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Abstract

Social bees are important insect pollinators of wildflowers and agricultural crops, making their
reported declines a global concern. A major factor implicated in these declines is the widespread
use of neonicotinoid pesticides. Indeed, recent research has demonstrated that exposure to low
doses of these neurotoxic pesticides impairs bee behaviors important for colony function and
survival. However, our understanding of the molecular-genetic pathways that lead to such

effects is limited, as is our knowledge of how effects may differ between colony members.

To understand what genes and pathways are affected by exposure of bumblebee workers and
queens to neonicotinoid pesticides, we implemented a transcriptome-wide gene expression
study. We chronically exposed Bombus terrestris colonies to either clothianidin or imidacloprid at
field-realistic concentrations while controlling for factors including colony social environment and
worker age. We reveal that genes involved in important biological processes including
mitochondrial function are differentially expressed in response to neonicotinoid exposure.
Additionally, clothianidin exposure had stronger effects on gene expression amplitude and
alternative splicing than imidacloprid. Finally, exposure affected workers more strongly than
queens. Our work demonstrates how RNA-Seq transcriptome profiling can provide detailed

novel insight on the mechanisms mediating pesticide toxicity to a key insect pollinator.

Keywords: ecotoxicology, molecular diagnostics, neonicotinoid insecticides, nicotinic

acetylcholine receptors, pollinator health, xenobiotics.
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Introduction

Social bees are important pollinators crucial for maintaining biodiversity and ecosystem stability
(Waser et al. 1996; Garibaldi et al. 2013). More than 85% of flowering plant species across the
globe rely to some degree on animal pollination (Ollerton et al. 2011), and the agricultural
industry values this pollination service at over €150 bn (Klein et al. 2007; Gallai et al. 2009;
Garibaldi et al. 2014). Reported insect pollinator declines are thus of worldwide concern (Aizen &
Harder 2009; Goulson et al. 2015; Gill et al. 2016; Potts et al. 2016). Factors implicated as
contributors to such declines include habitat loss, climate change, pathogens and in particular
agricultural intensification (Brown & Paxton 2009; Vanbergen 2013; Goulson et al. 2015).
Indeed, agricultural intensification has led to the increased usage of pesticides which can have
unintended effects on social bees (Desneux et al. 2007), with neonicotinoid pesticides having
received particular attention (Henry et al. 2012; Whitehorn et al. 2012; Gill et al. 2012; Goulson

2013; Simon-Delso et al. 2015).

Neonicotinoids are a popular class of neuroactive insecticides as they efficiently kill insect pests
while having significantly lower toxicity to vertebrates (Matsuda et al. 2001; Jeschke et al. 2011).
Furthermore, these insecticides are systemic: they are readily absorbed by plants and
translocated to all tissues (Elbert et al. 2008). A consequence of this, however, is that traces of
neonicotinoids are detectable in the pollen and nectar of treated and contaminated flowering
plants (Long & Krupke 2016; David et al. 2016) that bees feed on (Rortais et al. 2005).
Neonicotinoids target nicotinic acetylcholine receptors (nAChRs) which they bind to and thus
excite; this can result in paralysis, convulsions, and death (Matsuda et al. 2001). Controlled
exposure experiments using honeybees and bumblebees have shown that exposure at
comparable concentrations to those found in nectar and pollen can have sublethal effects on

learning and memory (Stanley et al. 2015; Siviter et al. 2018), cognition and problem solving
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(Williamson and Wright 2013; Samuelson et al. 2016; Baracchi et al. 2017), motor function
(Williamson et al. 2014; Drummond et al. 2016), foraging performance (Henry et al. 2012; Gill &
Raine 2014; Stanley et al. 2016), navigation abilities (Fischer et al. 2014) and the immune
system (Di Prisco et al. 2013; Brandt et al. 2016, 2017). Despite the growing interest in the link
between neonicotinoid exposure and toxicity to bees, we know little about the molecules and
genes through which neonicotinoid action is mediated, or whether neonicotinoids may also affect

“off-target” processes that are not mediated by nAChRs.

An additional consideration is that neonicotinoids differ in manners that are only beginning to be
characterized. Clothianidin and imidacloprid differentially affect distinct subpopulations of
Kenyon cells cultured from bumblebee brains, suggesting that pathways by which they act differ
(Moffat et al. 2016). In line with this, genome-wide transcriptome profiling (RNA-Seq) of
honeybee brains showed differences between pesticides, with clothianidin exposure resulting in
greater transcriptional changes than imidacloprid or thiamethoxam, including for metabolic and
detoxification genes (Christen et al. 2018). Similarly to its use for diagnosing and classifying
human diseases (Byron et al. 2016), RNA-Seq can provide a holistic view of how pesticides
affect genes underlying important processes, while also providing candidate genes for future

functional studies.

Here, we aim to understand the impacts of neonicotinoid exposure on the bumblebee Bombus
terrestris, a common wild Eurasian pollinator and the second-most economically important bee
pollinator species worldwide, using transcriptome profiing. Using a tightly controlled
experimental design, we provided whole colonies with untreated food, or with food treated with
one of two common neonicotinoids, clothianidin and imidacloprid. We performed RNA-Seq gene
expression profiling on heads of age-controlled worker bumblebees in addition to colony queens,

from colonies kept under controlled environmental conditions. The head is likely the key center



97

98

99

100

101

102

103

104

105

106

107

108

109

110

11

112

113

114

115

116

117

118

119

120

for mediation of the detrimental effects of neonicotinoids on behavior and cognition because it
contains important organs and tissues of the insect nervous system; in particular the brain,
which contains an abundance of Kenyon cells, the neuronal cell type that neonicotinoids
predominantly target within social bees (Palmer et al. 2013; Moffat et al. 2016). We exposed
colonies for four days, a chronic exposure period after which neonicotinoid residues have
previously been detected within the brains of exposed bumblebee workers (Moffat et al. 2015).
We addressed the following questions: 1) Does neonicotinoid exposure lead to transcriptional
changes in the head tissues of exposed bumblebees? 2) Do different neonicotinoids lead to
different gene expression profiles? 3) Do workers and queens differ in their transcriptional
response to neonicotinoids? Our work reveals pesticide- and caste-specific effects on gene
expression amplitude and splicing, providing detailed novel insight on the mechanisms

mediating pesticide toxicity to bumblebees.

Materials and Methods

Controlling colony size and worker age during colony rearing

We obtained 12 Bombus terrestris audax colonies containing a median of 56 workers (mean:
51.0; Standard Error (SE): 6.62, range: 15-93) from a commercial supplier (Agralan, UK). Each
colony was randomly assigned to one of two identical controlled environment rooms maintained
at 20°C and 60% humidity under constant red light illumination. Each colony was provided with
ad libitum sucrose solution (40% w/w prepared using distilled water) and honeybee-collected
pollen (Agralan, UK) three times per week (Monday 2 g, Wednesday 2 g, Friday 3 g). It is
relevant to note that this pollen lacks an organic certification, thus it may contain trace amounts
of xenobiotics, such as neonicotinoids or other insecticides. Therefore, we consider our
experimental colonies to have been exposed to higher doses of the two pesticides in

comparison to our control colonies.
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Six days (144 hours) before starting the experimental treatment, we removed and tagged up to
four newly eclosed workers per colony with a numbered Opalith tag (Abelo, UK). Once tagged,
we placed them back into the colony. We also standardized the size of each colony by removing
workers so that each colony contained the colony queen and a median of 20 workers (mean:
19.7; SE: 0.41; range: 15-21). For this, we marked each untagged worker in the colony with a
white, non-toxic pen (Uniball Uni Posca). This enabled subsequent differentiation between old
workers and newly eclosed workers. To maintain the number of workers in the colony constant,
we removed marked (i.e., older) workers when unmarked (i.e., younger) workers eclosed, and

immediately marked the new workers with the white pen.

Preparation of sucrose solutions containing neonicotinoid pesticides

We prepared stock solutions of each pesticide by dissolving either analytical grade clothianidin
or imidacloprid (Sigma Aldrich, UK) in acetone to a concentration of 1.0 x 10 g/ml. We serially
diluted the stock solution using 40% sucrose solution to produce a 1.0 x 10 g/ml working
solution, which was stored in the dark at 4°C for a maximum of four days. The working solution
was then further diluted with 40% sucrose solution to produce a final concentration of 7.5 x 10°°
g/ml. We prepared solutions no more than 1 hour before providing them to the bumblebee
colonies. As the mass of 1 liter of 40% sucrose is 1,160 g and contained 7.5 x 10-6 g of
pesticide® g of pesticide, each sucrose solution contained 6.47 parts per billion (ppb) of
pesticide, which is within the range that bees are considered to be exposed to within the field

(Supp. Table S1).

Exposure of colonies to neonicotinoid-laced sucrose
We randomly assigned each colony to one of the three treatment groups: control (n = 4),

clothianidin (n = 4) or imidacloprid (n = 4). For the purpose of measuring changes in worker gene
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expression in response to neonicotinoid exposure, we only used workers age-controlled to 10
days post-eclosion (Supp. Fig. S1). At the start of day six, we removed the initial sucrose
feeders and any remaining pollen. We provided each colony with its allocated treatment and 2 g
pollen; we replaced the food of each colony after 24 and 48 hours, and we ended the
experiment after 96 hours of exposure. At the end of the experiment, we transferred the 10-day
old Opalith tagged workers and the colony queen into individual 2 ml and 5 ml Eppendorf tubes,

respectively, snap froze them in liquid nitrogen and then stored the tubes at -80°C.

RNA extractions, library preparations and high throughput sequencing

We extracted RNA from the colony queen and from one worker per colony from 12 colonies
(n =24 individuals). For this, we removed bumblebee-containing cryotubes from -80°C storage
and kept them on dry ice. Using sterilized forceps, we transferred each bumblebee from the
housing cryotube onto a sterilized 5 ml petri dish that had been chilled on ice. Using a new
sterile blade for each sample, we removed the head and transferred it into a new 2 ml
homogenization tube containing 150 pl of Tri reagent (Sigma, UK). The contents of each tube
were then frozen on dry ice and returned to -80°C storage. For total RNA extraction, each
individual sample was removed from storage and kept on ice. To each tube, we added 0.2 g
zirconium silicate (ZS) beads (Sigmund Lindner GmbH, Germany) and homogenized each
sample using a FastPrep-96 high throughput homogenizer using two cycles of 45 seconds at
1200 rpm. After homogenization, each sample was visually examined to ensure thorough
sample disruption. We added 850 pl of Tri reagent to each tube and incubated at room
temperature for 5 minutes to allow for complete dissociation of nucleoprotein complexes. We
isolated total RNA using chloroform following the manufacturer's recommendations. We
precipitated total RNA using isopropanol and performed a wash using molecular-grade ethanol.

To remove potential phenol and ethanol contamination, we further purified the extracted RNA for
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each individual using the RNeasy MiniPrep kit (Qiagen, UK). Finally, we removed residual DNA
using RNase-free DNase | (Qiagen, UK). We quantified total RNA using a Qubit RNA Broad-

Range (BR) Assay kit (Invitrogen, UK).

We prepared sequencing libraries (n = 24) using the lllumina TruSeq stranded mRNA library
preparation kit. For each library, we used a starting concentration of 1.5 ug of total RNA. We
purified each library using AMPure XL beads (Beckman Coulter, UK) and quantified library size
using a TapeStation 2200 (Agilent, UK). Using equal concentrations of each library, we created
a single pooled library. We sequenced the pooled library on lllumina NextSeq 500 and HiSeq
4000 generating ~129.72 million reads of 76bp and ~314.6 million reads of 50bp. We thus
obtained a mean of 18.51 million reads per sample (min: 9.84 million; max: 23.89 million reads

per sample) (Supp. Table S2).

Quality assessment of lllumina RNA-Seq reads

We assessed the quality of raw reads using two primary measures. First, we initially assessed
sequence quality using FastQC (v.0.11.3; Andrews 2010) to identify potential adapter
contamination and base qualities. Subsequently, we aligned raw reads against the Bombus
terrestris reference genome assembly (GCF_000214255.1; Sadd et al. 2015) using HISAT2
(v.2.1.0; Kim et al. 2015). We calculated mapping statistics for the resulting alignment files using
qualimap (v.2.2.1; Garcia-Alcalde et al. 2012) and visualized the output summaries using
multiQC (v.0.7; Ewels et al. 2016). A summary of raw sequence quality and alignment statistics
is provided in Supp. File S1. For each sample, >88% of reads mapped uniquely to the B.

terrestris genome; all RNA-Seq libraries were of high quality and retained for analysis.
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Identifying pesticide exposure effects on gene expression amplitude

We quantified transcript abundance for each sample by pseudoaligning reads (kallisto; v.0.44.1;
Bray et al. 2016; run parameters: --single -| 300 -s 20) to predicted transcripts from the B.
terrestris genome (Ensembl release v.40). To facilitate reanalysis of these data, we provide raw
estimated counts for all samples in Supp. Table S3. Estimated counts were summarised per
gene using tximport (v.1.6.0; with countsFromAbundance = "no"; Soneson et al. 2015) and
imported into DESeq2 (v.1.14.1; Love et al. 2014). We created a DESeq2 object containing the
entire dataset. We used DESeq2 Wald tests to identify genes that were differentially expressed
between each pesticide treatment and the control colonies (Benjamini-Hochberg adjusted p <

0.05). As an additional measure of confidence, repeated our analyses using gene-level counts

generated by the HISAT2-HTSeq pipeline as input to DESeqg2. We find broad overlap between

the two analyses, thus strengthening our results. Indeed, overall trends are identical, and we find

very high overlap in the genes and processes identified. More detailed information on_the

comparison between analyses are provided in the Supplemental Information.

Identifying pesticide exposure effects on alternative splicing

We aligned raw reads against the B. terrestris genome (Ensembl release v.40) using the splice
aware aligner HISAT2 (v.2.1.0; Kim et al. 2015) and obtained read counts for each exon using
HTSeq (v.0.9.1; with --stranded = “reverse”; Anders et al. 2015). To facilitate reanalysis of these
data we provide exon-level counts in Supp. Table S4. We created DEXSeq objects and
analyzed differential exon usage for each pesticide treatment in comparison to control

individuals using DEXSeq informed by the Ensembl GTF file (v.1.20.2; Reyes et al. 2013).

Gene Ontology enrichment analysis
For each gene, we identified the Drosophila melanogaster ortholog from Ensembl Metazoa

Biomart (Kinsella et al. 2011) and used its Gene Ontology (GO) annotations because little

(Deleted: we identified >80% of these statistically
significant genes to be also identified as statistically
_significant by with DESeq2 when

(Deleted: . Similar to the kallisto approach, the use of
HISAT2-based actual gene-level counts by DESeq2
identified caste- and pesticide-specific changes in
bumblebee gene expression. Using the HISAT2-based
approach, we identified greater amplitude changes in
expression in workers in comparison to queens. In
addition, for both castes, clothianidin exposure resulted
in greater gene expression changes than imidacloprid.
Additional

N\Deleted: specific findings of this comparative analysis )
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functional information exists for B. terrestris. To test whether any Gene Ontology terms were
overrepresented among the most highly differentially expressed genes in response to pesticide
exposure, we sorted all B. terrestris genes by raw p-value (because of edge effects associated
with adjusted p-values) and performed a rank-based test for each GO term. For this, we used
Kolmogorov-Smirnov tests in topGO (v.2.26.0; with the "weight01" algorithm and

nodeSize = 100; Alexa 2016).

Results

Clothianidin exposure leads to differential gene expression in worker and in

queen bumblebees

We determined that 55 genes are significantly differentially expressed in workers in response to
clothianidin exposure compared to workers fed on the control diet (Benjamini Hochberg (BH)
adjusted p < 0.05, Fig. 1(a); Supp. Table S5). Among these genes, 31 (62%) were more highly
expressed after exposure; this pattern was non-significant (binomial test p = 0.4). Several of the
differentially expressed genes are involved in key biological processes, and orthologs to some of
the genes have been shown to be differentially expressed in other species exposed to pesticides

(see Djscussion). In particular, three of the 55 genes identified were among the 244 genes

differentially expressed in the brains of honeybee workers exposed to clothianidin (Christen et
al. 2018), suggesting that certain similar biological processes may be affected across species.
Two of these genes, mab-21 (LOC100646781), a putative developmental gene, and proton-
coupled amino acid transporter-like protein pathetic (LOC100643972), a putative solute
transporter gene, had reduced expression in response to exposure in both experiments.
Intriguingly, however, glucose dehydrogenase (LOC100648192) was more highly expressed in

response to clothianidin in our bumblebees but had reduced expression after exposure in
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honeybees (Christen et al. 2018), also indicating that a single pesticide can have opposing

effects on different species.

We also investigated whether clothianidin exposure affected expression profiles of colony
queens. Seventeen genes were significantly differentially expressed (BH adjusted p < 0.05, Fig.
1(b); Supp. Table S5), and unlike in workers, we found a strong pattern of increased expression:
only one of these genes had lower expression after exposure (binomial test p < 10%). Among the
more highly expressed genes in the clothianidin-exposed queens were genes coding for a
putative neurohormone receptor, tachykinin-like peptides receptor 86C (LOC100647109), a
developmental gene, protein yellow (LOC100647223) and two putative odorant binding proteins

(LOC100643514; LOC100650345).

Strikingly there was almost no overlap between the lists of genes differentially expressed in the
two castes, suggesting that the phenotypic effects and susceptibility to exposure differs between
castes. The one gene that was differentially expressed in both castes in response to clothianidin
is LOC100650345, which contains an odorant binding protein A10 domain (IPR005055),

suggesting it may play a role in the transport or perception of semiochemicals.

Clothianidin exposure leads to alternative splicing in worker and in queen

bumblebees

Clothianidin exposure resulted in the significant alternative splicing of 45 genes in exposed
workers (BH adjusted p < 0.05, Supp. Fig. S2). Two genes (LOC100646880; LOC100651821)
were both differentially expressed and alternatively spliced after clothianidin exposure (Fig. 1(a)).
By comparison, in queens, we identified no evidence of alternative splicing in response to

clothianidin exposure.
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Imidacloprid exposure induced weaker transcriptional changes than clothianidin

We also investigated changes in gene expression in response to imidacloprid exposure.
Intriguingly, we found no differences in gene expression amplitude between exposed and control
queens, but eight genes were alternatively spliced. Thus in queens imidacloprid exposure

affects half as many genes as clothianidin and through a different mechanism.

In workers, only one gene was differentially expressed (LOC100644101), and a single different
gene was alternatively spliced in response to imidacloprid exposure (LOC100649110).
Interestingly, these two genes had similar expression patterns in terms of differential expression
and alternative splicing, respectively, in clothianidin-exposed workers, highlighting a potential
generic molecular response to neonicotinoid exposure in B. terrestris workers. LOC100644101
codes for a protein with homologs throughout Hymenoptera but no known functional domains. In
comparison, LOC100649110 codes for a protein with a predicted cytochrome P450, E-class,
group 1 functional domain (IPR002401), suggestive of a role in the metabolism of exogenous

substances or endogenous physiologically-active compounds.

Discussion

Understanding the sublethal effects of pesticide exposure on beneficial organisms such as
insect pollinators is important in order to assess the risks posed by pesticides. Focusing on the
molecular-genetic level, we carried out genome-wide mRNA-sequencing of the heads of
bumblebees chronically exposed for four days to one of two widely used neonicotinoid
insecticides, clothianidin and imidacloprid. We reveal three major novel trends: i) head tissues of
bumblebee workers and queens exhibit significant changes in gene expression amplitude and
alternative splicing due to clothianidin or imidacloprid exposure; ii) clothianidin had stronger

effects than imidacloprid on gene expression; iii) the worker and queen castes intriguingly

12
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differed in their response to neonicotinoid exposure, with both neonicotinoids leading to greater
transcriptional changes in workers than in queens. Our results provide high-resolution insight
into the molecular-genetic pathways by which neonicotinoids affect colony members. Some of
these effects likely occur downstream of the nACh receptors that neonicotinoids target.
However, some of the effects we see could be due to interactions between the pesticide and
“off-target” receptors or other cellular components within the head or other body parts of the

exposed bumblebees.

We are wary of providing detailed potential interpretations regarding individual genes or
pathways seen in a single study because most of what we know about bumblebee genes is
bioinformatically inferred rather than being demonstrated experimentally. However, clothianidin
and imidacloprid have been observed to cause mitochondrial depolarization in Kenyon cells of
social bee brains (Moffat et al. 2015, 2016). Differentially expressed genes associated with
mitochondrial function such as alanine-glyoxylate aminotransferase and phosphoenolpyruvate
carboxykinase are thus strong candidate genes mediating such effects. The second of these
genes also has increased expression in imidacloprid-exposed honeybee larvae (Derecka et al.
2013) and in dichlorodiphenyltrichloroethane (DDT)-exposed Drosophila melanogaster (King-
Jones et al. 2006), suggesting a general mechanism of response to toxins across taxa. Due to
the role of phosphoenolpyruvate carboxykinase in glycolysis and gluconeogenesis pathways,
differential expression of this gene has been suggested to be associated with changes in energy
use in response to a xenobiotic challenge (King-Jones et al. 2006), as well as starvation (Zinke
et al. 1999). Gene Ontology terms associated with carbohydrate and lipid metabolism were also
enriched in clothianidin-exposed workers and queens (Supp. Fig. S3; Supp. Table S6)

suggesting potential changes in energy usage.
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Clothianidin and imidacloprid belong to the chemical group of N-nitroguanidines (Jeschke &
Nauen 2008), and within species, the two pesticides are generally thought to have similar
toxicities based on toxicity values such as LDs in honeybee (lwasa et al. 2004; Brandt et al.
2016) and the western chinch bug (Stamm et al. 2011). However, some studies report higher
lethality of clothianidin than imidacloprid in the honeybee Apis mellifera (Laurino et al. 2013), the
bumblebee B. impatiens, the alfalfa leafcutter bee Megachile rotundata and in the orchard
mason bee Osmia lignaria (Scott-Dupree et al. 2009). Furthermore, clothianidin has been shown
to depolarises bumblebee neural mitochondria more rapidly than imidacloprid (Moffat et al.
2015). Our study found that chronic clothianidin exposure affected gene expression much more
strongly than imidacloprid. This further mirrors findings on the honeybee brains (Christen et al.
2018) and overall suggests that clothianidin indeed has stronger transcriptional effects than
imidacloprid. There may be technical and biological reasons for why we found relatively few
effects of imidacloprid. We used a low concentration (6.47 ppb) of both pesticides, considered to
be within range foraging bees are exposed to in the field (Supp. Table S1), rather than the high
doses often used to demonstrate strong effects. It is also possible that the sample size we used
lacked the power to detect subtle, but potentially important effects, of imidacloprid on gene
expression. Furthermore, we examined gene expression at a single time-point after four days of
chronic exposure yet the chronic effects of exposure may differ between pesticides. Indeed, at
an extreme level, the phenylpyrazole insecticide fipronil accumulates within honeybees, leading
to strong effects over time (Holder et al. 2018). The study of the effects of long-term exposure of
different pesticide classes on bumblebees, as well as associated gene expression, is required.
Finally, it is plausible that the different neonicotinoids have disproportionate effects on gene
expression on different sets or subsets of neurons. Detecting such particularly localized effects
can be challenging because we obtained for each gene the average expression across all of the

cells in the entire head.
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A key trait of social bees such as honeybees and most bumblebees is that colonies include a
queen and workers that differ in morphology and physiology and have complementary behaviors
essential for colony fitness. Thus castes may differ in how they are affected by pesticide
exposure. Our genome-wide transcriptome RNA-Seq profiling approach found that only one
gene, LOC100650345, was differentially expressed in both workers and queens. We know little
about this gene other than it has been observed to be expressed in queen hemolymph (Sadd et
al. 2015), and carries an odorant binding domain, suggesting that it may play a role in the
transportation of semiochemicals such as odors and pheromones in the hemolymph. Its role
may be conserved as a homologous gene in the whitefly Bemisia tabaci is also upregulated after
exposure to the neonicotinoid thiamethoxam (Liu et al. 2014, 2016). Several general functions
(Gene Ontology terms) were shared by workers and queens, including oxidation-reduction
process, glucose metabolic process and single-organism catabolic process (Supp. Fig. S3).
However, there were also marked differences. In queens, differentially expressed genes
included functions related to the determination of lifespan, lipid metabolic process and ion
transport, while genes affected in workers included genes involved in regulation of
developmental growth, neuron projection guidance and regulation of the Notch signaling
pathway (Supp. Fig. S3). A previous study reported that expression of cytochrome P450 genes,
a family of genes typically involved in chemical detoxification, is affected by imidacloprid in
honeybees (Chaimanee et al. 2016). In line with this, two cytochrome P450 CYP9Q subfamily
genes in bumblebees metabolize the neonicotinoid thiacloprid but not imidacloprid (Manjon et al.
2018). Intriguingly, we found no effect of neonicotinoid exposure on either of these genes,
suggesting that the genes are also unable to metabolize clothianidin, or that they function on
different timescales or tissues than our study focused on. However, three other putative
cytochrome P450 genes, LOC100652170, LOC100649441 and LOC100648391, respectively

members of the CYP4, CYP6 and CYP9 subfamilies, were differentially expressed after
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clothianidin exposure (Fig. 1), while one CYP6 family member (LOC100649110) was
alternatively spliced in workers in response to both neonicotinoids, thus providing additional
candidates for future work investigating the defense of bees against neonicotinoid pesticides.
Members of these families have higher expression within the hypopharyngeal and mandibular
glands of honeybee foragers in comparison to nurses suggestive of a role in the metabolism of
xenobiotic and phytochemicals that foragers are exposed to during natural foraging trips

(Vannette et al. 2015).

Multiple biological and technical reasons could explain differences between castes. First,
workers forage for food, care for brood, and build, maintain and defend the nest while the queen
lays batches of eggs daily. Additionally, queens live up to a year while B. terrestris workers live
two months on average (Alford 1975). Their behaviors and physiologies thus fundamentally
differ, and selection will over time have shaped response thresholds to external challenges in
caste-specific manners. Second, it is plausible that exposure differed between castes. Our study
was designed to prevent artefactual expression differences due to variation in colony size or the
absence of the queen: we maintained entire colonies. This did compromise, however, being able
to precisely control neonicotinoid dosage. Potential variation in exposure could come from
differences in feeding behaviors between and within castes, such as feeding directly from the
feeder or from nectar pots. Further sources of biological noise can come from inter-colony
variation. For example, colonies have baseline inherited differences in which alleles they carry,
in gene expression levels, in response thresholds for behaviors such as feeding rates, in
susceptibility to introduced compounds, and other biological differences. The effects of some
such differences are likely responsible for the variation in gene expression among the four
control colonies (Fig. 1). To account for such variation, future studies of ecologically relevant

organisms will benefit from strong replication at the appropriate (e.g., colony) level. A final
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source of biological noise comes from ages: we precisely controlled the ages of bumblebee
workers to 10 days post-eclosion but were unable to determine the ages of queens because
commercially supplied colonies come with no such information. An alternate explanation for
finding differences between queens and workers may be technical, our study focuses on gene
expression in heads. Indeed, heads include multiple tissues that differ in relative size between
queens and workers (e.g., queens possess fully developed corpora allata while workers do not
(Roseler & Roseler 1978)). Such allometric differences could affect our estimation of relative
impacts on gene expression (Johnson et al. 2013). The use of alternative tissues, such as the
digestive tract or malpighian tubules, key organs in xenobiotic metabolism, may provide
additional insights into how castes respond to neonicotinoid exposure. Therefore, future

expression studies will benefit from approaches targeting multiple specific tissues or cell types.

The majority of studies on the molecular effects of insecticides have focussed on the expression
of their direct target sites, such as ligand- and voltage-gated ion channels, or on a priori
candidate metabolic enzymes involved in detoxification of xenobiotic compounds. Whole
transcriptome profiling studies such as ours have highlighted additional genes with altered
expression in response to pesticide exposure. Some of the genes affected by clothianidin
exposure in our study have also been affected by neonicotinoids or other pesticides in other
studies and species. These include muscular genes such as troponin and calponin (Lewis et al.
2009; Wang et al. 2015; Kimura-Kuroda et al. 2016) and metabolic enzymes such as glucose
dehydrogenase (Christen et al. 2018) and hexosaminidase D (Yang et al. 2008; Qi et al. 2018).
At a different level, cellular transport genes such as the ABC transport family (Dermauw & Van
Leeuwen 2014), one member of which was differentially expressed in our study, have been
suggested to provide tolerance of neonicotinoids, such as imidacloprid, acetamiprid and

thiacloprid, with greater mortality identified for neonicotinoid-exposed honeybee larvae treated
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with an ABC inhibitor (Hawthorne & Dively 2011). Furthermore, G protein-coupled receptors,
such as tachykinin-like peptides receptor 86C, which has increased expression in clothianidin-
exposed queens in our study, have been identified as potential targets for the development of
novel pesticides (Audsley & Down 2015). Further work will indicate to which extent the genes
and pathways we have identified represent useful biomarkers of pesticide toxicity. Finally, we
suggest that some of the other changes we identified in the expression of specific genes or
pathways, such as genes under circadian control, may mediate phenotypic effects of pesticide

exposure that remain to be fully characterized.

Conclusions

Our study represents an important step towards understanding the diversity of effects of chronic
exposure to clothianidin and imidacloprid. In addition to identifying caste- and pesticide-specific
effects, we provide lists of candidate genes for future research to improve our understanding of
the impact of pesticides on bumblebee health. Our understanding of the significance of these
genes and others will benefit from increased tissue profiling to identify tissue-specific responses,
investigation of the effects of other pesticide compounds, and understanding of how effects of
exposure change over time. Such detailed understanding can ultimately be helpful in classifying
and quantifying the relative effects of pesticides on target pest species and beneficial species.
Much like RNA-Seq has changed the way we diagnose and understand human disease (Byron
et al. 2016), we thus expect it to become a valuable tool during the development as well as

regulatory evaluation of novel pesticides.
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Table 1. Summary table for differentially expressed genes within neonicotinoid-exposed
bumblebees. For each treatment, the number of genes with differential amplitude and
differential splicing per caste are shown.

Treatment Caste Genes with differential Genes with differential
amplitude splicing
Clothianidin Workers 55 45
Queens 17 0
Imidacloprid Workers 1 1
Queens 0 8
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Fig. 1. Chronic clothianidin exposure leads to gene expression changes in bumblebee
workers and queens. Heatmaps displaying genes differentially expressed in workers (A; n=55)
and in queens (B; n=17) between clothianidin-exposed and control colonies. For each
differentially expressed gene we show the log fold change for each biological replicate, as well
as the gene identifier and NCBI’s functional gene description. The single gene differentially
expressed in both castes is indicated in bold. The single gene also differentially expressed in
imidacloprid-exposed workers is indicated in italics. The two genes identified to be differentially
expressed and alternatively spliced within clothianidin-exposed workers are indicated in bold
and italics.
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