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Abstract. At the interface between quadrupolar media, the normal displacement field is discontinuous even in the 

absence of surface charge, because the boundary condition of the quadrupolar Coulomb-Ampère law of electrostatics 

involves the surface divergence of the surface displacement field. This surface displacement field is proportional to 

the jump of the quadrupolarization tensor. The term is important for surfaces exposed to a non-homogeneous electric 

field, and it affects the outcome of the spherical cavity (Onsager) model for quadrupolar dielectrics. With the new 

correct boundary condition, the predictions of the model are more reasonable; in particular, the reciprocal 

relationships of Onsager are now valid (cavity field:external field = external dipole:actual dipole, and cavity field 

gradient:external field gradient = external quadrupole:actual quadrupole). 

 

The displacement field D in a quadrupolar medium involves the 

divergence of the quadrupolarization tensor Q: 

 
1

2
   D E Q ,    (1) 

where  is dielectric permittivity and E is electric field intensity. In 

order to solve Coulomb’s law (∙D = 0) for problems involving an 

interface between two quadrupolar media, a boundary condition is 

required for D. In Ref. [1], we used the condition for continuity of 

the normal displacement field (Dr) at the surface of the spherical 

cavity, eq18 (we cite the equations from Ref. [1] with superscript 

1): 
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where Rcav is the radius of the cavity. This condition is valid only 

in case that D has no -term in its singular expansion at the surface 

of discontinuity (i.e. if D can be expressed as D++  D, where 

+ = (rRcav),  = (Rcavr), and D+ and Dare continuous 

functions of the coordinates in the vicinity of r = Rcav;  and  are 

the Heaviside and Dirac functions). However, the 

quadrupolarization tensor is discontinuous at the interface between 

the cavity and the medium, i.e. Q = Q++  Q; from Eq (1) it 

then follows that D has a -term: 

 Sη η δ     D D D D ,    (3) 

where the bulk displacements D± stand for 
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and the surface displacement field DS is given by 

  S 1

2
r
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Here, ≡ (rRcav), er is the unit vector normal to the surface, and 

we used the relations ± = ±er. The correct boundary condition 

in the case of non-zero DS reads2-4: 
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where S is the surface nabla operator (S =  er∂/∂r). The 

derivations of this equation in Refs. [3,4] were for a flat surface, 

and DS in [4] is produced by intrinsic surface polarization. 

Nevertheless, Eq (6) is valid2 also for the case we investigate – 

spherical surface and DS induced by the discontinuity of the bulk 

quadrupolarization, Eq (5) (cf. the supplement). The term S∙DS is 

zero for the problems of quadrupolar electrostatics we solved 

previously5-7, since the involved surfaces were homogeneous. 

However, this is not the case with the four basic problems required 

by the Onsager model of quadrupolar dielectrics solved in Ref. [1]. 

The correct expressions follow. 

 Reaction field of a dipole and a quadrupole. With regard to 

the problem for a dipole p in the centre of a cavity, the solution for 

the potential p0 inside the cavity (r < Rcav) remains formally the 

same (eq113), but the one outside the cavity is, instead of eq114, 
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Here LQ is the quadrupolar length. The external dipole moment pext 

in Eq (7) is proportional to p: 

 pext = YEp,     (8) 

where YE is given by eq128, YE = 3fE/(2+ fp0). The quadrupolar 

factors fp, gp and fE in the formulae above stand for the expressions: 
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where x = LQ/Rcav; the formula eq117 for fp is invalid. The 

expression eq115 for the reaction field Ereact remains formally 

unchanged, but with the new factor fp. The calculated limit in eq118 

holds true with the new formulae presented here; note that it is 

actually incorrect with the old ones, due to an arithmetic mistake. 

This means that the revised Onsager model following from the new 

boundary condition (6) leads to the correct continuum single 

particle limit of the perturbation theory of Milischuk and 

Matyushov8, while the old one1 stemming from Eq (2) does not. 

 Similar corrections are required in the formulae120-24 for the 

reaction field of a quadrupole q in a cavity. Instead of eq121, the 

potential q at r > Rcav is: 
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The external quadrupole moment qext is still proportional to q, but 

instead of eq123, the relation is: 

 
ext EYq q ,     (11) 

where YE is given by eq133, YE = 5fE/(3+ 2fq0). The 

quadrupolar factors fq, fE and gq above stand for: 
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Eq123 for the reaction field gradient is valid but with the new fq-

factor. 

 Cavity field and cavity field gradient. The solution to the 

problem for a cavity in a quadrupolar continuum polarized by an 

external field E0, with the new boundary condition (6), also 

changes compared to eqs126-30. The potential E at r > Rcav is: 
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The cavity field Ecav is proportional to the external field E0, 

formally with the same YE coefficient, eq128, but with the new 

quadrupolar factors (9). The vector pext,E in Eq (13) is the excess 

dipole moment of the cavity induced by the external field, and 

instead by eq129, it is given by: 
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 Finally, let us summarize the solution to the problem for a cavity 

in quadrupolar medium placed in an external electric field gradient 

(E)0. The cavity field gradient (E)cav is proportional to (E)0 

with the YE coefficient from eq133. The potential outside the 

cavity is: 
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The excess quadrupole moment qext,E of the sphere induced by 

the external gradient (E)0 is given by the equation: 
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The quadrupolar factors in these formulae are given by Eqs (12) 

and the expressions: 
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 Reciprocal relationships. Onsager9 observed that the 

following reciprocal relation holds for the cavity field and the 

external dipole in a dipolar medium: Ecav/E0 = pext/p =  

3/(2 + 0) (his eq 11). An important outcome from the revised 

boundary condition (6) is that such a relation is valid also in a 

quadrupolar medium: 
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Analogous reciprocal relationship occurs for the external 

quadrupole and the cavity field gradient: 
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The old boundary condition (2) leads1 to results that disagree with 

Eqs (18)-(19). 

 The macroscopic polarizability and quadrupolarizability of 

the medium are obtained in the manner described in Ref. [1]. The 

result for the polarizability P reads: 
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This is the sought generalization of Onsager’s9 formula for  to 

quadrupolar medium. The respective equation for the macroscopic 

quadrupolarizability Q of an Onsager fluid is: 
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Here, the factors Xp and Xq are given by eqs115&22 and YE and YE 

are given by eqs128&33 – but with the new expressions for fp, fq, 

fE, and fE, Eqs (9)&(12). Eqs (20)-(21) are setting the correct 

Onsager model for a quadrupolar liquid, instead of eqs150&53. The 

change is significant enough to affect most of the results presented 

in Ref. [1]. Qualitatively, the results are similar, with one 

exception: according to eqs151-52, the quadrupoles have a 

relatively stronger effect on  in the case of non-polar liquids; 

according to Eq (20), the effects are not so different for polar and 

non-polar fluids. Quantitatively, in most cases, the new term S∙DS 

in Eq (6) leads to a significant change of the final values of Q (up 

to 20%) and cannot be neglected. Correspondingly, Table11 and 

most figures in Ref. [1] are inaccurate – the correct ones follow. 

 Results. As in the previous paper, we used the following 

empirical relationship between the cavity radius and the density of 

the fluid: 
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where m is the atomic mass. The values of the coefficients k and 

k0 in Table11 are incorrect. The correct k and k0 are given in Table 

1 here; they were determined by regression over the experimental 

data for  vs. the theoretical permittivity following from our new 

Eqs (20),(21)&(22) (solved for the unknown Rcav, LQ and ). In all 

cases but water, the analysis of the data for  suggested that Rcav is 

function of  only. For water, as in Ref. [1], statistically significant 

temperature dependence was evident, and therefore, instead of Eq 

(22) we used 
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For H2O, we compared the theoretical permittivities that follow 

from Eqs (20),(21)&(23) with the data points for ; the dispersion 

was minimized with respect to the parameters of Eq (23), leading 

to best values k0 = 2853.7 kg/m3, k = 0.1195 and kT = 1.057 

kg/m3K (slightly different from those determined in Ref. [1]). The 

details for the experimental data and the parameter values used in 

this supplement are described in Ref. [1]. 
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Table 1. Values of the molecular multipole moments & polarizabilities, and the coefficients in dependence (22) of Rcav on . 

 
dipole moment 

p0 [Cm]×1030
 

polarizability 

p/40 [Å
3] 

quadrupole moment 

(q0:q0)
1/2 [Cm2]×1040  

quadrupolarizability

q/40 [Å
5] 

k0 [kg/m3]  

in Eq (22)
k  

in Eq (22) 

dev/0 of Eq (22) 

vs. the data for  

Ar 0 1.639 0 0.454 655.5 0.3134 0.0009 

Kr 0 2.488 0 0.913 - - - 

Xe 0 4.105 0 1.936 - - - 

CH4 0 2.597 0 1.681 122.84 0.7019 0.0004 

N2 0 1.737 4.08 1.12 342.2 0.5445 0.0005 

CO2 0 2.98 11.43 2.21 235.64 0.9102 0.0009 

CS2
 0 8.215 8.88 11.40 721.2  0.5513 0.0017 

C6H6 0 10.25 24.87 18.42 695.2 0.3300 0.0019 

H2O 6.204 1.470 8.073 0.496 Eq (23) 0.19 

CH3OH 5.638 3.32 16.436 3.121 1991.3 0.3534 0.7 

 

 

 
Fig. 1(a) Cavity radius of N2 calculated from Eqs (20)&(21) and 

experimental data for  and . The colour indicates the temperature. The 

gray symbols are Böttcher’s Rcav following from the original theory of 

Onsager (Eq (20) with LQ = 0). The black line is Eq (22) with k = 0.545 

and k0 =342 kg/m3. (b) The quadrupolar length LQ following from the 

same model and data. Cf. Ref. [1] for details. 

 
Fig. 2(a) Cavity radius of CO2 & CS2 as a function of their concentration 

C, calculated with Eqs (20)&(21) from experimental data for  & . The 

colour indicates the temperature. The gray symbols are Böttcher’s Rcav 

following from Onsager’s original equation (Eq (20) with LQ = 0). Gray 

line is Eq (22) with k = 1 and k0 = 0; black line is Eq (22) with k = 0.910 

and k0 =236 kg/m3 for CO2. (b) The quadrupolar length LQ following from 

the same model. Cf. Ref. [1] for details. 

 Fig.15-9 in Ref. [1] are inaccurate, due to the erroneous 

eqs150&53. Fig. 1-5 here show the correct results. For non-polar 

non-quadrupolar fluids (Ar, Kr, Xe, CH4), the change is very small, 

so the respective Fig.13-4 do not need change. For quadrupolar but 

non-polar molecules (N2, CO2, CS2, C6H6), the values of LQ 

calculated here at the highest experimental densities are by about 

10% smaller than those in Ref. [1] (corresponding to an error in Q 

of about 20%). In Fig. 3, the correct quadrupolar lengths of 

benzene calculated via Eqs (20)&(21) are compared with those 

from Ref. [1], to highlight the importance of the term S∙DS in Eq 

(6). For polar species (H2O, CH3OH), the new values of LQ are at 

most by 5% smaller than those in Ref. [1] (corresponding to Q by 

10% smaller). The change in the values of Rcav compared to those 

in Ref. [1] is relatively small (e.g. 1-2%) yet significant in view of 

the strong dependence of all properties of the quadrupolar liquid 

on Rcav. 

  
Fig. 3(a) Cavity radius of benzene as a function of , calculated with Eqs 

(20)&(21) and experimental data for  & . The red circles correspond to 

various temperatures (300-340 K) and pressure 1 atm, and the black ones 

– to various pressures (1-1600 atm) and temperature 323 K. The gray 

symbols are Böttcher’s Rcav following from Onsager’s equation (Eq (20) 

with LQ = 0). The black line is Eq (22) with k = 0.330 and k0 = 695 

kg/m3. (b) The quadrupolar length LQ following from the same model 

(circles). Gray dots: Q of an ideal gas. Crosses: LQ calculated1 with the 

wrong boundary condition (2). Cf. Ref. [1] for details. 

 
Fig. 4(a) Cavity radius of H2O calculated with Eqs (20)&(21) and 

experimental data for  & . The colour indicates the temperature. The 

lines are Eq (23) at the indicated temperatures. (b) The quadrupolar length 

LQ following from the same model. Cf. Ref. [1] for details. 

 The value of the dipole moment p of a water molecule in liquid 

environment is larger than the intrinsic dipole p0 of a molecule in 

gas phase by a factor of 1/(1pXp) = 2.17 (which differs from the 

value 2.07 calculated previously1 due to the different fp factor in 

the expression for Xp). The quadrupole moment of water increases 

by a factor of q/q0 = 1/(1qXq) = 1.39 (instead of1 1.36). This 

suggests that one of the approximations of the Onsager model – for 

the negligible molecular hyperpolarizabilities – fails even worse 

for the revised model of Onsager. 

 An important feature of the quadrupolar Onsager model is that 
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it leads to a much smaller field intensity E near the cavity: in the 

range r = Rcav…3Rcav, using the results for the parameters of water 

at room temperature, we obtain that the maximal value of Er varies 

in the range 3×108…3×107 V/m (2 orders of magnitude smaller 

than the range obtained previously, due to another error in the 

calculations). This field is still high and dielectric saturation can 

still be expected, but not as massive as estimated in Ref. [1]. The 

dipole moment per each water molecule in the first coordination 

shell that follows from the Onsager cavity model can be estimated 

to be of the order of 0.5×p0. For comparison, the original model9 

of Onsager (with LQ = 0) predicts significantly higher field (up to 

8×108 V/m at r = Rcav). 

 

 
Fig. 5(a) Cavity radius of methanol calculated from Eqs (20)&(21) and 

experimental data for static permittivity and density. The colour indicates 

the temperature. The black line is Eq (22) with the coefficients from 

Table 1. The gray symbols are Böttcher’s radii (obtained from Eq (20) 

with LQ = 0). (b) The quadrupolar length LQ following from the same 

model. Cf. Ref. [1] for details. 

 The comparison of the values of the macroscopic 

quadrupolarizabilities determined by Jeon and Kim11 from Stokes 

shift data of coumarin in CO2 and C6H6 (Q = 0.42×10-30 Fm at  

= 800 kg/m3 for CO2 and 2.6×10-30 Fm for C6H6) with those 

following from the revised Onsager model at the same conditions 

(Q = 0.46×10-30 Fm for CO2 and 1.9×10-30 Fm for C6H6) shows 

very good agreement for CO2 and acceptable for C6H6. The 

coincidence might be accidental since the Stokes shift formula of 

Jeon and Kim is based on a set of boundary conditions different 

from ours1. The calculated quadrupole length of methanol varies in 

the range LQ = 0.79-0.82 Å, Fig. 5, in satisfactory agreement with 

the value obtained from the data for the activity coefficient of NaBr 

in methanol solution6, LQ = 1.1±0.2 Å. The difference is most 

probably due to the neglected hyperpolarizabilities: according to 

the revised Onsager model, the dipole moment p of methanol is 

higher than p0 by a factor of 2.39 (compare to the previous1 value 

2.16), which is too high, and the reaction field is of magnitude 

2×1010 V/m, large enough for the hyperpolarizabilities to play a 

role. Another problem with methanol is that its molecule is not 

spherical, cf. the discussion in Ref. [1]. 

 Clausius-Mossotti-Debye fluid. We would like to use this 

document to answer a question that we have been asked on several 

occasions regarding the quadrupolarizability of a liquid, namely: 

what would a Clausius-Mossotti-Debye-like model give for the 

properties of a quadrupolar fluid? This model10 assumes that the 

local field Eloc acting on a molecule in the cavity in the liquid is the 

sum of the external field E0 plus the field EP = P/30 of a 

homogeneously polarized medium of polarization P outside the 

cavity (in contrast, in Onsager’s model, the polarization is a 

function of the coordinates). A similar approach can be applied to 

a cavity in a homogeneously quadrupolarized medium of constant 

Q. However, it is easy to show that the potential inside such a 

cavity is constant, and therefore, the respective electric field 

gradient (E)Q produced by the medium is zero. Consequently, the 

local electric field gradient is equal to the outer one, i.e. (E)loc  = 

(E)0 (compare to the relation eq143 in an Onsager fluid). 

Therefore, the quadrupolarizability of a Clausius-Mossotti-Debye 

liquid is precisely equal to the quadrupolarizability of an ideal gas, 

eq11. 

Supplementary material 

See supplementary material for (A) some of the derivations, and 

(B) a sample Maple code for solving Eqs (20)-(21). 
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Supplementary information 

 

A. Solving the quadrupolar Coulomb-Ampère law 

 

Let us start with the derivation of Eqs (5)-(6) for a spherical 

surface. We will first find the divergence of Eq (3); using the 

relations ± = ±er and  = er1(rRcav), we obtain: 

 S S
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Next, we use the formula 
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(where f(r) is any continuous function) to rearrange Eq (24): 
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Coulomb’s law requires that ∙D = 0, and since ,  and 1 are 

irreducible, the multiplier of  must be zero, leading to Eq (6). In 

Eq (26), the surface divergence stands for 
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S

S S S

cav cav

1 1
sin

sin sin

D
D

R R




   


   

 
D . (27) 

The term S∙DS was missing in the boundary condition eq18, which 

makes the results in Ref. [1] incorrect.  

 All solutions in these errata – Eqs (7)-(17) – were obtained with 

the new condition (6) following the procedure described in SI1A, 

with few changes, as follows. To obtain the general solution, we 

first consider an auxiliary problem which has radial symmetry, 

e.g., for the problem for the reaction field of a quadrupole in a 

cavity, we first consider a quadrupole with the following 

components: 
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This zero-trace quadrupole creates field that is independent of . 

In this case, DS
 = 0 and 
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The solution to the auxiliary problem for the electrostatic potential 

is obtained via separation of variables  =  

(z2 r2/3)(r). The solution for any quadrupole follows easily as 

described in SI1A. 

 

 

B. Sample Maple code for solving Eqs (20)&(21) for LQ & Rcav 

 

The following code for solving Eqs (20)&(21) for methanol at 

normal conditions can be pasted and executed in Maple: 

 
#1. Equations for LQ and Rcav 

# Eq 20 

eq20:= epsilon-epsilon0= 

YE/(1-ap*Xp)*(C*ap+C/(1-ap*Xp)*p0^2/3/kB/T); 

# Eq 21 

eq21:= 1=YDE/(1-aq*Xq)/3/epsilon* 

(C*aq/LQ^2+C/(1-aq*Xq)*q02/10/kB/T/LQ^2); 

 

#2. Equations for the quadrupolar factors 

# Eq[1]28 

YE:= 3*fE*epsilon/(2*epsilon+fp*epsilon0); 

# Eq[1]15 

Xp:=(epsilon-fp*epsilon0)/2/Pi/epsilon0/Rcav^3 

/(2*epsilon+fp*epsilon0); 

# Eq[1]33 

YDE:=5*fDE*epsilon/(3*epsilon+2*fq*epsilon0); 

# Eq[1]22 

Xq:=9/4/Pi/epsilon0/Rcav^5* 

(epsilon-fq*epsilon0)/(3*epsilon+2*fq*epsilon0); 

# Eq 9 

fp:= (2+8*x)/(2*gp+9*x^2+9*x^3); 

fE:= 2*gp/(2*gp+9*x^2+9*x^3); 

gp:= 1+4*x+9*x^2+9*x^3; 

# Eq 12 

fq:= (1+6*x+6*x^2)/(gq+12*x^2+18*x^3+18*x^4); 

fDE:= gq/(gq+12*x^2+18*x^3+18*x^4); 

gq:= 1+6*x+24*x^2+54*x^3+54*x^4; 

 

x:= LQ/Rcav; 

 

#3. Parameter values for methanol 

with(ScientificConstants): 

# molecular dipole moment [Cm], Table 1: 

p0:= 5.638e-30; 

# molecular quadrupole moment (q0:q0) [C2m4]: 

q02:=(16.44e-40)^2; 

# molecular polarizability p [Cm
2/V], Table 1: 

ap:=3.32*evalf(4*Pi*epsilon0*1e-30); 

# molecular quadrupolarizability q [Cm
4/V]: 

aq:=3.12*evalf(4*Pi*epsilon0*1e-50); 

# mass of a carbon atom [kg]: 

mC:=(GetValue(Element('C',atomicweight))): 

# mass of a hydrogen atom [kg]: 

mH:=(GetValue(Element('H',atomicweight))): 

# mass of an oxygen atom [kg]: 

mO:=(GetValue(Element('O',atomicweight))): 

# mass of a methanol molecule [kg]: 

m:=mC+4*mH+mO; 

 

#4. Characteristics of the medium 

# mass density of liquid methanol [kg]: 

rho:=791.32; 

# concentration of the molecules [1/m3]: 

C:=rho/m; 

# Boltzmann constant [J/K]: 

kB:=GetValue(Constant('k')): 

# temperature [K]: 

T:=298.15; 

# dielectric permittivity of vacuum [C/m/V]: 

epsilon0:=GetValue(Constant('epsilon[0]')): 

# permittivity of liquid methanol [C/m/V]: 

epsilon:=32.35*epsilon0; 

 

#5. Lower limit of Rcav (from Curie points) 

# Eq[1]55 

Rmin1:=evalf(ap/(4*Pi*epsilon0))^(1/3);  

# Eq[1]56 

Rmin2:=evalf(3*aq/(4*Pi*epsilon0))^(1/5);  

# lower limit of Rcav: 

Rmin:= max(Rmin1,Rmin2); 

 

#6. Solving the equations 

sol:=fsolve({eq20,eq21}, 

{LQ=0..1.3e-10,Rcav=Rmin..3e-10}); 

# the output is LQ and Rcav in [m]. 

 


