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ABSTRACT

In this paper we establish a relation between the non-linearly conserved Newman-Penrose

charges and certain subleading terms in a large-r expansion of the BMS charges in an

asymptotically-flat spacetime. We define the subleading BMS charges by considering a

1/r-expansion of the Barnich-Brandt prescription for defining asymptotic charges in an

asymptotically-flat spacetime. At the leading order, i.e. 1/r0, one obtains the standard

BMS charges, which would be integrable and conserved in the absence of a flux term at

null infinity, corresponding to gravitational radiation, or Bondi news. At subleading orders,

analogous terms in general provide obstructions to the integrability of the corresponding

charges. Since the subleading terms are defined close to null infinity, but vanish actually

at infinity, the analogous obstructions are not associated with genuine Bondi news. One

may instead describe them as corresponding to “fake news.” At order r−3, we find that a

set of integrable charges can be defined and that these are related to the ten non-linearly

conserved Newman-Penrose charges.
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1 Introduction

The asymptotic symmetry group of asymptotically-flat spacetimes, the BMS group and its

associated charges, has encountered somewhat of a resurgence in interest recently, whether

in the context of flat space holography [1,2], its relation to the Weinberg soft theorems [3,4]

or to black holes physics [5–7].

The novel feature of asymptotically-flat spacetimes is that their asymptotic symmetry

group [8, 9] as one asymptotically approaches null infinity is much larger than the näıvely

expected Poincaré group, the symmetry group of Minkowski spacetime. It is the existence of

an infinite number of supertranslations that distinguishes the BMS group from the Poincaré

group. More precisely, the BMS group is the semi-direct product of conformal isometries

on the round 2-sphere with the supertranslations, i.e. angle-dependent translations along

future null infinity (see equation (2.27)):

BMS = SL(2,C)⋉ ST. (1.1)

Whether viewed from a phase-space [10–13] or covariant [14,15] point of view, the existence

of an enhanced (infinite) asymptotic symmetry group implies the existence of an infinite

number of charges; the BMS charges. Roughly speaking, the BMS charges are constructed

by integrating a BMS transformation parameter multiplied by a BMS invariant quantity

over the sphere at null infinity. Of course, in the non-linear theory there is the subtle issue

that charges will generally not be integrable due to the existence of flux at infinity, associated

with gravitational radiation (measured by the Bondi flux, or Bondi news) [8, 13,15].

A short time after the BMS group and its associated charges were discovered, another

set of (conserved) charges at null infinity was also discovered, known as Newman-Penrose

(NP) charges [16]. Newman and Penrose constructed their charges in the framework of the

Newman-Penrose formalism [17]. These charges are conserved along null infinity, and are

given by the integral over the sphere at infinity of a particular spherical harmonic of a Weyl

scalar. In the linearised theory there is an infinite tower of such charges, while in the non-

linear theory the tower collapses to ten such NP charges. Despite the fact that the existence

of NP charges requires a leading analytic expansion for the fields around null infinity, which

is in general not satisfied [18,19], NP charges have also been of interest recently in relation

to the existence of conserved charges on the horizon of extremal back holes [20–24]. In

Ref. [24], it has been shown that there is a 1-1 correspondence between Aretakis charges on

the extremal horizon and NP charges at null infinity of so-called weakly asymptotically-flat
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spacetimes.

The question that we would like to address here is the relation between BMS and NP

charges.

At first glance there is no obvious relation between these two sets of charges, but, given

that they are both defined in the asymptotic region of asymptotically-flat spacetimes, it

would seem natural that there should exist some connection between them. For simplicity,

we shall restrict our attention henceforth to the supertranslations. Generalising to the full

BMS group should not be too difficult. However, since the most interesting part is the

supertranslations, it makes sense to focus our attention on these transformations.

Recently, it was shown by Conde and Mao in Ref. [25] that in the linearised theory the

infinite tower of NP charges may be reinterpreted as subleading BMS charges. The standard

BMS charge associated with supertranslations is given by the integral over the sphere at

infinity of the Bondi mass aspect, which is supertranslation invariant in the linearised theory,

multiplied by a supertranslation parameter. What Conde and Mao realised is that the Bondi

mass aspect is but the leading 1/r0 term in a 1/r-expansion of the uu-component of the

linearised metric perturbation δgab. Furthermore, δguu is invariant under supertranslations.

This led them to define a new BMS charge at each order in the 1/r-expansion, finding that

the subleading BMS charges include the infinite tower of NP charges that exist in the linear

theory. 1

Our aim in this paper is to generalise the above result to the full non-linear theory. As

pointed out before, this is non-trivial given the existence of flux in the non-linear theory.

In particular, δguu is no longer supertranslation invariant. Moreover, generally, in the non-

linear theory the objects of interest are not supertranslation invariant. Hence, the same

method as Conde-Mao cannot be used to find the non-linear charges. Our idea is very

simple: we take as our starting point the general expression for asymptotic charges derived

by Barnich and Brandt [14]. 2 As defined, the Barnich-Brandt expression can be considered

as a 1/r-expansion, the leading 1/r0 term being the standard BMS charge. Thus, each

subsequent term in this 1/r-expansion may be viewed as a subleading BMS charge. We

find that at order r−3, the subleading BMS charges are associated with the non-linearly

conserved NP charges.

We begin in section 2 by reviewing properties of asymptotically-flat spacetimes, as de-

1In fact they only identify the real part of the NP charges, because their expansion for the BMS charge
is real. We shall encounter the same feature in the non-linear case.

2There is an ambiguity in the definition of the asymptotic charges in general relativity (see Ref. [26] for
a discussion of this point). However, this ambiguity will not affect the results in this paper (see section 5
for more details).
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fined by Bondi [8]. We explain the fall-off conditions that will be assumed in this paper,

the canonical complex null frame for the general metric, the form of the Einstein equations

at each order and, most importantly, the BMS group and how it acts on the fields.

In section 3, we consider a 1/r-expansion of the Barnich-Brandt definition of the asymp-

totic charge adapted to asymptotically-flat spacetimes, defining these to be subleading BMS

charges. We analyse the expansion up to order r−3. In general, the structure of the sub-

leading BMS charges is similar to that of the leading charges; there exist both integrable

and non-integrable pieces. At each order, we consider whether the non-integrable pieces can

be made to vanish by making particular choices for the supertranslation parameter, finding

that this can only be done non-trivially at order r−3.

The relation of the subleading BMS charges to the Newman-Penrose formalism is clar-

ified in section 4. In particular, we show that the integrable BMS charges at order r−3

correspond to NP charges. We conclude with some comments in section 5.

2 Asymptotically-flat metrics

Here, we work with the Bondi definition of asymptotic flatness [8, 9]. We introduce Bondi

coordinates (u, r, xI = {θ, ϕ}), such that the metric takes the form

ds2 = −Fe2βdu2 − 2e2βdudr + r2hIJ (dx
I − CIdu)(dxJ − CJdu) (2.1)

with the metric functions satisfying the following fall-off conditions at large r

F (u, r, xI) = 1 +
F0(u, x

I)

r
+
F1(u, x

I)

r2
+
F2(u, x

I)

r3
+
F3(u, x

I)

r4
+ o(r−4),

β(u, r, xI) =
β0(u, x

I)

r2
+
β1(u, x

I)

r3
+
β2(u, x

I)

r4
+ o(r−4),

CI(u, r, xI) =
CI
0 (u, x

I)

r2
+
CI
1 (u, x

I)

r3
+
CI
2 (u, x

I)

r4
+
CI
3 (u, x

I)

r5
+ o(r−5),

hIJ(u, r, x
I) = ωIJ +

CIJ(u, x
I)

r
+
C2ωIJ

4r2
+
DIJ(u, x

I)

r3
+
EIJ(u, x

I)

r4
+ o(r−4), (2.2)

where ωIJ is the standard metric on the round 2-sphere with coordinates xI = {θ, ϕ} and

C2 ≡ CIJC
IJ . Moreover, residual gauge freedom allows us to require that

h = ω, (2.3)
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where h ≡ det(hIJ) and ω ≡ det(ωIJ) = sin θ. A parameterisation of hIJ , which makes this

gauge choice obvious is one for which [9]

2hIJdx
IdxJ = (e2f + e2g)dθ2 + 4 sin θ sinh(f − g)dθdϕ+ sin2 θ(e−2f + e−2g)dϕ2 (2.4)

with

f(u, r, xI) =
f0(u, x

I)

r
+
f2(u, x

I)

r3
+
f3(u, x

I)

r4
+ o(r−4),

g(u, r, xI) =
g0(u, x

I)

r
+
g2(u, x

I)

r3
+
g3(u, x

I)

r4
+ o(r−4). (2.5)

Note that there are no terms above for f and g at order r−2 because of regularity conditions

on the metric [9].

As will become clear later, both parameterisations for hIJ are useful and, clearly, there

is a relation between the two. In particular, we have

CIJ =

 f0 + g0 (f0 − g0) sin θ

(f0 − g0) sin θ −(f0 + g0) sin
2 θ

 , DIJ =

 f2 + g2 + . . . (f2 − g2 + . . .) sin θ

(f2 − g2 + . . .) sin θ −(f2 + g2 + . . .) sin2 θ

 ,

EIJ =

 f3 + g3 + . . . (f3 − g3 + . . .) sin θ

(f3 − g3 + . . .) sin θ −(f3 + g3 + . . .) sin2 θ

 , (2.6)

where the ellipses indicate lower order terms in f and g, such as f0 and g0.

Since we are using the gauge (2.3) in which the determinant of hIJ is equal to the

determinant of the round metric on the 2-sphere, this implies that CIJ and DIJ are both

trace-free, while

trE ≡ ωIJEIJ = DIJCIJ − 1

16

(
C2
)2
, (2.7)

where

C2 ≡ CIJC
IJ = 4(f20 + g20). (2.8)

2.1 Null frame

A complex null frame eµ
a = (ℓa, na,ma, m̄a) with inverse Eµ

a,

gab = Eµ
aE

ν
b ηµν , ηµν =


0 −1

−1 0
0

0
0 1

1 0

 (2.9)
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may be introduced, where

ℓ =
∂

∂r
, n = e−2β

[
∂

∂u
− 1

2F
∂

∂r
+ CI ∂

∂xI

]
, m =

m̂I

r

∂

∂xI
,

ℓ♭ = −e2βdu, n♭ = −
(
dr +

1

2
Fdu

)
, m♭ = r m̂I (dx

I − CIdu), (2.10)

where

2m̂(I ¯̂mJ) = hIJ (2.11)

with hIJ the matrix inverse of hIJ . Equivalently,

m =
1

2r

[
(e−f + ie−g)∂θ −

i

sin θ
(ef + ieg)∂ϕ

]
. (2.12)

Given some arbitrary vector Va, we denote the components in the null basis as follows

ℓaVa ≡ V0 = −V 1, naVa ≡ V1 = −V 0, maVa ≡ Vm = V m̄, (2.13)

with the obvious generalisation also to tensors.

2.2 Einstein equations

As well as the fall-off conditions (2.2) and the gauge condition (2.3), following Ref. [9], we

assume that the components T00 and T0m of the energy-momentum tensor in the null frame

fall off as

T00 = o(r−5), T0m = o(r−3). (2.14)

The Einstein equation then implies that

G00 = o(r−5) =⇒ β0 = − 1

32
C2, β1 = 0, (2.15)

G0m = o(r−3) =⇒ CI
0 = −1

2DJC
IJ , (2.16)

where DI is the standard covariant derivative associated with the round-sphere metric ωIJ .

Furthermore, at higher orders, given appropriate fall-off for energy-momentum tensor
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components, the Einstein equation would imply the following equations

G00 = o(r−6) =⇒ β2 = − 3

32
DIJC

IJ +
1

128
(C2)2, (2.17)

G0m = o(r−5) =⇒ CI
2 =

3

4

(
DJD

IJ − CIJC1 J

)
+

1

64
C2DJC

IJ − 1

16
CIJDJC

2, (2.18)

G0m = o(r−6) =⇒ CI
3 =

2

5
DJE

IJ +
9

80
C2CI

1 − 19

80
CKLD

KDLI − 51

80
CILDKDKL

− 11

80
DKLDICKL +

7

160
C2DIC2, (2.19)

Gmm = o(r−4) =⇒ ∂uDIJ =
1

8
CIJ∂uC

2 − 1

4
F0CIJ − 1

2
D(IC1 J) −

1

8
CIJDKDLC

KL

+
1

32
DIDJC

2 +
1

2
D(I(CJ)KDLC

KL)− 1

8
DIC

KLDJCKL

+
1

4
ωIJ

[
DKC

K
1 − 5

16
□C2 +DMCKL

(
DKCLM − 1

4
DMCKL

)
+ C2

]
,

(2.20)

Gmm = o(r−5) =⇒ ∂uEIJ =
1

2
DK(C1 (ICJ)K)− 1

2
DKD(IDJ)K +

5

32
DK(C2D(ICJ)K)

− 1

8
DK(CK(IDJ)C

2) +
1

2
ωIJ

[
DKL∂uCKL − 1

4
C2F0 −

1

2
CK
1 D

LCKL

− CKLDKC1L +
1

2
DKDLDKL − 1

32
C2DKDLCKL +

5

32
CKLDKDLC

2

− 1

16
CKLDMC

MKDNC
NL +

3

32
CKLDKC

MNDLCMN

]
, (2.21)

G01 = o(r−4) =⇒ F1 = −1

2
DIC

I
1 +

3

32
(□− 2)C2

+
1

2
DIC

IKDJCJK − 1

8
DICJKDICJK , (2.22)

G01 = o(r−5) =⇒ F2 = −1

4
DIDJD

IJ − 3

4
CI
1D

JCIJ +
1

32
CIJCKLDIDJCKL

+
1

64
C2DIDJC

IJ − 1

32
CIJDIC

KLDJCKL +
5

64
DIC

IJDJC
2,

(2.23)
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G01 = o(r−6) =⇒ F3 = − 1

10
DIDJE

IJ +
3

4
CI
1C1 I +

3

160
DI(C

2CI
1 ) +

5

512
(C2)2

+
1

16
CIJ□DIJ +

9

80
DIJ□CIJ − 11

40
DICJKDIDJK

+
2

5
DICJKDJDIK − 3

80
DIJCIJ − 33

5120
□(C2)2

+
13

1024
DIC2DIC

2 +
3

128
C2DICJKDICJK

− 1

32
C2DICJKDJCIK , (2.24)

G11 = o(r−2) =⇒ ∂uF0 = −1

2
DIDJ∂uC

IJ +
1

4
∂uC

IJ∂uCIJ , (2.25)

G1m = o(r−3) =⇒ ∂uC
I
1 =

1

3
DIF0 +

1

6
□DJC

IJ − 1

6
DIDJDKCJK +

1

8
CJK∂uD

ICJK

+
5

8
∂uCJKD

ICJK − 2

3
∂uCJKD

JCKI − 1

6
DJC

IJ , (2.26)

where □ ≡ DIDI is the covariant Laplacian on the unit 2-sphere.

2.3 BMS group

The asymptotic BMS symmetry is determined by imposing that the variation of the metric

under the generators of the asymptotic symmetry group respects the form of the metric and

the gauge choices. These conditions imply that 3

ξ = s ∂u +

∫
dr
e2β

r2
hIJDJs ∂I −

r

2

(
DIξ

I − CIDIs
)
∂r. (2.27)

The u and r-independent function s(xI) parameterises supertranslations.

We list below the variation of some of the metric components under supertranslations

that will be useful later. Some of these variations can also be found in Ref. [15].

δF0 = s∂uF0 −
1

2
∂uC

IJDIDJs−DI∂uC
IJDJs, (2.28)

δCI
1 = s∂uC

I
1 +

1

16
∂uC

2DIs+ F0D
Is− 1

4
CJKDIDJDKs−

1

2
CIJDJ□s

+
1

2
DJCIKDJDKs−

3

4
DICJKDJDKs−

1

2
DJC

JKDKD
Is− 1

2
DIDJCJKD

Ks

+
1

2
DJDKC

KIDJs− CIJDJs, (2.29)

3As explained in the introduction, for simplicity, we neglect the SL(2,C) part of the BMS group.
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δCIJ = s∂uCIJ +□s ωIJ − 2D(IDJ)s, (2.30)

δC2 = s∂uC
2 − 4CIJDIDJs, (2.31)

δDIJ = s∂uDIJ +
[ 1

16
C2□s− 1

16
DKC2DKs−

1

2
CLMDKCKLDMs+ CK

1 DKs
]
ωIJ

− 2C1 (IDJ)s−
1

4
CIJC

KLDKDLs−
1

8
C2DIDJs+

1

8
D(IC

2DJ)s+DKC
KLCL(IDJ)s,

(2.32)

δEIJ = s∂uEIJ +
[1
4
DKLDKDLs+

3

2
DKD

KLDLs−
5

4
CKLC1KDLs−

1

64
C2CKLDKDLs

+
3

64

(
CKLDKC

2 + 2C2DKC
KL
)
DLs

]
ωIJ +

1

2
C1 (ICJ)KD

Ks− 5

2
DK(DK(IDJ)s)

− 1

2
DKsD(IDJ)K +

5

32
DK(C2CK(IDJ)s) +

5

32
C2DKsD(ICJ)K − 1

8
CK(IDJ)C

2DKs.

(2.33)

As explained above, the form of the Bondi metric (2.1) is preserved under the action of

the BMS group. However, assuming a particular fall-off for the energy-momentum tensor

components implies, via the Einstein equations, additional constraints on the metric. Of

course, one must be sure that these extra conditions are also preserved under the action

of the symmetry group. They will be preserved as long as a particular set of energy-

momentum tensor components satisfy particular fall-off conditions. More precisely, consider

the variation of a particular component

δξTαβ = (LξT )αβ = ξc∂cTαβ + Tcβ∂αξ
c + Tαc∂βξ

c, (2.34)

where α and β denote a fixed component of Tab in the null frame, i.e. they are each chosen

from the set {0, 1,m, m̄}. Now, assuming that

Tαβ = o(r−n), (2.35)

for some integer n, equation (2.34) at O(r−n) equals

δξTαβ = Tcβ∂αξ
c + Tαc∂βξ

c. (2.36)

Therefore, a necessary condition that the fall-off condition for Tαβ be preserved is that

Tcα and Tcβ also satisfy appropriate fall-off conditions. Here, when assuming a particular

fall-off condition for a particular component of Tab, we will always assume that the relevant

components of Tab also satisfy appropriate fall-off conditions such that the fall-off condition
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for Tαβ is preserved by the action of the BMS group. This can always be done.

3 BMS charges at subleading order

An expression for the variation of an asymptotic charge in general relativity is given by

Barnich and Brandt [14] (see also Ref. [27])

δ/Qξ[δg, g] =
1

8πG

∫
S
(d2x)ab

√
−g

{
ξbgcd∇aδgcd − ξbgac∇dδgcd + ξcgad∇bδgcd

+
1

2
gcdδgcd∇bξa +

1

2
gbdδgcd(∇aξc −∇cξa)

}
,

(3.1)

where

(d2x)ab =
1

4
ηabIJ dx

J ∧ dxJ , (3.2)

where η is the alternating symbol with ηurθϕ = 1. The slash on the variational symbol δ

signifies the fact that the variation is not, in general, integrable.

As is explained in section 5, the above definition is not unique. For example, it differs

from the expression given by Iyer and Wald by an ambiguity, which vanishes for ξ an exact

Killing vector, as opposed to an asymptotic one. We find that the ambiguity vanishes also

in this case, rendering all such charges equal.

The background of interest here, with metric gab, is the class of asymptotically-flat

spacetimes, as defined in section 2, which gives all the necessary ingredients to compute

the charges, namely, the background metric gab, given by equation (2.1) and the symmetry

generators ξa, given by equation (2.27). In this case,

(d2x)ab
√
−g = dΩ r2e2βδu[aδ

r
b]. (3.3)

Plugging in the above expressions into equation (3.1) leads to a rather complicated

expression of the form

δ/Qξ[δg, g] =
1

8πG

∫
S
dΩ
{
δ/I0 +

δ/I1
r

+
δ/I2
r2

+
δ/I3
r3

+ o(r−3)
}
. (3.4)

The first term δ/I0 in the expansion above has been derived in Ref. [15], as we shall review

below. Strictly, only this first term is defined at null infinity. Therefore, a definition of

asymptotical flatness along the lines of Geroch [28] would simply not identify any further
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terms beyond the leading one, δ/I0. However, there is no reason why one should not consider

the subleading terms and as we shall find below, this provides a direct relation between

subleading “BMS charges” and the non-linear NP charges.

3.1 BMS charge at O(r0)

Barnich and Troessaert [15] found that

δ/I0 = δ
(
− 2sF0

)
+
s

2
∂uCIJδC

IJ . (3.5)

Significantly, the BMS charge is not integrable. This non-integrability is directly related

to the flux of gravitational radiation, or “Bondi news,” at null infinity [14]. The first term

on the left-hand side, −2sF0, would be a conserved charge if there were no flux at infinity.

−2F0 is generally known as the Bondi mass aspect, and if s is chosen from the ℓ = 0 or

ℓ = 1 spherical harmonics, the charge corresponds to the Bondi-Sachs 4-momentum vector.

It should be emphasised that the above separation into an integrable and non-integrable

part is not unique. One could simply rearrange the terms differently, by moving some

portion of the integrable part into the non-integrable part. However, the most significant

aspect of the above exercise is that the BMS charge at leading order is non-integrable, and

that this is related to the news at null infinity. In fact, one could ask whether the non-

integrable part in equation (3.5) can ever be set to zero for non-trivial parameter s. Clearly,

this is only possible if and only if

∂uCIJ = 0. (3.6)

This corresponds precisely to the absence of Bondi news at null infinity.

3.2 BMS charge at O(r−1)

At the next order, a rather long but straightforward calculation gives that4,5

δ/I1 = sδ

(
−2F1 −DIC

I
1 +

3

16
(□− 2)C2 +DICIKDJC

JK − 1

4
DICJKDICJK

)
. (3.7)

4Given equation (3.4), i.e. the fact that we always regard these quantities as being integrated over a
round 2-sphere, we freely use integration by parts, ignoring total derivative terms.

5We note that there exist many Schouten identities that allow the terms to be written in different forms,
see appendix B. For example, it can be shown that (see appendix B)

DICJKDICJK −DICJKDKCIJ −DICIKDJC
JK = 0.
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Thus, at this order the BMS charge is integrable. Moreover, from equation (2.22), we find

that if the energy-momentum tensor component T01 = o(r−4), the Einstein equation implies

that

I1 = 0. (3.8)

If, on the other hand, T01 is non-vanishing at this order, we have a new non-linear BMS

charge

Q1 =

∫
S
dΩ
(
− s T01|r−4

)
. (3.9)

3.3 BMS charge at O(r−2)

Similarly, at the next order, we find that

δ/I2 = s δ
(
− 2F2 − 2DIC

I
2 − 3DICIJC

J
1 − 3

2
CIJD

ICJ
1 +

1

8
C2DIDJC

IJ

− 1

32
CIJ DIDJC

2 − 1

8
CIJDIC

KLDJCKL +
3

16
DIC

IJDJC
2
)

+ s

(
1

2

[
∂uDIJδC

IJ + δDIJ∂uC
IJ
]
− 1

16
∂uC

2δC2 +
1

8
F0δC

2 − 1

2
DICJ

1 δCIJ

− CI
1D

JδCIJ +
1

16
DIDJC

IJδC2 +
1

32
DIDJC

2δCIJ +
1

16
DIC

2DJδC
IJ

+
1

2
CKLDIC

IKDJδC
JL +

1

8
δCIJDIC

KLDJCKL

)
. (3.10)

Assuming that

T0m = o(r−5), T01 = o(r−4), Tmm = o(r−4), (3.11)

which give equations for CI
2 (equation (2.18)), F2 (equation (2.23)) and ∂uDIJ (equation

(2.20)), respectively, the expression for δ/I2 reduces to6

δ/I2 =s DIDJδ
(
−DIJ +

1

16
C2CIJ

)
+ s

(
1

2

[
∂uDIJδC

IJ + δDIJ∂uC
IJ
]
− 1

16
∂uC

2δC2 +
1

8
F0δC

2 − 1

2
DICJ

1 δCIJ

− CI
1D

JδCIJ +
1

16
DIDJC

IJδC2 +
1

32
DIDJC

2δCIJ +
1

16
DIC

2DJδC
IJ

+
1

2
CKLDIC

IKDJδC
JL +

1

8
δCIJDIC

KLDJCKL

)
. (3.12)

6For brevity, we have not directly substituted equation (2.20) for ∂uDIJ into the expression below.
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Thus, at order r−2, we have a situation that is analogous to the leading BMS charge. That

is, for a general parameter s there is a non-zero integrable piece as well as a non-zero non-

integrable piece, presumably again related to a flux. However, given that the expressions

above do not exist at null infinity as the boundary of the conformally compactified space-

time, the relation to quantities at null infinity is lost. Physically the best way to think

about these quantities is perhaps that they are defined “close” to null infinity. For this rea-

son we say that the non-integrable part is related to fake news at null infinity. While, the

physical interpretation of the leading order BMS charge is clear, this is not the case here.

Of course, there is also the issue of the non-uniqueness of the split between the integral and

non-integrable terms as explained before. It will become clear later why we have chosen the

above splitting.

We have established that at O(r−2), we have a subleading BMS charge that is non-

integrable for a general parameter s. It is reasonable to consider whether there exists an

integrable BMS charge at this order for some special parameter(s). Given that there are

no Einstein equations for F0, C
I
1 and CIJ , terms in δ/I(non−int)

2 involving these quantities

would then have to vanish independently. Consider first the terms involving F0 in the non-

integrable part in equation (3.10). Using the equations for the supertranslation variations of

the metric components listed in section (2.3) and the Einstein equations (2.32) and (2.20),

we find that the only terms in δ/I(non−int)
2 that contribute to terms involving F0 are

δ/I(non−int)
2 |F0 terms = s

(
1

2

[
∂uDIJδC

IJ + δDIJ∂uC
IJ
]
+

1

8
F0δC

2

)∣∣∣∣∣
F0 terms

. (3.13)

Thus, using equations (2.30), (2.32) and (2.20)

δ/I(non−int)
2 |F0 terms = −1

4
sF0C

IJDIDJs. (3.14)

In order for the above term to be zero for an arbitrary symmetric, trace-free matrix CIJ ,

we conclude that

DIDJs =
1

2
ωIJ□s, (3.15)

i.e. s is an ℓ = 0 or ℓ = 1 spherical harmonic, with

□s = −ℓ(ℓ+ 1)s, ℓ ∈ {0, 1}. (3.16)

Next, consider the terms involving CI
1 . Analogously, we find here that the only relevant

13



terms that can contribute are

δ/I(non−int)
2 |CI

1 terms = s

(
1

2

[
∂uDIJδC

IJ+δDIJ∂uC
IJ
]
−1

2
DICJ

1 δCIJ−CI
1D

JδCIJ

)∣∣∣∣∣
CI

1 terms

.

(3.17)

Note that substituting equation (3.15) in the variation of CIJ (2.30) gives that

δCIJ = s∂uCIJ . (3.18)

Furthermore, using equations (2.32) and (2.20), we find that the terms involving CI
1 then

simplify to

δ/I(non−int)
2 |CI

1 terms = −DI(sC1 JδC
IJ), (3.19)

which is a total derivative term and can thus be ignored.

Lastly, the only terms left to consider are those involving only CIJ . Using equation

(3.18), the only contributing terms are

δ/I2(non−int) =
1

16
sDIC

2DJδC
IJ +

1

2
sCKLDIC

IKDJδC
JL +

(
δDIJ − s∂uDIJ

)
δCIJ

+ s
[
∂uDIJ − 1

8
CIJ∂uC

2 +
1

8
CIJDKDLC

KL +
1

32
DIDJC

2 +
1

8
DIC

KLDJCKL

]
δCIJ .

(3.20)

Substituting the CIJ terms in δDIJ and ∂uDIJ from equations (2.32) and (2.20), respec-

tively, and using equation (3.15), gives

δ/I(non−int)
2 = DI

([ 1

16
sDJC

2 +
1

2
sCJKDLC

KL
]
δCIJ

)
, (3.21)

i.e. it reduces to a total derivative, which vanishes when integrated over the 2-sphere. Hence,

we conclude that for s an ℓ = 0 or ℓ = 1 spherical harmonic,

δ/I(non−int)
2 = 0. (3.22)

Therefore, δ/I2 is now integrable and hence we can read off the (unintegrated) charge from

equation (3.12)

I2 = s DIDJ

(
−DIJ +

1

16
C2CIJ

)
. (3.23)
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Up to total derivatives, the charge at this order is equivalently obtained by integrating

I2 = DIDJs
(
−DIJ +

1

16
C2CIJ

)
. (3.24)

Equation (3.15) and the trace-free property of CIJ and DIJ then implies that in fact

I2 = 0. (3.25)

In conclusion, there is no non-trivial integrable charge at this order. This result is similar in

spirit to that obtained at the previous order, where we found that, while integrable, I1 = 0

if we assume strong enough fall-off conditions for the matter fields.

3.4 BMS charge at O(r−3)

Finally, we consider the next subleading term, which we shall later relate to the NP charges

in section 4. A long but straightforward calculation gives that

δ/I3 = s δ
(
− 2F3 − 3DIC

I
3 + 2□β2 + 4β2 +

3

2
CI
1C1 I +

3

8
DI(C

2CI
1 )−

3

256
(C2)2

− 1

2
CIJ □DIJ +

1

2
DIJ□CIJ +

1

2
DIDJK(4DKCIJ − 3DICJK) +

3

2
DIJCIJ

+
3

512
□(C2)2 +

13

512
DIC2DIC

2 +
1

64
C2DICJK(3DICJK − 4DKCIJ)

)
+ s

(
1

2

[
∂uEIJδC

IJ + δEIJ∂uC
IJ
]
+

1

8
F1δC

2 − 2CIJDIδC2 J − 4δCI
2D

JCIJ

− 3δCIJDIC2 J − 5CI
2D

JδCIJ − 3

4
C2DIδC

I
1 − 17

16
δC2DIC

I
1 − 3

2
δCI

1DIC
2

− 15

8
CI
1DIδC

2 +
1

2
CIJδCJKDIC

K
1 +

5

2
CK
1 C

IJDIδCJK + CK
1 δC

IJDICJK

+
1

2
CK
1 δC

IJDKCIJ +
3

2
δCK

1 C
IJDICJK +

5

4
δCIJ□DIJ +

3

4
CIJ□δDIJ

+
5

8
DIJ□δCIJ − 11

4
DIDJKDKδCIJ +

15

4
DIDJKDIδCJK + 3DJCIJDKδD

IK

− 3

4
DIJδCIJ − 3

2
δDIJCIJ − 1

16
C2□δC2 − 3

256
δC2□C2 − 1

4
δCIJCJKD

KDIC
2

− 1

32
C2δCIJDKDICJK − 3

64
C2CIJDKDIδCJK +

1

32
δC2CIJDID

KCJK

+
9

64
C2DIC

IKDJδCJK − 7

32
CIJDKCJKDIδC

2 − 1

8
CIJDICJKD

KδC2

+
1

64
δC2DICJKDIδCJK − 9

64
δCIJDIC

2DKCJK − 17

64
δCIJDKC2DICJK

− 9

32
CIJDIC

2DKδCJK − 17

64
CIJDKC2DIδCJK − 7

128
C2δC2

)
. (3.26)
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Assuming that

T00 = o(r−6), T0m = o(r−6), T01 = o(r−6), Tmm = o(r−5), (3.27)

we obtain equations for β2 (2.17), CI
2 (2.18), CI

3 (2.19), F3 (2.24) and ∂uEIJ (2.21), respec-

tively. Inserting these equations into (3.26) gives the much simpler expression

δ/I3 = s δ
(
−DIDJE

IJ +
1

2
□(DIJCIJ)−

1

32
□(C2)2

)
+ s

(
1

2

[
∂uEIJδC

IJ + δEIJ∂uC
IJ
]
− 1

4
DI(C

K
1 C

IJ)δCJK +
1

4
CK
1 C

IJDIδCJK

+
1

4
δCIJDKDIDJK +

5

4
DJKDID

KδCIJ +DIDJKD
KδCIJ

+
1

16
δCIJDK(CJKDIC

2)− 5

64

[
δCIJDK(C2DICJK) + CJKDI(C

2DKδCIJ)
]

− 1

16
CJKDIC

2DKδCIJ

)
. (3.28)

In deriving this equation from (3.26), simple applications of the identity (B.5) are required,

as well as the fact that the covariant derivatives in the round 2-sphere metric satisfy

[DI , DJ ]VK = RIJK
LVL, RIJKL = ωIK ωJL − ωIL ωJK . (3.29)

As with δ/I2 in section 3.3, we find that in general there exist non-integrable terms. As

before, one may consider whether there exists some choice or choices of the parameter s such

that the non-integrable part of δ/I3 vanishes. We note that there are no Einstein equations

for F0, C
I
1 , DIJ or CIJ , and therefore we can consider terms involving each one of these

fields in isolation, without loss of generality.

First, consider terms involving F0. Inspecting equation (3.28) and equations (2.33) and

(2.21), we find that the only terms containing F0 are

δ/I(non−int)
3 |F0 terms =

1

2
s
[
∂uEIJδC

IJ + δEIJ∂uC
IJ
]∣∣∣

F0 terms

= − 1

16
sC2F0 ωIJ

[
δCIJ + s∂uC

IJ
]
. (3.30)

Since CIJ is trace-free, it follows that the terms involving F0 vanish.
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Next, we consider terms involving CI
1 . These come from

δ/I(non−int)
3 |CI

1 terms = s

(
1

2

[
∂uEIJδC

IJ + δEIJ∂uC
IJ
]
− 1

4
DI(C

K
1 C

IJ)δCJK

+
1

4
CK
1 C

IJDIδCJK

)∣∣∣∣∣
CI

1 terms

=
1

4
DK

(
sCI

1C
JKδCIJ

)
+

1

2

(
DIDJs− 1

2
□s ωIJ

)[
DK

(
sCK

1 CIJ

)
−DI

(
sCK

1 CJK

)]
,

(3.31)

where we have used equations (2.33), (2.21) and (2.30). Notice that the first term in the

final equation above is a total derivative and can therefore be ignored. Furthermore, up to

total derivatives, the second set of terms is equivalent to

δ/I(non−int)
3 = −1

2
sCK

1 CIJ

(
DKD

IDJs− 1

2
δJKD

I□s− δJKD
Is
)
, (3.32)

where we have made use of equation (3.29). Now, if this expression is to vanish for arbitrary

CK
1 and symmetric trace-free CIJ , the symmetrisation on (IJ) of the terms in the bracket

would need to be proportional to the round 2-sphere metric ωIJ . Contracting over the IJ

indices determines the function of proportionality. In summary, we find that s must satisfy

DKD(IDJ)s−
1

2
ωK(IDJ)□s−

1

4
ωIJDK□s− ωK(IDJ)s+

1

2
ωIJDKs = 0. (3.33)

As discussed in appendix C, this equation is satisfied if s is any ℓ = 2 spherical harmonic

(see equation (C.8)). In particular,

□s = −6s, (3.34)

and equation (3.33) reduces to the simpler equation (C.7)

DKDIDJs = −2ωIJ DK s− 2ωK(I DJ) s. (3.35)

Assuming henceforth that s is an ℓ = 2 spherical harmonic, we proceed to investigate
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the terms featuring DIJ , which appear in the following terms

δ/I(non−int)
3 |DIJ terms = s

(
1

2

[
∂uEIJδC

IJ + δEIJ∂uC
IJ
]
+

1

4
DKDIDJKδC

IJ

+
5

4
DJKDID

KδCIJ +DIDJKD
KδCIJ

)∣∣∣∣∣
DIJ terms

=
5

4
DI

(
sDJKD

KδCIJ

)
+DK

(
sδCIJDIDJK − 5

4
δCIJDI

(
sDJK

))
− 1

2

(
DIDJs− 1

2
□s ωIJ

)
DK

[
sDIDJK + 5DJKDIs

]
,

(3.36)

where, as before, we have used equations (2.33), (2.21) and (2.30). The first two terms in

the final equation here are total derivatives, and so when integrated over the sphere they

will give zero. Up to total derivatives, the remaining terms then give

δ/I(non−int)
3 =

1

2
DK

(
DIDJs− 1

2
□s ωIJ

)[
sDIDJK + 5DJKDIs

]
. (3.37)

Using equations (3.34) and (3.35), one can show that

DK
(
DIDJs− 1

2
□s ωIJ

)
= 2ωI[JDK]s− ωJKDIs. (3.38)

Given that the above combination is contracted with terms that are symmetric and trace-free

in (JK) in equation (3.37), this implies that the terms involving DIJ vanish in δ/I(non−int)
3 .

Finally, we are left with terms involving only CIJ

δ/I(non−int)
3 = s

(
1

2

[
∂uEIJδC

IJ + δEIJ∂uC
IJ
]
+

1

16
δCIJDK(CJKDIC

2)

− 5

64

[
δCIJDK(C2DICJK) + CJKDI(C

2DKδCIJ)
]
− 1

16
CJKDIC

2DKδCIJ

)

=
5

64
DK

(
C2DI(sCJK)δCIJ

)
− 5

64
DI

(
sC2CJKD

KδCIJ
)

− 1

16
DK

(
sCJKDIC

2δCIJ
)

− 1

8

(
DIDJs− 1

2
□s ωIJ

)
DK

[
sCJKDIC

2 − 5

4
C2DI(sCJK)

]
, (3.39)
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where we have used equations (2.33), (2.21) and (2.30). Up to total derivatives,

δ/I(non−int)
3 =

1

8
DK

(
DIDJs− 1

2
□s ωIJ

)[
sCJKDIC

2 − 5

4
C2DI(sCJK)

]
. (3.40)

Equation (3.38), and the fact that CJK is symmetric and trace-free, then imply that

δ/I(non−int)
3 = 0. (3.41)

In summary, we find that the non-integrable terms in δ/I3 vanish if and only if s is an

ℓ = 2 spherical harmonic. Thus, we have an integrable charge, whose integrand can be read

off from equation (3.28). Using equation (2.7), this gives, for any ℓ = 2 spherical harmonic

s,

I3 = sDIDJ

(
− EIJ +

1

2
trE ωIJ

)
, (3.42)

which, up to total derivatives, is equivalent to

I3 = − (DIDJs+ 3s ωIJ)E
IJ , (3.43)

where we have used equation (3.34). Hence, we have found a new integrable charge that is

generally non-vanishing for arbitrary field EIJ . In the next section, we shall demonstrate

that this charge has a precise correspondence with the NP charges.

4 Relating the BMS charges to the NP formalism

In this section, we relate the tower of BMS charges found in section 3 to the formalism

developed by Newman and Penrose in Ref. [16, 17]. In particular, we show that the BMS

charges at order r−3 are the non-linear NP charges discovered in Ref. [16]. Throughout

this section, we use the notation of the Newman-Penrose formalism, which can be found in

Ref. [17].7

The Newman-Penrose formalism begins with a choice of complex null frame {ℓ, n,m, m̄}.

We choose the null frame defined in equation (2.10). Once a null frame has been chosen,

we can form scalars by contracting tensors onto null frame components. Hencewith, 12

complex spin coefficients are formed by contracting covariant derivatives of the null frame

vectors onto null frame components. The spin coefficients constitute information about the

7In Ref. [17], they use negative signature convention, whereas we use positive signature conventions. This
simply means that the scalar product of the null frame vectors and the definition of the Newman-Penrose
scalars is different by a minus sign.
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connection. For example,

κ = maℓb∇bℓa, σ = −mamb∇bℓa (4.1)

parameterise geodesicity and shear, respectively, of the null vector congruence associated

with ℓ. Moreover, we have scalars representing the ten degrees of freedom in the Ricci

tensor, and the five complex Weyl scalars

Ψ0 = ℓambℓcmdCabcd, Ψ1 = ℓanbℓcmdCabcd, Ψ2 = ℓambm̄cndCabcd,

Ψ3 = ℓanbm̄cndCabcd, Ψ4 = nam̄bncm̄dCabcd. (4.2)

With the fall-off conditions (2.2) and (2.14), we find that

Ψ0 = ψ0
0

1

r5
+ ψ1

0

1

r6
+ o(r−6), Ψ1 = ψ0

1

1

r4
+ o(r−4), Ψ2 = ψ0

2

1

r3
+ ψ1

2

1

r4
+ o(r−4),

Ψ3 = ψ0
3

1

r2
+ o(r−2), Ψ4 = ψ0

4

1

r
+ o(r−1). (4.3)

The above property of the Weyl tensors is known as peeling [8, 9, 17]. Moreover,

σ = σ0
1

r2
+ o(r−2). (4.4)

In terms of the functions that define the metric components (2.2) and (2.5),

σ0 =
(1 + i)

2
(f0 + ig0). (4.5)

Defining the differential operators ð and ð̄ acting on a scalar of spin n [17,29]8

ðη = −(1 + i)

2
sinn θ

(
∂

∂θ
− i

sin θ

∂

∂ϕ

)( η

sinn θ

)
,

ð̄η = −(1− i)

2

1

sinn θ

(
∂

∂θ
+

i

sin θ

∂

∂ϕ

)(
sinn θ η

)
, (4.6)

ψ0
4 = −∂2uσ̄0, ψ0

3 = ð∂uσ̄0, ψ0
2 − ψ̄0

2 = σ̄0∂uσ
0 − σ0∂uσ̄

0 + ð̄2σ0 − ð2σ̄0. (4.7)

Furthermore,

ψ0
2 + ψ̄0

2 = F0 − ∂u|σ0|2 (4.8)

8The spins n of the Weyl scalars Ψ0, Ψ1, Ψ2, Ψ3, Ψ4 are 2, 1, 0, -1 and -2, respectively, while σ has spin
2. Complex conjugation reverses the sign of the spin: n→ −n.
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and9

ψ1
2 = F1 +

(1 + i)

2
ð̄(Cθ

1 − i sin θ Cϕ
1 )−

(1− i)

4
ð(Cθ

1 + i sin θ Cϕ
1 )

− 3

4
ð(σ̄0ð̄σ0) +

9

4
σ0ð̄ðσ̄0 +

1

4
ð̄σ̄0ðσ0, (4.9)

ψ0
1 =

3(1 + i)

4
(Cθ

1 − i sin θ Cϕ
1 ) +

3

4
ð|σ0|2 + 3σ0ðσ̄0, (4.10)

ψ0
0 = −3(1 + i)(f2 + ig2)− i(f30 + g30) +

(1− i)

4
(f0 + ig0)

3, (4.11)

ψ1
0 = −6(1 + i)(f3 + ig3). (4.12)

Now that we have defined all the quantities in the language of Newman and Penrose we

are ready to compare to the tower of BMS charges derived in section 3.

4.1 I0 and BMS charges

The standard BMS charge is defined by

Pℓ,m = − 1

2πG

∫
dΩ Yℓm (ψ0

2 + σ0∂uσ̄
0), (4.13)

where Yℓm are the usual spherical harmonics. Setting 0 ≤ |m| ≤ ℓ ≤ 1 gives the usual

Bondi-Sachs 4-momentum vector. In fact, in this case, from the last equation in (4.7)

ℑ(ψ0
2 + σ0∂uσ̄

0) = ℑ(ð̄2σ0) (4.14)

is a total derivative. Thus,

Pℓ,m = − 1

2πG

∫
dΩ Yℓm ℜ(ψ0

2 + σ0∂uσ̄
0), ℓ ∈ {0, 1}. (4.15)

Defining the integrable part of equation (3.5) to be

Q0 =
1

8πG

∫
dΩ Yℓm(−2F0) (4.16)

with s = Yℓm and rewriting the above expression in terms of Newman-Penrose quantities

gives

Q0 = − 1

2πG

∫
dΩ Yℓm ℜ(ψ0

2 + σ0∂uσ̄
0) (4.17)

Comparing with equation (4.13) we find that the charge above is the real part of the BMS

9Note that (Cθ
1 − i sin θ Cϕ

1 ) is a spin 1 quantity.
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charge as defined by Newman-Penrose (see equation (4.15) of Ref. [16]). However, for

ℓ = 0, 1, they are equal as can be seen from equation (4.15).

The integrability property of Q0 in the language of Barnich-Brandt translates to its

conservation along null infinity in the language of Newman-Penrose. The Bianchi identities,

which are non-trivial in the Newman-Penrose formalism, imply that

∂uψ
0
2 = −ð2∂uσ̄0 − σ0∂2uσ̄

0. (4.18)

Using this equation

∂u(−2F0) = −4∂uℜ(ψ0
2 + σ0∂uσ̄

0) = ℜ(ð2∂uσ̄0)− 4|∂uσ0|2. (4.19)

Note that for ℓ ≤ 1, the first term is a total derivative since10

ð̄2Yℓm = ð2Yℓm = 0, (4.20)

i.e. it is a soft graviton term [3], while in terms of functions of the metric components

|∂uσ0|2 =
1

8
∂uCIJ∂uC

IJ , (4.21)

i.e. the obstacle to the conservation of Q0 is

1

2
∂uCIJ∂uC

IJ , (4.22)

which matches precisely with the non-integrable term in equation (3.5).

4.2 I1 and ψ0
1

Writing I1 from equation (3.7) in terms of Newman-Penrose quantities gives

I1 = 2ℜ(ð̄ψ0
1 − ψ1

2). (4.23)

The Bianchi identities imply that

ψ1
2 = ð̄ψ0

1. (4.24)

10This result comes from standard properties of spin-weighted spherical harmonics (see e.g. Ref. [16])

ð(sYlm) =
√

(l − s)(l + s+ 1) s+1Ylm, ð̄(sYlm) = −
√

(l + s)(l − s+ 1) s−1Ylm.
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Hence,

I1 = 0. (4.25)

4.3 I2 and ψ0
0

In section 3.3, we found that choosing s to be an ℓ = 0 or ℓ = 1 mode, the non-integrable

part vanishes and we are left with a candidate charge of the form (3.23). In terms of

Newman-Penrose quantities,

DIDJ

(
−DIJ +

1

16
C2CIJ

)
=

2

3
ℜ
(
ð̄2ψ0

0

)
. (4.26)

Hence,

I2 =
2

3
Yℓm ℜ

(
ð̄2ψ0

0

)
(4.27)

with ℓ = 0, 1. Using equation (4.20), we reproduce the result in section 3.3 that the

integrable charge is in fact zero.

4.4 I3 and NP charges

In section 3.4, we found an integrable charge at order r−3 as long as s is chosen to be an

ℓ = 2 spherical harmonic. Translating the main result of that section, equation (3.42), into

Newman-Penrose language, and using the fact that

DIDJ

(
− EIJ +

1

2
ωIJ

[
DKLCKL − 1

16
(C2)2

])
=

1

3
ℜ
(
ð̄2ψ1

0

)
, (4.28)

gives

Q3 =
1

24πG

∫
dΩ Ȳ2,mℜ

(
ð̄2ψ1

0

)
. (4.29)

Integrating by parts gives

Q3 =
1

4
√
6πG

∫
dΩ
[
2Ȳ2,m ψ1

0 + (−1)m 2Y2,−m ψ̄1
0

]
. (4.30)

Notice that the first term in the integrand above corresponds to the NP charges (see equation

(4.19) of Ref. [16]). The second term is not quite the complex conjugate of the first.

However, the combination means that we only have half the number of NP charges. Perhaps

an easier way to see this is that in equation (4.28), only the real part of ð̄2ψ1
0 appears on

the right-hand side.
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5 Discussion

In this paper, we have established concretely the relation of the NP charges to the BMS

group of asymptotic symmetries at null infinity and its associated charges. While the

relation of the NP charges to the BMS group was argued for in Ref. [16], even an explicit

demonstration of the supertranslation invariance of the non-linear NP charges has been

missing (see, however, Ref. [30]). In particular, interestingly, we find that the NP charges

appear at subleading 1/r3 order in a 1/r-expansion of the Barnich-Brandt charge, which

defines the standard BMS charge at leading order.

We have used the Barnich-Brandt definition of asymptotic charges, but this is not

unique. For example, the Iyer-Wald definition [12] differs by a term of the form

1

16πG

∫
S
(d2x)ab

√
−g

(
∇aξc +∇cξa

)
gbdδgcd. (5.1)

In fact, as discussed in Ref. [26], the above expression, with an arbitrary coefficient, repre-

sents a one parameter family of ambiguities. Our results in this paper are not affected by

the inclusion of this term.

Curiously, we only obtain half the number of NP charges, owing to the fact that the

Barnich-Brandt charge is real. It would be interesting to understand whether the Barnich-

Brandt integral could ever give all ten NP charges and, if so, how. It seems unlikely that

the SL(2,C) part, or indeed its generalisation involving superrotations, could account for

the remaining five charges.

Another slightly puzzling feature of the Barnich-Brandt charge definition is that in it s

plays the role both of the supertranslation parameter and also as a function used in order

to define the charge. Thus, for example, in section 3.4, when we show that I3 is integrable

if s is an ℓ = 2 harmonic, showing that the variation of I3 with such a parameter s vanishes

clearly does not prove that the integrable charge is invariant under the full action of the full

supertranslation group. Rather, it only demonstrates that I3 is invariant under the action

of those supertranslations where the supertranslation parameter s is an ℓ = 2 harmonic.

We do, however, prove the complete invariance of the NP charges under the full action of

the supertranslation group in appendix A.

At the linearised level, at each order in the 1/r expansion, there are conserved charges

associated to the tower of linearised Newman-Penrose charges. Conde and Mao [25] also

find only half of these charges, viz. the real parts. Linearising our extended BMS charges,

at each order we get the same form as Conde-Mao’s charges. At suitably low enough order
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the Conde-Mao charges come from expanding F (u, r, θ, ϕ), which we also have. Therefore,

at leading order our charges agree; see equation (3.5). However, at subleading orders, we

also get contributions from the expansion of DIC
I(u, r, θ, ϕ); see equations (3.7), (3.10)

and (3.26). Using equations of motion (2.22), (2.23), (2.18), (2.24) and (2.19), the Taylor

coefficients in the 1/r expansion of F (u, r, θ, ϕ) and DIC
I(u, r, θ, ϕ) are proportional to

each other, hence the form of our linearised charges at each order is equal to the charges

of Conde-Mao. However, the coefficients are different. In particular, at the subleading

order the relative constant of proportionality between F1(u, θ, ϕ) and DIC
I
1 (u, θ, ϕ) is such

that they cancel upon use of equation (2.22). The difference between our and Conde-

Mao’s linearised charges reflects the fact that at the linearised level there are a number

of independent supertranslation invariant quantities. However, at the non-linear level this

degeneracy is lifted and there is a unique combination that is supertranslation invariant,

which is what is found in this paper.

The fact that there are only ten non-linearly conserved NP charges has not been fully

understood in the context of the Newman-Penrose formalism. It remains an open ques-

tion whether the reframing of the charges in terms of the Barnich-Brandt formalism could

help with resolving this puzzle. Of course, a prerequisite to understanding this is first to

understand why half the NP charges are missing in this formalism.

In a future work, we will also investigate the tower of subleading BMS charges for

the more realistic fall-off conditions at infinity [31–33] that do not preclude some physical

processes, such as compact data close to spacelike infinity. These fall-off conditions are most

relevant for current gravitational wave observations and the hope would be that this leads

to the discovery of a quantity that is useful for gravitational wave analysis.

It would also be interesting to investigate the charge algebra at subleading order. In

particular, there will be a hierarchy of BMS algebras at each order with different modified

brackets, corresponding to the different fake news at each order, and field-dependent central

extensions. At the leading order, the algebra has no central extension for supertranslation

generators [15] and this is expected to be the case at subleading orders as well. However,

extending our charges to include rotations should give rise to new central extensions at

subleading orders. Furthermore, at O(1/r3), there ought to be a subalgebra, given by the

generators corresponding to the Newman-Penrose charges, for which the modified bracket

is just given by the ordinary Dirac bracket. We will investigate the charge algebra hierarchy

in a future work.
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A Supertranslation invariance of NP charges

In this appendix, we demonstrate the supertranslation invariance of the NP charges in the

language of Ref. [16]. The ten non-linear NP charges are given in terms of ψ1
0,

Gm =

∫
dΩ 2Ȳ2,m ψ

1
0, (A.1)

where

ψ0 = ψ0
0 r

−5 + ψ1
0 r

−6 + o(r−6). (A.2)

We would like to investigate the effect of a supertranslation on the NP charges. Note

that in terms of the metric components

ψ0
0 = −3(1 + i)(f2 + ig2)− i

(
f30 + g30

)
+

(1− i)

4
(f0 + ig0)

3, (A.3)

ψ1
0 = −6(1 + i)(f3 + ig3). (A.4)

Using the expression for ψ1
0 above and equations (2.33), (2.32) and (2.30), a straightforward

yet slightly cumbersome calculation shows that

δψ1
0 = s ∂uψ

1
0 − 5 ð̄

(
ψ0
0 ðs

)
− ð̄s ðψ0

0 + 4ð̄s σ0ψ0
1. (A.5)
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Now, equation (4.12) of Ref. [16] reads11

∂uψ
1
0 = −sð̄

(
ðψ0

0 − 4σ0ψ0
1

)
. (A.6)

Substituting the above equation in equation (A.5) gives

δψ1
0 = −ð̄

(
s ðψ0

0 + 4ð̄s σ0ψ0
1

)
− 5 ð̄

(
ψ0
0 ðs

)
. (A.7)

Therefore, from equation (A.1), the change of the NP charges under the action of a super-

translation generator is

δGm = −
∫
dΩ 2Ȳ2,m ð̄

(
s ðψ0

0 + 4ð̄s σ0ψ0
1 + 5ψ0

0 ðs
)

(A.8)

Using the fact that

ð̄ 2Ȳ2,m = 0 (A.9)

the expression above reduces to a total derivative. Thus,

δGm = 0, (A.10)

i.e. we conclude that the NP charges are invariant under supertranslations.

B Identities for tensors on the 2-sphere

For the calculation in section 3, it is useful to be aware of a number of identities satisfied

by tensors on the 2-sphere. These are ultimately derived from Schouten identities in two

dimensions. For example, for any symmetric traceless matrix XIJ , such as CIJ or DIJ ,

XIJ = −ϵIKϵJLXKL, (B.1)

where ϵIJ is the volume 2-form on the round 2-sphere. This can be derived from the fact

that

ϵIKϵJL = 2ωI[JωL]K . (B.2)

11There is in fact a minor typographical error in equation (4.12) of Ref. [16].
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Now, consider

XIJδ
L
K = −ϵIM ϵJNXMN ϵLP ϵKP

= −ϵJN ϵKP (δ
L
I X

PN − δPI X
LN )

= δLI XJK + ωJKX
L
I − ωIJC

L
K , (B.3)

where we have used equation (B.1) in the first equality and (B.2) a number of times in the

calculation above. Hence, we derive the 2-dimensional Fierz identity

ωIJXKL + ωKLXIJ − ωILXJK − ωJKXIL = 0, (B.4)

or contracting this equation with an arbitrary V L

XIJVK = XJKVI +XILV
LωJK −XKLV

LωIJ . (B.5)

Applying the above identity to the first three indices in XKIXJ
K gives

XKIXJ
K = XIJXK

K +X2ωIJ −XKIXJ
K , (B.6)

where X2 = XIJX
IJ . Using the fact that XIJ is trace-free implies that

XIKX
JK =

1

2
X2δJI . (B.7)

Similarly,

DIXJKDIXJK = DIXJK(DKXIJ +DLXKLωIJ −DLXLIωJK)

= DIXJKDKXIJ +DIXIKDJX
JK (B.8)

or

DIXJKDIXJK −DIXJKDKXIJ −DIXIKDJX
JK = 0. (B.9)

One may derive many other equations from identity (B.4) or equivalently (B.5) in a similar

fashion to the derivations above.
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C ℓ = 0, ℓ = 1 and ℓ = 2 spherical harmonics

The spherical harmonics Yℓm(θ, ϕ) on the unit 2-sphere obey −□Yℓm = ℓ(ℓ + 1)Yℓm. The

ℓ = 0 harmonic is of course just a constant.

Suppose ψ is an ℓ = 1 harmonic, satisfying −□ψ = 2ψ. It follows that ψ satisfies the

equation

DIDJψ = 1
2ωIJ □ψ , (C.1)

where ωIJ is the unit 2-sphere metric, and hence

DIDJψ = −ωIJ ψ . (C.2)

One can prove (C.1) by defining TIJ ≡ DIDJψ − 1
2ωIJ □ψ, and observing that, after

integrating |TIJ |2 ≡ T IJ TIJ over the sphere and performing some integrations by parts,∫
|TIJ |2dΩ = 1

2

∫
ψ□(□+ 2)ψ dΩ . (C.3)

Thus if ψ obeys −□ψ = 2ψ then TIJ must vanish, hence establishing (C.1).12

Turning now to ℓ = 2 modes, let us define the tensor

TIJK ≡ DKDIDJψ − 1
3ωIJ DK □ψ − 1

3ωK(I DJ)□ψ . (C.4)

Integrating |TIJK |2 ≡ T IJKTIJK over the sphere and performing some integrations by parts,

we find ∫
|TIJK |2 dΩ = − 5

18

∫
ψ□(□+ 6)(□+ 12

5 )ψ dΩ . (C.5)

Thus, if ψ is an ℓ = 2 harmonic, meaning that it satisfies −□ψ = 6ψ, then TIJK = 0 and

so13

DKDIDJψ =
1

3
ωIJ DK □ψ +

1

3
ωK(I DJ)□ψ . (C.6)

It follows also that it obeys

DKDIDJψ = −2ωIJ DK ψ − 2ωK(I DJ) ψ (C.7)

12Of course if □ψ = 0 then TIJ again vanishes and (C.1) also holds, but trivially in this case since ψ is
then a constant.

13An ℓ = 0 mode (a constant) also trivially satisfies (C.6). A function satisfying −□ψ = 12
5
ψ cannot be

smooth on S2 and would violate the assumptions under which (C.5) was derived. Thus, such a function
does not obey (C.6).
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and

DKD(IDJ)s =
1

2
ωK(IDJ)□s+

1

4
ωIJDK□s+ ωK(IDJ)s−

1

2
ωIJDKs. (C.8)

It is interesting to note that the above identities generalise to higher dimensions, and

here we record these for the case of a unit n-sphere. The analogous hyperspherical harmonics

have eigenvalues −□ = ℓ(ℓ+ n− 1). The ℓ = 1 modes ψ, obeying −□ψ = nψ, satisfy

DIDJψ =
1

n
ωIJ □ψ = −ωIJ ψ , (C.9)

and the ℓ = 2 modes, obeying −□ψ = 2(n+ 1)ψ, satisfy

DKDIDJψ =
1

n+ 1
ωIJ DK □ψ +

1

n+ 1
ωK(I DJ)□ψ = −2ωIJ DK ψ − 2ωK(I DJ) ψ .

(C.10)

These identities can again be proven by integrating the squares of the analogously-defined

tensors TIJ and TIJK over the sphere.

D Barnich-Brandt charge and the Einstein equation

In this appendix, we show that the Barnich-Brandt charge as applied to asymptotically-flat

spacetimes is zero upon use of the Einstein equations. Starting from equation (3.1) and

rearranging the terms gives that

δ/Qξ[δg, g] =
1

16πG

∫
S
(d2x)ab

√
−g

{
3
[
ξbgcd∇aδgcd − ξbgac∇dδgcd − gadδgcd∇bξc

]
+∇b

(
gcdδgcdξ

a + 2gadδgcdξ
c
)
−∇c(ξagbdδgcd)

}
.

(D.1)

Using

δgab = 2∇(aξb), (D.2)

the above expression reduces to

δ/Qξ[δg, g] =
1

16πG

∫
S
(d2x)ab

√
−g

{
3
[
2ξb∇a∇cξc − ξb∇c∇aξc − ξb∇c∇cξ

a −∇cξa∇bξc
]

+∇b
(
2ξa∇cξ

c + ξc∇cξ
a +

1

2
∇aξ2

)
−∇c(ξa∇bξc + ξa∇cξ

b)
}
, (D.3)
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where we have also used the fact that by symmetry,

∇[aξc∇b]ξc = 0. (D.4)

Now arranging the last two terms in the first line of equation (D.3) above, and also using

∇cξ[a∇cξ
b] = 0, ∇[a∇b]ξ2 = 0, (D.5)

gives

δ/Qξ[δg, g] =
1

16πG

∫
S
(d2x)ab

√
−g

{
6ξb[∇a,∇c]ξc + 2∇b∇c(ξ

aξc)

−2∇c(ξ
b∇cξa − 2ξb∇aξc)

}
, (D.6)

which simplifies to

δ/Qξ[δg, g] =
1

16πG

∫
S
(d2x)ab

√
−g

{
6ξb[∇a,∇c]ξc + 2[∇b,∇c](ξ

aξc)

+2∇c(ξ
c∇bξa + ξa∇cξb − ξa∇bξc)

}
.

(D.7)

For now we ignore the terms in the first line in the equation above and focus on the terms

in the second line. In fact, we shall demonstrate that these terms form a total derivative.

Performing explicitly the contraction in ab and using equation (3.3), the terms in the second

line become

r2

4πG

∫
S
dΩ e2β ∇c

{
ξ[c∇r]ξu + ξ[u∇c]ξr − ξ[u∇r]ξc

}
. (D.8)

The expression in the braces clearly vanishes when c = u or c = r. Hence, the above

equation reduces to

r2

4πG

∫
S
dΩ e2β ∇IX

Iur, (D.9)

where

Xcab = ξc∇[bξa] + ξ[a∇|c|ξb] − ξ[a∇b]ξc. (D.10)
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Note that as argued above Xuur = Xrur = 0. Now,

∇IX
Iur = ∂IX

Iur + ΓI
IJX

Jur + Γu
IcX

Icr + Γr
IcX

Iuc

= ∂IX
Iur + ΓI

IJX
Jur + (Γu

Iu + Γr
Ir)X

Iur + Γu
IJX

IJr − Γr
IJX

IJu. (D.11)

From the definition of Xcab, it can be shown that

XIJa = XaIJ , (D.12)

i.e. that XIJa = X [IJ ]a. Hence,

∇IX
Iur = ∂IX

Iur + (ΓI
IJ + Γu

Ju + Γr
Jr)X

Jur. (D.13)

Inserting the expressions for the Christoffel symbols [1]

ΓI
IJ + Γu

Iu + Γr
Ir =

(ω)ΓI
IJ + 2∂Iβ, (D.14)

where (ω)ΓI
IJ is the Christoffel symbols associated with the round 2-sphere metric ωIJ ,

equation (D.9) simplifies to

r2

4πG

∫
S
dΩ DI

(
e2β XIur

)
= 0. (D.15)

Thus, returning to equation (D.7) and using the definition of the Riemann tensor

[∇a,∇b]Vc = Rabc
dVd, (D.16)

we obtain

δ/Qξ[δg, g] =
r2

2πG

∫
S
dΩ e2β ξ[uRr]

cξ
c =

r2

2πG

∫
S
dΩ e2β ξ[uGr]

cξ
c. (D.17)

Hence, we find that on-shell

δ/Qξ[δg, g] = 0. (D.18)
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