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“regeneration”), but on the other hand such pluripotency 
can become a cause of teratoma formation.4 In addition, 
inappropriate maturation and integration of cardiomyo-
cytes derived from these cells may induce arrhythmias after 
transplantation.5 In contrast, the clinical safety of adult 
tissue-resident stem/progenitor cells has been extensively 
reported. Although these cells rarely differentiate to cardio-
myocytes after transplantation to the heart in vivo, they 
offer repair of the damaged myocardium (myocardial 
“repair”) by their secretome (paracrine effect).6 Mesenchymal 
stem/stromal cells (MSCs) are currently one of the most 
promising donor cell types, among the many types of adult 
stem/progenitor cells, including endothelial progenitor cells, 
skeletal myoblasts, cardiac resident stem/progenitor cells, 
and bone marrow mononuclear cells.4 In fact, an increasing 
number of clinical trials using MSCs have currently been 
conducted or are planned.7

The terminology (i.e., mesenchymal stem or stromal cells) 
to describe MSCs used for cell therapy involves argument. 
As to the definition of mesenchymal “stem” cells, the 
International Society for Cell Therapy introduced 3 major 
criteria: (1) adherence to plastic under standard culture 
conditions, (2) expression of CD105, CD73 and CD90 but 
not CD45, CD34, CD14 or CD11b, CD79α or CD19, or 
HLA-DR surface markers, and (3) retain in vitro multilin-
eage differentiation capacity into osteoblasts, chondroblasts, 

H eart failure (HF) is a leading cause of death and 
disability in many countries. The number of the 
affected is predicted to soar, along with the increase 

in the aged population.1 This incurs a significant economic 
burden on society. The only established radical treatment 
for end-stage HF is cardiac transplantation; however, the 
availability of this treatment is limited by insufficient num-
bers of donors.2 In addition, heart transplantation is highly 
expensive and associated with immunosuppression-related 
complications. Destination therapy using a left ventricular 
assist devise has potential to be an alternative, but requires 
further improvement, including attenuation of complica-
tions (i.e., anticoagulant-related and machine-related prob-
lems) before becoming an established therapy.3 The current 
common treatment for HF is pharmacological, but the 
drugs developed so far have limited clinical efficacy particu-
larly for severe HF. Therefore, development of effective 
alternative therapies for HF is highly desired.

Cell transplantation therapy has been considered as a 
promising treatment for HF. In the past 2 decades, many 
types of cells, including both pluripotent stem cells and adult 
tissue-resident stem/progenitor cells, have been proposed 
and examined in experimental and clinical research.4 Plu-
ripotent stem cells, including embryonic stem cells (ESCs) 
and induced pluripotent stem cells (iPSCs), have an estab-
lished capability to differentiate to cardiomyocytes (cardiac 
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Mesenchymal Stem/Stromal Cell-Based  
Therapy for Heart Failure
― What Is the Best Source? ―
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Transplantation of stem/progenitor cells is a promising, emerging treatment for heart failure (HF) in the modern era. Mesenchymal 
stem/stromal cells (MSCs) are considered as one of the most promising cell sources for this purpose, because of their powerful 
secretion of reparative factors and immunomodulatory ability. To date, various sources of MSCs have been examined for the treatment 
of HF in preclinical or clinical studies, including adult tissues (bone marrow and adipose tissue), perinatal tissues (umbilical cord and 
amnion), and pluripotent stem cells (induced pluripotent stem cells and embryonic stem cells). Adult tissue-derived MSCs have been 
more extensively examined. Previous clinical trials have suggested the safety and feasibility of these MSCs in HF treatment, but their 
therapeutic effects remain arguable. Perinatal tissue-derived MSCs have the advantages of removing the necessity of invasiveness 
biopsy and of mass production. An increasing number of clinical studies (albeit early stage) have been conducted. Pluripotent stem 
cell-derived MSCs may be another promising source because of their mass-production ability underpinned by their unlimited expansion 
with consistent quality. However, the risk of tumorigenicity restricts their clinical application. In this review, we summarize the current 
information available from preclinical and clinical studies, highlighting the advantages and disadvantages of each MSC type. This 
will provide an insight into consideration of the best MSC source for the treatment of HF.
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including diabetes mellites.16 This review aims to summarize 
the currently available preclinical and clinical information 
about the 5 major types of MSCs, with a particular focus 
on these key factors, and to discuss their advantages and 
disadvantages as a donor for cell therapy for HF.

Bone Marrow-Derived MSCs (BM-MSCs)
BM-MSCs are the most extensively investigated MSC type 
as the donor for MSC transplantation therapy for HF. In 
the 1970 s, Friedenstein et al first reported a rare population 
of plastic-adherent, fibroblast-like, and colony-forming 
BMCs with a high replicative capacity, which are now 
commonly referred to as MSCs.17 The basic protocol for 
collecting BM-MSCs from the product of bone marrow 
aspiration includes the following 3-step process: (1) separa-
tion of nucleated cells from nonnucleated cells by density 
gradient centrifugation, (2) adherence of cells to plastic 
tissue culture flasks, and (3) passaging of adhered MSCs.18

BM-MSCs are reported to have the capacity for cardio-
myogenic differentiation in vitro,19 in which bone morpho-
genetic protein (BMP)-2, fibroblast growth factor (FGF)-2, 
hepatocyte growth factor (HGF), insulin-like growth factor 
(IGF)-1, and transforming growth factor (TGF)-β1 play a 
role.20–22 However, it is now agreed that BM-MSCs rarely 
differentiate to cardiomyocytes when transplanted into the 
heart in vivo.7,23 Instead, tissue repair mediated by BM-
MSCs’ secretion is believed to be the major mechanism of the 
therapeutic effect for HF.9 BM-MSCs secrete growth factors, 
cytokines, chemokines, microRNAs, and/or exosomes, which 
are potent for attenuating inflammation, improving neo-
vascular formation, attenuating adverse remodeling, and/
or inducing endogenous cardiac regeneration (“paracrine 
effects”). In addition, the secretome from BM-MSCs has 
immunosuppressive properties through modulation of 
T-cells, B-cells and monocytes.24–26 Although this immuno-
modulating ability remains disputable,27 this feature is 
important for a donor for cell therapy as it enables the use 
of allogeneic cells without immunosuppressive reagents.

There are a large number of preclinical in vivo studies 
that have examined the ability of BM-MSC transplantation 
to treat heart diseases. We summarize the key results as 
follows. Firstly, BM-MSC transplantation improves cardiac 
function in animal models of various types of heart disease, 
including acute/subacute myocardial infarction (AMI), 
ischemic cardiomyopathy (ICM), dilated cardiomyopathy 
(DCM), and myocarditis.9–11 Secondly, MSC-based therapy 
using syngeneic, allogeneic or xenogeneic BM-MSCs is safe 
and has efficacy equivalent to that of autologous/syngeneic 
cells.9 Thirdly, although the mechanism by which BM-MSCs 
improve cardiac function has not been fully confirmed, the 
paracrine effect, not cardiomyogenic differentiation, is 
likely to play a central role.6 Finally, donor cell engraftment 
after BM-MSC transplantation using the current methods 
(i.e., intramyocardial (IM), intracoronary (IC), or intrave-
nous (IV) injection) is not satisfactory,28 which has encour-
aged development of a new, more effective cell-delivery 
methods (e.g., epicardial placement using bioengineering 
technology).28–30

Encouraged by these promising preclinical results, more 
than 20 clinical trials using BM-MSCs have been conducted 
for the treatment of HF (Table 1). The results collectively 
showed that transplantation of BM-MSCs was feasible 
and mostly safe. However, it is noteworthy that Gao et al 
reported a serious complication of coronary embolism during 

and adipocytes.8 Only some of the previously used MSCs 
appear to meet these criteria. In addition, MSCs trans-
planted to the heart do not work or act as “stem cells” that 
differentiate to mesenchymal or other lineages. As such, we 
believe that most of the MSCs used for cell-based therapy 
for HF are better described as “mesenchymal stromal cells”. 
As clear dissection between mesenchymal stem or stromal 
cells is difficult, this review includes all reports using cells 
considered to be mesenchymal stromal cells or mesenchymal 
stem cells.

A large number of preclinical reports have demonstrated 
the ability of MSCs to improve cardiac function in various 
types of experimental HF models.9–11 Although cardiomyo-
genic differentiation of MSCs appears to be insignificant in 
vivo, MSCs are able to secrete a range of reparative mole-
cules, including cytokines, chemokines, growth factors, 
microRNAs, and exosomes.7 These beneficial secretomes 
result in anti-inflammation, neovascular formation, anti-
fibrosis, and anti-apoptosis, leading to repair of damaged 
myocardium (paracrine effect). In addition, it has been 
suggested that MSCs can be used as allogeneic donors.12 
This will enable an off-the-shelf supply of quality-assured 
MSCs with reduced cost, thus allowing MSC-based therapy 
to be established as a widely-used standard treatment. 
However, the therapeutic effect of MSCs on cardiac func-
tion remains controversial in clinical studies and trials. 
Further optimization of the protocols is therefore needed 
for the future success of MSC transplantation therapy, and 
the decision of the most appropriate source for MSCs is a 
fundamental issue.

MSCs were initially identified in adult bone marrow, and 
subsequently found throughout the human body, including 
adipose tissue, muscles, tendons, dental pulp, skin, lungs, 
placenta, umbilical cord (UC), and amniotic fluid.13 In 
addition, it has been reported that MSCs can be produced 
using pluripotent stem cells, including ESCs and iPSCs.14,15 
Among them, as the donor for HF, bone marrow-derived 
MSCs (BM-MSCs) were first used in animal as well as 
clinical studies, and have been the most extensively evalu-
ated so far. Following this, adipose tissue-derived MSCs 
(AT-MSCs) and UC-derived MSCs (UC-MSCs) have been 
examined in preclinical studies and clinical trials. More 
recently, amnion-derived MSCs (AM-MSCs) and ESC/
iPSC-derived MSCs have been proposed as promising cells 
for HF treatment. It is an important issue to decide which 
source is the most feasible and effective; however, a clear 
answer has not been obtained because the majority of 
previous studies were conducted independently using a wide 
range of protocols.

Key factors for MSCs to be ideal as the donor for cell 
therapy for HF include: (1) safety when injected in vivo, (2) 
absence of ethical issues, (3) able to induce myocardial 
repair and/or regeneration, (4) able to treat a wide range of 
HF types, including ischemic and nonischemic disease, (5) 
availability of mass production of high-quality, homoge-
neous cells, and (6) utility of allogeneic cells without immu-
nosuppressive reagents. Factors 1–4 are no doubt crucial. 
The MSC-mediated therapeutic effect can be achieved 
through secretion of reparative factors (paracrine effect for 
myocardial repair), but cardiomyogenic differentiation 
(myocardial regeneration) may also have a role. Factors 5 
and 6 are critical for MSC-based therapy to become a 
widely adopted treatment in the clinical arena. Autologous 
MSCs have disadvantages for factor 5, especially when the 
patients are elderly and have chronic HF and comorbidities 
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Table 1.  Clinical Trials of BM-MSC Transplantation for Heart Diseases

Reference Study 
design Disease MSC  

type
Delivery 

route

Cell 
number 
(×106)

Concurrent 
procedure

Follow-up 
period 

(months)

Arms,  
case no.

Improvement 
in LVEF  

(vs. control)

Improvement 
in exercise 
tolerance  

(vs. control)

Chen et al33 Phase 2 AMI Auto IC 48,000–
60,000

PCI 6 MSC 34,  
Control 35

Yes Not shown

Hare et al39 Phase 1 AMI Allo IV 0.5, 1.6  
or 5 /kg

PCI 6 MSC 39,  
Control 21

No No

Yang et al50 Phase 1 AMI Auto IC 12.2,  
13.2

PCI 6 Culprit coronary 
8, Nonculprit 
coronary 8

No control No control

Gao et al31 Phase 2 AMI Auto IC 3.08 PCI 24 MSC 21,  
Control 22

No Not shown

�Rodrigo et al51 Phase 1 AMI Auto IM 31 PCI 60 MSC 9,  
Control 45

No Not shown

�Lee et al36 
(SEED-MSC)

Phase 2/3 AMI Auto IC 72 PCI 6 MSC 33,  
Control 36

Yes Not shown

Wang et al52 AMI Auto IC 200 PCI 6 MSC 28,  
Control 30

No Not shown

�Chullikana  
et al40

Phase 1/2 AMI Allo IV 2 /kg PCI 24 MSC 10,  
Control 10

No Not shown

Chen et al53 Phase 1/2 ICM Auto IC 5 PCI 12 MSC 24,  
Control 24

No Yes

�Mohyeddin-
Bonab et al54

ICM Auto IM or IC 5.55 CABG or  
PCI

18 MSC 8,  
Control 8

No Not shown

�Hare et al41 
(POSEIDON)

Phase 1/2 ICM Auto IM 20, 100  
or 200

None 13 20×106 MSCs 5, 
100×106 MSCs 

5, 200×106 
MSCs 6

No control No control

Allo IM 20, 100  
or 200

None 13 20×106 MSCs 5, 
100×106 MSCs 

5, 200×106 
MSCs 5

No control No control

�Mathiasen  
et al55

Phase 1/2 ICM Auto IM 21.5 None 36 MSC 31 No control No control

�Bartunek et al34 
(C-CURE)

Phase 2/3 ICM Auto IM 733 None 24 MSC 32,  
Control 15

Yes Yes

�Heldman et al56 
(TAC-HFT)

Phase 1/2 ICM Auto IM 200 None 12 MSC 22,  
Control 11

No No

�Karantalis  
et al57  
(PROMETHEUS)

Phase 1/2 ICM Auto IM 20 or  
200

CABG 18 MSC 6 No control No control

�Mathiasen  
et al37  
(MSC-HF)

Phase 1/2 ICM Auto IM 77.5 None 12 MSC 40,  
Control 20

Yes No

�Guijarro et al58 
(MESAMI 1)

Phase 1 ICM Auto IM 61.5 None 24 MSC 10 No control No control

�Bartunek et al38 
(CHART-1)

Phase 3 ICM Auto IM 600 None 39 weeks MSC 120, 
Control 151

No No

�Florea et al42 
(TRIDENT)

Phase 2 ICM Allo IM 20 or  
100

None 12 20×106 MSCs 
15, 100×106 

MSCs 15

No control No control

Perin et al43 Phase 2 ICM or 
NICM

Allo IM 25, 75  
or 150

None 36 MSC 45,  
Control 15

No No

Ascheim et al44 Phase 2 ICM or 
NICM

Allo IM 25 LVAD 12 MSC 20,  
Control 10

No No

Butler et al45 Phase 2 NICM Allo IV 1.5 /kg None 13 MSC 11,  
Control 12

No Yes

Xiao et al35 DCM Auto IC 490 None 12 MSC 17,  
Control 20

Yes No

�Hare et al46 
(POSEIDON-
DCM)

Phase 1/2 DCM Auto IM 100 None 12 Auto MSC 18 No control No control

Allo IM 100 None 12 Allo MSC 19 No control No control

Allo, allogeneic; AMI, acute myocardial infarction; Auto, autologous; BM-MSCs, bone marrow-derived mesenchymal stem/stromal cells; 
CABG, coronary artery bypass grafting; DCM, dilated cardiomyopathy; IC, intracoronary injection; ICM, ischemic cardiomyopathy; IM, 
intramyocardial injection; IV, intravenous injection; LVAD, left ventricular assist device; LVEF, left ventricular ejection fraction; MSC, 
mesenchymal stem/stromal cell; NICM, nonischemic cardiomyopathy; PCI, percutaneous coronary intervention.
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used for clinical studies, but this cell type has several limita-
tions compared with the other MSC types. Firstly, bone 
marrow aspiration is an established procedure but can be 
unexpectedly invasive for patients with severe HF, who also 
frequently have associated comorbidities.13 On the other 
hand, collection of allogeneic BM-MSCs by invasive biopsy 
from healthy volunteers is associated with ethical issues. 
Secondly, as the initial yield of BM-MSCs from bone mar-
row aspirate is quite low (estimated at ≈0.001–0.01% of BM 
aspirate),47 these cells need to be expanded with many pas-
sages to produce a sufficient number of cells for treatment.47 
Such a prolonged expansion procedure can, if excessive, 
reduce the functionality and quality of the cells.48 It is also 
reported that higher passage MSCs are more likely to trigger 
an innate immune attack with allogeneic transplantation.49

Considering all this information together, BM-MSCs 
are still an important donor for cell transplantation therapy 
for HF. However, certain refinements of the treatment 
protocols to augment therapeutic efficacy will be needed for 
BM-MSCs to be clinically successful in the future. These 
may include the use of an optimal cell-delivery method and 
improvement of the cell culture protocol to expand BM-
MSCs without losing cellular function.

Adipose Tissue-Derived MSCs (AT-MSCs)
In the 2000 s, a population of cells having MSC-like proper-
ties were discovered in human adipose tissue59 and referred 
to as adipose-derived stem cells (ADSCs).60 Technically, 
these cells do not always meet the conventional criteria of 
MSC8 because they often express CD34 in their early pas-
sage.61 However, immunophenotypes are >90% identical 
between ADSCs and BM-MSCs.59 In this review, we use the 
term ‘adipose tissue-derived MSCs (AT-MSCs)’, which is 
conveniently used to describe all MSC populations har-
vested from adipose tissue, including ADSCs and others 
(e.g., adipose-derived regenerative cells (ADRCs), which 
are cells freshly collected from the stromal vascular fraction 
of the adipose tissue, comprised of leukocytes, smooth 
muscles, endothelial cells, and MSCs).62

AT-MSCs are isolated from the stromal vascular fraction 
of the white adipose tissue. With regard to donor cell 
production, AT-MSCs have a lot of possible advantages 
compared with BM-MSCs: Firstly, a more abundant tissue 
is accessible from throughout human body.63 Secondly, the 
initial yield of AT-MSCs is greater (500-fold) and collected 
cells have a larger expansion potential than BM-MSCs.64 
Thirdly, AT-MSCs are less subject to cell senescence caused 
by repeated cell passage compared with BM-MSCs.64,65 
Fourthly, the cell isolation process is relatively simple, 
requiring only enzymatic digestion and/or mechanical sepa-
ration, and does not require specific equipment.63 Fifthly, 
AT-MSCs may have a superior ability to induce myocardial 
repair. Similar to BM-MSCs, AT-MSCs have a cardiomyo-
genic differentiation potential, at least in vitro, while their 
major mechanism for myocardial repair in vivo is highly 
likely to be a paracrine effect.66 AT-MSCs are known to 
exhibit more angiogenic potential than BM-MSCs.67 
Finally, the immunomodulatory ability of AT-MSCs may 
be superior to that of BM-MSCs,68 although this remains 
controversial.69

Preclinical in vivo therapeutic efficacy of AT-MSCs has 
been reported in many studies using a range of models of 
AMI70,71 and ICM in rodents and swine.72,73 Several com-
parison studies have claimed that AT-MSCs could achieve 

IC injection,31 which is a predicted risk from animal models.32

With regard to therapeutic efficacy, the majority of clin-
ical studies have reported some clinical benefits of BM-MSC 
treatment, including reduced area of infarction, increased 
myocardial perfusion, decreased angina frequency, reduced 
hospitalization period, and clinical status. These favorable 
effects were observed not only in AMI and ICM patients, 
but also in nonischemic DCM patients. However, the num-
ber of trials revealing distinct improvement in more direct, 
objective and quantitative indicators (i.e., cardiac function 
or exercise tolerance) is not large. As a matter of fact, only 
5 clinical trials have demonstrated improved left ventricular 
ejection fraction (LVEF) compared with an appropriate 
control group among 17 controlled trials listed in Table 1. 
Among the positive reports, 3 compared the absolute value 
of LVEF post-treatment33–35 and the other 2 compared the 
change in LVEF between before and after treatment.36,37 
For example, the C-CURE trial, a prospective, multicenter, 
randomized trial of IM injection of autologous BM-MSCs 
pretreated with cardiogenic factors to patients with ICM, 
demonstrated improved LVEF in the BM-MSC treatment 
group, compared with control group, at 6 months.34 Having 
said this, it is a fact that a larger number of clinical trials 
failed to show improvement of LVEF or exercise tolerance 
by BM-MSC transplantation therapy. Furthermore, it must 
be noted that the CHART-1 trial, the largest-scale phase 
III trial enrolling 271 patients, demonstrated no improve-
ment in LVEF or exercise tolerance compared with control 
group at 39 weeks after IM injection of autologous BM-
MSCs.38 Although it is uncertain whether LVEF or exercise 
tolerance is the most reliable indicator when evaluating the 
therapeutic effect of stem cell therapy,9 the results obtained 
so far collectively suggest that the therapeutic effects of 
current protocols of BM-MSC transplantation are not as 
substantial as predicted by preclinical studies.

It has been elucidated that the capabilities of transplanted 
BM-MSCs to survive, proliferate, and secrete deteriorate 
with aging and comorbidities such as diabetes of the donor,16 
limiting the application of autologous MSCs. Also, to 
establish an off-the-shelf use of MSCs, the use of allogeneic 
MSCs is essential. In this context, some clinical trials were 
performed to evaluate the safety and efficacy of allogeneic 
BM-MSCs.39–46 The POSEIDON trial41 and the POSEIDON-
DCM trial,46 which compared the safety and efficiency of 
transendocardial IM injection of autologous and allogeneic 
BM-MSCs, reported an absence of severe immunological 
response after allogeneic BM-MSC injection and similar 
therapeutic benefits between allogeneic and autologous 
BM-MSCs. Other trials agreed on improved clinical status 
of patients treated with allogeneic BM-MSCs. However, 
none of the trials reported significantly improved LVEF 
after allogeneic BM-MSC administration compared with 
appropriate control.

Cell dosage is another factor affecting therapeutic effects 
of MSC transplantation therapy. Perin et al compared the 
effects of 3 doses (25, 75 or 150×106 cells) of allogeneic 
BM-MSCs and showed beneficial dose-response effects for 
reducing major cardiac adverse events and attenuating LV 
remodeling.43 Also, the TRIDENT trial, comparing 2 doses 
(20 or 100×106 cells) groups demonstrated improved LVEF 
and preserved serum pro-brain natriuretic peptide levels in 
the high-dose group.42 Notably, the aforementioned 5 trials 
showing significantly improved LVEF after BM-MSC trans-
plantation used relatively high numbers of cells (>70×106).

It is true that BM-MSCs have been the most extensively 
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ance and clinical performance. In addition, there are some 
considerations regarding AT-MSCs. Although surgical 
harvesting of adipose tissue is considered to be minimally 
invasive, there is a risk of venous/pulmonary embolism, 
injury of other organs and sepsis.78 This complication may 
be infrequent but can be fatal. Similar to BM-MSCs, reduced 
quality of cells with senescence, aging, and comorbidities 
such as diabetes are a concern for the use of AT-MSCs. 
Future preclinical studies as well as clinical studies (i.e., 
appropriate large-scale phase III studies) are warranted for 
AT-MSCs to be established as a clinical treatment for HF.

UC-Derived MSCs (UC-MSCs)
UC is a perinatal tissue containing 2 umbilical arteries and 
1 umbilical vein, both being embedded within a specific 
mucous connective tissue known as Wharton’s jelly, which 
is covered by amniotic epithelium.79 MSCs can be isolated 
from the UC by enzymatic digestion methods.79 As UC can 
be obtained as medical waste after delivery, it is an attain-
able MSC source without the requirement of invasive biopsy 
or ethical concerns.

As perinatal tissue-origin cells, UC-MSCs present a more 
primitive phenotype and exhibit longer telomeres and active 
telomerase compared with adult tissue-derived MSCs such 
as BM-MSCs and AT-MSCs.80 Therefore, UC-MSCs 
exhibit a greater proliferative ability, even after cryopreser-
vation, and have less cellular senescence compared with 
adult counterparts.81 In addition, UC is a quite large tissue, 
having an average size of 1.6 cm in diameter×30 cm in 
length. One UC offers a yield of approximately 1×107 
MSCs before the first passage.82 This will be able to produce 
>1×1010 MSCs within 1 month because of their vigorous 
proliferation.82

Because of the nature of the source tissue, UC-MSCs are 
usually used as allogeneic donors. This is likely to be feasible 
because UC-MSCs exhibit relatively low immunogenicity 
as a result of their limited expression of MHC I and lack 
of MHC II molecules and costimulatory antigens such as 
CD80 and CD86,83 and they also have an immunosuppres-
sive secretome.81 These features are reported to be equiva-
lent to or greater than those of adult tissue-derived MSCs. 
Indeed, preclinical studies demonstrated transplantation of 
human UC-MSCs resulted in myocardial repair in rodent,84 
rabbit,85 and swine86 models, despite being xenotransplan-
tation without immunosuppressive reagents. In addition, 
it was reported that IV injection of allogeneic UC-MSCs 

the same or even a higher degree of cardiac function 
improvement than BM-MSCs.71,72 Cardiac function 
improvement after AT-MSC transplantation was associated 
with histological myocardial repair, including neovascular 
formation,70,73 reduction in fibrosis,70,71 and prevention of 
adverse ventricular remodeling post-MI.73

These favorable results of preclinical in vivo studies were 
followed by clinical studies for the treatment of HF, 
though the number of trials is much less than those using 
BM-MSCs (Table 2). The APOLLO Trial62 has shown the 
safety and feasibility of IC injection of autologous ADRCs 
in conjunction with PCI, to treat AMI patients. Cardiac 
MRI and MIBI-SPECT showed a significant reduction of 
the infarct size post-AT-ADRC transplantation, but the 
increase in LVEF was not significant compared with con-
trols. The PRECISE trial,74 which injected ADRCs into 
ICM patients via the IM route, also showed no differences 
in adverse events between groups, but LVEF was not sig-
nificantly improved by ADRC transplantation. However, 
at least, reduction in inducible ischemia and preservation 
of exercise tolerance were observed in the ADRC-treated 
patients compared with control group. The subsequent 
ATHENA I/II trial75 demonstrated a reduction in HF 
hospitalizations and improvement in angina symptoms; 
however, again transplantation of AT-MSCs did not 
improve LV function or reduce cardiac dilatation. The 
MyStromalCell Trial76 reported the feasibility and safety 
of IM injection of autologous vascular endothelial growth 
factor (VEGF)-A165-stimulated AT-MSCs for the treat-
ment of patients with refractory angina. Unfortunately, 
their result failed to indicate increased exercise capacity by 
this treatment. More recently, allogeneic AT-MSCs were 
also tested. Kastrup et al77 reported the safety and feasibility 
of IM injections of cryopreserved allogeneic Cardiology 
Stem Cell Centre adipose-derived stromal cell (CSCC_ASC) 
in patients with ICM. Although some patients developed 
donor-specific de novo HLA class I antibodies, there were 
no clinical symptoms or changes in inflammatory parame-
ters. Thus, this treatment was suggested to be safe, but there 
was no significant improvement in LVEF from the baseline.

Taking all the reported clinical trial results together, 
transplantation of autologous AT-MSCs is feasible and safe 
in the clinical setting of HF. Allogeneic AT-MSCs appears 
to be safe but further long-term safety has to be studied in 
a larger number of cases. Improvement in global cardiac 
function was not significant in any of the previous clinical 
trials, and only 1 trial demonstrated improved excise toler-

Table 2.  Clinical Trials of AT-MSC Transplantation for Heart Diseases

Reference Study 
design Disease MSC 

type
Delivery 

route

Cell 
number 
(×106)

Concurrent 
procedure

Follow-up 
period 

(months)

Arms,  
case no.

Improvement 
in LVEF  

(vs. control)

Improvement 
in exercise 
tolerance  

(vs. control)

�Houtgraaf et al62 
(APOLLO)

Phase 1/2 AMI Auto IC 20 PCI 6 MSC 10, 
Control 4

No Not shown

�Perin et al74 
(PRECISE)

Phase 1 ICM Auto IM 0.4, 0.8, 
1.2 /kg

None 36 MSC 21, 
Control 6

No Yes

�Henry et al75 
(ATHENA I/II)

Phase 2 ICM Auto IM 40 or  
80

None 12 MSC 17, 
Control 14

No No

�Qayyum et al76 
(MyStromalCell)

Phase 2 ICM Auto IM 72 None 6 MSC 41, 
Control 20

Not shown No

Kastrup et al77 Phase 1 ICM Allo IM 100 None 6 MSC 10 No control No control

AT-MSCs, adipose tissue-derived mesenchymal stem/stromal cells. Other abbreviations as in Table 1.
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patients with severe systolic HF.93 Bartolucci et al reported 
an improved NYHA class and quality of life (as assessed 
with Minnesota Living with Heart Failure Questionnaire) 
in chronic HF patients.81

To summarize, UC-MSCs are derived from perinatal 
tissues and available without invasive biopsy or ethical 
concerns. Preclinical studies suggest that UC-MSCs have 
a greater capability of proliferation, senescence-resistance 
and immunosuppression compared with adult tissue-derived 
MSCs. Early-phase clinical trials to date have demonstrated 
that transplantation of allogeneic UC-MSCs is safe and 
would be effective to treat HF patients, albeit preliminarily. 
Thus, UC-MSCs have great potential as a donor for cell 
therapy and further preclinical studies and further larger-
scale, randomized, controlled, multicenter phase III clinical 
trials are warranted. Establishment of appropriate facilities 
to produce large-scale, good manufacturing practice 
(GMP)-compliant UC-MSCs is also essential for off-the-
shelf clinical use of UC-MSCs.

Amnion-Derived MSCs (AM-MSCs)
More recently, another prenatal tissue, the amniotic mem-
brane, has been a target of growing interest as an alternative 
source of MSCs. Amnion is the inner membrane of the 
fetal membrane that surrounds the embryo and can be 
peeled off the outer chorionic membrane by blunt dissec-
tion.13 Human amniotic membrane is approximately 
40×40 cm in size on average and contains a large quantity 
of MSCs, which originate from the fetal mesoderm. As 
many as approximately 1×107 AM-MSCs can be obtained 
from one amnion (unpublished data), and AM-MSCs have 
the characteristics of perinatal cells (i.e., greater proliferative 
ability and less cellular senescence vs. adult tissue-derived 
MSCs). Thus, mass production of less-passaged MSCs is 
possible with AM-MSCs.96 AM-MSCs share similar prop-
erties with the other perinatal tissue-derived MSCs, UC-
MSCs. However, there is also some diversity in the gene 
expression profile between these MSCs.97–99

Cardiomyogenic differentiation of AM-MSCs has been 
reported in vitro and in vivo.100,101 Interestingly, undiffer-
entiated AM-MSC express GATA4, Nkx2.5, myosin light 
chain (MLC)-2a, MLC-2v, cardiac troponin-I (cTnI), cardiac 

achieved comparable improvement in cardiac function to 
that of allogeneic BM-MSCs in a rat AMI model.87

Similar to other types of MSCs, UC-MSCs appear to 
have the potential to differentiate into cardiomyocytes. 
5-azacytidine induces expression of Notch1, DLL4, GATA4, 
and Nkx2.5 in UC-MSCs,88 and encourages UC-MSCs to 
differentiate into cardiomyocyte-like cells by activating the 
extracellular regulated kinase pathway.89 Having said this, 
the major mechanism for UC-MSC-derived myocardial 
recovery in vivo is again believed to be the paracrine effect.86 
Paracrine effects of UC-MSC include increased angiogen-
esis,84–86 decreased apoptosis,84,86 reduction in fibrosis,83,86 
immunosuppression,85 and recruitment and differentiation 
of endogenous cardiac stem cells.84 These are likely to 
collectively result in increased global cardiac function83,85,86 
and prevention of ventricular dilatation.83,84 Of note, 1 study 
has demonstrated that UC-MSCs have a putative higher 
tissue-repair paracrine potential compared with adult tissue-
derived MSCs.81 UC-MSC-mediated myocardial repair has 
been observed not only in ischemic heart disease models such 
as AMI and ICM, but also in nonischemic DCM models.83

Based on these promising results from preclinical studies, 
clinical trials have been conducted since the early 2010 s. 
To date, 7 clinical trials have tested human UC-MSCs for 
the treatment of AMI and chronic HF, including both 
ICM and nonischemic cardiomyopathy (Table 3).81,90–95 A 
full range of IC, IM and IV injections were used as the cell-
delivery route. These are phase I or II clinical trials and 
safety was the primary endpoint in almost all of the studies. 
As a result, safety of allogeneic UC-MSCs was suggested; 
no major adverse effects were observed. Although it may 
not be appropriate to discuss therapeutic efficacy based on 
these early-phase, small-scale clinical trials, 3 out of 4 
controlled studies demonstrated that UC-MSC trans-
plantation improved LVEF compared with control (the 
remaining study has not disclosed final results). In addition 
to the improvement in global LV function, Gao et al92 
reported the prevention of adverse cardiac remodeling in 
AMI patients who received an IC infusion of UC-MSCs. 
In addition, significant improvements were noted in exercise 
tolerance and clinical status after UC-MSC treatment. 
Zhao et al reported an increase in 6-min walking distance 
and a decrease in serum B-type natriuretic peptide levels in 

Table 3.  Clinical Trials of UC-MSC Transplantation for Heart Diseases

Reference Study 
design Disease MSC 

type
Delivery 

route

Cell 
number 
(×106)

Concurrent 
procedure

Follow-up 
period 

(months)

Arms,  
case no.

Improvement 
in LVEF  

(vs. control)

Improvement 
in exercise 
tolerance  

(vs. control)

Musialek et al91 AMI Allo IC 30 PCI 12 MSC 10 No control No control

Gao et al92 Phase 2 AMI Allo IC 6 PCI 18 MSC 58, 
Control 58

Yes Not shown

Li et al90 ICM Allo IC 3, 4, 5 None 24 MSC 15 No control No control

Fang et al94 ICM Allo IV 5–10 None 12 MSC 3 No control No control

�Can et al95  
(HUC-HEART) 
(Preliminary 
result)

Phase 1/2 ICM Allo IM 20 /kg CABG 6 MSC 18, 
Control 4

Not shown Not shown

Zhao et al93 ICM or 
NICM

Allo IM Not shown None 6 MSC 30, 
Control 29

Yes Yes

�Bartolucci et al81 
(RIMECARD)

Phase 1/2 ICM or 
NICM

Allo IV 1 /kg None 12 MSC 15, 
Control 15

Yes No

UC-MSCs, umbilical cord-derived mesenchymal stem/stromal cells. Other abbreviations as in Table 1.
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initiated, the results of in vivo preclinical studies suggest 
that transplantation of AM-MSCs is a promising approach 
for the treatment of HF. In addition to the paracrine 
secretome-mediated myocardial repair, this MSC type may 
be able to generate new cardiomyocytes via differentiation. 
Their immunomodulatory effect is also strong; even xeno-
transplantation is successful, validating the use of allogeneic 
AM-MSCs. Furthermore, AM-MSC have an advantage in 
mass production of less-passaged MSCs, compared with 
adult tissue-derived MSCs. Further preclinical and clinical 
studies to confirm the safety and efficacy of AM-MSCs are 
justified.

Pluripotent Stem Cell-Derived MSCs
It is now possible to generate MSCs in vitro from other stem 
cells, including ESCs and iPSCs. Although tissue-derived 
MSCs have a limited source with a restricted proliferation 
capacity in vitro because of replicative senescence,48 ESC/
iPSC-derived MSCs are a theoretically unlimited source 
because of their self-renewal ability.111,112 This makes this 
MSC type extremely attractive. Although ESCs are associ-
ated with ethical issues, these cells appear to be more stable, 
at least with current technologies, compared with iPSCs.113

ESC/iPSC-derived MSCs are reported to be in a transi-
tional state of development (between stem cells and termi-
nally differentiated cells).114 However, these MSCs exhibit 
typical MSC morphologies and surface marker expressions, 
as well as multipotency to differentiate into adipogenic, 
chondrogenic, and osteogenic lineages.111,112 Cardiomyo-
genic differentiation was also reported. Human ESC-MSCs 
presented more dynamic cardiomyogenic differentiation 
compared with tissue-derived MSCs when cocultured with 
neonatal rat cardiomyocytes.23

ESCs and iPSCs can be expanded in vitro without 
undergoing senescence, so these cells may provide an 
unlimited number of early passage MSCs for treatment. In 
addition, previous studies demonstrated that these MSCs 
are more proliferative, in association with longer telo-
meres,115 compared with adult or fetal tissue-derived 
MSCs.116,117 It was reported that the genes related to control 
of DNA replication and repair are highly upregulated in 
ESC-derived MSCs compared with BM-MSCs, which may 
partly explain the improved proliferation potential.118

ESC/iPSC-derived MSCs have low immunogenicity 
because they lack HLA-II, similar to traditional MSC lines. 
Besides, these MSCs are less sensitive to proinflammatory 
IFN-γ-induced HLA-II expression than adult and fetal 
tissue-derived MSCs, suggesting that ESC/iPSC-derived 
MSCs are less prone to immunological rejection after 
transplantation in vivo.119 Also, ESC/iPSC-derived MSCs 
modulate the activity of T-cells,116 natural killer (NK) 
cells,120 and dendritic cells121 more effectively than adult 
tissue-derived MSCs. Taken together, allogeneic ESC/
iPSC-derived MSC might be able to establish an immune-
privilege status in the heart.

As regards the paracrine effect, ESC/iPSC-derived MSCs 
exhibit a powerful secretion of cytokines and growth factors 
to induce myocardial repair. It was reported that iPSC-
MSCs express higher levels of cardioreparative cytokines, 
such as stromal cell-derived factor (SDF)-1a, stem cell 
factor, and FGF-2, compared with BM-MSC.112 Also, 
ESC/iPSC-derived MSC secrete an increased level of anti-
inflammatory and reparative cytokines, including IL-10 
and EGF, and lower levels of proinflammatory cytokines 

troponin-T (cTnT), and the α-subunits of the cardiac-spe-
cific L-type calcium channel (α1c) and the transient outward 
potassium channel (Kv4.3).100 The cardiomyogenic potency 
of AM-MSCs is reportedly improved by FGF-2, activin A, 
IL-10, or progesterone.102,103 One report demonstrated that 
engrafted AM-MSCs expressed von Willebrand factor, 
α-smooth muscle actin (αSMA) or cTnI, suggesting differ-
entiation to 3 major cardiac cell types: endothelial cells, 
smooth muscle cells and cardiomyocytes.101 Having said 
this, a more convincing mechanism for AM-MSCs induc-
tion of therapeutic effects will be based on their secretome. 
Human AM-MSC secrete significant levels of angiogenic 
factors and cytoprotective cytokines, generally similar to 
other MSC types.96 However, such paracrine factor secre-
tion is reported to be distinct between AM-MSCs and 
UC-MSCs.97–99 AM-MSCs exhibit significantly greater 
production of prostaglandin E2 (PGE2), VEGF and epi-
dermal growth factor (EGF), whereas UC-MSCs showed 
higher production of TGF-β, matrix metalloproteinase 
(MMP)-8 and HGF.

It is most likely that AM-MSCs will be transplanted to 
allogeneic patients in the clinical scenario. Human AM-
MSCs exhibit strong immunomodulatory effects by their 
secretion, including PGE2, which reduces T-cell prolifera-
tion.96 In addition, similar to UC-MSCs, AM-MSCs express 
limited levels of HLA-A and -B and do not express HLA-
DR, presenting a low immunogenic profile.102 These features 
enabled successful xenogeneic transplantation of human 
AM-MSCs to wild-type rodents without using immuno-
suppressive reagents.103 Transplantation of human AM-
MSCs into NOD/SCID mice with AMI enabled engraftment 
of human AM-MSCs in rodent hearts and improved LV 
function in association with increased capillary density, 
angiogenic cytokine levels, angopoietin-1 and VEGF-A 
levels.104 In another study using an ischemia-reperfusion 
model in swine, improved viability in the peri-infarct region, 
improved regional contractility and LVEF, and reduced 
cardiac dilatation were observed after transplantation of 
human AM-MSCs.105

One study compared the therapeutic efficacy between 
allogeneic rat fetal membrane-derived MSCs (FM-MSCs) 
and syngeneic BM-MSCs in a rat ICM model.106 In some 
studies, using rodent models, FM-MSCs were used as a 
model of AM-MSCs, because of the technical difficulty in 
separating the amnion from the chorion. MSCs were trans-
planted onto the surface of the infarcted myocardium by 
the cell sheet method. FM-MSCs improved cardiac func-
tion, increased capillary density and reduced myocardial 
fibrosis to the same extent as BM-MSCs, compared with 
the untreated group. The engraftment rate of transplanted 
cells and immune cell infiltration into the transplanted area 
did not differ between the 2 types of MSC transplants. A 
small number of engrafted MSCs differentiated into vascular 
structures and were positive for lectin I and αSMA.

To date, no clinical application of AM-MSCs has been 
facilitated yet for the treatment of cardiovascular diseases, 
but a phase I/II trial for treating Crohn’s disease is about 
to start in Japan.107 MSCs derived from the placenta, 
including amnion, have been clinically examined in various 
diseases other than cardiovascular diseases, such as multiple 
sclerosis,108 idiopathic pulmonary fibrosis,109 and type 2 
diabetes.110 Thus far there are no reports showing any serious 
side effects, implying that AM-MSC transplantation may 
be safe.

To summarize, although clinical trials have not been 
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MSC type (the most effective cell number transplanted, the 
most efficient route for cell delivery, and the optimized cell 
preparation processing) need to be used for each of the 
different HF types, including AMI, ICM etc., in animals or 
more preferably patients. Although it is now widely believed 
that the major mechanism by which MSC transplantation 
improves cardiac function is the paracrine effect, the details 
of this mechanism, as well as involvement of cardiomyo-
genic differentiation, have to be further elucidated.

The best source for MSC transplantation therapy for HF 
should be decided based on further accumulated informa-
tion on each MSC type. Continuous optimization of each 
MSC type, well-designed comparative studies between 
different MSC sources and detailed mechanistic studies at 
both the preclinical and clinical level are warranted to this 
end, and such results will also be critical for the future 
success of MSC transplantation therapy for HF.
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