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1. Introduction and Summary

Over the last decade, there has been remarkable progress in the calculation of supersymmetric

partition functions. A host of examples in diverse dimensions can be calculated exactly, i.e.

to all orders in the coupling, using powerful techniques such as the superconformal index and

supersymmetric localisation [1–4]. Somewhat more recently, this success has been extended

to include contributions of supersymmetric defects of different codimensionalities [5–11].

The results of the above calculations can often be expressed elegantly in terms of special

functions. This reformulation sheds light into various properties of the theory itself, like

its duality structure. Furthermore, mathematical relationships between different special
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functions can lead to connections between supersymmetric partition functions in different

dimensions via dimensional reduction [12,13].1

In this paper we explore the above themes in a process which can be thought of

as the reverse of dimensional reduction, namely dimensional deconstruction [15]. In its

simplest formulation, dimensional deconstruction involves starting with a circular-quiver

gauge theory and employing a finely-tuned infinite-node limit to obtain dynamics for a

theory in one-compact dimension higher. Although in its original form deconstruction

relates four-dimensional quivers to five-dimensional theories on a circle, it is possible under

certain conditions to deconstruct theories in any dimension starting from a lower-dimensional

compact quiver lattice [16].2 Here we will be interested in the version that relates three-

dimensional quivers to four-dimensional theories on a circle. Moreover, we will mainly

focus on examples that contain supersymmetric defects. Defects have not been considered

previously in the context of deconstruction.

It should be noted that the main argument behind the dimensional-deconstruction

proposal uses the Lagrangian description of the quiver to identify the classical Kaluza–Klein

(KK) spectrum for the higher-dimensional theory. However, one can actually go beyond

this perturbative approach and apply the principle of deconstruction at the level of full

supersymmetric partition functions on compact manifolds [20, 21]. We will refer to this

operation as “exact deconstruction” to distinguish it from the dimensional-deconstruction

limit of [15]. One of the purposes of this paper is to augment the known applications of

exact deconstruction and clarify aspects of the operations it involves.

In the main part of this article we will apply exact deconstruction to the squashed-

S3 partition functions3 of three-dimensional circular-quiver theories in the presence of

various defects, to recover the S3 × S1-partition function—also known as the index—of

four-dimensional theories that include 1
2
-BPS defects wrapping the emerging circle. We will

also deconstruct BPS defects localised on the emerging circle.

A more thorough list of our main results involves the following points:

• We recover the 4D-2D index of four-dimensional N = 2 theories in the presence of

codimension-two defects with nonchiral (2, 2) supersymmetry [7], starting from 3D-1D

sphere partition functions of three-dimensional quivers including supersymmetric vortex

loops [8, 9]. In order to achieve this, we need to implement the exact-deconstruction

1See also [14] for a related review.
2Recent interesting work on dimensional deconstruction includes [17]. For an application to the six-

dimensional (2,0) theory and Little String Theory see [18,19].
3We will focus on squashings of the S3 that preserve a U(1)× U(1) isometry.
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procedure on the coupled 3D-1D partition function and then recast the result using

two key mathematical identities between special functions. For the 3D→4D part we

employ the following relation between hyperbolic Gamma functions (which appear

in the expression of three-sphere partition functions) and elliptic Gamma functions

(which appear in the expression of four-dimensional indices)

∞∏
α=−∞

Γh

(
x+

α

R

∣∣∣∣ω1, ω2

)
= x2 (pq)−

1
2 Γe(x|p, q) ,

where x = e2πiRx, p = e2πiRω1 , q = e2πiRω2 and R is a dimensionless quantity pro-

portional to the radius of the deconstructed circle. For the 1D→2D part we use

an analogous identity relating the special functions that appear in the 1D partition

function, ∆h, to the ones appearing in the 2D elliptic genus, ∆e,

∞∏
α=−∞

∆h

(
a+ i

α

R

∣∣∣ω, t) = ∆e(A|Ω, T ) ,

where A = e−2πRa, Ω = e−2πRω, T = e−2πRt. Details pertaining to these functions are

provided in the main text and summarised in Appendix A.

• We propose expressions for the superconformal index of 4D N = 2 theories in the

presence of codimension-two defects with chiral (4,0) supersymmetry labelled by

single-column Young tableaux. The proposed expressions originate from the sphere

partition function of 3D circular quivers that include Wilson loops in antisymmetric

representations for each node. Technically, we first use exact deconstruction to lift a

1D N = 2 Fermi multiplet to a 2D (2, 0) Fermi multiplet; when integrated out, the

first is known to be related to Wilson loop-operators in 3D [22], while the second to

chiral surface defects in 4D [23]. Then we use 3D information to propose a prescription

that picks out contributions in the four-dimensional result labelled by single-column

Young tableaux. These contributions are candidates for the partition function of

corresponding 4D surface operators. To the best of our knowledge the 4D partition

function of such defects has not been considered previously in the literature.

• We obtain expressions for 4D N = 2 superconformal indices in the presence of

codimension-one defects. We achieve this by starting from sphere partition functions

of 3D circular quivers that include localised insertions of 3D matter/gauge fields.

The implementation of the exact deconstruction process to such quiver defects is

very simple and leads to 4D indices coupled to S3 partition functions. From a 1D
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quantum-mechanics viewpoint the deconstructed defects are local supersymmetric

operators on a circle.

The rest of this paper is organised as follows: In Sec. 2 we provide a summary of the

original dimensional-deconstruction proposal and a detailed description of both the technical

as well as some conceptual points regarding exact deconstruction. We also review how one

can brane engineer our three-dimensional starting points and how to view deconstruction in

that language. In Sec. 3 we perform a warmup calculation, where we recover the index of

4D N = 2 super-Yang–Mills (SYM) and super-QCD (SQCD) theories from the squashed-S3

partition function of a 3D N = 2 circular quiver. This is then extended in Sec. 4 to include

vortex loops that lead (after deconstruction) to codimension-two defects with 2D (2, 2)

supersymmetry. In this discussion, 1D and 2D defects are respectively coupled to 3D and

4D bulk theories before and after deconstruction. The extension of our procedure to 3D

Wilson loops, and their potential interpretation in terms of codimension-two defects in

4D post deconstruction, appears in Sec. 5. In Sec. 6 we proceed to discuss how localised

insertions of defects in the 3D quiver deconstruct codimension-one defects in one dimension

higher. We finally conclude in Sec. 7 with a summary of the main results and a list of

possible future directions.

2. Exact Deconstruction

We begin with a general overview of dimensional deconstruction and its application at the

level of supersymmetric sphere partition functions. We refer to the latter application as

“exact deconstruction”, since the partition functions include contributions from all orders

in the coupling, and also to distinguish it from the original proposal that relates theories

on flat backgrounds at different energy scales. Some of the details will be omitted at this

stage, but will appear when we specialise to the cases of interest in the coming sections.

2.1. Elements of Dimensional Deconstruction

The dimensional-deconstruction prescription, in the absence of defects, is well known and

can be summarised as follows:4 starting from a supersymmetric N -noded circular-quiver

4Here we focus on supersymmetric QFTs, which are the main cases of interest in this paper. Also, in

view of the applications that follow we consider unitary gauge groups. Clearly, these assumptions are not

necessary features of deconstruction; e.g. one could use special unitary groups instead with no need to modify

our prescription.

4



theory, where the nodes denote U(k) vector multiplets with the same bare gauge coupling

G5 and the links supersymmetric matter, one takes the theory onto the Higgs branch by

allowing the scalars in the matter multiplets to simultaneously develop a vacuum expectation

value (vev), v 1lk×k. This has the effect of breaking the gauge group to a diagonal subgroup,

U(k)N → U(k). By flowing to low energies the degrees of freedom get reorganised into the

KK modes of a theory in one dimension higher, compactified on a discretised circle with

g2
dec ≡

G

v
→ fixed , 2πR̂ ≡ N

Gv
→ fixed , a ≡ 1

Gv
. (2.1)

In these formulae, R̂ is the radius of the emerging circle, a the lattice spacing and gdec

the emerging bare coupling [15]. Although the original deconstruction proposal relates

four-dimensional quivers to five-dimensional theories on a circle, it can also be applied

to lower-dimensional quivers [16]. It can be further generalised to theories of higher

codimensionality by producing products of circles when starting from higher-dimensional

periodic lattices in theory space [16,18].

When the Higgs branch of the theory is not lifted by quantum corrections, e.g. when the

quiver is superconformal or by adding an appropriate superpotential term, one can consider

taking the combined limit

v →∞ , N →∞ , G→∞ , (2.2)

which sends a→ 0 and recovers the continuum theory, while keeping gdec and R̂ fixed; such

examples may also exhibit supersymmetry enhancement for the deconstructed theory [18,24].

2.2. Deconstruction of Exact Partition Functions

A proposal for implementing the principle of dimensional deconstruction in the supersym-

metric partition function of the N = 2 superconformal circular quiver on the ellipsoid, S4
ε1,ε2

,

was given in [20]. This partition function can be calculated using supersymmetric localisa-

tion [3, 4, 25] or the refined topological-vertex formalism [26] and the result is schematically

written as

Zquiver
S4
ε1,ε2

=
∏
α

∫
[dλ(α)]|Z(α)

4D (τ (α), λ(α),m(α); ε1, ε2)|2 , (2.3)

where Z
(α)
4D is a known function of the complexified gauge coupling τ (α), the squashing

parameters ε1, ε2, the Coulomb-branch parameters λ(α) and possibly some mass-deformation

5This is known as the “orbifold point” in the space of couplings.
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parameters m(α), with α = b−N
2
c+ 1, . . . , bN

2
c labelling the contribution from each quiver

node [20]. By identifying the parameters λ(α) → λ, m(α) → m, τ (α) → τ and assigning

an additional mass parameter mα = i α
R̂

to the α-th node contribution—which accounts

for the reorganisation of the massless spectrum into the massive KK tower obtained post

deconstruction—the partition function of the six-dimensional (2,0) theory on S4
ε1,ε2
× T 2 was

obtained, as expected from [18].6

However, the principle of dimensional deconstruction can be extended to exact partition

functions with no specific reference to the number of spacetime dimensions. Assuming

Lagrangian circular-quiver theories with the appropriate amount of supersymmetry,7 the

SD partition functions can be put together in a modular fashion by accounting for the

individual contributions coming from the various supersymmetric multiplets appearing in

the quiver diagram. Each node will be labelled by an index α and the (integrand of the)

corresponding partition function can generically depend on a coupling, Coulomb-branch

parameter, mass-deformation parameter etc. Then, exact deconstruction can be implemented

directly at the level of partition functions by:

(1) Identifying all parameters between the nodes (couplings, Coulomb-branch parame-

ters, mass deformations etc.)—this reflects the breaking of the gauge symmetry, e.g.

U(k)N → U(k).

(2) Including a mass parameter mα = i α
R̂

for the α-th node contribution—this captures the

reorganisation of the quiver degrees of freedom into the KK modes of the deconstructed

theory—and taking N →∞.

Note that, contrary to the usual dimensional deconstruction, which describes a physical

process relating two theories at different energy scales via a version of the Higgs mechanism,

exact deconstruction should not be understood as a limiting procedure for theories defined

on curved manifolds. This cannot be the case since the compactified version of the quiver

theory does not have a moduli space of vacua, including vacua on the Higgs branch.

Generic moduli are lifted by the couplings to the curvature of the (deformed) sphere.

Instead, exact deconstruction should be viewed as a set of formal replacement rules for

supersymmetric partition functions, accompanied by a set of mathematical identities that

6See also [21], where part of the partition function of the superconformal N = 1 toroidal-quiver theory

was related to the partition function of Little String Theory on S4
ε1,ε2 × T

2, again as expected from [18].
7A certain amount of supersymmetry is required to be able to use the localisation method on certain

backgrounds such as Sd.
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Quiver theory on RD−1,1 Deconstructed theory on RD−1,1 × S1

Quiver theory on SD Deconstructed theory on SD × S1

Zquiver
SD

ZSD×S1

compactification

RG flow

(deconstruction)

compactification

exact computation exact computation

replacement rules

(exact deconstruction)

Fig. 1: The deconstruction procedure at the level of exact partition functions. In this setup

only one dimension is being deconstructed.

implement the dimensional lift. These replacement rules reflect the change in the spectrum

after deconstructing the flat-space theory. We illustrate this set of relations in Fig. 1.

In the present work we will demonstrate how this prescription can be applied to recover

four-dimensional partition functions on S3
b × S1

R̂
from three-dimensional circular-quivers

on the squashed three-sphere, S3
b , as well as two-dimensional elliptic genera from the

partition function of supersymmetric quantum mechanics on a circle; the latter encode the

contributions of codimension-two defects.

Let us close this discussion with a comment that has to do with the legitimacy of

the continuum deconstruction limit (2.2). Unlike the circular-quiver theories of [18,20,21],

the 3D quivers of this paper are not superconformal, so one needs to make sure that

quantum effects do not lift the Higgs branch—the existence of which is necessary for

deconstruction—at low energies. Single-noded N = 2 SQCD theories in three dimensions

with Nf ≥ Nc fundamental/anti-fundamental pairs are believed to have distinct Higgs

and Coulomb branches, even after incorporating quantum corrections. Moreover, at the

intersection of these branches such theories flow to interacting critical points in the IR [27].

In all the examples that we will consider in this paper, we have circular quivers where

Nf ≥ Nc is obeyed at each node. We expect that the above statements about the non-lifting

of the Higgs and Coulomb branches extend to the full theory. Although we will not present

rigorous arguments to this effect, we will see in the upcoming sections that this picture

leads to sensible results. Related statements about the low energy dynamics of 3D N = 4

quivers can be found in [28]. Further evidence that supports the validity of dimensional

deconstruction in the cases that we consider is provided in the next subsection with a
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 − − − − · · · · · ·
NS5 − − − · · · · − − −
D5 − − − · − − − · · ·
D1 − · · · · · − · · ·

NS5′ − · · · − − · − − −
AN−1 · · · · − − · · − −

Table 1: Brane configuration in type IIB string theory engineering 3D vortex-loop operators.

The ZN orbifold acts in the directions x4, x5, x8, x9. The D3s are stretched between NS5s

along an interval L3 in the x3 direction. The D1s are stretched between the D3s and NS5s

and/or NS5′s along the x6 direction.

suitable embedding in string theory.

2.3. Brane Engineering

Before implementing the technical steps of exact deconstruction it is useful to have comple-

mentary evidence that dimensional deconstruction works unobstructed in the full physical

theory. In many cases such evidence is encoded naturally in string-theory embeddings. All

3D theories that we will be interested in in this paper arise in the low-energy limit of type

IIB string theory configurations that involve branes of the type listed in Tables 1 and 2.

The precise combinations of these ingredients depend on the specific example under study

and we will spell out the pertinent details in the upcoming sections as needed. In the rest

of this subsection we summarise the key features of these constructions.

The low-energy dynamics of multiple D3s suspended between NS5s along an interval

L3 in the x3 direction are captured by a three-dimensional gauge theory. The inclusion

of D5 branes that intersect the D3s corresponds to the introduction of flavour. In order

to engineer vortex loops, which are related to codimension-two defects with non-chiral 2D

supersymmetry through dimensional reduction, one needs to introduce D1s that stretch

between the D3s and an NS5 and/or NS5′s along the x6 direction, oriented as in Tab. 1. In

order to engineer Wilson loops, which are related to codimension-two defects with chiral

2D supersymmetry through dimensional reduction, one needs to introduce F1s that stretch

between the D3s and a D5 and/or D5′ along the x7 direction, oriented as in Tab. 2. In

this fashion, one can engineer a wide variety of examples with N = 4 supersymmetry;

see e.g. [9]. Placing various combinations of the above ingredients on a C2/ZN orbifold
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 − − − − · · · · · ·
NS5 − − − · · · · − − −
D5 − − − · − − − · · ·
F1 − · · · · · · − · ·
D5′ − · · · − − − · − −
AN−1 · · · · − − · · − −

Table 2: Brane configuration in type IIB string theory engineering 3D Wilson-loop operators.

The ZN orbifold acts in the directions x4, x5, x8, x9. The D3s are stretched between NS5s

along an interval L3 in the x3 direction. The F1s are stretched between the D3s and D5s

and/or D5′s along the x7 direction.

singularity, AN−1, leads to a circular-quiver gauge theory in three dimensions with N = 2

supersymmetry and vortex/Wilson loops at low energies [29].

In this setup deconstruction is simply realised by taking the combined brane system off

the AN−1 singularity and into the orbifolded space, which is locally R3 × S1
R̃

, by a distance

d. In the presence of flavour/defect branes this is carried out in one of the directions x8 or

x9, with x9 or x8 respectively compactified on a circle of radius R̃. The continuum limit

(2.2) involves taking the string length scale ls → 0 and N → ∞ while keeping the string

coupling gs → fixed and R̃/l2s ≡ d/Nl2s → fixed. An equivalent description is in terms of

a T-dual system with the various D-branes wrapping a fixed-sized circle R̂ ≡ l2s/R̃ and

string coupling g′s = gsR̂/ls [18,20]. In order to keep the 3D gauge coupling 1/g2
3D ≡ L3ls/gs

tuneable, as required by deconstruction, one needs to take L3 →∞ as ls → 0. Then, the 4D

gauge coupling 1/g2
4D ≡ L3/g

′
sls = L3/gsR̂→∞ in the limit, resulting in a weakly-coupled

4D gauge theory (with matter and/or defects).

3. 4D Indices from S3 Partition Functions

The exact-deconstruction procedure can be straightforwardly applied in the context of 3D

quiver-gauge theories and their partition functions on the U(1) × U(1) isometric hyper-

ellipsoid, S3
b . The latter is given by the equation

˜̀−2(X2
1 +X2

2 ) + `−2(X2
3 +X2

4 ) = 1 , (3.1)
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with the squashing parameter defined typically as the dimensionless ratio b =
√

˜̀

`
; the round

three sphere is then recovered in the limit b→ 1. In what follows, we will make repeated use

of two purely-imaginary numbers, ω1 and ω2, defined as ω1 = ib, ω2 = ib−1. Supersymmetric

partition functions on the ellipsoid are readily calculated using supersymmetric localisation

[30,31]. The answer can be neatly organised by observing that it factorises into individual

contributions from vector and chiral multiplets—in the appropriate representations of the

Lie algebra—over which one needs to perform a final matrix integral for any symmetries

that are gauged. We summarise our notation and the key ingredients in the following

subsection.

3.1. Building Blocks of Sphere Partition Functions

The partition function of 3D N = 2 theories on S3
b can be constructed using the vector-

and chiral-multiplet partition functions

ZN=2
vec (λ) =

∏
β∈Adj

Γ̂h
(
〈β, λ〉

∣∣ω1, ω2

)−1

= Γ̂h (0|ω1, ω2)−rank(g)
∏
β∈∆

Γ̂h
(
〈β, λ〉

∣∣ω1, ω2

)−1
,

ZN=2
chi (λ, r) =

∏
β∈R

Γh
(
rω+ − 〈β, λ〉

∣∣ω1, ω2

)
,

(3.2)

where Γh and Γ̂h are hyperbolic Gamma functions—defined in App. A. Here R is a generic

representation in any product of gauge or global symmetries and λ is associated with a set

of chemical potentials corresponding to these symmetries, β takes values in the weights of

the representation R8 and r denotes the chiral-multiplet U(1)R charge. The product 〈β, λ〉
is an inner product in weight space. We are also using the combination ω+ = ω1+ω2

2
.

Note that we can combine the vector-multiplet contributions with the matrix-integral

Haar measure, ∆Haar(λ) =
∏

β∈∆ i〈β, λ〉, to write

∆Haar(λ)ZN=2
vec (λ) = Γ̂h(0|ω1, ω2)−rank(g)

∏
β∈∆

Γh
(
〈β, λ〉

∣∣ω1, ω2

)−1
. (3.3)

The above ingredients can be used to construct 3D N = 4 multiplet contributions. For

the vector multiplet we combine an N = 2 vector multiplet with an adjoint N = 2 chiral

8For the adjoint representation the product over β can be reduced to a product over the roots ∆ and

Cartans h.
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multiplet with r = 1. For an adjoint chiral ZN=2
Adj chi(λ, r = 1) = 1,9 hence

∆Haar(λ)ZN=4
vec (λ) = Γ̂h(0|ω1, ω2)−rank(g)

∏
β∈∆

Γh
(
〈β, λ〉

∣∣ω1, ω2

)−1
, (3.4)

which is the same function as in N = 2. For the 3D N = 4 hypermultiplet, one simply

takes two N = 2 chiral multiplets in conjugate representations, both with r = 1
2
. Thus

ZN=4
hyp (λ) =

∏
β∈R

Γh

(ω+

2
− 〈β, λ〉

∣∣ω1, ω2

)
Γh

(ω+

2
+ 〈β, λ〉

∣∣ω1, ω2

)
. (3.5)

Post deconstruction, and for the appropriate choice of matter content, the S3 partition

functions of 3D N = 2 theories will lift to the superconformal index of 4D N = 2 theories [1].

For superconformal N = 2 theories in Euclidean R4, and in radial quantisation, this index

is defined as the trace (we use the conventions of [7])

I4D = Tr(−1)F e−β(E−h01−h23−2R−r)ph23−rqh01−rtR+r , (3.6)

where F is the fermion number, E the conformal dimension, h01 = j1 +j2 and h23 = −j1 +j2

are rotation generators along the two planes 01 and 23 of R4, R is the SU(2)R Cartan,

while r is the U(1)r Cartan. One can also make the change of variables t→ v
√
pq to arrive

at

I4D = Tr(−1)F e−β(E−h01−h23−2R−r)ph23+ 1
2

(R−r)qh01+ 1
2

(R−r)vR+r , (3.7)

which in the limit v→ 1 reduces to an N = 1 superconformal index [32].10

The superconformal index of Lagrangian theories can itself be neatly organised in terms

of separate contributions from vector multiplets and chiral multiplets, all of which are again

expressible via special functions. The special function that dominates the 4D superconformal

index is the elliptic Gamma function Γe(z|p, q) (also defined in App. A). In what follows

we explain how deconstruction recovers all the details of the 4D superconformal index from

three-dimensional data.
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k k k k

Fig. 2: 3D N = 2 circular quiver with N nodes. The nodes denote U(k) vector multiplets,

while the links bifundamental-chiral multiplets with assigned R charge r = 1. The endpoints

are to be understood as periodically identified.

3.2. Deconstruction of 4D N = 2 Pure SYM Theory

Let us begin with the simplest possible example, which will allow us to highlight the

main points of the exact-deconstruction procedure. In the brane-system description of

Tab. 1 this involves kN D3s on the AN−1 singularity, suspended between two NS5s that are

separated by an interval of size L3. In the string-decoupling limit this setup gives rise to

the three-dimensional quiver-gauge theory with N = 2 supersymmetry illustrated in Fig. 2.

Up to factors of ω1, ω2, the partition function of this theory on the ellipsoid, S3
b , can be

immediately written down with the help of (3.2) as

Zquiver
3D =

∏
α

1

k!

∫ k∏
b=1

dσ
(α)
b ∆Haar

(
σ(α)

) k∏
b,c=1

Γh

(
ω+ + σ

(α)
b − σ

(α+1)
c

∣∣∣ω1, ω2

)
Γ̂h

(
σ

(α)
b − σ

(α)
c

∣∣∣ω1, ω2

) , (3.8)

where the σ(α) are (dimensionless versions of) Coulomb-branch parameters for the gauge

group at each node.11

As we have already described, the exact-deconstruction prescription has two key elements:

(1) We should identify all σ(α) → σ. This encodes the breaking of the gauge symmetry

U(k)N → U(k).

(2) We should shift all the arguments of the hyperbolic Gamma functions by Γh(x)→
Γh(x + α

R
) and take N →∞. This encodes the reorganisation of the spectrum into

9This is due to the result enjoying a symmetry under root reflections.
10Via the operator-state map the superconformal index also admits a presentation in terms of a twisted

partition function on S3 × S1 with supersymmetric boundary conditions and Hamiltonian H = E − h01 −
h23 − 2R− r [2]. This definition is more general as it is also applicable to non-conformal theories, for which

the name superconformal index is not quite appropriate. However, since this quantity is independent of the

coupling and the theory eventually flows to some SCFT at an IR fixed point, we will still use this nomenclature

through a mild abuse of language.
11The dimensions of the Coulomb-branch parameters can be restored by multiplying with (`˜̀)−

1
2 , where

`, ˜̀ are the length scales that appear in the definition of the ellipsoid (3.1).
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k k k k

Nf Nf Nf Nf

Fig. 3: 3D N = 2 circular quiver with N gauge and flavour nodes. The circular nodes

denote U(k) vector multiplets, while the squares U(Nf ) flavour groups. The links between

circles encode bifundamental-chiral multiplets with assigned R charge r = 1, while the ones

between circles and squares (anti)fundamental chirals with assigned R charge r = 1
2
. The

endpoints are to be understood as periodically identified.

the KK modes of the higher-dimensional theory with mass parameters mα = i α
R

. In

these formulae, R is a dimensionless parameter, which is related to the dimensional

radius R̂ of the deconstructed S1, via R = 2πR̂√
`˜̀

.

Implementing these steps leads to the partition function

ZDec
3D =

1

k!

∫ k∏
b=1

dσb
∏
α

Γh

(
ω+ + α

R

∣∣∣ω1, ω2

)k
Γ̂h(

α
R
|ω1, ω2)k

∏
b 6=c

Γh

(
ω+ + σb − σc + α

R

∣∣∣ω1, ω2

)
Γh

(
σb − σc + α

R

∣∣∣ω1, ω2

) . (3.9)

At this stage one observes the following identity between hyperbolic and elliptic Gamma

functions
∞∏

α=−∞

Γh

(
x+

α

R

∣∣∣∣ω1, ω2

)
= x2 (pq)−

1
2 Γe(x|p, q) (3.10)

for x = e2πiRx, p = e2πiRω1 , q = e2πiRω2 .12 The proof of this formula follows from a

straightforward manipulation of the infinite-product representation of the hyperbolic Gamma

functions. Up to dimensionless combinations involving factors of ω1, ω2 and R,13 one can

therefore write

ZDec
3D =

1

k!

∮ k∏
b=1

dvb
2πivb

Γe(
√
pq|p, q)k

Γ̂e(1|p, q)k

∏
b6=c

Γe

(√
pqvbv

−1
c

∣∣∣p, q)
Γe

(
vbv−1

c

∣∣∣p, q) , (3.11)

12Further comments about this identity appear in App. A. This identity also extends to the hatted versions

of the hyperbolic and elliptic gamma functions.
13We will ignore such factors from now on.
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where vb = e2πiRσb . Finally, using Γ̂e(1|p, q) = (p; p)−1(q; q)−1 and recognising that Γe(
√
pq|p, q) =

1, as well as
∏

b6=c Γe(
√
pqvbv

−1
c |p, q) = 1, we arrive at

ZDec
3D =

1

k!
(p; p)k(q; q)k

∮ k∏
b=1

dvb
2πivb

∏
b 6=c

Γe

(
vbv
−1
c

∣∣∣p, q)−1

, (3.12)

which reproduces precisely the expression for the N = 1 superconformal index of a 4D

N = 2 vector multiplet.14 Note that, although the supersymmetry of the deconstructed

theory is double that of the original one, the 3D partition function has a single R-charge

chemical potential and can therefore only provide the v → 1 limit of the full N = 2

superconformal index (3.7).15

3.3. Deconstruction of 4D N = 2 SQCD

One can further enrich the previous example by adding flavour. In the brane picture this

corresponds to adding NfN D5 branes to the kN D3s suspended between two NS5s in

the presence of the AN−1 orbifold singularity, along the directions listed in Tab. 1. In

the string-decoupling limit this gives rise to the quiver of Fig. 3, which preserves N = 2

supersymmetry in three dimensions. The S3
b partition function of this circular-quiver theory

is given by the expression

Zquiver
3D =

∏
α

1

k!

∮ k∏
b=1

dσ
(α)
b ∆Haar

(
σ(α)

) k∏
b,c=1

Γh

(
ω+ + σ

(α)
b − σ

(α+1)
c

∣∣∣ω1, ω2

)
Γ̂h

(
σ

(α)
b − σ

(α)
c

∣∣∣ω1, ω2

)
×

k∏
b=1

Nf∏
j=1

Γh

(
1

2
ω+ − µ(α)

j + σ
(α)
b

∣∣∣ω1, ω2

)
Γh

(
1

2
ω+ − σ(α+1)

b + µ
(α)
j

∣∣∣ω1, ω2

)
.

(3.13)

In order to perform the dimensional-deconstruction procedure, even in the flat-space case,

one first needs to explicitly break the flavour group to its diagonal subgroup U(Nf)
N →

14This corresponds to taking the t→ √pq limit in the expressions of [7].
15It is possible to deconstruct the additional R-symmetry fugacity present in the N = 2 index by turning

on appropriate real-mass terms in the S3 partition function. Real masses in the S3 partition function are

related to background-U(1) gauge fields in the S3 × S1 partition function through dimensional reduction [33].

The S3×S1 partition function in turn provides an alternative presentation of the index via the state-operator

map, with generic background-U(1) gauge fields mapping to global fugacities. Therefore, real masses in

3D will generically deconstruct global fugacities in 4D. In particular, turning on real masses, where the

accompanying charges specifically correspond to the R+ r combination that appears in the N = 2 index (-1

for bifundamental chiral multiplets and 1
2 for the (anti)fundamental chiral multiplets of the next example),

reproduces the contributions of the fugacity v.
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U(Nf) [24]; this has the effect of identifying all the square nodes in Fig. 3 and sending

µ
(α)
j → µj.

16 Apart from this additional detail, the exact-deconstruction procedure can be

implemented as in the previous example, by identifying all the Coulomb-branch parameters

and shifting all the arguments of the hyperbolic-gamma functions. This leads to the formula

ZDec
3D =

1

k!

∫ k∏
b=1

dσb
∏
α

Γh(ω+ + α
R

∣∣∣ω1, ω2)k

Γ̂h(
α
R
|ω1, ω2)k

∏
b 6=c

Γh

(
ω+ + σb − σc + α

R

∣∣∣ω1, ω2

)
Γh

(
σb − σc + α

R

∣∣∣ω1, ω2

)
×

k∏
b=1

Nf∏
j=1

Γh

(
1

2
ω+ ∓ σb ± µj +

α

R

∣∣∣ω1, ω2

)
.

(3.14)

Finally, using (3.10) we arrive at

ZDec
3D =

1

k!
(p; p)k(q; q)k

∮ k∏
b=1

dvb
2πivb

∏
b 6=c

Γe

(
vbv
−1
c

∣∣∣p, q)−1
k∏
b=1

Nf∏
j=1

Γe

(
(pq)

1
4 (vbs

−1
j )±

∣∣∣p, q) ,

(3.15)

where sj = e2πiRµj .17 When Nf = 2k, our U(k) theory is not conformally invariant. However,

it flows to 4D N = 2 SCQCD with a weak U(1) gauging times a free abelian vector multiplet

in the IR. The IR theory admits an honest N = 1 superconformal index and, upon a

reparametrisation ũb = uba
− 1
k ,18 the result (3.15) is in explicit agreement with this quantity.

3.4. Comments on Further Examples

It is clear that with the ingredients that we have provided one can deconstruct a host

of more complicated examples in 4D with N = 2 supersymmetry. Exact deconstruction

operates in a modular fashion on each hyperbolic Gamma factor of the S3
b partition function

to reconstruct the corresponding elliptic Gamma factor of the 4D superconformal index.

In recent years several authors have examined dimensional reduction at the level of

exact partition functions as a bridge between exact quantities for theories in different

spacetime dimensions. The degeneration limits of 4D superconformal indices to 3D S3

16From the point of view of the D3-brane theory the modes describing the positions of the D5s are

non-dynamical (they are “frozen out”) and should be viewed as parameters of the low-energy theory. The

identification of the square nodes in Fig. 3 corresponds to taking the D5s off the orbifold singularity before

implementing the dynamical Higgsing through moving the D3s.
17In the above equation and hereafter we employ the commonplace notation Γe(x

±) ≡ Γe(x)Γe(x
−1).

18The ũb are k SU(k) fugacities obeying
∏k
b=1 ũb = 1, while a denotes the fugacity for the free U(1) sector.
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partition functions were discussed originally in a QFT context in [12]. This study becomes

particularly interesting when it is combined with non-perturbative dualities [13].

The exact deconstruction of this section should be seen as a useful complementary

relation between 3D and 4D physics. Compared to dimensional reduction, a potentially-

interesting feature of deconstruction19 that we would like to highlight in this context is

the following. In some cases dimensional reduction of a 4D theory leads to a 3D theory

with accidental symmetries at strong coupling, whose S3 partition function—defined as an

integral—is not well behaved. In such cases the 3D quiver-gauge theory that deconstructs

the 4D theory does not have to be equally problematic. A prominent example can be found

in N = 4 SYM theory.

The dimensional reduction of 4D N = 4 SYM theory gives 3D N = 8 SYM theory, a

theory whose IR superconformal symmetry is not visible in the UV description. In contrast,

the dimensional deconstruction of 4D N = 4 SYM theory can be performed with a circular

3D N = 4 quiver of the type depicted in Fig. 2, where each circle denotes now a 3D

N = 4 vector multiplet and each link a 3D N = 4 hypermultiplet (see also the 3D part of

the upcoming Fig. 4). This is a balanced 3D quiver-gauge theory with a well-defined S3

partition function. Exact deconstruction in this case recovers the superconformal index of

4D N = 4 SYM along the lines of the previous discussion.

4. 4D Surface Defects from 3D Vortex Loops

We next examine how exact deconstruction works in the presence of codimension-two defects.

Codimension-two defects in three-dimensional QFTs are line operators. In four-dimensional

QFTs they are surface operators. We will explain how exact deconstruction lifts S3
b partition

functions with supersymmetric line-operator insertions in 3D N = 2 (or 3D N = 4) quiver-

gauge theories to S1 × S3
b partition functions with surface-operator insertions in 4D N = 2

(or 4D N = 4) gauge theories. Our line defects will always wrap the fibre of the (squashed)

Hopf fibration S1
b ↪→ S3

b → S2
b , and will be situated at the North or South pole of the S2

b ,

as in [9]. Note that the squashing deformation breaks the same supersymmetry as the line

defect. So even though in flat space the line defects are 1
2
-BPS, on the S3

b they do not

break any additional supersymmetry.

In 3D N = 4 theories one can consider two types of 1
2
-BPS line defects supported on a

straight line in flat space. The first type preserves the 1D N = 4A supersymmetry algebra,

19Or exact deconstruction compared to superconformal-index degeneration at the level of partition functions.
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which arises from the dimensional reduction of 2D N = (2, 2) supersymmetry.20 1
2
-BPS

vortex lines in 3D N = 4 QFTs realise this symmetry. The second type preserves the

1D N = 4B supersymmetry algebra, which arises from the dimensional reduction of 2D

N = (4, 0) supersymmetry. 1
2
-BPS Wilson lines in 3D N = 4 QFTs are examples of this

type. A review of pertinent details can be found in [9].

Defects of each of these types can generically be studied by coupling a 1D supersymmetric

quantum mechanics theory (SQM), supported on the defect worldvolume, to the 3D bulk

gauge theory of interest (here a quiver-gauge theory). The supersymmetry of the SQM

defines the type of the defect. The typical coupling between the defect and the bulk proceeds

via gauging 1D global symmetries with the vector multiplets of the bulk gauge theory. The

coupling may also include superpotential terms involving defect and bulk matter fields.

Similarly, in 3D N = 2 theories one can consider 1
2
-BPS line defects preserving either

1D N = 2A supersymmetry (that arises from the dimensional reduction of 2D N = (1, 1)

supersymmetry) or 1
2
-BPS defects preserving 1D N = 2B supersymmetry (that arises from

the dimensional reduction of 2D N = (0, 2) supersymmetry).

In this paper we will consider line defects in 3D supersymmetric quiver-gauge theories that

preserve the N = 4A, N = 4B or N = 2B supersymmetries. The N = 2A supersymmetry

will not play any rôle in the cases that we study. In the rest of this section we will discuss

how to use exact deconstruction to lift the partition functions of vortex loops with 1D

N = 4A or N = 2B supersymmetry in a 3D bulk, to indices for surface defects with 2D

N = (4, 4) or 2D N = (2, 2) supersymmetry in a 4D bulk. Note that in this fashion we will

bypass the discussion of dimensionally deconstructing the 4D-2D system from 3D-1D at the

level of Lagrangians for the flat-space theories, comparing instead the theories directly at

the level of sphere partition functions. The case of Wilson loops is relegated to Sec. 5.

4.1. Building Blocks of Partition Functions with Vortex-Loop Insertions

In the presence of codimension-two defects the S3
b partition functions will have, in addition

to the 3D-multiplet contributions that we discussed in Sec. 3.1, contributions coming from

the 1D defect theory, which is supported on a circle of (dimensionless) radius ω−1;21 these

can also be evaluated using supersymmetric localisation.

20We note in passing that the dimensional reduction of 2D N = (2, 2) surface defects in 4D N = 2 gauge

theories to three dimensions has been discussed in [34].
21In toric coordinates the metric on the ellipsoid is

ds2 =
(

˜̀2 cos2 θ + `2 sin2 θ
)
dθ2 + ˜̀2 sin2 θ dϕ2

1 + `2 cos2 θ dϕ2
2 ,
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Let us first consider building defect theories with 1D N = 2B supersymmetry. The basic

multiplets in such SQM theories are N = 2B vector multiplets, chiral multiplets and Fermi

multiplets (we refer the reader to [38] for a review). The one-loop contributions of each of

these multiplets to the Witten index of 1D N = 2B SQM theories are

gN=2
vec (λ) =

∏
β∈Adj

Γ̂1

(
〈β, λ〉

∣∣ω)−1
Γ1

(
ω − 〈β, λ〉

∣∣ω)−1

= Γ1

(
ω
∣∣ω)−2×rank(g)

∏
β∈∆

Γ̂1

(
〈β, λ〉

∣∣ω)−1
Γ1

(
ω − 〈β, λ〉

∣∣ω)−1
,

gN=2
chi (λ, r) =

∏
β∈R

Γ1

(
〈β, λ〉+

r

2
z
∣∣∣ω)Γ1

(
ω − 〈β, λ〉 − r

2
z
∣∣∣ω) ,

gN=2
fer (λ, r) =

∏
β∈R

Γ1

(
−〈β, λ〉 − r

2
z
∣∣∣ω)−1

Γ1

(
ω + 〈β, λ〉+

r

2
z
∣∣∣ω)−1

,

(4.1)

where R is a generic representation in any product of gauge or global symmetries and

λ is associated with a set of chemical potentials corresponding to these symmetries. As

part of the global symmetries, we will always include an overall U(1)c that rotates the

fundamental and anti-fundamental fields in the opposite way, as well as a U(1)d that acts

on the adjoint fields. In addition, we have a generic U(1)R charge r for chiral and Fermi

multiplets, along with its chemical potential z. The Γ1(x|ω) are Barnes 1-Gamma functions,

defined in App. A.

Note that we can combine the Haar measure ∆Haar(σ) with the vector multiplet to

obtain

∆Haar(λ)gN=2
vec (λ) = Γ1

(
ω
∣∣ω)−2×rank(g)

∏
β∈∆

Γ1

(
〈β, λ〉

∣∣ω)−1
Γ1

(
ω − 〈β, λ〉

∣∣ω)−1
. (4.2)

With these ingredients we can also easily build models with N = 4A supersymmetry.

For this we simply need to use that a 1D N = 4 vector multiplet is a combination of an

N = 2 vector multiplet and an adjoint N = 2 chiral multiplet with r = 2. Similarly, an

N = 4 chiral multiplet of charge r comprises of an N = 2 chiral multiplet with charge r

where θ ∈ [0, π2 ] and φi ∈ [0, 2π). The Killing vectors of the two U(1) isometries are K± = ±˜̀−1∂ϕ1
+ `−1∂ϕ2

.

Details on the structure of supersymmetric field theories on three-dimensional curved manifolds can be found

in [35] (see also [36, 37], where the special case of the ellipsoid is worked out in detail). The supersymmetric

defects in this paper are wrapping the orbits of K+. These orbits are periodic when b2 =
˜̀

` is a rational

number. Otherwise, they do not close and instead fill out the (ϕ1, ϕ2)-torus densely. In what follows, we

focus on the case of b2 being rational (the round S3 has b = 1 and is such a case), and ω is related to the

dimensional radius R of the closed orbit of K+ by the relation R = (2πω)−1
√
`˜̀.
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and an N = 2 Fermi multiplet with charge (r− 2), in the same representations of the gauge

or global symmetry algebras.

Combining this information with an identity given in the appendix, Eq. (A.12), we

deduce that the contributions of N = 4A vector and chiral multiplets to the SQM index

can be succinctly written as

∆Haar(λ)gN=4
vec (λ) =

(
Γ1(z|ω)Γ1(ω − z|ω)

Γ1(ω|ω)2

)rank(g) ∏
β∈∆

∆h

(
〈β, λ〉

∣∣ω, z)−1
,

gN=4
chi (λ, r) =

∏
β∈R

∆h

(
〈β, λ〉+

r

2
z
∣∣∣ω, z) ,

(4.3)

where the functions ∆h and some of their properties are also given in App. A.

Post deconstruction the above will lift to the elliptic-genus contributions of 2D surface

defects with (2, 2) and (4, 4) supersymmetry respectively. As we will see shortly, these

results will be dominated by a closely-related function, ∆e, which will be related to ∆h by

an identity analogous to the one relating Γh and Γe in (3.10).

4.2. 2D N = (4, 4) Defects in 4D N = 4 SYM

For this example, the starting point is an orbifold of a 3D N = 8 theory in the presence of

a 1D N = 8 defect. In the language of the brane system of Tab. 1, the defects are described

by nN D1 branes suspended between the kN D3s and an NS5 in the x6 direction. The x3

direction is compactified and the branes are in the presence of the AN−1 orbifold singularity.

The quiver-gauge theory emerging at low energies is given by Fig. 4 and involves a 3D

N = 4 bulk quiver with U(k) gauge group nodes coupled to N = 4 1D defects with U(n)

groups.22

The partition function of the combined 3D-1D system can be split into two parts as per

Z3D−1D =
∏
α

1

k!

∫ k∏
b=1

dσ
(α)
b Z3D(σ

(α)
b )Z1D(σ

(α)
b ) . (4.4)

The bulk partition function contains the ingredients discussed in Sec. 3 and for the quiver

22A class of closely-related systems with the same amount of supersymmetry appear in [39]. Our brane

configurations before deconstruction are related to those appearing in that reference by T duality and the

low-energy quiver-gauge theories by dimensional reduction.
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3D

1D

Fig. 4: The 3D N = 4 circular quiver theory in the presence of 1D N = 4 defects. Black

links and nodes are 3D N = 4 hypermultiplets and 3D N = 4 vector multiplets respectively

of the bulk theory. The blue oriented links and nodes are 1D N = 4 chiral multiplets

with assigned R charge r = 0 and 1D N = 4 vector multiplets respectively for the defect

theory. The diagonal 1D chiral multiplets have been assigned U(1)c charge qc = 1, while

the horizontal ones U(1)d charge qd = 1.

of Fig. 4 is given by

Z3D(σ
(α)
b ) =

∏
α

Γ̂h
(
0
∣∣ω1, ω2

)−k k∏
b 6=c

Γh

(
σ

(α)
b − σ

(α)
c

∣∣ω1, ω2

)−1

×
k∏
b,c

Γh

(ω+

2
− σ(α+1)

b + σ(α)
c

∣∣ω1, ω2

)
Γh

(ω+

2
+ σ

(α+1)
b − σ(α)

c

∣∣ω1, ω2

)
.

(4.5)

The defect contribution can be evaluated from the ingredients of Sec. 4.1 and is in turn

given by

Z1D(σ
(α)
b ) =

∏
α

1

n!

(
Γ1(z|ω)Γ1(ω − z|ω)

Γ1(ω|ω)2

)k ∮ n∏
j=1

du
(α)
j

∏n
i,j ∆h

(
u

(α+1)
i − u(α)

j + κ|ω, z
)

∏n
i 6=j ∆h

(
u

(α)
i − u

(α)
j |ω, z

)
×

n∏
i=1

k∏
b=1

∆h

(
u

(α)
j − σ

(α)
b + l|ω, z

)
∆h

(
σ

(α)
b − u

(α+1)
j + l|ω, z

)
.

(4.6)

Note that this involves integrating the 1D gauge-group parameters u
(α)
j over some contour.

These integrals can be eventually performed using the Jeffrey–Kirwan residue prescription—

as e.g. in [9, 40]—although we will not do so in this paper.23 Furthermore, for each defect

23The Jeffrey–Kirwan residue prescription is sensitive to the sign of a Fayet–Iliopoulos (FI) parameter in

the SQM. We will implicitly assume that all the 1D gauge theories that appear in this paper are deformed by

an FI term of definite sign.
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node there is a U(1)c symmetry that rotates the bifundamental chiral multiplets connecting

to the bulk theory, with associated chemical potential l, as well as a different U(1)d symmetry

that acts on the bifundamental chiral multiplets between defect gauge nodes—associated

with a chemical potential κ. We have chosen these charges appropriately, qc = 1 and qd = 1,

so as to deconstruct a superconformal 4D-2D system.

The exact-deconstruction procedure can now be applied to the 3D piece as in Sec. 3. It

is implemented in a similar fashion for the 1D piece, namely, we identify the parameters

u
(α)
i → ui and shift all the arguments of the functions appearing in (4.6) by mα = i α

R
. Upon

performing this operation Z3D−1D becomes

ZDec
3D−1D =

1

k!

∮ k∏
b

dvb
2πivb

ZDec
3D (v)ZDec

1D (v) , (4.7)

with

ZDec
3D (v) = (p; p)k(q; q)k

∏k
b,c Γe(vbv

−1
c (pq)

1
4 |p, q)2∏k

b6=c Γe (vbv−1
c | p, q)

, (4.8)

which agrees with the index for N = 4 SYM as found in [1].24 In turn, the defect part

becomes

ZDec
1D (v) =

(
(q; q)2

θ(y−1|q)

)k ∮ n∏
j

duj
2πiuj

∏n
i,j ∆e

(
d uiu

−1
j |q, y−1

)∏n
i 6=j ∆e

(
uiu
−1
j |q, y−1

)
×

n∏
j

k∏
b

∆e

(
ujv
−1
b c|q, y−1

)
∆e

(
u−1
j vb c|q, y−1

)
,

(4.9)

with q = e−2πRω, y = e−2πRz, c = e−2πRl and d = e−2πRκ. Here we made use of the identity

∆e(A|Ω, T ) =
∞∏

α=−∞

∆h

(
a+ i

α

R

∣∣∣ω, t) , (4.10)

where A = e−2πRa, Ω = e−2πRω, T = e−2πRt. The function ∆e(A|Ω, T ) is defined as the ratio

of theta functions

∆e(A|Ω, T ) ≡ θ(AT ; Ω)

θ(A; Ω)
. (4.11)

We would like to identify the above result as the index of a 2D (4, 4) theory coupled

to the bulk 4D N = 4 SYM theory (see Fig. 5). For that purpose it is useful to recall

24This can be seen if in the notation of [1] one considers the limit w → t
1
2 and by mapping v → t−

1
2 , with

t = (pq)
1
6 and y =

(
pq−1

) 1
2 , after the inclusion of the Haar measure.
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Fig.5: The 4D N = 4 SYM theory in the presence of a 2D N = (4, 4) surface defect. Black

unoriented links and nodes are 4D N = 2 hypermultiplets and 4D N = 2 vector multiplets

respectively of the bulk theory. The blue oriented links and nodes are 2D N = (2, 2) chiral

multiplets and 2D N = (2, 2) vector multiplets respectively for the defect theory.

some facts regarding elliptic genera in two-dimensional theories.25 On the one hand, when

considered as a partition function on T 2, e.g. such as in the supersymmetric-localisation

calculations of [40, 41], the elliptic genus involves tracing over states in the R-R sector

of the 2D (2,2) theory; these theories need not necessarily be superconformal. On the

other hand, for superconformal theories, the state-operator map exchanges R and NS

boundary conditions and therefore when viewed as a generating function for operator

counting it is more appropriately defined by tracing over the NS-NS sector, e.g. such as in

the superconformal index calculations of [7, 11].

The exact-deconstruction procedure in general takes an N = 2B SQM partition function

on S1 and lifts it to a (2,2) partition function on T 2. As such, one would expect it to repro-

duce the R-R elliptic genus. Indeed, in (4.9) one recognises the elliptic-genus contributions

attributed to a 2D (2,2) vector, an adjoint chiral (first line) and two (anti)fundamental

chirals (second line) as given in [40]. When combined with the bulk piece they make up

the contributions attributed to the 4D-2D system summarised by the quiver of Fig. 5.

The R-R and NS-NS elliptic genera can be related by spectral flow through the relation

GR−R(q, y) = yc/6GNS−NS(q, q
1
2y) . (4.12)

25For a summary of the relevant details we refer the reader to [11].
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Implementing this dictionary in (4.9) gives rise, up to an overall c-dependent coefficient, to

ẐDec
1D (v) =

(
(q; q)2

θ(q
1
2y−1|q)

)k ∮ n∏
j

duj
2πiuj

∏n
i,j ∆e

(
d uiu

−1
j |q, q

1
2y−1

)
∏n

i 6=j ∆e

(
uiu
−1
j |q, q

1
2y−1

)
×

n∏
j

k∏
b

∆e

(
ujv
−1
b c|q, q

1
2y−1

)
∆e

(
u−1
j vb c|q, q

1
2y−1

)
.

(4.13)

The identifications between defect and bulk fugacities

q = q , y = p−
1
2 , c = p−

3
8q

1
8 , d = p−1 (4.14)

lead to the final result

ẐDec
1D (v) =

(
(q; q)2

θ(
√
pq|q)

)k ∮ n∏
j

duj
2πiuj

∏n
i,j ∆e

(
p−1 uiu

−1
j |q,

√
pq
)∏n

i 6=j ∆e

(
uiu
−1
j |q,

√
pq
)

×
n∏
j

k∏
b

∆e

(
ujv
−1
b p−

3
8q

1
8 |q,
√
pq
)

∆e

(
u−1
j vb p

− 3
8q

1
8 |q,
√
pq
)
.

(4.15)

This is precisely the answer for the N = 1 limit (t→ √pq) of the N = 2 superconformal

index of the 4D-2D system of Fig. 5, as calculated in [7]. Once again, one needs to perform

the 2D gauge integrals using the Jeffrey–Kirwan residue prescription, which can be carried

out explicitly as in [7, 40].

We can motivate the fugacity relations (4.14) as follows. On the one hand, they are

precisely the identifications used in the 4D-2D index calculation of [7], where q, y, c, d are

fugacities for a 2D (2,2) index in the NS-NS sector.26 On the other, they can also be

derived from the specifics of the embedding of the defect SQM algebra into the 3D bulk

superalgebra. The full details of the embedding in the case of the round S3 can be found

in [9]. The general case of the ellipsoid can be worked out in a similar fashion.27

26For q, y = q
1
2 t−1 these relations can be found in Eq. (5.31) of [7] by considering the limit t→ √pq, while

for c, d in their subsequent discussion.
27As we pointed out in Fn. 21, in this section we are wrapping the defects along the orbits of the Hopf

fibre. The flow of the Killing vector K+ generates the isometry along this circle, which is therefore associated

simultaneously with the fugacities q and q, or equivalently the chemical potentials iω and ω2. The remaining

relations can be determined as in [9], by embedding an appropriate deformation of the 1D supersymmetry

algebra {Q, Q̄} = H—obtained by turning on Wilson lines/real mass parameters along the lines of [38]—into

the 3D N = 2 supersymmetry algebra on S3
b , which reads {q, q̄} = −2iKµ

+∂µ + 2i√
`˜̀
rω+ [37].

23



kk kk kk kk

N2 N2 N2 N2

N1 N1 N1 N1

n n n n

3D

1D

Fig. 6: The 3D N = 2 circular-quiver theory in the presence of 1D N = 2 defects. Black

oriented links and nodes are 3D N = 2 chiral multiplets and 3D N = 2 vector multiplets

respectively of the bulk theory. The blue oriented links and nodes are 1D N = 2 chiral

multiplets with R charge r = 0 and 1D N = 2 vector multiplets respectively for the defect

theory. The orange oriented links are N = 2 Fermi multiplets for the defect theory. The

diagonal 1D chiral multiplets have been assigned U(1)c charge qc = 1, while the horizontal

ones U(1)d charge qd = 1.

4.3. 2D N = (2, 2) Defects in 4D N = 2 SQCD

Our next example is more general in that it involves half of the supersymmetry of the

previous subsection and non-trivial flavour symmetries. The starting point is a brane system

consisting of kN D3s stretched between two NS5 branes along the interval L3, with N1N

semi-infinite D3s extending to the left and N2N to the right. Once again, there are also

nN D1s suspended between the rightmost NS5 and an additional NS5 in the x6 direction

and the whole system is probing the AN−1 orbifold singularity. The corresponding 3D-1D

quiver emerging at low energies is depicted in Fig. 6.28

From the 1D point of view, the fundamental/antifundamental chiral and Fermi multiplets

have unit charge under the U(1)c symmetry. The adjoint chiral multiplets and bifundamental

Fermi multiplets have unit charge under the U(1)d symmetry.

28There also exists a dual UV description of the same vortex loop, obtained by having the D1s end on the

leftmost NS5 along x3. This leads to a quiver with N1 and N2 exchanged and the opposite sign for the 1D FI

term compared to the system we are using. This sign difference is crucial for recovering the same partition

function from both configurations. For a detailed account see [9].
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As before, the S3
b partition function can be split into 3D and 1D contributions:

Z3D−1D =
∏
α

1

k!

∫ k∏
b=1

dσ
(α)
b Z3D(σ

(α)
b )Z1D(σ

(α)
b ) . (4.16)

The 3D part is

Z3D(σ(α)) =
∏
α

∆Haar
(
σ(α)

) k∏
b,c=1

Γh

(
ω+ + σ

(α)
b − σ

(α+1)
c

∣∣∣ω1, ω2

)
Γ̂h

(
σ

(α)
b − σ

(α)
c

∣∣∣ω1, ω2

)
×

k∏
b=1

N1∏
j=1

Γh

(
1

2
ω+ − µ(α)

j + σ
(α)
b

∣∣∣ω1, ω2

)
Γh

(
1

2
ω+ − σ(α+1)

b + µ
(α)
j

∣∣∣ω1, ω2

)

×
k∏
b=1

N2∏
m=1

Γh

(
1

2
ω+ − σ(α+1)

b + ν(α+1)
m

∣∣∣ω1, ω2

)
Γh

(
1

2
ω+ − ν(α+1)

m + σ
(α)
b

∣∣∣ω1, ω2

)
,

(4.17)

where µ
(α)
j , ν

(α)
m are new chemical potentials associated with the global symmetries, while

the other chemical potentials were defined in Sec. 4.2. The 1D part is in turn

Z1D(σ(α)) =∮ ∏
α

1

n!
∆Haar

(
u(α)

)∏
j

du
(α)
j

n∏
i,j=1

Γ1

(
u

(α)
i − u

(α+1)
j

∣∣ω)Γ1

(
ω − u(α)

i + u
(α+1)
j

∣∣ω)
Γ̂1

(
u

(α)
i − u

(α)
j

∣∣ω)Γ1

(
ω + u

(α)
i − u

(α)
j

∣∣ω)
×

n∏
i,j=1

Γ1

(
u

(α)
i − u

(α)
j + κ

∣∣ω)Γ1

(
ω − u(α)

i + u
(α)
j − κ

∣∣ω)
Γ1

(
−u(α)

i + u
(α+1)
j + z − κ

∣∣ω)Γ1

(
ω + u

(α)
i − u

(α+1)
j − z + κ

∣∣ω)
×

n∏
i=1

k∏
b=1

Γ1

(
u

(α)
i − σ

(α+1)
b + l

∣∣ω)Γ1

(
ω − u(α)

i + σ
(α+1)
b − l

∣∣ω)
Γ1

(
−u(α)

i + σ
(α)
b + z − l

∣∣ω)Γ1

(
ω + u

(α)
i − σ

(α)
b − z + l

∣∣ω)
×

n∏
i=1

N2∏
m=1

Γ1

(
−u(α)

i + ν
(α)
m + l

∣∣ω)Γ1

(
ω + u

(α)
i − ν

(α)
m − l

∣∣ω)
Γ1

(
u

(α)
i − ν

(α+1)
m + z − l

∣∣ω)Γ1

(
ω − u(α)

i + ν
(α+1)
m − z + l

∣∣ω) .

(4.18)

Once again, in order to implement dimensional deconstruction at the level of partition

functions, we break the relevant groups involved to a diagonal subgroup and shift the

arguments of the Gamma functions, which results in a product over the KK mass parameters,

mα = i α
R

.

The resultant expression is much simpler and when expressed in terms of fugacities reads

ZDec
3D−1D =

1

k!

∮ ∏
b

dvb
2πivb

ZDec
3D (v)ZDec

1D (v) , (4.19)
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with

ZDec
3D (v) = (p; p)k(q; q)k

∏
b6=c

Γe

(
vbv
−1
c

∣∣∣p, q)−1
k∏
b=1

N1∏
j=1

Γe

(
(pq)

1
4 (vbs

−1
j )±

∣∣∣p, q)

×
k∏
b=1

N2∏
m=1

Γe

(
(pq)

1
4 (vbt

−1
m )±

∣∣∣p, q) ,

(4.20)

where sj = e−2πiRµj and tm = e−2πiRνm . The defect piece becomes just

ZDec
1D (v) =

(
(q; q)2

θ(y−1|q)

)k ∮ n∏
j

duj
2πiuj

∏
i,j ∆e

(
d uiu

−1
j |q, y−1

)∏
i 6=j ∆e

(
uiu
−1
j |q, y−1

)
×

n∏
j=1

k∏
b=1

∆e

(
ujv
−1
b c |q, y−1

) N2∏
m=1

∆e

(
u−1
j tm c |q, y−1

)
,

(4.21)

which upon making use of the identifications that realise the embedding of the defect into

the bulk (4.14) leads to

ZDec
1D (z) =

(
(q; q)2

θ(p
1
2 |q)

)k ∮ n∏
j

duj
2πiuj

∏
i,j ∆e

(
p−1 uiu

−1
j |q, p

1
2

)
∏

i 6=j ∆e

(
uiu
−1
j |q, p

1
2

)
×

n∏
j=1

k∏
b=1

∆e

(
ujv
−1
b p−

3
8q

1
8 |q, p

1
2

) N2∏
m=1

∆e

(
u−1
j tm p−

3
8q

1
8 |q, p

1
2

)
. (4.22)

This is the combined S3
b × S1

R̂
partition function for the quiver depicted in Fig. 7 in the

R-R sector for the 1D defect partition function. In the case of N1 = N2 = k, one can once

again implement the spectral flow argument (4.12) to recover the corresponding index result

in [7].

We close this discussion by noting that, although we have examined two very specific

examples involving vortex loops, one can clearly apply the method of exact deconstruction

to more general setups. These can be engineered using branes through various combinations

of the ingredients from Tab. 1, including combinations of NS5 and NS5′ branes at different

points along the x6 direction connected with different numbers of D1s. As a result, one can

obtain e.g. all examples of [9] placed on an orbifold singularity, which will result in product

defect gauge groups, additional matter at each quiver node and so on. The implementation

of exact deconstruction to these theories is straightforward.

26



4D

2D

N1 kk N2

n

Fig.7: The 4D N = 2 SYM theory in the presence of a 2D N = (2, 2) surface defect. Black

unoriented links and semi-circular nodes are 4D N = 2 hypermultiplets and 4D N = 2

vector multiplets respectively of the bulk theory. The black squares denote 4D flavour

groups. The blue oriented links and nodes are 2D N = (2, 2) chiral multiplets and 2D

N = (2, 2) vector multiplets, respectively, for the defect theory.

5. 4D Surface Defects from 3D Wilson Loops

In Sec. 4 we demonstrated how to deconstruct codimension-two surface defects in 4D

N = 4/N = 2 theories that preserve non-chiral 2D N = (4, 4)/N = (2, 2) supersymmetry

from vortex loops in 3D N = 4/N = 2 theories. The vortex loops in three dimensions were

defined by coupling 1D N = 4/N = 2 SQM to the 3D bulk. Similarly, the deconstructed

surface defects were defined by coupling 2D N = (4, 4)/N = (2, 2) theories to the 4D bulk.

Another prominent, and perhaps more common, class of line defects in 3D theories arises

from Wilson loops. In 3D N = 4 theories 1
2
-BPS Wilson-loop operators, which will be the

focus of our discussion in the rest of this section, are given by path-ordered traces of the

form

WR = TrRP exp

∮
i
(
Aµẋ

µ +
√
−ẋ2σ

)
dτ . (5.1)

In this formula σ is the real scalar field in the N = 2 vector multiplet, which is part of

the 3D N = 4 vector multiplet. As usual, Wilson loops are labelled by a gauge-group

representation R. For concreteness, in what follows we will focus on the fundamental and

antisymmetric representations of the unitary gauge group (namely, representations labelled

by Young tableaux with a single column). Analogous statements will apply to more general

representations. As a one-dimensional defect, the operator (5.1) preserves the 1D N = 4B

supersymmetry that arises from the dimensional reduction of the chiral 2D N = (4, 0)

supersymmetry. This should be compared against the 2D N = (2, 2) supersymmetry

associated by dimensional reduction with the vortex loops.

In supersymmetric localisation the insertion of a Wilson-loop operator (5.1) in the round
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S3 partition function29 is captured by the introduction of a factor

TrR
(
e2πσ

)
=
∑
β∈R

e2π〈β,σ〉 (5.2)

in the resultant matrix integral [3,30]. On the RHS of this expression the sum is performed

over all the weights β of the representation R.

The question of whether one can implement exact deconstruction with 3D Wilson-loop

insertions is an obvious one. However, if there exists a well-defined procedure for lifting

3D Wilson loops in some representation R, what kind of defect does one expect to obtain

in four dimensions? The natural answer seems to be a codimension-two defect with chiral

supersymmetry labelled by the same representation.

The literature on surface defects with 2D N = (4, 0) supersymmetry is relatively-

limited.30 An early discussion of surface defects with 2D N = (8, 0) supersymmetry appears

in [23] and is based on the D3-D7 intersection in string theory; see [43] for related work.

The surface defects in [23] are formulated by integrating out 2D chiral fermions. Notice that

a similar approach to Wilson loops in 4D N = 4 SYM was employed in [22,44]. In that case

the result of integrating out the chiral fermions is not a single Wilson loop, but rather a

sum over Wilson loops in different representations; this is a point which we will come back

to more explicitly in a moment. Here we stress that the codimension-two operators obtained

in this manner are formulated in terms of a Wess–Zumino–Witten action supported on a

surface, with no explicit reference to individual representations [23].

Applying deconstruction to 3D Wilson loops is therefore an interesting direction that

has the potential to produce novel results about chiral surface operators in 4D theories. In

this section, we take the first steps towards this direction by studying deconstruction at the

level of S3
b partition functions with Wilson loop insertions.31

The strategy is straightforward and begins with a 3D circular quiver-gauge theory with a

29For the moment we consider the case of a round S3. We will soon generalise to squashed three-spheres

with arbitrary squashing.
30We note that the generating function for a class of BPS co-dimension two defects on S3 × S1 with (2, 0)

supersymmetry was recently obtained from the affinisation of the S3 partition function including Wilson-loop

insertions, followed by a projection with affine characters [42]. This procedure produces results that are very

similar to the ones given in this section through deconstruction. It would be very interesting to further explore

the relationship between the two prescriptions.
31Chiral surface defects in 4D N = 2 or N = 4 SYM theories can also be obtained from the 6D N = (2, 0)

theory by dimensionally reducing codimension-two or codimension-four defects. Related brane constructions

of such defects appear, for example, in [45]. These constructions produce surface defects that are naturally

labelled by representations of the gauge group.
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Wilson-loop insertion for each node. That in turn introduces a product of insertions of the

type (5.2) into the S3
b partition function. Then, one has to implement the deconstruction

procedure and evaluate the result in the appropriate limit. We have previously argued

that in the context of S3
b partition functions the main effect of the exact-deconstruction

procedure is to produce a shift in the argument of various Gamma functions. This encoded

the reorganisation of the 3D spectrum into the KK modes of a 4D theory on a circle.

However, from that point of view it is not immediately clear how we should extend the

prescription to treat insertions of the type (5.2). To handle this issue we instead propose

the following approach.

First, it is convenient to take a step back and reformulate 3D Wilson loops in terms of

a gauged 1D N = 2 Fermi multiplet in analogy with [22]—see [9] for a related discussion in

three dimensions.32 For starters, consider a gauge theory with a single U(k) node. We insert

a one-dimensional defect described by a gauged N = 2 Fermi multiplet in the fundamental

representation of the bulk U(k) gauge group. This can be engineered using the ingredients of

Tab. 2 in terms of k D3s suspended between two NS5s along x3 and a single D5′ separated

by some distance in the x7 direction. The fermion χ in the Fermi multiplet emerges from

the quantisation of open strings connecting the D3s and D5′ and has the action∫
dt χ†

[
i∂t + (A0 +

1√
`˜̀
σ − 1√

`˜̀
im)
]
χ , (5.3)

where A0 is the temporal component of the bulk gauge field, σ is the bulk Coulomb-branch

parameter and m is a mass parameter that can be viewed as the vev of a background U(1)

gauge field, corresponding to the frozen dynamics of the single D5′. Integrating out this

fermion leads to the insertion of a 1
2
-BPS Wilson loop [9, 22]. Let us verify this statement

at the level of the S3
b partition function. As in the vortex-loop case, we will take the

Wilson-loop defect to wrap the Hopf fibre of the ellipsoid.

Up to an overall regularisation-dependent factor, the contribution of such a Fermi

multiplet (4.1) can be re-expressed as

gN=2
fer (σ,m) =

k∏
b=1

sin π(iω−1σb + ω−1m) ∝
k∏
b=1

(
e−πω

−1σb+iπω
−1m − eπω−1σb−iπω−1m

)

= eiπω
−1kme−πω

−1
∑
b σb

k∏
b=1

(
1− e−2πiω−1me2πω−1σb

)
.

(5.4)

32The 3D N = 2 Fermi multiplet is also a representation of the 3D N = 4 supersymmetry algebra, and in

that context it is sometimes called a half-Fermi multiplet; see e.g. the appendix of [46] for a 2D version.
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The factor e−πω
−1

∑
b σb is related to a global anomaly for U(1) ⊂ U(k) and is also noted

in [9], where it is argued that it is cancelled by a bare supersymmetric Chern-Simons term

in the bulk at level κ = 1
2
. Since

k∏
b=1

(
1− e−2πiω−1me2πω−1σb

)
=

k∑
l=0

(−1)ρe−2πiω−1mρ
∑
β∈Aρ

e2πω−1〈β·σ〉 (5.5)

we recover from (5.4) the expansion of the Fermi-multiplet contribution as a sum over all

Wilson loops in the anti-symmetric representations Aρ. From this result, the contribution

of the ρ-antisymmetric representation can be recovered by noticing that it is weighted by

the ρ-th power of the factor µ = e−2πiω−1m and hence isolated by evaluating the residue

1

2πi

∮
dµµ−ρ−1gN=2

fer (σ, µ) . (5.6)

This observation motivates the following three-step approach for extending exact decon-

struction to 3D Wilson loops:

(i) Add a 1D defect described by a Fermi multiplet for each node of the 3D quiver.

(ii) Use this to deconstruct a 4D theory with a chiral 2D surface defect described by a

2D Fermi multiplet.

(iii) Isolate the contributions associated with different powers of µ.

The last point that needs to be addressed is whether the final step in the above prescription

truly defines quantities that correspond to k independent objects in 2D. The latter could in

turn be interpreted as chiral surface operators labelled by antisymmetric representations

of the four-dimensional bulk gauge group U(k). To address this matter let us examine in

detail the results obtained by this prescription.

For the first step, and as in any of the constructions of the previous sections our starting

point is a 3D N -noded quiver, with each node labelled by α = b−N
2
c + 1, . . . , bN

2
c. The

specific details of the quiver are not important —we will only assume that it is a 3D N = 2

or N = 4 quiver that deconstructs to a 4D N = 2 or N = 4 gauge theory on a circle. For

concreteness, one can consider engineering such an example by taking the brane system

leading to (5.3) and placing it on the orbifold singularity of Tab. 2. At low energies, each

node of the resultant quiver includes a 1D defect with chiral supersymmetry, described

by an N = 2 Fermi multiplet of mass m(α). This system is placed on S3
b and as already

mentioned the 1D defect at each node wraps the Hopf fibre.
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Before exact deconstruction, the total 1D contribution to the S3
b partition function is

Z1D(σ
(α)
b ,m

(α)
b ) =

∏
α

gN=2
fer (σ(α),m(α)) (5.7)

with each Fermi-multiplet contribution given by33

gN=2
fer (σ(α),m(α)) =

k∏
b=1

Γ1

(
−σ(α)

b −m
(α)
∣∣∣ω)−1

Γ1

(
ω + σ

(α)
b +m(α)

∣∣∣ω)−1

. (5.8)

To deconstruct, we set σ(α) → σ and m(α) → m, shift the arguments of the Γ1 functions

and take N →∞ to obtain

ZDec
1D (σ,m) =

∞∏
α=−∞

k∏
b=1

Γ1

(
−σb −m+ i

α

R

∣∣∣ω)−1

Γ1

(
ω + σb +m+ i

α

R

∣∣∣ω)−1

∝
∞∏

α=−∞

k∏
b=1

∞∏
n=−∞

(
−σb −m+ i

α

R
+ nω

)
.

(5.9)

Up to an unimportant zeta-function regularisable factor

ZDec
1D (σ,m) ∝

∞∏
α=−∞

k∏
b=1

∞∏
n=−∞

(
ω−1(−σb −m) + n+ ατ

)
=

k∏
b=1

θ
(
e−2πiω−1σbµ|q

)
, (5.10)

where we defined τ = − i
ωR

, µ = e−2πiω−1m, q = e2πiτ and θ is the theta function given in

Eq. (A.15). This completes the second step of our prescription.

For the third and final step we compute the quantity

ZDec (ρ)
1D (σ) ≡ 1

2πi

∮
dµµ−ρ−1

k∏
b=1

θ
(
e−2πiω−1σbµ|q

)
. (5.11)

Since θ(z|q) is closely related to the Jacobi-theta function,

ϑ(z|q) =
∞∏
n=1

(1− qn)(1 + zqn−
1
2 )
(

1 + z−1qn−
1
2

)
=

∞∑
n=−∞

znq
n2

2 , (5.12)

and the eta function, η(q) = q
1
24

∏∞
n=1(1− qn), via the relation

θ(z|q) = q
1
24η−1(q)ϑ(−zq−

1
2 |q) , (5.13)

33We have switched off all other chemical potentials that could appear here for the purposes of this

discussion.
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we can re-write (5.11) as

ZDec (ρ)
1D (σ) = (−1)ρq

ρ
2

+ k
24 η−k(q)

∞∑
n1,...,nk=−∞

δρ,
∑
b nb

e−2πiω−1
∑
b nbσbq

1
2

∑k
j=b n

2
b . (5.14)

Therefore, our proposal for the index of a chiral surface defect, labelled by an integer ρ, in

4D N = 2 or N = 4 theories is given by

I(ρ)
4D−2D =

∮ k∏
b=1

dvb
2πivb

ZDec
3D (v)ZDec (ρ)

1D (vτ ) , (5.15)

with vb = e−2πiRσb . Now one can ask whether ρ could be related to the ρ-antisymmetric

representation in a suitable classification.

At first sight, the association with the fundamental or antisymmetric representations

of U(k) fails because the integer ρ that appears in (5.14) is not restricted to k different

values. Nevertheless, we notice that ZDec (ρ)
1D (σ) as defined in (5.14) obeys the following

quasi-periodicity relation

ZDec (ρ+k)
1D (σ) = (−1)kqk+ρe−2πiω−1

∑
b σb ZDec (ρ)

1D (σ) , (5.16)

which is easily derived by shifting all sums over nb by one unit.

The σ-dependent factor e−2πiω−1
∑
b σb would cancel if the definition (5.14) included an

extra e2πiω−1 ρ
k

∑
b σb ,34 or if the bulk gauge group was SU(k). With this cautionary note in

mind, the deconstructed 3D-1D squashed S3 partition function is restricted to k different

values that could eventually fit into a classification of chiral surface defects in terms of the

fundamental or antisymmetric representations of the gauge group.

As a brief illustration we consider the case of a U(2) gauge group, i.e. k = 2. Then, it

is straightforward to show that ZDec (ρ)
1D in (5.14) only assumes two different values35

eπiω
−1ρ

∑
b σbq−

ρ2

4 ZDec (ρ=even)
1D (σ) = ϑ00

(
e−2πiω−1(σ1−σ2)

∣∣∣q2
)
,

eπiω
−1ρ

∑
b σbq−

ρ2

4 ZDec (ρ=odd)
1D (σ) = ϑ10

(
e−2πiω−1(σ1−σ2)

∣∣∣q2
)
,

(5.17)

where ϑ00, ϑ10 are the standard theta-function variants with characteristics. It is possible to

manipulate the restricted sum in (5.14) for general k and express it in terms of the product

34We remind the reader that a similar e−π
∑
b σb factor had to be cancelled in (5.4) for the case of the

round S3.
35This is up to an overall e−πω

−1ρ
∑
b σb factor, which can be cancelled by the e2πiω

−1 ρ
k

∑
b σb factor proposed

in the previous paragraph.
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Fig. 8: 3D N = 2 circular quiver with N nodes and a localised insertion. The black nodes

denote U(k) vector multiplets, while the black links bifundamental-chiral multiplets with

assigned R charge r = 1. The endpoints are to be understood as periodically identified.

The red link is a bifundamental-chiral multiplet with generic R charge.

of k − 1 theta functions, but unfortunately we have not uncovered simple expressions like

the ones in (5.17) for general k.

As in the vortex-loop case, we should mention that more complicated Wilson-loop

insertions can be used as the starting point for deconstruction, where the associated

representations of the bulk gauge group can be symmetric, antisymmetric or products

thereof. The low-energy quivers can be obtained by generalising the brane system introduced

above (5.3) to include combinations of D5 and D5′ branes at different points along the x7

direction and connected with fundamental strings, always in the presence of the orbifold

singularity. A detailed account of these constructions in the absence of an orbifold can be

found in [9].

6. Deconstruction of Codimension-one Defects

We now switch gears from codimension-two to codimension-one defects. Deconstruction

can be straightforwardly extended to circular quivers with localised modifications, which

naturally lead to codimension-one defects in the emerging higher-dimensional theory. From

the point of view of the SQM on the deconstructed S1, these defects are local operators

inserted at different points of the circle. In this section we would like to put forward

a realisation of this mechanism in the context of 3D N = 2 quivers deconstructing 4D

N = 2 SYM theories. We can easily compute the S3
b partition functions in the presence of

these local modifications and deduce, after deconstruction, the form of the four-dimensional

superconformal index including contributions that we will interpret as coming from an

arbitrary number of codimension-one 1
2
-BPS defect insertions.

Let us reconsider the 3D quiver of Fig. 2 that deconstructs the 4D N = 2 SYM theory

on S1 × R3. Each node represents a 3D N = 2 vector multiplet with U(k) gauge group

and each link a bifundamental chiral superfield. In Fig. 8 this quiver has been modified by
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adding a single extra bifundamental link denoted by a red arrow. In this case, we perform

deconstruction by giving a vev to all the black bifundamentals while leaving the new extra

bifundamental without a vev. One can check, at the level of the classical action, that the

limit (2.1), (2.2), deconstructs the 4D N = 2 SYM theory with a 3D defect localised on

the emerging S1. The 3D defect is described by a gauged 3D N = 2 chiral superfield in the

adjoint representation of the bulk U(k) gauge group.

In this setup, and at the level of the S3
b partition function, exact deconstruction works

in the following manner. Making use of the results of (3.8), the circular quiver of Fig. 8

admits the partition function

Zquiver
3D =

∏
α

1

k!

∫ k∏
b=1

dσ
(α)
b ∆Haar

(
σ(α)

) k∏
b,c=1

Γh

(
ω+ + σ

(α)
b − σ

(α+1)
c

∣∣∣ω1, ω2

)
Γ̂h

(
σ

(α)
b − σ

(α)
c

∣∣∣ω1, ω2

)
×

k∏
b,c=1

Γh

(
ω+r + σ

(0)
b − σ

(1)
c

∣∣∣ω1, ω2

)
.

(6.1)

The first line includes the contributions to the partition function without the new insertion.

The second line incorporates the insertion, which for concreteness is taken as a bifundamental

link between the 0th and the 1st node; the precise location will turn out not to be important.

The U(1)R charge of the bifundamentals in the first line has been chosen as r = 1, while

that of the bifundamental insertion is left arbitrary.

Exact deconstruction is performed as in previous sections. On the first line we identify

σ
(α)
b → σb and shift the arguments of the Γh functions by α

R
. Note, however, that while on

the second line the σ’s are also identified, the argument of the Γh function is not shifted

since we do not give a vev to the corresponding bifundamental scalar. This leads to the

partition function

ZDec
3D =

1

k!

∫ k∏
b=1

dσb
∏
α

Γh(ω+ + α
R

∣∣∣ω1, ω2)k

Γ̂h(
α
R
|ω1, ω2)k

∏
b 6=c

Γh

(
ω+ + σb − σc + α

R

∣∣∣ω1, ω2

)
Γh

(
σb − σc + α

R

∣∣∣ω1, ω2

)
×

k∏
b,c=1

Γh

(
ω+r + σb − σc

∣∣∣ω1, ω2

)

=
1

k!
(p; p)k(q; q)k

∮ k∏
b=1

dvb
2πivb

∏k
b,c=1 Γh

(
1

2πiR
log[(pq)

r
2vcv

−1
b ]
∣∣∣ log p

2πiR
, log q

2πiR

)
∏

b 6=c Γe

(
vbv−1

c

∣∣∣p, q) ,

(6.2)

where we have used the standard relations between 3D chemical potentials and 4D fugacities

from Sec. 3.2. This can be interpreted as the expression for the N = 1 index of a 4D N = 2

34



k k k k

k′k′

Fig. 9: 3D N = 2 circular quiver with N nodes and a different type of localised insertion.

The black nodes denote U(k) vector multiplets, while the black links bifundamental-chiral

multiplets with assigned R charge r = 1. The endpoints are to be understood as periodically

identified. The red nodes are U(k′) vector multiplets while the red links bifundamental-chiral

multiplets with generic R charge.

vector multiplet in the presence of a codimension-one 1
2
-BPS defect. Exact deconstruction

has converted the hyperbolic Gamma functions of the nodes and Higgsed bifundamentals

into elliptic Gamma functions but has left behind a single hyperbolic Gamma function that

represents the contribution of the gauged 3D defect.

Other types of localised modifications can be considered in a similar fashion. In Fig. 9

we add an extra 3D node with gauge group U(k′) linked to the 0th standard U(k) node by

a U(k)× U(k′) bifundamental 3D hypermultiplet. In that case the S3
b partition function is

Zquiver
3D =

∏
α

1

k!

∫ k∏
b=1

dσ
(α)
b ∆Haar

(
σ(α)

) k∏
b,c=1

Γh

(
ω+ + σ

(α)
b − σ

(α+1)
c

∣∣∣ω1, ω2

)
Γ̂h

(
σ

(α)
b − σ

(α)
c

∣∣∣ω1, ω2

)
× 1

k′!

∫ k′∏
b̂=1

dλb̂∆
Haar (λ)

∏k
b̂=1

∏k′

ĉ=1 Γh

(
ω+r ± (σ

(0)
b − λĉ)

∣∣∣ω1, ω2

)
∏k′

b̂,ĉ=1 Γ̂h

(
λb̂ − λĉ

∣∣∣ω1, ω2

) ,

(6.3)

where we have denoted the Coulomb-branch parameters in the extra U(k′) in terms of λb̂.

After exact deconstruction we obtain the 4D-3D partition function

ZDec
3D =

1

k!
(p; p)k(q; q)k

∮ k∏
b=1

dvb
2πivb

∏
b6=c

Γe

(
vbv
−1
c

∣∣∣p, q)−1

× 1

k′!

∫ k′∏
b̂=1

dλb̂∆
Haar (λ)

∏k
b̂=1

∏k′

ĉ=1 Γh

(
log(pq)

r
2

2πiR
± ( log vb

2πiR
− λĉ)

∣∣∣ log p
2πiR

, log q
2πiR

)
∏k′

b̂,ĉ=1 Γ̂h

(
λb̂ − λĉ

∣∣∣ log p
2πiR

, log q
2πiR

) .

(6.4)

More sophisticated examples—defined by more involved gauge theories—can obviously be

obtained in this context, or in the context of other 3D→4D deconstructions. The resultant

4D-3D deconstructed partition functions will be a combination of a 4D superconformal
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index coupled to squashed-S3 partition functions. The coupling between the two is realised

by gauging (part of) the defect global symmetry by the gauge group of the bulk 4D theory.

It is useful to contrast this situation with the situation considered e.g. in [5], where the

codimension-one defects in 4D N = 2 theories are wrapping the S1 × S2 ⊂ S1 × S3 , i.e.

they are codimension-one inside the S3. In that case the 4D-3D index is a combination of

a 4D superconformal index coupled to 3D superconformal indices.

As a final comment, we observe that we can equally simply add an arbitrary number of

localised insertions along the 3D quivers. Keeping the distance between the insertions finite

along the circular quiver produces codimension-one defects post deconstruction that are

situated at different positions along the S1. The exact deconstruction of the S3 partition

function in this arrangement proceeds in the same manner as above and leads to a 4D

superconformal index with insertions of several 3D squashed-S3 partition functions. The

final expression is independent of the original position of the localised modifications. This

is consistent with the interpretation of these objects as defects that preserve half of the

supersymmetry of the original superconformal index. We propose that, from the point of

view of quantum mechanics along the S1, we are inserting supersymmetric operators in the

Witten index. A standard argument shows that the latter does not depend on the position

of the insertions. For completeness, let us consider this argument in some detail.

Let Q and Q† be two of the supercharges preserved by the superconformal index. They

obey the anticommutation relation 2{Q,Q†} = H, where H is the sum of the conformal

Hamiltonian H, that implements translations in the ‘temporal’ S1 direction of S1 × S3,

and a combination of spacetime and R-symmetry generators whose details depend on the

specifics of the definition of the index. For N = 2 theories on the round three-sphere our

definition (3.6) implies that H = H − 2j2 − 2R − r, where j2 is the Cartan generator of

the second factor of the spacetime SU(2)1 × SU(2)2 of the S3 and R, r are the Cartan

generators of the R-symmetry group SU(2)R × U(1)r. Consider R-neutral local operators

O with j2 = 0 annihilated by, say, Q†. Eventually, we would like to propose that our

co-dimension-one defects are such operators.

The 4D index in the presence of co-dimension-one defects can be expressed in terms of

n-point functions of n such operator insertions36∑
i

〈ψi|(−1)Fpj2−j1−rqj2+j1−rtR+re(−β
2
−τ1)HO1e

(τ1−τ2)H · · · e(τn−1−τn)HOne(τn−β2 )H|ψi〉 , (6.5)

where the sum is taken over the quantum-mechanical Hilbert space. This Hilbert space

36Note that in the absence of insertions this expression reverts back to the usual definition of the

superconformal index (3.6).
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is Z2 graded by the supercharge Q and, in the absence of O insertions, the non-ground

states pairwise cancel as is usual for a Witten-type index. It is straightforward to check

that the insertion of 1
2
-BPS operators O as in (6.5) does not spoil this argument: For

every non-ground state |α〉 in the sum (6.5) the state Q†|α〉 once again contributes the

same amount with an opposite sign leading to a pairwise cancellation. One is therefore

left with the correlators involving ground states, which are however independent of the

positions τi. Consider for instance a sample ground state |0〉. Shifting the position τi of

the operator Oi is equivalent to the action of H on Oi, [H,Oi] = 2{Q†, [Q,Oi]}. As we

move the supercharge Q† over to the other 1
2
-BPS insertions inside the correlation function

everything is annihilated by supersymmetry yielding

∂

∂τi
〈0|(−1)Fpj2−j1−rqj2+j1−rtR+rO1(τ1) · · · On(τn)|0〉 = 0 . (6.6)

Returning to the results of deconstruction, we notice that the obtained partition functions

are similarly independent of the positions of the deconstructed co-dimension-one defects. By

construction, these defects are supersymmetric, R- and j2 neutral and from the quantum

mechanics point of view they are local operators in the ‘time’ direction. The fact that

their S3 × S1 partition function is τi-independent agrees with their interpretation as 1
2
-BPS

defects in quantum mechanics and the argument given in the previous paragraph.37

7. Conclusions and Outlook

In this paper we applied the exact-deconstruction procedure, introduced in [20,21], to exact

partition functions of 3D circular-quiver theories that lift to 4D indices. We generalised

it to include supersymmetric, codimension-two defects that are associated with vortex-

or Wilson-loop insertions at each node of the 3D quiver. In the process of doing so, we

made use of some remarkable identities between special functions of hyperbolic and elliptic

type. Even though we explicitly compared our post-deconstruction results with the index of

superconformal 4D-2D systems, we stress that exact deconstruction more generally produces

supersymmetric partition functions on S3 × S1 for non-conformal setups. We note that we

37It would be interesting to explore this connection in more detail. One would generally expect that

the operators O admit a realisation in terms of a sum O = cijO|ψi〉〈ψj |, where the coefficients are given by

cijO ∼ 〈ψi|O|ψj〉. In particular, the coefficient 〈0|O|0〉 should correspond to a pure S3 partition function. It is

through these coefficients that the logarithmic dependence in the fugacities that enters expressions such as

E.q. (6.4) can be captured from the point of view of quantum mechanics.

37



applied our procedure directly at the level of integrands for the 4D/3D and 2D/1D Coulomb-

branch parameters. Although we have not done so, the associated integrals can subsequently

be performed using the Jeffrey-Kirwan residue prescription [7, 9, 40]. It is also worth

pointing out that by employing exact deconstruction we have straightforwardly recovered

nontrivial results for 4D-2D indices while completely bypassing the conventional dimensional-

deconstruction limit at the level of classical Lagrangians. Regarding the deconstruction of

codimension-one defects, we introduced a localised insertion of gauge/matter fields at specific

nodes of the 3D circular quiver, which lift to a coupled system of 4D-3D indices/three-sphere

partition functions. Obtaining results for this class of defects is particularly simple through

our method.

There are various avenues for future research stemming from this work. For example, it

would be useful to further examine the prescription of Sec. 5 that isolates chiral-surface

defect contributions in 4D related to a specific (single-column) Young tableau and, more

specifically, contemplate further on its interpretation from the four-dimensional perspective.

Moreover, vortex defects in both 4D and 3D can be obtained using certain difference

operators that act directly on the 4D/3D index/partition function [6, 34]. These operators

satisfy an interesting elliptic algebra and are related by dimensional reduction. It would

be interesting to see how exact deconstruction fits into this picture. In the direction of

reducing supersymmetry, it would be worth determining whether the surface defects for 4D

N = 1 SCFTs recently discussed in [47] can also be studied from three dimensions using

exact deconstruction.

Departing from our 3D/4D setup, an obvious generalisation of our results would involve

applying them to the six-dimensional (2,0) theory [18,20]. One could attempt to deconstruct

the (2,0) partition function on S4 × T 2 in the presence of various defects, based on the S4

(defect) partition functions associated with N = 2 superconformal circular-quiver theories

in 4D. Such an approach would make contact with and supplement the results of [48].

More generally, exact deconstruction—not necessarily involving defects—could be appli-

cable in a wide range of contexts. For instance, one could use it sequentially starting from

the partition function of a 3D toroidal-quiver theory on S2× S1 to first recover the S2× T 2

partition function of a 4D circular quiver and then to get the 6D (2,0) partition function on

S2 × T 4. In addition, it could be implemented on the three-sphere partition function for an

orbifold of ABJM theory to reproduce the results of [49] for the index of non-Lagrangian

N = 3 SCFTs [50]. Finally, it would be very interesting to try and extend the principle

of deconstruction to non-Lagrangian starting points. This would entail generalising exact

deconstruction away from the individual building-block prescription presented here, to an
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operation at the level of the full partition function. We hope to report on some of these

items in the near future.
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Appendix A. Useful Mathematical Definitions and Identities

In this appendix we present a self-contained summary of the special functions that play a

central rôle in the discussion of the main text. We highlight the mathematical identities

that implement deconstruction from three-dimensional QFTs with one-dimensional defects

to four-dimensional QFTs with two-dimensional defects.

A basic component of the functions that we consider in this paper is Barnes’ N -Gamma

function

ΓN(x|ω1, . . . , ωN) ≡ exp

[
∂

∂s
ζN(s, x|ω1, . . . , ωN)

∣∣∣∣
s=0

]
, (A.1)

which is defined through the analytic continuation of the Barnes N -zeta function

ζN(s, x|ω1, . . . , ωN) =
∑
`∈NN

(x+ ` · ω)−s . (A.2)

This function is convergent for Rωi > 0. We will use the zeta-regularised infinite-product

representation

ΓN(x|ω1, . . . , ωN) = ζ

∏
`∈NN

1

x+ ` · ω
. (A.3)

We will also define a similar function, called Γ̂N , whose infinite product representation is

(A.3) with ` ∈ NN \ {0}.
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The hyperbolic Gamma function Γh(x|ω1, ω2), introduced by Ruijsenaars [51], is closely

related to the double-Gamma functions Γ2 through the definition

Γh(x|ω1, ω2) ≡ Γ2(−ix| − iω1,−iω2)

Γ2(ix− 2iω+| − iω1,−iω2)
=
∏
`∈N2

−x+ (`1 + 1)ω1 + (`2 + 1)ω2

x+ `1ω1 + `2ω2

, (A.4)

where

ω± :=
ω1 ± ω2

2
. (A.5)

In this particular definition, convergence requires =ωi > 0. The hyperbolic Gamma function—

and its counterpart Γ̂h, defined using the Γ̂Ns—appears prominently in the computation

of the S3 partition function of Lagrangian 3D N ≥ 2 supersymmetric QFTs through

supersymmetric localisation [30, 31]. In this context, the auxiliary parameters ω1, ω2 are

ω1 = ib, ω2 = ib−1, where the positive real number b =
√

˜̀

`
encodes the squashing of S3

into a U(1)× U(1) isometric hyper-ellipsoid (see also Eq. (3.1) in the main text).

The elliptic Gamma function Γe(z|p, q) (for |p|, |q| < 1) is also useful. It has the

infinite-product representation

Γe(z|p, q) =
∏
`∈N2

1− z−1p`1+1q`2+1

1− z p`1q`2
. (A.6)

This function appears in the computation of the superconformal index of four-dimensional

supersymmetric QFTs on S1
R × S3, where R denotes the (dimensionless) radius of the circle.

The degeneration limit [52]

lim
R→0+

Γe
(
e2πiRx|e2πiω1R, e2πiω2R

)
e
πi(x−ω+)

12Rω1ω2 = Γh(x|ω1, ω2) (A.7)

implements at the level of the superconformal index the small-radius limit of the S1 that

leads to the reduction from four to three dimensions [12].

In this paper we are interested in the opposite process where an operation on a 3D

theory will deconstruct a 4D theory. The mathematical identity that implements this

process is the infinite-product formula

∞∏
α=−∞

Γh

(
x+

α

R

∣∣∣∣ω1, ω2

)
= x2 (pq)−

1
2 Γe(x|p, q) (A.8)

for x = e2πiRx, p = e2πiRω1 , q = e2πiRω2 . The combination R
√
`˜̀ plays the rôle of the physical

radius of the deconstructed S1. The proof of this formula follows from a straightforward

manipulation of the infinite-product representation of the hyperbolic Gamma functions,
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(A.4), where the main ingredient is the infinite-product presentation of the sine function

sin(πw) = πw
∞∏
n=1

(
1− w2

n2

)
. (A.9)

The Gamma function Γ1, which is proportional to the ordinary Γ function,

Γ1(x|ω) =
ωω
−1x− 1

2

√
2π

Γ(xω−1) , (A.10)

appears when we discuss the partition functions of N = 2 supersymmetric quantum

mechanics on 1D defects of 3D QFTs. One can show that the following identity is satisfied

Γ1(x|ω)−1Γ1(ω − x|ω)−1 = 2 sin
(πx
ω

)
. (A.11)

In partition functions we mainly encounter the following combination of Γ1 functions

∆h(a|ω, t) ≡
Γ1(a|ω)Γ1(ω − a|ω)

Γ1(a+ t|ω)Γ1(ω − a− t|ω)
=

sin(π(a+t)
ω

)

sin(πa
ω

)
. (A.12)

The analogue of the deconstruction identity (A.8) for the function ∆h is

∆e(A|Ω, T ) =
∞∏

α=−∞

∆h

(
a+ i

α

R

∣∣∣ω, t) , (A.13)

where A = e−2πRa, Ω = e−2πRω, T = e−2πRt. The function ∆e(A|Ω, T ) is the ratio of theta

functions

∆(A|Ω, T ) =
θ(AT |Ω)

θ(A|Ω)
, (A.14)

where

θ(z|q) =
∞∏
n=0

(1− zqn)(1− z−1qn+1) . (A.15)

This particular ratio appears in 4D N = 2 superconformal indices with insertions of

codimension-two defects [6, 7]. The identity (A.13) plays an instrumental rôle when we use

1D defects in 3D QFTs to deconstruct codimension-two surface operators in 4D QFTs.
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