israelachvili, 2011)  

cp [J·kg-1·K-1] 4.181×103  (Sabbah 

et al., 1999) 

2.270×103 (Lide, 

2005) 

2.217×103 (Lide, 

2005) 

2.215×103 (Růžička 

et al., 1991) 

Cp [J/K] 0.185 0.140 0.141 0.143 

D [m2/s] 2.6×10-5 (Lee and 

Wilke, 1954) 

7.32×10-6 (Lugg, 

1968) 

5.07×10-6 (Zhu et 

al., 2007) 

4.05×10-6 (Wilke 

and Lee, 1955) 

he [J/mol] 43.990×103 (Lide, 

2005) 

31.56×103 (Lide, 

2005) 

46.55×103 (Lide, 

2005) 

81.35×103 (Lide, 

2005) 

sS [J·K-1·m-2] 
1.38×10-4 

1.022×10-4 (Jasper 

and Kring, 1955) 

9.347×10-5 (Jasper 

and Kring, 1955) 

8.54×10-5 (Jasper 

and Kring, 1955) 

vL [m3/mol] 1.81×10-5 (Lide, 

2005) 

1.30×10-4 (Lide, 

2005) 

1.78×10-4 (Lide, 

2005) 

2.94×10-4 (Lide, 

2005) 

x 45 % 0 % 0 % 0 % 

[Pa·s] 8.903×10-4 (Kestin 

et al., 1978)  

3.00×10-4 (Lide, 

2005) 

6.65×10-4 (Lide, 

2005) 

3.032×10-3 (Lide, 

2005) 

L [W·m-1·K-1] 0.6067 (Nieto de 

Castro et al., 1986) 
0.1167 (Lide, 2005) 0.1269 (Lide, 2005) 0.140 (Lide, 2005) 

 [W·m-1·K-1] 2.62×10-2 (Lide, 2005) 

 [kg/m3] 997 (Lide, 2005) 660.6 (Lide, 2005) 719.2 (Lide, 2005) 770.1 (Lide, 2005) 
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 [N/m] 71.99×10-3 

(Vargaftik et al., 

1983)  

17.89×10-3 (Lide, 

2005) 

22.38×10-3 (Lide, 

2005) 

27.05×10-3 (Lide, 

2005) 

L [m2/s] 1.45×10-7 7.78×10-8 (Lide, 

2005) 

7.96×10-8 (Lide, 

2005) 

8.21×10-8 (Lide, 

2005) 

 [m2/s] 2×10-5 

hcr [m], eq. (34)* 40.1×10-9 54.7×10-9 60.4×10-9 - 

Vz [m/s], exact form 

of eq. (30)* 
1.2×10-8 3.3×10-7 1.9×10-8 - 

Vr(Rf) [m/s], eq. 

(S.109)*  
−2.7×10-5 −9.4×10-4 −2.3×10-5 - 

Re = hVz/ 4.8×10-9 1.9×10-6 2.7×10-9 - 

Pe
L
heat

 ~ R
2
fVz/Lh, 

eq. (S.113)* 
2.8×10-3 1.8×10-2 2.0×10-2 - 

Pe
A
heat, r ~ RfVr/, eq. 

(S.114)* 
1.0×10-4 3.5×10-3 8.6×10-5 - 

Pe
A
heat, z, eq. (S.116)* 1.3×10-4 4.7×10-4 2.0×10-5 - 

Pemass, r, eq. (S.119)

* 
7.4×10-3 5.1×10-1 2.2×10-2 - 

Pemass, z, eq. (S.121)

* 
1.4×10-2 1.0×10-1 7.5×10-3 - 

  

2. Hydrodynamics 

This section provides more context on the hydrodynamic problem and derives eqs. (5)-(8) from 

the main text. We consider a plain parallel circular of thickness h and radius Rf, for which h/Rf ~ 

10-3, see S1, and therefore, the lubrication approximation is applicable to the flow within it 

(Reynolds, 1886). In addition, the inertial terms of the Navier-Stokes equations can be 

disregarded due to their proportionality to the small Reynolds number (capillary flow 

approximation). For a thin liquid film of pure water of density  ~ 103 kg/m3, viscosity  ~ 10-3 

Pa.s, h ~ 10-7 m, normal velocity at the surface vz|z=h/2 ≡ Vz ~ 10-8 m/s (see S1&6), the Reynolds 

number is of the order of Re = hVz/ ~ 10-9. Using both approximations, we arrive at the 

following form of the radial and the normal components of the Navier-Stokes equation in 

cylindrical coordinates (Reynolds, 1886): 
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2

rvp

r z




 

;                (S.41) 

 0
p

z





,            (S.42) 

where p is the hydrodynamic pressure. The coordinate system is defined so that its origin is in 

the centre of the film and the film surfaces coincide with the planes z = ±h/2.  The radial (vr) and 

normal (vz) components of the velocity vector field v are related via the continuity equation, 

 
1

0r zrv v

r r z

 
 

 
.          (S.43) 

We solve eq. (S.41) for vr subject to the boundary condition (1) at the film surface, giving 

 
2 24 d

( )
8 d

r r

h z p
v V r

r


   .        (S.44) 

By substitution of this result in the continuity equation (S.3) and subsequent integration over z 

from 0 to h/2 with vz|z=0 set to 0 (following from the symmetry of the problem), we obtain for vz 

 
2 33 4 d ( )1 d d

24 d d d

r
z

zh z rV rp z
v r

r r r r r

  
  

 
.      (S.45) 

The tangential (Vr) and normal (Vz) surface velocities can be related by using eq. (S.45) in 

conjunction with the boundary condition at the film surface, eq. (1): 

 .          (S.46) 

The pressure gradient in the film, dp/dr, which appears in (S.44)-(S.46), is caused by the 

evaporation-induced surface tension gradient d/dr. The two are connected through the 

tangential force balance at the film surface, which relates d/dr with the rz-component of the 

viscous stress tensor (Levich, 1962; Radoëv et al., 1974), 

 
/2

d d

d 2 d

r

z h

v h p

r z r







 


,         (S.47) 

where we used eq. (S.44). For simplicity, we neglect the surface viscous tensor here although its 

contribution may be important for similar systems (Scriven and Sternling, 1960). 

 We now substitute the surface tension profile (4), together with the explicit expression (6) 

for vr, in the tangential force balance at the surface (3), which we then solve for p: 

 
2 d

12 d
r z

h p r
V r V

r h
 
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  S

m

L2
( ) ( )p r p s T r T

h
   .        (S.48) 

Next, we substitute eq. (S.48) back into eq. (S.46) in order to obtain the following relation 

between the radial surface velocity Vr and the temperature profile: 

 
S L

( )
6

r z

hs T r
V r V

r h


  


.         (S.49) 

 

3. Heat currents through the liquid and the air 

 

In this supplement, we will estimate the numerical coefficients in eqs. (19)-(20) and (23)-(24) for 

Q, J, Qm and Jm, based on a simplified model of the geometry of the film. In our model of the 

heat and mass transfer in the system we will neglect the curvature of the surface of the meniscus, 

considering it planar (as depicted in Figure S.1) – that is, we approximate the shape of the 

meniscus with a cylinder of height h and radius Rc with a hole of radius Rf in the centre. As all 

characteristic lengths in the real and the model system are similar, the obtained numerical 

coefficients must be accurate enough for our purposes: in view of the many uncertainties in the 

experiment, a more accurate model would be superfluous. 

 

3.1. Heat transfer through the air 

In our treatment, the temperature profile in the gas phase (T) is controlled by the stationary heat 

equation, 

 

2

2

1 Δ Δ
0

T T
r

r r r z

  
 

  
,         (S.50) 

where T is defined with respect to the ambient temperature, T = T – T. For the heat transfer 

in the air, it is convenient to use a coordinate system in which the surface of the film coincides 

with the plane z = 0 (Figure S.1). Since the Péclet number that compares the relative contribution 

of radial convective and conductive heat transport (Pe
A
heat,r) is low - Pe

A
heat,r ~ 10-4 for a water film 

(see S1&6), we do not need to consider convective terms in eq. (S.50). When the evaporation is 
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very fast, the normal velocity and the respective convective flux in the gas phase can in principle 

become significant, possibly restricting the validity of eq. (S.50). However, for all films studied 

here, the Péclet number that compares the contribution of convective heat transfer in the z-

direction with the conductive heat transfer, Pe
A
heat,z is also much smaller than unity, typically 

Pe
A
heat,z ~ 10-4 (S1&6). 

 The first boundary condition of eq. (S.50) is that far from the fluid surface the temperature 

difference T tends to zero, 

 Δ 0
z

T


  .          (S.51) 

The boundary condition at the plane z = 0, which coincides with the film surface, is more 

complicated and contains contributions from the three different regions of the system. To 

formulate this boundary condition, we now introduce a number of additional approximations, 

which should lead to a reasonably simple estimate of the numerical coefficients in the 

dependence of the heat flux Q on the parameters of the system without affecting the functional 

dependence itself 

 (i) film (0 < r < Rf). As discussed in the main text, we assume that the evaporation causes a 

difference between the temperature of the film and the meniscus that can be described with a 

second-order polynomial in r: 

  2 2

f m f0
0,  :       Δ ( ) Δ

2

rr

z

T
z r R T r T r R


     .     (S.52) 

 (ii) Meniscus (Rf < r < Rc). We assume that the temperature of the liquid in the meniscus 

region is homogeneous but lower than the ambient by Tm, 

 
z = 0, Rf < r < Rc:   

0
Δ ( )

z
T r


 = Tm.       (S.53) 
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Figure S.1. Scheme of the models for the temperature distribution T = T T∞ (solid line) and the 

concentration profile C = C  C∞ (dashed line) in the gas phase at z = 0, as given by eqs. (S.56) and 

(S.100), respectively. These models are used for the estimation of the numerical coefficients in eqs. (S.57)

-(S.58) and (S.101)-(S.102) for the heat and mass fluxes through the film and the meniscus. 

 (iii) Surrounding gas (r > Rc). The disturbance in the temperature profile of the air 

propagates of the order of the radius of the Scheludko cell Rc at the stationary state; for that 

reason, we need to include the region outside the cell in our models for the heat and mass 

transfer. For the boundary condition of T at z = 0 and r > Rc, we assume that the temperature 

difference in this region is inversely proportional to the radial coordinate, in accordance with the 

expected asymptotic behaviour at large r, compare to the temperature profile in the vicinity of a 

spherical drop (Fuchs, 1959): 

 c m0
0,  :       Δ ( ) Δ

z

А
z r R T r T

r
   .       (S.54) 

We checked the validity of the approximation (S.54) by adding a higher-order term (B/r2) in the 

expression for T|z=0. This led to the same final result for the heat flux Q which justifies the 
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assumption. In order to determine the coefficient A, we assume continuity of T|z=0 at r = Rc, 

which yields 

 A = Rc.           (S.55) 

The stricter approach for the determination of A is to use a condition that sets the normal integral 

heat flux in the region outside the Scheludko cell to zero. In S3.2 we demonstrate that this 

stricter condition leads to the exact same result (S.55). 

Thus, combining (S.52)-(S.54), we arrive at the boundary condition  

  L 2 2 c
f f m c c0

Δ ( ) Δ ( ) θ( ) Δ θ( ) θ( )
2

rr

z

T R
T r T r r R R r T R r r R

r

 
        

 
,   (S.56) 

where is the Heaviside step function. 

 In our model, we make the assumption that the temperatures of the liquid and the adjacent 

air are equal, and therefore eq. (S.56) also serves as the boundary condition for the problem for 

the temperature distribution T(r,z) = T(r,z) – T∞ in the liquid phase. The assumption that the 

temperature is continuous at the interface breaks down when the Hertz-Knudsen heat current and 

the total heat current through the surface are of the same order of magnitude. In the latter case, 

one needs to account for the existence of a temperature jump inside a transition region (the 

Knudsen layer) with thickness of the order of the mean free path of the gas molecules (Badam et 

al., 2007; Langmuir, 1915), see also S 5. 

 Now that we have the necessary boundary conditions for the heat equation in the gas phase, 

we can proceed with the determination of the heat flux Q from the air through the surfaces of the 

film. As the derivation of Q is rather lengthy, instead of giving it here, we will describe it in 

S3.3. The approximate end result valid provided that Rf << Rc is eq. (20) from the main text, 

  2

f f m

c

8 π
2 2

3
rrQ R R T T

R


 
    

 
.        (S.57) 

 The heat flux through the surfaces of the meniscus is 

 
m c m4.57 ΔQ R T  .          (S.58) 

In deriving eq. (S.58), we have used a series expansion valid for Rf << Rc; the interested reader 

may find the full derivation in S 3.4. 
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3.2. Determination of the constant A 

Here, we will disclose the stricter approach to the determination of the constant А appearing in 

eq. (S.54). Instead of assuming continuity of the temperature profile T at z = 0 as in S3.1, we will 

use the more physically grounded condition that the integral heat flux from the region outside the 

Scheludko cell is zero. 

 We solve the heat equation for the gas phase (S.50) with the boundary conditions (S.51) and 

(S.56)  by applying a Fourier-Bessel transform defined with the identities 

  0

0

( )J ( )dF rF r r r 


   for the forward Fourier-Bessel transformation of F to its image F  and 

  0

0

( ) J ( )dF r F r   


   for the inverse transform of F , where Jn(r) denotes the Bessel function 

of the first kind and the n-th order and  is the Fourier-Bessel variable. 

 The Fourier-Bessel transform of eq. (S.50) reads 
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Δ
Δ

T
T

z






.          (S.59) 

The solution to eq. (S.59) that satisfies the boundary condition (S.51) can be written as 

 SΔ Δ ( exp( )T T z    .         (S.60) 

The unknown function SΔ (T    is determined via direct application of the boundary condition at 

z = 0, in which rather than using (S.56) we have left the constant A undetermined. Each of the 

three distinct regions of the studied system has an additive contribution to SΔ (T   : 

 S S S S

film meniscus airΔ ( ) Δ ( ) Δ ( ) Δ ( )T T T T      .       (S.61) 

The functions S

iΔ (T   in eq. (S.61), which are simply the Fourier-Bessel images of the 

corresponding terms in the boundary condition (S.56), are defined as follows: 
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T R R R R R     



 
        (S.62) 

In the equations above, Hn signifies the n-th order Struve function. 
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 The normal heat flux through the region outside the capillary or, equivalently, the derivative 

∂T/∂z must equal zero at z = 0, 

 0 c

0 0 0

Δ Δ
J ( )d 0, .

z z

T T
r r R

z z
  



 

 
  

         (S.63) 

Because of the approximate character of the solution T (stemming from the approximate 

boundary condition at z = 0), the condition  (S.63) can be applied only to the integral heat flux: 
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The double integral in eq. (S.64) is equivalent to a successive application of the reverse and 

forward Fourier-Bessel transformation to the function /T z  : 
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Directly applying the definition of SΔ (T   , eqs. (S.61)-(S.62), we obtain the expression

m0, 0
Δ / Δ

z
T z T A

 
    . Substituting it in (S.65) results in an equation for A, 
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m c 1 c
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Δ J ( )Δ 0.A T R R T d  
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           (S.66) 

In order for eq. (S.66) to be even approximately fulfilled, it is mandatory that the integral 

S

1 c

0

J ( )Δ dR T  


  is finite-valued, which is only possible if its integrand tends to zero at →∞. 

Taking the series expansion of the integrand with accuracy О(1/2), we get the simple equation 

 

2

m
m c

c

2 Δ
cos 0.

π 4

A T
T R

R






   
       

   
       (S.67) 
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Evidently, it is only fulfilled for all  if A = Rc. It should be noted that even with A = Rc, (S.64) is 

not exactly fulfilled and the flux from outside the cell is 
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2π J ( )d d ~ Δ
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T
r r r T R
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    
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  .      (S.68) 

 In a similar fashion, a term of the form B/r2 could be introduced in eq. (S.54), but this 

requires more involved calculations, while the end result for the heat flux Q remains unchanged 

(eq. (S.57)). 

3.3. Derivation of the expression for the integral diffusive flux through the 

surface of the film 

The calculation of the integral heat flux through the film surfaces (Q) is presented here as it is 

too lengthy to be included elsewhere. 

 By definition, Q is the positive flux from the warmer air towards the colder film surface. 

Using that and the temperature profile in the form (S.60), we arrive at the following expression 

for Q: 
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Q could be subdivided into three terms which correspond to the addends in the boundary 

condition (S.56), which in turn describe the three regions of the model system (film, meniscus, 

surrounding air). To make the exposition more clear, we will discuss them individually. 

 The heat flux related in this way to the film and meniscus regions can be calculated via 

direct integration: 
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where K(r) is the complete elliptic integral of the first kind and E(r) is the complete elliptic 

integral of the second kind (Erdelyi, 1954). As we are interested in films of radius Rf much 
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smaller than that of the capillary (Rc), we can expand the elliptic integrals in eq. (S.71) in a series 

for Rf/Rc <<1 (Erdelyi, 1953a): 

 f
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      (S.72) 

 In order to calculate the flux Qair, we first perform the integration over r: 
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The evaluation of the integral in eq. (S.73) requires a change of variables, 
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The integrand in eq. (S.74) could be expanded for  
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Integrating the first and second terms in eq. (S.75) over  from 0 to ∞ is equivalent to applying 

respectively a Fourier cosine and Fourier sine transform on the function 1
ˆ2J ( ) / πr  . The 

integral evaluates in this way to (Erdelyi, 1954) 
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In eq. (S.76), 2F1(a, b; c, x) denotes the Gaussian hypergeometric series (Erdelyi, 1954). 

 Expanding (S.76) in a series for we get the following asymptotic result for the 

integral I (Erdelyi, 1953a, 1953b) , which should be sufficiently accurate for the purposes of our 

study: 

ˆ :r 

ˆ ,r 
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Substituting  in eq. (S.74), we obtain the flux determined by the concentration profile outside the 

capillary, 
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Q T
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            (S.78) 

The total diffusive flux through both surfaces of the film is the sum of (S.70), (S.72) and (S.78), 

eq. (S.57). Due to the complete analogy between heat and mass transport in our model, the 

expressions (S.70), (S.72) and (S.78) set the explicit value of the mass transfer coefficients K1 

and K2 in eq. (18) from the main text for the considered geometry, compare to, e.g., those in 

(Tsoumpas et al., 2015; Yiantsios and Higgins, 2006). 

 

3.4. Derivation of the expression for the integral heat flux through the 

surface of the meniscus 

Here, we present the derivation of eq. (23) for the heat flux through a cold meniscus. By 

definition, the heat flux from the air through both surfaces of the meniscus is 
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Using eq. (S.60) for the Fourier-Bessel image of T and the definition of the Fourier-Bessel 

transform, we can express Qm as 
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The function SΔ (T   is the Fourier-Bessel image of eq. (S.56), the boundary condition at z = 0, 

which contains contributions from the different regions of the system, see eqs. (S.61)-(S.62): 
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The heat flux may be subdivided into two contributions stemming from the respective region of 

the system. The flux related to the perturbation of the temperature profile at the film is 
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 As Rf << Rc, we can expand this result about Rf = 0: 
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The heat flux associated with the meniscus region and the air outside the cell is 
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Using again that Rf << Rc, we can neglect the first term in brackets, which greatly simplifies the 

calculation of the integral. After a change of variables, we obtain 
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To calculate the definite integral in (S.85), we expand the integrand f() in a series about →∞, 

  5/ 2

2

1 cos(2 )
( ) O .

π
f


 





            (S.86) 

Using the expansion (S.86), we can evaluate the numerical value of the integral using the exact 

integrand for small and the approximate function for → ∞: 
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Combining (S.83) and (S.87), we attain the following for the heat flux through the surface of the 

meniscus: 
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For the typical parameters of a thin water film and the expected order of magnitude of Tm (~ 2 

K), the first term is small (8TrrRf
3
/3 ~ 10-2TmRc) in comparison with the second and can be 

neglected, which yields eq. (23) from the main text. 

 

3.5. Heat current through the liquid phase 

The heat equation for the liquid film reads 

 

L L2

2

1
0

T T
r

r r r z
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.         (S.89) 

Here, we only consider the conductive heat transport through the liquid, since the Péclet number, 

which compares the relative importance of conduction and convection in transferring heat 

(Bergman et al., 2011), is much smaller than unity (Pe
L
heat ≈ 10-3 for a typical water film, see S6). 

We have also neglected the dependence of TL on time though in principle, even after a quasi-

stationary state is reached, the temperature distribution TL still depends on t through the film 

thickness h(t). Below, we will demonstrate that this dependence is not significant and, therefore, 

∂TL/∂t need not be considered in the heat equation above. 

 Let the centre of the film be at z = 0 and its surfaces be at z = ±h/2. A dimensional analysis 

of the two terms in eq. (S.89) shows that ∂2TL/∂z2 is greater in absolute value, which allows us to 

write in first approximation that ∂2TL/∂z2 = 0. As due to the symmetry of the problem ∂TL/∂z|z=0 = 
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0, in first approximation, TL is independent of z, i.e., TL ≈ TL(r). This complicates the analysis of 

the normal heat flux through the liquid: as its density is qL ~ ∂TL/ ∂z, the first approximation 

leads to the unphysical result that the flux is zero and the film that does not cool down. In point 

of fact, the result TL ≈ TL(r) only means that the order of magnitude of qL is lower than the one 

predicted via dimensional analysis, which is qL ~ LT/h, where L = Lcp is the thermal 

conductivity of the liquid phase, cp [J·kg-1·K-1] is its specific heat capacity at constant pressure, 

L its thermal diffusivity. The correct order of magnitude of qL is actually lower by a factor of 

(h/Rf)
2. This result is obtained via integration of eq. (S.89) with respect to z from 0 to h/2 (using 

that ∂TL/∂z|z=0 = 0): 
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i.e., indeed qL ~ LTh/Rf
2
. Eq. (S.90) is essentially an iteration, as we neglect the dependence on 

z of the “small” term under the integral, as it follows from the first approximation. The quantity 

qL given by eq. (S.90) is the density of the positive heat flux from the warmer core of the film 

towards its surface. 

 At the surface of the film, the temperatures of the liquid and the adjacent air are assumed to 

be equal, therefore, eq. (S.56) also serves as the boundary condition for the problem for the 

temperature distribution T(r,z) = T(r,z) – T∞  in the air. This assumption fails when the Hertz-

Knudsen heat current and the total heat current through the surface are of the same order of 

magnitude (Badam et al., 2007; Langmuir, 1915), see also S5. 

 The heat flux through the upper surface of the film, z = h/2, is equal to that through the 

lower one, z = −h/2. Hence, the total heat flux from the liquid phase to the air through both 

surfaces (QL) is given by the following surface integral: 
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By substituting eqs. (S.90) and (S.56) in the integrand, we arrive at an explicit relation between 

QL and the temperature coefficient Trr: 

 QL = 2LhRf
2
Trr.           (S.92) 

  A more precise form of the heat balance for the film, eq. (21) in the main text, would include 

the heat flux through the liquid, 
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 heJ = Q + QL.           (S.93) 

Substituting eqs. (19), (20) and (S.92) for J, Q and QL in the equation above and solving for Trr 

results in the following expression: 
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      (S.94) 

Substituting the values of the parameters corresponding to a thin water film of Rf = 150 m at a 

humidity of x = 0.45 (h = 3.47×10-7 m, consult S1 for a full list of parameters) in contact with a 

thermostated meniscus, we can evaluate the order of magnitude of the dimensionless quantities 

in parenthesis in eq. (S.94): (he/RTm  1) ~ 17; ATm/(heDCeq) ~ 6; 3Tm·h/(4RfheDCeq) ~ 

2×106·h/[m]. The comparison between them shows that, for sufficiently thin films (h < 1 m), 

one can neglect the last term to obtain eq. (22) for Trr. Thus, the coefficient Trr is independent of 

the film thickness h, which justifies the assumption that the time derivative ∂TL/∂t = 

(∂TL/∂h)·(∂h/∂t) in the heat equation (S.89) is negligible. For films thicker than 1 m, the 

dependence of Trr on h is significant, but as it is difficult to investigate such films 

experimentally, we do not consider them here. 

 

4. Mass current through the air 

In this supplement, we take advantage of the analogy between heat and mass transport to derive 

equations for the diffusive fluxes through the film and the meniscus, J and Jm. 

 We suppose that a quasistationary state is quickly established, as is the case with an 

evaporating drop (Fuchs, 1959). The distribution of the vapour concentration in the gas phase 

obeys the stationary diffusion equation, 

 ;         (S.95) 

Cis defined as C = C  C∞, where C∞ = C(z→∞) is the vapour concentration at an infinite 

distance from the film. It should be noted that by adopting the form (S.95), of the diffusion 

equation, we make the implicit assumption that the dependence of the diffusion coefficient on 

temperature is negligible – this holds for small temperature differences between the film and the 

2

2

Δ1 Δ
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r

r r r z
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  
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air (Fuchs, 1959). Furthermore, just as the heat transfer in the system is dominated by conduction 

(see S3.1), the mass transfer is dominated by diffusion, which follows from the values of the 

appropriate Péclet numbers (Cussler, 2009). Pemass,r and Pemass,z, which give the ratio between the 

convective mass flux in the respective direction and the overall diffusive flux through the film 

surface, are of the order of Pemass,r ~ 103-102 and Pemass,z ~ 102 for water films (consult S1&6). 

Hence, the convective mass fluxes in both the radial and the normal direction are neglected in the 

diffusion equation (S.95). However, this approximation fails for the very volatile hexane films, 

for which Pemass, r  and Pemass, z are of the order of 0.1 (S1) and convection is important. 

 The first boundary condition for eq. (S.95) states that 

C|z→ = 0.          (S.96) 

As in our derivation of the heat flux, S3.1, we will neglect the curvature of the meniscus and 

regard the interface as planar (Figure S.1); in addition, we will neglect the presence of the glass 

holder. Just like in our model for the heat transfer, there are three distinct regions of the plane z = 

0. 

(i) Film (0 < r < Rf). As discussed in the main text, we obtain the concentration profile at z = 

0 for the film region by noting that the temperature of the film differs from that of the meniscus 

by T(r) =  Tm ½Trr(r
2 – R f

2
). Thus, setting TL to Tm + T(r) in the Clausius-Clapeyron equation 

(10) and expanding in a series about T(r), we obtain 

 2 2 2

f m f

1
0,  :       Δ Δ O(δ )

2
rrz r R C C C r R T      ,    (S.97) 

where we have also used the definitions of Cm and Crr, eqs. (12) and (14), respectively. 

 (ii) Meniscus (Rf < r < Rc). For the meniscus region, the temperature at z = 0 is equal to Tm, 

see eq. (S.56); according to the Clausius-Clapeyron equation, this corresponds to

 z = 0, Rf < r < Rc:   C = Cm.        (S.98) 

 (iii) Surrounding gas (r > Rc). The characteristic diffusion length in the air is of the order of 

the radius of the Scheludko cell Rc, and the cell is “immersed” into a cloud of vapours of size ~Rc 

with a stationary concentration profile. By analogy with the heat transfer problem, we assume 

that the concentration difference at z = 0 and r > Rc, in this region is proportional to 1/r, i.e., it 

follows the expected asymptotic behaviour at large r: 
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 Combining (i)-(iii), we can write the approximate boundary condition at z = 0 as 
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 Taking advantage of the analogy between our treatment of the heat and mass transport – 

compare eqs. (S.50), (S.51), (S.56) to eqs. (S.95), (S.96) and (S.100) – we can infer that the 

integral mass fluxes through the surfaces of the film and the meniscus are respectively 
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corresponding to eqs. (19) and (24) from the main text. In eq. (S.102), we used that the first term 

is small in comparison with the second one as 8CrrRf
3
/3 ~ 10-3CmRc. 

 

5. Knudsen and Fuchs transition layers 

If the mass flux through the liquid|gas interface is large, the boundary condition we used for the 

diffusion problem – that the vapour concentration Cz=0 at z = 0 equals the Clausius-Clapeyron 

concentration Ceq (i.e., continuity of the chemical potential) – may fail. This happens when the 

total flux j approaches the Hertz-Knudsen flux Cz=0(RT/2M)1/2 from the gas toward the surface. 

The flux continuity requires that 

 eq 0
2π 2π

z

RT RT
j C C

M M
  ,        (S.103) 

where we assumed that every hit at the surface is effective – consult Dondlinger et al. 

(Dondlinger et al., 2005). The order of magnitude of j is D(Cz=0 C)/Rc, compare to eq. (37); 

therefore, the chemical potential becomes discontinuous when 
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
 ,       (S.104) 

or equivalently, 
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Thus, Cz=0 differs significantly from Ceq only in case that D(M/RT)1/2 << Rc. The length 

D(M/RT)1/2 is of the order of the mean free path of a molecule in the gas phase, ~100 nm in air, 

and is indeed small compared to the characteristic length in our problem (Rc ~ 2 mm). Therefore, 

we can safely assume that Cz=0 = Ceq. Similarly, one can show that the continuity of T holds. The 

discontinuities of T and C can become very important at low pressures in the gas, e.g., for the 

system considered by Badam et al. (Badam et al., 2007), where the pressure is low and the mean 

free path is ~10 m. 

 

6. Properties of the system at the stationary state for a thermostated meniscus 

 

This section provides some additional details on the stationary state of the system for the case in 

which the temperature of the meniscus is fixed and equal to that of the ambient air, i.e., Tm = T∞ 

and Tm = 0. 

 As we mentioned in Section 2.5 of the main text, the kinetics of film drainage can be 

described in terms of the dependence t(h), 

 

0

11
 d
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h

z

h

t V h  ,           (S.105) 

where h0 denotes the initial film thickness and Vz is given by eq. (30). Depending on the value of 

h0, (S.105) predicts three different scenarios: 1) if h0 > hst1 (eq. (35)), the film drains until 

reaching hst1; 2) if hst2 < h0 < hst1, the film thickens until h reaches hst1; 3) if h0 < hst2, the film 

drains until rupture. All three cases are illustrated in Figure S. 2A-B. As the figure indicates, the 

drainage occurs over timescales of 10-7-10-5 s, much shorter than that of the cooling down of the 

meniscus (Figure 5). This is why in Section 2.7 we assume that the film thickness 

instantaneously reaches the quasistationary value determined by the temperature drop in the 

meniscus (Tm). 



62 

 

 It is worthy of note that at the limit of x → 100%, which corresponds to a saturated 

environment, the normal velocity profile vz simplifies to 
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       (S.106) 

Equation (S.106) differs notably from the velocity profile for the classic Reynolds problem for a 

film with van der Waals disjoining pressure, vz,Re(h/2) = h3(pc – vdW)/(3Rf
2). It predicts 

values of vz that are orders of magnitude higher, vz(h/2) ~ Rf
2/h2 vz,Re(h/2). This dissimilarity 

arises from the difference in the boundary conditions for the two problems – the Reynolds 

formula is derived for films with tangentially immobile surfaces. 

 

Figure S. 2. Modes of film drainage depending on the initial film thickness. A) Films of initial thickess h0 

> hst1 drain until reaching h = hst1 (solid line, h0 = 1.15∙hst1); for hst2 < h0 < hst1, the films are expected to 

thicken until reaching hst1 (dashdot line, h0 = 0.85∙hst1). In both cases, the characteristic time for reaching 

the stationary value is ∙Rc/m ~ 2×10-5 s. B) Films of initial thickness h0 < hst2 (dashdot line, h0 = 

0.85∙hst2) are expected to drain until rupture over the even shorter timescale of 10-7 s. The predicted 

characteristic times of drainage indicate that the change in film thickness is instantaneous in comparison 

with the cooling of the meniscus (Figure 5) and the thickness at any point in time can be set to its 

quasistationary value determined by the momentary value of the temperature change Tm. In both A) and 

B), hst1 is represented by a dotted line and hst2 – by a dashed line. The results shown in the figure pertain to 

films of Rf = 150 m formed at relative humidity x = 45%. 

 The limit of the radial velocity profile at x → 100% is 

A B 
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At x→100%, the lubrication approximation breaks down and vr0 and vz0 do not adequately 

describe the velocity profile but are given here for completeness. 

 Due to a cancellation of leading terms, in order to obtain the correct orders of magnitude of 

the surface velocities Vz and Vr at the stationary point, one must use the more accurate form of Trr 

given in S3.5 with eq. (S.94) instead of eq. (22) from the main text. The approximate form, eq. 

(22), which neglects the weak dependence of Trr on h, leads to a sufficiently accurate hst(t) 

(differing by less than 10% from the one obtained with Trr0(h)), which is the reason why 

calculations in Section 2.4-7 are carried out with it. However, if we were to use the approximate 

expressions for Trr and the stable stationary thickness hst1, eqs. (22) and (35), to calculate Vr, we 

would obtain the unphysical result that it is identically zero. The correct evaluation of Vz and Vr 

at the stationary state therefore requires the solution to the exact mass balance for hst – eq. (31) in 

which the exact forms eq. (30) for Vz and eq. (S.94) for Trr have been substituted. The solution is 

more easily obtained for x(hst) than for hst(x): 
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 .  (S.108) 

To evaluate the normal surface velocity, we set the relative humidity x to 45% in eq. (S.108) and 

Rf to 150 m, solve the resulting equation numerically for hst and substitute the solution that 

corresponds to the stable branch of the hst(x) diagram (hst = 347 nm) together with eq. (S.94) for 

Trr into the exact form of eq. (30) for Vz, reaching the result Vz ≈ 1.2×10-8 m.s-1
 for a water 

filmSimilarly, to obtain a correct value for Vr, we must substitute the model temperature profile 

(9) for the film and the exact expression (30) for Vz in eq. (8), leading to the result 
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(S.109) 

We proceed to evaluate Vr in the same way as Vz – we set x to 45% in eq. (S.108), then substitute 

its stable solution for hst and eq. (S.94) for Trr in eq. (S.109). Thus, we reach the result Vr(Rf) ≈ 
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−2.7×10-5 m.s-1, which has the correct order of magnitude – from dimensional analysis it follows 

that Vr/Vz must be of the same order of magnitude as Rf/h, and this is indeed the case. It is worth 

noting that at the stationary state, the radial component of the velocity field is negative for all z, 

corresponding to a flux from the meniscus to the film that exactly compensates the loss of fluid 

due to evaporation.  

 Having determined the surface velocities Vr and Vz, we can proceed with the evaluation of 

the dimensionless numbers relevant to the problem. We can assess the importance of the 

convective heat transfer through the liquid by calculating the relevant Péclet number, 
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where L

iq  are the contributions of conduction and convection to the density of the heat flux 

through the liquid. If we were to take convection in the liquid into account, the heat equation for 

that domain would take the form 
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As in S3.5, we can perform an iteration to determine the normal heat flux through the film 
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where we have used that the dependence of TL on z is weak and the term ∂TL/∂z is thus 

negligible. Having derived the estimate (S.112) for qL, we can proceed to evaluate the ratio 

between the two terms that contribute to it, i.e., Pe
L
heat:  
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where we used eq. (9) for the temperature of the film region and eq. (30) for Vz. To evaluate 

Pe
L
heat

 at the stationary state, we need to use the explicit expression for Trr, eq. (S.94). Trr contains 
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the concentration difference Cm, which we express through x using eq. (13); note that for a 

thermostated meniscus, Cm = Ceq0  C∞. Using the relationship between the stationary thickness 

hst and the humidity x (S.108), we express Pe
L
heat as a function of hst. Finally, we plot Pe

L
heat(hst) 

parametrically versus x(hst) with hst as a parameter. In order to plot only the experimentally 

observable branch of Pe
L
heat, we use a range of hst between hcr and the stationary thickness 

corresponding to x → 0% (hst ~ 10-7 m). The resulting graph is shown in Figure S. 3 for three 

typical experimental values of the film radius; the observed values of Pe
L
heat (~10-3) justify our 

neglect of the convective heat transfer through the liquid phase in Section 2.3. 

 

Figure S. 3. Péclet number for the heat transfer in the liquid phase (Pe
L
heat) at the stationary state for three 

different values of the film radius. The observed values (Pe
L
heat << 1) justify the neglect of the convective 

term in the heat equation (S.89) for the liquid.  

 The Péclet numbers for the heat transfer in the gas phase are evaluated in a completely 

analogous way. We define Pe
A
heat,r as the ratio of the convective heat flux in the r-direction to the 

conductive heat flux, 



66 

 

 
f

f

convective,A

heat,

conductive
/ 2,

/ 2,

~
1

r
r

r

z h r R

z h r R

T
Vq rPe

Tq
r

r r r
 

 




 

 

.     (S.114) 

In eq. (S.114), we use that at the surface of the film, the velocities of the liquid and gas phases 

are equal;  denotes the thermal diffusivity of the gas phase. Substituting the model expression 

(9) for T and eq. (S.109) for Vr in eq. (S.114) leads to 
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Figure S. 4. Péclet numbers for the heat transfer in the gas phase at the stationary state for three different 

values of the film radius. Pe
A
heat,r (A) gives the comparison between the convective heat transfer in the 

radial direction with the diffusive heat transfer, while Pe
A
heat,z (B) does the same for the convective heat 

transport in the z-direction. The fact that Pe
A
heat,r << 1 and Pe

A
heat,z << 1 means that the convective 

contribution to the heat flux through the air is negligible, as assumed in S3.1-3.4 (see eq. (S.50)).  

 In a similar manner, we can define Pe
A
heat,z as the ratio of the convective heat flux in the z-

direction to the conductive heat flux, 
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where as in eq. (S.90) we have used an iteration to evaluate ∂T/∂z|z=h/2 and we have substituted 

the model temperature distribution (9), as well as the estimate Vz
G
 ~ vGJ/Rf

2
 for the normal 

velocity in the gas phase at the interface, vG = R∙T/p0 being the molar volume of the gas. Using 

eq. (S.101) for J in eq. (S.116) yields 
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for the convective heat transfer in the normal direction; note that for a thermostated meniscus, 

Crr (eq. (14)) simplifies to 
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 Next, we use the exact result for Trr from S3.5, (S.94), in which we expressCm through x 

using eqs. (12)-(13); then, we use eq. (S.108) to express x as a function of the stationary 

thickness hst, thus obtaining the explicit expressions Pe
A
heat,r(hst), Pe

A
heat,z(hst). Finally, we plot the 

two numbers parametrically versus x(hst) for values of hst ranging from hcr to ~107 m at three 

different film radii (Figure S. 4). The calculated values of the heat transfer Péclet number (Pe
A
heat,r 

~ 10-4, Pe
A
heat,z ~ 10-4) indicate that the convective heat transfer through the gas is negligible, as 

asserted in Section 2.2. 

 We now turn to the evaluation of the Péclet numbers for mass transport. Pemass,r compares 

the integral convective mass flux in the r-direction with the integral diffusive mass flux,   
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Substituting the model expression (11) for the concentration profile in the film, eq. (S.109) for Vr 

and eq. (S.101) for the normal diffusive flux in the definition of the Pemass,r, (S.119), we obtain: 
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We can define a second Péclet number for the convective mass transfer in the z-direction, by 

analogy with eq. (S.116), 
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where we use the same estimate for Vz
G
 as in Pe

A
heat,z above, Vz

G
 ~ vGJ/Rf

2
 and eq. (S.101) for J, 

thus obtaining an explicit expression for Pemass,z, 
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Figure S. 5. Péclet numbers for mass transport at the stationary state for three different values of the film 

radius (Rf = 50 m – solid lines, Rf = 100 m – dashed lines, Rf = 150 m – dashdot lines). Pemass,r (A) 

quantifies the ratio of the convective mass flux in the r-direction to the total diffusive mass flux; Pemass,z 

(B) does the same for the z-direction. The calculated values (Pemass,r ~ 10-2, Pemass,z ~ 10-2) justify our 

disregard of the convective contribution to the diffusive flux.  

B A 
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 As with Pe
A
heat and Pe

L
heat, writing eqs. (S.120) and (S.122) explicitly and setting x to x(hst), 

eq. (S.108), we can plot Pemass,r and Pemass,z as a function of x using h as a parameter, as seen in 

Figure S. 5. The low values of the Péclet numbers for mass transport (Pemass,r ~ 10-3-10-2, Pemass,z 

~ 10-2) justify our approach of neglecting convective mass transfer for water and nonane films. 

However, for films formed from the much more volatile hexane, Pemass,r ~ 0.1 and Pemass,z ~ 0.1, 

which means that convection needs to be included and explains the discrepancy between our 

model and the experimental data on hexane (see Section 3.3). 

 As the inclusion of the heat transfer in meniscus introduces no qualitative difference in the 

properties of the system at the stationary state discussed above, we will not give the analysis for 

that case here. 

 

 

7. Effect of the electrostatic disjoining pressure 

 

The experimental data of Yaminsky et al. (Yaminsky et al., 2010a, 2010b) suggest that the 

electrostatic disjoining pressure (el) plays a significant part in the behaviour of evaporating 

films comprised of pure liquids. According to the simplest possible model for el, the DLVO 

theory, the electrostatic disjoining pressure in a solution of a 1:1 electrolyte is given by the 

equation (Sheludko, 1 967) 

  el 0 Dexp /h L   ,          

(S.123) 

with 0 = 64CelRT∞tanh(FS/RT∞)2, S
 being the surface potential, Cel the electrolyte 

concentration in the liquid [mol·m-3], F – the Faraday constant and LD – the Debye length, LD = 

(RT/2CelF
2)1/2, where  is the absolute dielectric permittivity of the liquid. Yaminsky et al. 

(Yaminsky et al., 2010a) used eq. (S.123) to fit the measured the disjoining pressure isotherm for 

pure water films and  determined  the values S
 = 57 mV and Cel = 4 mmol∙m-3. However, eq. 

(S.123) is only valid if h >> LD (Kralchevsky et al., 2009), which is not fulfilled for films of pure 

water. DLVO’s el obeys the general equation (Churaev et al., 1987) 

 el el m( ),RT C u            (S.124) 
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where u() =  + –1 – 2 is a dimensionless electrostatic energy density,   = exp(F/RT∞) is 

the electrostatic Boltzmann factor for a positive monovalent ion and m is its value at the centre 

of the film. m is related to the film thickness through the second integral of the Poisson-

Boltzmann equation: 
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  ,        (S.125) 

with S = exp(FS/RT∞). Further, for the constant charge regime, we will need the analogue of 

the Gouy equation for a thin film, 
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where S is the surface charge density due to specifically adsorbed charge.  

 We will consider two limiting cases for el: those of constant surface potential and constant 

surface charge. The disjoining pressure corresponding to a fixed surface potential of S
 = 57 

mV is determined by eqs. (S.124) and (S.125) (a parametric dependence with parameter m) and 

is shown in Figure S. 6. 

 At constant charge, the adsorption does not depend on the film thickness while S does. We 

determine el for this case by simultaneously solving eqs. (S.124), (S.125) and (S.126) for S, 

el and h at a set of values of m; the value of the surface charge density is S = -250 C/m2 is 

used (it yields -57 mV at h →  and m → 1). The charge regulation regime is, unfortunately, 

impossible to analyse in the absence of a reasonable hypothesis for the adsorption isotherm of 

the specifically adsorbed ions. 

 We will assume that the water we use for forming the films is saturated with CO2 and we 

will neglect the presence of divalent carbonate ions in it; using data for the dissociation equilibria 

of CO2 from Harned and Davis (Harned and Davis, 1943), we can calculate that under these 

assumptions, Cel = 2.5 mmol∙m-3. In Figure S. 6, we compare (h) from eq. (S.123) and the 

dependences for constant surface potential and charge. In the figure, we see that at constant 

potential, < pc for all h and in the absence of a Marangoni flow, the films are expected to drain 

under the action of the capillary pressure. However, at constant charge, or when eq. (S.123) is 

used, for each isotherm there are two thicknesses at which el + vdW = pc of which the one with 

∂∂h < 0 is stable. 
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Figure S. 6. Disjoining pressure for the various considered cases for el: the limitng formula for thick 

films, eq. (S.123) – dotted line, (h) for constant surface potential (0 = 57 mV) – solid line, (h) for 

constant surface charge – dashdot line, and capillary pressure pc, eq. (2) from the main text – dashed line. 

Note that for all considered cases except that of fixed surface potential, there are two points for which 

(h) = pc and equilibrium non-evaporating films are predicted to exist. 

 We follow the approach from Section 2.7 to derive the stability diagram of evaporating films 

in with both a van der Waals and an electrostatic disjoining pressure. We determine the normal 

velocity Vz, from the normal force balance at the surface, which has the form (28), but with  = 

el + vdW. The solution for the normal velocity itself, eq. (30), is amended in the same way, 

  
2 S

f
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1

8 4

rr
z

R s T h
V p 

 
   .         (S.127) 

As in Section 2.7, the mass balance (31) can be simplified to 

 
d

2
d

z

h
V

t
 .           (S.128) 

Substituting eq. (S.127), the explicit expression (22) for Trr and the definition of the relative 

humidity, x, into eq. (S.128) with the right-hand side set to zero, we obtain an equation for the 

quasistationary film thickness as a function x. It is, however, more convenient to work with the 

inverse function, x(hst): 
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Just as in Section 2.6, the quasistationary film thickness hst depends on time implicitly through 

Tm − as the meniscus cools down, the Marangoni flow weakens and hst diminishes. To analyse 

the evolution of hst with time, we first calculate the temperature difference between meniscus and 

air, Tm, at a number of points in time using eq. (27). Then, we substitute the calculated Tm into 

eq. (S.129) for x(hst). Setting the humidity to a particular value, xexp we calculate hst at each 

moment from the equation x(hst) = xexp. We do that using three different forms of el(h) – eq. 

(S.123), and polynomial expressions fit to the dependences for constant charge and constant 

potential illustrated in Figure S. 6.  

 

 

Figure S. 7. Quasistationary thickness as a function of time, hst(t), for a water film of Rf = 150 m with 

both electrostatic and van der Waals contributions to the disjoining pressure (x = 89%). The curves are 

calculated with el according to eq. (S.123) (circles), as well as in the constant surface potential (squares) 

and constant surface charge (diamonds) regimes. 

 The h(t) obtained in this way are plotted in Figure S. 7 for xexp = 0.9; predictably, in all 

cases, the addition of el leads to an increase in film lifetime with respect to the case with no 
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electrostatic repulsion (Figure 3). In the constant surface potential regime, Figure S. 7 predicts a 

lifetime approximately three times longer than that in Figure 3. Furthermore, using el for the 

constant surface charge regime or the asymptotic eq. (S.123) leads to the prediction that the films 

become stable at t → ∞. As seen in the graph, for the latter cases, when Tm reaches its 

stationary value (see Section 2.6) and the Marangoni effect vanishes, the film is stabilized by 

electrostatic repulsion and reaches its equilibrium thickness, heq. For thin water films, its value is 

heq = 170 nm in the limit of constant charge (or heq = 120 nm according to the asymptotic 

formula eq. (S.123)). However, as we pointed out in Section 2.5, the electrostatic repulsion is 

likely in the charge regulation regime rather than any of the limiting cases considered here. 

 

8. The cooling of the meniscus 

 We need to clarify how the total heat capacity, which appears in the heat balance for the case 

of a cold meniscus (58), is calculated. Cp is the sum of the total heat capacities of the liquid (Cp
L
) 

and the part of the glass capillary in direct contact with the fluid (Cp glass). 

            (S.130) 

The heat capacity of the spherical meniscus is determined by its volume: 

             (S.131) 

The part of the glass capillary in contact with the fluid is a cylindrical shell of inner radius Rc, 

outer radius Rc + dglass and height 2Rc. The corresponding heat capacity is: 

       (S.132) 

where Vglass [m
3], glass [kg/m3] and cp glass [J∙kg-1∙K-1] are respectively the volume, the density and 

the specific heat capacity of the glass. For borosilicate glass, typically used for laboratory 

equipment, glass = 2200 kg/m3
 and cp glass = 830 J∙kg-1∙K-1. We used two Sheludko cells, one with 

Rc = 2 mm and dglass ~ 1 mm and the other with Rc = 2.3 mm and dglass ~ 0.5 mm. For water films 

in the former case, Cp glass ≈ 0.11 J∙K-1 and Cp
L
 = 0.07 J∙K-1, while for the latter, Cp glass ≈ 0.07 J∙K-

1 and Cp
L
 = 0.11 J∙K-1. 
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 Let us also note that for small temperature differences, the divisor of the integrand in eq. 

(27) from the main text, which controls the dependence of the meniscus temperature on time, can 

be expanded in a series with respect to Tm up to the linear term, leading to 
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,    (S.133) 

which gives the correct temporal evolution of temperature if x close to 1; otherwise, it is only 

adequate for the initial time period – consult Figure S. 8, in which it is compared with the more 

exact expression (27). 

 

Figure S. 8. Temperature difference Tm between meniscus and air as a function of time for three values 

of the relative saturation x of the ambient air. The solid lines are calculated according to the exact 

dependence (27), and the dashed lines represent the approximate analytic eq. (S.133). The stationary 

temperature Tm,st at the plateau is marked with dotted lines. The calculations were made for water film in 

cell of radius Rc = 2 mm, see S1 for the parameter values. 
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 As noted in the main text, the observed decrease of the film lifetime as a function of the time 

after cell loading, tload, can due to the consecutive formation of several films in the Scheludko 

cell. This can lead to a significant cooling of the whole capillary cell rather than just the part of it 

that is in contact with the fluid as we assume in Section 2. In that case, the initial temperature of 

the meniscus would be lower than the ambient T∞,, and the lifetime of the film would be 

decreased – from eq. (27) in the main text it follows that 

 
   

m,cr m,cr

m,initial

m m

c c 0m e m m e m

d d

4.57 4.57

T T

p p

T

C CT T

R RT h D C T h D C


 

 



 
   

     
  ,  (S.134) 

where Tm,cr is the solution to eq. (39) for Tm and the initial temperature of the meniscus is T∞ + 

Tm,initial. 

 As a final remark on the subject of the cooling down of the meniscus, let us note that we can 

use the dependence x(Tm,st), eq. (26), to predict the stationary temperature difference Tm,st. 

Plotting x(Tm,st) on the horizontal axis and Tm,st on the vertical one, we obtain the stationary 

temperature difference at different relative saturations; the resulting curve is shown in Figure S. 

9. 

 

Figure S. 9. Stationary temperature difference Tm,st between the meniscus and the ambient air as a 

function of the relative saturation x of the ambient air, according to eq. (26) for the inverse function 

x(Tm,st). The calculations were made for water, see S1 for the parameter values. 
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9. Additional experimental data 

 

n-Nonane. Saturated atmosphere, x = 1. A photograph of a non-evaporating nonane film is 

given in Figure 6D in the main text. The lifetime of the non-evaporating nonane films increased 

with the film radius – for Rf = 50, 62.5 and 100 m, we observed  ~ 25, 35 and 50 s 

respectively. As with water films under saturated conditions, no significant aging effects (such as 

dependence of  on tload) were observed, which can be expected in the absence of evaporation-

driven cooling. Exceptions were the first 10 films (tload < 30 min): unlike those in Figure 7 from 

the main text, during their lifetimes (40-50 s), their radii shrunk from the initial Rf = 100 down to 

50-80 m before rupture. Their different behaviour seems related to the initial incomplete 

saturation. 

 

 

 

Figure S. 10. Lifetime  of nonane films formed during one experimental run vs. time after loading the 

cell, tload (21○C, Rc = 2 mm). Evaporating films formed in a open cell (x ≈ 0). The first five films expanded 

during their lifetime; the radii of those formed after 40 min were constant throughout their lifetimes. 

 Figure S. 10 complements Figure 7 from the main text and shows the dependence of the 

lifetime of thin nonane films in an unsaturated environment (x ~ 0%) as a function of the time 



77 

 

after cell loading, tload. The first five films expanded during from Rf = 50 m initially to 80-180 

m at the moment of their rupture; the radii of those formed after 40 min were constant 

throughout their lifetimes. As noted in the main text, the dependence of film lifetime on Rf agrees 

qualitatively with the theoretical prediction – films of radius ~50, 100 or 150 m have  ~ 20, 35 

and 45 s, whereas the model predicts  = 0, 14 and 237 s, respectively. Notably, in contrast with 

the main prediction of our theory, the nonane films formed in a saturated environment were more 

stable than the evaporating ones – compare Figure 7 from the main text with Figure S. 10. 

 As explained in the main text, Figure S. 11 presents the comparison between the predictions 

of our model and the experimental dependence of thickness on time for a thin nonane film 

situated in an unsaturated environment (x ~ 0 %). The critical thickness of film rupture was 

~42.9 nm, whereas the theoretical value is 60.3 nm. The experimental drainage time differs from 

the theoretical by a factor of ~5, but this is satisfactory agreement given the approximate nature 

of our expressions for the heat and mass fluxes (19)-(20) and (23)-(24). 

 

 

Figure S. 11. Film thickness vs. time for nonane film of radius Rf ~ 125 m in an unsaturated environment  

(x ~ 0%). 
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