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Abstract

The explosion of Virtual Reality (VR) in the last few years, thanks to the
introduction of affordable Head-Mounted Displays (HMD), has increased the
interest in this technology for research. One of the main research areas using
VR is the field of cognitive and physical rehabilitation or training. Although it
is in early stages, many researchers have shown the positive effects of the higher
levels of immersion, often reported in VR, on cognitive skills. Video games have
also been used for cognitive training due to their capacity to engage and moti-
vate players. Recent findings have demonstrated that by adapting the game to
the player’s performance, real cognitive benefits can be achieved as the adapta-
tion offers a personalised cognitive training program. However, this adaptation
normally considers just performance metrics and ignores other crucial aspects
like the player’s affective states or experience. Arousal and valence have gener-
ally been shown to enhance the subjects’ cognitive skills and thus should also
be considered when adapting a game for cognitive training.

Following these findings, this thesis investigates the effects of affect and
performance-based adaptation of a VR video game on player’s working memory
(WM) performance. An initial pilot study explores suitable ways of measuring
player’s arousal and valence levels through physiological and behavioural cues.
In a second study, the effects of immersion, arousal and valence on player’s
WM performance in Desktop and VR gaming are examined. The results of this
study show that players in an optimal affective state can significantly improve
their WM performance, supporting the incorporation of affective metrics in the
adaptation engine. Thus, an adaptation engine was developed, implemented
and tested to automatically adjust the game’s difficulty level depending on the
player’s performance and the detected affective state. Two machine learning
algorithms in the adaptation engine recognise and classify player’s arousal and
valence levels using physiological and behavioural features for adaptive decision
making. Across the three studies presented, this thesis makes the following novel
contributions. It shows that, i) VR is a suitable medium for cognitive training
since the elicited high levels of immersion have a positive effect on players’ WM
performance, ii) positive affective states help subjects to achieve a better WM
performance, and ii) difficulty adaptation is more beneficial for subjects with
low WM capacity. During this process, it also provides a new methodology for
affect recognition in VR gaming and a novel adaptation engine compounded
by affect and performance metrics. Therefore, this work proposes that game-
based cognitive training would be improved by VR, especially by the use of



affective and performance metrics for dynamic adaption, resulting in a highly
personalised and more effective training experience.

2



Acknowledgements

I would like to thank my primary supervisor, Dr. Laurissa Tokarchuk, for her
guidance and support over the last four years. It has been a pleasure to work
with you, and i wish you the best in your future. I would also like to thank
to Dr. Hatice Gunes, my secondary supervisor during the my first year and
external collaborator after she moved to the University of Cambridge. Thanks
for all you valuable input in this research, i wish you the best with your son
Mavi. I would like to extend my gratitude to Dr. Emily M Hannon for her
wise advice on the cognitive research of this thesis. I hope you enjoy your well
deserved break.

Special thanks to my mother Clara, my father Antonio and my brother
Victor for all your patience and encouragement during these years. I am really
looking forward to see Marcos growing up and enjoy those moment with all
of you - Yasmina, this goes for you too. I am grateful for having a second
Spanish family in London who also supported and encouraged me throughout
these years. The list of names would be very long as there has been a lot of
transit of people during these years, but i appreciate the friendship and love
that every one of you have shared with me.

Thanks to the Media & Arts Technology program for giving me the oppor-
tunity to make this PhD in such a great and inspirational environment full of
amazing creative people. I would like to thank in particular to Astrid Bin, Lida
Theodorou, Sophie Skach, Lucia Marengo, Soomi Park-Wells, Delia Fano and
Dave Moffat. It has been great meeting and working with you. You are great
people and i wish you the best in your careers. Thanks also to the MAT and
Queen Mary staff for their help and work that made my journey a bit easier: Dr.
Nick Bryan-Kinns, Jonathan Winfield, Geetha Bommireddy, Edward Hoskins,
Hayley Cork, Ho Kok Huen and Kelly Peake. Huge thanks as well to Tim Kay,
Keith Bancroft and Tom King for their invaluable IT support and help in the
most critical moments.

Finally, I also would like to thank to some good friends here in England
(Ross, Jonny, Fede, Leah, Stephen, Nina, Susan, Mandy) and in Spain (Dani,

3



Alex, Rafa, Lucas, Vija, Serch, Jose, Willy, Deviasa Crew...) for their kindness,
friendship and support during my time in London.

This work was funded by the Engineering and Physical Sciences Research
Council (EPSRC) as part of the Doctoral Training Centre in Media and Arts
Technology at Queen Mary University of London (ref: EP/G03723X/1).

4



Statement of Originality

I, Daniel Gabana, confirm that the research included within this thesis is my own
work or that where it has been carried out in collaboration with, or supported
by oth- ers, that this is duly acknowledged below and my contribution indicated.
Previously published material is also acknowledged below. I attest that I have
exercised reasonable care to ensure that the work is original, and does not to the
best of my knowledge break any UK law, infringe any third party’s copyright
or other Intellectual Property Right, or contain any confidential material. I
accept that the College has the right to use plagia- rism detection software to
check the electronic version of the thesis. I confirm that this thesis has not been
previously submitted for the award of a degree by this or any other university.
The copyright of this thesis rests with the author and no quotation from it or
information derived from it may be published without the prior written consent
of the author.

Signature:
Date:

5



Contents

1 Introduction 15
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Aims and Approach . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Associated publications . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Related Work 22
2.1 Affective gaming . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Measuring affective states in video games. . . . . . . . . . 22
2.1.2 VR as an affective medium . . . . . . . . . . . . . . . . . 25

2.2 Affect and Cognition . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Game-based cognitive training . . . . . . . . . . . . . . . . . . . 31

2.3.1 Not all games are created equal . . . . . . . . . . . . . . . 33
2.3.2 Cognitive training in VR. . . . . . . . . . . . . . . . . . . 36

2.4 Adaptation in games for cognitive training . . . . . . . . . . . . . 38
2.4.1 Adaptation in games. . . . . . . . . . . . . . . . . . . . . 38
2.4.2 The next generation of games for cognitive training. . . . 41

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Pilot Study: Physiological and Behavioural Differences in Com-
petitive, Collaborative And Solo Gaming 45
3.1 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Tasks and setup . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Data Collection and Pre-processing . . . . . . . . . . . . . . . . . 49
3.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Sensors and Questionnaires . . . . . . . . . . . . . . . . . 49
3.2.3 Data pre-processing . . . . . . . . . . . . . . . . . . . . . 52
3.2.4 Feature Computation . . . . . . . . . . . . . . . . . . . . 52

6



3.3 Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Analysis between play modes . . . . . . . . . . . . . . . . 54
3.3.2 Across play modes and pairs . . . . . . . . . . . . . . . . 55
3.3.3 Analysis within pairs . . . . . . . . . . . . . . . . . . . . . 57
3.3.4 Individual analysis between play modes . . . . . . . . . . 58
3.3.5 Behavioural analysis . . . . . . . . . . . . . . . . . . . . . 59

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.1 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Study 2: Effects of VR Gaming on WM Performance and Af-
fective States. 65
4.1 Aims and motivations . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Shortened Automated Operation Span Task . . . . . . . . 67
4.2.2 Tasks and Setup . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 The game: Memory Break . . . . . . . . . . . . . . . . . . . . . . 70
4.3.1 Game interaction . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Pilot study: Testing Memory Break . . . . . . . . . . . . 74

4.4 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.2 Questionnaires . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.3 Physiological and Motion Sensors . . . . . . . . . . . . . . 76
4.4.4 Data pre-processing . . . . . . . . . . . . . . . . . . . . . 77

4.5 Analysis and results . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.1 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.2 Interaction modes and difficulty levels . . . . . . . . . . . 78
4.5.3 Working Memory performance . . . . . . . . . . . . . . . 80
4.5.4 Effects of valence and arousal on WM . . . . . . . . . . . 82

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6.1 WM in VR . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6.2 Arousal, valence and WM . . . . . . . . . . . . . . . . . . 85
4.6.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 The Adaptation Engine 88
5.1 Affect recognition system design . . . . . . . . . . . . . . . . . . 88

5.1.1 Data pre-processing . . . . . . . . . . . . . . . . . . . . . 88

7



5.1.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . 91
5.1.3 Labelling and classification . . . . . . . . . . . . . . . . . 95
5.1.4 Section selection . . . . . . . . . . . . . . . . . . . . . . . 96
5.1.5 Feature and model selection . . . . . . . . . . . . . . . . . 98
5.1.6 Model optimisation . . . . . . . . . . . . . . . . . . . . . . 100
5.1.7 Subject-independent analysis . . . . . . . . . . . . . . . . 100

5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3 Pilot studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 Decision rules for adaptation . . . . . . . . . . . . . . . . . . . . 102
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Study 3: Real-Time Difficulty Adaptation for WM Training in
VR Gaming 105
6.1 Research design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1.1 Tasks and setup . . . . . . . . . . . . . . . . . . . . . . . 106
6.1.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Memory Break: Version 2 . . . . . . . . . . . . . . . . . . . . . . 107
6.2.1 Difficulty adaptation . . . . . . . . . . . . . . . . . . . . . 108

6.3 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.2 Questionnaires and sensors . . . . . . . . . . . . . . . . . 110
6.3.3 Data pre-processing . . . . . . . . . . . . . . . . . . . . . 111

6.4 Analysis and results . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4.1 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4.2 Classification accuracy and real-time adaptation . . . . . 112
6.4.3 Player experience . . . . . . . . . . . . . . . . . . . . . . . 114
6.4.4 WM performance . . . . . . . . . . . . . . . . . . . . . . . 116
6.4.5 Affective states and WM performance . . . . . . . . . . . 117
6.4.6 Qualitative analysis . . . . . . . . . . . . . . . . . . . . . 120

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.5.1 Classification and adaptation performance . . . . . . . . . 121
6.5.2 Adaptation and WM . . . . . . . . . . . . . . . . . . . . . 123
6.5.3 Affective states, player experience and WM . . . . . . . . 124

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7 Discussion and Conclusions 127
7.1 Discussion and implications . . . . . . . . . . . . . . . . . . . . . 127

7.1.1 Affect recognition in gaming . . . . . . . . . . . . . . . . 128
7.1.2 Player experience, affective states and WM performance

in VR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8



7.1.3 Effects of arousal and valence on WM performance . . . . 131
7.1.4 Adaptation in games for WM training . . . . . . . . . . . 132

7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.3.1 Challenges in game type and interactions . . . . . . . . . 136
7.3.2 Challenges in affect recognition . . . . . . . . . . . . . . . 136

7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.4.1 Evaluation on subjects with cognitive impairments . . . . 138
7.4.2 The future of VR in cognitive and wellbeing research . . . 139

7.5 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A Study 1 Material 140
A.1 Ethics Approval . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.2 Pre-Experiment Questionnaire . . . . . . . . . . . . . . . . . . . 141
A.3 Post-Condition Questionnaire . . . . . . . . . . . . . . . . . . . . 144
A.4 Post-Experiment Questionnaire . . . . . . . . . . . . . . . . . . . 146

B Study 2 Material 148
B.1 Ethics Approval . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
B.2 Pre-Experiment Questionnaire . . . . . . . . . . . . . . . . . . . 149
B.3 Post-Condition Questionnaire . . . . . . . . . . . . . . . . . . . . 151
B.4 Post-Experiment Questionnaire . . . . . . . . . . . . . . . . . . . 153

C Adaptation Engine Material 156
C.1 Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . 156

D Study 3 Material 162
D.1 Ethics Approval . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
D.2 Post-Condition Questionnaire . . . . . . . . . . . . . . . . . . . . 163
D.3 Post-Experiment Questionnaire . . . . . . . . . . . . . . . . . . . 165

9



List of Figures

1.1 The three core factors studied in this research and the links ex-
plored between them . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 A circumplex model of affect [138] . . . . . . . . . . . . . . . . . 23
2.2 Motion capture system to analyse behavioural cues. . . . . . . . 24
2.3 View of the virtual environment (left) used in the study by Mee-

han et al [96] and a participant of this study moving an object
to the Pit Room standing on the wooden ledge (right) [96]. . . . 28

2.4 Flow channel according to Csikszentmihalyi [45]. . . . . . . . . . 33
2.5 NeuroRacer experimental conditions (A) and training design (B)

[7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Diagram of a Closed-Loop Video Game (CLVG) [98] . . . . . . . 39

3.1 Screenshot of Nintendo’s Wii game "Boom Blox: Bash Party" . . 48
3.2 Position of electrodes for ECG (left) and GSR (right) Shimmer

sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Sample data of GSR (top), accelerometer’s magnitude (middle)

and HR (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 GSR (top) and accelerometer magnitude (bottom) during the

competitive condition. . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Accelerometer peak detection. Each triangle corresponds with

one throw. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Participants playing competitive (left) and collaboratively (right). 59

4.1 Procedure of the Automated Operation Span Task test . . . . . . 68
4.2 The game Memory Break . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Sections of Memory Break . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Memory Break hand gestures interaction in VR and Desktop set-

tings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5 Affective Slider [21]. . . . . . . . . . . . . . . . . . . . . . . . . . 75

10



4.6 Post-Session Questionnaire: Comparison of self-reported vari-
ables between interaction modes. . . . . . . . . . . . . . . . . . . 79

4.7 Post-Session Questionnaire: Comparison of self-reported vari-
ables in each difficulty level in both interaction modes. . . . . . . 80

4.8 Hand’s muscle activation (i.e.: pressure exerted in the hand) in
each difficulty level of Desktop and VR NOTE: According to
MYO’s documentation, EMG data is provided in unitless format
called "activation"[1], although EMG is normally measured in
µVolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.9 WM performance of all participants in each difficulty level . . . . 81
4.10 WM performance of Low and High WM groups in each difficulty

level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.11 Self-reported arousal and valence of Low and High WM groups

in each difficulty level . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Sample data of HR (top), MYO’s EMG muscle activation (mid-
dle) and Leap Motion’s velocity magnitude (bottom). NOTE:
According to MYO’s documentation, EMG data is provided in
unitless format called "activation"[1], although EMG is normally
measured in µVolts . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Sample data of HMD’s angular rotation in X and Y axis. . . . . 90
5.3 HMD’s rotation on X (pitch), Y (yaw) and Z (roll) axes . . . . . 90
5.4 Conversion of HMD’s rotation in quaternions (left) to radians

(right). From top to bottom, the figure shows the rotation on
the X, Y and Z axes. Note how the conversion from quaternions
to radians did not recompose the Z axis satisfactorily. . . . . . . 91

5.5 Self-reported arousal and valence in VR in Study 2 . . . . . . . 96
5.6 Two ways of self-reporting affective states tested in the pilot stud-

ies: 4 emotions (bottom) and the Affective Slider (top) . . . . . . 101
5.7 Adaptation decision logic of Memory Break. Note the two-layer

decision system based on affect (arousal and valence) and perfor-
mance (score). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Structure of the present study and section division of a Memory
Break play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 WM performance (right) and self-reported arousal and valence
(left) of participants with low WM capacity. Participants in this
group got their best WM performance in play 3 of session 3,
which corresponds with their highest levels of arousal and valence,
especially the later. . . . . . . . . . . . . . . . . . . . . . . . . . . 118

11



6.3 WM performance (right) and self-reported arousal and valence
(left) of participants with high WM capacity. Participants in
this group got their best WM performances in plays 2 and 3 of
session 3, which corresponds with their highest levels of arousal
but not of valence. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 WM performance of participants with low and high WM capacity
along difficulty levels of Memory Break . . . . . . . . . . . . . . . 124

7.1 The Quantified behaviour Test (QbTest) [129] analyse the head
motion to assess attention deficits and hyperactivity. . . . . . . . 138

12



List of Tables

3.1 Objective (continuous) and subjective (self-reported) data recorded. 50
3.2 Paired T-tests between play modes . . . . . . . . . . . . . . . . . 56
3.3 Spearman’s correlations between continuous and self-reported data 56
3.4 HR correlations between pair members. . . . . . . . . . . . . . . 57
3.5 Spearman’s correlations between play modes at individual level . 59

4.1 LME model of WM . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 LME model of immersion . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Sensors and data collection. . . . . . . . . . . . . . . . . . . . . 89
5.2 Features extracted of each sensor. . . . . . . . . . . . . . . . . . . 92
5.3 Arousal and Valence labels distribution . . . . . . . . . . . . . . 96
5.4 Classification accuracies (in %) of all machine learning algorithms

tested in each section of Memory Break in Study 2 . . . . . . . . 97
5.5 Confusion matrix of SVM with the HR+EMG+HMD model (43

features). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 Confusion matrices of arousal and valence classification in real-time112
6.2 Accuracies of arousal and valence classification in each session for

all participants playing the adaptive version. . . . . . . . . . . . 113
6.3 Correlations of self-reported arousal and valence with the In-

Game module of the GEQ. . . . . . . . . . . . . . . . . . . . . . 116
6.4 LME model of WM performance . . . . . . . . . . . . . . . . . . 120
6.5 Number of data points for each difficulty level of the Low and

High WM capacity groups . . . . . . . . . . . . . . . . . . . . . . 123

13



List of abbreviations

ADHD Attention Deficit Hyperactivity Disorder
ANOVA Analysis of Variance
AOST Automated Operational Span Task
AVNN Average of N-N Intervals
BPM Beats Per Minute
CAVE Cave Automatic Virtual Environment
CLVG Closed-Loop Video Game
CPT Continuous Performance Task
DDA Dynamic Difficulty Adjustment
DF Degrees of Freedom
ECG Electrocardiogram
EDA Electrodermal activity
EEG Electroencephalography
EMG Electromyograph
fMRI Functional Magnetic Resonance Imaging
GEQ Game Experience Questionnaire
GSR Galvanic Skin Response
HMD Head-Mounted Display
HR Heart Rate
HRV Heart Rate Variability
IBI Inter-Beat Interval
KNN k-Nearest Neighbours
LM Leap Motion
LME Linear Mixed Effects
LF/HF Low Frequency / High Frequency Ratio
OSpan Operational Span Task
PC Personal Computer
QoM Quantity of Motion
RBF Radial Basis Function
rMSSD Root Mean Square of the Successive Differences
SD Standard Deviation
SVM Support Vector Machine
TBI Traumatic Brain Injuries
VR Virtual Reality
WM Working Memory

14



Chapter 1

Introduction

Since the beginning of affective computing in 1995 by Rosalind Picard, who
defined it as "computing that relates to, arises from or deliberately influences
emotions" [121], this field of research has been applied to many areas such as
robotics, social interactions and human-computer interaction (HCI). For ex-
ample, it has been used to detect the emotions of computer users employing
physiological or motion sensors in order to adapt and improve the interaction
depending on how the user is feeling [156]. Its application to video games, called
affective gaming, aims to recognise and influence the player’s affective states,
represented in the two dimensional space of valence and arousal [62]. This PhD
thesis investigates the use of affective gaming on games for cognitive training,
specifically for working memory (WM) training. Since arousal and valence can
have important effects on a players’ cognitive skills, affective gaming can bring
interesting insights in the research of game-based cognitive training programs.
Throughout the three studies, this research explores the recognition of player’s
affective states using physiological and behavioural cues. The detected affective
states are then used for real-time adaptation of a custom-made Virtual Real-
ity (VR) game called Memory Break. Furthermore, this research explores the
suitability of VR for cognitive training.

This chapter is structured as follows: section 1.1 documents the motivations
of this thesis in the context of previous research. Next, section 1.2 informs about
the aims and approach of this research following the motivations described. The
main contributions of this thesis are briefly outlined in section 1.3. Finally,
sections 1.4 and 1.5 report the publications associated with this PhD research
and the structure of this thesis.
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1.1 Motivations

In the age of artificial intelligence and intelligent machines, computers are be-
coming more interactive. Interaction with technology has traditionally been
unidirectional in that the user commands a passive computer that obeys orders
[55]. A novel approach for making computers more interactive by including an
adaptation engine has been proposed by many researchers [55, 99, 7, 24]. This
adaptation engine consists of adapting the interaction depending on the user’s
actions to keep a bidirectional communication, making the computer aware of
the user’s state.

The implementation of an adaptation engine in video games has normally
been made using the player’s performance as the input and a dynamic difficulty
adjustment (DDA) as the output. This DDA consists of changing certain game
parameters in real-time to adjust the game’s difficulty level in order to keep
the player optimally engaged, avoiding boredom (if the game is too easy) or
frustration (if the game is too difficult). This optimal state, normally referred
to as ‘flow’ [45], is the mental condition in which a person is fully immersed
and engaged in a given activity. However, the adaptation engine has often
ignored the role of affective states when interacting with a computer. This is
especially relevant in gaming as video games often involve emotional processes
that can have important effects on the player experience [24]. Adding affective
metrics to the adaptation engine can substantially improve the effectiveness of
the adaptation, providing a more personalised player experience.

Difficulty adaptation has been commonly used in games for entertainment
[24], such as Yannakakis’ Bug Smasher [172], which adapted certain game pa-
rameters depending on the player’s interaction and performance in the game.
Nevertheless, DDA has been used in the last few years for other purposes such
as cognitive training [99]. NeuroRacer [7] was the first game-based cognitive
training to include a performance-based adaptation engine that successfully im-
proved the players’ cognitive skills. The game analyses the player’s performance
and provides appropriate challenges depending on the player’s progress. This
shows that adaptation can have positive effects not only on the player experi-
ence, keeping players in a flow state, but also on the cognitive performance.

Other researchers have proposed the inclusion of affective metrics in the
adaptation engine to improve the training efficiency [100]. Since the experienced
affective states have significant effects on cognitive skills [19, 30], it is important
to consider them when adapting a game for cognitive training. Using affective
metrics, the adaptation engine would be able to provide a more personalised
cognitive training. Although the advancements in wearable and motion sensors
can provide an easy and reliable way of measuring physiological and behavioural
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signals, detecting and including these affective metrics in the adaptation engine
is still a challenging task. The motivation behind this research is to improve the
adaptation of game-based cognitive training programs by introducing affective
metrics.

The recent introduction of affordable Head-Mounted Displays (HMDs) has
increased research interest in VR. Although VR has been used in many differ-
ent research fields [33, 163], this research is focused on its application to gaming
and cognitive research, experienced through HMDs in contrast to PC screens
or Cave Automatic Virtual Environment (CAVE). The use of HMDs for VR
implies an embodied interaction that is crucial to achieve a sense of presence
[72]. This sense of presence, defined as the feeling of ‘being there’ in the virtual
environment [131], involves high levels of immersion as well as an intensification
of the experienced affective states [132, 131]. These high levels of immersion
have a beneficial impact in cognitive skills [135] as they increase the degree of
involvement with the given task [31]. The review by Rosa et al [135] of var-
ious VR-based cognitive interventions concluded that VR serious games have
stronger effects than non-immersive interventions. They distinguished between
three types of cognitive interventions: cognitive rehabilitation, cognitive stim-
ulation and cognitive training. Whilst the first two interventions focus on "the
recovery of lost/altered cognitive functions", cognitive training aims to improve
the cognitive skills in healthy subjects. Following these findings, this research
explores the benefits of high levels of immersion on cognitive skills in HMD-
based VR games for cognitive training. In addition, since arousal and valence
can have important effects on cognitive skills [19, 30], this work will investigate
how the intensification of affective states reported in VR affects the player’s
cognitive skills.

According to the challenges and gaps in the related work presented, this
thesis will address the following research questions:

1. Which sensors are most suitable and reliable to measure the player’s af-
fective states in gesture-based gaming?

2. What is the impact of VR game playing on the player’s affective states
and WM performance?

3. What are the effects of arousal and valence on WM performance when
playing a VR game?

4. Can adaptation improve the WM of subjects playing a VR game for cog-
nitive training?
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Figure 1.1: The three core factors studied in this research and the links explored
between them

1.2 Aims and Approach

This research studies the links between three core factors: affective states, WM
and VR. As shown in Figure 1.1, the effects of VR on the user’s affective states
and WM will be explored, as well as the influence of the experienced affective
states on the user’s WM performance. In order to address the above research
questions, the work presented in this thesis has three principal aims:

1. Investigate how VR gaming impacts on the player’s WM performance and
affective states compared to less immersive interaction modes such as tra-
ditional desktop computer gaming. Previous research on the effects of VR
on the user’s affective states has demonstrated that the high levels of im-
mersion often reported can intensify the experienced affective states [132].
Similarly, these high levels of immersion reported in VR can also have
positive effects on the cognitive skills [135]. However, to the researcher’s
knowledge, no previous research has explored the effects of VR gaming on
WM.

2. Study the effects of arousal and valence on player’s WM performance in
a VR gaming setting. Since affective states can have important effects on
player’s cognitive skills [19, 30], their WM performance could be enhanced
by controlling for changes in the affective states or directly manipulating
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them to achieve an optimal state. According to the Theory of Flow [45], a
positive affective state can help subjects’ cognitive performance. Although
the link between emotions and cognition has been thoroughly studied in
many different settings, mostly using images for emotion induction, it has
not been studied in the fields of gaming or VR. Due to the aforementioned
intensification of affective states in VR, caused by high levels of immersion
[132], this research explores the effects of arousal and valence on player’s
WM in a VR environment.

3. Explore the effects of DDA on player’s WM performance in VR gaming.
Dynamic adaptation aims to sustain the players in an optimal affective
state that would improve their WM performance [45, 19]. Adaptation
methods used in video games have focused on performance-based adap-
tation, which evaluates the player’s performance to make adaptation de-
cisions. For example, the game NeuroRacer [7] has demonstrated that
this approach can improve player’s attention and memory on older adults,
even six months after training with the game. This could be substantially
improved incorporating the players’ affective state in the adaptation loop
[100]. Since arousal and valence have significant effects on cognitive skills,
the introduction of affective metrics in the adaptation engine can provide
a more effective and personalised adaptation and, therefore, better cogni-
tive training. This is especially important in game-based cognitive training
programs since video games often involve emotional processes [24] that can
have significant effects on the player’s cognitive performance. Although
there has been little research on affect and performance-based adapta-
tion for cognitive training [175], this thesis will explore its effects in a VR
gaming setting in a longitudinal study.

1.3 Contributions

Following the aims described in the previous section, this work contributes to-
wards the improvement of game-based cognitive training programs. The signif-
icant effects of affective states on WM performance highlight the importance of
including affect metrics in the adaptation of games for WM training. This PhD
thesis makes the following novel contributions to the existing literature:

1. Game-based cognitive training should make use of VR to achieve maximal
benefit. This research further confirms that VR increases the self-reported
levels of immersion and intensifies the players’ affective states. These high
levels of immersion are beneficial for player’s WM performance, as it makes
him or her more focused on the given task.
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2. Affective states can have positive effects in player’s WM performance. Al-
though performance gains depend on the levels of arousal and valence,
players in an optimal affective state, where both arousal and valence are
high at the same level, can improve their WM performance.

3. A novel methodology for affect recognition in VR gaming is presented. The
multimodal affect recognition system measures the player’s head motion,
heart rate (HR) and pressure exerted on the hands (muscle activation) to
infer his or her arousal and valence levels. Although physiological signals
have been previously used for affect recognition, this thesis presents a new
methodology which, rather than adding new sensors for motion detection,
employs the existing ones in a Head-Mounted Display (HMD) to measure
the player’s arousal and valence while playing in VR. Additionally, this
methodology proposes the use of an electromyograph (EMG) to infer the
player’s valence, analysing the pressure exerted on the hand in gesture-
based video games.

4. A novel adaptation engine that combines affective and performance met-
rics for cognitive training. Using the affect recognition system described
above, this adaptation engine adjusts the difficulty of the game in real-time
to provide personalised cognitive training. By combining performance
and affective metrics to inform the adaptation engine about the player’s
progress and affective states, the adaptation decisions can be more accu-
rate and effective. To the researcher’s knowledge, this is the first game
for cognitive training in VR using performance and affective metrics for
dynamic difficulty adaptation (DDA).

5. The use of game adaptation for cognitive training in VR is more bene-
ficial for subjects with low WM capacity. This finding is likely because
affective states seem to have stronger effects on these subjects. This can
be explained by the poor self-control of emotional experiences of these
subjects [144], which makes them experience the negative effects of high
levels of arousal (when not accompanied by high levels of positive valence)
earlier on their cognitive performance. This contribution supports the im-
portance of using affect and performance-based adaptation in games for
cognitive training.

1.4 Associated publications

Parts of the work presented in this thesis have been published in international
conferences, as follows:
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• Chapter 3: Gabana, D., Tokarchuk, L., & Gunes, H. (2016). Measuring
affective, physiological and behavioural differences in solo, competitive and
collaborative games. In International Conference on Intelligent Technolo-
gies for Interactive Entertainment (pp. 184-193). Springer, Cham.

• Chapter 4: Gabana, D., Tokarchuk, L., Hannon, E., & Gunes, H. (2017).
Effects of valence and arousal on working memory performance in virtual
reality gaming. In Affective Computing and Intelligent Interaction (ACII),
2017 Seventh International Conference on (pp. 36-41). IEEE.

• Chapter 5 and 6: Gabana, D., Tokarchuk, L., Hannon, E., & Gunes,
H. (submitted September 2018). Affect and Performance-Based Difficulty
Adaptation in Real-Time for Working Memory Training in Virtual Reality
Gaming. IEEE Transactions in Affective Computing.

1.5 Thesis outline

This thesis is structured in seven chapters, as follows:
Chapter 2 outlines previous research done in the areas of interest of this

thesis - affective gaming, VR and game-based cognitive training - reviewing the
intersections between these research fields. The chapter concludes with recent
advancements in the adaptation on games for cognitive training.

Chapter 3 describes an initial pilot study of this research, where two co-
located subjects played a Wii video game in three play modes (competitively,
collaboratively and solo). Appropriate physiological and behavioural sensors for
affect detection were explored in this study.

Chapter 4 presents a study that investigates the effects of game playing in
two interaction modes (VR and Desktop) on players’ affective states and WM
performance. This study presents a first version of the custom game Memory
Break, developed for this study for VR and Desktop settings.

Chapter 5 documents the design and development of the affect detection
system using machine learning and the data collected in Chapter 4’s study.

Chapter 6 reports the last study of this thesis, where the affect detection
system and the adaptation engine implemented in Memory Break are tested
in a longitudinal study with adaptive and non-adaptive versions of the game
Memory Break.

Chapter 7 concludes this thesis summarising the main findings, contri-
butions and limitations of this research. Future research directions are also
proposed.
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Chapter 2

Related Work

The topic of this thesis lies across a number of disciplines. This chapter discusses
relevant work in the areas of interest, which can be categorised in four topics: i)
affective gaming (section 2.1), ii) the effects of affective states on cognitive skills
(section 2.2), iii) game-based cognitive training - concretely working memory
(WM) training - (section 2.3), and iv) adaptation in games for cognitive training
(section 2.4). These research areas and the intersections between them are
discussed in detail.

2.1 Affective gaming

Affective computing is the research area started around 1995 in the MIT Media
Lab. by Rosalind Picard. She defined it as "computing that relates to, arises
from or deliberately influences emotions" [121]. In other words, it tries to give
computers the ability to recognise and express emotions. This concept of mak-
ing machines aware of the user’s emotions has been applied to many different
disciplines like robotics, healthcare, education or human-computer interaction
[156]. [171]. This thesis is focused on its application to video games, known as
affective gaming, for cognitive training.

2.1.1 Measuring affective states in video games.

The analysis of emotions in affective computing applications is normally ex-
plored in terms of affective states [62], which can be defined as the internal
states experienced when feeling an emotion like happiness, sadness or frustra-
tion. These affective states unfold in two dimensions: arousal and valence (see
Fig. 2.1) [138]. Arousal refers to the activation (or excitation) level of an indi-
vidual, which ranges from high to low. Valence refers to the hedonic or pleasant
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Figure 2.1: A circumplex model of affect [138]

(positive or negative) degree of an emotion.
One of the biggest challenges of affective gaming is how to detect and analyse

the player’s affective states when interacting with the machine. Öhman [111]
distinguish between three modes to measure affective states:

1. Self-reports: user’s subjective evaluation of his or her own emotion,
frequently reported after the event through questionnaires.

2. Overt behaviours: Observable behaviours conveyed through gestures,
body positions (postures), facial expressions, etc.

3. Physiological responses: Automatic reactions to a stimulus that trig-
gers physical responses. There are many physiological indicators that can
help to understand the underlying affective state of the user:

• Electrocardiogram (ECG): relates to heart activity and is associ-
ated with emotional arousal, cognitive efforts and stress [158]. The
most common features are heart rate (HR) and heart rate variability
(HRV).

• Electrodermal activity (EDA): also known as Galvanic Skin Response
(GSR), measures the electrical conductivity through the skin. EDA
is related to the sympathetic nervous system and is a good indicator
of stress and anxiety [41].

• Electromyograph (EMG): measures the electrical activity of muscle
movements. For example, facial muscle activity is frequently used as
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an indicator of valence [158, 139, 106].

• Brain activity: The measurement of neurological activity can be done
using different technologies such as electroencephalography (EEG) or
functional magnetic resonance imaging (fMRI) [24]. Although in its
infancy, some studies have demonstrated the recognition of emotions
and mental efforts through brain signals [106].

The detection of the affective states can be sometimes invasive to the play-
ers, limiting their movements or affecting their immersion level. Physiological
sensors have to be physically attached to the player’s bodies to measure the
physiological changes evoked by the affective states experienced. However, the
development of new technologies and novel approaches in the past few years al-
lows a less invasive measurement of the player’s affective states. Recent advances
in wearable technology have successfully built portable devices that remove the
sensation of having a sensor attached, giving the player greater freedom of move-
ment [81]. The progress of Computer Vision techniques to identify behavioural
cues such as body movements, gestures or facial expressions [13], enables affec-
tive computing to recognise user’s emotions in an easier and more reliable way.
For example, Savva et al [143] used a motion capture (see Fig. 2.2) system to
analyse the affective states of the users playing a Wii tennis game. Using a ma-
chine learning algorithm to automatically recognise the gestures, they grouped
the emotions conveyed into four categories: ‘high intensity negative emotion’,
‘happiness’, ‘concentration’ and ‘low intensity negative emotion’. The results
were compared with the classification of two independent groups of observers,
showing the system’s accuracy to be 57.4%. On the other hand, Mandryk and

Figure 2.2: Motion capture system to analyse behavioural cues.
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Atkins [89] used physiological signals (facial EMG, ECG and skin conductance)
to measure participants’ affective states while playing a video game alone and
against a friend. Using a fuzzy logic model, they transformed the physiological
responses into continuous arousal and valence levels. They found significant
correlations between the detected affective states and subjective self-reports.

It has been demonstrated that body movements in games depend signifi-
cantly on the player’s motivations [108]. When the main motivation is winning,
players use full body movements to exploit all the functionalities of the con-
troller. This means that by recognising body movements in games we under-
stand the quality of the user experience [89]. Due to individual dissimilarities
on physiological and behavioural signals, it is important to normalise the data
obtained [139, 158]. Savva et al [89] normalised participant’s behavioural data
while playing a Wii tennis game using the maximum and minimum values of
each body part over the whole data set. Physiological signals should be nor-
malised using the individual baseline of each participant, usually obtained by
asking the participant to relax for a few minutes. Thus, the normalized data
would show the amount by which a participant increased his or her physiological
responses in each experimental condition.

Affective gaming has traditionally used the detected affective states to im-
prove the player experience by either controlling the interaction with the phys-
iological signals manifested by the player (biofeedback) or adapting the game
according to its objectives and the player’s current affective states (adaptive
feedback) [139, 58]. Bersak et al [20] developed ‘Relax-to-Win’, a biofeedback
racing game where two players compete for control of a virtual dragon. Each
player wears a GSR sensor that measures the stress level. When the player
relaxes, the skin conductance decreases, making the dragon fly faster. Alterna-
tively, if the player gets stressed the dragon slows down its pace. Chanel at al
[37] made an adaptive version of the popular game Tetris which automatically
changed its difficulty level depending on the emotions recognised (boredom,
anxiety and engagement). It did this through the assessment of 5 physiological
readings: GSR, ECG, EEG, respiration rate and skin temperature. The authors
proposed two aims for emotion assessment in games: 1) evaluate the game from
a user-centred perspective, and 2) maintain player’s engagement through diffi-
culty or content adaptation to induce particular emotions.

2.1.2 VR as an affective medium

The effects of video game playing in engagement and immersion has been widely
investigated. Many researchers have studied these effects in different contexts
such as learning [140], dynamic adaptation [106, 37] or its influence in player’s

25



affective states [106, 95, 16]. Although these two concepts are related, not
many authors have studied the distinctions between them. Brown and Cairns
[31] interviewed some gamers about their experiences when playing video games.
They defined immersion as "the degree of involvement" with a computer game
and identified three levels of immersion:

1. Engagement: is the lower level of immersion and must occur before the
rest of the levels. Players have to put effort, time and attention to engage
with a game. Engagement is sometimes referred to by players as being
focused.

2. Engrossment: as the immersion increases, players become less aware
of their environment. This immersion level is achieved when the game
features directly affect the player’s emotions.

3. Total immersion: often called presence, the highest level of immersion is
described as a complete detachment from reality, where players are entirely
absorbed in the game, forgetting everything around them.

The concepts of immersion and presence has been often used synonymously
in different contexts [95]. Nevertheless, the term presence has been frequently
used in Virtual Reality (VR) environments, especially in video games, to define
the feeling of ’being there’ in the virtual world [131]. The feeling of presence
elicits such a realistic interaction that users feel they are inhabiting the virtual
environment [164] to the point that virtual experiences can evoke similar per-
ceptual reactions and emotions as in the real world [85, 137]. Thus, VR has
sometimes been called an ‘experiential interface’ [164]. The interaction between
presence and emotions in VR has been examined in depth in a number of studies
[16, 164, 132], all of them concluding that a higher level of presence influences
directly the vividness and intensity of the emotions experienced. Sometimes
these studies have also referred to VR as an ‘affective medium’ [164, 132], due
to its possibilities to evoke target affective states.

Many researchers claiming to use VR in their studies have employed differ-
ent platforms to deliver VR content. Three main platforms are normally used:
PC screens or monitors, head-mounted displays (HMD), and immersive virtual
environments where the user can walk around a room with projections on the
walls, floor and ceiling (i.e.: Cave Automatic Virtual Environment (CAVE)).
These three platforms to experience VR are very different and induce distinct af-
fective reactions and presence levels on the users. Several researchers have stud-
ied the affective states evoked by VR, mostly experienced through PC screens
[167, 22, 18] or comparing two or more of the VR platforms aforementioned.
The reason to use PC screens is normally to prevent motion sickness in their
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participants, often people with some kind of mental health diagnosis such as
autism [167, 22]. The recent introduction of affordable HMDs and the improve-
ments in this technology over the last few years has considerably reduced the
risk of motion sickness, which may encourage the use of these devices in VR
research. This thesis therefore will focus exclusively on the use of HMDs for VR
experiences.

Kim et al [74] explored participants’ emotional responses to these platforms
for VR content delivery. They found that while PC screens evoke low arousal,
HMDs and CAVEs can produce higher or similar levels of arousal. Regarding
the valence dimension, HMDs and CAVEs evoke different levels of valence, be-
ing positive for CAVE and negative for HMD and sometimes for PC, depending
on how stressful the virtual environment is. The reason why valence was nega-
tive in HMD in this particular study by Kim et al [74] was because the device
caused motion sickness, probably due to the technology not being fully devel-
oped at that time (2014). In regard to immersion, CAVEs and HMDs clearly
provoked higher levels of presence than PC screens. Riva et al [132] explored
the effects of mood induction in presence creating three virtual parks associated
with three emotions: anxious, relaxing and neutral. Participants self-reported
their emotions and interacted with the VR environment using a HMD and a
controller. Their results demonstrated the reciprocal interaction between pres-
ence and emotions: whilst the feeling of presence was higher in the emotional
environments (anxious and relaxing), the emotional state also influenced the
presence levels. Other research has looked at the physiological responses wear-
ing a HMD. Meehan et al [96] tested the physiological changes using passive
haptics (i.e. a wooden ledge) to explore its effects in player’s presence levels.
They created a virtual scenario with 2 rooms (Fig. 2.3), one of them with a pit
(Pit Room), where the user, with a controller and wearing a HMD, had to move
objects to the Pit Room standing on a wooden ledge (Fig. 2.3). Results con-
firmed that the presence of passive haptics significantly increased participants’
heart rate (HR) and level of presence.

Besides the studies using physiological signals to measure affective states,
there is very little research that uses gestures or motion to detect player’s af-
fective states in VR wearing a HMD. Becker-Asano et al [17] analysed par-
ticipants’ head movements in a HMD-based VR emergency situation to infer
the emotional arousal. Based on previous research about affect recognition of
head movements [54], they assessed the head’s pitch and yaw rotation as well as
the interaction with the joystick controller, successfully mapping the horizontal
movement speed to the player’s arousal level measured through physiological
signals. Beyond this paper, it seems there is not much academic research about
inferring affective states looking at head gestures in VR. However, very recently,
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Figure 2.3: View of the virtual environment (left) used in the study by Meehan
et al [96] and a participant of this study moving an object to the Pit Room
standing on the wooden ledge (right) [96].

many companies especially in Sillicon Valley 1, have shown interest in emotion
detection using HMD VR. Retinad Analysis 2 specializes in measuring emotional
reactions to 360 videos in VR, trying to understand how the human head moves
when feeling a certain emotion. Other companies employ different technologies,
for example, Yotta Technologies tracks facial muscles and eye movements to
capture microexpressions and more subtle emotions, or the Korean Binary VR
that uses cameras inside headsets for facial recognition. The British company
EmTeq 3 wants to use affective computing for healthcare and entertainment
in VR using biometric sensors that would be installed in the HMD’s faceplate
and eye-trackers inside the device to accurately detect subtle facial movements.
Consequently, emotion detection can be used to understand affective responses
to improve behavioural and mood self-control.

2.2 Affect and Cognition

According to the definition of the Oxford dictionary, cognition is the "the men-
tal action or process of acquiring knowledge and understanding through thought,
experience, and the senses". It includes multiple cognitive processes like atten-
tion, memory, reasoning, evaluation problem solving or decision-making [99].
Attention is defined as the faculty used to regulate the flow of information into

1http://fusion.net/story/312561/virtual-reality-emotion-surveillance/
2https://www.retinadvr.com/
3http://emteq.net/
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the sensory system, prioritizing the relevant components and eliminating the
distracting inputs [157]. There are different types of memory, all of them with a
limited capacity. While short-term memory refers to the amount of information
a person can retain for a brief interval of time, long-term memory refers to the
retention of information for longer intervals [147]. In addition, working memory
(WM), defined as the cognitive function that temporarily stores information
while other complex cognitive activities are in course [64], holds and manipu-
late novel information, being an important executive function for reasoning and
decision making [49].

These cognitive functions and emotions have a bidirectional relationship.
Emotions can determine how we perceive the world guiding our attention, or-
ganising our memory or influencing our decisions [30]. Emotional stimuli can
facilitate perception, drawing the attention more quickly and impeding disen-
gagement for a longer period than neutral stimuli [30]. Additionally, cognition
influences emotions by allocating cognitive resources for information processing
and defining goals [164]. Some studies claim that relevant information for our
well-being have a preferential encoding in memory in order to influence our fu-
ture behaviour [102] and emotionally charged simtuli at risk of being neglected
[157]. Thereby, stimuli with negative valence are faster to process as they may
have an imminent threat to survival [53]. Bennion et al [19] summarised the
three main hypotheses about how emotion affects memory:

1. Emotion usually enhances memory.

2. When it does not, is can be explained by the physiological arousal, bene-
fiting memory to a point but then having a detrimental influence [174].

3. When emotion helps to process information (encoding), it also facilitates
the storage of that particular information (consolidation).

The amygdala has an important role on the attention and codification of
emotional stimuli. This part of the brain is responsible for dealing with emo-
tional reactions and certain cognitive functions [6]. It is fundamental in encoding
emotional information, being able to modulate visual processing and augment-
ing the possibilities to identify and attend emotional stimuli in the environment
[71]. Neuroimaging studies (i.e. producing images of the brain activity) have
observed that events with higher emotional charge evoke greater activity in the
amygdala and that these events are more prone to be remembered [120].

Although certain research has claimed that the amygdala responds primarily,
but not only, to the arousal and not the valence of information [14], it is true
that positive and negative emotional stimuli are more likely to be recalled than
neutral non-emotional stimuli [71]. In 1908, Yerkes and Dodson [174] found
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that arousal can have positive effects on memory up to a point, after which it
has negative effects if too high. However, the effects of arousal may depend
on whether the arousal experienced is relevant or related to the memory task.
Libkuman et al [86] found that physiological arousal produced while running
or cycling does not impact the memory of a scene’s details. Consequently, the
effects of arousal may depend not only on its intensity but also on other factors
inherent to the given task.

Whilst the arousal dimension of affective states can be decisive for the mem-
ory enrichment of emotional stimuli, changes in the valence dimension, without
altering arousal, can also improve memory vividness [71]. Positive and negative
valence stimuli have different effects on memory encodings, though there is cer-
tain controversy about its specific influence. Studies using words or images to
evoke an emotional reaction on the subject have concluded that negative items
are more likely to be remembered than positive [113]. Conversely, studies eval-
uating self-reported recall of personal memories proved that subjects remember
positive events better than negative ones [11]. Thus, individuals looking for
positive states have better memory for positive than negative stimuli. Other
authors like Storbeck and Clore [152] have suggested a more detailed explana-
tion of the effects of valence on memory. They suggest that negative affect leads
to a more focused and deeper processing of details of information, and positive
affect brings a broader and wider attention. In summary, whilst it has been
proved that arousal affects memory, enhancing the encoding and vividness of
memories, the role of valence is controversial and still not clear.

Even though further research needs to be done in this area, some researchers
have come up with different ideas for its practical applications. For example,
Wadlinger and Isaacowitz [165] proposed that we could train our attention to
regulate emotions, using meditative practices to train our selective attention to
focus on positive information and enhance our well-being. Moore et al [104]
reviewed the effects of emotions and motivation on WM during math problem
solving. Some studies examined used a similar approach to the AOST (see
section 4.2.1), mixing simple math problems and letters that have to be remem-
bered as a secondary task [146]. This review concluded that people showing
higher levels of anxiety solving math problems performed considerably worse
than those with lower anxiety. Thus, mathematics anxiety occupy WM re-
sources required to solve problems successfully [104]. Ashby and colleagues [12]
reviewed the influence of positive affect in creative problem solving. They as-
sert that "there is substantial reason to believe that the effects of positive affect
and arousal are not identical, and that the well-documented improvements in
creative solving problem that occur under positive affect conditions are indeed
due to induced positive affect, and not simply to increases in arousal". Yeh et al
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[173], investigated how negative emotions influence WM on a creativity game.
Similar to Bennion et al [19], their findings indicated that arousal could help
WM to a point but then exert negative effects. For this reason, they propose
a game that presents challenges and stressors that would activate the player’s
attention to an optimal level whilst avoiding provocation of negative emotions
[173].

Whereas arousal and valence can have distinct effects depending on the task
and context, subjective factors may also influence the impact of emotions in our
memory. Curci et al [46] studied how individual differences in WM capacity
(i.e.: high versus low capacity) and the emotional valence of the stimuli influ-
ence WM performance. They presented negative and neutral emotional stimuli
before and after performing the Operation Span Task. Their results indicated
that participants with low WM capacity had a worse performance than those
with high WM capacity when presented negative valence stimuli. Therefore,
the emotional valence of stimuli and the subject’s WM capacity affects the WM
performance. Similar results were found by Schmeichel and his colleagues [144]
in a series of four studies. They concluded that subjects with high WM capacity
suppress negative and positive emotions better than those with low WM capac-
ity when watching movies. These findings indicate that the effects of arousal
and valence on WM not only depend on the task’s nature but also on individual
factors.

2.3 Game-based cognitive training

Video games have been used for many other purposes than just entertainment,
such as education or cognitive training. They have been proved to be a good
conductor to keep the player engaged and focused on a task [93]. Most of today’s
commercial video games are made of carefully designed storylines, artworks and
soundtracks whose primary goal is to completely immerse and engage the player
[8, 98].

Cognitive training exercises often lack engaging and fun elements that keep
the user motivated. Using gaming elements such as immediate feedback on
performance or a story line has been demonstrated to improve not only user’s
motivation but also performance and transfer effects [8]. Prins et al [124] studied
the effects of intrinsic and extrinsic motivation in cognitive training, giving
different monetary incentives (extrinsic motivation) and using a gamified version
of the WM exercise given (intrinsic motivation). Results showed that the group
with the strongest incentives (10 euros and gaming version) outperformed those
in the low-motivation group (no incentives). Many researchers have suggested
that intrinsic motivation plays an important role on the success of game-based
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learning and cognitive training programs. Intrinsic motivation can be defined
as the inherent motivational value of a content or task that does not require
external incentives [130].

Lepper and Malone [88] investigated which elements, particularly in com-
puter games, make learning fun and intrinsically motivating. They studied what
makes children prefer certain games, concluding that it depends on whether the
game has 1) explicit goals, 2) a score, 3) audio effects, 4) random elements and
5) if response speed made a difference in the game. They proposed a taxonomy
of three characteristics that make activities intrinsically motivating:

• Challenge: Activity should provide goals and continuous performance
feedback to increase the player’s motivation and self-esteem. Proximal
goals can create higher motivation and better task performance than dis-
tant goals.

• Curiosity: Is the desire to learn or explore new things and the most re-
lated to intrinsic motivation. Malone and Lepper distinguished between
sensory (perception of stimuli) and cognitive (higher-level mental struc-
tures) curiosity.

• Fantasy: Refers to elements that make a meaningful context and let
players augment their imagination.

Challenge and curiosity are closely related and both need to be optimally sus-
tained [130]. Games should provide adequate levels of challenge that stimulate
player’s curiosity, increasing the motivation and task performance. Challenge
levels can be changed manipulating the difficulty level or the goals. Therefore,
it is important to have an appropriate sequence of difficulty levels that progress
as the player’s skills and competence increase [88]. Even though the aesthetics
and story line of a game are interesting for some players, the optimal difficulty
level to keep them challenged at the right level can change considerably between
players as it depends on their skills. This is closely related to Csikszentmiha-
lyi’s Theory of Flow [45], which argues that challenge should be adjusted to the
player’s skills in order to provide an optimal experience (Figure 2.4). Thus, the
difficulty adjustment in game-based cognitive training programs is crucial for
its success. Keeping players challenged at the right level leads to an optimal
experience that can have positive effects in players’ performance [8].

Klingberg [77] suggested three factors that contribute to a successful cog-
nitive training program. First, training should not train specific strategies for
just remembering more information. Second, training should be specifically fo-
cused on WM tasks. Finally, training should adapt to the user performance.
The target of cognitive training is often an improvement of fluid intelligence,
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also known as transfer intelligence, defined as the ability to solve new problems
and reason abstractly [68]. In other words, it is the ability to apply the skills
acquired during training to other domains or situations [147]. There are two
types of transfers. While near transfer refers to a performance improvement on
tasks that measures the same skill trained, far transfer refers to improvement
on abilities related to those trained [147]. It is important to distinguish between
these types of transfer and the practice effects, described as "improvements in
cognitive test performance due to repeated exposure to the test materials" [51].

2.3.1 Not all games are created equal

The employment of video games in the research of cognitive training can be
divided in two categories: off-the-shelf games and gamification of existing cog-
nitive tasks [98]. Some researchers have proven that certain commercial action
video games can improve specific cognitive skills like visual attention [110, 43].
Cohen, Green and Bevalier [43] have studied the effects of different video games
in visual attention. Participants (18 to 29 years old) with little to no gam-
ing experience were trained on one of several video games (Unreal Tournament
2004, America’s Army, Harry Potter or Tetris) for 12 hours and tested on two
paradigms: attentional blink and multiple object tracking. Individuals who
played the action video game (Unreal Tournament) showed improvements on
these two measures of visual attention while participants trained on other games
showed less or no improvement. They concluded that fast paced games and re-
quirements to track various objects at once, produce changes in visual selective
attention. Although participants trained in other games showed significant im-

Figure 2.4: Flow channel according to Csikszentmihalyi [45].
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provements on the visual attention tests, they could not conclude that it was
produced by the training itself as they could not compare it with a control group
that was not trained on any of the games. Oei and Patterson [110] also tested
the benefits of four different commercial action games on attention and WM
played on iPhone/iPod. Their study demonstrated that not all games have the
same cognitive demands, and transfer to a cognitive skill is more likely if the
underlying skill is highly practiced in the game [8, 110, 77].

On the other hand, the gamification approach simply introduces game ele-
ments like storyline, goals or rewards in boring cognitive tasks, making slightly
more engaging exercises [98]. This is a very successful method in certain pop-
ulations like children [160]. Anguera and Gazzaley [8] argue that maybe the
low-engaging nature of cognitive tasks has driven the usual negative results in
the field of game-based cognitive training. They explain that one of the most
important factors differentiating these two types of games is the motivational
factor. Most commercial video games create a high engagement and immersion
through carefully designed stories and reward structures that challenge and mo-
tivate the individuals to reach greater outcomes. Due to their targeted approach,
these cognitive exercises are more focused on challenging specific cognitive skills
than including engaging game elements to motivate the player [8]. The intro-
duction of game elements to increase engagement and intrinsic motivation can
benefit the players’ attention performance, creating a more effective cognitive
training [82]. These elements should be carefully incorporated as they can also
bring distractions, even though some research suggests that off-task behaviours
are a way for players to regulate their emotions [140].

This gamification method was very popular a few years ago when private
companies such as CogMed or Lumosity, developed specific training programs
based on the gamified versions of existing verbal and visuo-spatial cognitive
tasks [147]. Although these programs have been tested in different studies with
positive results [92, 64, 78], many researchers have constantly questioned the sci-
entific validity of these experiments [147] demonstrating that these brain train-
ing programs do not improve our cognitive skills [115]. A consensus signed
by many well-known researchers on the so called Brain Training industry pub-
lished in October 2014 [4], express a general agreement on the fact "there is no
compelling scientific evidence to date" that brain games reduce or reverse the
cognitive decline in older age population and patients with Alzheimer’s disease.
In January 2016, the company Lumosity has been fined by the American Federal
Trade Commission to pay 2 million dollars for deceptive advertising. Lumosity
claimed that its online mini-games can improve cognitive skills in older popula-
tion and even ward off Alzheimer’s disease 4. It is important to note that these

4https://www.ftc.gov/news-events/press-releases/2016/01/lumosity-pay-2-million-settle-
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Figure 2.5: NeuroRacer experimental conditions (A) and training design (B)
[7].

two events are focused on the use of brain games to cure Alzheimer’s disease and
cognitive decline in older people. Further research needs to be done to clarify
whether video game playing can improve our cognitive skills.

Gazzaley and his research group have created a game called NeuroRacer
[7] that claims to enhance multitasking in older healthy adults. In this game
the players have to drive a car while occasionally responding to the coloured
shapes presented (Figure 2.5). Playing an adaptive version of NeuroRacer in
multitasking mode for one month, adults between 60 and 85 years old reduced
the cognitive costs when task-switching in multitasking mode and improved the
sustained and divided attention as well as their WM. These effects persisted 6
months later. Even more revealing is the recent work by Shute, Ventura and Ke
[148], which claims that playing the puzzle video game Portal 2 for 8 hours, led
to more positive effects in spatial and other non-cognitive skills than training the
same time on multiple mini-games on the Lumosity platform. This mean that
it may be dependent on the game’s design and focus, whether it is possible to
improve cognitive skills like attention or WM. Anguera and Gazzaley [8] argue
that the higher cognitive impact of video games compared to gamified cognitive
exercises might be due to their fun and motivational factor.

Even though further research is required to demonstrate that game-based

ftc-deceptive-advertising-charges
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training can improve with cognitive skills [147], it is vital to highlight some im-
portant facts. Firstly, the impact of these cognitive games in different groups
of people like novice and expert video game players must be clarified. Some re-
searchers have argued that skilled players have better visual attention skills [59]
and their extent of improvement in video game training is smaller compared to
novices [141]. Hence, greater effects from video game cognitive training would
be observed in novice players than experienced ones [59, 141]. Even more impor-
tant is the age of the subjects. Toril et al [159] completed a meta-analytic study
to investigate the effects of video game training in older healthy adults compared
to younger adults. They concluded that video game cognitive training has pos-
itive effects in older adults, with age and number of sessions being significant in
modifying the effect size of the training program. Finally, as aforementioned,
certain personal factors like motivation to play or level of fun experienced are
modifiable variables that can explain the inconsistency of results [159, 8].

In summary, it is not clear whether game-based brain training programs
can improve cognitive abilities in all populations. Recent studies have rejected
this hypothesis [115, 4], especially when using programs like Lumosity, which
claim that playing 15 minutes 3 days a week we can improve our attention or
WM. However, it seems more evident that certain entertainment video games
(especially action games) can improve certain aspects of our cognition like visuo-
spatial attention [110, 43]. Results like the ones achieved by the game Neuro-
Racer [7] or by Cohen, Green and Bavelier [43] encourage the idea that it de-
pends on the game itself whether it can improve specific cognitive skills. On top
of this, other studies point out the effect that subjective factors like motivation
can modulate the effects of these games on our cognition [159, 8].

2.3.2 Cognitive training in VR.

Virtual Reality (VR) has been widely used in cognitive rehabilitation, assess-
ment, stimulation and training [135, 114]. A review of 151 papers about serious
games in VR for cognitive interventions by Rosa et al [135] claimed that VR has
consistent positive effects in our cognition, especially in attention and memory.
This review also concluded that VR-based serious games for cognitive interven-
tions are more effective than traditional non-immersive approaches [135, 109].
When subjects feel physically present in a virtual environment, the transfer of
cognitive and behavioural skills into the real world increase [125]. In addition,
one of the reported advantages of VR applications for cognitive interventions
is the possibility to replicate real world tasks in a controlled way, where all
aspects can be manipulated and adapted to the user [135]. Chittaro et al [39]
developed a HMD VR game for aviation safety education. They assessed par-
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ticipant’s knowledge retention and physiological arousal in the game compared
to a standard aviation safety educational method (the safety cards). Their re-
sults showed that the VR game produced a higher knowledge retention than
the safety cards, as well as higher levels of engagement and arousal, two factors
that could contribute to better knowledge retention.

It is important to note that not all the studies that claim to use VR or virtual
environments in their studies have actually used immersive VR technologies
such as HMDs, using instead PC screens or CAVEs to experience the virtual
environments [114]. As reported earlier in this chapter (see section 2.1.2), HMDs
and CAVEs produce higher levels of presence and arousal than PC screens. This
important difference in the way the virtual environments are experienced should
be considered when examining the effects of VR in cognitive training.

One of the issues that garners most attention from neuroscientists and psy-
chiatrists in the use of VR is related to its ecological validity for the assessment
of cognitive abilities [107]. Ecological validity, in this case, refers to whether
one can generalise the observed behaviour shown in the virtual environment
to the traditional real world assessments [145, 109]. Matheis et al [90] used
HMD-based VR to evaluate the ecological validity of this medium to assess
learning and memory in both healthy subjects and those with traumatic brain
injuries (TBI). Their findings reported a significant correlation between sub-
jects’ performance in VR and the California Verbal Learning Test, a standard
neuropsychological measure of memory. They confirmed the ecological validity
of VR for measuring learning and memory as they could differentiate between
healthy and TBI subjects by analysing subjects’ performance. A similar study
by Ouellet et al [114] evaluated the ecological validity to assess everyday memory
in a Virtual Shop. Two groups of adults with and without cognitive decline had
to memorise a shopping list of common items and obtain them from a virtual
shop using a "natural navigation mode" (i.e.: walking around the shop). Corre-
lations with performance of existing questionnaires assessing every day memory
supported the ecological validity of the Virtual Shop to differentiate between
the two groups looking at their performance.

Another interesting study was conducted by Rizzo et al [133] and later ex-
tended by Nolin et al [109]. The first study by Rizzo et al [133] assessed the
attention of children with Attention Deficit and Hyperactivity Disorder (ADHD)
in a virtual class using a HMD and tracking the non-dominant hand and oppo-
site leg, although subjects could not see their body in the virtual environment.
Participants, interacting with a physical mouse, had to perform a Continuous
Performance Task (CPT) where a series of letters were presented in the class-
room’s blackboard (one at a time) and subjects were instructed to respond
hitting the mouse only when the letter ‘X ’ was preceded by an ‘A’. Audio and
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visual stimuli typically present in classrooms (i.e., ambient noise, paper air-
planes flying around the room, human avatars walking into the room, activity
occurring outside the window) acted as distracters to participants in two of the
three conditions assessed. Reaction time to hit the mouse was recorded to assess
performance measures as well as the head, hand and leg movements to evalu-
ate the hyperactivity often present in ADHD. In a second study conducted by
Nolin et al [109] sixteen years later, the validity and reliability of the tool and
the relationship between performance and presence were investigated, although
this time hand and leg motion were not tracked.

These measures taken and the VR proved to be a good assessment tool
for attention and ecologically valid. Head movements (left-right, up-down and
tilt) during the virtual test presented good correlations with traditional CPT
performances, accounting for 76.12% of its variance and, thus, a good indicator
of the participant’s distraction level. The performance scores only accounted for
a 12.11% of the variance and the level of presence did not show any correlation.
They pointed out the benefits of HMD VR for the study, assessment and possible
rehabilitation of attention disorders and for being a controlled environment for
the manipulation of complex test stimuli in cognitive exercises.

2.4 Adaptation in games for cognitive training

One of the main goals of video games is to create enjoyable experiences that keep
players engaged and motivated to play [8]. Motivation and player engagement
are two important factors for the success or failure of any video game for en-
tertainment or cognitive training. When players are in a flow state, also known
as optimal experience, they make better use of their cognitive resources, hav-
ing a better cognitive performance [8]. This has been evidenced by significant
positive correlations of motivation and engagement with cognitive performance
[124, 159]. Traditional approaches to sustain players in this flow state have con-
sisted of the dynamic adaptation of certain game elements or parameters such
as the difficulty level. Keeping the right balance between difficulty and player’s
skills, it is possible to provide an engaging and positive experience that can have
positive effects in player’s cognitive performance [101]. Thus, it is important to
provide positive reinforcement in video games to maintain high motivational
and engagement levels [103].

2.4.1 Adaptation in games.

Commercial video games have been using dynamic adaptive mechanics for many
years. Video game designers and developers have always tried to make more
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engaging games by changing certain game elements to challenge the player. This
adaptive method, often called Dynamic Difficulty Adjustments (DDA) [87], tries
to balance the game’s complexity to keep the player in a flow state (Figure 2.4)
[45] by tweaking certain game parameters such as the difficulty level in real-time
depending on the user’s performance. Some researchers have called this type
of video games Closed-Loop Video Games (CLVGs), defined by Mishra et al
[98] as "interactive video games that incorporate rapid, real-time, performance-
driven, adaptive game challenges and performance feedback" (Figure 2.6). The
adaptation loop is often used to create a more immersive and engaging player
experience keeping a good balance between difficulty and skill levels. As players
advance in the game, developing their skills and making good progress, the game
dynamically increases the difficulty to keep players engaged and motivated to
play. One example of DDA is the rubber-band effect [116] applied in many
games, especially in racing games. This effect consists of decreasing the speed
of the player’s car while leading the race and increasing it when falling behind.

There are many game elements that can be dynamically adjusted, though
they should be adapted in a subtle way to avoid the player realising the changes.
Gilleade and Allanson [57] propose some game elements that can be manipulated
when adapting the game:

• Difficulty: Traditionally, users set this up (easy, normal or hard levels).
However, games can have different difficulty levels in various elements such
as speed, health of enemies, player’s power or frequency of rewards among
others.

• Story: Controls the strength of the drama involved in the story line. Dif-
ferent stories can be told depending on certain factors such as interactions,
items taken or player’s emotions.

Figure 2.6: Diagram of a Closed-Loop Video Game (CLVG) [98]
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• Music: Tempo (speed) and style.

CLVGs are still in its infancy, but its potential to include individual real-time
measures to lead the game can increase player’s engagement [98, 8]. Although
CLVGs are normally based only on player’s performance metrics, recent stud-
ies propose to include physiological or behavioural metrics that reinforce the
adaptation. According to Mishra [98], the input channel of CLVGs should use
not only the user’s performance metrics but also real-time data of the player’s
interactions and behaviour. Using physiological or motion sensors to measure
the player’s HR, muscle activity or even eye movements can result on a more
accurate adaptation loop that adjusts itself depending on a number of variables
such as the player’s behaviour, affective states or performance. Rather than a
biofeedback approach, they envision a multimodal CLVG that integrates real-
time physiological and behavioural data [98]. Since video games often involve
emotional processes, it is important to consider the player’s actual affective
states to provide a more effective adaptation [24]

Liu et al [87] compared performance and affect-based DDA in a game de-
signed to reduce anxiety, using multiple physiological signals (i.e., ECG, EMG,
GSR, skin temperature, etc.) to detect players’ anxiety levels. Three levels of
performance (poor, good and excellent) and three levels of anxiety were iden-
tified to adjust the difficulty of the game in each DDA method. They found
that affect-based DDA was perceived as more challenging but also more sat-
isfying than the performance-based DDA. A similar study by Bontchev and
Vassileva [25] also compared performance and affect-based adaptation in an ed-
ucational video game. Using GSR and facial expressions for affect recognition,
the adaptation improved from 64% when using only performance to 82% when
combining both affect and performance-based adaptation. These findings sug-
gest that affect-based adaptation can be as good as performance adaptation,
though the combination of both can result in a more accurate adaptation [24].
Affect-based adaptation is usually implemented in video games using positive
or negative feedback control mechanisms [24]. Whilst negative feedback control
tries to reduce the distance between the player’s current affective state and the
desired emotional state, positive feedback aims to enlarge the difference between
the detected affective state and the target state (i.e., trying to avoid frustra-
tion). Some games implement a hybrid approach, mixing positive and negative
feedback to keep the player in a flow state.

One of the biggest challenges in affect-based CLVGs is how to recognise and
measure player’s affective states. As previously mentioned, researchers often
use physiological and behavioural signals to detect changes in affective states.
Multiple features are extracted from these signals to train a machine learning
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algorithm for affect classification or regression [38]. However, it is difficult to
create subject-independent algorithms that are suitable to recognise the affective
states of all subjects. Parsons and Reinebold [119] tested subject-independent
and subject-dependent algorithms for arousal classification. While the subject-
dependent algorithm was trained and tested using data from the same subject,
the subject-independent was trained using data from other subjects. Results
revealed that the subject-dependent algorithm achieved a classification accuracy
of 96.5%, while subject-independent classification got an average accuracy of
36.9%, close to the chance level.

Although DDA has been extensively used in entertainment video games to
sustain player’s motivation and engagement, it has also been implemented in
games for cognitive training. Since task difficulty directly affects cognitive per-
formance [175], it is important to provide appropriate challenges to maximise
player’s performance. Hence, CLVGs can create personalised training programs
that highly engage players in order to achieve cognitive improvements in the
targeted skills and a transfer of benefit to other cognitive functions. Adding
information about the player’s affective states to the CLVG can bring a more
accurate and personalised adaptation that would result in a better cognitive
performance.

2.4.2 The next generation of games for cognitive training.

Previous studies where subjects repeated trials of one cognitive task without
DDA only lead to faster reaction times and higher accuracy [79]. The rep-
etition of one cognitive task just makes subjects better at that task, but no
improvements on the trained or other cognitive skills are observed. Adjusting
the difficulty of the task on a trial-by-trial basis according to the user’s perfor-
mance, and therefore pushing the limits of the cognitive skills, could enhance
the trained cognitive skill [77]. For instance, Anguera et al [7] with their game
NeuroRacer proved that only when the difficulty level is adapted to the player
in the multitask version of the game, benefits appear to transfer to untrained
cognitive skills in older adults. Mishra et al [100] also demonstrated an im-
provement in attention in older adults using an adaptive game that specifically
challenges the player by increasing levels of distractions. Implementing DDA to
constantly push a specific cognitive skill over a sustained period of time might
induce the improvement of these abilities or even transfer to other untrained
skills [7, 64].

Although DDA is normally implemented based only on player’s performance
metrics, CLVGs should include multimodal information such as physiological
signals that supply the adaptation a good understanding of the player’s cog-
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nitive and affective state [98]. Zhang et al [175] looked at the cognitive load
of a VR driving task in teenagers with autism. They tested various machine
learning algorithms in the classification and fusion of different features extracted
from physiological, EEG and eye gaze as well as performance measures. The
K-Nearest Neighbours (KNN) algorithm yielded the best results and was pro-
posed, but not used, to adapt the game difficulty according to the player’s
affective states to provide fruitful skill development. The manipulation of the
task’s difficulty was made by increasing the number of directions and obstacles
in the driving task. The authors found that the different difficulty levels of the
driving task correlated significantly with the arousal level determined through
physiological signals. Thus, they concluded that higher difficulty levels increases
arousal and consequently the cognitive load on participants [175]. More specif-
ically, they point out that the HRV is a good measure for cognitive load as its
relationship with stress and engagement has been proven [155]. Since cognition
and affect are closely related [19, 30], it is important to account for changes in
both states to provide a more accurate adaptation and a highly personalised
cognitive training.

Another important aspect to achieving positive effects on cognitive skills
from video game playing is the overlap of cognitive demands. Transfer of cog-
nitive benefits is more likely when the assessment tasks and the training video
game share similar cognitive resources [47]. Oei and Patterson [110] revealed
that, in order to achieve any transfer effect playing action video games, it is im-
portant that both game and task share a common principle, specific to the skill
trained within the game. Therefore, in order to evaluate the benefits induced
by game playing, it is fundamental to use the right assessment tools and tasks.
Mishra et al [99] reviewed the methodology used in the scientific community for
gaming-induced benefits on attention and WM, in order to create more effec-
tive game-based training. Although they do not make an implicit distinction
between simple and complex span tasks [147], they selected the n-back [70] and
the Operation Span Task (OSpan) [162] as the most common and useful tasks
to assess the effects of gaming-induced benefits on WM.

Anguera and Gazzaley [8] argue that there are several factors neglected in
the design of cognitive video games, such as the role of fun or motivation to
play. As reviewed earlier in this chapter (see section 2.3), it is well known
that fun and motivation are very important factors to achieve successful results
both in learning [91] and cognitive training [160]. For this reason, Anguera and
Gazzaley [8] propose a new hybrid video game design that mixes the approach of
cognitive tasks and entertainment video games, requiring "a close collaboration
between the video game industry and cognitive neuroscientists to create the next
generation of cognitive training tools". This approach was successfully applied to
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their game NeuroRacer [7], which also uses adaptation algorithms to adjust the
difficulty level to each individual player. Thereby, CLVGs can sustain optimal
levels of fun, motivation and engagement by dynamically adapting the difficulty
level, which can have positive effects on the player’s cognitive performance [103].

Finally, the proliferation of new technologies like VR or motion tracking de-
vices brings the possibility to create more immersive and engaging experiences.
Rolle et al [134] have tested the suitability of these technologies for cognitive
science research, specifically of iPad and Kinect. According to their conclusions,
the interactivity of both devices compared to the traditional PC, raises the level
of attention and engagement with the task given by increasing the motivation
to maximize the performance. These results encourage the direction of this re-
search to explore the potential benefits of VR in the investigation of cognitive
training, which can be used to create virtual environments in a more realistic
and immersive way as well as allowing a higher control of the stimulus presented
[98].

2.5 Summary

This chapter reviewed existing work relating to the study of video games for
cognitive training, affective gaming and the link between affect and cognition.
Video games are known to be fun, motivating and sometimes challenging for
the player’s skills [88]. Important gaming aspects like immersion or engagement
have been frequently ignored in the design and development of video games for
cognitive training. Recent studies [8, 7] propose the incorporation of adaptive
mechanisms that dynamically adjust the game’s difficulty level in order to pro-
vide appropriate challenges. These adaptive video games, also called CLVGs,
often alter the game depending on the player’s performance, ignoring the expe-
rienced affective states. Since arousal and valence can have important effects
on our cognition [19] and video games often involve emotional processes [24],
some researchers suggest that CLVGs should consider not only the players’ per-
formance but also their affective states [98]. Thus, CLVGs should provide a
tailored cognitive training that challenges the player’s cognitive skills and keeps
him or her in an optimal affective state to achieve real cognitive improvements
and transfer effects.

Although the negative effects of excessive video game playing such as addic-
tion or aggressive behaviour have been extensively studied [60, 73], this is out
of the scope of this research. As the incorporation of adaptive mechanisms that
try to keep players in a flow state can increase the chances of game addiction
[40], game designers should be cautious to avoid elements that could induce
addiction. Thereby, this research is focused on the positive effects of games
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designed for wellbeing, especially for cognitive training.
This research investigates the effects of VR gaming on the player’s WM

performance and affective states, as well as the benefits of arousal and valence
on WM. An adaptation engine is created to dynamically adjust the difficulty
of a VR game depending on the player’s affective states and performance. The
adaptation aims to keep the player in an optimal affective state to improve
the WM performance. The following chapter documents an initial pilot study
where some of the methods reviewed in this chapter are tested. In particular,
physiological and behavioural signals of two co-located players playing in three
play modes (solo, competitively and collaboratively) are investigated to assess
its validity to measure the players’ affective states.
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Chapter 3

Pilot Study: Physiological
and Behavioural Differences
in Competitive, Collaborative
And Solo Gaming

This chapter documents a pilot study that explores the affective, physiologi-
cal and behavioural differences between sets of two co-located users playing a
Wii video game in three play modes: solo (one-vs-computer), competitive and
collaborative. This pilot study investigates how collaborative and competitive
play modes affect the players’ interactions and whether these play modes can be
assessed by measuring players’ physiological and behavioural signals. Player’s
physiological signals (cardiac activity and skin conductance) were measured and
non-verbal behaviours observed to infer their affective states. Players also self-
reported their emotions as well as levels of immersion, engagement and enjoy-
ment after each play. The results reported lead this research towards the use of
affective states for real-time video game adaptation depending on the player’s
affective states, doing a real-time analysis of their physiological and behavioural
signals.

A Wii console was chosen due to its novel gesture-based interaction con-
troller. Previous studies that have looked at affective states in competitive or
collaborative play modes have used standard controllers like gamepads, joy-
sticks or keyboards. According to Nijhar’s findings, gesture-based interaction
controllers can increase the player experience and engagement [108] This type
of interaction also allowed the capture of user’s non-verbal behaviour since they
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had to play standing up, which made their body positions, spatial behaviour
and gestures more obvious and easy to analyse visually. The game played was
Boom Blox: Bash Party, a physics-based puzzle video game developed by Elec-
tronics Arts1 and designed by the film director Steven Spielberg. This game was
chosen as it offers the three different play modes of interest: solo, competitive
and collaborative.

Previous studies have demonstrated that it is possible to infer the player’s
affective state just looking at physiological or behavioural indicators [158, 139,
142]. Mandryk and Inkpen [67] examined the physiological signals of two co-
located players in solo and collaborative play modes. Their results showed that
the measured physiological signals were good indicators of the reported player
experience. In a similar study, Chanel, Kivikangas and Ravaja [36] assessed
players’ physiological signals playing competitive and cooperatively. They con-
cluded that physiological cues were more correlated in competitive than co-
operative play, although this could be explained by the intensity of the so-
cial interactions rather than the competition between players. Thus, the pilot
study presented in this chapter extends the work by Mandryk and Inkpen [67]
analysing physiological and behavioural differences between solo, collaborative
and competitive play modes.

In this chapter, section 3.1 describes the design, tasks and procedure of this
pilot study. The physiological and motion sensors employed, as well as the
questionnaires used, are explained in section 3.2. This section also documents
the pre-processing and feature computation of the data collected. Following
this, section 3.3 explore the data collected, analysing it at five different levels:
i) between play modes, ii) across play modes and pairs, iii) within pairs, iv)
between play modes at individual level, and v) behavioural. Finally, section 3.4
discuss the results of the previous section and outline the major findings and
limitations of this pilot study.

3.1 Research Design

This section describes the methodology used in this pilot study where eight
participants in pairs played a Wii video game in three play modes: collaborative,
competitive and solo. A mixed factorial design was used, where between and
within-subjects variables were analysed.

1Electronic Arts, also known as EA, is a video game developer, marketer and publisher
company based in USA: http://www.ea.com/
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3.1.1 Tasks and setup

Participants played a video game for Nintendo’s Wii2 console called Boom Blox:
Bash Party (Fig. 3.1). The game consists of knocking down a structure made
of blocks by throwing balls against it using the Wii remote controller as if it
were the ball itself. Each block has a number drawn on it indicating how many
points it gives when knocked down. Participants could rotate the camera to
hit the blocks from different positions. The goal of the game is to get as many
points as possible. The players had to play Boom Blox: Bash Party in three
play modes. The duration of each play lasted between 4 and 7 minutes and the
play order was randomised for every pair to avoid bias. The three play modes
were:

• Solo: players play alone and get points by knocking down the structure.
While one member of the pair was playing this play mode, the other player
had to wait outside the room to avoid any bias or communication between
them.

• Competitive: two players compete against each other to get as many points
as possible knocking down the blocks. An important fact to consider in
this play mode was the rotation of the camera. Due to the simultaneous
interaction of the two players, both could rotate the camera at the same
time, adding a level of complexity since it could be used to distract the
opponent.

• Collaborative: the goal of this play mode was not to collect as many points
as possible but to play together to break the structure with as few throws
as possible. The number of throws were counted for both players, so
they had to communicate and think about how to do it the most efficient
possible way. Before the game started, participants were informed of how
many shots were needed to achieve the gold, silver or bronze medal.

3.1.2 Procedure

The experiment was held in a quiet room with a 40 inch television. First,
participants were asked to read and sign the ethics approval as well as the study’s
instructions. The experimenter explained how to put the electrocardiogram
(ECG) electrodes (see Fig. 3.2) in the chest and placed the sensor device in
player’s waist with an elastic band. The experimenter set the Galvanic Skin
Response (GSR) electrodes in the hand holding the game controller with another

2Nintendo’s Wii console: http://www.wii.com/

47



Figure 3.1: Screenshot of Nintendo’s Wii game "Boom Blox: Bash Party"

elastic band on the player’s wrist to sustain the sensor. Then, players were
asked to sit down and relax for a couple of minutes in order to record their
resting physiological signals, which would be used as a baseline to normalise the
physiological responses during the study.

Once the physiological baselines were recorded, participants were asked to
fill the pre-experiment questionnaire. Then, participants practiced with the
game for 5 minutes and were told the order of the play modes assigned. After
playing each play mode, participants were asked to sit down and fill a post-
condition questionnaire to report their levels of engagement, immersion and
enjoyment. The time spent completing this questionnaire allowed participants’
physiological signals to go back to their baseline level. Once the three play
modes were finished, sensors were removed from players and they were asked to
complete a post-experiment questionnaire about their overall experience in the
study.

Figure 3.2: Position of electrodes for ECG (left) and GSR (right) Shimmer
sensors
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3.2 Data Collection and Pre-processing

This section describes the methodology employed to collect self-reported, phys-
iological and motion data, as well as the pre-processing and feature extraction
of this data.

3.2.1 Participants

Eight players (four pairs) took part in the study with a mean age of 30.88 (SD:
4.28). A similar sample size of 10 pairs was used by Mandryk and Inkpen in a
previous study [67]. Three of them were female and five male. Although none
of participants played Wii frequently, four of them played video games between
3 and 5 hours in the last week and only one more than 5 hours. The most
common platform to play video games was smartphones. Half of the players
reported to prefer playing video games alone, three collaboratively and only one
competitively. Participants were recruited via email or word of mouth, trying to
involve people with different backgrounds, ages and sex. No prior experience was
required to participate in this study, except both players within a pair had to
know each other before the experiment to increase the chances of collaboration
between them [32].

3.2.2 Sensors and Questionnaires

Self-reported and physiological data was recorded from all participants in every
play mode. Before starting the experiment, participants were instructed about
the data measures, sensors used and how they should wear them. Table 3.1
summarises the data gathered during the study as well as the sensors employed
and features extracted.

Two physiological sensors were used with each participant. A Shimmer3

ECG sampled at a rate of 512Hz, measured the heart’s electrical activity. Par-
ticipants were instructed about how to place the four ECG electrodes in their
chest (see Fig. 3.2). The second physiological sensor was a Shimmer GSR,
which measures the electrodermal activity of the user’s sweat glands. This ac-
tivity is measured by passing a low voltage across two electrodes attached to the
user’s index and middle finger (see Fig. 3.2). The electrodermal activity varies
with the state of the sweat glands of the skin, which are normally associated
with stress and anxiety as they are related to the sympathetic nervous system,
being a good indicator of emotional arousal [41]. This sensor was placed in the
hand holding the game controller and sampled at 51Hz. The GSR also had an
accelerometer incorporated to record the movements of the hand holding the

3http://www.shimmersensing.com/
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controller. Due to individual differences in physiological signals, baseline activ-
ity levels were recorded at the beginning of the study for all sensors to normalise
these differences. Both sensors broadcasted the data wirelessly to a Windows
laptop, where the Multi Shimmer Sync software recorded them.

Table 3.1: Objective (continuous) and subjective (self-reported) data recorded.

Measure Sensor / method Features Type of data

ECG Shimmer
ECG sensor

Heart Rate (HR): mean & SD.
Inter-Beat Interval (IBI): mean.
Heart Rate Variability (HRV):
Root Mean Square of
Successive Differences (rMSSD)

Quantitative

GSR Shimmer
GSR sensor

Skin Conductance Level (SCL): mean & SD.
Skin Conductance Response(SCR): mean & SD. Quantitative

Motion Accelerometer Number of throws (peaks), Quantity of motion,
highest peak (velocity throw). Quantitative

Video Front-facing
camera

Gestures, posture (body position), spatial behaviour,
number of gazes, positive and negative
facial expressions...

Quantitative
and qualitative

Self-report PRE, PPQ & POST Engagement, immersion, frustration, stress,
enjoyment, effort, boredom. Quantitative

Three questionnaires were designed using 5-point Likert scales (see Appendix
A). A pre-experiment questionnaire (PRE) was given at the beginning of the
study, asking demographic (i.e.: gender, age, occupation...) and gaming habit
questions such as number of hours spent playing video games in the last month
or preferences of video games types. A second questionnaire was given to partic-
ipants after they finished each play mode. This post-play questionnaire (PPQ)
contained questions extracted from two validated questionnaires: the Game
Engagement Questionnaire by Brockmyer et al. [29], and the Immersion Ques-
tionnaire by Jennet et al. [69]. In this questionnaire participants reported their
levels of enjoyment, effort, engagement and immersion overall and with his or
her partner. Questions were randomised to avoid any bias due to repetition
of the questionnaire after each play mode. Finally, a post-experiment ques-
tionnaire (POST) was completed at the end of the study, where participants
reported their preferences of each play mode in terms of the most fun, bor-
ing, frustrating, etc. Participants also reported their overall engagement and
enjoyment levels for each play mode.

Finally, a video camera placed next to the monitor displaying the game
recorded the study for later observational analysis and qualitative data extrac-
tion. Since participants had to play standing up, these recordings were impor-
tant to look at their non-verbal behavioural cues such as postures, gestures or
facial expressions.
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3.2.3 Data pre-processing

All the data gathered from the ECG, GSR and accelerometer during the study
was imported into MATLAB. Although a sampling rate of 512Hz and 51Hz
were set up for the ECG and GSR sensors respectively, all the sensors’ data was
recorded at 51Hz due to problems with the software recording all sensors’ data
(Multi Shimmer Sync).

Data from all sensors was plotted to check if it was correct. The GSR data
was extremely noisy since it was placed in the hand holding the controller,
which was constantly moving and shaking. As shown in Figure 3.4, the peaks
in the GSR signal match the accelerometer’s peaks, which correspond with
the throwing gestures made while playing. Different filters such as lowpass or
moving average filter were applied to remove the noise introduced by the hand
movements, making the data considerably smoother although it was still too
noisy to use in this analysis so it was discarded. Previous works in affective
gaming research have unadvised using GSR for fast paced games that require
rapid movements or fingered dexterity [154]. Thus, GSR is suitable only for
games that induce relaxation as the hand with the GSR sensor attached needs
to be still at all times.

ECGTools4 was used to analyse the ECG data and extract the R-peaks,
which corresponds to individual heart beats. The distance between consecutive
R-peaks (also called R-R intervals) was calculated to find the Heart Rate (HR)
values per second. The R-R intervals were also used to compute the Inter-Beat
Intervals (IBI), which represents the distance in milliseconds between individual
heart beats. The HR and IBI are closely related since a higher HR implies a
smaller the time between R-R intervals, which mean smaller IBI values.

3.2.4 Feature Computation

Using the IBI calculated from the R-R intervals, different Heart Rate Variability
(HRV) features can be extracted. HRV measures the variation of the frequency
of heart beats over time. Since there are different ways to measure the HRV,
both in the time domain (AVNN, SDNN, rMSSD, etc) and frequency domain
(LH, HF), the Root Mean Square of Successive Differences (rMSSD) was calcu-
lated as it is one of the most common measures in the time domain [150, 153].
While HR has been demonstrated to be associated with emotional regulation
and arousal [158], HRV is linked with stress and mental efforts like engagement
[10][67]. The mean values of HR, IBI and rMSSD were calculated for each par-
ticipant and play mode. Moreover, the continuous IBI data was interpolated to

4http://www.ecgtools.org/
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have an evenly spaced time series in order to be able to do a continuous analysis
over time.

The acceleration magnitude (change over time in velocity, m/s2) of the hand
holding game controller was computed using the absolute value of the accelerom-
eter’s X, Y and Z axes. This acceleration magnitude was not gravity-free. The
mean and standard deviation of the acceleration magnitude, hereafter referred
to as Quantity of Motion (QoM), were calculated. Using a peak detection (see
Fig. 3.5) algorithm in MATLAB, participants’ throwing gestures were identi-
fied. Thereby, the number of throw gestures of each participant per play mode
were calculated. In order to assure all throw gestures were detected, the pa-
rameters of the peak detection algorithm were adjusted until the peaks detected
corresponded with all the observed throws in the video recordings.

A qualitative analysis of the videos was carried out. Since some record-
ings were a bit blurry, it was difficult to use Computer Vision techniques to
accurately detect participant’s facial expressions to perform an automatic emo-
tion recognition analysis. Therefore, video recordings were manually annotated
to determine the predominant facial expressions in each play mode as well as
the non-verbal behaviours such as gestures, postures or spatial behaviour (i.e.:
moving around the room). This analysis investigated how participants express
the experienced affective states through their body movements and facial ex-
pressions, distinguishing between positive, negative and neutral states. Finally,
the data gathered from the PRE, PPQ and POST questionnaires was imported
into the statistical analysis software SPSS (Version 30) since it did not need any
pre-processing.

3.3 Analysis and Results

The aim of the analyses reported were to investigate the affective, physiological
and behavioural differences between play modes. Three levels of analyses were
undertaken: i) overall, with all participants; ii) within pairs; and iii) individ-
ual. This allowed the analysis not only to investigate general trends over all
participants, but also a more detailed analysis looking at individuals and the
relationships between pairs. Between and within-subjects analyses were carried
out to investigate the effects of the aforementioned play modes on the players’
experience and affective states.

3.3.1 Analysis between play modes

Four out of the eight players reported in the POST questionnaire to have enjoyed
the collaborative mode the most, whilst three preferred playing competitively
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and only one the solo mode. Five participants declared the competitive mode
was the most stressful, while two felt more stressed playing collaboratively and
only one in the solo mode. Players reported to be equally engaged with their
partners during the collaborative (M:3.88, SD: 0.99) and the competitive play
mode (M: 3.25, SD: 1.16). No significant differences were found in the immersion
level.

In order to analyse whether there was significant differences between play
modes in the continuous features, various paired t-tests were carried out, spe-
cially between the competitive and collaborative play modes (see Table 3.2).
One of the players who reported neither enjoyment nor engagement in any of
the play modes and whose physiological signals did not vary much across play
modes, was removed in the HR paired t-test. The mean HR and the mean IBI
showed significant (p < 0.01) statistical differences between the competitive and
collaborative modes, with a mean variation of 10.67 in the HR (SD: 4.09) and
-100.24ms in the IBI (SD: 63.35). This indicates that participants experienced a
higher HR of 10 Beats Per Minute (BPM) average in the competitive play mode.
Note that the high standard deviation of HR and IBI is due to individual phys-
iological differences between participants. For example, the mean HR of two
players in the competitive mode was 85 and 65, while in the collaborative mode
it was 81 and 55 respectively. This means that although there are significant
differences in the mean HR between competitive and collaborative modes, there
is an important deviation from the mean depending on individual physiological
differences .

The accelerometer showed some significant (p < 0.01) differences, particu-
larly in the number of throws and the mean QoM. The statistical difference of
number of throws had a mean of 20.85 (SD: 7.01), which means players made an
average of 20 throws more in the competitive play mode than in the collabora-
tive. This high difference was caused not only by the nature of the collaborative
condition where players had to make as few throws as possible, but also due
to the turn taking strategy all pairs took while playing together, even though
participants were informed they could play at the same time. Moreover, the
mean QoM was higher in the competitive mode by 1.16 (SD: 0.54). This result
is closely related to the number of throws, since more throws means more mo-
tion of the controller. Finally, no significant differences were found in the fastest
throw (i.e highest peak in accelerometer) between play modes.

3.3.2 Across play modes and pairs

This analysis focused on the relation between continuous and self-reported data
of all players. The aim of this analysis is to explore what continuous or self-
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Table 3.2: Paired T-tests between play modes

Param. Mean SD t(df) Sig.
Mean HR 10.67 5.25 5.38 (6) .002
Num. throws 20.75 7.50 9.03 (7) .000
Mean QoM 1.07 .56 5.35 (7) .001
Fastest throw .50 .78 1.83 (7) .109

Note: SD = Standard Deviation.
df = degrees of freedom.

Table 3.3: Spearman’s correlations between continuous and self-reported data

Param. Depend.
Var. Rho Sig.

Mean QoM Norm. Mean HR .413 .052
Mean QoM Norm. Mean IBI -.462 .053
Effort Norm. Mean HR .584 .001
Engage w/ Partner Norm. Mean HRV -.535 .001
Enjoy w/ Partner Norm. Mean HRV .265 .211
Enjoy w/ Partner Norm. Mean HR .122 .571
Flow Norm. Mean HR -.157 .497

reported variables would be useful to infer the player’s affective states and
behaviours. Prior to this analysis, the physiological data of each player was
normalised to mitigate individual differences. Each player’s ECG data was nor-
malised according to his/her own baseline, recorded at the beginning of the
study. In order to normalise the physiological data of each play mode, the mean
of the baseline was divided by the mean of each mode, getting the percentage
of increase for a particular play mode. For example, if the mean resting HR of
one player was 73 BPM and the mean HR for this same person was 96 BPM
in the competitive play mode, it can be said that the HR increased by 31% in
that particular play mode.

Normalised =
PlayMode

Baseline

Once all the physiological data was normalised,rho= it was correlated with
objective (QoM) and subjective variables such as effort or enjoyment (see Table
3.3). The mean QoM had a significant moderate positive correlation with the
normalised HR (rho=.413, p < .05) and, at the same level, was negatively
correlated with the IBI (rho=-.462 p < .05). This correlation between QoM
and HR is probably related to the significant correlation (rho=.584, p < .01)
of the mean HR with the self-reported effort in the post-play questionnaire.
These correlations are meaningful, since the BPMs increased with the required
movement and effort needed to achieve a good performance.
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The mean of the normalised HRV rMSSD showed a strong significant but
negative correlation with engagement with the partner (rho=-.535, p < .01).
This significant negative correlation demonstrates that HRV is lower when the
player is more engaged. This finding is in line with previous studies that demon-
strated HRV decreases with mental effort [67]. When the player is more engaged
with the game, the body tends to be more relaxed and the heart activity settles
down without much fluctuations. Thereby, as a result of higher engagement
levels, participant’s attention increase, which decreases the player’s HRV.

Aside from these significant correlations, other interesting but non-significant
correlations were also explored. These results were not statistically significant
probably due to the small number of participants in the experiment. The nor-
malised mean HR and HRV showed a low correlation with the reported en-
joyment with the partner, being higher for the HRV rMSSD (see Table 3.3).
Moreover, the level of flow had a small negative correlation (rho=-.157, p=.497)
with the normalised mean HR. This can be related to the negative correlation of
engagement with partner and HRV, as both engagement and flow refers to the
focus or concentration levels. Thus, a higher engagement or flow state would
make the heart activity more steady and, in this case, also slower, although this
would depend on other factors like the amount of exercise made while playing
[67].

3.3.3 Analysis within pairs

This section compares the behavioural and physiological responses between the
players within each pair, investigating the correlations in the continuous signals
of the two players. Due to the intrinsic auto-correlation of the ECG signal, it is
not possible to perform a simple cross-correlation with this data as it is biased
[15]. One way to overcome this problem is to make a 1 second interpolation
of the HR values in order to have an evenly spaced continuous data. Then a
non-overlapping window of 3 seconds was generated for every participant and
play mode. Once the data was windowed, it was possible to perform a nor-
mal Spearman’s correlation between members of one pair in each play mode
separately.

Table 3.4: HR correlations between pair members.

Pair 1 Pair 2 Pair 3 Pair 4
Comp. .509** .165** -0.066* .200**
Collab. .021 .034 .061 .022

Note: Significance of Spearman’s rho: *p < .05; **p < .01.
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As shown in Table 3.4, all players experience a significantly higher correlation
in HR when playing competitively than collaboratively. The higher correlation
of pair 1 during competitive mode might indicate an emotional contagion be-
tween players, as player 2 of this pair was the only participant who reported
to prefer playing competitively. Chanel, Kivikangas and Ravaja [36] suggested
that emotional contagion is one of the factors that could explain physiological
compliance in competitive gaming. However, the low (and in some cases nega-
tive) correlation in the collaborative play mode can be again explained by the
turn-taking strategy followed by all pairs. In the collaborative mode, whilst
one player experienced high levels of arousal, the other player was more relaxed
waiting for his or her turn. For example, pair 3 in competitive play mode have
a very small negative HR correlation due to the lack of engagement, immersion
and even enjoyment of one of the players as reported in the POST question-
naire. Therefore, player 1 was more aroused than player 2 as their HR differ
considerably.

3.3.4 Individual analysis between play modes

Since there was an interest in how players experience each play mode, partici-
pants’ physiological and self-reported data in each play mode was examined. As
shown in Table 3.5, the strong correlation of effort with engagement and immer-
sion in the competitive mode indicates that higher effort leads to higher levels
of immersion and engagement. However, this is not true for the collaborative
mode, although these results can be affected by the turn-taking strategy, which
required less effort.

The normalised mean HR in the solo and collaborative modes were also
correlated at an individual level, looking for relations in the physiological re-
sponses in these play modes. This analysis evidenced a very significant and
strong correlation (rho=.929, p < .01). This indicates that when a player is
relaxed playing the solo mode, s(he) will experience a similar level of arousal
when playing collaboratively.

The mean HRV rMSSD was correlated with the self-reported "fun with
player’s partner" (Table 3.5). Although the result was not significant for the
collaborative mode, it almost was for the competitive mode. These results sug-
gest that the fun level when playing competitively is associated with a higher
variability in the heart activity and therefore a higher degree of stress and frus-
tration, since a high HRV is associated with these affective states [67].
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Table 3.5: Spearman’s correlations between play modes at individual level

Play Mode Param. Depend.
Var. Rho Sig.

Competitive
Effort Engagement .756 .030
Effort Immersion .571 .139
HRV Fun w/ partner .639 .088

Collaborative
Effort Engagement -.103 .808
Effort Immersion .130 .759
HRV Fun w/ partner .041 .923
Mean Norm.
HR Solo

Mean Norm.
HR Collab. .929 .001

Figure 3.6: Participants playing competitive (left) and collaboratively (right).

3.3.5 Behavioural analysis

The analysis in this section focuses on the video observations of the facial ex-
pressions, gestures, postures (body positions) and spatial behaviour of players.
Spatial behaviour or movement can be described as the activity of one individual
moving through the surrounding environment (the room). Participants’ facial
expressions were labeled into 3 groups: positive (happy), negative (frustrated
or angry) or neutral. While positive facial expressions were annotated when
participants smiled or laughed, negative facial expressions were annotated when
participants were frowning or pressing the lips together. Neutral expressions
were collected when no facial expressions were displayed.

Each recorded video was divided into three equal parts, where the predomi-
nant facial expressions for each part was annotated. The annotation was carried
out by a trained experimenter who counted the number and duration of the fa-
cial expressions in each part. The most common expressions in the competitive
mode was negative as the players tried to win but not always got the expected
results (getting stressed and even angry). This can also be explained by the
higher levels of effort reported in the competitive mode. Positive facial expres-
sions were also present in the competitive play mode, usually appearing at the
end of the game when both players relaxed and talked about their performance.
Some participants had recurrent ‘specific’ facial expressions such as biting their
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lower lip, sticking out the tongue or frowning, which displayed their frustration
or engagement. On the other hand, the collaborative play mode elicited a higher
number of positive facial expressions and laughter, whilst neutral faces were the
most frequent in the solo mode.

When labelling postures, gestures and spatial behaviour of players, their re-
actions and behaviours over a whole play mode were observed. Overall, players
had a more relaxed behaviour and body posture during the collaborative and
solo play modes than in competitive mode (Fig. 3.6), displaying a greater spa-
tial movement and more gestures such as head nods or moving arms around
their body. Players changed their postures (body position) more often in the
collaborative play mode (normally after each throw) and had more social in-
teractions, mutual glances and conversations, not only due to the turn-taking
strategy discussion but also talking about the game or their performance. Con-
versely, in the competitive play mode, players were more static, barely moving
their body or legs, and rarely speaking to each other until the game was over.

3.4 Discussion

The significant correlation of HR between players during the competitive mode,
plus the significant mean HR difference compared to the other two modes,
demonstrate a clear arousal increase when playing competitively. The strong
correlation of the normalised mean HR in the solo and collaborative modes
show that the arousal level in these modes are related. In other words, players
are likely to experience the similar levels of arousal when playing alone than
when playing collaboratively. HRV is also an interesting cardiac feature to mea-
sure engagement [158], evidenced by a significant negative correlation with the
self-reported engagement with partner.

However, HR must be interpreted carefully in gaming. While an increase
in HR, caused by the cardiac sympathetic activity, is associated with affective
arousal, a slow HR inflicted by the cardiac parasympathetic activity is related
to attentional engagement [126][161]. Since video games can evoke both states
simultaneously, HR must be interpreted carefully when using it to measure
arousal in games [127]. Although skin conductance can be a good and unam-
biguous indicator of arousal [139], it is inappropriate for studies like this one
where participants are constantly moving their hands [154].

Aside from the aforementioned physiological manifestations of arousal, video
observations also revealed that competitive play mode evoked a tense behaviour
in players. This was manifested through static postures (Fig. 3.6), certain facial
expressions such as sticking the tongue out or frowning, and the lack of verbal
interaction or spatial movement. On the other hand, players were more relaxed
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when playing collaboratively, showing more positive facial expressions. The
number of social interactions among players was higher during the collaborative
play mode, not only with non-verbal behaviours such as postures, gestures or
glances, but also talking more about the game, strategy and performance.

Participants’ non-verbal behaviour should be interpreted carefully. A greater
number of negative facial expressions or negative affective states in a particu-
lar play mode does not implicitly mean a decrease in players’ enjoyment. As
remarked by Lazaro et al [84], different players can experience affective states
in different ways, normally depending on their motivation to play. In a similar
manner, Fairclough [55] argued that certain levels of frustration might be tol-
erated for short periods of time as the player is engaged and challenged. For
instance, players looking for challenges might enjoy negative affective states such
as tension or frustration. Thus, if a player’s motivation is to achieve the over-
all best score, s(he) may enjoy the competitive play mode and the associated
tension it could elicit [108].

Finally, it is interesting to mention the turn-taking strategy all pairs followed
on the collaborative mode. Even though players were informed that they could
play at the same time, independently from the other player, all pairs followed
a turn-taking strategy. Interestingly, these turns did not strictly alternate from
player to player as sometimes one player threw more than 2 times in a row. This
is probably indicative of some sort of emergent friendship dominance, although
this is out of the scope of this study.

3.4.1 Findings

The results reported in this chapter can be summarised in three findings at three
distinct levels of analysis:

1. The analysis at the overall level demonstrates that participants experi-
enced a higher levels of arousal and tension when playing competitively
than in collaborative or solo play modes. Significant differences in players’
HR in the competitive mode support this finding. Moreover, the observed
facial expressions, postures (body positions) and gestures evidence higher
tension and frustration levels in the competitive mode. Similar results
have been found in previous studies examining players’ physiological sig-
nals in video game playing [67]. The overall level analysis also showed
evidences that HRV can be a good indicator of engagement when playing
video games. The significant negative correlation between HRV rMSSD
and the self-reported engagement suggest that high levels of engagement
may reduce the HRV. Low levels of HRV are related to sustained atten-
tion [153], memory performance and mental workload [67]. However, the
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HRV analysis in this study was limited to one feature (rMSSD), ignoring
other HRV features both in the time and frequency domain. More research
needs to be done in gaming to further confirm the relationship between
HRV and engagement.

2. The within pairs level analysed the relationship of continuous measures
between players within the same pair. The analysis revealed that play-
ers’ HR are significantly correlated during the competitive play mode but
not during the collaborative mode. This may be explained by an emo-
tional contagion between players, one of the factors suggested by Chanel,
Kivikangas and Ravaja [36] to explain physiological compliance in com-
petitive game playing.

3. The individual level analysis revealed that players experienced similar
levels of arousal during both solo and collaborative play modes. The
strong significant correlation of participant’s HR in these two play modes
demonstrate that players show alike activation levels when playing alone
and collaboratively with a friend. This result contributes to the findings
of previous works investigating physiological signals in single and multi-
player games [36, 67]. Furthermore, the significant correlation between
the self-reported effort and engagement in the competitive mode suggest
that participants were more engaged when they put more effort in winning
while competing, but not while collaborating.

These findings can be useful for researchers investigating the effects of video
games in the affective states of two co-located players. Thereby, this research
support previous works claiming that physiological responses can be a good in-
dicator of the player’s affective states [67, 158, 106] However, it is important to
note that different results may be obtained using different games or interaction
controllers. An interesting research direction is to explore how this data could
be used to enhance player experience in competitive and collaborative gaming.
Although this study has mainly focused on arousal but not valence, it is im-
portant to consider both dimensions to infer the player’s affective state. An
adaptation engine could use the inferred affective states to adjust certain game
elements or parameters depending on the player’s emotions in order to keep the
player in an optimal affective state.

3.4.2 Limitations

An important limitation of this study was the small number of participants.
Only four pairs (eight participants) took part, which might explain why some
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results were not significant and the low statistical power of these analyses. How-
ever, the results described are indicative of the affective states and behaviours
players manifest when playing in different play modes such as collaborative,
competitive or solo. For this reason, further research needs to be done to con-
firm the statistical validity of the reported results.

Another limitation were the problems with the GSR data due to placement
of the sensor in the hand holding the Wii controller. This sensor aimed to
measure both the player’s electrodermal activity and hand’s motion. However,
the data recorded was very noisy due to the constant hand motion. Although
GSR is a good and unambiguous sensor for measuring arousal [139], it is very
prone to noise if it is used in motion [154]. This means that GSR is not suitable
to measure arousal in studies like the one here described, where participants
have to constantly move their hands.

Finally, due to the intrinsic autocorrelations (correlation with itself) of physi-
ological time series [48], the cross-correlations performed between pair members’
HR might not be valid and should be interpreted carefully. Dean and Dunsmuir
[48] proposed a method to avoid issues with autocorrelation in human-derived
time series such as movement or physiological series. This method consists on
two steps: first, the series should be made stationary, making the series with
a constant mean and standard deviation. Then, the autocorrelation can be re-
moved following a process known as ‘pre-whitening ’, which consists on fitting
and autoregressive model to one of the series and filtering it with the parame-
ters of the model created. Even though it seems reasonable that participants’
arousal levels are correlated with their partner when playing competitively but
not collaboratively (due to the turn-taking strategy), the cross-correlations re-
sults reported in Table 3.4 should be interpreted carefully. Furthermore, the
strong positive and almost perfect correlation (rho=.929, p < .01) of partici-
pants’ HR in the solo and collaborative modes should be further explored as it
might be spurious.

3.5 Summary

The pilot study reported in this chapter has analysed the physiological signals
and non-verbal behaviours of two co-located subjects playing in solo, compet-
itive and collaborative play modes. Participants played the Wii game Boom
Blox: Bash Party, which consists on knocking down a structure made of blocks
by throwing balls against it using a gesture-based controller. The aim of the
study was to assess the usefulness of physiological sensors and behavioural ob-
servations to distinguish between the different play modes proposed. ECG and
GSR sensors were used to measure participants’ physiological signals, as well as
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an accelerometer to gauge the QoM of the hand holding the game controller.
Participants also self-reported their levels of immersion, engagement, effort and
enjoyment after each play mode. The results indicated that participants expe-
rienced higher levels of HR and arousal in the competitive play mode, whilst
similar levels were experienced in the solo and collaborative play modes. In line
with these results, video observations of postures, gestures and facial expressions
revealed higher levels of tension and more negative facial expressions during the
competitive mode. No significant differences were found in the immersion levels,
although the self-reported effort and engagement correlated significantly only in
the competitive mode, which means that putting more effort to win the partner
entails higher levels of engagement.

Following the findings and insights gained from this study, certain mea-
sures were selected according to their meaningfulness and reliability to assess
participant’s affective states. As suggested by previous research [158] [41] and
demonstrated in this pilot study, HR is an effective and well-known measure
to estimate arousal levels. The significant correlations of HRV rMSSD with
the self-reported engagement also suggested that HRV can be a good estima-
tor of engagement levels. These conclusions motivated the study described in
the next chapter, which investigates the effects of valence and arousal on the
player’s WM performance when playing in two interaction modes: Desktop and
VR. It also assesses the WM performance of participants playing a custom-made
video game called Memory Break. Since video games can have positive effects
on the player’s cognitive skills [7, 43], there was an interest on exploring the
use of video games in VR for cognitive training. Finally, the next study will in-
vestigate how affective states can be measured using non-invasive sensors. The
Shimmer ECG and GSR sensors used in this study were remarkably invasive
for some participants as they had to attach electrodes directly to their chest or
hands. Recent advancements in wearable technology allow easier physiological
readings in non-invasive and reliable ways [5].
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Chapter 4

Study 2: Effects of VR
Gaming on WM Performance
and Affective States.

The previous chapter reported a pilot study in which physiological and be-
havioural signals were analysed to assess the affective states and player experi-
ence of two co-located players playing a Wii video game in three different play
modes: collaborative, competitive and solo. The findings of the study indicated
that physiological and behavioural signals can be used to assess the player’s af-
fective states. For example, HR and HRV are suitable indicators of arousal and
engagement respectively. These results confirm the initial hypothesis that af-
fective states can be inferred using physiological and motion sensors, answering
the first research question outlined in Section 1.1.

However, the study of affective states in multi-player gaming contexts im-
plies more challenges than in single-player video games. The interaction between
players within the game influences their affective responses, introducing more
variability in the results [24]. This was demonstrated in the previous chapter
where participants experienced similar levels of arousal when playing competi-
tively, probably due emotional contagion between players [36]. Therefore, it is
important to understand first the effects of gaming in a player’s affective state
before exploring social interactions in multi-player games.

This chapter reports a study that investigates how working memory (WM)
performance is affected when playing a VR game, and the effects of valence and
arousal in this context. This study also explores the differences in self-reported
immersion of participants playing in two interaction modes: Desktop and VR.
Thus, this study answers two of the research questions regarding the effects of
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VR gaming on WM performance and affective states, as well the effects of the
latter on WM. A single-player custom video game called Memory Break was
created for Desktop and VR settings using a gesture-based interaction. Three
difficulty levels (easy, medium and hard) were designed to evoke different levels
of arousal while maintaining the same memory load for each difficulty level.
Physiological and motion sensors were employed to measure the player’s affective
states, as well as self-reported data using the Game Experience Questionnaire
[66] and the Affective Slider [21].

The structure of this chapter is as follows. Section 4.1 outlines the aims
and motivations of the present study. In section 4.1, the tasks and procedure of
this research are described, as well as the Automated Operation Span Task, a
popular WM capacity test employed throughout the remain of this thesis. The
mechanics and interaction of custom video game Memory Break are explained
in detail in section 4.3. This section also documents a pilot study that tested the
game. Moreover, the participants recruited for this study and the questionnaires
and sensors used, are described in section 4.4. Section 4.5 reports the statistical
methods employed and the statistical analysis performed on the data collected.
Finally, section 4.6 discusses the results and implications of this study.

4.1 Aims and motivations

The use of VR in this study is motivated by previous research that referred
to VR as an ‘affective medium’ due to its ability to evoke and intensify the
affective states [132]. VR has brought an increase in the user’s immersion and
engagement. This new degree of immersion, referred to as presence, is reported
as the feeling of ‘being there’ in the virtual world [132]. Research linking presence
and affective states has suggested that higher levels of presence directly influence
the vividness and intensity of the emotions which users experience [132]. This
study aims to examine the differences in self-reported levels of immersion in
Desktop and VR gaming, as well as its effects on player’s affective states in
both interaction modes.

On the other hand, the influence of affective states in attention and WM have
been widely investigated [19, 46, 173]. These two cognitive skills are intrinsically
related; attention regulates the incoming information and WM retains it while
other cognitive processes are ongoing [147]. Whilst arousal has been demon-
strated to enhance attention up to a certain point, after which it has a negative
effect, the role of valence is still considered controversial and might be task de-
pendent [19]. Due to the effects of arousal and valence in our cognitive skills,
this study investigates the link between affective states and WM performance
when playing a VR video game.
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Finally, the aim of creating a custom video game instead of using an ex-
isting one was to be able to control all game elements. Existing commercial
video games can have interactions which are too demanding or game elements
that could distract participants [103]. Developing a custom video game allows
for strict control of every single game element such difficulty level, timings or
graphics.

4.2 Research Design

A within-subjects design was used in this study to compare the effects of game
playing in VR and Desktop settings. Participants had to attend two sessions
to play the custom video game Memory Break in both settings on two different
days. The WM capacity of all participants was evaluated using the Automated
Operation Span Task test. In contrast to the previous study, participants played
the game alone and no qualitative or observational analysis was performed.

4.2.1 Shortened Automated Operation Span Task

The Operation Span Task (OSpan) test is a complex span task that measures
WM capacity [56]. Unsworth et al. [162] proposed an automated version of the
OSpan for easy administration to save time for both the experimenter and the
user. Even this automated version takes around 25 minutes to complete, which
is a very long time for the usual constrained time of research studies. Foster et
al [56] made a shortened Automated Operation Span Task (AOST) where the
experimenter can decide the length of the test by selecting how many blocks
to administer. According to their research, 2 blocks of AOST are enough to
predict a subject’s verbal WM capacity. Mishra et al [99] also suggested using
the OSpan to measure the benefits of game playing and game-based training on
verbal WM. As these researchers claim, it is important to differentiate between
verbal and visual WM.

The test (see Figure 4.1) is divided in 2 phases, the task phase and the recall
and feedback phase. The task phase is composed by a sequence of multiple
maths problem-answer-letter cycles. First, the user is presented a simple math
problem which must be solved as quickly as possible. Once the user has the
solution, they then click the mouse and a new screen appears which contains
a number and two buttons labeled True and False show up. If the number
presented is the right answer to the math problem shown, the user has to click
the True button, otherwise they click False. After the answer, a letter appears
for 800ms, which the user has to remember. Then a new maths problem-answer-
letter cycle starts. When the task phase finishes, the user is presented a panel
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Figure 4.1: Procedure of the Automated Operation Span Task test
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with all the possible letters shown where the user has to recall and input the
letters previously shown in the exact same order. The user then clicks the
Enter button on the bottom right corner and feedback is presented informing
how many letters were recalled correctly and the number of math errors. The
length of each sequence is a random number between 3 and 7 cycles. In one
block, each sequence length (3, 4, 5, 6 & 7) can only happen one time. Therefore,
each block have a total of 25 letters shown, although the user is not informed
about this.

Before the actual test begins, the user is given some time to practice first
only with the letters, then only the maths problem-answer and finally with both
letters and maths together. During the maths practice, the average time to solve
a maths problem for each user is calculated. Users are required to respond the
maths problems within 2.5 standard deviations of their average response time
[56]. If this time is exceeded, a letter will be displayed automatically without
showing the answer screen, and it is counted as a math error. Subjects are
asked to maintain at least an 85% of the maths correct in order to use the data
reliably. The percentage of maths correct is displayed during feedback on the
top right corner of the screen.

4.2.2 Tasks and Setup

The study took place in a quiet room of Queen Mary University of London. This
room was chosen due to its soundproof architecture, which isolated participants
from the outside noise that could disturb or divert attention from the given
task. Participants were anonymised with an ID number. Once the study was
completed, participants were compensated with £15 cash for their time and
travel expenses.

The study consisted of two sessions, one for each interaction mode: Desktop
and VR. Participants were asked to leave one week between sessions and book
both sessions at the same time and day of the week to minimise differences that
might result from being tested at different times of the day. The structure of
sessions 1 and 2 was not exactly the same. Whilst session 1 required participants
to take the AOST test before playing the game, participants only had to play
the game in session 2.

Participants were randomly assigned to a group to play either on Desktop
or VR on their first session. When playing the game in VR, participants played
a 3 minutes VR demo called Blocks1 where they could get used to the HMD,
the virtual world and the interaction with their virtual hands. This aimed to
reduce the novelty effect that a VR experience could cause on affective states

1https://gallery.leapmotion.com/blocks

69

https://gallery.leapmotion.com/blocks


[149] as well as to check for any possible motion sickness the HMD could cause.
Before introducing the game, a Polar H7 heart rate sensor was attached to

the participant’s chest and paired with the HRVLogger [5] app that recorded
the participant’s heart activity. Once participants relaxed for one minute and
the Heart Rate (HR) baseline was recorded, the experimenter asked participants
to wear an electromyograph (EMG) sensor (MYO) on the forearm of the hand
used to interact with the game. The HR baseline was recorded in both ses-
sions to normalise the HR and HRV of each session independently. Then, the
experimenter explained the game mechanics and interaction control.

4.2.3 Procedure

During the first session, participants had to fill in a background and gaming
habits questionnaire, followed by the shortened version of the AOST test [56]
that measured their WM capacity baseline. In order to make the test time as
short as possible, the experimenter verbally explained participants the test’s
instructions and procedure. This also reduced the fatigue that could cause
reading the long test instructions.

After a practice play with Memory Break, each participant played each level
once in random order. Immediately after playing each difficulty level, partic-
ipants reported their level of engagement and completed the In-Game module
of the Game Experience Questionnaire [66], as well as self-reported their levels
of arousal and valence using the Affective Slider [21]. Finally, when all diffi-
culty levels were played, participants completed the Post-Game module of the
Game Experience Questionnaire [66] and rated each levels in terms of difficulty,
boredom, enjoyment, arousal and focus.

4.3 The game: Memory Break

Memory Break (see Fig. 4.2) is a custom-made game developed in Unity inspired
in the mobile game for iOS and Android Smash Hit2. This game has been used in
a similar study by Pallavicini et al [117] that investigated the effects of immersive
(VR) and non-immersive (tablet) game playing in player’s affective states and
immersion. They selected this game (Smash Hit) due to its relevance in the
world of gaming and the possibility to be played in two interaction modes (VR
and tablet). Memory Break and Smash Hit are infinite runner games, also called
endless running3, where the player is constantly moving forward at a constant
speed and it has a very simple interaction such as jumping or shooting. This

2http://www.smashhitgame.com/
3https://en.wikipedia.org/wiki/Platform_game#Endless_running_game
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Figure 4.2: The game Memory Break
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Figure 4.3: Sections of Memory Break

type of game, similar to Project: EVO [9], was chosen due to its simplicity, low
cognitive demands of verbal tasks and easiness to adapt for both Desktop and
VR. It requires constant attention and interaction to achieve success since the
player does not control the game’s pace and has to constantly react to oncoming
objects. Thus, Memory Break is designed to keep players engaged, immersed
and motivated to play.

The goal of the game is to obtain the highest score possible. It consists of
throwing balls at different stationary or moving obstacles to successfully pass
through without crashing into them. If the player crashes, five points are de-
ducted from the score; one point is also subtracted every time a ball is thrown.
In order to get points, the player has to throw and hit the green gems found on
the way, which adds 10 or 20 points depending on the type of gem collected.
The player has infinite balls to throw and therefore, the score can have negative
numbers. This way, the game progress was not dependent on the player’s skills,
as it would be if the player had a limited number of lives.

Each game play is divided into five sections structured as follows: Every
30s of game play, the game stops at a door where a random sequence of let-
ters appears that has to be remembered. These letters appear one at a time
for 800ms, with 500ms gaps between them. The sequence length is randomly
selected between 3 and 7 letters, each sequence only appearing once per level.
This results in a total of 25 letters per game play, the same number of letters as
one block of the AOST test [56] (see 4.2.1). After the sequence is displayed, the
doors open and the game continues for another 7s (see Fig. 4.3). These timings
are taken from previous research studying WM performance in games and the
delayed recall of stimuli [50, 42, 162]. The game then stops again at another
door where the player has to recall and input the letters previously shown in the
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Figure 4.4: Memory Break hand gestures interaction in VR and Desktop set-
tings

exact same order. Once completed, feedback was provided indicating how many
letters have been recalled correctly, the doors open and the game continues to
the next section. Shooting was disabled and the score was hidden when players
stopped in front of a door to avoid distractions.

Three difficulty levels - easy, medium and hard - were designed to evoke three
levels of arousal: low, medium and high arousal respectively. The difficulty levels
are exactly the same in Desktop and VR. The game’s speed is incremented at
each difficulty level by 5%. The number of obstacles between doors is also
incremented by 2 units, as well as the average number of obstacles per section,
being 8, 17 and 34 for the easy, medium and hard level respectively. The
duration of each difficulty level is approximately five minutes.

4.3.1 Game interaction

In order to reduce as many dissimilarities as possible between the two interaction
modes, the same hand motion tracking device, Leap Motion, was used in both
settings. Whilst in VR, this device was attached to the front of the HMD, in the
Desktop mode Leap Motion was placed on top of the desktop (see Fig. 4.4). The
different physical location of Leap Motion in the two interaction modes led to two
different interaction gestures. Due to the different placement of Leap Motion in
respect to the player’s body, the hand tracking device could not efficiently track
the same gesture in both settings. Various gestures were tested, selecting the
ones more comfortable and easier to control by unexperienced players. These
gestures tried to be comfortable for the players, avoiding any fatigue that could
result from repeating the same gestures for a period of five minutes.
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4.3.2 Pilot study: Testing Memory Break

The game was tested before the actual study to assess whether the three dif-
ficulty levels evoked different levels of arousal. Brief informal interviews were
carried out to gather suggestions and opinions about the game. Seven partici-
pants took part in a pilot study with a mean age of 28.57. Participants reported
a mean arousal level of 0.7 (SD:0.16), 0.73 (SD:0.18) and 0.79 (SD:0.16) in the
easy, medium and hard levels. As a result, the easy level was modified further
in order to make it easier. No significant differences were found on the valence
level. These results indicate that three distinct levels of arousal are achieved in
the three difficulty levels created, validating the game design. It was important
that the hard level was challenging enough but not impossible to play as this
could lead to demotivation of the less experienced players.

Some improvements to the game were made according to the participants’
suggestions such as adding audio feedback when touching buttons or changing
certain colours. None of the participants reported motion sickness or nauseas
when playing in the VR setting. Nonetheless, some of them reported fatigue
on the arm used to play as a consequence of holding the hand in the air and
constantly repeating the same gesture to shoot balls. For this reason, partici-
pants in the actual study were instructed to relax the arm when possible (i.e.:
when letters were displayed on top of the doors). Finally, many participants
highlighted the importance of the music and audio effects to achieve a good
level of immersion.

4.4 Data Collection

This section describes the subjective (self-reported) and objective (physiological
and motion) data collected during the present study, as well as the sensors used.
Finally, the data normalisation and features extracted from physiological signals
are explained.

4.4.1 Participants

Thirty participants, 15 male and 15 female, with mean age of 26.43 (SD: 4.8)
were randomly assigned to one of the interaction modes in their first session.
None of the selected participants had been diagnosed with any learning difficulty
such as Dyslexia. 43% of the participants reported to have played video games
between zero and two hours the week before the study, while 33% did not
play any. All participants reported that they liked the game overall in both
interaction modes, except three participants who disliked the game in their
second session when playing in Desktop setting. The motivation of 60% of the

74



participants when playing video games was just for fun and 33% reported to
play ”to kill the time”. 63% of the participants had never used a HMD before
or experienced any VR content. Hence, VR was a novel technology for most of
the participants, which could have increased their motivation and the intensify
of the affective states experienced, as reported in previous research [132].

Most of the participants (87%) found the Desktop interaction difficult to
manage, and only 27% struggled in VR. This was mainly due to the different
location of Leap Motion (LM) in Desktop and VR (see Fig. 4.2). The placement
of this sensor in front of the HMD made the VR interaction easier and more
natural to control, while the Desktop interaction was reported to be less natural
and less comfortable.

4.4.2 Questionnaires

Three questionnaires were designed to collect subjective data from the par-
ticipants (see Appendix B). At the beginning of the first session, participants
completed a Pre-Experiment Questionnaire that gathered information about
their background, gaming habits and prior gaming experience. This question-
naire also asked participants whether they had been diagnosed with any learn-
ing difficulty such as Dyslexia or Attention Deficit and Hyperactivity Disorder
(ADHD).

After each difficulty level, participants completed a post-condition question-
naire and self-reported their levels of valence and arousal. This questionnaire
contained the In-game version of the Gaming Experience Questionnaire (GEQ)
as well as three questions about their levels of engagement, immersion and mo-
tivation. The In-game version of the GEQ is a concise version of the core GEQ,
specifically designed to evaluate the game experience at multiple intervals dur-
ing the game playing. This short version consists on 15 items that evaluate the
7 components presented in the core GEQ. These components are: Competence,
Flow, Sensory and Imaginative Immersion, Tension, Challenge and Positive and
Negative Affect. Valence and arousal were reported using the Affective Slider

Figure 4.5: Affective Slider [21].
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[21] (see Fig. 4.5), a modern digital version of the Self-Assessment Manikin [28].
Once all the levels were completed, participants completed a last post-session

questionnaire, which included the Post-game module of the GEQ. This module
consists of 17 items that assess 4 components: Positive Experience, Negative Ex-
perience, Tiredness and Returning to Reality. The post-session questionnaire
also asked participants about their level of immersion, engagement, presence
and motivation overall in the interaction mode played. Participants also re-
ported whether they liked or not the game and if the interaction was difficult
to manage. Finally, participants rated each levels in terms of difficulty, bore-
dom, enjoyment, arousal and focus. Once the two sessions were completed,
participants reported in which interaction mode they were more motivated to
success, focused, aroused, immersed, challenged and which setting they enjoyed
the most.

4.4.3 Physiological and Motion Sensors

Two physiological and two motion sensors were used in this study. The phys-
iological sensors were a heart activity sensor and an electromyograph (EMG).
Polar H7, a wearable chest strap sensor, recorded participant’s heart activity.
This device have been used in other studies that looked at stress awareness for
children with ADHD in breath-controlled biofeedback games [150]. Data from
the Polar H7 device was recorded on the iPhone app HRVLogger [5] via Blue-
tooth. This application allowed to add markers for each difficulty level. The
HRVLogger app provided raw and pre-processed RR and HR data, sampled at
1Hz, as well as multiple time and frequency domain HRV features such as root
mean square of successive differences (rMSSD), average of normal-to-normal in-
tervals (AVNN), standard deviation of normal-to-normal intervals (SDNN), or
Low and High Frequencies (LF and HF) and the ratio between them (LF/HF).
The time window to calculate HRV features was set to 30 seconds, the minimum
allowed. This means the HRV features are computed every 30s.

The EMG sensor MYO recorded the forearm’s electrical activity of the hand
used to interact with the game. MYO is built of 7 sensors that measure the
electrical resistance of the forearm muscles. This data informed about partic-
ipants’ hand muscle activation (i.e.: how much pressure or force participants
put on their hand) while playing the game. However, since the gestures were
different in VR and Desktop modes and thus, different muscles were active, the
data logged on each interaction mode could not be compared between them.

The motion sensors employed were the Head-Mounted Display (HMD), only
used in the VR setting, and the hand-tracking device, Leap Motion, was used in
both settings. The data logged from Leap Motion was the position and velocity
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of the hand controlling the game. The HMD’s rotation axes were recorded
to measure participant’s head motion while playing in VR. The rotation was
recorded in quaternions which is composed by four dimensions (X, Y, Z and
W), although the W dimension was unfortunately not logged in.

4.4.4 Data pre-processing

Prior to the analysis, each participant’s HR and HRV were normalised dividing
the mean of each difficulty level by their baseline mean. This normalisation
procedure scales the values so that all participants have a common mean of
1. No other pre-processing was needed on the HR or HRV features as they
were computed by the HRVLogger app [5]. Different HRV features such as the
average of normal-to-normal intervals (AVNN), root mean square of successive
differences (rMSSD) and the low-high frequency ratio (LF/HF) were selected
for the analysis. These features were chosen based on previous research linking
HRV and visuospatial WM performance [153].

The hand’s muscle activation data recorded by the EMG (MYO) did not have
to be normalised as it was automatically calibrated when worn and synchronised
with the computer. The mean level hand’s muscle activation in each difficulty
mode was calculated averaging the value each sensor by 7, the number of sensors
measuring the muscle’s activity.

WM capacity and WM performance scores were also normalised dividing
the number of letters recalled correctly by the total number of letters presented,
which results in the percentage of letters recalled correctly.

4.5 Analysis and results

This section analyses participants’ player experience and affective states play-
ing Memory Break in Desktop and VR. This analysis also explores the effects
of arousal, valence and immersion on participants’ WM performance. Since
participants’s WM capacity can affect their WM performance, this analysis ex-
amines individual differences in players’ performance dividing participants in
two groups depending on their WM capacity (low vs high) as measured with
the AOST.

4.5.1 Statistics

The statistical analysis of this study was performed using RStudio 1.0.1. Firstly,
Levene’s tests were carried out to assess the normal distribution of the data.
None of the tests were significant, which suggests the data is normally dis-
tributed. Before assuming the homogeneity of variance of the data, some linear
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models with the dependent variables of interest were created to plot and assess
the distribution of the residuals. The Normal Q-Q plots did not show any vio-
lation of the homogeneity of variance, assuming the data is homoscedastic and
thus, normally distributed.

To evaluate significant mean differences between interaction modes and be-
tween difficulty levels, repeated measures Analysis of Variances (ANOVA) were
carried out. This test is useful to assess whether there is mean statistically sig-
nificant differences in a certain variable across two or more groups or conditions.
However, ANOVA tests only inform if statistical differences exist. They do not
indicate in which conditions the differences are between. Further post-hoc re-
peated measures and independent sample t-tests were performed where relevant
to evaluate how difficulty levels differed between them. Due to multiple com-
parisons, Bonferroni corrections 4 were applied where one variable was tested
against more than one condition. The new significance level after the Bonferroni
correction was set at p < .017.

Spearman’s correlations (rho) were performed to assess monotonic relation-
ship between two variables. Since most of the variables tested in this study
were ordinal, this method was used to perform correlations between dependent
and independent variables. Furthermore, Spearman’s rank correlation does not
make any assumption about the distribution of data, which makes it more ro-
bust.

Linear Mixed Effects (LME) models were created to perform regression anal-
ysis. These regression models are normally used when dealing with repeated
measures variables. LME models are becoming popular recently due to their
flexibility to account for fixed and random effects. Likelihood ratio test were
performed to evaluate the goodness of fit of the models created. This ratio test
indicate if the model proposed is significantly different from the null model and
therefore, whether the parameters of the LME model contribute to predict the
dependent variable. A full description of the LME models is reported in the
results section as well as the Chi-square values, degrees of freedom and p-values
resulting from the likelihood ratio test.

4.5.2 Interaction modes and difficulty levels

The analysis reported in this section compares participants’ self-reported and
physiological data while playing in Desktop and in VR. The only three partici-
pants that did not like the game, reported it after playing the Desktop setting
in their the second session, which could be due to the difficulty controlling the

4The Bonferroni correction is used to avoid Type I errors when making multiple compar-
isons. It is calculated by dividing the significance level (in this case 0.05) by the number of
tests that are being performed.
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Figure 4.6: Post-Session Questionnaire: Comparison of self-reported variables
between interaction modes.

interaction and a comparison with the VR setting.
Participants reported VR as the interaction they enjoyed the most, being also

the setting where they felt more immersed, aroused and focused (Figure 4.6).
VR was also the mode where most participants reported to be more motivated
to play, while one third of the participants reported to be equally motivated
in both interaction modes. As shown in Figure 4.7, most of the participants
felt more bored in level 1 in both interaction modes, whilst the third level
was the most difficult one and where they felt more aroused. Players reported
they enjoyed similarly levels 2 and 3 on both modes. Desktop was reported
challenging due to the difficulties in controlling the interaction, while only 27%
reported to struggle controlling the VR interaction. Participants described the
gesture interaction used in Desktop as uncomfortable and "not very natural".
This indicates that participants experienced higher levels of challenge in Desktop
due to the environment and interaction, not by the game itself.

Two-way repeated measures ANOVAs with Bonferroni corrections were car-
ried out to test simultaneously for significant differences in each difficulty level.
Engagement showed a significant difference between difficulty levels (F= 7.25,
p<.01) and interaction modes (F=18.91, p<.001), while immersion (F=25.41,
p<.001) and motivation (F=16.95, p<.001) were only significantly different be-
tween interaction modes, being both higher in VR.

The normalised mean HR was significantly higher in VR compared to Desk-
top (F=9.70, p<.001). In terms of difficulty levels, level 3 evoked the highest
HR (F=24.53, p<.001). Nevertheless, these results could be affected by how
much participants had to move their hand and head (in VR) to succeed in each
difficulty level. Among the HRV features extracted, only AVNN showed sig-
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Figure 4.7: Post-Session Questionnaire: Comparison of self-reported variables
in each difficulty level in both interaction modes.

nificant differences between difficulty levels (F=35.42, p<.001) and interaction
modes (F=8.76, p<.01), while rMSSD did only for difficulty levels (F=8.96,
p<.001). The self-reported levels of arousal (F=12.73, p<.001) and valence
(F=19.70, p<.001) were statistically lower in Desktop than VR. Furthermore,
arousal (rho=0.48, p<.001) and valence (rho=0.56, p<.001) correlated signifi-
cantly with the reported immersion in both settings, indicating that high levels
of immersion lead to an increase in self-reported valence and arousal. These
results are in line with previous work measuring affective states in VR environ-
ments [132].

The EMG data was analysed separately in each interaction mode as the
gestures were not the same in Desktop and VR and therefore different muscles
were activated. Significant differences were found between difficulty levels in
Desktop (F=31.18, p<.001) and VR (F=66.01, p<.001). As shown in Figure 4.8
, the highest muscle activation was observed in the hard level of both interaction
modes. However, this could be explained by the number of shooting gestures
participants had to do in the hardest level as there were more obstacles.

4.5.3 Working Memory performance

An important aspect of this study looked at differences in the normalised WM
performances. A first ANOVA analysis on each interaction separately showed
a higher but not significant difference in VR (F=2.20, p=.09) than in Desktop
(F=0.52, p=.67). The greater and almost significant differences in VR encour-
aged a further analysis to assess for statistical differences in the difficulty levels
only in this interaction mode. Post-hoc repeated measures t-tests between the
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Figure 4.8: Hand’s muscle activation (i.e.: pressure exerted in the hand) in
each difficulty level of Desktop and VR
NOTE: According to MYO’s documentation, EMG data is provided in unitless
format called "activation"[1], although EMG is normally measured in µVolts

Figure 4.9: WM performance of all participants in each difficulty level
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WM capacity and WM performance scores were performed. Due to the mul-
tiple comparisons between the WM capacity baseline and WM performance in
each difficulty level, Bonferroni corrections were made, setting a new significant
level at p< .017. Significant differences were found in easy (t=-2.18, p<.05)
and medium (t=-2.15, p<.017) difficulty levels (see Fig. 4.9), although only
the later is significant when applying Bonferroni corrections on the significance
level. No significant differences were found in the most difficult level (t=-0.80,
p=.43). Moreover, the normalised WM performance scores presented a weak
but significant positive correlation with the self-reported competence (rho=0.23,
p<.01), and a negative correlation with tension (rho=-0.28, p<.001).

Based on the normalised WM capacity baseline, as measured with the AOST
[56] test at the beginning of the study, participants were divided into two groups:
low and high WM. Those with a normalised WM baseline lower than the overall
median (0.83) were assigned to the low WM group, and those above the median
to the high WM group. This resulted in 13 subjects in the low WM group
and 17 in the high WM. A repeated measures ANOVA was performed for each
group, only showing significant differences in the lowWM group for the difficulty
levels (F=4.96, p<.01). A post-hoc paired t-test analysis assessed statistical
differences for the difficulty levels in the low WM group compared to their WM
capacity baseline. Participants with low WM achieved significantly better WM
scores in VR (Fig. 4.10) in the easy (t=-2.18, p<.05) and medium (t=-3.22,
p<.05) difficulty levels. Significant differences using two-samples t-tests were
also found in the HRV features extracted between these groups. Similar to
previous research reported in a visuo-spatial WM task [153], the LF/HF ratio
(t=4.31, p<.001) was significantly higher for the low WM group.

4.5.4 Effects of valence and arousal on WM

This section investigates Figures 4.10 and 4.11, analysing the self-reported levels
of valence and arousal of the low and high WM groups. As shown in Figure 4.11,
arousal levels increased for all participants in all difficulty levels. According to
Bennion et al. [19], arousal has beneficial effects on WM up to a certain point,
after which it has a negative effect. Looking at the self-reported arousal of
the two groups, the highest level of arousal is observed in the third and most
difficult level of both interaction modes, which correspond to the lowest WM
scores, specially for the high WM group in Desktop setting.

The levels of valence showed more interesting results, correlating significantly
with WM performance (rho=0.19, p<.01), and being particularly pronounced
for the high WM group (rho=0.39, p<.001). This indicates that high levels
of positive valence improved WM performance. It was observed that when
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Figure 4.10: WM performance of Low and High WM groups in each difficulty
level

Figure 4.11: Self-reported arousal and valence of Low and High WM groups in
each difficulty level
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valence and arousal are both high, i.e. when participants were challenged but
feeling successful, they obtained their best WM score. More specifically, WM
performance can improve when the player is in a state of enjoyment or flow,
described by Csikszentmihályi as the optimal experience [45]. However, the
performance of the low WM group in Desktop’s level 1 is explained by the order
of levels played, since half of the low WM participants played level 1 last, having
had more experience playing the game and being more relaxed.

Linear Mixed Effects regression models were used to predict WM perfor-
mance and the immersion of participants. We developed a model using the
self-reported valence and arousal as fixed effects and subjects as random effects
to predict WM performance. Since we are interested in the relationship between
WM and affective states, arousal and valence were the only predictors for the
WM model. As seen in Table 4.1, valence and arousal were significant predictors
of WM performance. However, the estimate of arousal is negative while valence
is positive. This means that high levels of arousal may have negative effects on
the WM performance, whilst high levels of positive valence can have positive
effects. A likelihood ratio test was performed, showing the goodness of fit of
this model (Chi-sq=27.17, p<.001).

Using the same random effects, the model to predict immersion used WM,
the interaction mode and HRV rMSSD as fixed effects. The inputs of this
model explored the relationship between WM, HRV and immersion. The in-
teraction mode and HRV rMSSD were significant predictors of immersion, but
not WM, although it improved the model (see Table 4.2). The negative esti-
mate of HRV rMSSD suggests that high levels of HRV may have negative effects
in the immersion, which means that participants being more relaxed, tend to
be less immersed. The likelihood ratio test was also significant for this model
(Chi-sq=46.92, p<.001).

Table 4.1: LME model of WM

Estimate Std. Error df t p
(Intercept) 19.54 1.17 175 16.71 <.001
Valence 6.13 1.12 161 5.47 <.001
Arosual -3.79 1.52 170 -2.49 <.01

Table 4.2: LME model of immersion

Estimate Std. Error df t p
(Intercept) 1.98 .43 170 4.55 <.001
WM .03 .02 179 1.55 .12
IM (VR) .62 .09 151 6.66 <.001
HRV rMSSD -3.79 .19 179 1.88 .06
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4.6 Discussion

4.6.1 WM in VR

The results presented evidence of how game playing in VR can improve WM
performance and intensify the self-reported affective states of the players. While
being immersed and engaged in a VR game, players make better use of their
cognitive resources as they are more activated and motivated. This effect was
stronger on those with a lower WM capacity, who showed a significant improve-
ment in their WM performance when playing the easy and medium difficulty
levels in VR.

Some participants reported that the different sessions’ structure affected
their WM performance. As the first session was longer due the AOST test
preceding the game, some participants informed this affected their cognitive
skills. Notwithstanding, there was disagreement between participants regarding
the effects of the AOST on their WM performance in Memory Break. Whilst
some participants manifested that the AOST caused them cognitive fatigue,
others reported it activated them, being more ready for the WM tasks presented
in the game. Practice effects of participants playing Memory Break again in
their second session could have also impacted on the results as they already
had experience playing the game. Nevertheless, the randomised controlled trial
design of this study should have removed these effects.

It is important highlighting the differences in the AOST, which measured
participant’s WM capacity, and the WM task in Memory Break could. Some
participants reported that the AOST test was more challenging than the WM
task in Memory Break as the first one involves math problems and letters, which
share the verbal cognitive resources. This could have a positive impact on the
results as those with a low WM would perform better in the WM task within
Memory Break.

4.6.2 Arousal, valence and WM

The high levels of arousal and valence reported in VR had a positive effect on the
player’s cognitive performance, possibly enhancing the capture and encoding of
information. However, high levels of arousal had negative effects on the player’s
WM when not accompanied by high levels of positive valence. In other words,
when players were highly aroused but not enjoying the experience, the WM
performance decays. Likewise, if players are experiencing high levels of arousal
and positive valence, player’s WM performance may improve.

These results can be linked to the flow theory proposed in [45] known as
a state of full immersion and engagement triggered when a subject’s skills can
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overcome challenges, creating a positive experience and positive affect. When
players are in this flow state, highly focused and enjoying the game, they make
an optimal use of their cognitive skills and thus, a better WM performance is
achieved. Hence, the game has to be challenging enough but not too difficult in
order to keep the player engaged, motivated and focused on the given task.

Significant differences were also found on the physiological signals measured.
The normalised mean HR was significantly higher in VR. The normalised mean
HRV features AVNN and rMSSD also showed significant differences between in-
teraction modes, being lower in VR than Desktop. AVNN was also significantly
different between difficulty levels. The hand’s muscle activation, measured with
the EMG, was significantly higher in the hard level on both interaction modes.
These results are in line with previous findings suggesting players had a higher
muscle activation (i.e.: pressure on the hand when the difficulty increase and
felt more challenged. Nonetheless, these results might be affected by the number
of shooting gestures needed to succeed in the hard level. Significant differences
found in the normalised mean HR and HRV could also have been affected by
the greater amount of movement required in the most difficult level.

4.6.3 Implications

Game playing in VR can improve the player’s WM performance. Higher level of
self-reported immersion, engagement and motivation when playing in VR have
a positive effect on the player’s cognitive skills. This effect is especially pro-
nounced on those subjects with a low WM capacity. The results of this study
suggest that valence and arousal can have positive effects on the WM perfor-
mance. High levels of arousal accompanied by high levels of positive valence help
players to make a better use of their cognitive resources and therefore improve
their attention and WM performance. However, when high levels of arousal
are not accompanied by positive valence, creating a negative experience, play-
ers have a worse WM performance. This is related to the theory of flow [45],
which argues that there should be a balance between the challenges given and
the player’s skills to foster an optimal affective state of enjoyment that sustains
engagement.

An important limitation of this study was the difference in placement of
the hand motion tracking device that led to different gestures in Desktop and
VR settings. The reported difficulties in controlling the Desktop interaction
might have affected the level of immersion, even though the majority of the
participants liked the game in this setting. It is also important to mention that
different results could have been obtained using other types of games requiring
higher verbal or spatial cognitive demands.
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4.7 Summary

This study has investigated the effects of game playing in Desktop and VR
settings on WM performance, as well as the effects of the self-reported arousal
and valence on WM performance. A custom video game with a hand-gesture
based interaction was developed for both Desktop and VR. Three difficulty
levels were created to induce different levels of arousal, maintaining the same
memory load for all levels. Physiological and self-reported measures of valence
and arousal among other variables such as immersion and engagement were
collected.

Higher levels of self-reported immersion while playing Memory Break in VR
had a positive effect on the player’s WM performance. This improvement was
particularly pronounced in participants with low WM capacity, as measured
with the AOST test [56]. Suggestions have been presented of how self-reported
affective states can be beneficial for WM when playing a video game. High
levels of arousal and positive valence can create a positive experience, leading
players to a flow state [45] that may have a positive impact on the player’s WM
performance.

This research proposes to work towards a closed-loop video game in VR that
includes the player’s affective states in the adaptive loop in order to improve
the adaptation. The ideal affective video game for cognitive training should
keep the player in an optimal affective state while challenging his or her cog-
nitive skills. Since VR is known to increase the level of immersion [132], a VR
game can potentially help players to achieve a better WM performance. The
next chapter focuses on implementing a machine learning algorithm in the VR
game Memory Break to detect the player’s arousal and valence in real-time, in
order to automatically adapt the difficulty level to improve the player’s WM
performance.

87



Chapter 5

The Adaptation Engine

This chapter documents the design, implementation and testing of the affect
recognition system as well as of the adaptation engine. Whilst the affect recog-
nition system detects the player’s affective states, the adaptation engine uses
the system’s output and the player’s performance to adapt the game’s difficulty
in real-time. The adaptation engine, described in detail in section 5.1, aims to
sustain the player in an optimal affective state in order to improve the WM
performance. The system analyses various motion and physiological features
extracted from different sensors to recognise the player’s arousal and valence
levels. Given the results reported in the previous chapter, the remainder of this
research is focused on VR, disregarding the Desktop interaction mode. The im-
plementation of the adaptation engine in Memory Break is described in section
5.2, followed by a series of three pilot studies that tested it, reported in section
5.3. Finally, the decision rules for difficulty adaptation are outlined in section
5.4.

5.1 Affect recognition system design

Using the data collected (see Figs 5.1 and 5.2) in the study reported in the
previous chapter (Chapter 4), two machine learning algorithms were trained for
arousal and valence classification. Table 5.1 summarises the sensors used in the
previous study as well as the type, sampling frequency, body part sensed and
data collected from each sensor.

5.1.1 Data pre-processing

The data collected was cleaned and pre-processed in MATLAB prior to the
feature extraction. First, the data collected from the HMD was down-sampled
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Table 5.1: Sensors and data collection.

Sensor Type Sampling
Frequency

Body
Part

Data
Collected

Leap Motion Motion 50Hz Hand Velocity
HMD Motion 75Hz Head Rotation
Polar H7 Physiological 1Hz & 0.03Hz Heart HR and HRV

MYO Physiological 50Hz Forearm
Muscles Muscle activation

Note: HR and HRV were sampled at different frequencies.
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Figure 5.1: Sample data of HR (top), MYO’s EMG muscle activation (middle)
and Leap Motion’s velocity magnitude (bottom).
NOTE: According to MYO’s documentation, EMG data is provided in unitless
format called "activation"[1], although EMG is normally measured in µVolts
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Figure 5.2: Sample data of HMD’s angular rotation in X and Y axis.

to 50Hz using a linear interpolation between the values. This put the HMD
and Leap Motion’s (LM) data at the same sampling rate. One participant was
removed from the dataset as he reported high levels of arousal but his normalised
HR during play was below his resting HR. Even though the participant was
equally or more relaxed playing than resting, his reported levels of arousal were
always greater than 0.87 (the overall median of arousal). Since 3 data points
were gathered for each participant in Study 2, one per difficulty level, the original
data set of 90 data points was reduced to 87.

The HMD’s angular rotation (see Fig. 5.3) data was recorded in Unity
in quaternions instead of Euler angles or radians. Quaternions are a four-
dimensional (X, Y, Z and W) number system that extends complex numbers to

Figure 5.3: HMD’s rotation on X (pitch), Y (yaw) and Z (roll) axes
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Figure 5.4: Conversion of HMD’s rotation in quaternions (left) to radians
(right). From top to bottom, the figure shows the rotation on the X, Y and Z
axes. Note how the conversion from quaternions to radians did not recompose
the Z axis satisfactorily.

describe that rotation in a three-dimensional space that prevents gimbal lock1,
which is the loss of one degree of freedom in a three-dimensional rotation. The
HMD’s data was converted to radians to calculate the angular velocity and ac-
celeration (see Fig. 5.4). However, one of the quaternion’s dimension (W) was
missing when recording the data. Replacing the W dimension with a vector of
ones, the X and Y axes were recomposed with an acceptable error margin, but
not the Z axis. As shown in Figure 5.4, this introduced some noise in the Z
axis when converting quaternions into radians so it was disregarded. Although
removing the Z axis rotation (roll) implies a reduction of accuracy on the re-
composition of head movements, researchers have only used rotations on X and
Y axes to detect affective states from head motion [17]. Therefore, the HMD’s
angular velocity and acceleration magnitudes were calculated with the X and Y
axes only.

Once the HMD’s data was converted to Euler angles, the data collected
from LM, HMD and MYO was smoothed using a moving average filter with a
window of 5 samples. This filter preserved the envelope of the signal, which was
used to detect peaks and valleys. No filtering was applied to either HR or HRV
features as they were already pre-processed and smoothed. Finally, since there
was no interest in the direction of the head or hand motion, absolute values
were computed for LM’s velocity and HMD’s angular rotation.

5.1.2 Feature extraction

Various features were computed from the motion (HMD and LM) and physi-
ological (HR and EMG) sensors used in the previous study. Table 5.2 details

1https://en.wikipedia.org/wiki/Gimbal_lock
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Table 5.2: Features extracted of each sensor.

Sensor Activity Measured Features Extracted

HR and
EMG

Cardiac Activity
and
Hand’s Muscle Activation

Mean

Standard deviation
Maximum

Mean of 1st derivative of raw signal

Mean of 1st derivative of normalised signal

Mean of 2nd derivative of raw signal

Mean of 2nd derivative of normalised signal

HR Cardiac Activity
Mean of HRV AVNN
Mean of HRV rMSSD
Mean of HRV LF/HF Ratio

HMD
and LM

Head and Hand’s
Velocity and
Acceleration

Mean
Standard deviation
Maximum
Mean of peaks’ width as well as
of the initial and final slopes
Standard deviation of peaks’ width
as well as of the initial and final slopes
Maximum of peaks’ width
as well as of the initial and final slopes
Number of peaks

LM Hand’s motion Number of zeros1

1 Time the playing hand is relaxing, out of Leap Motion’s field of view.
Total number of features of each sensor: HMD: 26; LM: 27; EMG: 7; HR: 10.
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all features extracted. This section describes the features extracted from each
sensor.

Motion features

Motion features were calculated using the velocity and acceleration magnitudes
of the HMD and the hand used to interact with the game, tracked with LM.
Only the hand’s palm motion was recorded for feature extraction, no fingers were
analysed. Prior to the extraction of motion features, a z-score normalisation
was applied to the motion’s velocity and acceleration of both HMD and LM,
having zero mean and one standard deviation (Formula 5.1). Since velocity has
a magnitude and direction, absolute values were calculated for each axis of both
the HMD and the hand’s motion, disregarding the direction. Acceleration is the
rate of change of velocity of an object with respect to time 2. Magnitude and
direction were preserved as they provided information about the acceleration
and deceleration. Once velocity and acceleration were calculated, the axial
components of each feature were summed and square-rooted to calculate the
magnitude of both features. The acceleration’s magnitude, also called quantity
of motion (QoM), has been one of the most successful motion features to classify
emotions [35]. Mean, maximum and standard deviation of both velocity and
acceleration were computed for the HMD and hand’s motion.

When playing in VR, participants had to keep their hand suspended in
front of the HMD so Leap Motion could track their hand gestures. In order to
avoid arm fatigue, participants were encouraged to relax and put the arm down
when possible, disrupting the hand’s tracking. This absence of hand detection
turned into another feature describing how much time participants had their
hand down. This feature was computed counting the number of zeros (i.e. no
hand detected) in Leap Motion’s data.

x =
xi − µ
σ

(5.1)

Following Castellano’s mathematical model to analyse gestural expressivity
[35], various motion features were derived such as the peaks’ slopes and duration
of the velocity and acceleration of both the HMD and Leap Motion (LM). Since
there was no specific gestures labeled with emotions, as in Castellano’s work, a
peak detection algorithm was used to find all the peaks with a threshold of 2
and a minimum distance between peaks of 0.5. Prior to the extraction of these
features, velocity and acceleration were normalised (Formula 5.1), having zero
mean and one standard deviation. To calculate the initial and final slopes as
well as the duration of the peak, it was necessary to detect the valleys before

2https://en.wikipedia.org/wiki/Acceleration
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and after each peak found. This was accomplished by inverting the signal, so
that what used to be valleys would present as peaks. Another peak detection
algorithm was applied to the inverted signal, with a threshold of -0.1 and no
minimum peak distance. This returned all the valleys in the original signal
smaller than 0.1. For each peak’s location, the valleys before and after were
identified according to the valley’s location. Then the initial slope was calculated
subtracting the value of the valley before the peak from the peak’s value, and
then dividing by the time difference between this valley and the peak. The same
method was used for the end slope calculation. Finally, the peak’s duration - in
milliseconds - was calculated by subtracting the timestamp of the valley before
the peak from the timestamp of the valley after it. Mean, standard deviation
and maximum values were calculated for the peaks’ duration, start and final
slopes. The number of peaks detected were also used as a feature. This resulted
in a total of 36 features for the HMD, and 37 for the hand’s motion. A z-score
normalization was applied to all computed features using their own mean and
standard deviation.

Physiological features

Before computing the physiological features, participants’ HR and HRV were
normalised using their own baseline recorded while resting at the beginning of
each session. No normalisation was needed for the EMG as it was calibrated in
every session.

Six features were computed for the physiological sensors (HR and EMG) fol-
lowing Picard, Vyzas and Healey’s proposed features [122] to measure emotions
from physiological signals (see Formulas 5.2-5.7). The main advantage of these
features is that they can be easily computed in real-time, which makes them
suitable for implementation in Memory Break. The maximum of each signal
was also added to the feature sets.

The HR feature set included the mean of three heart rate variability (HRV)
features: the root mean squared of successive differences (rMSSD), the average
N-N intervals (AVNN) and the low to high frequency ratio (LF/HF). Since the
HRV recordings were made every 30s (sampling rate of 0.03Hz), the same time
as one game’s section, only one HRV observation could be considered for each
section. Therefore, no further features could be obtained from only one HRV
observation. The raw values of AVNN, rMSSD and LF/HF ratio were included
in the set of HR features. This resulted in a total of 10 HR features and 7
EMG features. Again, a z-score normalization (Formula 5.1) was applied to all
physiological features using their own mean and standard deviation.
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µ =
1

N

N∑
n=1

Xn (5.2)

σx = (
1

N − 1

N∑
n=1

(Xn − µx)
2)1/2 (5.3)

δx =
1

N − 1

N−1∑
n=1

|Xn+1 −Xn| (5.4)

δ̃x =
1

N − 1

N−1∑
n=1

∣∣∣X̃n+1 − X̃n

∣∣∣ = δx
σx

(5.5)

γx =
1

N − 2

N−2∑
n=1

|Xn+2 −Xn| (5.6)

γ̃x =
1

N − 2

N−2∑
n=1

∣∣∣X̃n+2 − X̃n

∣∣∣ = γx
σx

(5.7)

5.1.3 Labelling and classification

The aim of the machine learning for affect recognition was to be able to recog-
nise at least four distinct affective states. Due to the limited amount of data
available from the previous study (87 data points), it was split into two classes
for arousal (high vs low) and valence (positive vs negative) separately. Since
the distribution of the self-reported affective states was considerably skewed
(see Fig. 5.5), the median of the reported valence (0.85) and arousal (0.87) was
used as a threshold to divide arousal and valence into two classes. Forty-nine
data points were categorised as low arousal and thirty-eight as high arousal,
and forty-nine data points for negative valence and thirty-eight for positive va-
lence. Following Russell’s model of affect [138] (see Fig. 2.1), the combination
of these arousal and valence classes result in 4 emotions: low arousal negative
valence (bored), low arousal positive valence (relaxed), high arousal negative
valence (frustrated) and high arousal positive valence (excited). These 4 emo-
tions, the two classes of valence and the two classes of arousal were used to label
the data for classification. Table 5.3 show the number of data points for each
classification label.

Eight different machine learning algorithms were tested for arousal and va-
lence classification using Weka [169]. These algorithms were: 1) probabilistic
(Naïve Bayes); 2) linear (Logistic Regression); 3) non-linear models (Support
Vector Machines (SVM) with RBF kernel); 4) Neural Networks (multilayer per-
ceptron); 5) lazy learning (k-nearest neighbour - KNN); 6) meta-classifiers (Ad-
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aBoost with Naïve Bayes as base classifier); 7) decision trees (J48); and 8)
ensemble decision trees (Random Forests) [94]. These algorithms were tested
with their default parameters and a 10-fold cross-validation. All features com-
puted were normalised in MATLAB (Formula 5.1) prior to these tests, having
a zero mean and a standard deviation of one.

5.1.4 Section selection

As described in section 4.3, each game play was divided into five sections con-
sisting of 30s of game play and a WM trial. In the previous study, players
self-reported their arousal and valence levels at the end of each game play and
not during each section as in the present study. Since the aim is to infer the
player’s affective states at the end of each section to adapt the next section’s
difficulty, the section that best represents the self-reported affective states had
to be selected. This is necessary since the machine learning algorithms should
be trained with data collected over the same amount of time that it will be
tested against. The data collected during the WM trials (ie: between doors) of

Figure 5.5: Self-reported arousal and valence in VR in Study 2

Table 5.3: Arousal and Valence labels distribution

Arousal Valence Emotion Label Data Points Percentage
Low Negative Bored 38 43.68%
Low Positive Relaxed 11 12.64%
High Negative Frustrated 11 12.64%
High Positive Excited 27 31.04%
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each section was ignored since our aim is to detect the player’s affective states
only looking at the time playing. This decision was motivated to generalise the
affective states recognition to any VR game with a similar settings. Thereby,
five sets of features (one per section) were created.

Using all the 70 physiological and motion features extracted, the aforemen-
tioned algorithms were tested with each of the five sections that comprise one
game play. This subject-independent analysis was carried out using a ten fold
cross-validation in Weka [169]. Furthermore, these tests were performed with
the 4 emotions labels as well as for the 2 levels of valence and 2 levels of arousal
separately (see Table 5.3). The results in Table 5.4 show that the best accuracy
results were obtained in sections 2 and 3 with the arousal and valence labels.
Even though section 3 showed a slightly better accuracy for arousal with Naïve
Bayes (67,81%) than section 2 (66,66%), section 2 was selected as it showed the
best accuracy for valence (73,56%) classification with SVM as opposed to Naïve
Bayes (57,47%).

5.1.5 Feature and model selection

The contribution of each sensor (HMD, LM, HR and EMG) for arousal, valence
and the 4 emotions classification with the aforementioned machine learning al-
gorithms was investigated. Fourteen different models were created fusing the
sensors’ features in all possible combinations. (see Appendix C ) This analysis
is intended to select the sensors’ features that best represent the self-reported
arousal and valence levels.

The HR+EMG+HMD model had the best performance using SVM with the
4 emotions, achieving a 56.32% accuracy. However, the confusion matrix of this
classification (see Table 5.5) shows that only two emotions, bored and excited,
were successfully classified. These results seem reasonable as these emotions
represent two completely different affective states. One possible explanation
for these results is the limited amount of data available. Since only 2 out of
the 4 emotions were classified, the 4 emotions labels were disregarded. Thus,
the affect recognition system would make a decision-level fusion combining the
arousal and valence classification outputs to detect the 4 emotions in order to
make an adaptation decision.

On the other hand, only three models had the same or higher accuracy
than using the full feature set for arousal classification. Whilst the HMD+HR
model (36 features) achieved a 66,66% accuracy with Naïve Bayes and AdaBoost
classifiers, the HMD+HR+LM (63 features) and HMD+EMG+LM (60 features)
models provided an accuracy of 67,81% with Naïve Bayes and KNN. The best
accuracy for valence classification (73,56%) was achieved by two models: the
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HMD+EMG (33 features) with J48 and HMD+EMG+HR (43 features) with
SVM. Since none of the models achieved significantly better accuracies than the
Full model with all features, four models for arousal (Full model, HMD+HR,
HMD+HR+LM and HMD+EMG+LM) and three for valence classification (Full
Model, HMD+EMG and HMD+EMG+HR) were selected. This indicates the
importance of fusing multimodal features (i.e: motion and physiological) to
maximise the performance of the affect recognition system.

Feature selection was carried out in Weka using these models. Two selection
methods were used: correlation selecting the top 10 ranked features, and the
CfsSubsetEval algorithm, which ’evaluates a subset of features by considering
the individual predictive ability of each one along with the degree of redundancy
between them’ [63]. The number of features selected by the CfsSubsetEval al-
gorithm depends on the set of features provided. The Wrapper algorithm for
feature selection used by Castellano et al. [35] was discarded due to the ex-
tensive time it takes to complete for some machine learning algorithms such as
Neural Networks (i.e., Multilayer Perceptron).

None of the feature selection methods improved arousal accuracy with the
models selected. In order to select the best models for arousal classification, the
average accuracy of the 8 algorithms tested was calculated for each model. While
the HMD+HR+LM and the Full models achieved an average accuracy of 55%
and 56% respectively, the HMD+HR and HMD+EMG+LM models achieved
59% and 58% average accuracy. Only the HMD+EMG model improved the
valence classification accuracy to 77,01% when selecting the top 10 features using
J48, followed by 75,86% accuracy using Random Forests or KNN. CfsSubsetEval
also achieved similar accuracy selecting 5 features of the same model with SVM.
Thus, two feature subsets of this model (HMD+EMG) with 5 and 10 features
for valence classification, and two models (HMD+HR and HMD+EMG+LM)
with all features for arousal classification were selected.

Table 5.5: Confusion matrix of SVM with the HR+EMG+HMD model (43
features).

Bored Relaxed Frustrated Excited
Bored 35 0 0 3
Relaxed 9 0 0 2
Frustrated 9 0 0 2
Excited 13 0 0 14
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5.1.6 Model optimisation

The next step was to select and tune the classification algorithms to obtain the
best performance. A parameter optimisation on all algorithms tested was per-
formed, since some of them (i.e.: SVM) require parameter tuning to achieve their
best performance [87]. The meta-classifiers CVParameterSelection and Grid-
Search were used in Weka to optimise parameters simultaneously. For example,
the GridSearch was used to explore different values of Cost (C) and Gamma
(G) parameters of SVM. Using the full dataset collected in the previous study
(Chapter 4), parameters were manually fine tuned when the meta-classifiers
improved the classification accuracy.

Both feature subsets of the HMD+EMG model improved the valence classi-
fication accuracy when optimising the parameters of certain algorithms. SVM
achieved the best accuracy (81,60%) for valence classification with the 5 fea-
tures subset of the HMD+EMG model. On the other hand, only the HMD+HR
model significantly increased its accuracy from 59,77% to 74,71% with SVM.
Thus, SVM was used for both arousal and valence classification. A decision
fusion was applied after classification, combining the output of both SVMs in
order to estimate the player’s affective state.

5.1.7 Subject-independent analysis

Before testing the models in real-time, a subject-independent analysis was per-
formed to check how the affect recognition system would perform with unseen
data. A leave-one-subject-out approach was used, training the SVM algorithms
with data from all except one participant (84 data points) and tested it with
the excluded participant (3 data points). This procedure was repeated 29 times,
one for each participant of Study 2. As expected, the average accuracy of the
29 runs decreased for both valence and arousal classification. Whilst valence
classification decreased from 81,60% to 80,45% accuracy, arousal had a more
significant accuracy decline from 74,71% to 67,81%.

5.2 Implementation

The implementation of the affect recognition system in Memory Break was re-
alised with Accord [151], a .NET framework for machine learning embedded
in Unity, the software used to develop the game. Two SVM algorithms with
Radial Basis Function (RBF) kernels were trained for arousal and valence clas-
sifications, using the HMD+HR (36 features) and HMD+EMG (5 features)
models selected. These algorithms were tuned using the parameters obtained
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Figure 5.6: Two ways of self-reporting affective states tested in the pilot studies:
4 emotions (bottom) and the Affective Slider (top)

in Weka. Due to the computational complexity of some features (i.e.: peak de-
tection), all features were computed in real-time in MATLAB when requested
by the game. Given that features for machine learning had to be calculated in
real-time, it was difficult to replicate the same results obtained in Study 2 with
the application HRVLogger [5] for the HRV feature LF/HF ratio. Hence, this
feature was removed from the HR feature set, leaving the HMD+HR model for
arousal classification with 35 features.

5.3 Pilot studies

Two ways of self-reporting the affective states were explored in three pilot studies
(see Fig. 5.6). In the first method, participants had to choose among 4 pro-
posed emotions (bored, relaxed, frustrated or excited) as these were the affective
states detected by the affect recognition system. Participants reported that they
struggled to choose between the proposed emotions as these categories were too
restrictive. For example, some participants expressed they would never report
boredom as they are actively playing a game they are interested in. Thus, a
second method of self-reporting affective states was implemented. This method
is a VR replica of the Affective Slider [21], the affective state self-report method
used in Study 2. This VR replica had the same controllers and graphics as in
the original version designed by Betella et al [21]. Both methods were tested in
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the second pilot study. Participants reported to have more flexibility using the
Affective Slider to report their affective states, so it was selected for the final
study. Moreover, using this method it would be possible to assess the machine
learning accuracy by comparing its output with the reported levels of arousal
and valence in each section.

The real-time adaptation was tested with three pilot studies with 15 partici-
pants in total. The SVM parameters were fine tuned to improve the classification
accuracies. The results showed a poor classification accuracy for both arousal
(57%) and valence (47%). The number of features in the valence model was
increased to the top 10 ranked features selected by correlation. This improved
the valence classification accuracy to 57%, which is still close to the chance level
of 50%. New parameters were set for arousal and valence SVM algorithms,
achieving accuracies of 69% and 65% respectively. Since the affect recognition
accuracy was not sufficient to successfully adapt the game by itself, a second
decision layer was added based on players’ performance. This approach has
been suggested by others to improve the adaptation performance [25]. As most
participants expressed that their affective states were strongly dependent on
their performance, the score achieved in each section was correlated with the
reported arousal and valence, finding a significant positive correlation with the
later (rho=0.34, p<.01).

5.4 Decision rules for adaptation

In order to create a performance-based decision layer, the average score obtained
in the sections where participants reported to be frustrated (i.e.: high arousal
and negative valence) during the pilot studies was calculated. A mean score
of 52 points (SD: 38.32) was used as a threshold to decide whether the player
was achieving a high or a low performance (see Fig. 5.7). Thus, a two-layer
decision system was designed using the affect recognition’s output and the score
(performance) achieved in each game section. Similarly to Afergan et al [3], two
buffers stored the last 4 arousal and valence classification, keeping a time series
of previous predictions. Since eachMemory Break play consists of 5 sections, the
researcher empirically decided to create buffers of width 4 to perform adaptation
decisions when the engine is confident about the detected affective state (buffer
mean >.05). This would act as a filter to smooth misclassifications and prevent
erroneous adaptation decisions based only on the last classification prediction.
A similar buffer stored whether the last four scores achieved were above (1) or
below (0) the frustration threshold calculated. The average of these buffers was
calculated for adaptation decision making.

An adaptation decision logic was designed where the difficulty level could be
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Figure 5.7: Adaptation decision logic of Memory Break. Note the two-layer
decision system based on affect (arousal and valence) and performance (score).
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increased, decreased or sustained (see Fig. 5.7). If the difficulty was sustained
for more than 2 sections, a decision was taken based on the score buffer. At the
end of each game play, the last difficulty level played and all buffers were saved
for the next game play or session.

5.5 Summary

This chapter described the development and testing of an adaptation engine
built from two decision layers based on affect and performance metrics. An
affect recognition system was created to detect the player’s arousal and valence
levels using physiological and motion sensors. The detected affective state feeds
the affect-based decision layer to make an adaptation decision. Due to the
poor performance of the affect recognition system in a series of pilot studies, a
performance-based decision layer was added as a second layer in the adaptation
engine. This decision layer analyses the player’s score in each game section and
makes a final adaptation decision to increase, decrease or sustain the game’s
difficulty level.

The next chapter presents a longitudinal study where the affect recognition
system and the adaptation engine were tested in real-time. Two versions of
the game Memory Break were built, one with and one without the adaptation
engine. The aim of this study is to explore the effects of difficulty adaptation
in the player’s WM performance when playing a VR game for WM training.
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Chapter 6

Study 3: Real-Time Difficulty
Adaptation for WM Training
in VR Gaming

This chapter describes the last study of this research. This study explores the
effects of adaptation in a VR game to train WM performance. Two versions
of the game Memory Break were created, with and without the adaptation
engine. The aim of the adaptation is to keep players in an optimal affective
state and engagement level to improve their WM performance. The adaptation
is determined by a two-layer decision system that changes the game’s difficulty
in real-time depending on the inferred affective state and the score achieved.
Using a number of features extracted from physiological and motion sensors,
two machine learning classification algorithms were trained and implemented in
Memory Break to detect low and high levels of arousal, as well as positive and
negative valence. In addition, this study investigates the impact of adaptation
in the player experience and the effects of the players’ self-reported affective
states in their WM performance, following the findings of Study 2.

This chapter is structured as follows: section 6.1 describes the tasks and
procedure of this study. A new version of Memory Break with the adaptation
engine implemented and the difficulty adaptation are explained in section 6.2.
Next, section 6.3 informs about the participants of this study and the question-
naires and sensors used, as well as the data pre-processing. Section 6.4 reports
the performance and accuracy of the adaptation engine and the results and
analyses made. Finally, section 6.5 discusses the findings of this third and final
study.
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6.1 Research design

The research design of this study is very similar to the previous study (Chapter
4). The same questionnaires and tests were used in this study to assess play-
ers’ WM capacity, affective states and their player experience. In contrast to
the previous study, participants played Memory Break only in the VR setting,
ignoring the Desktop.

6.1.1 Tasks and setup

A longitudinal study was designed to evaluate the effects of VR game playing
and difficulty adaptation on WM performance.The study consisted of 3 sessions
where participants played the game 3 times in each session for approximately 5
minutes each play (see Fig. 6.1). Participants had to complete the 3 sessions
within one week, leaving 2-3 days between sessions and booking all sessions at
the same time of the day to minimise differences that might result from being
tested at different times of the day. Participants were anonymised using IDs and
compensated with £30 cash for their time and effort at the end of the study.

Similarly to the previous study, participants’ WM capacity was assessed us-
ing the Automated Operation Span Task (AOST) test [56], described in section
4.2.1. Based on the score achieved in this test, participants were divided in two
groups with high and low WM capacity. The game interaction was the same as
in the previous study, using a hand tracking device (Leap Motion) to interact
with the game. Moreover, participants had to wear the HR sensor (Polar H7)
and an EMG armband (MYO) to measure their physiological signals for affect
recognition.

6.1.2 Procedure

In their first session, participants had to complete a questionnaire about their
background, gaming habits and motivations. Participants then completed the
AOST test [56] to measure their WM capacity baseline. Before playing Mem-
ory Break, participants played a VR demo called Blocks to reduce the novelty
effect the VR experience could cause. Participants interacted with the game
using a hand tracking device (Leap Motion), and wore a HR sensor (Polar H7)
and an EMG armband (MYO). At the start of each session, participants were
asked to relax for 1 minute to record their HR baseline for later normalisation.
Participants then practiced Memory Break before playing the game three times.
Participants reported their arousal and valence levels throughout the game us-
ing the Affective Slider [21]. After each play, participants reported their level
of engagement, motivation and motion sickness and completed the In-Game
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module of the Game Experience Questionnaire (GEQ) [66]. When all 3 plays
were completed, participants reported their overall motivation, engagement and
presence levels during the current session and completed the Post-Game module
of GEQ [66], followed by a semi-structured interview about their experience and
performance. Finally, in order to compare the effects of the adaptive and non-
adaptive versions of Memory Break, participants completed the AOST again at
the end of the third session.

6.2 Memory Break: Version 2

The logic, structure and interaction of the second version of Memory Break
is the same as the first version, reported in section 4.3. However, due to the
introduction of the adaptation engine, some changes had to be done to gradually
adjust the difficulty level in real-time.

The goal of Memory Break is to obtain the highest possible score. The
game consists of throwing balls at different stationary or moving obstacles to
successfully pass through without crashing into them. If the player crashes, ten
points are deducted from the score; one point is also subtracted every time a

Figure 6.1: Structure of the present study and section division of a Memory
Break play
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ball is thrown. In order to get points, the participants have to throw and hit the
gems found on their way, which added 10, 20, 30 or 40 points depending on the
type of gem collected. As in the first version, each game play is divided into five
sections consisting of 30s of game playing and a WM trial (see Fig. 6.1). The
WM trial is structured as follows: the game stops at a door where a random
sequence of letters appears that has to be remembered. These letters appear
one at a time for 800ms, with 500ms gaps between them. After the sequence is
displayed, the doors open and the game continues for another 7s. The game then
stops again at another door where the player has to recall and input the letters
previously shown in the exact same order. Once completed, feedback is provided
indicating how many letters have been recalled correctly, the doors open and the
game continues to the next section. In order to encourage players to remember
the letters, five points are given for every letter recalled correctly. This decision
was taken to connect the WM trials and the game, as some participants of the
previous study saw them as two separate tasks. Before displaying the letters
in each section, participants reported their arousal and valence levels using the
Affective Slider [21]. The duration of each play is approximately five minutes.
A score board with the ten best scores was displayed on one side before starting
to play to motivate players to achieve a good performance.

6.2.1 Difficulty adaptation

Since the adaptation engine dynamically adapts the game’s difficulty level, it
was necessary to introduce some changes on how the game is generated. In
contrast to the game’s first version, this new version procedurally generates the
sections in real-time depending on the difficulty level decided by the adaptation
engine. Memory Break consists of 10 levels that gradually increase the difficulty.
The difficulty is manipulated increasing the speed (+2%), the number (+3) and
the type of obstacles presented. The types of gems also changed, placing those
with more points in the harder levels to keep a balance between points collected
and difficulty. As in the first version, the number of obstacles between doors
also increased by two units every two difficulty levels. These changes maintain
a similar difficulty in levels 1, 5 and 10 than in the easy, medium and hard levels
of the previous study. Since the game has to gradually change the difficulty in
a subtle way and without the player noticing, these changes were necessary to
avoid big gaps between adjacent difficulty levels.

One of the most important changes to this new version of Memory Break is
the WM trials. The length of the letter sequence presented in the WM trials
changes depending on the player’s WM performance. If all letters are recalled
correctly, the sequence length is increased by one letter, otherwise it would stay
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the same. If the player fails to successfully recall all letters two consecutive
times, the sequence length is reduced by one letter [170]. Whilst the sequence
length always start with 3 letters in every session, the sequence length is saved
between plays, reducing one letter when starting the next play. This method of
changing the letter sequence length allows to adapt the difficulty of WM trials to
the players’ performance, pushing their limits and constantly challenging their
WM.

The only difference between the adaptive and non-adaptive versions of Mem-
ory Break is the difficulty level adaptation. While the adaptive version changes
the game’s difficulty depending on the decision of the adaptation engine, the
non-adaptive version constantly increases the difficulty level. In both versions,
the difficulty is reduced by 2 levels if the player finishes the previous play of
the current session in level 5 or above. Otherwise, the difficulty is reduced by 1
level. All sessions of the non-adaptive version always start in the first difficulty
level. Conversely, the adaptive version loads the last difficulty level played in
the prior sessions, applying the aforementioned rules. The administration of the
WM trials is the same in both game versions.

6.3 Data collection

This study used the same data collection methods employed in Study 2. Quan-
titative and qualitative data was gathered for a better understanding of the
impact of adaptation and the players’ experience throughout the three sessions.
This section describes the questionnaires and sensors used as well as the data
pre-processing.

6.3.1 Participants

Fourteen participants, seven male and seven female, with a mean age of 26.78
(SD: 2.64) took part in the study. Seven participants were randomly assigned to
the adaptive version of Memory Break and seven to the non-adaptive, keeping
age and gender balanced. None of the participants had been diagnosed with
any learning difficulty such as Dyslexia and do not experience motion sickness
easily (i.e.: when reading while traveling as a passenger in a car). 71% of the
participants had experienced VR before the study. 29% of the participants
reported to have played video games between 0 and 2 hours the week before
the study, while 43% did not play any. The motivation to play video games of
ten participants was just for fun and only three reported to play to get the best
score or be the best player. All participants in the adaptive version liked the
game, except for one in session 1. In a similar manner, another participant in
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the non-adaptive version did not like the game in sessions 2 and 3, reporting
boredom. Some participants found the interaction difficult to control, more
specifically, eight in the first session, four in the second and five in the third.

6.3.2 Questionnaires and sensors

The questionnaires used in this study were the same as in Study 2: the pre-
experiment, the post-game (or post-condition) and the post-session question-
naires. First, the pre-experiment questionnaire (see Appendix B.2) was com-
pleted at the beginning of the study. This questionnaire gathered participants’
demographic data as well as gaming habits and experience. After each game
play, participants self-reported their levels of immersion, engagement and mo-
tion sickness in the post-game questionnaire (see Appendix D.2). This ques-
tionnaire also included the In-Game module of the Gaming Experience Ques-
tionnaire (GEQ) [66], which measures 5 components of the player experience:
Competence, Flow, Sensory and Imaginative Immersion, Tension, Challenge
and Positive and Negative Affect. Participants self-reported their arousal and
valence levels using the Affective Slider [21] in each section of the game (see Fig.
6.1), instead of at the end of each game play as in Study 2. Finally, at the end
of each session, participants completed the post-session questionnaire (see Ap-
pendix D.3) about their overall experience in the current session. Participants’
WM capacity was measured using the AOST at the beginning and the end of
the study to assess improvements on their capacity.

The sensors employed were also the same as in the previous study. Partici-
pants wore a chest strap HR sensor (Polar H7) and an electromyograph (MYO)
to measure their physiological signals for affect recognition. Whilst the HR data
was gathered and pre-processed off-line by the app HRVLogger [5] in Study 2,
the introduction of the adaptation engine in this study required a real-time col-
lection of the physiological signals. Since this was not possible with HRVLogger,
a small application was developed to record the HR sensor data and stream it to
a computer via Bluetooth in real-time. This data was processed by MATLAB
when required by Memory Break to make adaptation decisions. Due to the
rapid technological advancements in VR, the HMD used in the previous study
(Oculus Rift DK2) was no longer supported by Unity, the software used to cre-
ate Memory Break, so it was replaced by a HTC Vive headset. The interaction
with the game was the same as in Study 2, using the hand-tracking device Leap
Motion (LM) and the same gestures for interaction.
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6.3.3 Data pre-processing

The data gathered in this study did not require a great deal of pre-processing.
Since this study was interested in the effects of adaptation in players’ experience,
WM and affective states, no physiological or motion analysis was carried out.

Only the WM measures required some pre-processing. Prior to the anal-
ysis of participants’ WM capacity, measured with the AOST, the scores were
normalised by dividing the number of letters correctly recalled by the number
of letters presented (25). Thus, the percentage of letters correctly recalled was
obtained. However, the analysis of participant’s WM performance within the
game used the number of letters correctly recalled instead of the percentage,
since the number of letters displayed changed depending on the player’s WM
performance (see section 6.2.1).

6.4 Analysis and results

This section analyses the results of this last study. The analysis investigates the
influence of the dynamic difficulty adaptation on players’ WM performance, af-
fective states and their player experience. Following the findings of the previous
study (Chapter 4), this section also analyses the effects of valence and arousal on
players’ WM performance. Due to the small number of participants, the anal-
ysis focuses not only on statistically significant results but also on particular
cases and individuals, analysing quantitative and qualitative data.

6.4.1 Statistics

The statistical methods used in the analysis of this study were similar to the
methods used in Study 2 (Chapter 4). First, Levene’s tests were carried out with
the independent and dependent variables of interest to check for homogeneity
of variance (homoscedasticity). Since the p-value of these tests were above the
significance level (0.05), the homogeneity of variance was assumed. Variables
were also plotted in histograms and Q-Q normal plots to check its distribu-
tion. Within and between repeated measures analysis of variance (ANOVAs)
were performed to investigate significant differences between sessions and game
versions. Since some data points from certain participants and sessions were
missing due to technical problems, Linear Mixed Effects (LME) models were
employed to perform analysis of variance (ANOVAs) as they allow for missing
data points [168]. LMEs have been used in many studies for the analysis of
self-reported and continuous measures in gaming research [128]. Further post-
hoc t-tests were conducted where relevant. LME models were also used for
regression analysis using random and fixed effects. Likelihood ratio tests were
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conducted to evaluate the goodness of fit of the models built. Finally, Spear-
man’s correlations (rho) were carried out to estimate the relationship between
two variables of interest.

Due to multiple comparisons in certain correlations and t-tests, Bonferroni
corrections 1 were applied where one variable was tested against more than one
condition. New significance levels after corrections are reported.

6.4.2 Classification accuracy and real-time adaptation

To assess the real-time performance of our classification models, the same thresh-
olds used for training to divide the self-reported arousal and valence into two
classes were used for testing. However, participants in this study reported sig-
nificantly lower mean levels of arousal (t=6.22, p<.001) and valence (t=3.99,
p<.001) compared to our previous study. Whilst the mean self-reported arousal
was 0.87, in the current study it was 0.75. Similarly, the mean self-reported va-
lence was 0.85 in the previous study and 0.76 in the current study. This means
that participants in this study used a bigger range of values when reporting
their affective states compared to participants in Study 2. One session of two
participants were removed from this analysis due to technical problems with
the sensors and the Affective Slider. Using these thresholds, the distribution
of arousal classes was 220 low and 65 high arousal data points. Valence had a
similar distribution, with 214 negative and 71 positive data points.

Two SVM algorithms were used for arousal and valence classification. Whilst
the arousal classification model was trained with 35 features extracted from the
HMD and HR sensors, the valence classification model was trained with 10
features from the HMD and EMG sensors. Arousal classification achieved an
accuracy of 41% and valence 42%, both below chance level (50%). Table 6.1
illustrates the confusion matrices of arousal and valence classification. These

1The Bonferroni correction is used to avoid Type I errors when making multiple compar-
isons. It is calculated by dividing the significance level (in this case 0.05) by the number of
tests that are being performed.

Table 6.1: Confusion matrices of arousal and valence classification in real-time

Arousal Reported

Arousal
Prediction

Low High
Low 51 7
High 169 58

Valence Reported

Valence
Prediction

Negative Positive
Negative 99 49
Positive 115 22
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Table 6.2: Accuracies of arousal and valence classification in each session for all
participants playing the adaptive version.

SessionParticipant Affect.
Dimension 1 2 3 Mean

Arousal - .67 .67 .671 Valence - .4 .4 .4
Arousal .53 .67 .4 .532 Valence .4 .53 .4 .44
Arousal .67 .07 .2 .313 Valence .53 .67 .13 .44
Arousal .07 0 .13 .074 Valence .53 .2 .33 .35
Arousal .93 .93 .8 .885 Valence .13 .2 .33 .22
Arousal .4 .2 .13 .246 Valence .8 .53 .6 .64
Arousal .27 .13 - .27 Valence .53 .4 - .47

results evidence a poor classification performance of the models, which led to
erroneous real-time adaptation decisions of the affect-based decision layer, al-
though the performance-based decision layer worked as expected. Due to the
imbalance of classes (see Table 6.1), an additional analysis examined the pre-
cision and recall of both arousal and valence classification. While precision
expresses the proportion of data points classified as relevant that were actually
relevant, recall represents the percentage of relevant instances over the total
amount of relevant instances. Arousal showed a good recall of 0.89 but a much
lower precision of 0.25. The classification of valence got poorer results, with a
recall of 0.31 and a precision of 0.16. F1 measures, which combines precision
and recall, were also computed, being 0.40 for arousal and 0.21 for valence.
These results demonstrate a poor real-time performance of the classification
models. Since participants were different in the current and the previous study,
significantly lower levels of self-reported arousal and valence were found in this
study compared to our previous study (training stage), which could explain the
imbalanced distribution of classes in the testing dataset.

Table 6.2 presents the arousal and valence classification accuracy of each
participant in the adaptive version in every session. The best mean prediction
accuracy of arousal was 88% for participant 5. This participant reported high
levels of arousal (>.92) during the whole study that were successfully detected.
The worst performance of arousal classification achieved a mean accuracy of
7% for participant 4, who’s mean self-reported arousal was 0.68 (SD: .1). Us-
ing the thresholds applied during training, her self-reported arousal was always
labelled as low (<.87) but wrongly classified as high arousal. Similar results
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were found for participant 3 in sessions 2 and 3. On the other hand, valence
classification showed similar results. Participant 6 got the best mean valence
accuracy with 64%. The overall mean valence reported by this participant was
0.63 (SD: .19), which was labeled as negative valence and successfully classi-
fied by the model. Similarly, participant 5 always self-reported high levels of
positive valence (Mean: 0.97; SD: .07), although it was mostly predicted as neg-
ative valence, achieving the lowest mean classification accuracy (22%). These
results, together with the confusion matrix table (see Table 6.1), indicate that
the arousal and valence models mainly predicted high levels of arousal and neg-
ative valence. Nevertheless, looking at Table 6.1, most of the self-reported low
arousal was successfully recognised.

Although the arousal and valence classification did not work well overall, the
adaptation worked better for some participants depending on individual factors
such as motivation. For example, participants 3 and 5, whose motivation was
to be the best player, played in a more aggressive manner moving their head
and hands very abruptly. This was mostly classified by the machine learning
algorithms as frustration (high arousal and negative valence), which made the
adaptation engine to sustain or reduce the difficulty level, keeping participants
in the easiest levels (1-4). Due to individual differences in preferences or moti-
vations to play video games, participants can experience video games differently
or have different playing styles [142]. One of the participants, who never experi-
enced VR before, reported having a positive experience when interviewed, even
though the game was sometimes too difficult for her. This may be explained
by the excitement of trying VR for the first time, known as novelty effect [96].
These individual differences present important challenges in the design of generic
adaptation methods and subject-independent machine learning models.

6.4.3 Player experience

The analysis in this section is focused on the variables measured by the In-
Game and Post-Game modules of Game Experience Questionnaire (GEQ) and
other variables reported at the end of each game play such as engagement,
motivation or motion sickness. The self-reported engagement, motivation or
flow did not show any significant differences between game versions or sessions,
although motion sickness was significantly different between sessions (F=3.59,
p<.05), indicating that participants’ motion sickness decreased along sessions.
Immersion showed significant differences between sessions (F=4.07, p<.05), be-
ing slightly more pronounced in the adaptive (F=2.53, p=.09) than in the non-
adaptive (F=1.88, p=.16) game version. A further post-hoc analysis between
sessions revealed significant (p<.02, Bonferroni correction applied) differences
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between sessions 1 and 2 in the adaptive version (t=-2.41, p<.02). The nega-
tive t-value demonstrates a significant decrease in immersion in session 2 in the
adaptive version. The self-reported competence showed almost significant dif-
ferences between sessions in the non-adaptive version (F=2.75, p=.07), and in
the interaction between game version and sessions (F=2.39, p=.09). Significant
differences were also found between sessions in tension (F=7.97, p<.001) and
challenge (F=4.71, p<.01). A post-hoc analysis in the self-reported challenge
only showed significant differences between sessions in the non-adaptive version
(F=6.19, p<.01). No significant differences were found between game versions
or sessions in the reported positive affect, measured by the GEQ. However, neg-
ative affect was almost significant between sessions only in the adaptive version
(F=2.84, p=.06), concretely between sessions 1 and 3 (t=-1.87, p=.07).

The analysis of the Post-Game module, completed at the end of each session,
showed more interesting results. Significant differences were found in the self-
reported positive experience only in the adaptive version (F=3.86, p<.05). A
further paired t-test analysis showed significant differences between sessions 2
and 3 (t=3.20, p<.02), indicating that participants had a significantly higher
positive experience in session 3 compared to session 2. On the other hand,
the reported negative experience was almost significant in the non-adaptive
(F=2.96, p=.09) but not in the adaptive version (F=0.90, p=.43). A further
analysis revealed a decrease in negative affect in session 2 (t=-2.11, p=.08),
followed by an increase in session 3 (t=2.66, p=0.04).

These results evidence a decrease in immersion, tension and challenge along
the sessions in both game versions. This can be explained by the repeated expo-
sure of participants to the game, being less immersed and challenged throughout
the 3 sessions [96]. However, participants in the adaptive version had a greater
positive experience in session 3 than those in the non-adaptive version, who
reported higher levels of negative experience in the last session. This could be
explained by the game’s adaptation, which may have had a positive effect in
the player experience of those playing the adaptive version, although further
research needs to be done to clarify these effects.

Almost all the variables measured by the In-Game module of the GEQ cor-
related significantly (p<.008, Bonferroni correction applied) with the mean self-
reported arousal and valence of each game play (see Table 6.3). As expected,
the only two variables that had a negative correlation were tension and negative
affect.
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Table 6.3: Correlations of self-reported arousal and valence with the In-Game
module of the GEQ.

Param Dependent Variable Rho Sig.

Arousal

Immersion .33 <.001
Flow .19 .04
Competence .68 <.001
Challenge .23 .01
Tension -.29 <.001
Negative Affect -.22 .02
Positive Affect .53 <.001

Valence

Immersion .33 <.001
Flow .24 <.008
Competence .71 <.001
Challenge .23 .01
Tension -.26 <.008
Negative Affect -.17 .07
Positive Affect .51 <.001

6.4.4 WM performance

Within-subject repeated measures t-tests were carried out to analyse the scores
achieved in the AOST test before and after the study. One session of two partic-
ipants in the adaptive version were removed from this analysis as the game had
to be rebooted. Participants in the non-adaptive version showed almost signifi-
cant differences (t=2.15, p=.07), but not those in the adaptive version (t=0.46,
p=.66). Regarding participant’s WM performance within Memory Break, no
significant differences were found between sessions in the adaptive (F=2.61,
p=.12) or non-adaptive (F=0.53, p=.60) versions. However, a further post-hoc
analysis showed significant (p<.02, Bonferroni corrections applied) differences
between sessions 1 and 3 in the adaptive version (t=2.26, p<.02) but not in the
non-adaptive (t=0.95, p=.36). Additionally, significant differences were found
in the maximum number of letters correctly recalled per session in the adaptive
(F=4.78, p<.05) but not in the non-adaptive version (F=1.11, p=.36). These
results indicate that participants in the adaptive version had a greater improve-
ment in their WM performance than those in the non-adaptive version.

Spearman’s correlations were also conducted between the number of letters
correctly recalled in each game play and the self-reported player experience vari-
ables measured by the In-Game module of the GEQ. Participants in the adap-
tive version showed strong significant correlations with immersion (rho=0.65
p<.001), competence (rho=0.57 p<.001) and positive affect (rho=0.42, p<.001),
whilst those in the non-adaptive version showed a weaker but significant corre-
lation with competence (rho=0.33 p<.01) and positive affect (rho=0.27 p<.02),
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and no significant correlation with immersion (rho=0.20 p=.12). Similar cor-
relations were found with the maximum letters correctly recalled in each game
play. Overall, these results suggest that participants had a better WM perfor-
mance when they felt more immersed and had higher levels of positive affect,
feeling more successful in the game. These effects were more pronounced on
participants in the adaptive version. These findings are related to the flow the-
ory [45], which proposed that cognitive performance can improve when subjects
experience positive affective states.

Following the same approach as in Study 2 (Chapter 4), participants were di-
vided in two groups (low and high WM capacity), using the overall median score
(0.79) of participants’ WM capacity as measured with the pre-study AOST.
Seven participants were assigned to each group. Significant differences were
found between the pre- and post-study AOST scores in the low WM group
(t=2.69 p<.05) but not in the high WM group (t=-0.40 p=.70), who actually
had a slightly worst performance in the post-study AOST.

Participants in the low and high WM groups were subdivided depending on
game version played. Significant differences were found in the maximum number
of letters correctly recalled in the lowWM group in the adaptive version (F=6.71
p<.05) but not in the non-adaptive version (F=0.18 p=.84). Participants with
high WM in the adaptive version showed a greater but not significant differ-
ence between sessions (F=3.48; p=.17) than those in the non-adaptive version
(F=0.39; p=.69).

6.4.5 Affective states and WM performance

This section investigates the effects of the self-reported valence and arousal in
WM performance, following the findings of the previous study: high levels of
arousal and positive valence can have positive effects on the players’ WM perfor-
mance. One session of two participants were removed from this analysis as they
had problems with the Affective Slider or deliberately manipulated it, setting
the sliders to the maximum "to see what happens", as reported to researchers.
The reported arousal and valence of players in the adaptive version correlated
very significantly (p<.001) with the number of letters correctly recalled, both
with a correlation coefficient of 0.28. Similar results were found in the non-
adaptive version for arousal (rho=0.23, p<.001), though valence had weaker
correlation (rho=0.14, p<.05).

Figures 6.2 and 6.3 show the self-reported arousal and valence in every ses-
sion and game play of participants with low and high WM capacity, together
with their WM performance (number of letters correctly recalled). As expected,
participants with high WM capacity correctly recalled more letters than those
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Figure 6.2: WM performance (right) and self-reported arousal and valence (left)
of participants with low WM capacity. Participants in this group got their best
WM performance in play 3 of session 3, which corresponds with their highest
levels of arousal and valence, especially the later.
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Figure 6.3: WM performance (right) and self-reported arousal and valence (left)
of participants with high WM capacity. Participants in this group got their best
WM performances in plays 2 and 3 of session 3, which corresponds with their
highest levels of arousal but not of valence.
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with low capacity. According to the results obtained in Study 2, high levels
of arousal and valence may have positive effects on players’ WM performance.
However, as it can be seen in Figure 6.3, this is not true for subjects in the
high WM group. Participants with high WM capacity achieved their best WM
performances in plays 2 and 3 of the session 3, reporting their highest levels
of arousal but not of valence. Similarly, participants with low WM capacity
achieved their best WM performance in play 3 of session 3, which corresponds
with their highest levels of self-reported arousal and valence of the whole study.

In order to further explore the relationship between affective states and WM
performance, the mean self-reported arousal and valence per game play were
correlated with the percentage of letters correctly recalled in each game play.
The percentage instead of the number of letters correctly recalled was used as it
describes how many of the given letters were successfully recalled instead of how
far they got up to in terms of letters recalled. Participants with lowWM capacity
showed significant moderate correlations for both arousal (rho=0.40, p<.01) and
valence (rho=0.29, p<.02), whilst participants with high WM capacity did not
show significant results (arousal rho=0.15, p=.24; valence rho=0.16, p=.23).
These results suggest that valence and arousal might have stronger effects on
the WM performance on those with low WM capacity compared to subjects
with high WM capacity.

Finally, Linear Mixed Effects (LME) regression models were used to predict
participant’s WM performance, this time measured as the percentage of letters
correctly recalled. A model was created using the self-reported arousal and
valence as fixed effects and subjects as random effects. Arousal and valence were
the only predictors as this research is interested in their effects in participants’
WM performance. As seen in Table 6.4 only arousal was a significant predictor.
A likelihood ratio test was performed, showing the goodness of fit of this model
(Chi-sq=10.39, p<.01).

Table 6.4: LME model of WM performance

Estimate Std. Error df t value Pr(>|t|)
(Intercept) 0.63 0.06 94.66 10.11 0.00

Valence 0.03 0.09 559.18 0.27 0.78
Arousal 0.24 0.11 343.00 2.31 0.02

6.4.6 Qualitative analysis

After each session, a semi-structured interview was conducted to understand
how participants felt in terms of player experience and performance. Some
participants reported not caring much about doing well in the WM trials within
the game and just tried to remember up to a certain number of letters, even
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if more letters were presented. For example, some participants assumed they
could not recall more than 6 letters, so even if more letters were presented, they
only tried to remember the first 6 letters as they could not remember more. This
attitude might explain why some participants reported paying less attention to
the WM trials within the game when they were focused on achieving a good
performance in the game (i.e.: trying to get a high number of points). This
could be explained by the fact that some participants did not see the WM trials
as part of Memory Break but as a separate task within the game. As reported
by some participants, if they suffered memory or learning difficulties, they would
then be more interested in doing well in the WM trials as it would be beneficial
for them.

The Score Board displaying the top 10 scores proved important as a method
of keeping players interested in the game, especially for those whose motivation
was to get the best score. Moreover, some participants whose motivation was
to play ’just for fun’, reported that the Score Board encouraged them to get
a better score, making them feel more challenged. Most participants reported
that failing to achieve their goals or getting a low score led them to frustration or
stress and thus, to have a bad WM performance. Conversely, when participants
experienced high arousal levels accompanied by high levels of positive valence,
associated with feelings of being excited and successful, they reported to have
a better WM performance. As one participant reported, "being super excited
does not help with memory, you have to be excited but not too much".

Some of the errors participants made in the WM trials within Memory Break
was due to confusions with letters that are graphically or phonetically similar.
Furthermore, participants sometimes missed the first letter of the sequence dis-
played and, consequently, they got all the sequence wrong as they did not input
all letters in the exact same order as displayed.

6.5 Discussion

6.5.1 Classification and adaptation performance

The poor accuracies of the classification models could be explained by the sig-
nificantly lower mean levels of self-reported arousal and valence in this study.
Due to these differences between the machine learning training and testing, the
distribution of classes in the real-time testing dataset was imbalanced, as the
thresholds used during training were employed to divide arousal and valence
into 2 classes each. One of the reasons that might explain these significant dif-
ferences in the self-reported arousal and valence between studies is the repeated
exposure to our game. Previous studies have demonstrated that physiological
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response intensity decreases after the first exposure when a subject experiences
something novel [96]. Even though physiological signals were normalised in
every session, this effect, called novelty effect, could have decreased the self-
reported arousal and valence levels of some participants, leading to substantial
differences in the class distribution.

Since the difficulty adaptation engine comprised two decision layers (see
Fig. 5.7) the performance-based decision layer corrected some incorrect deci-
sions taken by the affect-based layer due to misclassifications of arousal and
valence. For example, when the affect classification algorithms erroneously pre-
dicted frustration (high arousal and negative valence), the performance deci-
sion layer corrected incorrect adaptation decisions analysing the score achieved.
However, the performance-based decision layer could be substantially improved
as there was important differences between subjects about what merited high
performance. Another relevant aspect of the adaptation engine was the cre-
ation of buffers for arousal and valence, which avoided reactionary adaptation
decisions that could happen due to arousal or valence misclassifications. These
buffers worked in a similar way to a mean filter, smoothing the impact of erro-
neous classifications on the adaptation decisions averaging the last 4 predictions.
Since misclassifications are unavoidable, it is important to know when and how
adaptation decisions should take place to provide an optimal experience [3].

These results suggest that thresholds may not be appropriate for machine
learning labelling and classification due to individual differences between sub-
jects. For example, using a static threshold to divide participants’ self-reported
arousal in 2 levels (high vs low) can be problematic since not all subjects would
report similar levels of arousal or use the same range of values with the Affective
Slider. Thus, further research needs to be done to find methods to detect and
overcome individual differences, avoiding the use of static thresholds for all sub-
jects. One suitable solution would be to normalise participants’ self-reported
affective states. Another important question in the design of machine learn-
ing models is the use of subject-dependent or subject-independent classification
models. As shown in previous research [119], subject-dependent models (i.e.:
training and testing a model with the same subject) can be more accurate than
subject-independent models. Thus, the development of subject-dependent clas-
sification models for adaptation can bring more accurate adaptation and person-
alised cognitive training, although they are more expensive to produce as they
need to be specifically created for each user. Conversely, subject-independent
classification models, as it has been done in this study, are more challenging
to create as they should work for all subjects. As shown in Table 6.2, the per-
formance of the models varies greatly between participants due to differences
in their motivation and ways of playing, which changed their physiological and
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Table 6.5: Number of data points for each difficulty level of the Low and High
WM capacity groups

Difficulty Levels
1 2 3 4 5 6 7 8 9

High WM 17 33 58 46 46 31 30 20 22
Low WM 15 50 76 45 42 29 26 14 12

motion signals.
The physiological and motion sensors selected for arousal and valence clas-

sification in this study can inform future research about effective ways to detect
player’s affective states in VR gaming. Whilst the HR sensor and HMD have
been previously used for arousal detection [128][17], the sensors used for valence
recognition show more interesting insights. The combination of the HMD and
EMG armband suggest that valence could be inferred analysing the player’s
head motion and the force applied to the interaction controller when playing
a VR video game. Nonetheless, it is important to reflect on why the hand’s
motion was not informative about the participants’ affective states. One of
the reasons could be the attachment of Leap Motion in front of the HMD. For
instance, if participants held their hands still in front of the HMD, any head
movement would be detected by Leap Motion as a hand displacement as it is
moving together with the headset.

6.5.2 Adaptation and WM

Only participants in the adaptive version significantly improved their WM per-
formance in the game’s WM trials in the third session. However, these par-
ticipants did not improve their performance in the AOST test. This could be
explained by two factors: the complexity of the AOST test and the ordering
of events (game play then AOST) in the final session. Since the AOST used
math problems to be solved during the letters display, participants found it
much harder than the WM trials within the game. Furthermore, participants
completed the pre-study AOST at the beginning of session 1 and the post-study
at the end of session 3, which produced different effects in certain participants.
While some found the post-study more difficult than the pre-study AOST, due
to tiredness of playing the game, others reported to be more prepared and active
as they trained their WM playing Memory Break before the test.

Participants with low WM capacity significantly improved their score in the
AOST test. Significant differences were also found in the maximum number
of letters correctly recalled in subjects with low WM capacity in the adaptive
version. These results suggest that adaptation can be more beneficial for those
with low WM capacity. Participant’s WM performance in terms of percentage
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of letters correctly recalled was also analysed along the difficulty levels. The re-
sults, as shown in Figure 6.4, suggest that while participants’ WM performance
decays as the difficulty increases, there seems to be a performance improvement
in levels 7 and 8, this being more pronounced for participants with low WM
capacity particularly in level 8. This finding can be linked to the flow theory,
which suggests that optimal levels of challenge can lead to improvements in
cognitive tasks when subjects feel successful. Thus, challenge and arousal levels
elicited in difficulty level 8 may have helped participants with low WM capacity
to have a better WM performance. The number of data points for each group
is shown in Table 6.5. Results observed in difficulty level 10 were disregarded as
the low WM group only had one data point and the high WM group had seven.
More research would be needed to further investigate the effects of difficulty
levels in WM performance.

6.5.3 Affective states, player experience and WM

The higher positive experience reported by participants in the adaptive version
in session 3 could explain their significantly better WM performance in this ses-
sion, although practice effects should be considered as participants were already
familiar with the game from the last session. However, the significant correla-
tions of self-reported immersion, competence and positive affect with their WM
performance indicate that high levels on these variables may contribute towards
a better WM performance. Moreover, some participants reported during the
interviews that having a positive player experience (i.e.: getting a good score
and feeling successful) led them to achieve a better WM performance. This is
related to the optimal experience or flow theory [45]. While competence in-
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creases, participants feel more successful and immersed in the game, triggering
positive affective states that can have positive effects in the players’ cognition.

The significant correlation of self-reported arousal and valence with WM per-
formance suggest that both can have relevant effects in participants’ cognition.
A further investigation revealed that participants in the low WM group seem
to benefit more from high levels of arousal and valence than those with high
WM capacity. This can be observed looking at play 3 of session 3 in Figures 6.2
and 6.3. The self-reported levels of arousal and valence of participants with low
WM capacity may have helped them to achieve their best WM performance of
the whole study in this session. However, the reported arousal and valence of
the high WM group seems to not affect their WM performance as they got a
good performance regardless of the affective state experienced. These findings
are consistent with previous research reporting that subjects with high WM
capacity have better self-regulation of emotional expressions [144].

LME models were used to predict participants’ WM performance, using the
self-reported arousal and valence as predictors. The results showed self-reported
arousal as the only significant predictor of participants’ WM performance, sug-
gesting it has greater impact than valence. This was also shown in the corre-
lations of arousal and valence with participants’ WM performance. Although
both arousal and valence correlated at the same level (rho=0.28) with partic-
ipants’ WM performance in the adaptive version, the correlation of valence of
participants in the non-adaptive version was much weaker (rho=0.14). These
results are in line with previous studies suggesting that arousal has positive ef-
fects on our cognition up to a certain point [88], whereas the effects of valence
are still controversial and might be task dependent [19].

6.6 Summary

The study reported in this chapter draws together the work undertaken in
this research to highlight the importance of adaptation in game-based cognitive
training programs as well as the effects of affective states on cognitive perfor-
mance. An adaptation engine, composed of affect and performance-based deci-
sion layers, was designed to dynamically adapt the difficulty of Memory Break.
Participants playing the adaptive version of the game significantly improved
their WM performance in the game’s WM trials in session 3, though no signif-
icant differences were found between the pre and post-study AOST test. The
reported positive experience and the significant positive correlations of immer-
sion, competence and positive affect with WM performance indicate a positive
effect of these variables in participants’ WM performance. The results also sug-
gested that arousal has stronger effects on participants’ WM performance than
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valence. Following these findings, this research suggests that positive player
experiences can improve the player’s cognitive performance. Thereby, real-time
adaptation in game-based cognitive training is crucial to achieve effective train-
ing and real transfer effects [8].

In addition, the findings indicate that arousal and valence have greater effects
in participants with low WM capacity than those with high capacity. This
suggests that affect-based adaptation could have positive results on subjects
with low WM capacity as the affective states have stronger effects on their
cognitive performance. Therefore, adaptation to keep players in an optimal
affective state can be more beneficial for those with low WM capacity. These
findings are important to improve not only cognitive training programs but
other programs involving cognitive processes such as cognitive rehabilitation.
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Chapter 7

Discussion and Conclusions

This last chapter summarises the principal findings and contributions of this
research. The chapter is structured as follows: section 7.1 discusses the most
important results of the three studies undertaken in this research, putting the
main findings in context with previous relevant research. In section 7.2, the key
findings and contributions of this PhD research are summarised. Section 7.3
documents the main limitations of the studies reported in this research. Section
7.4 proposes future research directions. Finally, this chapter concludes with
reflections and lessons learned in carrying out research on affective gaming in
VR.

7.1 Discussion and implications

There were three aims to this thesis: 1) to study the effects of VR gaming
on player’s WM performance and affective states, 2) to investigate the role of
arousal, valence and immersion on player’s WM performance, and 3) to explore
how real-time adaptation and affective gaming in VR can be used for WM
training. These aims were addressed in two studies (Chapters 4 and 6), in
addition to an initial pilot study (Chapter 3) that examined the suitability of
physiological and behavioural signals for affect detection in gaming. The second
study was designed to investigate the effects of game playing in VR and Desktop
on player’s WM performance and affective states, as well as the role of these on
WM performance. A final study examined how real-time difficulty adaptation
could be used in VR gaming for WM training.

This section discusses the main findings of this research in the context of
the literature reviewed. These findings are grouped under four topics: i) affect
detection in gaming, ii) player experience, affective states and WM performance
in VR, iii) effects of arousal and valence in WM, and iv) adaptation in games
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for WM training.

7.1.1 Affect recognition in gaming

During the three studies presented in this thesis, different physiological sensors
have been used. An initial pilot study used ECG and GSR sensors to measure
players’ heart and electrodermal activity. ECG was a good and reliable sensor to
evaluate the players’ HR and HRV. Whilst HR can be used to measure arousal
levels, as demonstrated in studies 1 and 2 as well as previous research [139, 127],
HRV can serve as an indicator of the players’ engagement levels. This finding
is in line with previous studies finding HRV a good measure of engagement and
cognitive load [155, 175].

One important aspect of using physiological sensors for affect detection in
gaming is how and where the sensor is attached to the player. Christy and
Kuncheva [41] claimed that standard sensors attached to the player’s fingertips
are not appropriate for active game playing as it can limit the player’s move-
ments or actions [81]. This was the case with GSR in Study 1. Placed on the
hand holding the Wii controller, the GSR signal was extremely noisy due to
constant hand movements. Similar results were reported by Morgan et al [105]
when measuring physiological signals in collaborative music making. Sykes and
Brown [154] also found GSR problematic for affect detection in gaming because
skin conductance can increase when muscles tightens.

Therefore, not all physiological sensors are suitable for measuring affective
states in gaming. Some participants of Study 1 found the ECG and GSR sensors
very invasive since the electrodes had to be directly attached to their chest and
fingers (see Fig. 3.2). These were replaced by wearable sensors in studies 2 and
3 as they offer a non-invasive and reliable way of measuring physiological signals
without limiting the player’s movements [41, 81, 65].

Behavioural signals have also been used for affect detection. Kleinsmith and
Bianchi-Berthouze [76] claimed that arms and upper body show the most impor-
tant behavioural cues. Specifically, head motion has been found one of the best
features to detect affective states in different scenarios such as gaming to music
performance [35, 54, 61, 17, 34]. The observational analysis of facial expressions,
body postures, gestures and spatial behaviour in Study 1 demonstrated that it
is possible to infer the player’s affective states analysing these behavioural cues.
Some researchers have suggested that body movements in game playing signif-
icantly depend on the player’s motivation [143, 108]. Although the study of
motivation in gaming is outside of the scope of this research, it is worth noting
that motivations can change the way games are experienced [75]. For example,
some people find certain negative emotions enjoyable (such as frustration), as
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these emotions form part of the gaming experience when the motivation is being
the best player [58].

Although physiological and behavioural signals can be used to infer the
player’s affective states, various researchers have used the sensors in existing
devices (i.e.: accelerometers in controllers) for multi-modal recognition of emo-
tions [24, 65, 80]. Sykes and Brown [154] found a strong positive correlation
between the player’s arousal levels and the force applied to the gamepad. Study
2 explored whether this is true in hand gesture interactions, measuring the force
applied to the hand with the EMG armband MYO. The results confirmed the
suitability of hand’s muscle activation to infer arousal levels in game playing,
even if it is a gesture or motion-based interaction. A similar approach was un-
dertaken to measure arousal levels analysing the player’s head motion using the
HMD’s sensors. Yaw (Y rotation) and pitch (X rotation) were used by Becker-
Asano et al [17] to infer subjects’ arousal analysing their head motion through
the HMD in a virtual emergency scenario. In line with their findings, the head’s
angular velocity was found to be a good indicator not only of arousal but also
of valence. This indicates that the head’s angular velocity can be used to detect
the player’s arousal and valence levels, although further research needs to be
done to confirm its relationship with the latter.

In summary, physiological and behavioural signals can be used to measure
players’ affective states, although not all sensors are suitable as they can be
too invasive. Physiological sensors that have to be attached to the player’s
body should not limit the player’s movements or actions. Recent technological
developments on wearable sensors allow a non-invasive, reliable and easy way
of measuring physiological signals, suitable for gaming scenarios. Furthermore,
motion sensors such as accelerometers or gyroscopes can be used to assess be-
havioural cues that inform about the player’s affective states [75]. Thus, this
research proposes the use of the motion sensors already present in many inter-
action devices such as HMDs or controllers for affect detection.

7.1.2 Player experience, affective states and WM perfor-
mance in VR

One of the principal interests of this PhD research was to understand effects
of VR gaming on players’ experience, affective states and WM performance.
Player’s experience was measured with the Game Experience Questionnaire,
which assesses different dimensions of the player experience such as immersion,
flow, competence, tension or challenge [66]. This section discusses relevant find-
ings of studies 2 and 3.

As described in Section 2.1.2, VR has been associated with high levels of
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immersion, often called presence [31]. Researchers have defined presence as
the feeling of ’being there’ in the virtual world, detaching from the real world
[131, 164]. Researchers have also referred to VR has an ’affective medium’ [131]
or an ’experiential interface’ [164] since it can directly influence the intensity of
the experienced affective states. Riva et al [131] suggested a bidirectional inter-
action between presence and emotions. Whilst presence levels can intensify the
affective states, the emotional responses in a VR environment can also increase
the levels of presence. These findings are in line with the results of Study 2,
where significant differences were found on the self-reported immersion, arousal
and valence between VR and Desktop. However, the levels of immersion re-
ported by participants of Study 3 decreased throughout the three sessions. This
indicates that the intensification of immersion and affective states in VR can
decrease as a result of multiple exposures. This finding is consistent with the re-
search of Meehan et al [97], who found that participants’ physiological responses
decrease over multiple VR exposures. This is related to the novelty effect, which
argues that subjects experience higher physiological responses when presented
something novel [123]. This could explain why Pallavicini et al [117] did not find
significant differences in participants’ HR when playing Smash Hit (the game
that inspired Memory Break) in VR and iPad. Although they argue these re-
sults could be due to the game chosen, it could also be due to previous exposure
of participants to VR environments.

The effects of VR gaming in player’s WM performance were also explored.
The results of Study 2 revealed that participants had a significantly better WM
performance in the easy and medium difficulty levels of VR but not in Desk-
top. A further analysis divided participants of Study 2 into two groups (low and
high) according to their WM capacity. Only the low WM group showed a signif-
icantly better WM performance in these difficulty levels of VR. Similar results
were found in the low WM group playing the adaptive version of Memory Break,
whose WM performance and WM capacity improved. This demonstrates that
adaptive cognitive training programs in VR can be more beneficial for subjects
with low WM capacity, such as those diagnosed with Dyslexia or ADHD [78].
Since adaptive VR gaming for cognitive training have stronger positive effects on
subjects with low WM capacity, as shown in this thesis, subjects ADHD would
benefit more of this type of training as they normally suffer of low WM capacity
[78]. However, further research needs to be done to confirm these effects on
subjects suffering ADHD or Dyslexia. The better WM performance of partici-
pants in VR can be explained by the higher levels of immersion reported, which
correlated significantly with participants’ WM performance in studies 2 and 3.
The significant correlation between the self-reported competence and WM per-
formance in both studies suggests that competence also had a positive effect in
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participants’ WM. Weinstein et al [166] suggested that feeling physically present
in a virtual environment can augment the retention and transfer of content into
the real world. Chittaro et al [39] found a higher knowledge retention of aviation
safety instructions using a VR experience than a card game. Similar findings
were reported by Olmos-Raya and colleagues [112] using a mobile-based HMD
and a tablet for educational purposes. These findings indicate that high levels
of immersion can have significant positive effects on subjects’ cognitive skills.

In summary, participants experience higher levels of immersion in VR com-
pared to other interactive modes. At the same time, VR intensifies the ex-
perienced affective states. These two factors can have significant effects on
participants’ WM performance, helping them to make a better use of their
cognitive resources. These effects are stronger on participants with low WM
performance. Thereby, VR can be an effective interaction mode for game-based
cognitive training due to the positive effects of high immersion levels on cognitive
skills.

7.1.3 Effects of arousal and valence on WM performance

As mentioned in the previous section, VR can significantly intensify the user’s
affective states. Due to the reciprocal influence between affect and cognition
[164, 30], there was an interest in investigating the effects of arousal and valence
on player’s WM performance. This section discusses these effects in detail,
reflecting on the results of studies 2 and 3.

To recap, Yerkes and Dodson [174] proposed that arousal has positive effects
in cognitive skills up to a certain point after which it has negative effects if
arousal continues to increase. Although the effects of valence are controversial
[19], various studies have demonstrated that positive affective states can also
benefit cognitive skills [140]. Olmos-Raya et al suggested that ’positive emotions
stimulate curiosity, increase attention and arouse interest in the topic being
learned ’ [112].

Following these findings, Study 2 analysed participants’ self-reported arousal
and valence as well as their WM performance in each difficulty level. In order to
have a clearer insight of the effects of arousal and valence on WM, this analysis
was carried out on the low and high WM capacity groups independently. In
accordance with Yerkes and Dodson, the highest levels of arousal corresponded
with participants’ worst WM performance. This finding is also in line with previ-
ous research that demonstrated arousal increase as a function of game difficulty
[175, 158]. The effects of valence on WM performance were more evident in
participants with low WM capacity. Their highest level of self-reported valence
coincide with their best WM performance. These observations are consistent
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with the research of Curci et al [46] who suggest that the emotional valence of
a stimuli and the individual’s WM capacity influence the subject’s WM perfor-
mance. Schmeichel and colleagues [144] reported similar findings in a series of
four studies, concluding that subjects with low WM capacity are less efficient
in self-regulation of emotional experiences than those with high capacity. This
indicates that subjects with low WM capacity can experience the detrimental
effects of arousal on cognition earlier than those with high WM capacity.

Therefore, subjects with low WM capacity could benefit more of an optimal
affective state when performing a cognitive task. Keeping them in a flow state
where they successfully overcome the challenges presented, subjects with low
WM can make a better use of their cognitive resources. Due to the effects
of difficulty levels in subject’s affective states, especially in arousal [175, 158],
it is important to provide the right difficulty level to optimally challenge the
player without causing frustration or boredom. Yeh et al [173] proposed a
similar idea activating the subject’s attention presenting adequate challenges
and avoiding negative emotions that could detriment the cognitive performance.
However, they did not find consistent effects of self-reported negative emotions
on participants’ WM, probably due to individual factors such as motivation or
WM capacity.

Finally, arousal was found to be a better predictor of WM performance than
valence. Linear Mixed Effects models were built in studies 2 and 3 to predict
participants’ WM performance using the self-reported arousal and valence as
fixed effects. Whilst both arousal and valence were significant in Study 2, only
arousal was significant in Study 3. This can explain why researchers have found
important effects of arousal on WM performance, whilst the role of valence is
still controversial [19, 174, 173].

7.1.4 Adaptation in games for WM training

Two main conclusions can be made so far: first, VR can be a useful medium for
cognitive training due to the positive effects of immersion in subjects’ cognitive
skills, and second, arousal and valence can have significant effects in cognition.
In light of these conclusions, this section discusses the findings of Study 3 re-
garding the adaptation engine, as well as the implications about why and how
affective states can be used to adapt game-based cognitive training programs.

Video games have often been used to motivate subjects in low engagement
educational or cognitive tasks [125, 160]. Since challenge is one of the most
important aspects of video games [44], many researchers have suggested the im-
plementation of dynamic difficulty adaptation (DDA) algorithms to keep players
engaged and motivated [24, 87]. As shown in this and previous research [175],
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difficulty levels directly influence the players’ affective states and consequently,
their cognitive performance. When challenges and skills are balanced, players
enter in a flow state [45] (see Fig. 2.4), also called optimal experience, that
can help them to achieve a better cognitive performance [8]. In line with these
findings, this research has demonstrated that players have a better WM per-
formance when they are in an optimal affective state, feeling successful and
overcoming difficult challenges.

Due to the effects of arousal and valence on cognitive skills, it is important
to include affective state metrics in the adaptation engine in order to provide
more effective cognitive training. As suggested by Mishra et al [98], closed-
loop video games should include physiological and behavioural cues to achieve a
more personalised cognitive training. This is especially relevant for game-based
cognitive training since video games often involve emotional processes [24] and
the pace of progression strongly depends on the player’s skills. The adaptation
engine implemented in Memory Break used affect and performance metrics for
adaptation and decision making. Although the affect recognition system did not
perform well, making wrong adaptation decisions, the performance-based deci-
sion layer corrected some of these erroneous decisions. These findings are in line
with the research by Bontchev and Vassileva [25] who showed that adaptation
accuracy can significantly improve when combining performance and affective
metrics. Even though their research focused on computer games for educational
purposes, their findings are reasonable as the adaptation engine would have a
better picture of the player’s responses. Whilst the performance decision layer
keeps track of the player’s progression, the affect decision layer appraises the
player’s affective responses, which can provides insights about how the player
reacts to new challenges. This is important in gaming experiences since players
can perceive challenges differently depending on their motivation [75, 58]. Since
flow strongly depends on motivation and affective states [24], only performance-
based adaptation is not enough to provide a tailored WM training that sustain
players in an optimal affective state. This is supported by Lazarus’ cognitive-
motivational theory [83], which states that the subjects’ motivation and goals
in a situation must be known to understand their reactions.

The adaptive version of Memory Break in Study 3 had positive effects in par-
ticipants’ WM performance. However, only participants with low WM playing
the adaptive version significantly improved their WM performance within Mem-
ory Break as well as their AOST score. These findings indicate that difficulty
adaptation can be more beneficial for subjects with low WM capacity.

The design and implementation of the adaptation engine presented some
challenges and limitations worth discussing. The most important limitation
was the poor performance of the affect recognition system, which had a clas-
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sification accuracy below the chance level of 50%. This could be explained by
the novelty effect [123] and lower levels of self-reported arousal and valence
of participants in Study 3 compared to those in Study 2. Another reason is
the subject-independent approach used in the affect recognition system, which
caused great accuracy variability between subjects. According to Parsons and
Reinebold [119], subject-independent methods are harder to create than subject-
dependent methods as they have to work for all subjects. Although subject-
dependent methods are more reliable because they are exclusively created for
each subject, they are also more expensive as they have to be calibrated for
each subject. Due to the intensification of affective states in VR, developing
automatic affect recognition systems in this medium can add some difficulty
to this complex problem. Since VR is a relatively new medium, there can be
important novelty effects on some participants.

The misclassification of arousal and valence involved an important challenge
about how to deal with them. The buffers created to keep a time series of
the previous predictions smoothed the impact of these misclassifications. Adap-
tation decisions were only taken if the engine was certain about the detected
affective state (buffer mean >.05). Afergan et al [3] took a similar approach,
averaging the previous 8 classification predictions to calculate a confidence value
to make adaptation decisions. Since arousal and valence are continuous dimen-
sions [138], it is important to keep track of how subjects’ emotions progress in
time. In addition, the creation of static thresholds is not a good solution to
divide data for classification that is likely to have a great variability between
subjects. The static threshold set up in Study 2 to divide arousal and valence
into 2 classes for classification were problematic since not all subjects in studies
2 and 3 used the same range of values with the Affective Slider. This could be
solved normalising participants’ self-reported affective states.

Finally, the performance-based decision layer could be substantially im-
proved, adding more meaningful features such as reaction times or errors made.
The static threshold to differentiate good and bad scores was again problematic
due to high variability between subjects in skills and expectations on what a
good performance is. Montani et al [103] suggested a continuous calibration of
the game’s difficulty level depending on the player’s current performance to ac-
count for performance variability. Therefore, it is important to account for the
variance of subjects’ self-reported variables, preferences and motivations. Fur-
ther research needs to be done to address this important problem in affective
computing research.

134



7.2 Contributions

The research presented in this PhD thesis revolves around three elements or
variables: affective states, WM and VR. Previous research has demonstrated
that adaptation in games for cognitive training can lead to cognitive improve-
ments. This research explored the employment of HMD-based VR video games
for WM training as well as the effects of immersion and affective states on WM
performance. An adaptation engine was designed, implemented and tested to
dynamically adjust the difficulty of the game according to the player’s affective
states and performance. The results demonstrated that affect and performance-
based adaptation in VR games can have positive effects on the player’s WM
performance

This research contributes to the areas of affective gaming and game-based
cognitive training in five ways. First, high levels of immersion often re-
ported in VR have a positive impact on player’s WM performance
and intensify their affective states. Second, positive affective states
help subjects to achieve a better WM performance, although arousal
can have detrimental effects if it is too high. Third, a new methodology for
affect recognition in gesture-based VR gaming using physiological and be-
havioural signals. This methodology proposed and demonstrated the feasibility
of employing the HMD to measure the player’s affective states. Fourth, a novel
adaptation engine composed by affect and performance metrics to dy-
namically adjust the difficulty of the game. This adaptation engine aims to keep
the player in an optimal affective state to improve the WM performance. Last,
difficulty adaptation can have positive effects on WM performance,
being particularly pronounced on subjects with low WM capacity.
To the best of the researcher’s knowledge, this is the first time that affect and
performance metrics have been used for the adaptation of a game-based WM
training program in VR.

The contributions of this PhD have demonstrated that VR is an effective
medium for cognitive training as it improves subject’s WM performance due to
the high levels of immersion and engagement experienced. The findings reported
also suggest that affect and performance metrics should be used to adapt the
game in real-time to provide a tailored adaptation. Due to the effects of arousal
and valence on subject’s cognition, this research proposes the incorporation
affective state metrics in the adaptive engine of a game-based cognitive training
programs to improve its effectiveness.

Finally, this thesis suggests further research to investigate the effects of adap-
tive games in VR for cognitive training on subject’s WM. Since adaptive games
are more beneficial for subjects with low WM capacity, as shown in this thesis,
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further research should focus on subjects diagnosed with Dyslexia or ADHD as
they suffer of low WM capacity [78].

7.3 Limitations

This section discusses some of the limitations of the research reported in this
thesis. Suggestions are provided to address these limitations in future works.

7.3.1 Challenges in game type and interactions

The cognitive demands of video game playing can substantially change depend-
ing on the game genre played. According to Adams [2], there are more than 7
main genres (i.e.: Action, Adventure, Strategy, Sports, etc...), which are defined
by its most common challenge and not by its content or medium of play. As
Cohen, Green and Bavelier demonstrated [43], not all types of video games are
beneficial for our visual attention as they challenge different parts of our cogni-
tion. Action video games, for instance, have been thoroughly studied for their
positive effects on visuospatial cognition [43].

Memory Break, is a game designed to engage and immerse players while
challenging their verbal WM. Although it demands a very simple interaction,
different results could be obtained depending on the game played and its inter-
action. Other genres such as action video games could have different effects on
players’ cognition due to variations in the cognitive load. For example, if the
game would required a convoluted sequence of actions, the player experience
and cognitive performance might change. Future work should use appropriate
games that do not overload the player’s cognitive skills.

On the other hand, the difficulties reported with the interaction gestures
used in Memory Break could have affected the results of this research. Before
the development of a video game, a designer should consider the capabilities
and constrains of the technology used, especially if it is novel. Designing hand
gestures for game interactions can be challenging unless they are natural gestures
that players are used to. Video games should use controllers that are easy to
understand and use for all type of users.

7.3.2 Challenges in affect recognition

This research has discussed relevant challenges in the detection and recognition
of players’ affective states (see section 7.1.1). The results of Study 1 revealed
that GSR sensors are not appropriate for affective state detection in video game
playing as it is prone to noise when motion is involved [105, 154]. Participants
in this study found the physiological sensors very invasive due to the electrodes
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attached to their chest and hand (see Fig. 3.2). This problem was solved in
studies 2 and 3 using wearable sensors. Caution must be taken when interpreting
physiological signals for affect recognition, since they are not exclusively related
to one affective state. For example, an increase in cardiac activity is related to
a high emotional arousal, while low activity is related to information processing
and engagement [139]. Since video games can produce both high arousal and
attentional engagement, HR activity may not be a good measure of arousal in
these scenarios [127].

Another important limitation of this research was the poor performance of
arousal and valence classification algorithms. Various problems can be identified
in the design and training of the machine learning algorithms. First, participants
in Study 2 should have reported arousal and valence levels at each section of
the game as in Study 3. This would have generated more data for training
and avoided the section selection reported in section 5.1.4. Second, the data
used to train the classification algorithms should have been divided two chunks:
60% for training and 40% for testing. This would have made the classification
testing easier, before embarking on Study 3. Due to the small amount of data
available, all of it was used for training. These two limitations were critical
on the design and development of the affect detection system, contributing to
its poor classification accuracy. This problem could have been solved using a
subject-dependent approach, although more data would have been necessary to
train the models for each participant. The last problem on affect recognition was
the significant differences in self-reported levels of arousal and valence between
Study 2 and Study 3. These individual differences could have been solved by
normalising the reported arousal and valence. Likewise to the normalisation of
physiological signals, participants should have self-reported their arousal and
valence levels at the beginning of each session. By not doing this, the median
of the reported arousal and valence in Study 2 had to be used to divide them
into two classes for classification.

7.4 Future Work

Parts of this thesis have been published (see section 1.4) and cited by some
researchers. The paper "Measuring affective, physiological and behavioural dif-
ferences in solo, competitive and collaborative games", associated with chapter
3, was cited for its insights about the impact of collaboration and competition
game playing on players’ engagement and physiological responses [136, 118, 52].
The paper associated with chapter 4, titled "Effects of valence and arousal on
working memory performance in virtual reality gaming", was cited by [26] in a
review about the use of VR to explore the effectiveness of media messages in
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Figure 7.1: The Quantified behaviour Test (QbTest) [129] analyse the head
motion to assess attention deficits and hyperactivity.

social campaigns.
In this final section, a number of areas for future work are briefly described

following the findings of this research. These present opportunities to explore
and enhance the contributions reported in this thesis.

7.4.1 Evaluation on subjects with cognitive impairments

All participants that took part in this research were healthy subjects that
were not diagnosed with any learning difficulties such as Dyslexia or Attention
Deficits and Hyperactivity Disorder (ADHD). Since the effects of adaptation
were stronger in participants with low WM capacity, it would be interesting
to test the benefits of playing Memory Break on subjects diagnosed with these
learning difficulties. These subjects are known to suffer from deficits in execu-
tive functions such as WM [78]. Rizzo et al [133] used a VR classroom to assess
this technology in the study of attention deficits in children with ADHD. Using
a HMD, head rotation and general motor movement assessed distraction and
hyperactive behaviour. They concluded that VR technology could improve cog-
nitive problem assessment as it allows a higher control of stimuli presentation
and a more precise measure of responses. This suggests that VR could be a
good medium not only for cognitive training but also for cognitive assessment,
using the HMD’s sensors. This approach has been already implemented in the
Quantified behaviour Test (QbTest) [129], a Continuous Performance Task that
measures the two core symptoms of ADHD (attention and hyperactivity) mea-
suring subject’s head motion (see Fig. 7.1 ). This data is used to estimate how
focused the subject is on the given task.

It would also be interesting to explore whether performance-based adapta-
tion on its own would produce the same effects on participants with low WM
capacity. Like the research of Liu et al [87], two performance-based adaptation
systems could be tested with and without affective metrics to assess its benefits
in subjects diagnosed with ADHD.
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7.4.2 The future of VR in cognitive and wellbeing research

The introduction of HMDs such as Oculus or HTC Vive has allowed researchers
an easy and affordable way of using VR. This has increased the number of VR
applications for health and wellbeing. Various companies 1 and researchers [23]
are using VR games to treat binocular vision issues like amblyopia or strabismus,
replacing eye patches. Researchers like Mel Slater are exploring the use of VR to
transform the self. For example, one of his latest studies suggested that having
a virtual out-of-body experience reduces fear of death [27].

This research has used standing VR instead of room-scale VR - where par-
ticipants can physically move around the VR environment - due to technological
restrictions when the research started in 2014. Future work in the research of
VR for cognitive training and wellbeing should incorporate new technologies
such as room-scale environments [114] or haptics [27] to explore their impact on
cognitive skills.

7.5 Closing remarks

This thesis has largely focused on the development of WM training programs
using adaptive video games in VR. One of the main interests of this research was
to explore the use of HMD-based VR applications for cognitive training. How-
ever, many authors use the term VR to refer to 3D environments experienced
through a PC screen. This research aims to highlight the important differences
in self-reported levels of immersion between immersive VR (using HMDs or
CAVEs) and non-immersive VR (using PC screens or touchscreens) [114]. Due
to the effects of immersion on cognitive skills, it is important to distinguish the
results of studies using each interaction mode in order to understand the effects
of immersion.

Finally, it should be noted that developing a video game is not a trivial
task. It is a very long process that requires the expertise of graphic designers,
sound engineers, developers and interaction designers. Memory Break was not
designed to be a visually stunning video game, but to immerse and motivate
players as well as having full control over game. Due to the complex task of
developing a video game, the researcher encourages the collaboration of experts
of different disciplines to create high quality video games.

1https://www.seevividly.com

139

https://www.seevividly.com


Appendix A

Study 1 Material

A.1 Ethics Approval

          Queen Mary, University of London 
                  Room W117 
      Queen’s Building 
      Queen Mary University of London 
      Mile End Road 
      London E1 4NS 
      
                  Queen Mary Ethics of Research Committee 
                  Hazel Covill 
                  Research Ethics Administrator 
                                                                                                                                 Tel: +44 (0) 20 7882 7915 
                 Email: h.covill@qmul.ac.uk 

Dr Laurissa Tokarchuk 
CS302, Peter Landin Building 
Department of Electronic Engineering 
Queen Mary University of London 
Mile End 
London            16th June 2015 
   

  To Whom It May Concern: 
 
Re: QMERC1502a – Collaboration and competition in computer games.    

 
I can confirm that Mr Daniel Arellano has completed a Research Ethics 
Questionnaire with regard to the above research.  
 
The result of which was the conclusion that his proposed work does not present 
any ethical concerns: is extremely low risk; and thus does not require the 
scrutiny of the full Research Ethics Committee.  
 
Yours faithfully 

 

 
 

Ms Hazel Covill – QMERC Administrator   Patron: Her Majesty the Queen 
Incorporated by Royal Charter as Queen Mary 
and Westfield College, University of London 

140



A.2 Pre-Experiment Questionnaire

17/09/2018 Questionnaire 1. Pre-Experiment

https://docs.google.com/forms/d/1UsiCPtXuvQXbI1ZLBSORYd4CFigbv4td3O5jQ-2VxyI/edit 1/3

Questionnaire 1. Pre­Experiment
Please fill up the questionnaire below

1. ID

2. Age

3. Gender
Mark only one oval.

 Male

 Female

4. Occupation

5. 1­ Do you play videogames frequently?
Mark only one oval.

 Yes

 No

6. 2­ How many times a week do you play video games?
Mark only one oval.

 None

 1­2

 3­4

 More than 4

7. 3­ How many hours have you played video games in the last month?
Mark only one oval.

 None

 0 ­ 2 hours

 3 ­ 5 hours

 6 ­ 10 hours

 11 ­ 15 hours

 More than 15 hours
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17/09/2018 Questionnaire 1. Pre-Experiment

https://docs.google.com/forms/d/1UsiCPtXuvQXbI1ZLBSORYd4CFigbv4td3O5jQ-2VxyI/edit 2/3

8. 4­ On what platform do you usually play?
Tick all that apply.

 PC

 PlayStation

 Xbox 360

 Xbox Kinect

 Wii

 Handheld consoles(PlayStation Portable or Vita, Nintendo DS...)

 Mobile Phone (iPhone, Android, Windows Phone...)

 Other: 

9. 5­ What is your favourite kind of video game?
Tick all that apply.

 Action (platforms, fighting...)

 Shooter (First­person shooting, on­rails shooting...)

 Adventure (Horror, graphic adventure, interactive movie...)

 RPG (Role­playing, fantasy, western...)

 Simulation (Construction, life or vehicle simulation...)

 Strategy (Real­time tactics, tower defense, wargame...)

 Sports (Racing, football, basketball, tennis...)

 Puzzles (Brain training, logic...)

 Other: 

10. 6­ How do you prefer to play?
Tick all that apply.

 Alone

 With someone (co­operative)

 Against someone (competitive)

 Online
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11. How do you see/describe yourself? Answer for each statement below.
``I see myself as someone who…’’
Mark only one oval per row.

Disagree
Strongly (1)

Disagree
(2)

Neither agree nor
disagree (3)

Agree
(4)

Agree
Strongly (5)

is reserved
is generaly trusting
tends to be lazy
is relaxed, handles
stress well
has a few artistic
interests
is outgoing, sociable
tends to find fault
with other
does a thorough job
gets nervous easily
has an active
imagination
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A.3 Post-Condition Questionnaire

17/09/2018 Questionnaire 2. Post-Condition

https://docs.google.com/forms/d/1VsdjMYamQPVp7uS79_tftLNUFMoICKK6neK1RCpSau8/edit 1/2

Questionnaire 2. Post­Condition

Please fill the questionnaire below about the game condition you just played

1. ID:

2. Play mode:

3. 1) How fun did you find the game?

Mark only one oval.

1 2 3 4 5

Little Very

4. 2) How boring did you find the game?

Mark only one oval.

1 2 3 4 5

Little Very

5. 3) How hard did you find the game?

Mark only one oval.

1 2 3 4 5

Little Very

6. 4) How engaged were you with the game?

Mark only one oval.

1 2 3 4 5

Little Very

7. 5) How immersed were you in the game?

Mark only one oval.

1 2 3 4 5

Little Very
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8. 6) To what extent did you feel motivated while playing?

Mark only one oval.

1 2 3 4 5

Not at all A lot

9. 7) How much effort did you put into playing the game?

Mark only one oval.

1 2 3 4 5

Very little A lot

10. 8) Did you play without thinking about how to play?
i.e.: Without thinking how to throw the ball, how to rotate the camera...
Mark only one oval.

1 2 3 4 5

Not at all A lot

11. 9) How did you feel with your partner in terms of...? (if playing against the computer, with

the computer)

Mark only one oval per row.

1 (Very little) 2 3 4 5 (A lot)

Enjoyment
Boredom
Fun
Engagement
Stress
Frustration
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A.4 Post-Experiment Questionnaire

17/09/2018 Questionnaire 3. Post-Experiment

https://docs.google.com/forms/d/11kyp1rqNe1iNrezfRXSq38T593y5TuVbF3V3nevf5JM/edit 1/2

Questionnaire 3. Post­Experiment

Please fill the questionnaire below when the experiment has finishes

1. ID:

2. 1) Did you like the game overall?

Mark only one oval.

 Yes

 No

3. 2) Did you find the game or the controller difficult to manage?

Mark only one oval.

 Yes

 No

4. 3a) How much did you enjoy the solo mode?

Mark only one oval.

1 2 3 4 5

Little A lot

5. 3b) How much did you enjoy the co­operative mode?

Mark only one oval.

1 2 3 4 5

Little A lot

6. 3c) How much did you enjoy the competitive mode?

Mark only one oval.

1 2 3 4 5

Little A lot

7. 4a) How engaged with your partner did you feel in the solo mode?

Mark only one oval.

1 2 3 4 5

Little Very
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8. 4b) How engaged with your partner did you feel in the co­operative mode?

Mark only one oval.

1 2 3 4 5

Little Very

9. 4c) How engaged with your partner did you feel in the competitive mode?

Mark only one oval.

1 2 3 4 5

Little Very

10. 5) Which play mode did you...

Mark only one oval per row.

Solo mode Co­operative mode Competitive mode

enjoy the most
find the most boring
find the most fun
find the most frustrating
find the most stressful

11. Any further comments or suggestions?
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Study 2 Material

B.1 Ethics Approval

          Queen Mary, University of London 
                  Room W117 
      Queen’s Building 
      Queen Mary University of London 
      Mile End Road 
      London E1 4NS 
      
                  Queen Mary Ethics of Research Committee 
                  Hazel Covill 
                  Research Ethics Administrator 
                                                                                                                                 Tel: +44 (0) 20 7882 7915 
                 Email: h.covill@qmul.ac.uk 
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Queen Mary University of London 
Mile End Road 
London  

          13th December 2016 
    
To Whom It May Concern: 
 
Re: QMREC1873a – Games 4 Brains  
  
I can confirm that Mr Daniel Arellano has completed a Research Ethics 
Questionnaire with regard to the above research. 

 
The result of which was the conclusion that his proposed work does not present 
any ethical concerns; is extremely low risk; and thus does not require the 
scrutiny of the full Research Ethics Committee. 
 
Yours faithfully  

 
 

Ms Hazel Covill – QMERC Administrator   Patron: Her Majesty the Queen 
Incorporated by Royal Charter as Queen Mary 
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B.2 Pre-Experiment Questionnaire

17/09/2018 Study 2.5 - Pre-Experiment Questionnaire

https://docs.google.com/forms/d/1YijVim4_yc3gAgTqHruSclxOVLOrGPSqCkqm1rs_rZg/edit 1/2

Study 2.5 ­ Pre­Experiment Questionnaire
Affective gaming for cognitive training study ­ Pre­Experiment questionnaire.

*Required

1. ID *

2. Age *

3. Gender *
Mark only one oval.

 Male

 Female

4. Occupation

5. Have you ever been diagnosed with a specific learning difficulty, such as Dyslexia? *
Mark only one oval.

 Yes

 No

 Other: 

6. How many hours have you played video games in the last week? *
Mark only one oval.

 None

 0­2 hours

 3­5 hours

 5­7 hours

 7­10 hours

 More than 10 hours
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7. On what platform do you usually play? *
Tick all that apply.

 Smartphones (iPhone, Android, iPod...)

 Tablets (iPad, Samsung Galaxy Tab...)

 Computer / Laptop

 Wii

 Xbox Kinect

 Playstation or Xbox

 Handheld consoles (PlayStation Portable or Vita, Nintendo DS...)

 Virtual Reality (Oculus Rift, HTC Vive, Google Cardboard, Samsung Gear...)

 Other: 

8. What kind of video game genre do you usually play? *
Tick all that apply.

 Action (Platforms, fighting...)

 FPS: First­Person Shooting (on­rails shooting...)

 Adventure (Horror, graphic adventure, interactive movie...)

 RPG: Role­Playing Game (Fantasy, western...Sometimes multiplayer)

 Simulation (Construction, life or vehicle simulation...)

 Strategy (Real­time tactics, tower defense, wargame...)

 Sports (Racing, football, basketball, tennis...)

 Puzzles (Logic, matching or ordering...)

 Cognitive games (Brain training, skills development)

 Casual Games (mini­games or quick to play such as inifite runners. I.e.: Angry birds,
FarmVille, Candy Crush...). May fit in other genres

 Other: 

9. What is your motivation to play a video game? *
Mark only one oval.

 Just for fun or to discover new experiences

 To kill the time when i am bored (i.e.: when commuting)

 To be the best player and beat others, or to get the highest score

 Other: 

10. Have you ever played a Virtual Reality game or experience (i.e. rollercoaster, 360 videos or
similar)
Mark only one oval.

 Yes

 No
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B.3 Post-Condition Questionnaire

17/09/2018 Study 2.5 - Post-Condition Questionnaire

https://docs.google.com/forms/d/1BJhJeFUZgn48gunHJuoqJmlJGZLL2A5EEidCM3zyOPc/edit 1/2

Study 2.5 ­ Post­Condition Questionnaire

To be fill after each level in each on the interaction modes

*Required

1. What interaction mode have you just played? *

Mark only one oval.

 Desktop

 Virtual Reality

2. ID *

3. How engaged were you with the game? *

Mark only one oval.

0 1 2 3 4

Not at all Extremely

4. What level have you just played? *

Mark only one oval.

 1

 2

 3

5. Please indicate how you felt while playing the game for each of the items,on the following

scale: (Please ask the experimenter if you do not understand any of the statements below )

*

Mark only one oval per row.

0 (Not at
all)

1
(Slightly)

2
(Moderately)

3
(Fairly)

4
(Extremely)

I was interested in the game
I felt successful
I felt bored
I found it impressive
I forgot everything around me
I felt frustrated
I found it tiresome (tired or
boring)
I felt irritable
I felt skilfull
I felt completely absorbed
I felt content (in a state of
peaceful happiness.)
I felt challenged
I had to put a lot of effort into it
I felt good
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6. How immersed were you in the game? *

Mark only one oval.

0 1 2 3 4

Not at all Extremely

7. To what extent did you feel motivated while playing? *

Mark only one oval.

0 1 2 3 4

Not at all Extremely

Affective Slider

Please response to the Affective Slider in the browser's tab next to this one.
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B.4 Post-Experiment Questionnaire

17/09/2018 Study 2.5 - Post-Session Questionnaire

https://docs.google.com/forms/d/1U9MpWibI0BWY29wPslvWmXzXy2oekBJZicaUJozBDDM/edit 1/4

Study 2.5 ­ Post­Session Questionnaire
Please respond this questionnaire about your overall experience playing the game on the platform 

you just played (either iPad or VR)

*Required

1. ID *

2. What interaction mode have you just played? *
Mark only one oval.

 Desktop

 Virtual Reality

3. Did you like the game overall? *
Mark only one oval.

 Yes

 No

4. Did you find the interaction mode or the controller difficult to manage? *
Mark only one oval.

 Yes

 No

5. Overall, to what extent did you feel motivated to memorise and recall correctly the letters
in the memory task? *
Mark only one oval.

0 1 2 3 4

Not at all Extremely

6. Overall, to what extent did you feel motivated to get the best score in the game? *
Mark only one oval.

0 1 2 3 4

Not at all Extremely

7. Overall, how engaged were you with the game in this interaction mode? *
Mark only one oval.

0 1 2 3 4

Not at all Extremely
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8. How immersed were you in the game in this interaction mode? *
Mark only one oval.

0 1 2 3 4

Not at all Extremely

9. How present did you feel playing the game in this interaction mode? *
Mark only one oval.

0 1 2 3 4

Not at all Extremely

10. What was your main motivation to play the game? *
Mark only one oval.

 Just for fun or to discover new experiences

 To challenge myself and get my best score

 To be the best player on the game and get the highest score

 I had no motivation

 Other: 

11. Which difficulty level did you ... *
NOTE: The levels shown below (1, 2 and 3) do NOT refer to the level order you played but to

each individual level. For example, if you played first in level 3 and you think this was the most

challenging level, please select the option 3 and not 1. If you have any question, please ask the

experimenter.

Mark only one oval per row.

1 2 3

find more challenging (difficult)?

find more boring?

enjoy the most?

feel more aroused or activated?

feel more focused on the game?
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12. Please indicate how you felt after you finished playing the game for each of the items,on
the following scale: (Please ask the experimenter if you do not understand any of the
statements below ) *
Mark only one oval per row.

0 (Not at

all)

1

(Slightly)

2

(Moderately)

3

(Fairly)

4

(Extremely)

I felt revived

I felt bad

I found it hard to get back to

reality

I felt guilty

It felt like a victory

I found it a waste of time

I felt energised

I felt satisfied

I felt disoriented

I felt exhausted

I felt that I could have done

more useful things

I felt powerful

I felt weary (tired)

I felt regret

I felt ashamed (embarrassed)

I felt proud

I had a sense that I had

returned from a journey

13. Any further comments or suggestions?
 

 

 

 

 

**** Please respond questions below ONLY if you have played
in both interaction modes (Desktop & VR) ****

14. What interaction mode did you...
Mark only one oval per row.

Desktop Virtual Reality Both equal

enjoy the most?

find more immersive?

find more challenging?

feel more aroused or activated?

feel more motivated to success?

feel more focused?
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Appendix C

Adaptation Engine Material

C.1 Machine Learning Models

The following tables show the classification accuracies of all possible combina-
tions fusing the sensor’s features for affect recognition. Fourteen models were
created to classify arousal, valence and 4 emotions.

HMD (26 Features)
4 Emotions Arousal Valence

Naïve Bayes 43.67 65.51 65.51
Logistic Reg. 31.03 60.91 55.17
SVM 55.17 65.51 65.51
NN 39.08 59.77 62.06
KNN 35.63 54.02 59.77
AdaBoost 43.67 64.36 58.62
Rand. Forests 45.97 58.62 62.06
J48 33.33 51.72 68.96
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LM (27 Features)
4 Emotions Arousal Valence

Naïve Bayes 29.88 57.47 48.27
Logistic Reg. 27.58 59.77 48.27
SVM 42.52 58.62 57.47
NN 28.73 54.02 57.47
KNN 39.08 66.66 58.62
AdaBoost 29.88 50.57 48.27
Rand. Forests 43.67 58.62 60.91
J48 26.43 50.57 51.71

HR (10 Features)
4 Emotions Arousal Valence

Naïve Bayes 32.18 58.62 52.87
Logistic Reg. 44.82 55.17 64.36
SVM 43.67 58.62 50.57
NN 42.52 52.87 51.72
KNN 32.18 57.47 51.72
AdaBoost 32.18 57.47 52.87
Rand. Forests 37.93 52.87 51.72
J48 26.43 47.12 59.77

MYO (7 Features)
4 Emotions Arousal Valence

Naïve Bayes 49.42 59.77 63.21
Logistic Reg. 44.82 49.42 56.32
SVM 48.27 55.17 64.36
NN 41.37 56.32 60.91
KNN 31.03 49.42 57.47
AdaBoost 49.42 59.77 59.77
Rand. Forests 42.52 50.57 60.91
J48 47.12 58.62 67.81
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HMD+LM (53 Features)
4 Emotions Arousal Valence

Naïve Bayes 35.63 65.51 55.17
Logistic Reg. 27.58 47.12 50.57
SVM 51.72 62.06 68.96
NN 33.33 50.57 63.21
KNN 36.78 55.17 67.81
AdaBoost 35.63 57.47 55.17
Rand. Forests 45.97 52.87 65.51
J48 35.63 54.02 64.36

HR+MYO (17 Features)
4 Emotions Arousal Valence

Naïve Bayes 39.08 58.62 57.47
Logistic Reg. 40.22 50.57 58.62
SVM 49.42 54.02 62.06
NN 31.03 47.12 54.02
KNN 32.18 47.12 58.62
AdaBoost 39.08 57.47 60.91
Rand. Forests 44.82 58.62 65.51
J48 28.73 48.27 52.87

HMD+HR (36 Features)
4 Emotions Arousal Valence

Naïve Bayes 42.52 66.66 67.81
Logistic Reg. 36.78 55.17 51.72
SVM 55.17 59.77 71.26
NN 39.08 56.32 56.32
KNN 35.63 62.06 54.02
AdaBoost 43.67 66.66 63.21
Rand. Forests 49.42 51.72 65.51
J48 34.48 56.32 66.66
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HMD+MYO (33 Features)
4 Emotions Arousal Valence

Naïve Bayes 45.97 64.36 70.11
Logistic Reg. 29.88 62.06 57.47
SVM 55.17 64.36 68.96
NN 43.67 60.91 66.66
KNN 42.52 55.17 58.62
AdaBoost 44.82 63.21 62.06
Rand. Forests 50.57 58.62 70.11
J48 33.33 54.02 73.56

HMD+LM+HR (63 Features)
4 Emotions Arousal Valence

Naïve Bayes 37.93 67.81 55.17
Logistic Reg. 22.98 50.57 52.87
SVM 50.57 58.62 68.96
NN 34.48 49.42 58.62
KNN 39.08 55.17 66.66
AdaBoost 36.78 58.62 54.02
Rand. Forests 48.27 57.47 62.06
J48 36.78 44.82 65.51

HMD+LM+MYO (60 Features)
4 Emotions Arousal Valence

Naïve Bayes 37.93 65.51 58.62
Logistic Reg. 27.58 50.57 48.27
SVM 51.72 62.06 72.41
NN 36.78 57.47 55.17
KNN 47.12 67.81 70.11
AdaBoost 35.63 59.77 57.47
Rand. Forests 45.97 56.32 66.66
J48 37.93 49.42 71.26

159



LM+HR (37 Features)
4 Emotions Arousal Valence

Naïve Bayes 28.73 63.21 48.27
Logistic Reg. 22.98 51.72 49.42
SVM 44.82 60.91 55.17
NN 40.22 49.42 54.02
KNN 37.93 54.02 67.81
AdaBoost 28.73 55.17 49.42
Rand. Forests 45.97 56.32 52.87
J48 29.88 59.77 55.17

LM+MYO (34 Features)
4 Emotions Arousal Valence

Naïve Bayes 27.58 58.62 48.27
Logistic Reg. 22.98 54.02 43.67
SVM 43.67 59.77 58.62
NN 28.73 51.72 55.17
KNN 44.82 64.36 59.77
AdaBoost 27.58 52.87 48.27
Rand. Forests 45.97 56.32 63.21
J48 27.58 52.87 66.66

HR+MYO+HMD (43 Features)
4 Emotions Arousal Valence

Naïve Bayes 42.52 65.51 68.96
Logistic Reg. 32.18 50.57 52.87
SVM 56.32 63.21 73.56
NN 42.52 62.06 60.91
KNN 41.37 62.06 59.77
AdaBoost 40.22 64.36 59.77
Rand. Forests 51.72 56.32 68.96
J48 33.33 60.91 70.11
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HR+MYO+LM (44 Features)
4 Emotions Arousal Valence

Naïve Bayes 27.58 60.91 49.42
Logistic Reg. 27.58 51.72 52.87
SVM 50.57 60.91 63.21
NN 29.88 49.42 49.42
KNN 35.63 55.17 63.21
AdaBoost 27.58 59.77 49.42
Rand. Forests 47.12 57.47 62.06
J48 40.22 54.02 52.87
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Appendix D

Study 3 Material

D.1 Ethics Approval

          Queen Mary, University of London 
                  Room W117 
      Queen’s Building 
      Queen Mary University of London 
      Mile End Road 
      London E1 4NS 
      
                  Queen Mary Ethics of Research Committee 
                  Hazel Covill 
                  Research Ethics Administrator 
                                                                                                                                 Tel: +44 (0) 20 7882 7915 
                 Email: h.covill@qmul.ac.uk 

c/o Dr Laurissa Tokarchuk 
CS 203, Peter Landin Building 
School of Electronic Engineering 
and Computer Science 
Mile End 
London         29th January 2018 
    
 
To Whom It May Concern: 
 
Re: QMREC2109a – Games 4 Brains. 
 
I can confirm that Daniel Gábana Arellano has completed a Research Ethics 
Questionnaire with regard to the above research. 

 
The result of which was the conclusion that his proposed work does not present 
any ethical concerns; is extremely low risk; and thus does not require the 
scrutiny of the full Research Ethics Committee. 

 
 
Yours faithfully  

 
 

Mr Jack Biddle – Research Approvals Advisor   Patron: Her Majesty the Queen 
Incorporated by Royal Charter as Queen Mary 
and Westfield College, University of London 
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D.2 Post-Condition Questionnaire

17/09/2018 Study3 OK - Post-Game Questionnaire

https://docs.google.com/forms/d/1TIZZ48IVXayvPUqZVS4ZxtO8SPXvQIqJeodX_CBISAA/edit 1/2

Study3 OK ­ Post­Game Questionnaire
To be fill after each level in each on the interaction modes

*Required

1. Session *

2. ID *

3. How immersed were you in the game? *
Mark only one oval.

0 1 2 3 4

Not at all Extremely

4. How engaged were you with the game? *
Mark only one oval.

0 1 2 3 4

Not at all Extremely

5. Please indicate how you felt while playing the game for each of the items,on the following
scale: (Please ask the experimenter if you do not understand any of the statements below )
*
Mark only one oval per row.

0 (Not at
all)

1
(Slightly)

2
(Moderately)

3
(Fairly)

4
(Extremely)

I was interested in the game
I felt successful
I felt bored
I found it impressive
I forgot everything around me
I felt frustrated
I found it tiresome (tired or
boring)
I felt irritable
I felt skilfull
I felt completely absorbed
I felt content (in a state of
peaceful happiness.)
I felt challenged
I had to put a lot of effort into it
I felt good
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6. To what extent did you feel motivated to play? *
Mark only one oval.

0 1 2 3 4

Not at all Extremely

7. To what extent did you feel motion sickness while playing? *
Mark only one oval.

0 1 2 3 4

Not at all Extremely
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17/09/2018 Study3 OK - Post-Session Questionnaire
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Study3 OK ­ Post­Session Questionnaire
*Required

1. ID *

2. Session *

3. Did you like the game overall? *
Mark only one oval.

 Yes

 No

4. Did you find the interaction difficult to control? *
Mark only one oval.

 Yes

 No

5. Overall, to what extent did you feel motivated to memorise and recall correctly the letters
in the memory task? *
Mark only one oval.

0 1 2 3 4

Not at all Extremely

6. Overall, to what extent did you feel motivated to get the best score in the game? *
Mark only one oval.

0 1 2 3 4

Not at all Extremely

7. Overall, how engaged were you with the game? *
Mark only one oval.

0 1 2 3 4

Not at all Extremely
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8. How immersed were you in the game? *
Mark only one oval.

0 1 2 3 4

Not at all Extremely

9. How present did you feel in the VR environment while playing the game? *
Mark only one oval.

0 1 2 3 4

Not at all Extremely

10. What was your main motivation to play the game? *
Mark only one oval.

 Just for fun or to discover new experiences

 To challenge myself and get my best score

 To be the best player on the game and get the highest score

 I had no motivation

 Other: 

11. For each of the items, please indicate how you felt after you finished playing the game:
(Please ask the experimenter if you do not understand any of the statements below ) *
Mark only one oval per row.

0 (Not at

all)

1

(Slightly)

2

(Moderately)

3

(Fairly)

4

(Extremely)

I felt revived

I felt bad

I found it hard to get back to

reality

I felt guilty

It felt like a victory

I found it a waste of time

I felt energised

I felt satisfied

I felt disoriented

I felt exhausted

I felt that I could have done

more useful things

I felt powerful

I felt weary (tired)

I felt regret

I felt ashamed (embarrassed)

I felt proud

I had a sense that I had

returned from a journey
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12. Any further comments or suggestions?
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