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ABSTRACT: We have constructed and structurally characterized a
Pseudomonas aeruginosa azurin mutant Re126WWCuI, where two
adjacent tryptophan residues (W124 and W122, indole separation
3.6−4.1 Å) are inserted between the CuI center and a Re
photosensitizer coordinated to the imidazole of H126 (ReI(H126)-
(CO)3(4,7-dimethyl-1,10-phenanthroline)+). CuI oxidation by the
photoexcited Re label (*Re) 22.9 Å away proceeds with a ∼70 ns
time constant, similar to that of a single-tryptophan mutant (∼40 ns)
with a 19.4 Å Re−Cu distance. Time-resolved spectroscopy
(luminescence, visible and IR absorption) revealed two rapid reversible
electron transfer steps, W124 → *Re (400−475 ps, K1 ≅ 3.5−4) and
W122 → W124•+ (7−9 ns, K2 ≅ 0.55−0.75), followed by a rate-
determining (70−90 ns) CuI oxidation by W122•+ ca. 11 Å away. The photocycle is completed by 120 μs recombination. No
photochemical CuI oxidation was observed in Re126FWCuI, whereas in Re126WFCuI, the photocycle is restricted to the
ReH126W124 unit and CuI remains isolated. QM/MM/MD simulations of Re126WWCuI indicate that indole solvation
changes through the hopping process and W124 → *Re electron transfer is accompanied by water fluctuations that tighten
W124 solvation. Our finding that multistep tunneling (hopping) confers a ∼9000-fold advantage over single-step tunneling in
the double-tryptophan protein supports the proposal that hole-hopping through tryptophan/tyrosine chains protects enzymes
from oxidative damage.

■ INTRODUCTION

Single-step tunneling (ET) in proteins can move electrons
between donor and acceptor sites separated by about 25 Å on a
millisecond time scale.1−4 Inserting redox-active groups
between the terminal donor and acceptor accelerates electron
transport (EThop) by splitting the reaction pathway into shorter
tunneling steps,1,2,4−9 achieving much higher charge migration
rates and extending the charge separation range. Many natural
redox systems employ multistep tunneling (hopping), trans-
ferring an electron sequentially along a series of redox proteins
or cofactors. A case in point is the Ralstonia eutropha O2-
tolerant [NiFe]-hydrogenase, where electrons travel from the

active site to the protein surface through a series of Fe−S
clusters involving tunneling steps of 10.7, 9.7, and 8.7 Å;10

even more striking is the respiratory complex I, where an
electron is transported over 90 Å through a redox chain
consisting of a flavin mononucleotide and a series of Fe−S
clusters.11,12 Electron hopping also takes place in photosyn-
thesisboth within reaction centers and when moving the
photoseparated holes and electrons along the chloroplast
membrane.6
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Tryptophan and/or tyrosine residues are of special
importance as hole hopping intermediates. In the prototypal
radical enzyme ribonucleotide reductase,13−15 substrate
reaction is triggered by 35-Å hole transfer across a chain of
Tyr residues to the nucleotide binding site;5,16−20 and in
photolyases and cryptochromes, a photogenerated hole moves
over ∼15 Å in ∼30 ps from a photoexcited flavin through a
chain of three precisely positioned tryptophans.21,22 We
recently proposed that hole transfer through Trp/Tyr chains
protects oxidases and oxygenases by moving potentially
destructive oxidizing equivalents (holes) to protein surfaces
where they can be disarmed by cellular reductants.1,23−27

While our hypothesis is well supported by bioinformatics
analysis of the structures of redox enzymes, it calls for deeper
mechanistic investigations of the hopping mechanism.
The blue copper protein Pseudomonas aeruginosa azurin is an

excellent platform to investigate ET mechanisms, owing to the
presence of a reversible CuII/I redox couple in a robust
structure that allows for multiple mutations and covalent
attachment of a RuII or ReI photooxidant to a surface histidine
(H) at a defined position.7,8,28−33 Although azurin does not
contain chains of aromatic amino acids,27 tryptophan7,34,35 and
nitrotyrosine8 residues can be introduced into the redox
pathways by site mutations with retention of the protein
structure. In particular, replacing a lysine (K122) by
tryptophan (W) results in dramatic (>100×) acceleration of
CuI oxidation by a photoexcited Re metallolabel in
Re124W122CuI azurin (Re = ReI(CO)3(dmp)(H124)+; CT
excited state (*Re) = ReII(CO)3(dmp•−)(H124)+; dmp = 4,7-
dimethyl-1,10-phenanthroline).7,9 The reaction involves W122
oxidation as the first ET step in the mechanism (Scheme 1A).
Electron (hole) hopping also can occur across a hydrophobic
protein−protein interface, as was observed in {Re126-
T124W122CuI}2, where Re excitation in one subunit leads
to oxidation of the tryptophan and CuI in the neighboring
subunit.34 Expanding the azurin electron hopping system to
include mutants with two closely spaced aromatic amino acid
residues provides a well-characterized minimal model to
investigate multiple hopping (Scheme 1B). We report here
on a series of structurally characterized azurin mutants labeled
with a Re photooxidant at H126 and containing either
tryptophan or phenylalanine (F) at positions 124 and 122.
(Mutants are abbreviated Re126WWCu, Re126WFCu, and
Re126FWCu, where the first and second letters specify the
124 and 122 residues, respectively. All other naturally
occurring Trp and Tyr residues were replaced by Phe.)
EThop reactions were studied in CuI azurins, whereas the
corresponding CuII and ZnII forms were used to evaluate redox
reactivity of the Re···W···W moiety in isolation. Systematic
spectroscopic and kinetics investigations of photoinduced
EThop in these mutants have shed light on factors that control
multiple hole hopping along tryptophan chains.

■ RESULTS AND DISCUSSION
Structures. X-ray crystal structures of Re126WWCuII

(PDB ID: 6MJS), Re126WFCuII (6MJT), and Re126FWCuII

(6MJR) were determined (Table S1) to resolutions of 1.85,
1.9, and 2.0 Å, respectively, and the regions of the redox
cofactors are shown in Figure 1. The shortest ET-relevant
distances are reported in Table 1. The Re−W124−W122
hopping sequence is characterized by multiple short (3.5−4.0
Å) contacts between mutually T-oriented aromatic groups, and
the dmp methyl groups are in close proximity to the W124

indole. Structures of all three mutants are superimposable, and
replacement of either of the two tryptophans in Re126-
WWCuII with phenylalanine switches off one of the hopping
steps without altering the overall geometry or length of the
Re−Cu EThop pathway. In particular, the Re chromophore
becomes redox-isolated in Re126FWCuI, where the W122
residue is too far from the Re site for ET to compete with 3CT
decay. The W122−Cu pathway (∼11 Å) is the same in
Re126WWCuII as in single-tryptophan mutants Re126-
FWCuII, Re126T124W122CuII,34 and Re124W122CuII7

(Figure S1). In Re126WFCuI, the photocycle is largely limited
to ET in the Re126W124 unit, owing to the long W124−Cu
distance.
Re126WWCuII and Re126FWCuII pack in the asymmetric

unit so that redox cofactors on different protein monomers
interact with each other (Figure S2). Assuming that similar
dimerization occurs in solution,34,36 it is likely that

Scheme 1. (A) Photoinduced ET Cycle of Re124W122CuI

(ref 7) and (B) Analogous Photoinduced ET Cycle of
Re126WWCuIa

a(A) *3CT and 3CT denote hot and relaxed excited states of the Re
label, respectively. The photocycle starts with optical excitation to the
1CT state *ReII(CO)3(dmp•−)H124W122AzCuI followed by several
relaxation steps, establishing an equilibrium between 3CT and the
charge-separated (CS) state ReI(CO)3(dmp•−)H124(W122•+)CuI.
The oxidized tryptophan intermediate W122•+ then undergoes ∼30
ns reduction by CuI over a ∼11 Å distance, forming the redox product
(RP) ReI(CO)3(dmp•−)H124W122CuII. The cycle is completed by
∼3 μs dmp•− → CuII back electron transfer across 19.4 Å (refs 7 and
9). (B) The time constants were determined in this work. The Re−
Cu charge separation takes place over 23 Å via hopping through two
Trp residues. The hot *3CT state and its relaxation were omitted for
clarity. 3CT is a mixed Re → dmp MLCT/dmp-intraligand state.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.8b00882
ACS Cent. Sci. XXXX, XXX, XXX−XXX

B

http://pubs.acs.org/doi/suppl/10.1021/acscentsci.8b00882/suppl_file/oc8b00882_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.8b00882/suppl_file/oc8b00882_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.8b00882/suppl_file/oc8b00882_si_001.pdf
http://dx.doi.org/10.1021/acscentsci.8b00882


intermolecular EThop will be observed at higher protein
concentrations.
Photoinduced Electron Transport. The EThop kinetics of

Re126WWCuI and its variants were studied following the
protocol established for Re124W122CuI (Scheme 1).7 Pulsed
laser excitation of the Re label at 400 or 355 nm triggers a
sequence of ET steps whose kinetics were followed by
measuring the decay of *Re luminescence at 560 nm and
absorption-time profiles at 500 (*Re and ReH126-
(CO)3(dmp•−)) and 632.8 nm (CuII formation and decay).
Time-resolved IR (TRIR) spectroscopy in the range of CO
stretching vibrations was used to distinguish ground, excited,
and reduced forms of the Re label (negative (bleach) bands
and positive features shifted to higher and lower frequencies
upon excitation, respectively).37 In all UV−visible transient
spectroscopic experiments, the protein concentration was kept

below 40 μM to minimize contributions from intermolecular
EThop.

34 Additional insights were provided by measurements
with other mutants: all reactivity is confined to the Re126WW
moiety in ReH126WWZnII and ReH126WWCuII; ET
between *Re and the proximal Trp in isolation was probed
in ReH126WFCuI, and the Re label is effectively removed
from the redox pathway by phenylalanine in ReH126FWCuI.
Results are summarized in Figure 2 and Table 2, and Scheme
1B outlines the mechanism together with elementary rate
constants extracted from kinetics simulations (vide infra).
*Re luminescence is strongly quenched by W124 in

Re126WWCuI, Re126WWZnII, and Re126WFCuI, decaying
with fast multiexponential kinetics (Table 2). On the other
hand, Re126FWCuI (Figure 2C) exhibits a long luminescence
decay time (1.15 μs) consistent with an unquenched 3CT
excited state. (Similar values were found for redox-inactive

Figure 1. Structures of ReH126-azurin mutants showing intramolecular distances between the redox cofactors. WW: Re126WWCuII (PDB ID:
6MJS). FW: Re126FWCuII (6MJR). WF: Re126WFCuII − chain B (6MJT; in chain A, the W122-indole is oriented backward and the
Re(CO)3(dmp) unit is tilted leftwards). Lower right: Superposition of ET-relevant regions and protein folds of Re126WWCuII (green),
Re126FWCuII (pink), and Re126WFCuII − chain B (light blue) demonstrates their structural similarity. Packing of Re126WWCuII and
Re126FWCuII in the respective asymmetric unit is shown in Figure S2.

Table 1. Shortest Atom−Atom Intramolecular Distances between Redox-Active Sitesa

distance Re126WWCuII Re126WFCuIIb Re126FWCuII Re124W122CuIIh

Re−W124 6.9 7.6
dmp−W124 3.5c 3.7d

W124−W122 3.9e

Re−W122 11.4 11.1 6.3
dmp−W122 7.8 7.1 3.4
Cu−W122 10.7 15.7f 10.7 10.8
Cu−dmp 20.6 19.9 20.2 16.0g

Cu−Re 22.9 22.7 23.3 19.4
angle (deg)
dmp−W124 67.7 20.8i

W124−W122 78.7
aOnly aromatic C and N atoms, as well as Re and Cu, are considered. Values averaged over the molecules comprising the unit cell. bTwo molecules
with different Re/W122-indole orientations are present. The listed distances are pertinent to the molecule with closer contacts. cAn additional close
contact (3.9 Å) exists between the W124 indole ring and C(CH3-dmp). dClosest distance between the indole ring and C(CH3-dmp) = 3.5 Å. eThe
distances in the four molecules comprising the asymmetric unit are in the range 3.6−4.1 Å. fCu−W124 distance. gClosest distance between Cu and
C(CH3-dmp) = 15.3 Å. hPDB ID: 2I7O; see Figure S1. idmp-W122.
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Figure 2. Transient absorption and luminescence time profiles measured on dilute (<40 μM) Re-azurin solutions. (A) Transient absorption of
Re126 azurins at 632.8 nm: Re126WWCuI, 32 μM; Re126WWZn, 17 μM; Re126FWCuI, 30 μM; Re126FWCuI, 24 μM. (B) Comparison of the
CuII transient absorption signals (632.8 nm) for Re126WWCuI (22 μM, red) and Re124W122CuI (27 μM, black, scaled by a factor of 22/27)
measured under virtually identical excitation conditions (1−1.5 mJ/pulse). (C) Luminescence decay of Re126 azurins at 560 nm. (D)
Multiexponential luminescence decay of Re124W122CuI in the pico-nanosecond range.

Table 2. Kinetics Fitting Parameters from Time-Resolved Luminescence and Transient Absorbance Measurements on Re126
Azurins with 355 nm Excitation

τ1 /ps τ2 /ns τ3 /ns τ4 /μs τ5 /μs τ6 /ms

Re126WWCuI

luminescence τ 270 ± 20 4 ± 1 81 ± 6
(% amplitude) (61 ± 3) (15 ± 2) (23 ± 1)
TA τ 68 ± 5 1.2 ± 0.1 123 ± 10 4.6 ± 0.5
amplitude (632.8 nm) −0.011 0.005 0.020 0.002
amplitude (500 nm) 0.004 0.003 0.008 0.0008

Re126WWCuII

luminescence 290 ± 10 4 ± 2 79 ± 7
(% amplitude) (71 ± 1) (9 ± 1) (20 ± 2)

Re126WWZnII

luminescence 430 ± 40 10 ± 3 100 ± 7
(% amplitude) (45 ± 2) (18 ± 2) (36 ± 2)
TA (500 nm) τ 125 ± 30 4 ± 3a

Re126WFCuI

luminescence 200 ± 10 3 ± 1 71 ± 8
(% amplitude) (73 ± 2) (14 ± 1) (13 ± 1)
TA (500 nm) τ 0.9 ± 0.1

Re126FWCuI

luminescence 340 ± 150 3 ± 2 120 ± 100 1.15 ± 0.2
(% amplitude) (36 ± 6) (14 ± 6) (5 ± 4) (45 ± 5)
TA (500 nm) τ 1.10 ± 0.15 20 ± 10a

aMinor component.
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Re126T124X122CuI (X = K or F, 730 ns) and Re124-
F122CuI (1.3 μs).7,34) Pico- and nanosecond TRIR spectra
(Figure 3) demonstrate that the *Re 3CT excited state decays

to produce a charge-separated (CS) state with a reduced Re
complex, ReI(H126)(CO)3(dmp•−).37,38 Luminescence decay
kinetics obtained for all mutants containing W124 are similar
(Table 2), indicating that *Re reduction by W124 is the
common reaction step, regardless of the metal (CuI, CuII, ZnII)
or the 122 amino acid (W, F).
Nanosecond transient absorption (TA) measurements

revealed large absorbance increases indicative of CuII

formation (632.8 nm) only in Re126WWCuI and Re124-

W122CuI (Figure 2); CuII formation was not observed in low-
concentration solutions of Re126WFCuI, Re126FWCuI, or
Re126WWZnII, whose much weaker transient absorption at
632.8 nm (Figure 2A) originates from the 3CT and CS states.
Hence, fast CuI photooxidation requires the presence of both
W124 and W122 in the EThop pathway. The ∼68 ns rise of
Re126WWCuI 632.8 nm TA parallels that observed7 for
Re124W122CuI (∼40 ns), despite different Re−Cu distances
(22.9 and 19.4 Å, respectively), indicating an analogous rate-
determining step (the ∼11 Å W122•+→CuI “hole hop”). TA
kinetics (632.8 nm) measured under virtually identical
excitation conditions show that the CuII yield for Re126-
WWCuI is 1.5−2.4 times lower than for Re124W122CuI,
where EThop involves a single W122 intermediate (Figure 2B
and SI - Section S3).
The ReI(H126)(CO)3(dmp•−) → CuII recombination

reaction closes the photocycle; simultaneous fitting of the
632.8 and 500 nm kinetics gives a ∼120 μs time constant for
this process. The back-reaction time constant accords with the
estimate (∼150 μs) for single-step dmp•− → CuII tunneling
(SI-Section S2). The almost 2000-fold difference in the charge-
separation and recombination time scales reflects the different
mechanisms: multistep and single-step tunneling, respectively.
The charge-separation/recombination advantage increases
with EThop range: Re124W122CuI shows an ∼80-fold
difference over 19.4 Å.
The overall performance of the Re126WWCuI photocycle

can be assessed by comparing CuII formation kinetics
(monitored at 632.8 nm) with the time constant of single-
step CuI → *Re ET (∼630 μs) estimated from the value
reported30 for Re83WT-azurinCuI (770 ns, r = 16.8 Å) by
correcting for the longer Cu−Re distance (22.9 Å) in
Re126WWCuI (see SI-Section S2). Given an unquenched
3CT lifetime of about 1 μs,7 photoinduced CuI oxidation
should not be observable if single-step tunneling were the only
operative mechanism. Instead, 355 nm, ∼8 ns laser-pulse
excitation of ≤40 μM Re126WWCuI solutions led to CuII

(RP, Scheme 1) formation (∼68 ns time constant), followed
by ∼120 μs ground-state recovery. Remarkably, hole hopping
through the two intervening tryptophan residues accelerates
CuI oxidation by a factor of 9000 compared to single-step
tunneling.
The solution to the rate law for the kinetics model outlined

in Scheme 1B (beginning from3CT) is a 4-exponential

Figure 3. Difference TRIR spectra of Re126WWCuI measured at
selected time delays after 400 nm, 50 fs excitation. Measured in ∼1.8
mM/D2O solution, 20 mM KPi (pD ≅ 7.1). Blue and red labels
denote features due to the 3CT state (*Re) and reduced
ReI(H126)(CO)3(dmp•−) in the two CS states (and RP at later
time delays). Negative bands correspond to depleted ground-state
population. The spectral features evolve in the directions of the
arrows. Time evolution of the highest CT band is largely determined
by excited-state relaxation (ref 38; the simultaneous decay and rise of
3CT and CS features on late-picosecond and early nanosecond time
scales confirm (ultra)fast reduction of the excited Re label. Because of
the high concentration used (∼1.8 mM), the kinetics correspond to a
combination of intra- and intermolecular processes.

Table 3. Results from Numerical Solutions to the Rate Law Implied by Scheme 1B

Re126WWCuI Inputs: k3
−1 = 60 ns; k4

−1 = 1.15 μs; k9
−1 = 120 μs

elementary rate constants k1
−1 /ps K1 k5

−1 /ns K2 k7
−1 /ns k8

−1 /ns
400−475 1.5−2.0 7−9 0.55−0.75 125−750 60−90

yield and empirical time constants τ1 /ps τ2 /ns τ3 /ns τ4 /μs Φ124/Φ126

260−280 3.5−4 70−90 120 2.0−2.2
Re126WWCuII Inputs: k3

−1 = 60 ns;k4
−1 = 1.15 μs; k8 = k9 = 0

elementary rate constants k1
−1 /ps K1 k5

−1 /ns K2 k7
−1 /ns

375−425 2.25−3.25 9−21 0.25−0.75 100−350
empirical time constants τ1 /ps τ2 /ns τ3 /ns

280−300 3.5−4.5 70−90
Re126WFCuI Inputs: k4

−1 = 1.15 μs; k5 = k6 = k8 = k9 = 0

elementary rate constants k1
−1 /ps K1 k3

−1 /ns
234 5.7 61 ns

empirical time constants τ1 /ps τ2 /ns
200 71
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function. One of the empirical rate constants in the solution is
equal to the elementary rate constant k9. The remaining
empirical rate constants are functions of k1−8, given by the
roots of a third-order polynomial. To obtain estimates for these
elementary rate constants, we solved the rate law numerically
(see SI, Section S3). Values used for k3 and k4 were fixed,
based on measurements in Re124W122CuI and Re126-
FWCuI, respectively.7 We simulated the kinetics for 4.8 ×
107 combinations of the remaining parameters (see SI, Section
S3) and retained those combinations in which the empirical
rate constants were in satisfactory agreement with the observed
luminescence rate constants and relative amplitudes, the TA
kinetics, and the relative CuII yield (Table 3).
The kinetics simulations of Re126WWCuI revealed that

W124 and W122 are distinct hopping intermediates (if there
were a single highly delocalized {W124,W122}•+ intermediate,
the relative CuII yield would be much higher). To account for
the low CuII yield, the CS1⇌ CS2 equilibrium must be shifted
to the left (K2 = 0.55−0.75), indicating that hole-localization
on W124 proximal to Re is thermodynamically preferred. The
simulations suggest that the W122 → W124•+ ET time
constant (k5

−1) can be constrained to 7−9 ns, but the
ReI(H126)(CO)3(dmp•−) → W122•+ (CS2 → GS) ET time
constant is less well-defined (k5

−1 = 125−750 ns).
The experimental kinetics (Table 2) show several minor

components (e.g., the 1.2 μs and 4.6 ms TA decays in
Re126WWCuI) that are not recovered by simulations. These
features can be attributed to intermolecular EThop in azurin
dimers, as observed for Re126T124W122CuI,34 and sup-
ported by observations of concentration-dependent lumines-
cence decay kinetics in Re126WWCuII and photoredox
activity in Re126FWCuI at higher concentrations.
Further insight into the nature of the electronic states and

intermediates of Re126WWCuI was obtained by QM/MM
molecular dynamics (MD) simulations of the solvated
protein,39,40 where the quantum part (QM) consisted of
-Re(H126)(CO)3(dmp)L125W124G123W122-, and the rest
of the system was treated by MM (Figure S12). The QM
calculations employed density functional theory (DFT)
techniques with the PBE0 functional41,42 and D3 dispersion
correction;43 see the Supporting Information for computa-
tional details. For each case, several QM/MM/MD trajecto-
ries, which differed in initial conditions, were run for up to 10
ps after equilibration.
In agreement with the proposed mechanism, TDDFT MD

simulations found 3CT to be the lowest excited state of
solvated Re126WWCuI. As usual for Re carbonyl-diimines, it
arises from Re → dmp metal-to-ligand charge transfer
(MLCT) and dmp-intraligand excitations44−48 whose relative
contributions vary in time (Figure S13). The 3CT state is
closely followed in energy by several CS states. Whereas
distances and angles among redox cofactors (Re, dmp, indoles)
do not exhibit any major or systematic differences in the 3CT,
CS1, and CS2 states (Figure S14), indole solvation was found
to be very sensitive to the actual charge distribution and
appears to be a dominant component of the ET reorganization.
Each indole NH is strongly solvated by a single water molecule
at about 2 Å with other water molecules lying farther away
(Figures 4, S15). Oxidation of either one of the two
tryptophans is accompanied by H-bonding and tighter
solvation. In particular, W124 solvation tightens upon
oxidation to W124•+ in the CS1 state where the NH---OH2
shortens by about 0.1 Å relative to 3CT, owing to a ca. + 0.15

e− increase in charge on the indole N atom. Restoring
uncharged W124 in CS2 relaxes its solvation and shifts water
molecules toward W122. Contrasting behavior was found for
W122, whose solvation is similar in the ground, 3CT, and CS1
states but tightens in CS2, where the W122•+ NH group is
strongly bound to a single water molecule (Figure 4).
Comparing the two tryptophans reveals that the W122 indole
is generally solvated less tightly than W124. Surprisingly, in
CS2, the distances between W124 and W122•+ indoles and
their respective closest water molecules are comparable despite
different charges (Figure 4). The generally weaker W122
solvation could be related to its steric shielding by the
-S118A119L120- backbone 3.4−4.4 Å away (Figure 1). Such
an asymmetric environment makes W124 a slightly stronger
reductant than W122, favors single-indole hole localization in
CS1 and CS2 over a delocalized {W124; W122}•+

intermediate, and shifts the CS1 ⇌ CS2 equilibrium to the
left (K2 < 1), limiting the CuII formation yield.

■ CONCLUDING REMARKS
Multistep electron tunneling dramatically increases the range
over which electrons can be transported through proteins. Our
prior study revealed that hole hopping through a single
intervening tryptophan residue could accelerate electron
transport by a factor of ∼102.7 Our present study demonstrates
that electron hopping through two adjacent tryptophan
residues in Re126WWCuI accelerates CuI oxidation by a
factor of ∼104 relative to single-step CuI → *Re tunneling. The
timetable for electron tunneling/transport (Figure 5) illustrates
the advantage of multistep tunneling in the Re-azurin
construct: hopping through Trp•+ intermediates enables sub-
microsecond electron transport across more than 20 Å.
The advantage of hopping over single-step tunneling is

sensitive to the structure of the hopping system and the driving
forces associated with the individual ET steps. Taking the
Re124WCuI and Re126WWCuI constructs as models, we

Figure 4. Left: Distribution function of individual water molecules
around W124 and W122 indole NH groups. The dotted line at 1.9 Å
helps to visualize the differences. Right: Snapshots showing water
molecules within 2.5 Å of the indole-NH hydrogen atoms (the brown
sphere represents the Re atom).
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simulated the EThop kinetics for all possible values of redox-site
distances (Figure 6). A key component in the hopping
advantage is the single-step tunneling distance. The longer
distance in the Re126WWCuI model gives an optimum
double-hop advantage ∼50 times greater than the single-hop
advantage in the Re124WCuI model. The optimum advantage
of a double-hop over a single-hop (via Trp) increases as the
single-step distance increases. In a comparison of single- and

double hopping through Trp over a 20-Å separation between
Re and Cu, optimized double-hopping provides just a 2.5-fold
advantage over a single hop; at a 23-Å Re−Cu separation,
optimized double-hopping is 10 times better than a single hop.
Our observations suggest that protein constructs containing

multiple closely spaced Trp (or Tyr) residues could support
transport of high potential holes across distances of 30 Å or
more. Such facile movement of holes through polypeptides
necessitates careful placement of oxidizable residues in
enzymes that operate at high potentials. We have found that
chains of three or more Trp and Tyr residues separated by ≤5
Å are relatively common in the structures of redox enzymes,
particularly those that participate in reactions with oxy-
gen.23−25,27 These Trp/Tyr chains may play protective
antioxidant roles by disarming highly oxidizing intermediates
when reactions with intended substrates are disrupted.25,26

Kinetics measurements with Re124WCuI and Re126WWCuI

demonstrate that once a hole is injected into the indole ring of
a Trp residue, it can rapidly migrate to a nearby indole, even
when environmental disparities produce an unfavorable free-
energy gradient. Current efforts are aimed at elucidating
whether Trp/Tyr chains play functional as well as protective
roles in high-potential enzymatic redox catalysis.
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Figure 5. Plot of CuI oxidation time constant (τCu) as a function of
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Figure 6. Simulated single-Trp (A) and double-Trp (B) hopping advantages for constructs modeled on Re124WCuI (d(Re−Cu) = 20 Å) and
Re126WWCuI (d(Re−Cu) = 23 Å). Optimum positioning of the intervening Trp in the Re124WCuI construct (r1 = 7 Å, r2 = 13 Å, colinear) leads
to a predicted 103.8 hopping advantage. In the Re126WWCuI model, optimum positioning of the two Trp residues (r1 = 6 Å, r2 = 7 Å, r3 = 10 Å,
colinear) produces a 105.5 hopping advantage over single-step tunneling.
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M.; Vlcěk, A., Jr.; Richards, J. H.; Winkler, J. R.; Gray, H. B.
Tryptophan-Accelerated Electron Flow through Proteins. Science
2008, 320, 1760−1762.

(8) Warren, J. J.; Herrera, N.; Hill, M. G.; Winkler, J. R.; Gray, H. B.
Electron Flow through Nitrotyrosinate in Pseudomonas aeruginosa
Azurin. J. Am. Chem. Soc. 2013, 135, 11151−11158.
(9) Blanco-Rodríguez, A. M.; Di Bilio, A. J.; Shih, C.; Museth, A. K.;
Clark, I. P.; Towrie, M.; Cannizzo, A.; Sudhamsu, J.; Crane, B. R.;
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