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ABSTRACT 25 

Sustainable management of ecosystems and growth in agricultural productivity is at the heart of the 26 

United Nations’ Millenium Development Goals for 2030. New management regimes could revolutionise 27 

agricultural production, but require an evaluation of the risks and opportunities. Replacing existing 28 

conventional weed management with genetically modified, herbicide-tolerant crops (GMHT), for 29 

example, might reduce herbicide applications and increase crop yields, but remains controversial owing 30 

to concerns about potential impacts on biodiversity. To date, such new regimes have been assessed at the 31 

species or assemblage level, whereas higher-level ecological network effects remain largely unconsidered. 32 

Here, we conduct a large-scale network analysis of invertebrate communities across 502 UK farm sites to 33 

GMHT management in different crop types. We find that network-level properties were overwhelmingly 34 

shaped by crop type, whereas network structure and robustness were apparently unaltered by GMHT 35 

management. This suggests that taxon-specific effects reported previously did not escalate into higher-36 

level systemic structural change in the wider agricultural ecosystem. Our study highlights current 37 

limitations of autecological assessments of effect in agriculture in which species interactions and potential 38 

compensatory effects are overlooked. We advocate adopting the more holistic system-level evaluations 39 

we pioneer here, which complement existing assessments for meeting our future agricultural needs. 40 

 41 

INTRODUCTION 42 

Developing management that conserves biodiversity whilst delivering the services we need from ecosystems 43 

without introducing further harm is a pressing issue for the future of human societies1,2,3. The demand for 44 

sustainable food security and ecosystem services4 in the face of global change and biodiversity loss due to 45 

current farming regimes, means new agricultural management practices1 will be needed, based on sound 46 

ecological understanding5. In agro-ecosystems, assessment of new practices concentrates primarily on risks to 47 

biodiversity, and therefore aims to evaluate whether a novel management has an adverse effect on the 48 

abundance and diversity6 of individual species or taxa against the noisy backdrop of natural variation. 49 

However, if our aim is to manage agro-ecosystems for optimum delivery of ecosystem services, such a focus 50 

may be too narrow7. Not only does this approach tend to disregard benefits of the new management to crop 51 

yield and quality, but also, and more importantly for our purposes here, it may consider any change in 52 
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biodiversity as posing unacceptable risk8. Such conservatism in risk assessment stems in large part from a lack 53 

of universal methods to evaluate the importance of structural and functional effects that changes in biodiversity 54 

can be triggered via indirect effects that ripple through networks of interacting species. Moreover, many studies 55 

suffer from a lack of replication9, leading to incomplete or inaccurate estimations of potential ecological risks5.  56 

 57 

Ecological network approaches have been advocated as part of the next generation of biomonitoring tools10,11 58 

because they can capture the underlying functioning and dynamics emerging from complex species 59 

interactions12, whereas the traditional evaluation methods that focus on a few taxa can mask these higher-level 60 

and often indirect synergistic or compensatory effects13. By elucidating the wider system, network approaches 61 

could open the way to improving productivity while safeguarding biodiversity and ecosystem services in 62 

agriculture via better decision-making based on more holistic, structural assessments. To date the low number 63 

of highly resolved ecological networks has impeded their application in real-world agro-ecosystems. The recent 64 

emergence of machine learning and molecular biological techniques provides new methodologies for 65 

constructing large-scale replicated networks11,14, although system-level responses to change remain mostly 66 

unexplored. 67 

 68 

Here we perform a large-scale assessment on agro-ecosystem responses by analysing a case study of 502 69 

replicated food webs, from fields of the Farm Scale Evaluations (FSE) of genetically modified, herbicide-70 

tolerant (GMHT) crops15 (Methods and Supplementary Methods 1). The case study data-set is of in-field Vortis 71 

suction and Pitfall sampled invertebrates from 251 fields of four widely grown crops, in a spilt-field design in 72 

which conventional and GMHT varieties were grown alongside one another. From each half of the split-field, 73 

we constructed a food web of species trophic relationships (Methods and Supplementary Methods 2). 74 

Switching crops commonly causes biodiversity change in farmland16 but it is widely accepted as part of 75 

traditional crop rotations, whereas the adoption of GMHT represents an alternative form of (future) 76 

management. Previous FSE analyses have assessed farming biodiversity by focusing on species-specific 77 

measures15,17, such as changes in invertebrate populations indirectly driven by herbicide management of weed 78 

plants, which can be sensitive to the inherent noise or the contingency of responses13,18 and functional traits19. 79 
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We quantified the overall effects of crop types and GMHT management on the agro-community via a network-80 

based approach to gauge potential changes in food web structure and robustness (Methods). 81 

 82 

RESULTS & DISCUSSION 83 

The dominant first-order effect was crop type (Fig. 1a, b, Supplementary Fig. 1 and Supplementary Table 1), 84 

with a common suite of interconnected species evident in most field-sites, including typical farmland taxa such 85 

as the carabids, Pterostichus melanarius, the detritivore collembolans of the Entomobryidae and Isotomidae, 86 

and the linyphiid spider, Lepthyphantes tenuis (Tenuiphantes tenuis). Species dissimilarity (diversity) was high 87 

among crop types, but noticeably lower when conventional crops were compared with their GMHT 88 

counterparts (Fig. 1c) reflecting the greater differences of environmental conditions provided to invertebrate 89 

species in the different crops8. The food webs of a given crop variety (e.g. conventional beet or GMHT maize) 90 

varied greatly in size among sites; however, the conventional and GMHT webs always remained highly 91 

correlated within sites (Supplementary Fig. 2).  92 

 93 

Species turnover can significantly alter food web structure and dynamics, particularly where incoming and 94 

outgoing nodes have markedly different links due to variation in their diet or consumers20. A commonly used 95 

structural metric of web complexity, connectance, was unchanged by crop type, but was significantly greater 96 

under GMHT (Nested ANOVA F4,247 = 2.79, P = 0.023; Supplementary Table 2), which appears to be due to an 97 

increase in links in the GMHT to the Collembola. Network theory suggests that higher levels of structural 98 

complexity can confer food web stability, if most interactions are relatively weak21, and there is growing 99 

evidence to support this in ecological networks22. However, such crude whole-network metrics can be relatively 100 

insensitive to important but more subtle changes that may arise within the web, and newer substructural 101 

measures can provide deeper insights here20. For instance, cores are a cohesive substructure of highly 102 

connected nodes that are said to govern the dynamics and functioning of complex systems, and their densely 103 

intertwined pathways can provide redundancy to buffer external perturbations and maintain food web 104 

robustness20,23. We extracted the core properties20 of the webs to evaluate whether network substructures 105 

responded to farming regime. All the 502 food webs possessed cores surrounded by loosely connected 106 

peripheral species (Supplementary Fig. 3), revealing a previously unknown but recurrent core-motif 107 
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(community) of species in agro-ecosystems that could be key for driving ecosystem properties24. Crop type 108 

resulted in significant variation in species composition in the substructures, and especially for peripheral 109 

species (Fig. 2a, b). Substructuring, both in terms of organisation and composition, appeared to be largely 110 

unaffected by GMHT management (Fig. 2c, d), again suggesting negligible impacts at these higher 111 

organisational levels. In particular, the conventional and their GMHT counterpart webs shared significant 112 

numbers of core and periphery species, with the species in the cores tending to be those that were common 113 

across sites (Fig. 2c, d, Supplementary Fig. 4), such as the Isotomidae collembola.  114 

 115 

Relatively large cores were observed across all the food webs, accounting for 65-71% of total species richness 116 

on average (Supplementary Table 3), and these findings are similar to that observed in aquatic ecosystems 117 

when comparing natural networks with others20. The core size was strongly affected by crop type (Nested 118 

ANOVA F3,247 = 4.87, P = 0.002; Supplementary Table 2), but was unchanged by GMHT management (Nested 119 

ANOVA F4,247 = 0.98, P = 0.416; Supplementary Table 2). The link density within the core, gauged by the rich-120 

club coefficient20, varied significantly among crop types (Nested ANOVA F3,247 = 6.80, P < 0.001; 121 

Supplementary Table 2), but was again unaltered by GMHT management (Supplementary Fig. 5; Nested 122 

ANOVA F4,247 = 1.04, P = 0.386; Supplementary Table 2). Changes in core size and core link density, here 123 

induced by the crop type, are common network responses to external disturbance25 (e.g. a stressor can reduce 124 

core size which in turn results in lesser number of alternative paths within a food web for exchanges of energy 125 

fluxes) which can potentially impact network redundancy26 and robustness.  126 

 127 

Altering agricultural practice could reshape the taxonomic and network properties of ecosystems and their 128 

response to further external disturbance, such as biodiversity loss caused by current intensive agricultural 129 

management5. To assess food web robustness, we applied two simple but common simulated scenarios of 130 

species loss: random versus a risk scenario of targeted high-degree node removal, with the former representing 131 

a “null model” and the latter mimicking the supposed ‘worst-case’ loss of highly connected keystone species27 132 

(Methods). The major differences were once again manifested between crop types, especially under targeted 133 

removal (Nested ANOVA F3,247 = 2.93, P = 0.034, Supplementary Table 2). These findings illustrate how crop 134 

type determines network properties that can potentially compromise the overall structural integrity and the 135 
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ecosystem’s ability to buffer the effect of taxonomic loss or turnover. In both scenarios, conventional and 136 

GMHT crops responded in the same way (Supplementary Table 2), reflecting their homologous network 137 

structures. 138 

 139 

Our large-scale evaluation revealed network-level responses of GMHT crops are remarkably similar in their 140 

composition, structure and responses to simulated trajectories of species removals, to their conventional 141 

counterparts (Fig. 3). This suggests that previously recorded changes in taxa traits8 may be compensated for at 142 

these higher organisational levels, due to prevalent trophic redundancy. Cultivating crops in rotational 143 

sequences is integral to farming and we found that crop type was by far the dominant driver of differences in 144 

web structure and robustness, across several organisational levels, ranging from substructural to whole-network 145 

attributes; inter-annual variation is likely greater than differences between conventional and GMHT. This 146 

demonstrates how traditional autecological analysis, which treats species as fixed taxonomic identities with 147 

defined traits provides only a partial view of the potential ecological consequences of a change in management. 148 

Despite the realised economical and environmental benefits of transgenic crops28, their planting continues to 149 

raise controversy in terms of perceived ecological and environmental risk, and this has restricted their adoption 150 

in some parts of the world29. Our case study demonstrates that the changes in pitfall and Vortis sampled species 151 

abundance recorded in GMHT crops previously8 would have been less likely to be interpreted as a systemic and 152 

potentially critical risk to the agricultural ecosystem if network-based approaches had been included from the 153 

outset. The food web variation due to the GMHT could also have been set within the natural variation of the 154 

conventional crops currently accepted in UK farmland. This case study does not, however, examine all the taxa 155 

that exist in the FSE data (Supplementary Methods 1), notably not evaluating the effects of GM herbicide 156 

management on networks of pollinators, which are of considerable interest worldwide. Reconstructing 157 

networks for these other taxa from the FSE would test whether observed changes in species-specific 158 

abundances8 translate to changes in network structure and ecosystem change and might modify the conclusions 159 

of this case study. 160 

 161 

Previous studies on agro-ecosystems have focused on far smaller experimental designs with limited replication, 162 

restricted spatial scale and a focus on the lower organisational levels when assessing how agricultural practices 163 
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affect biodiversity and ecological risks. Here we show explicitly that network-based approaches can reveal 164 

synecological attributes that are central to understanding the multispecies responses of an ecosystem and its 165 

potential robustness. With the global drive to conserve ecosystems and their services, including attaining long-166 

term food security6,30 by adopting more sustainable management approaches, advances in management need to 167 

be coupled with comprehensive change detection and evaluation methodologies and criteria and baselines for 168 

ecosystem risk and opportunity assessment. Our case study shows how replication-explicit, network-based 169 

tools could aid future evaluations of ecosystem change that are better able to capture the underlying 170 

biocomplexity of nature. In principle, biomonitoring and risk management decisions based upon networks 171 

ought to be more robust than those based alone on statistically significant effects on individual taxa, some of 172 

which may arise spuriously with multiple comparisons. 173 

 174 

The practicalities of using network analysis in decision-making about agricultural practices need careful 175 

consideration. Using current methods, a programme the size of the FSE would be impractical for decision-176 

making about the use of individual products, such as a new GM crop variety or a new pesticide formulation. 177 

While the collection and analysis of data will likely become easier, for example through the use of eDNA11, the 178 

size and duration of the experiments may prove too much for pre-market product regulation. We envisage three 179 

scenarios where network analysis may be valuable. First, FSE-like experiments could be useful in decision-180 

making over the introduction of a new management technique or class of products that will be used extensively; 181 

the adoption of winter-sown cereals and GMHT crops are examples of such widespread changes. Second, 182 

network analysis could be used as a risk management tool after the introduction of a new management regime; 183 

for example, the regime could be introduced on a limited area and network analysis used to assess whether its 184 

ecological effects are acceptable; in effect, limited commercial use of a method would act like an FSE. Finally, 185 

network analysis could be used to check the cumulative effects of products under current regulations and used 186 

to test whether risk-assessment of species effects predict the resilience of ecosystem-service delivery by agro-187 

ecosystems. These analyses could contribute to debates about the roles of species diversity31, higher order 188 

interactions32 and landscape33 on agro-ecosystem functioning when viewed through the lens of ecological 189 

networks34. Results of such analyses could help to improve the design of “low-tier” laboratory studies and build 190 
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an ecologically-based assessment framework that would better predict ecosystem effects from changes in the 191 

life-history parameters of single species. 192 

 193 

METHODS 194 

Farm Scale Evaluations (FSE). The FSE15 was a three-year study involving the analysis of the effects of 195 

GMHT crops to the farmland biodiversity across the UK, and the details of farmland selection and crop field 196 

design are described more fully elsewhere35. To summarise, a split-field design was used in 64 beet (B), 57 197 

maize (M), 65 spring-sown oilseed rape (SR) and 65 winter-sown oilseed rape (WR) sites (Supplementary 198 

Methods 1). Each crop field was split approximately in half and a conventional and GMHT variety of one of 199 

the crops assigned randomly to each half15,35. Species were sampled using Vortis suction and pitfall sampling, 200 

and taxa identity and abundance information were recorded within the field across all the sites. 201 

 202 

Food web construction. FSE field sample data on taxa and the background information on species traits (e.g. 203 

body size and feeding type) were used to generate hypotheses in the form of trophic relationships between 204 

species (i.e. food-webs) using a logic-based machine learning approach called Abductive / Inductive Logic 205 

Programming (A/ILP) implemented in the Progol 5.0 language (Supplementary Methods 2)14,36,37. The method 206 

aims to attain the best explanation of the data based on the generated hypotheses and produces the most 207 

plausible predation relationships that can exist among all the species recorded in FSE Vortis and pitfall trap 208 

datasets. These predation links have been validated in empirical studies and the predictive accuracy of the 209 

method was found to be significantly higher than other non-probabilistic techniques14,36–38. Based on the 210 

sampled taxonomic information of each half of the spilt-field in FSE, we constructed replicated food-webs 211 

using inferred trophic links generated by the A/ILP machine learning, and obtained a total of 502 food webs.  212 

 213 

Impacts of agricultural practice on food web size. We evaluated the differences in the taxonomic 214 

composition among crop types and management varieties by referring to their aggregated compositional webs, 215 

which takes both the species and their frequency of appearance across all spilt fields into account. A total of 216 

eight aggregated webs were obtained, e.g. conventional beet or GMHT maize, etc. We then applied the Bray-217 

Curtis index39, b, to quantify the compositional similarity between two aggregated webs with reference to the 218 
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total counts of each species obtained from these webs; with b = 0 as the most similar and b = 1 as the most 219 

dissimilar. To examine the correlations in web size between conventional webs and their GMHT counterparts, 220 

individual food webs from each half of the spilt-fields were used and linear regression was applied. 221 

 222 

Impacts of agricultural practice on food web structure. We measured directed connectance of individual 223 

food webs from each half of the spilt-fields, L/S2, where L is the number of links and S is the number of species, 224 

which is a common measure of food web complexity, reflecting its robustness in response to external 225 

disturbance27. We applied complex network analysis to characterise the substructural properties of all the 226 

individual food webs. A network core refers to a cohesive substructure20,40 that consists of high degree (highly 227 

connected) species which are well interconnected with each other. We hypothesized that food webs in this 228 

study also exhibit this substructural property and applied a profiling technique23 to define the cores in 229 

individual food webs. Nodes were ordered in descending order of their degree. A node with a rank 𝑟 has degree 230 

𝑘!, and the number of links that this node shares with nodes of a higher rank is 𝑘!!. We examined 𝑘!!  as a 231 

function of r and the core is defined by the node with rank r* where 𝑘!! reaches its maximum (i.e. 𝑘!∗! > 𝑘!! for 232 

r > r*), indicating a change in the interconnectedness among high degree nodes. To compare the species 233 

composition in the web cores between crop types and management, here again, we aggregated all the core 234 

species and their frequency found in the cores across all spilt-fields and quantified the overall similarity using 235 

the Bray-Curtis index. We repeated this analysis for the peripheral species composition.  236 

 237 

Core size of a network is defined as SC/S, where SC is the number of species in the core and S is the total 238 

number of species. This core property indicates a system’s state: a large core is associated with a greater level 239 

of redundancy within a system, which can mitigate the effect of external disturbance. On the other hand, stress 240 

in a system is often manifested as a core of reduced size25,41,42. We measured the density of links within the core 241 

by calculating the rich-club coefficient43, ϕr, which is given by: 242 

𝜙! =   
2

𝑟(𝑟 − 1)
𝑘!!

!

!!!

=   
2𝐸!

𝑟(𝑟 − 1)
 



 10 

where Er is the number of links shared by the highest ranked r nodes and r·(r - 1) / 2 is the maximum number 243 

of possible links among these nodes. The connectivity of a core is given by ϕr* whereby a fully connected core 244 

has a value of ϕr* = 1 and a fully disconnected core gives ϕr* = 0.  245 

 246 

Impacts of agricultural practice on food web robustness. The architecture of food webs governs their 247 

robustness and underpins their response to external disturbance44. We studied the potential effect of 248 

compositional, structural and substructural changes on network robustness using two simple but common 249 

species removal scenarios, with no network link rewiring and evaluated the rate at which the network 250 

collapsed27. Firstly, species were removed at random at each simulation step, and the total species extinction is 251 

the sum of primary loss and secondary loss as a result of species isolation from resource. We measured the 252 

robustness for each web by recording the proportion of primary species loss resulting in a total extinction 253 

(primary and secondary) of 50% of the species27,45. For each food web, we ran the random removal simulation 254 

for 100 times and results were averaged (within a standard deviation σ = 0.076). Secondly, species were 255 

removed sequentially in descending order of degree to simulate the worst-case of loss of the most connected 256 

taxa. When a node was removed from a food web, the degrees among the rest of the nodes were also altered, 257 

and therefore, we re-calculated the degree order after each node removal. Again, we measured robustness as the 258 

amount of primary taxa loss in order to generate a total of 50% species extinction.  259 

 260 

Statistical analysis. To test the effects of management practices associated with each crop variety 261 

(conventional or GMHT) we used a Type I ANOVA with crop variety nested within crop type. To account for 262 

pseudo-replication, an error structure with each spilt-field nested within each site was used. To test the effects 263 

of management practices associated with each crop type, we used a Type II one-way ANOVA on 264 

conventionally managed food webs only. We applied both models to food web properties (connectance), 265 

substructural network properties (core size and core link density), and food web robustness (both random and 266 

targeted species removal). Significant results were followed by Fisher’s LSD post hoc test to identify the 267 

contributing factors. 268 

 269 
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Figure 1 | Variations in taxonomic composition. Compositional trophic food webs of maize (shown as a 374 

representative example of the four crop types). a, conventional; b, GMHT variety. The same species placement 375 

is used in both cases. Node size and colour denote the proportion of times a species was found in the given crop 376 

variety across all the sites. Nodes bounded by a dark edge are unique to their respective webs (i.e. were only 377 

found in either conventional or GMHT spilt-fields). c, Comparisons of species dissimilarity between crop types 378 

and management using the Bray-Curtis dissimilarity index. Colour denotes the degree of dissimilarity with b = 379 

0 as the most similar and b = 1 as the most dissimilar.  380 

 381 

Figure 2 | Core/periphery substructures in food webs. Comparisons of species composition between crop 382 

types and GMHT management using the Bray-Curtis dissimilarity index. a, Core species; b, Peripheral species. 383 

c - d, Pairwise compositional webs of maize (c, conventional; d, GMHT). The same species placement is used 384 

in both cases. Node size denotes the proportion of times a species was found in the given crop variety across all 385 

the sites. Colour denotes the gradient of core presence. Species that were always found in the core in both 386 

conventional and GMHT are in the inner ring, and similarly, species that were consistently found in the 387 

periphery in both conventional and GMHT are in the outer ring. Nodes that were found in both the core and the 388 

periphery are in the middle ring. Nodes bounded by an edge denote absent species (unfilled) and species that 389 

were unique to their respective web (filled).  390 

 391 
Figure 3 | Food web properties varied significantly between crop types. a – h, pairwise comparisons 392 

between management varieties (a,b, beet; c,d maize; e,f, spring oilseed rape; g,h, winter oilseed rape). C, 393 

connectance; ϕ, core link density; core size; RR, robustness via random removal and RT, robustness via targeted 394 

removal of highest degree nodes are shown (Methods). Each metric is averaged across all webs of a given 395 

variety and normalised by its overall range. The effects of crop type can be visualised by comparing results 396 

from conventional crops horizontally.  397 
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